1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 *
4 * Common boot and setup code.
5 *
6 * Copyright (C) 2001 PPC64 Team, IBM Corp
7 */
8
9 #include <linux/export.h>
10 #include <linux/string.h>
11 #include <linux/sched.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/reboot.h>
15 #include <linux/delay.h>
16 #include <linux/initrd.h>
17 #include <linux/seq_file.h>
18 #include <linux/ioport.h>
19 #include <linux/console.h>
20 #include <linux/utsname.h>
21 #include <linux/tty.h>
22 #include <linux/root_dev.h>
23 #include <linux/notifier.h>
24 #include <linux/cpu.h>
25 #include <linux/unistd.h>
26 #include <linux/serial.h>
27 #include <linux/serial_8250.h>
28 #include <linux/memblock.h>
29 #include <linux/pci.h>
30 #include <linux/lockdep.h>
31 #include <linux/memory.h>
32 #include <linux/nmi.h>
33 #include <linux/pgtable.h>
34
35 #include <asm/kvm_guest.h>
36 #include <asm/io.h>
37 #include <asm/kdump.h>
38 #include <asm/prom.h>
39 #include <asm/processor.h>
40 #include <asm/smp.h>
41 #include <asm/elf.h>
42 #include <asm/machdep.h>
43 #include <asm/paca.h>
44 #include <asm/time.h>
45 #include <asm/cputable.h>
46 #include <asm/dt_cpu_ftrs.h>
47 #include <asm/sections.h>
48 #include <asm/btext.h>
49 #include <asm/nvram.h>
50 #include <asm/setup.h>
51 #include <asm/rtas.h>
52 #include <asm/iommu.h>
53 #include <asm/serial.h>
54 #include <asm/cache.h>
55 #include <asm/page.h>
56 #include <asm/mmu.h>
57 #include <asm/firmware.h>
58 #include <asm/xmon.h>
59 #include <asm/udbg.h>
60 #include <asm/kexec.h>
61 #include <asm/code-patching.h>
62 #include <asm/livepatch.h>
63 #include <asm/opal.h>
64 #include <asm/cputhreads.h>
65 #include <asm/hw_irq.h>
66 #include <asm/feature-fixups.h>
67 #include <asm/kup.h>
68 #include <asm/early_ioremap.h>
69 #include <asm/pgalloc.h>
70 #include <asm/asm-prototypes.h>
71
72 #include "setup.h"
73
74 int spinning_secondaries;
75 u64 ppc64_pft_size;
76
77 struct ppc64_caches ppc64_caches = {
78 .l1d = {
79 .block_size = 0x40,
80 .log_block_size = 6,
81 },
82 .l1i = {
83 .block_size = 0x40,
84 .log_block_size = 6
85 },
86 };
87 EXPORT_SYMBOL_GPL(ppc64_caches);
88
89 #if defined(CONFIG_PPC_BOOK3E) && defined(CONFIG_SMP)
setup_tlb_core_data(void)90 void __init setup_tlb_core_data(void)
91 {
92 int cpu;
93
94 BUILD_BUG_ON(offsetof(struct tlb_core_data, lock) != 0);
95
96 for_each_possible_cpu(cpu) {
97 int first = cpu_first_thread_sibling(cpu);
98
99 /*
100 * If we boot via kdump on a non-primary thread,
101 * make sure we point at the thread that actually
102 * set up this TLB.
103 */
104 if (cpu_first_thread_sibling(boot_cpuid) == first)
105 first = boot_cpuid;
106
107 paca_ptrs[cpu]->tcd_ptr = &paca_ptrs[first]->tcd;
108
109 /*
110 * If we have threads, we need either tlbsrx.
111 * or e6500 tablewalk mode, or else TLB handlers
112 * will be racy and could produce duplicate entries.
113 * Should we panic instead?
114 */
115 WARN_ONCE(smt_enabled_at_boot >= 2 &&
116 !mmu_has_feature(MMU_FTR_USE_TLBRSRV) &&
117 book3e_htw_mode != PPC_HTW_E6500,
118 "%s: unsupported MMU configuration\n", __func__);
119 }
120 }
121 #endif
122
123 #ifdef CONFIG_SMP
124
125 static char *smt_enabled_cmdline;
126
127 /* Look for ibm,smt-enabled OF option */
check_smt_enabled(void)128 void __init check_smt_enabled(void)
129 {
130 struct device_node *dn;
131 const char *smt_option;
132
133 /* Default to enabling all threads */
134 smt_enabled_at_boot = threads_per_core;
135
136 /* Allow the command line to overrule the OF option */
137 if (smt_enabled_cmdline) {
138 if (!strcmp(smt_enabled_cmdline, "on"))
139 smt_enabled_at_boot = threads_per_core;
140 else if (!strcmp(smt_enabled_cmdline, "off"))
141 smt_enabled_at_boot = 0;
142 else {
143 int smt;
144 int rc;
145
146 rc = kstrtoint(smt_enabled_cmdline, 10, &smt);
147 if (!rc)
148 smt_enabled_at_boot =
149 min(threads_per_core, smt);
150 }
151 } else {
152 dn = of_find_node_by_path("/options");
153 if (dn) {
154 smt_option = of_get_property(dn, "ibm,smt-enabled",
155 NULL);
156
157 if (smt_option) {
158 if (!strcmp(smt_option, "on"))
159 smt_enabled_at_boot = threads_per_core;
160 else if (!strcmp(smt_option, "off"))
161 smt_enabled_at_boot = 0;
162 }
163
164 of_node_put(dn);
165 }
166 }
167 }
168
169 /* Look for smt-enabled= cmdline option */
early_smt_enabled(char * p)170 static int __init early_smt_enabled(char *p)
171 {
172 smt_enabled_cmdline = p;
173 return 0;
174 }
175 early_param("smt-enabled", early_smt_enabled);
176
177 #endif /* CONFIG_SMP */
178
179 /** Fix up paca fields required for the boot cpu */
fixup_boot_paca(void)180 static void __init fixup_boot_paca(void)
181 {
182 /* The boot cpu is started */
183 get_paca()->cpu_start = 1;
184 /* Allow percpu accesses to work until we setup percpu data */
185 get_paca()->data_offset = 0;
186 /* Mark interrupts disabled in PACA */
187 irq_soft_mask_set(IRQS_DISABLED);
188 }
189
configure_exceptions(void)190 static void __init configure_exceptions(void)
191 {
192 /*
193 * Setup the trampolines from the lowmem exception vectors
194 * to the kdump kernel when not using a relocatable kernel.
195 */
196 setup_kdump_trampoline();
197
198 /* Under a PAPR hypervisor, we need hypercalls */
199 if (firmware_has_feature(FW_FEATURE_SET_MODE)) {
200 /* Enable AIL if possible */
201 if (!pseries_enable_reloc_on_exc()) {
202 init_task.thread.fscr &= ~FSCR_SCV;
203 cur_cpu_spec->cpu_user_features2 &= ~PPC_FEATURE2_SCV;
204 }
205
206 /*
207 * Tell the hypervisor that we want our exceptions to
208 * be taken in little endian mode.
209 *
210 * We don't call this for big endian as our calling convention
211 * makes us always enter in BE, and the call may fail under
212 * some circumstances with kdump.
213 */
214 #ifdef __LITTLE_ENDIAN__
215 pseries_little_endian_exceptions();
216 #endif
217 } else {
218 /* Set endian mode using OPAL */
219 if (firmware_has_feature(FW_FEATURE_OPAL))
220 opal_configure_cores();
221
222 /* AIL on native is done in cpu_ready_for_interrupts() */
223 }
224 }
225
cpu_ready_for_interrupts(void)226 static void cpu_ready_for_interrupts(void)
227 {
228 /*
229 * Enable AIL if supported, and we are in hypervisor mode. This
230 * is called once for every processor.
231 *
232 * If we are not in hypervisor mode the job is done once for
233 * the whole partition in configure_exceptions().
234 */
235 if (cpu_has_feature(CPU_FTR_HVMODE)) {
236 unsigned long lpcr = mfspr(SPRN_LPCR);
237 unsigned long new_lpcr = lpcr;
238
239 if (cpu_has_feature(CPU_FTR_ARCH_31)) {
240 /* P10 DD1 does not have HAIL */
241 if (pvr_version_is(PVR_POWER10) &&
242 (mfspr(SPRN_PVR) & 0xf00) == 0x100)
243 new_lpcr |= LPCR_AIL_3;
244 else
245 new_lpcr |= LPCR_HAIL;
246 } else if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
247 new_lpcr |= LPCR_AIL_3;
248 }
249
250 if (new_lpcr != lpcr)
251 mtspr(SPRN_LPCR, new_lpcr);
252 }
253
254 /*
255 * Set HFSCR:TM based on CPU features:
256 * In the special case of TM no suspend (P9N DD2.1), Linux is
257 * told TM is off via the dt-ftrs but told to (partially) use
258 * it via OPAL_REINIT_CPUS_TM_SUSPEND_DISABLED. So HFSCR[TM]
259 * will be off from dt-ftrs but we need to turn it on for the
260 * no suspend case.
261 */
262 if (cpu_has_feature(CPU_FTR_HVMODE)) {
263 if (cpu_has_feature(CPU_FTR_TM_COMP))
264 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) | HFSCR_TM);
265 else
266 mtspr(SPRN_HFSCR, mfspr(SPRN_HFSCR) & ~HFSCR_TM);
267 }
268
269 /* Set IR and DR in PACA MSR */
270 get_paca()->kernel_msr = MSR_KERNEL;
271 }
272
273 unsigned long spr_default_dscr = 0;
274
record_spr_defaults(void)275 static void __init record_spr_defaults(void)
276 {
277 if (early_cpu_has_feature(CPU_FTR_DSCR))
278 spr_default_dscr = mfspr(SPRN_DSCR);
279 }
280
281 /*
282 * Early initialization entry point. This is called by head.S
283 * with MMU translation disabled. We rely on the "feature" of
284 * the CPU that ignores the top 2 bits of the address in real
285 * mode so we can access kernel globals normally provided we
286 * only toy with things in the RMO region. From here, we do
287 * some early parsing of the device-tree to setup out MEMBLOCK
288 * data structures, and allocate & initialize the hash table
289 * and segment tables so we can start running with translation
290 * enabled.
291 *
292 * It is this function which will call the probe() callback of
293 * the various platform types and copy the matching one to the
294 * global ppc_md structure. Your platform can eventually do
295 * some very early initializations from the probe() routine, but
296 * this is not recommended, be very careful as, for example, the
297 * device-tree is not accessible via normal means at this point.
298 */
299
early_setup(unsigned long dt_ptr)300 void __init early_setup(unsigned long dt_ptr)
301 {
302 static __initdata struct paca_struct boot_paca;
303
304 /* -------- printk is _NOT_ safe to use here ! ------- */
305
306 /*
307 * Assume we're on cpu 0 for now.
308 *
309 * We need to load a PACA very early for a few reasons.
310 *
311 * The stack protector canary is stored in the paca, so as soon as we
312 * call any stack protected code we need r13 pointing somewhere valid.
313 *
314 * If we are using kcov it will call in_task() in its instrumentation,
315 * which relies on the current task from the PACA.
316 *
317 * dt_cpu_ftrs_init() calls into generic OF/fdt code, as well as
318 * printk(), which can trigger both stack protector and kcov.
319 *
320 * percpu variables and spin locks also use the paca.
321 *
322 * So set up a temporary paca. It will be replaced below once we know
323 * what CPU we are on.
324 */
325 initialise_paca(&boot_paca, 0);
326 setup_paca(&boot_paca);
327 fixup_boot_paca();
328
329 /* -------- printk is now safe to use ------- */
330
331 /* Try new device tree based feature discovery ... */
332 if (!dt_cpu_ftrs_init(__va(dt_ptr)))
333 /* Otherwise use the old style CPU table */
334 identify_cpu(0, mfspr(SPRN_PVR));
335
336 /* Enable early debugging if any specified (see udbg.h) */
337 udbg_early_init();
338
339 udbg_printf(" -> %s(), dt_ptr: 0x%lx\n", __func__, dt_ptr);
340
341 /*
342 * Do early initialization using the flattened device
343 * tree, such as retrieving the physical memory map or
344 * calculating/retrieving the hash table size.
345 */
346 early_init_devtree(__va(dt_ptr));
347
348 /* Now we know the logical id of our boot cpu, setup the paca. */
349 if (boot_cpuid != 0) {
350 /* Poison paca_ptrs[0] again if it's not the boot cpu */
351 memset(&paca_ptrs[0], 0x88, sizeof(paca_ptrs[0]));
352 }
353 setup_paca(paca_ptrs[boot_cpuid]);
354 fixup_boot_paca();
355
356 /*
357 * Configure exception handlers. This include setting up trampolines
358 * if needed, setting exception endian mode, etc...
359 */
360 configure_exceptions();
361
362 /*
363 * Configure Kernel Userspace Protection. This needs to happen before
364 * feature fixups for platforms that implement this using features.
365 */
366 setup_kup();
367
368 /* Apply all the dynamic patching */
369 apply_feature_fixups();
370 setup_feature_keys();
371
372 /* Initialize the hash table or TLB handling */
373 early_init_mmu();
374
375 early_ioremap_setup();
376
377 /*
378 * After firmware and early platform setup code has set things up,
379 * we note the SPR values for configurable control/performance
380 * registers, and use those as initial defaults.
381 */
382 record_spr_defaults();
383
384 /*
385 * At this point, we can let interrupts switch to virtual mode
386 * (the MMU has been setup), so adjust the MSR in the PACA to
387 * have IR and DR set and enable AIL if it exists
388 */
389 cpu_ready_for_interrupts();
390
391 /*
392 * We enable ftrace here, but since we only support DYNAMIC_FTRACE, it
393 * will only actually get enabled on the boot cpu much later once
394 * ftrace itself has been initialized.
395 */
396 this_cpu_enable_ftrace();
397
398 udbg_printf(" <- %s()\n", __func__);
399
400 #ifdef CONFIG_PPC_EARLY_DEBUG_BOOTX
401 /*
402 * This needs to be done *last* (after the above udbg_printf() even)
403 *
404 * Right after we return from this function, we turn on the MMU
405 * which means the real-mode access trick that btext does will
406 * no longer work, it needs to switch to using a real MMU
407 * mapping. This call will ensure that it does
408 */
409 btext_map();
410 #endif /* CONFIG_PPC_EARLY_DEBUG_BOOTX */
411 }
412
413 #ifdef CONFIG_SMP
early_setup_secondary(void)414 void early_setup_secondary(void)
415 {
416 /* Mark interrupts disabled in PACA */
417 irq_soft_mask_set(IRQS_DISABLED);
418
419 /* Initialize the hash table or TLB handling */
420 early_init_mmu_secondary();
421
422 /* Perform any KUP setup that is per-cpu */
423 setup_kup();
424
425 /*
426 * At this point, we can let interrupts switch to virtual mode
427 * (the MMU has been setup), so adjust the MSR in the PACA to
428 * have IR and DR set.
429 */
430 cpu_ready_for_interrupts();
431 }
432
433 #endif /* CONFIG_SMP */
434
panic_smp_self_stop(void)435 void panic_smp_self_stop(void)
436 {
437 hard_irq_disable();
438 spin_begin();
439 while (1)
440 spin_cpu_relax();
441 }
442
443 #if defined(CONFIG_SMP) || defined(CONFIG_KEXEC_CORE)
use_spinloop(void)444 static bool use_spinloop(void)
445 {
446 if (IS_ENABLED(CONFIG_PPC_BOOK3S)) {
447 /*
448 * See comments in head_64.S -- not all platforms insert
449 * secondaries at __secondary_hold and wait at the spin
450 * loop.
451 */
452 if (firmware_has_feature(FW_FEATURE_OPAL))
453 return false;
454 return true;
455 }
456
457 /*
458 * When book3e boots from kexec, the ePAPR spin table does
459 * not get used.
460 */
461 return of_property_read_bool(of_chosen, "linux,booted-from-kexec");
462 }
463
smp_release_cpus(void)464 void smp_release_cpus(void)
465 {
466 unsigned long *ptr;
467 int i;
468
469 if (!use_spinloop())
470 return;
471
472 /* All secondary cpus are spinning on a common spinloop, release them
473 * all now so they can start to spin on their individual paca
474 * spinloops. For non SMP kernels, the secondary cpus never get out
475 * of the common spinloop.
476 */
477
478 ptr = (unsigned long *)((unsigned long)&__secondary_hold_spinloop
479 - PHYSICAL_START);
480 *ptr = ppc_function_entry(generic_secondary_smp_init);
481
482 /* And wait a bit for them to catch up */
483 for (i = 0; i < 100000; i++) {
484 mb();
485 HMT_low();
486 if (spinning_secondaries == 0)
487 break;
488 udelay(1);
489 }
490 pr_debug("spinning_secondaries = %d\n", spinning_secondaries);
491 }
492 #endif /* CONFIG_SMP || CONFIG_KEXEC_CORE */
493
494 /*
495 * Initialize some remaining members of the ppc64_caches and systemcfg
496 * structures
497 * (at least until we get rid of them completely). This is mostly some
498 * cache informations about the CPU that will be used by cache flush
499 * routines and/or provided to userland
500 */
501
init_cache_info(struct ppc_cache_info * info,u32 size,u32 lsize,u32 bsize,u32 sets)502 static void init_cache_info(struct ppc_cache_info *info, u32 size, u32 lsize,
503 u32 bsize, u32 sets)
504 {
505 info->size = size;
506 info->sets = sets;
507 info->line_size = lsize;
508 info->block_size = bsize;
509 info->log_block_size = __ilog2(bsize);
510 if (bsize)
511 info->blocks_per_page = PAGE_SIZE / bsize;
512 else
513 info->blocks_per_page = 0;
514
515 if (sets == 0)
516 info->assoc = 0xffff;
517 else
518 info->assoc = size / (sets * lsize);
519 }
520
parse_cache_info(struct device_node * np,bool icache,struct ppc_cache_info * info)521 static bool __init parse_cache_info(struct device_node *np,
522 bool icache,
523 struct ppc_cache_info *info)
524 {
525 static const char *ipropnames[] __initdata = {
526 "i-cache-size",
527 "i-cache-sets",
528 "i-cache-block-size",
529 "i-cache-line-size",
530 };
531 static const char *dpropnames[] __initdata = {
532 "d-cache-size",
533 "d-cache-sets",
534 "d-cache-block-size",
535 "d-cache-line-size",
536 };
537 const char **propnames = icache ? ipropnames : dpropnames;
538 const __be32 *sizep, *lsizep, *bsizep, *setsp;
539 u32 size, lsize, bsize, sets;
540 bool success = true;
541
542 size = 0;
543 sets = -1u;
544 lsize = bsize = cur_cpu_spec->dcache_bsize;
545 sizep = of_get_property(np, propnames[0], NULL);
546 if (sizep != NULL)
547 size = be32_to_cpu(*sizep);
548 setsp = of_get_property(np, propnames[1], NULL);
549 if (setsp != NULL)
550 sets = be32_to_cpu(*setsp);
551 bsizep = of_get_property(np, propnames[2], NULL);
552 lsizep = of_get_property(np, propnames[3], NULL);
553 if (bsizep == NULL)
554 bsizep = lsizep;
555 if (lsizep == NULL)
556 lsizep = bsizep;
557 if (lsizep != NULL)
558 lsize = be32_to_cpu(*lsizep);
559 if (bsizep != NULL)
560 bsize = be32_to_cpu(*bsizep);
561 if (sizep == NULL || bsizep == NULL || lsizep == NULL)
562 success = false;
563
564 /*
565 * OF is weird .. it represents fully associative caches
566 * as "1 way" which doesn't make much sense and doesn't
567 * leave room for direct mapped. We'll assume that 0
568 * in OF means direct mapped for that reason.
569 */
570 if (sets == 1)
571 sets = 0;
572 else if (sets == 0)
573 sets = 1;
574
575 init_cache_info(info, size, lsize, bsize, sets);
576
577 return success;
578 }
579
initialize_cache_info(void)580 void __init initialize_cache_info(void)
581 {
582 struct device_node *cpu = NULL, *l2, *l3 = NULL;
583 u32 pvr;
584
585 /*
586 * All shipping POWER8 machines have a firmware bug that
587 * puts incorrect information in the device-tree. This will
588 * be (hopefully) fixed for future chips but for now hard
589 * code the values if we are running on one of these
590 */
591 pvr = PVR_VER(mfspr(SPRN_PVR));
592 if (pvr == PVR_POWER8 || pvr == PVR_POWER8E ||
593 pvr == PVR_POWER8NVL) {
594 /* size lsize blk sets */
595 init_cache_info(&ppc64_caches.l1i, 0x8000, 128, 128, 32);
596 init_cache_info(&ppc64_caches.l1d, 0x10000, 128, 128, 64);
597 init_cache_info(&ppc64_caches.l2, 0x80000, 128, 0, 512);
598 init_cache_info(&ppc64_caches.l3, 0x800000, 128, 0, 8192);
599 } else
600 cpu = of_find_node_by_type(NULL, "cpu");
601
602 /*
603 * We're assuming *all* of the CPUs have the same
604 * d-cache and i-cache sizes... -Peter
605 */
606 if (cpu) {
607 if (!parse_cache_info(cpu, false, &ppc64_caches.l1d))
608 pr_warn("Argh, can't find dcache properties !\n");
609
610 if (!parse_cache_info(cpu, true, &ppc64_caches.l1i))
611 pr_warn("Argh, can't find icache properties !\n");
612
613 /*
614 * Try to find the L2 and L3 if any. Assume they are
615 * unified and use the D-side properties.
616 */
617 l2 = of_find_next_cache_node(cpu);
618 of_node_put(cpu);
619 if (l2) {
620 parse_cache_info(l2, false, &ppc64_caches.l2);
621 l3 = of_find_next_cache_node(l2);
622 of_node_put(l2);
623 }
624 if (l3) {
625 parse_cache_info(l3, false, &ppc64_caches.l3);
626 of_node_put(l3);
627 }
628 }
629
630 /* For use by binfmt_elf */
631 dcache_bsize = ppc64_caches.l1d.block_size;
632 icache_bsize = ppc64_caches.l1i.block_size;
633
634 cur_cpu_spec->dcache_bsize = dcache_bsize;
635 cur_cpu_spec->icache_bsize = icache_bsize;
636 }
637
638 /*
639 * This returns the limit below which memory accesses to the linear
640 * mapping are guarnateed not to cause an architectural exception (e.g.,
641 * TLB or SLB miss fault).
642 *
643 * This is used to allocate PACAs and various interrupt stacks that
644 * that are accessed early in interrupt handlers that must not cause
645 * re-entrant interrupts.
646 */
ppc64_bolted_size(void)647 __init u64 ppc64_bolted_size(void)
648 {
649 #ifdef CONFIG_PPC_BOOK3E
650 /* Freescale BookE bolts the entire linear mapping */
651 /* XXX: BookE ppc64_rma_limit setup seems to disagree? */
652 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E))
653 return linear_map_top;
654 /* Other BookE, we assume the first GB is bolted */
655 return 1ul << 30;
656 #else
657 /* BookS radix, does not take faults on linear mapping */
658 if (early_radix_enabled())
659 return ULONG_MAX;
660
661 /* BookS hash, the first segment is bolted */
662 if (early_mmu_has_feature(MMU_FTR_1T_SEGMENT))
663 return 1UL << SID_SHIFT_1T;
664 return 1UL << SID_SHIFT;
665 #endif
666 }
667
alloc_stack(unsigned long limit,int cpu)668 static void *__init alloc_stack(unsigned long limit, int cpu)
669 {
670 void *ptr;
671
672 BUILD_BUG_ON(STACK_INT_FRAME_SIZE % 16);
673
674 ptr = memblock_alloc_try_nid(THREAD_SIZE, THREAD_ALIGN,
675 MEMBLOCK_LOW_LIMIT, limit,
676 early_cpu_to_node(cpu));
677 if (!ptr)
678 panic("cannot allocate stacks");
679
680 return ptr;
681 }
682
irqstack_early_init(void)683 void __init irqstack_early_init(void)
684 {
685 u64 limit = ppc64_bolted_size();
686 unsigned int i;
687
688 /*
689 * Interrupt stacks must be in the first segment since we
690 * cannot afford to take SLB misses on them. They are not
691 * accessed in realmode.
692 */
693 for_each_possible_cpu(i) {
694 softirq_ctx[i] = alloc_stack(limit, i);
695 hardirq_ctx[i] = alloc_stack(limit, i);
696 }
697 }
698
699 #ifdef CONFIG_PPC_BOOK3E
exc_lvl_early_init(void)700 void __init exc_lvl_early_init(void)
701 {
702 unsigned int i;
703
704 for_each_possible_cpu(i) {
705 void *sp;
706
707 sp = alloc_stack(ULONG_MAX, i);
708 critirq_ctx[i] = sp;
709 paca_ptrs[i]->crit_kstack = sp + THREAD_SIZE;
710
711 sp = alloc_stack(ULONG_MAX, i);
712 dbgirq_ctx[i] = sp;
713 paca_ptrs[i]->dbg_kstack = sp + THREAD_SIZE;
714
715 sp = alloc_stack(ULONG_MAX, i);
716 mcheckirq_ctx[i] = sp;
717 paca_ptrs[i]->mc_kstack = sp + THREAD_SIZE;
718 }
719
720 if (cpu_has_feature(CPU_FTR_DEBUG_LVL_EXC))
721 patch_exception(0x040, exc_debug_debug_book3e);
722 }
723 #endif
724
725 /*
726 * Stack space used when we detect a bad kernel stack pointer, and
727 * early in SMP boots before relocation is enabled. Exclusive emergency
728 * stack for machine checks.
729 */
emergency_stack_init(void)730 void __init emergency_stack_init(void)
731 {
732 u64 limit, mce_limit;
733 unsigned int i;
734
735 /*
736 * Emergency stacks must be under 256MB, we cannot afford to take
737 * SLB misses on them. The ABI also requires them to be 128-byte
738 * aligned.
739 *
740 * Since we use these as temporary stacks during secondary CPU
741 * bringup, machine check, system reset, and HMI, we need to get
742 * at them in real mode. This means they must also be within the RMO
743 * region.
744 *
745 * The IRQ stacks allocated elsewhere in this file are zeroed and
746 * initialized in kernel/irq.c. These are initialized here in order
747 * to have emergency stacks available as early as possible.
748 */
749 limit = mce_limit = min(ppc64_bolted_size(), ppc64_rma_size);
750
751 /*
752 * Machine check on pseries calls rtas, but can't use the static
753 * rtas_args due to a machine check hitting while the lock is held.
754 * rtas args have to be under 4GB, so the machine check stack is
755 * limited to 4GB so args can be put on stack.
756 */
757 if (firmware_has_feature(FW_FEATURE_LPAR) && mce_limit > SZ_4G)
758 mce_limit = SZ_4G;
759
760 for_each_possible_cpu(i) {
761 paca_ptrs[i]->emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
762
763 #ifdef CONFIG_PPC_BOOK3S_64
764 /* emergency stack for NMI exception handling. */
765 paca_ptrs[i]->nmi_emergency_sp = alloc_stack(limit, i) + THREAD_SIZE;
766
767 /* emergency stack for machine check exception handling. */
768 paca_ptrs[i]->mc_emergency_sp = alloc_stack(mce_limit, i) + THREAD_SIZE;
769 #endif
770 }
771 }
772
773 #ifdef CONFIG_SMP
774 /**
775 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
776 * @cpu: cpu to allocate for
777 * @size: size allocation in bytes
778 * @align: alignment
779 *
780 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
781 * does the right thing for NUMA regardless of the current
782 * configuration.
783 *
784 * RETURNS:
785 * Pointer to the allocated area on success, NULL on failure.
786 */
pcpu_alloc_bootmem(unsigned int cpu,size_t size,size_t align)787 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
788 size_t align)
789 {
790 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
791 #ifdef CONFIG_NUMA
792 int node = early_cpu_to_node(cpu);
793 void *ptr;
794
795 if (!node_online(node) || !NODE_DATA(node)) {
796 ptr = memblock_alloc_from(size, align, goal);
797 pr_info("cpu %d has no node %d or node-local memory\n",
798 cpu, node);
799 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
800 cpu, size, __pa(ptr));
801 } else {
802 ptr = memblock_alloc_try_nid(size, align, goal,
803 MEMBLOCK_ALLOC_ACCESSIBLE, node);
804 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
805 "%016lx\n", cpu, size, node, __pa(ptr));
806 }
807 return ptr;
808 #else
809 return memblock_alloc_from(size, align, goal);
810 #endif
811 }
812
pcpu_free_bootmem(void * ptr,size_t size)813 static void __init pcpu_free_bootmem(void *ptr, size_t size)
814 {
815 memblock_free(__pa(ptr), size);
816 }
817
pcpu_cpu_distance(unsigned int from,unsigned int to)818 static int pcpu_cpu_distance(unsigned int from, unsigned int to)
819 {
820 if (early_cpu_to_node(from) == early_cpu_to_node(to))
821 return LOCAL_DISTANCE;
822 else
823 return REMOTE_DISTANCE;
824 }
825
826 unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
827 EXPORT_SYMBOL(__per_cpu_offset);
828
pcpu_populate_pte(unsigned long addr)829 static void __init pcpu_populate_pte(unsigned long addr)
830 {
831 pgd_t *pgd = pgd_offset_k(addr);
832 p4d_t *p4d;
833 pud_t *pud;
834 pmd_t *pmd;
835
836 p4d = p4d_offset(pgd, addr);
837 if (p4d_none(*p4d)) {
838 pud_t *new;
839
840 new = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE);
841 if (!new)
842 goto err_alloc;
843 p4d_populate(&init_mm, p4d, new);
844 }
845
846 pud = pud_offset(p4d, addr);
847 if (pud_none(*pud)) {
848 pmd_t *new;
849
850 new = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE);
851 if (!new)
852 goto err_alloc;
853 pud_populate(&init_mm, pud, new);
854 }
855
856 pmd = pmd_offset(pud, addr);
857 if (!pmd_present(*pmd)) {
858 pte_t *new;
859
860 new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE);
861 if (!new)
862 goto err_alloc;
863 pmd_populate_kernel(&init_mm, pmd, new);
864 }
865
866 return;
867
868 err_alloc:
869 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
870 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
871 }
872
873
setup_per_cpu_areas(void)874 void __init setup_per_cpu_areas(void)
875 {
876 const size_t dyn_size = PERCPU_MODULE_RESERVE + PERCPU_DYNAMIC_RESERVE;
877 size_t atom_size;
878 unsigned long delta;
879 unsigned int cpu;
880 int rc = -EINVAL;
881
882 /*
883 * Linear mapping is one of 4K, 1M and 16M. For 4K, no need
884 * to group units. For larger mappings, use 1M atom which
885 * should be large enough to contain a number of units.
886 */
887 if (mmu_linear_psize == MMU_PAGE_4K)
888 atom_size = PAGE_SIZE;
889 else
890 atom_size = 1 << 20;
891
892 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
893 rc = pcpu_embed_first_chunk(0, dyn_size, atom_size, pcpu_cpu_distance,
894 pcpu_alloc_bootmem, pcpu_free_bootmem);
895 if (rc)
896 pr_warn("PERCPU: %s allocator failed (%d), "
897 "falling back to page size\n",
898 pcpu_fc_names[pcpu_chosen_fc], rc);
899 }
900
901 if (rc < 0)
902 rc = pcpu_page_first_chunk(0, pcpu_alloc_bootmem, pcpu_free_bootmem,
903 pcpu_populate_pte);
904 if (rc < 0)
905 panic("cannot initialize percpu area (err=%d)", rc);
906
907 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
908 for_each_possible_cpu(cpu) {
909 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
910 paca_ptrs[cpu]->data_offset = __per_cpu_offset[cpu];
911 }
912 }
913 #endif
914
915 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
memory_block_size_bytes(void)916 unsigned long memory_block_size_bytes(void)
917 {
918 if (ppc_md.memory_block_size)
919 return ppc_md.memory_block_size();
920
921 return MIN_MEMORY_BLOCK_SIZE;
922 }
923 #endif
924
925 #if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
926 struct ppc_pci_io ppc_pci_io;
927 EXPORT_SYMBOL(ppc_pci_io);
928 #endif
929
930 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
hw_nmi_get_sample_period(int watchdog_thresh)931 u64 hw_nmi_get_sample_period(int watchdog_thresh)
932 {
933 return ppc_proc_freq * watchdog_thresh;
934 }
935 #endif
936
937 /*
938 * The perf based hardlockup detector breaks PMU event based branches, so
939 * disable it by default. Book3S has a soft-nmi hardlockup detector based
940 * on the decrementer interrupt, so it does not suffer from this problem.
941 *
942 * It is likely to get false positives in KVM guests, so disable it there
943 * by default too. PowerVM will not stop or arbitrarily oversubscribe
944 * CPUs, but give a minimum regular allotment even with SPLPAR, so enable
945 * the detector for non-KVM guests, assume PowerVM.
946 */
disable_hardlockup_detector(void)947 static int __init disable_hardlockup_detector(void)
948 {
949 #ifdef CONFIG_HARDLOCKUP_DETECTOR_PERF
950 hardlockup_detector_disable();
951 #else
952 if (firmware_has_feature(FW_FEATURE_LPAR)) {
953 if (is_kvm_guest())
954 hardlockup_detector_disable();
955 }
956 #endif
957
958 return 0;
959 }
960 early_initcall(disable_hardlockup_detector);
961