• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 
59 #include <asm/sections.h>
60 
61 #include "lockdep_internals.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82 
lockdep_enabled(void)83 static __always_inline bool lockdep_enabled(void)
84 {
85 	if (!debug_locks)
86 		return false;
87 
88 	if (this_cpu_read(lockdep_recursion))
89 		return false;
90 
91 	if (current->lockdep_recursion)
92 		return false;
93 
94 	return true;
95 }
96 
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107 
lockdep_lock(void)108 static inline void lockdep_lock(void)
109 {
110 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111 
112 	__this_cpu_inc(lockdep_recursion);
113 	arch_spin_lock(&__lock);
114 	__owner = current;
115 }
116 
lockdep_unlock(void)117 static inline void lockdep_unlock(void)
118 {
119 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120 
121 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 		return;
123 
124 	__owner = NULL;
125 	arch_spin_unlock(&__lock);
126 	__this_cpu_dec(lockdep_recursion);
127 }
128 
lockdep_assert_locked(void)129 static inline bool lockdep_assert_locked(void)
130 {
131 	return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133 
134 static struct task_struct *lockdep_selftest_task_struct;
135 
136 
graph_lock(void)137 static int graph_lock(void)
138 {
139 	lockdep_lock();
140 	/*
141 	 * Make sure that if another CPU detected a bug while
142 	 * walking the graph we dont change it (while the other
143 	 * CPU is busy printing out stuff with the graph lock
144 	 * dropped already)
145 	 */
146 	if (!debug_locks) {
147 		lockdep_unlock();
148 		return 0;
149 	}
150 	return 1;
151 }
152 
graph_unlock(void)153 static inline void graph_unlock(void)
154 {
155 	lockdep_unlock();
156 }
157 
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
debug_locks_off_graph_unlock(void)162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 	int ret = debug_locks_off();
165 
166 	lockdep_unlock();
167 
168 	return ret;
169 }
170 
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174 
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 unsigned long max_lock_class_idx;
187 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
188 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
189 
hlock_class(struct held_lock * hlock)190 static inline struct lock_class *hlock_class(struct held_lock *hlock)
191 {
192 	unsigned int class_idx = hlock->class_idx;
193 
194 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
195 	barrier();
196 
197 	if (!test_bit(class_idx, lock_classes_in_use)) {
198 		/*
199 		 * Someone passed in garbage, we give up.
200 		 */
201 		DEBUG_LOCKS_WARN_ON(1);
202 		return NULL;
203 	}
204 
205 	/*
206 	 * At this point, if the passed hlock->class_idx is still garbage,
207 	 * we just have to live with it
208 	 */
209 	return lock_classes + class_idx;
210 }
211 
212 #ifdef CONFIG_LOCK_STAT
213 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
214 
lockstat_clock(void)215 static inline u64 lockstat_clock(void)
216 {
217 	return local_clock();
218 }
219 
lock_point(unsigned long points[],unsigned long ip)220 static int lock_point(unsigned long points[], unsigned long ip)
221 {
222 	int i;
223 
224 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
225 		if (points[i] == 0) {
226 			points[i] = ip;
227 			break;
228 		}
229 		if (points[i] == ip)
230 			break;
231 	}
232 
233 	return i;
234 }
235 
lock_time_inc(struct lock_time * lt,u64 time)236 static void lock_time_inc(struct lock_time *lt, u64 time)
237 {
238 	if (time > lt->max)
239 		lt->max = time;
240 
241 	if (time < lt->min || !lt->nr)
242 		lt->min = time;
243 
244 	lt->total += time;
245 	lt->nr++;
246 }
247 
lock_time_add(struct lock_time * src,struct lock_time * dst)248 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
249 {
250 	if (!src->nr)
251 		return;
252 
253 	if (src->max > dst->max)
254 		dst->max = src->max;
255 
256 	if (src->min < dst->min || !dst->nr)
257 		dst->min = src->min;
258 
259 	dst->total += src->total;
260 	dst->nr += src->nr;
261 }
262 
lock_stats(struct lock_class * class)263 struct lock_class_stats lock_stats(struct lock_class *class)
264 {
265 	struct lock_class_stats stats;
266 	int cpu, i;
267 
268 	memset(&stats, 0, sizeof(struct lock_class_stats));
269 	for_each_possible_cpu(cpu) {
270 		struct lock_class_stats *pcs =
271 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
272 
273 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
274 			stats.contention_point[i] += pcs->contention_point[i];
275 
276 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
277 			stats.contending_point[i] += pcs->contending_point[i];
278 
279 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
280 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
281 
282 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
283 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
284 
285 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
286 			stats.bounces[i] += pcs->bounces[i];
287 	}
288 
289 	return stats;
290 }
291 
clear_lock_stats(struct lock_class * class)292 void clear_lock_stats(struct lock_class *class)
293 {
294 	int cpu;
295 
296 	for_each_possible_cpu(cpu) {
297 		struct lock_class_stats *cpu_stats =
298 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
299 
300 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
301 	}
302 	memset(class->contention_point, 0, sizeof(class->contention_point));
303 	memset(class->contending_point, 0, sizeof(class->contending_point));
304 }
305 
get_lock_stats(struct lock_class * class)306 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
307 {
308 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
309 }
310 
lock_release_holdtime(struct held_lock * hlock)311 static void lock_release_holdtime(struct held_lock *hlock)
312 {
313 	struct lock_class_stats *stats;
314 	u64 holdtime;
315 
316 	if (!lock_stat)
317 		return;
318 
319 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
320 
321 	stats = get_lock_stats(hlock_class(hlock));
322 	if (hlock->read)
323 		lock_time_inc(&stats->read_holdtime, holdtime);
324 	else
325 		lock_time_inc(&stats->write_holdtime, holdtime);
326 }
327 #else
lock_release_holdtime(struct held_lock * hlock)328 static inline void lock_release_holdtime(struct held_lock *hlock)
329 {
330 }
331 #endif
332 
333 /*
334  * We keep a global list of all lock classes. The list is only accessed with
335  * the lockdep spinlock lock held. free_lock_classes is a list with free
336  * elements. These elements are linked together by the lock_entry member in
337  * struct lock_class.
338  */
339 static LIST_HEAD(all_lock_classes);
340 static LIST_HEAD(free_lock_classes);
341 
342 /**
343  * struct pending_free - information about data structures about to be freed
344  * @zapped: Head of a list with struct lock_class elements.
345  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
346  *	are about to be freed.
347  */
348 struct pending_free {
349 	struct list_head zapped;
350 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
351 };
352 
353 /**
354  * struct delayed_free - data structures used for delayed freeing
355  *
356  * A data structure for delayed freeing of data structures that may be
357  * accessed by RCU readers at the time these were freed.
358  *
359  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
360  * @index:     Index of @pf to which freed data structures are added.
361  * @scheduled: Whether or not an RCU callback has been scheduled.
362  * @pf:        Array with information about data structures about to be freed.
363  */
364 static struct delayed_free {
365 	struct rcu_head		rcu_head;
366 	int			index;
367 	int			scheduled;
368 	struct pending_free	pf[2];
369 } delayed_free;
370 
371 /*
372  * The lockdep classes are in a hash-table as well, for fast lookup:
373  */
374 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
375 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
376 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
377 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
378 
379 static struct hlist_head classhash_table[CLASSHASH_SIZE];
380 
381 /*
382  * We put the lock dependency chains into a hash-table as well, to cache
383  * their existence:
384  */
385 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
386 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
387 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
388 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
389 
390 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
391 
392 /*
393  * the id of held_lock
394  */
hlock_id(struct held_lock * hlock)395 static inline u16 hlock_id(struct held_lock *hlock)
396 {
397 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
398 
399 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
400 }
401 
chain_hlock_class_idx(u16 hlock_id)402 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
403 {
404 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
405 }
406 
407 /*
408  * The hash key of the lock dependency chains is a hash itself too:
409  * it's a hash of all locks taken up to that lock, including that lock.
410  * It's a 64-bit hash, because it's important for the keys to be
411  * unique.
412  */
iterate_chain_key(u64 key,u32 idx)413 static inline u64 iterate_chain_key(u64 key, u32 idx)
414 {
415 	u32 k0 = key, k1 = key >> 32;
416 
417 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
418 
419 	return k0 | (u64)k1 << 32;
420 }
421 
lockdep_init_task(struct task_struct * task)422 void lockdep_init_task(struct task_struct *task)
423 {
424 	task->lockdep_depth = 0; /* no locks held yet */
425 	task->curr_chain_key = INITIAL_CHAIN_KEY;
426 	task->lockdep_recursion = 0;
427 }
428 
lockdep_recursion_inc(void)429 static __always_inline void lockdep_recursion_inc(void)
430 {
431 	__this_cpu_inc(lockdep_recursion);
432 }
433 
lockdep_recursion_finish(void)434 static __always_inline void lockdep_recursion_finish(void)
435 {
436 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
437 		__this_cpu_write(lockdep_recursion, 0);
438 }
439 
lockdep_set_selftest_task(struct task_struct * task)440 void lockdep_set_selftest_task(struct task_struct *task)
441 {
442 	lockdep_selftest_task_struct = task;
443 }
444 
445 /*
446  * Debugging switches:
447  */
448 
449 #define VERBOSE			0
450 #define VERY_VERBOSE		0
451 
452 #if VERBOSE
453 # define HARDIRQ_VERBOSE	1
454 # define SOFTIRQ_VERBOSE	1
455 #else
456 # define HARDIRQ_VERBOSE	0
457 # define SOFTIRQ_VERBOSE	0
458 #endif
459 
460 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
461 /*
462  * Quick filtering for interesting events:
463  */
class_filter(struct lock_class * class)464 static int class_filter(struct lock_class *class)
465 {
466 #if 0
467 	/* Example */
468 	if (class->name_version == 1 &&
469 			!strcmp(class->name, "lockname"))
470 		return 1;
471 	if (class->name_version == 1 &&
472 			!strcmp(class->name, "&struct->lockfield"))
473 		return 1;
474 #endif
475 	/* Filter everything else. 1 would be to allow everything else */
476 	return 0;
477 }
478 #endif
479 
verbose(struct lock_class * class)480 static int verbose(struct lock_class *class)
481 {
482 #if VERBOSE
483 	return class_filter(class);
484 #endif
485 	return 0;
486 }
487 
print_lockdep_off(const char * bug_msg)488 static void print_lockdep_off(const char *bug_msg)
489 {
490 	printk(KERN_DEBUG "%s\n", bug_msg);
491 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
492 #ifdef CONFIG_LOCK_STAT
493 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
494 #endif
495 }
496 
497 unsigned long nr_stack_trace_entries;
498 
499 #ifdef CONFIG_PROVE_LOCKING
500 /**
501  * struct lock_trace - single stack backtrace
502  * @hash_entry:	Entry in a stack_trace_hash[] list.
503  * @hash:	jhash() of @entries.
504  * @nr_entries:	Number of entries in @entries.
505  * @entries:	Actual stack backtrace.
506  */
507 struct lock_trace {
508 	struct hlist_node	hash_entry;
509 	u32			hash;
510 	u32			nr_entries;
511 	unsigned long		entries[] __aligned(sizeof(unsigned long));
512 };
513 #define LOCK_TRACE_SIZE_IN_LONGS				\
514 	(sizeof(struct lock_trace) / sizeof(unsigned long))
515 /*
516  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
517  */
518 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
519 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
520 
traces_identical(struct lock_trace * t1,struct lock_trace * t2)521 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
522 {
523 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
524 		memcmp(t1->entries, t2->entries,
525 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
526 }
527 
save_trace(void)528 static struct lock_trace *save_trace(void)
529 {
530 	struct lock_trace *trace, *t2;
531 	struct hlist_head *hash_head;
532 	u32 hash;
533 	int max_entries;
534 
535 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
536 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
537 
538 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
539 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
540 		LOCK_TRACE_SIZE_IN_LONGS;
541 
542 	if (max_entries <= 0) {
543 		if (!debug_locks_off_graph_unlock())
544 			return NULL;
545 
546 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
547 		dump_stack();
548 
549 		return NULL;
550 	}
551 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
552 
553 	hash = jhash(trace->entries, trace->nr_entries *
554 		     sizeof(trace->entries[0]), 0);
555 	trace->hash = hash;
556 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
557 	hlist_for_each_entry(t2, hash_head, hash_entry) {
558 		if (traces_identical(trace, t2))
559 			return t2;
560 	}
561 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
562 	hlist_add_head(&trace->hash_entry, hash_head);
563 
564 	return trace;
565 }
566 
567 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)568 u64 lockdep_stack_trace_count(void)
569 {
570 	struct lock_trace *trace;
571 	u64 c = 0;
572 	int i;
573 
574 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
575 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
576 			c++;
577 		}
578 	}
579 
580 	return c;
581 }
582 
583 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)584 u64 lockdep_stack_hash_count(void)
585 {
586 	u64 c = 0;
587 	int i;
588 
589 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
590 		if (!hlist_empty(&stack_trace_hash[i]))
591 			c++;
592 
593 	return c;
594 }
595 #endif
596 
597 unsigned int nr_hardirq_chains;
598 unsigned int nr_softirq_chains;
599 unsigned int nr_process_chains;
600 unsigned int max_lockdep_depth;
601 
602 #ifdef CONFIG_DEBUG_LOCKDEP
603 /*
604  * Various lockdep statistics:
605  */
606 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
607 #endif
608 
609 #ifdef CONFIG_PROVE_LOCKING
610 /*
611  * Locking printouts:
612  */
613 
614 #define __USAGE(__STATE)						\
615 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
616 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
617 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
618 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
619 
620 static const char *usage_str[] =
621 {
622 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
623 #include "lockdep_states.h"
624 #undef LOCKDEP_STATE
625 	[LOCK_USED] = "INITIAL USE",
626 	[LOCK_USED_READ] = "INITIAL READ USE",
627 	/* abused as string storage for verify_lock_unused() */
628 	[LOCK_USAGE_STATES] = "IN-NMI",
629 };
630 #endif
631 
__get_key_name(const struct lockdep_subclass_key * key,char * str)632 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
633 {
634 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
635 }
636 
lock_flag(enum lock_usage_bit bit)637 static inline unsigned long lock_flag(enum lock_usage_bit bit)
638 {
639 	return 1UL << bit;
640 }
641 
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)642 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
643 {
644 	/*
645 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
646 	 * irq context), which is the safest usage category.
647 	 */
648 	char c = '.';
649 
650 	/*
651 	 * The order of the following usage checks matters, which will
652 	 * result in the outcome character as follows:
653 	 *
654 	 * - '+': irq is enabled and not in irq context
655 	 * - '-': in irq context and irq is disabled
656 	 * - '?': in irq context and irq is enabled
657 	 */
658 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
659 		c = '+';
660 		if (class->usage_mask & lock_flag(bit))
661 			c = '?';
662 	} else if (class->usage_mask & lock_flag(bit))
663 		c = '-';
664 
665 	return c;
666 }
667 
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])668 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
669 {
670 	int i = 0;
671 
672 #define LOCKDEP_STATE(__STATE) 						\
673 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
674 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
675 #include "lockdep_states.h"
676 #undef LOCKDEP_STATE
677 
678 	usage[i] = '\0';
679 }
680 
__print_lock_name(struct lock_class * class)681 static void __print_lock_name(struct lock_class *class)
682 {
683 	char str[KSYM_NAME_LEN];
684 	const char *name;
685 
686 	name = class->name;
687 	if (!name) {
688 		name = __get_key_name(class->key, str);
689 		printk(KERN_CONT "%s", name);
690 	} else {
691 		printk(KERN_CONT "%s", name);
692 		if (class->name_version > 1)
693 			printk(KERN_CONT "#%d", class->name_version);
694 		if (class->subclass)
695 			printk(KERN_CONT "/%d", class->subclass);
696 	}
697 }
698 
print_lock_name(struct lock_class * class)699 static void print_lock_name(struct lock_class *class)
700 {
701 	char usage[LOCK_USAGE_CHARS];
702 
703 	get_usage_chars(class, usage);
704 
705 	printk(KERN_CONT " (");
706 	__print_lock_name(class);
707 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
708 			class->wait_type_outer ?: class->wait_type_inner,
709 			class->wait_type_inner);
710 }
711 
print_lockdep_cache(struct lockdep_map * lock)712 static void print_lockdep_cache(struct lockdep_map *lock)
713 {
714 	const char *name;
715 	char str[KSYM_NAME_LEN];
716 
717 	name = lock->name;
718 	if (!name)
719 		name = __get_key_name(lock->key->subkeys, str);
720 
721 	printk(KERN_CONT "%s", name);
722 }
723 
print_lock(struct held_lock * hlock)724 static void print_lock(struct held_lock *hlock)
725 {
726 	/*
727 	 * We can be called locklessly through debug_show_all_locks() so be
728 	 * extra careful, the hlock might have been released and cleared.
729 	 *
730 	 * If this indeed happens, lets pretend it does not hurt to continue
731 	 * to print the lock unless the hlock class_idx does not point to a
732 	 * registered class. The rationale here is: since we don't attempt
733 	 * to distinguish whether we are in this situation, if it just
734 	 * happened we can't count on class_idx to tell either.
735 	 */
736 	struct lock_class *lock = hlock_class(hlock);
737 
738 	if (!lock) {
739 		printk(KERN_CONT "<RELEASED>\n");
740 		return;
741 	}
742 
743 	printk(KERN_CONT "%px", hlock->instance);
744 	print_lock_name(lock);
745 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
746 }
747 
lockdep_print_held_locks(struct task_struct * p)748 static void lockdep_print_held_locks(struct task_struct *p)
749 {
750 	int i, depth = READ_ONCE(p->lockdep_depth);
751 
752 	if (!depth)
753 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
754 	else
755 		printk("%d lock%s held by %s/%d:\n", depth,
756 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
757 	/*
758 	 * It's not reliable to print a task's held locks if it's not sleeping
759 	 * and it's not the current task.
760 	 */
761 	if (p != current && task_is_running(p))
762 		return;
763 	for (i = 0; i < depth; i++) {
764 		printk(" #%d: ", i);
765 		print_lock(p->held_locks + i);
766 	}
767 }
768 
print_kernel_ident(void)769 static void print_kernel_ident(void)
770 {
771 	printk("%s %.*s %s\n", init_utsname()->release,
772 		(int)strcspn(init_utsname()->version, " "),
773 		init_utsname()->version,
774 		print_tainted());
775 }
776 
very_verbose(struct lock_class * class)777 static int very_verbose(struct lock_class *class)
778 {
779 #if VERY_VERBOSE
780 	return class_filter(class);
781 #endif
782 	return 0;
783 }
784 
785 /*
786  * Is this the address of a static object:
787  */
788 #ifdef __KERNEL__
static_obj(const void * obj)789 static int static_obj(const void *obj)
790 {
791 	unsigned long start = (unsigned long) &_stext,
792 		      end   = (unsigned long) &_end,
793 		      addr  = (unsigned long) obj;
794 
795 	if (arch_is_kernel_initmem_freed(addr))
796 		return 0;
797 
798 	/*
799 	 * static variable?
800 	 */
801 	if ((addr >= start) && (addr < end))
802 		return 1;
803 
804 	if (arch_is_kernel_data(addr))
805 		return 1;
806 
807 	/*
808 	 * in-kernel percpu var?
809 	 */
810 	if (is_kernel_percpu_address(addr))
811 		return 1;
812 
813 	/*
814 	 * module static or percpu var?
815 	 */
816 	return is_module_address(addr) || is_module_percpu_address(addr);
817 }
818 #endif
819 
820 /*
821  * To make lock name printouts unique, we calculate a unique
822  * class->name_version generation counter. The caller must hold the graph
823  * lock.
824  */
count_matching_names(struct lock_class * new_class)825 static int count_matching_names(struct lock_class *new_class)
826 {
827 	struct lock_class *class;
828 	int count = 0;
829 
830 	if (!new_class->name)
831 		return 0;
832 
833 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
834 		if (new_class->key - new_class->subclass == class->key)
835 			return class->name_version;
836 		if (class->name && !strcmp(class->name, new_class->name))
837 			count = max(count, class->name_version);
838 	}
839 
840 	return count + 1;
841 }
842 
843 /* used from NMI context -- must be lockless */
844 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)845 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
846 {
847 	struct lockdep_subclass_key *key;
848 	struct hlist_head *hash_head;
849 	struct lock_class *class;
850 
851 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
852 		instrumentation_begin();
853 		debug_locks_off();
854 		printk(KERN_ERR
855 			"BUG: looking up invalid subclass: %u\n", subclass);
856 		printk(KERN_ERR
857 			"turning off the locking correctness validator.\n");
858 		dump_stack();
859 		instrumentation_end();
860 		return NULL;
861 	}
862 
863 	/*
864 	 * If it is not initialised then it has never been locked,
865 	 * so it won't be present in the hash table.
866 	 */
867 	if (unlikely(!lock->key))
868 		return NULL;
869 
870 	/*
871 	 * NOTE: the class-key must be unique. For dynamic locks, a static
872 	 * lock_class_key variable is passed in through the mutex_init()
873 	 * (or spin_lock_init()) call - which acts as the key. For static
874 	 * locks we use the lock object itself as the key.
875 	 */
876 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
877 			sizeof(struct lockdep_map));
878 
879 	key = lock->key->subkeys + subclass;
880 
881 	hash_head = classhashentry(key);
882 
883 	/*
884 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
885 	 */
886 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
887 		return NULL;
888 
889 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
890 		if (class->key == key) {
891 			/*
892 			 * Huh! same key, different name? Did someone trample
893 			 * on some memory? We're most confused.
894 			 */
895 			WARN_ON_ONCE(class->name != lock->name &&
896 				     lock->key != &__lockdep_no_validate__);
897 			return class;
898 		}
899 	}
900 
901 	return NULL;
902 }
903 
904 /*
905  * Static locks do not have their class-keys yet - for them the key is
906  * the lock object itself. If the lock is in the per cpu area, the
907  * canonical address of the lock (per cpu offset removed) is used.
908  */
assign_lock_key(struct lockdep_map * lock)909 static bool assign_lock_key(struct lockdep_map *lock)
910 {
911 	unsigned long can_addr, addr = (unsigned long)lock;
912 
913 #ifdef __KERNEL__
914 	/*
915 	 * lockdep_free_key_range() assumes that struct lock_class_key
916 	 * objects do not overlap. Since we use the address of lock
917 	 * objects as class key for static objects, check whether the
918 	 * size of lock_class_key objects does not exceed the size of
919 	 * the smallest lock object.
920 	 */
921 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
922 #endif
923 
924 	if (__is_kernel_percpu_address(addr, &can_addr))
925 		lock->key = (void *)can_addr;
926 	else if (__is_module_percpu_address(addr, &can_addr))
927 		lock->key = (void *)can_addr;
928 	else if (static_obj(lock))
929 		lock->key = (void *)lock;
930 	else {
931 		/* Debug-check: all keys must be persistent! */
932 		debug_locks_off();
933 		pr_err("INFO: trying to register non-static key.\n");
934 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
935 		pr_err("you didn't initialize this object before use?\n");
936 		pr_err("turning off the locking correctness validator.\n");
937 		dump_stack();
938 		return false;
939 	}
940 
941 	return true;
942 }
943 
944 #ifdef CONFIG_DEBUG_LOCKDEP
945 
946 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)947 static bool in_list(struct list_head *e, struct list_head *h)
948 {
949 	struct list_head *f;
950 
951 	list_for_each(f, h) {
952 		if (e == f)
953 			return true;
954 	}
955 
956 	return false;
957 }
958 
959 /*
960  * Check whether entry @e occurs in any of the locks_after or locks_before
961  * lists.
962  */
in_any_class_list(struct list_head * e)963 static bool in_any_class_list(struct list_head *e)
964 {
965 	struct lock_class *class;
966 	int i;
967 
968 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
969 		class = &lock_classes[i];
970 		if (in_list(e, &class->locks_after) ||
971 		    in_list(e, &class->locks_before))
972 			return true;
973 	}
974 	return false;
975 }
976 
class_lock_list_valid(struct lock_class * c,struct list_head * h)977 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
978 {
979 	struct lock_list *e;
980 
981 	list_for_each_entry(e, h, entry) {
982 		if (e->links_to != c) {
983 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
984 			       c->name ? : "(?)",
985 			       (unsigned long)(e - list_entries),
986 			       e->links_to && e->links_to->name ?
987 			       e->links_to->name : "(?)",
988 			       e->class && e->class->name ? e->class->name :
989 			       "(?)");
990 			return false;
991 		}
992 	}
993 	return true;
994 }
995 
996 #ifdef CONFIG_PROVE_LOCKING
997 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
998 #endif
999 
check_lock_chain_key(struct lock_chain * chain)1000 static bool check_lock_chain_key(struct lock_chain *chain)
1001 {
1002 #ifdef CONFIG_PROVE_LOCKING
1003 	u64 chain_key = INITIAL_CHAIN_KEY;
1004 	int i;
1005 
1006 	for (i = chain->base; i < chain->base + chain->depth; i++)
1007 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1008 	/*
1009 	 * The 'unsigned long long' casts avoid that a compiler warning
1010 	 * is reported when building tools/lib/lockdep.
1011 	 */
1012 	if (chain->chain_key != chain_key) {
1013 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1014 		       (unsigned long long)(chain - lock_chains),
1015 		       (unsigned long long)chain->chain_key,
1016 		       (unsigned long long)chain_key);
1017 		return false;
1018 	}
1019 #endif
1020 	return true;
1021 }
1022 
in_any_zapped_class_list(struct lock_class * class)1023 static bool in_any_zapped_class_list(struct lock_class *class)
1024 {
1025 	struct pending_free *pf;
1026 	int i;
1027 
1028 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1029 		if (in_list(&class->lock_entry, &pf->zapped))
1030 			return true;
1031 	}
1032 
1033 	return false;
1034 }
1035 
__check_data_structures(void)1036 static bool __check_data_structures(void)
1037 {
1038 	struct lock_class *class;
1039 	struct lock_chain *chain;
1040 	struct hlist_head *head;
1041 	struct lock_list *e;
1042 	int i;
1043 
1044 	/* Check whether all classes occur in a lock list. */
1045 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1046 		class = &lock_classes[i];
1047 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1048 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1049 		    !in_any_zapped_class_list(class)) {
1050 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1051 			       class, class->name ? : "(?)");
1052 			return false;
1053 		}
1054 	}
1055 
1056 	/* Check whether all classes have valid lock lists. */
1057 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1058 		class = &lock_classes[i];
1059 		if (!class_lock_list_valid(class, &class->locks_before))
1060 			return false;
1061 		if (!class_lock_list_valid(class, &class->locks_after))
1062 			return false;
1063 	}
1064 
1065 	/* Check the chain_key of all lock chains. */
1066 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1067 		head = chainhash_table + i;
1068 		hlist_for_each_entry_rcu(chain, head, entry) {
1069 			if (!check_lock_chain_key(chain))
1070 				return false;
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * Check whether all list entries that are in use occur in a class
1076 	 * lock list.
1077 	 */
1078 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1079 		e = list_entries + i;
1080 		if (!in_any_class_list(&e->entry)) {
1081 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1082 			       (unsigned int)(e - list_entries),
1083 			       e->class->name ? : "(?)",
1084 			       e->links_to->name ? : "(?)");
1085 			return false;
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Check whether all list entries that are not in use do not occur in
1091 	 * a class lock list.
1092 	 */
1093 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1094 		e = list_entries + i;
1095 		if (in_any_class_list(&e->entry)) {
1096 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1097 			       (unsigned int)(e - list_entries),
1098 			       e->class && e->class->name ? e->class->name :
1099 			       "(?)",
1100 			       e->links_to && e->links_to->name ?
1101 			       e->links_to->name : "(?)");
1102 			return false;
1103 		}
1104 	}
1105 
1106 	return true;
1107 }
1108 
1109 int check_consistency = 0;
1110 module_param(check_consistency, int, 0644);
1111 
check_data_structures(void)1112 static void check_data_structures(void)
1113 {
1114 	static bool once = false;
1115 
1116 	if (check_consistency && !once) {
1117 		if (!__check_data_structures()) {
1118 			once = true;
1119 			WARN_ON(once);
1120 		}
1121 	}
1122 }
1123 
1124 #else /* CONFIG_DEBUG_LOCKDEP */
1125 
check_data_structures(void)1126 static inline void check_data_structures(void) { }
1127 
1128 #endif /* CONFIG_DEBUG_LOCKDEP */
1129 
1130 static void init_chain_block_buckets(void);
1131 
1132 /*
1133  * Initialize the lock_classes[] array elements, the free_lock_classes list
1134  * and also the delayed_free structure.
1135  */
init_data_structures_once(void)1136 static void init_data_structures_once(void)
1137 {
1138 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1139 	int i;
1140 
1141 	if (likely(rcu_head_initialized))
1142 		return;
1143 
1144 	if (system_state >= SYSTEM_SCHEDULING) {
1145 		init_rcu_head(&delayed_free.rcu_head);
1146 		rcu_head_initialized = true;
1147 	}
1148 
1149 	if (ds_initialized)
1150 		return;
1151 
1152 	ds_initialized = true;
1153 
1154 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1155 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1156 
1157 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1158 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1159 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1160 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1161 	}
1162 	init_chain_block_buckets();
1163 }
1164 
keyhashentry(const struct lock_class_key * key)1165 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1166 {
1167 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1168 
1169 	return lock_keys_hash + hash;
1170 }
1171 
1172 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1173 void lockdep_register_key(struct lock_class_key *key)
1174 {
1175 	struct hlist_head *hash_head;
1176 	struct lock_class_key *k;
1177 	unsigned long flags;
1178 
1179 	if (WARN_ON_ONCE(static_obj(key)))
1180 		return;
1181 	hash_head = keyhashentry(key);
1182 
1183 	raw_local_irq_save(flags);
1184 	if (!graph_lock())
1185 		goto restore_irqs;
1186 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1187 		if (WARN_ON_ONCE(k == key))
1188 			goto out_unlock;
1189 	}
1190 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1191 out_unlock:
1192 	graph_unlock();
1193 restore_irqs:
1194 	raw_local_irq_restore(flags);
1195 }
1196 EXPORT_SYMBOL_GPL(lockdep_register_key);
1197 
1198 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1199 static bool is_dynamic_key(const struct lock_class_key *key)
1200 {
1201 	struct hlist_head *hash_head;
1202 	struct lock_class_key *k;
1203 	bool found = false;
1204 
1205 	if (WARN_ON_ONCE(static_obj(key)))
1206 		return false;
1207 
1208 	/*
1209 	 * If lock debugging is disabled lock_keys_hash[] may contain
1210 	 * pointers to memory that has already been freed. Avoid triggering
1211 	 * a use-after-free in that case by returning early.
1212 	 */
1213 	if (!debug_locks)
1214 		return true;
1215 
1216 	hash_head = keyhashentry(key);
1217 
1218 	rcu_read_lock();
1219 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1220 		if (k == key) {
1221 			found = true;
1222 			break;
1223 		}
1224 	}
1225 	rcu_read_unlock();
1226 
1227 	return found;
1228 }
1229 
1230 /*
1231  * Register a lock's class in the hash-table, if the class is not present
1232  * yet. Otherwise we look it up. We cache the result in the lock object
1233  * itself, so actual lookup of the hash should be once per lock object.
1234  */
1235 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1236 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1237 {
1238 	struct lockdep_subclass_key *key;
1239 	struct hlist_head *hash_head;
1240 	struct lock_class *class;
1241 	int idx;
1242 
1243 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1244 
1245 	class = look_up_lock_class(lock, subclass);
1246 	if (likely(class))
1247 		goto out_set_class_cache;
1248 
1249 	if (!lock->key) {
1250 		if (!assign_lock_key(lock))
1251 			return NULL;
1252 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1253 		return NULL;
1254 	}
1255 
1256 	key = lock->key->subkeys + subclass;
1257 	hash_head = classhashentry(key);
1258 
1259 	if (!graph_lock()) {
1260 		return NULL;
1261 	}
1262 	/*
1263 	 * We have to do the hash-walk again, to avoid races
1264 	 * with another CPU:
1265 	 */
1266 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1267 		if (class->key == key)
1268 			goto out_unlock_set;
1269 	}
1270 
1271 	init_data_structures_once();
1272 
1273 	/* Allocate a new lock class and add it to the hash. */
1274 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1275 					 lock_entry);
1276 	if (!class) {
1277 		if (!debug_locks_off_graph_unlock()) {
1278 			return NULL;
1279 		}
1280 
1281 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1282 		dump_stack();
1283 		return NULL;
1284 	}
1285 	nr_lock_classes++;
1286 	__set_bit(class - lock_classes, lock_classes_in_use);
1287 	debug_atomic_inc(nr_unused_locks);
1288 	class->key = key;
1289 	class->name = lock->name;
1290 	class->subclass = subclass;
1291 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1292 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1293 	class->name_version = count_matching_names(class);
1294 	class->wait_type_inner = lock->wait_type_inner;
1295 	class->wait_type_outer = lock->wait_type_outer;
1296 	class->lock_type = lock->lock_type;
1297 	/*
1298 	 * We use RCU's safe list-add method to make
1299 	 * parallel walking of the hash-list safe:
1300 	 */
1301 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1302 	/*
1303 	 * Remove the class from the free list and add it to the global list
1304 	 * of classes.
1305 	 */
1306 	list_move_tail(&class->lock_entry, &all_lock_classes);
1307 	idx = class - lock_classes;
1308 	if (idx > max_lock_class_idx)
1309 		max_lock_class_idx = idx;
1310 
1311 	if (verbose(class)) {
1312 		graph_unlock();
1313 
1314 		printk("\nnew class %px: %s", class->key, class->name);
1315 		if (class->name_version > 1)
1316 			printk(KERN_CONT "#%d", class->name_version);
1317 		printk(KERN_CONT "\n");
1318 		dump_stack();
1319 
1320 		if (!graph_lock()) {
1321 			return NULL;
1322 		}
1323 	}
1324 out_unlock_set:
1325 	graph_unlock();
1326 
1327 out_set_class_cache:
1328 	if (!subclass || force)
1329 		lock->class_cache[0] = class;
1330 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1331 		lock->class_cache[subclass] = class;
1332 
1333 	/*
1334 	 * Hash collision, did we smoke some? We found a class with a matching
1335 	 * hash but the subclass -- which is hashed in -- didn't match.
1336 	 */
1337 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1338 		return NULL;
1339 
1340 	return class;
1341 }
1342 
1343 #ifdef CONFIG_PROVE_LOCKING
1344 /*
1345  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1346  * with NULL on failure)
1347  */
alloc_list_entry(void)1348 static struct lock_list *alloc_list_entry(void)
1349 {
1350 	int idx = find_first_zero_bit(list_entries_in_use,
1351 				      ARRAY_SIZE(list_entries));
1352 
1353 	if (idx >= ARRAY_SIZE(list_entries)) {
1354 		if (!debug_locks_off_graph_unlock())
1355 			return NULL;
1356 
1357 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1358 		dump_stack();
1359 		return NULL;
1360 	}
1361 	nr_list_entries++;
1362 	__set_bit(idx, list_entries_in_use);
1363 	return list_entries + idx;
1364 }
1365 
1366 /*
1367  * Add a new dependency to the head of the list:
1368  */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,u16 distance,u8 dep,const struct lock_trace * trace)1369 static int add_lock_to_list(struct lock_class *this,
1370 			    struct lock_class *links_to, struct list_head *head,
1371 			    u16 distance, u8 dep,
1372 			    const struct lock_trace *trace)
1373 {
1374 	struct lock_list *entry;
1375 	/*
1376 	 * Lock not present yet - get a new dependency struct and
1377 	 * add it to the list:
1378 	 */
1379 	entry = alloc_list_entry();
1380 	if (!entry)
1381 		return 0;
1382 
1383 	entry->class = this;
1384 	entry->links_to = links_to;
1385 	entry->dep = dep;
1386 	entry->distance = distance;
1387 	entry->trace = trace;
1388 	/*
1389 	 * Both allocation and removal are done under the graph lock; but
1390 	 * iteration is under RCU-sched; see look_up_lock_class() and
1391 	 * lockdep_free_key_range().
1392 	 */
1393 	list_add_tail_rcu(&entry->entry, head);
1394 
1395 	return 1;
1396 }
1397 
1398 /*
1399  * For good efficiency of modular, we use power of 2
1400  */
1401 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1402 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1403 
1404 /*
1405  * The circular_queue and helpers are used to implement graph
1406  * breadth-first search (BFS) algorithm, by which we can determine
1407  * whether there is a path from a lock to another. In deadlock checks,
1408  * a path from the next lock to be acquired to a previous held lock
1409  * indicates that adding the <prev> -> <next> lock dependency will
1410  * produce a circle in the graph. Breadth-first search instead of
1411  * depth-first search is used in order to find the shortest (circular)
1412  * path.
1413  */
1414 struct circular_queue {
1415 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1416 	unsigned int  front, rear;
1417 };
1418 
1419 static struct circular_queue lock_cq;
1420 
1421 unsigned int max_bfs_queue_depth;
1422 
1423 static unsigned int lockdep_dependency_gen_id;
1424 
__cq_init(struct circular_queue * cq)1425 static inline void __cq_init(struct circular_queue *cq)
1426 {
1427 	cq->front = cq->rear = 0;
1428 	lockdep_dependency_gen_id++;
1429 }
1430 
__cq_empty(struct circular_queue * cq)1431 static inline int __cq_empty(struct circular_queue *cq)
1432 {
1433 	return (cq->front == cq->rear);
1434 }
1435 
__cq_full(struct circular_queue * cq)1436 static inline int __cq_full(struct circular_queue *cq)
1437 {
1438 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1439 }
1440 
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1441 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1442 {
1443 	if (__cq_full(cq))
1444 		return -1;
1445 
1446 	cq->element[cq->rear] = elem;
1447 	cq->rear = (cq->rear + 1) & CQ_MASK;
1448 	return 0;
1449 }
1450 
1451 /*
1452  * Dequeue an element from the circular_queue, return a lock_list if
1453  * the queue is not empty, or NULL if otherwise.
1454  */
__cq_dequeue(struct circular_queue * cq)1455 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1456 {
1457 	struct lock_list * lock;
1458 
1459 	if (__cq_empty(cq))
1460 		return NULL;
1461 
1462 	lock = cq->element[cq->front];
1463 	cq->front = (cq->front + 1) & CQ_MASK;
1464 
1465 	return lock;
1466 }
1467 
__cq_get_elem_count(struct circular_queue * cq)1468 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1469 {
1470 	return (cq->rear - cq->front) & CQ_MASK;
1471 }
1472 
mark_lock_accessed(struct lock_list * lock)1473 static inline void mark_lock_accessed(struct lock_list *lock)
1474 {
1475 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1476 }
1477 
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1478 static inline void visit_lock_entry(struct lock_list *lock,
1479 				    struct lock_list *parent)
1480 {
1481 	lock->parent = parent;
1482 }
1483 
lock_accessed(struct lock_list * lock)1484 static inline unsigned long lock_accessed(struct lock_list *lock)
1485 {
1486 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1487 }
1488 
get_lock_parent(struct lock_list * child)1489 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1490 {
1491 	return child->parent;
1492 }
1493 
get_lock_depth(struct lock_list * child)1494 static inline int get_lock_depth(struct lock_list *child)
1495 {
1496 	int depth = 0;
1497 	struct lock_list *parent;
1498 
1499 	while ((parent = get_lock_parent(child))) {
1500 		child = parent;
1501 		depth++;
1502 	}
1503 	return depth;
1504 }
1505 
1506 /*
1507  * Return the forward or backward dependency list.
1508  *
1509  * @lock:   the lock_list to get its class's dependency list
1510  * @offset: the offset to struct lock_class to determine whether it is
1511  *          locks_after or locks_before
1512  */
get_dep_list(struct lock_list * lock,int offset)1513 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1514 {
1515 	void *lock_class = lock->class;
1516 
1517 	return lock_class + offset;
1518 }
1519 /*
1520  * Return values of a bfs search:
1521  *
1522  * BFS_E* indicates an error
1523  * BFS_R* indicates a result (match or not)
1524  *
1525  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1526  *
1527  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1528  *
1529  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1530  *             *@target_entry.
1531  *
1532  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1533  *               _unchanged_.
1534  */
1535 enum bfs_result {
1536 	BFS_EINVALIDNODE = -2,
1537 	BFS_EQUEUEFULL = -1,
1538 	BFS_RMATCH = 0,
1539 	BFS_RNOMATCH = 1,
1540 };
1541 
1542 /*
1543  * bfs_result < 0 means error
1544  */
bfs_error(enum bfs_result res)1545 static inline bool bfs_error(enum bfs_result res)
1546 {
1547 	return res < 0;
1548 }
1549 
1550 /*
1551  * DEP_*_BIT in lock_list::dep
1552  *
1553  * For dependency @prev -> @next:
1554  *
1555  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1556  *       (->read == 2)
1557  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1558  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1559  *   EN: @prev is exclusive locker and @next is non-recursive locker
1560  *
1561  * Note that we define the value of DEP_*_BITs so that:
1562  *   bit0 is prev->read == 0
1563  *   bit1 is next->read != 2
1564  */
1565 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1566 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1567 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1568 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1569 
1570 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1571 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1572 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1573 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1574 
1575 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1576 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1577 {
1578 	return (prev->read == 0) + ((next->read != 2) << 1);
1579 }
1580 
calc_dep(struct held_lock * prev,struct held_lock * next)1581 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1582 {
1583 	return 1U << __calc_dep_bit(prev, next);
1584 }
1585 
1586 /*
1587  * calculate the dep_bit for backwards edges. We care about whether @prev is
1588  * shared and whether @next is recursive.
1589  */
1590 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1591 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1592 {
1593 	return (next->read != 2) + ((prev->read == 0) << 1);
1594 }
1595 
calc_depb(struct held_lock * prev,struct held_lock * next)1596 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1597 {
1598 	return 1U << __calc_dep_bitb(prev, next);
1599 }
1600 
1601 /*
1602  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1603  * search.
1604  */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1605 static inline void __bfs_init_root(struct lock_list *lock,
1606 				   struct lock_class *class)
1607 {
1608 	lock->class = class;
1609 	lock->parent = NULL;
1610 	lock->only_xr = 0;
1611 }
1612 
1613 /*
1614  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1615  * root for a BFS search.
1616  *
1617  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1618  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1619  * and -(S*)->.
1620  */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1621 static inline void bfs_init_root(struct lock_list *lock,
1622 				 struct held_lock *hlock)
1623 {
1624 	__bfs_init_root(lock, hlock_class(hlock));
1625 	lock->only_xr = (hlock->read == 2);
1626 }
1627 
1628 /*
1629  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1630  *
1631  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1632  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1633  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1634  */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1635 static inline void bfs_init_rootb(struct lock_list *lock,
1636 				  struct held_lock *hlock)
1637 {
1638 	__bfs_init_root(lock, hlock_class(hlock));
1639 	lock->only_xr = (hlock->read != 0);
1640 }
1641 
__bfs_next(struct lock_list * lock,int offset)1642 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1643 {
1644 	if (!lock || !lock->parent)
1645 		return NULL;
1646 
1647 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1648 				     &lock->entry, struct lock_list, entry);
1649 }
1650 
1651 /*
1652  * Breadth-First Search to find a strong path in the dependency graph.
1653  *
1654  * @source_entry: the source of the path we are searching for.
1655  * @data: data used for the second parameter of @match function
1656  * @match: match function for the search
1657  * @target_entry: pointer to the target of a matched path
1658  * @offset: the offset to struct lock_class to determine whether it is
1659  *          locks_after or locks_before
1660  *
1661  * We may have multiple edges (considering different kinds of dependencies,
1662  * e.g. ER and SN) between two nodes in the dependency graph. But
1663  * only the strong dependency path in the graph is relevant to deadlocks. A
1664  * strong dependency path is a dependency path that doesn't have two adjacent
1665  * dependencies as -(*R)-> -(S*)->, please see:
1666  *
1667  *         Documentation/locking/lockdep-design.rst
1668  *
1669  * for more explanation of the definition of strong dependency paths
1670  *
1671  * In __bfs(), we only traverse in the strong dependency path:
1672  *
1673  *     In lock_list::only_xr, we record whether the previous dependency only
1674  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1675  *     filter out any -(S*)-> in the current dependency and after that, the
1676  *     ->only_xr is set according to whether we only have -(*R)-> left.
1677  */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1678 static enum bfs_result __bfs(struct lock_list *source_entry,
1679 			     void *data,
1680 			     bool (*match)(struct lock_list *entry, void *data),
1681 			     bool (*skip)(struct lock_list *entry, void *data),
1682 			     struct lock_list **target_entry,
1683 			     int offset)
1684 {
1685 	struct circular_queue *cq = &lock_cq;
1686 	struct lock_list *lock = NULL;
1687 	struct lock_list *entry;
1688 	struct list_head *head;
1689 	unsigned int cq_depth;
1690 	bool first;
1691 
1692 	lockdep_assert_locked();
1693 
1694 	__cq_init(cq);
1695 	__cq_enqueue(cq, source_entry);
1696 
1697 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1698 		if (!lock->class)
1699 			return BFS_EINVALIDNODE;
1700 
1701 		/*
1702 		 * Step 1: check whether we already finish on this one.
1703 		 *
1704 		 * If we have visited all the dependencies from this @lock to
1705 		 * others (iow, if we have visited all lock_list entries in
1706 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1707 		 * and visit all the dependencies in the list and mark this
1708 		 * list accessed.
1709 		 */
1710 		if (lock_accessed(lock))
1711 			continue;
1712 		else
1713 			mark_lock_accessed(lock);
1714 
1715 		/*
1716 		 * Step 2: check whether prev dependency and this form a strong
1717 		 *         dependency path.
1718 		 */
1719 		if (lock->parent) { /* Parent exists, check prev dependency */
1720 			u8 dep = lock->dep;
1721 			bool prev_only_xr = lock->parent->only_xr;
1722 
1723 			/*
1724 			 * Mask out all -(S*)-> if we only have *R in previous
1725 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1726 			 * dependency.
1727 			 */
1728 			if (prev_only_xr)
1729 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1730 
1731 			/* If nothing left, we skip */
1732 			if (!dep)
1733 				continue;
1734 
1735 			/* If there are only -(*R)-> left, set that for the next step */
1736 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1737 		}
1738 
1739 		/*
1740 		 * Step 3: we haven't visited this and there is a strong
1741 		 *         dependency path to this, so check with @match.
1742 		 *         If @skip is provide and returns true, we skip this
1743 		 *         lock (and any path this lock is in).
1744 		 */
1745 		if (skip && skip(lock, data))
1746 			continue;
1747 
1748 		if (match(lock, data)) {
1749 			*target_entry = lock;
1750 			return BFS_RMATCH;
1751 		}
1752 
1753 		/*
1754 		 * Step 4: if not match, expand the path by adding the
1755 		 *         forward or backwards dependencies in the search
1756 		 *
1757 		 */
1758 		first = true;
1759 		head = get_dep_list(lock, offset);
1760 		list_for_each_entry_rcu(entry, head, entry) {
1761 			visit_lock_entry(entry, lock);
1762 
1763 			/*
1764 			 * Note we only enqueue the first of the list into the
1765 			 * queue, because we can always find a sibling
1766 			 * dependency from one (see __bfs_next()), as a result
1767 			 * the space of queue is saved.
1768 			 */
1769 			if (!first)
1770 				continue;
1771 
1772 			first = false;
1773 
1774 			if (__cq_enqueue(cq, entry))
1775 				return BFS_EQUEUEFULL;
1776 
1777 			cq_depth = __cq_get_elem_count(cq);
1778 			if (max_bfs_queue_depth < cq_depth)
1779 				max_bfs_queue_depth = cq_depth;
1780 		}
1781 	}
1782 
1783 	return BFS_RNOMATCH;
1784 }
1785 
1786 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1787 __bfs_forwards(struct lock_list *src_entry,
1788 	       void *data,
1789 	       bool (*match)(struct lock_list *entry, void *data),
1790 	       bool (*skip)(struct lock_list *entry, void *data),
1791 	       struct lock_list **target_entry)
1792 {
1793 	return __bfs(src_entry, data, match, skip, target_entry,
1794 		     offsetof(struct lock_class, locks_after));
1795 
1796 }
1797 
1798 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1799 __bfs_backwards(struct lock_list *src_entry,
1800 		void *data,
1801 		bool (*match)(struct lock_list *entry, void *data),
1802 	       bool (*skip)(struct lock_list *entry, void *data),
1803 		struct lock_list **target_entry)
1804 {
1805 	return __bfs(src_entry, data, match, skip, target_entry,
1806 		     offsetof(struct lock_class, locks_before));
1807 
1808 }
1809 
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1810 static void print_lock_trace(const struct lock_trace *trace,
1811 			     unsigned int spaces)
1812 {
1813 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1814 }
1815 
1816 /*
1817  * Print a dependency chain entry (this is only done when a deadlock
1818  * has been detected):
1819  */
1820 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1821 print_circular_bug_entry(struct lock_list *target, int depth)
1822 {
1823 	if (debug_locks_silent)
1824 		return;
1825 	printk("\n-> #%u", depth);
1826 	print_lock_name(target->class);
1827 	printk(KERN_CONT ":\n");
1828 	print_lock_trace(target->trace, 6);
1829 }
1830 
1831 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1832 print_circular_lock_scenario(struct held_lock *src,
1833 			     struct held_lock *tgt,
1834 			     struct lock_list *prt)
1835 {
1836 	struct lock_class *source = hlock_class(src);
1837 	struct lock_class *target = hlock_class(tgt);
1838 	struct lock_class *parent = prt->class;
1839 
1840 	/*
1841 	 * A direct locking problem where unsafe_class lock is taken
1842 	 * directly by safe_class lock, then all we need to show
1843 	 * is the deadlock scenario, as it is obvious that the
1844 	 * unsafe lock is taken under the safe lock.
1845 	 *
1846 	 * But if there is a chain instead, where the safe lock takes
1847 	 * an intermediate lock (middle_class) where this lock is
1848 	 * not the same as the safe lock, then the lock chain is
1849 	 * used to describe the problem. Otherwise we would need
1850 	 * to show a different CPU case for each link in the chain
1851 	 * from the safe_class lock to the unsafe_class lock.
1852 	 */
1853 	if (parent != source) {
1854 		printk("Chain exists of:\n  ");
1855 		__print_lock_name(source);
1856 		printk(KERN_CONT " --> ");
1857 		__print_lock_name(parent);
1858 		printk(KERN_CONT " --> ");
1859 		__print_lock_name(target);
1860 		printk(KERN_CONT "\n\n");
1861 	}
1862 
1863 	printk(" Possible unsafe locking scenario:\n\n");
1864 	printk("       CPU0                    CPU1\n");
1865 	printk("       ----                    ----\n");
1866 	printk("  lock(");
1867 	__print_lock_name(target);
1868 	printk(KERN_CONT ");\n");
1869 	printk("                               lock(");
1870 	__print_lock_name(parent);
1871 	printk(KERN_CONT ");\n");
1872 	printk("                               lock(");
1873 	__print_lock_name(target);
1874 	printk(KERN_CONT ");\n");
1875 	printk("  lock(");
1876 	__print_lock_name(source);
1877 	printk(KERN_CONT ");\n");
1878 	printk("\n *** DEADLOCK ***\n\n");
1879 }
1880 
1881 /*
1882  * When a circular dependency is detected, print the
1883  * header first:
1884  */
1885 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1886 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1887 			struct held_lock *check_src,
1888 			struct held_lock *check_tgt)
1889 {
1890 	struct task_struct *curr = current;
1891 
1892 	if (debug_locks_silent)
1893 		return;
1894 
1895 	pr_warn("\n");
1896 	pr_warn("======================================================\n");
1897 	pr_warn("WARNING: possible circular locking dependency detected\n");
1898 	print_kernel_ident();
1899 	pr_warn("------------------------------------------------------\n");
1900 	pr_warn("%s/%d is trying to acquire lock:\n",
1901 		curr->comm, task_pid_nr(curr));
1902 	print_lock(check_src);
1903 
1904 	pr_warn("\nbut task is already holding lock:\n");
1905 
1906 	print_lock(check_tgt);
1907 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1908 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1909 
1910 	print_circular_bug_entry(entry, depth);
1911 }
1912 
1913 /*
1914  * We are about to add A -> B into the dependency graph, and in __bfs() a
1915  * strong dependency path A -> .. -> B is found: hlock_class equals
1916  * entry->class.
1917  *
1918  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1919  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1920  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1921  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1922  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1923  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1924  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1925  *
1926  * We need to make sure both the start and the end of A -> .. -> B is not
1927  * weaker than A -> B. For the start part, please see the comment in
1928  * check_redundant(). For the end part, we need:
1929  *
1930  * Either
1931  *
1932  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1933  *
1934  * or
1935  *
1936  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1937  *
1938  */
hlock_equal(struct lock_list * entry,void * data)1939 static inline bool hlock_equal(struct lock_list *entry, void *data)
1940 {
1941 	struct held_lock *hlock = (struct held_lock *)data;
1942 
1943 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1944 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1945 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1946 }
1947 
1948 /*
1949  * We are about to add B -> A into the dependency graph, and in __bfs() a
1950  * strong dependency path A -> .. -> B is found: hlock_class equals
1951  * entry->class.
1952  *
1953  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1954  * dependency cycle, that means:
1955  *
1956  * Either
1957  *
1958  *     a) B -> A is -(E*)->
1959  *
1960  * or
1961  *
1962  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1963  *
1964  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1965  */
hlock_conflict(struct lock_list * entry,void * data)1966 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1967 {
1968 	struct held_lock *hlock = (struct held_lock *)data;
1969 
1970 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1971 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1972 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1973 }
1974 
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1975 static noinline void print_circular_bug(struct lock_list *this,
1976 				struct lock_list *target,
1977 				struct held_lock *check_src,
1978 				struct held_lock *check_tgt)
1979 {
1980 	struct task_struct *curr = current;
1981 	struct lock_list *parent;
1982 	struct lock_list *first_parent;
1983 	int depth;
1984 
1985 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1986 		return;
1987 
1988 	this->trace = save_trace();
1989 	if (!this->trace)
1990 		return;
1991 
1992 	depth = get_lock_depth(target);
1993 
1994 	print_circular_bug_header(target, depth, check_src, check_tgt);
1995 
1996 	parent = get_lock_parent(target);
1997 	first_parent = parent;
1998 
1999 	while (parent) {
2000 		print_circular_bug_entry(parent, --depth);
2001 		parent = get_lock_parent(parent);
2002 	}
2003 
2004 	printk("\nother info that might help us debug this:\n\n");
2005 	print_circular_lock_scenario(check_src, check_tgt,
2006 				     first_parent);
2007 
2008 	lockdep_print_held_locks(curr);
2009 
2010 	printk("\nstack backtrace:\n");
2011 	dump_stack();
2012 }
2013 
print_bfs_bug(int ret)2014 static noinline void print_bfs_bug(int ret)
2015 {
2016 	if (!debug_locks_off_graph_unlock())
2017 		return;
2018 
2019 	/*
2020 	 * Breadth-first-search failed, graph got corrupted?
2021 	 */
2022 	WARN(1, "lockdep bfs error:%d\n", ret);
2023 }
2024 
noop_count(struct lock_list * entry,void * data)2025 static bool noop_count(struct lock_list *entry, void *data)
2026 {
2027 	(*(unsigned long *)data)++;
2028 	return false;
2029 }
2030 
__lockdep_count_forward_deps(struct lock_list * this)2031 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2032 {
2033 	unsigned long  count = 0;
2034 	struct lock_list *target_entry;
2035 
2036 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2037 
2038 	return count;
2039 }
lockdep_count_forward_deps(struct lock_class * class)2040 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2041 {
2042 	unsigned long ret, flags;
2043 	struct lock_list this;
2044 
2045 	__bfs_init_root(&this, class);
2046 
2047 	raw_local_irq_save(flags);
2048 	lockdep_lock();
2049 	ret = __lockdep_count_forward_deps(&this);
2050 	lockdep_unlock();
2051 	raw_local_irq_restore(flags);
2052 
2053 	return ret;
2054 }
2055 
__lockdep_count_backward_deps(struct lock_list * this)2056 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2057 {
2058 	unsigned long  count = 0;
2059 	struct lock_list *target_entry;
2060 
2061 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2062 
2063 	return count;
2064 }
2065 
lockdep_count_backward_deps(struct lock_class * class)2066 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2067 {
2068 	unsigned long ret, flags;
2069 	struct lock_list this;
2070 
2071 	__bfs_init_root(&this, class);
2072 
2073 	raw_local_irq_save(flags);
2074 	lockdep_lock();
2075 	ret = __lockdep_count_backward_deps(&this);
2076 	lockdep_unlock();
2077 	raw_local_irq_restore(flags);
2078 
2079 	return ret;
2080 }
2081 
2082 /*
2083  * Check that the dependency graph starting at <src> can lead to
2084  * <target> or not.
2085  */
2086 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2087 check_path(struct held_lock *target, struct lock_list *src_entry,
2088 	   bool (*match)(struct lock_list *entry, void *data),
2089 	   bool (*skip)(struct lock_list *entry, void *data),
2090 	   struct lock_list **target_entry)
2091 {
2092 	enum bfs_result ret;
2093 
2094 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2095 
2096 	if (unlikely(bfs_error(ret)))
2097 		print_bfs_bug(ret);
2098 
2099 	return ret;
2100 }
2101 
2102 /*
2103  * Prove that the dependency graph starting at <src> can not
2104  * lead to <target>. If it can, there is a circle when adding
2105  * <target> -> <src> dependency.
2106  *
2107  * Print an error and return BFS_RMATCH if it does.
2108  */
2109 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2110 check_noncircular(struct held_lock *src, struct held_lock *target,
2111 		  struct lock_trace **const trace)
2112 {
2113 	enum bfs_result ret;
2114 	struct lock_list *target_entry;
2115 	struct lock_list src_entry;
2116 
2117 	bfs_init_root(&src_entry, src);
2118 
2119 	debug_atomic_inc(nr_cyclic_checks);
2120 
2121 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2122 
2123 	if (unlikely(ret == BFS_RMATCH)) {
2124 		if (!*trace) {
2125 			/*
2126 			 * If save_trace fails here, the printing might
2127 			 * trigger a WARN but because of the !nr_entries it
2128 			 * should not do bad things.
2129 			 */
2130 			*trace = save_trace();
2131 		}
2132 
2133 		print_circular_bug(&src_entry, target_entry, src, target);
2134 	}
2135 
2136 	return ret;
2137 }
2138 
2139 #ifdef CONFIG_TRACE_IRQFLAGS
2140 
2141 /*
2142  * Forwards and backwards subgraph searching, for the purposes of
2143  * proving that two subgraphs can be connected by a new dependency
2144  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2145  *
2146  * A irq safe->unsafe deadlock happens with the following conditions:
2147  *
2148  * 1) We have a strong dependency path A -> ... -> B
2149  *
2150  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2151  *    irq can create a new dependency B -> A (consider the case that a holder
2152  *    of B gets interrupted by an irq whose handler will try to acquire A).
2153  *
2154  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2155  *    strong circle:
2156  *
2157  *      For the usage bits of B:
2158  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2159  *           ENABLED_IRQ usage suffices.
2160  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2161  *           ENABLED_IRQ_*_READ usage suffices.
2162  *
2163  *      For the usage bits of A:
2164  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2165  *           USED_IN_IRQ usage suffices.
2166  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2167  *           USED_IN_IRQ_*_READ usage suffices.
2168  */
2169 
2170 /*
2171  * There is a strong dependency path in the dependency graph: A -> B, and now
2172  * we need to decide which usage bit of A should be accumulated to detect
2173  * safe->unsafe bugs.
2174  *
2175  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2176  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2177  *
2178  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2179  * path, any usage of A should be considered. Otherwise, we should only
2180  * consider _READ usage.
2181  */
usage_accumulate(struct lock_list * entry,void * mask)2182 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2183 {
2184 	if (!entry->only_xr)
2185 		*(unsigned long *)mask |= entry->class->usage_mask;
2186 	else /* Mask out _READ usage bits */
2187 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2188 
2189 	return false;
2190 }
2191 
2192 /*
2193  * There is a strong dependency path in the dependency graph: A -> B, and now
2194  * we need to decide which usage bit of B conflicts with the usage bits of A,
2195  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2196  *
2197  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2198  * path, any usage of B should be considered. Otherwise, we should only
2199  * consider _READ usage.
2200  */
usage_match(struct lock_list * entry,void * mask)2201 static inline bool usage_match(struct lock_list *entry, void *mask)
2202 {
2203 	if (!entry->only_xr)
2204 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2205 	else /* Mask out _READ usage bits */
2206 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2207 }
2208 
usage_skip(struct lock_list * entry,void * mask)2209 static inline bool usage_skip(struct lock_list *entry, void *mask)
2210 {
2211 	/*
2212 	 * Skip local_lock() for irq inversion detection.
2213 	 *
2214 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2215 	 * dependency.
2216 	 *
2217 	 * For RT, an irq inversion happens when we have lock A and B, and on
2218 	 * some CPU we can have:
2219 	 *
2220 	 *	lock(A);
2221 	 *	<interrupted>
2222 	 *	  lock(B);
2223 	 *
2224 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2225 	 *
2226 	 * Now we prove local_lock() cannot exist in that dependency. First we
2227 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2228 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2229 	 * wait context check will complain. And since B is not a sleep lock,
2230 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2231 	 * local_lock() is 3, which is greater than 2, therefore there is no
2232 	 * way the local_lock() exists in the dependency B -> ... -> A.
2233 	 *
2234 	 * As a result, we will skip local_lock(), when we search for irq
2235 	 * inversion bugs.
2236 	 */
2237 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2238 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2239 			return false;
2240 
2241 		return true;
2242 	}
2243 
2244 	return false;
2245 }
2246 
2247 /*
2248  * Find a node in the forwards-direction dependency sub-graph starting
2249  * at @root->class that matches @bit.
2250  *
2251  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2252  * into *@target_entry.
2253  */
2254 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2255 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2256 			struct lock_list **target_entry)
2257 {
2258 	enum bfs_result result;
2259 
2260 	debug_atomic_inc(nr_find_usage_forwards_checks);
2261 
2262 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2263 
2264 	return result;
2265 }
2266 
2267 /*
2268  * Find a node in the backwards-direction dependency sub-graph starting
2269  * at @root->class that matches @bit.
2270  */
2271 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2272 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2273 			struct lock_list **target_entry)
2274 {
2275 	enum bfs_result result;
2276 
2277 	debug_atomic_inc(nr_find_usage_backwards_checks);
2278 
2279 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2280 
2281 	return result;
2282 }
2283 
print_lock_class_header(struct lock_class * class,int depth)2284 static void print_lock_class_header(struct lock_class *class, int depth)
2285 {
2286 	int bit;
2287 
2288 	printk("%*s->", depth, "");
2289 	print_lock_name(class);
2290 #ifdef CONFIG_DEBUG_LOCKDEP
2291 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2292 #endif
2293 	printk(KERN_CONT " {\n");
2294 
2295 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2296 		if (class->usage_mask & (1 << bit)) {
2297 			int len = depth;
2298 
2299 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2300 			len += printk(KERN_CONT " at:\n");
2301 			print_lock_trace(class->usage_traces[bit], len);
2302 		}
2303 	}
2304 	printk("%*s }\n", depth, "");
2305 
2306 	printk("%*s ... key      at: [<%px>] %pS\n",
2307 		depth, "", class->key, class->key);
2308 }
2309 
2310 /*
2311  * Dependency path printing:
2312  *
2313  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2314  * printing out each lock in the dependency path will help on understanding how
2315  * the deadlock could happen. Here are some details about dependency path
2316  * printing:
2317  *
2318  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2319  * 	for a lock dependency A -> B, there are two lock_lists:
2320  *
2321  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2322  * 		->links_to is A. In this case, we can say the lock_list is
2323  * 		"A -> B" (forwards case).
2324  *
2325  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2326  * 		and ->links_to is B. In this case, we can say the lock_list is
2327  * 		"B <- A" (bacwards case).
2328  *
2329  * 	The ->trace of both a) and b) point to the call trace where B was
2330  * 	acquired with A held.
2331  *
2332  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2333  * 	represent a certain lock dependency, it only provides an initial entry
2334  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2335  * 	->class is A, as a result BFS will search all dependencies starting with
2336  * 	A, e.g. A -> B or A -> C.
2337  *
2338  * 	The notation of a forwards helper lock_list is like "-> A", which means
2339  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2340  * 	or A -> C.
2341  *
2342  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2343  * 	we should search the backwards dependencies ending with "B", e.g.
2344  * 	B <- A or B <- C.
2345  */
2346 
2347 /*
2348  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2349  *
2350  * We have a lock dependency path as follow:
2351  *
2352  *    @root                                                                 @leaf
2353  *      |                                                                     |
2354  *      V                                                                     V
2355  *	          ->parent                                   ->parent
2356  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2357  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2358  *
2359  * , so it's natural that we start from @leaf and print every ->class and
2360  * ->trace until we reach the @root.
2361  */
2362 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2363 print_shortest_lock_dependencies(struct lock_list *leaf,
2364 				 struct lock_list *root)
2365 {
2366 	struct lock_list *entry = leaf;
2367 	int depth;
2368 
2369 	/*compute depth from generated tree by BFS*/
2370 	depth = get_lock_depth(leaf);
2371 
2372 	do {
2373 		print_lock_class_header(entry->class, depth);
2374 		printk("%*s ... acquired at:\n", depth, "");
2375 		print_lock_trace(entry->trace, 2);
2376 		printk("\n");
2377 
2378 		if (depth == 0 && (entry != root)) {
2379 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2380 			break;
2381 		}
2382 
2383 		entry = get_lock_parent(entry);
2384 		depth--;
2385 	} while (entry && (depth >= 0));
2386 }
2387 
2388 /*
2389  * printk the shortest lock dependencies from @leaf to @root.
2390  *
2391  * We have a lock dependency path (from a backwards search) as follow:
2392  *
2393  *    @leaf                                                                 @root
2394  *      |                                                                     |
2395  *      V                                                                     V
2396  *	          ->parent                                   ->parent
2397  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2398  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2399  *
2400  * , so when we iterate from @leaf to @root, we actually print the lock
2401  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2402  *
2403  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2404  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2405  * trace of L1 in the dependency path, which is alright, because most of the
2406  * time we can figure out where L1 is held from the call trace of L2.
2407  */
2408 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2409 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2410 					   struct lock_list *root)
2411 {
2412 	struct lock_list *entry = leaf;
2413 	const struct lock_trace *trace = NULL;
2414 	int depth;
2415 
2416 	/*compute depth from generated tree by BFS*/
2417 	depth = get_lock_depth(leaf);
2418 
2419 	do {
2420 		print_lock_class_header(entry->class, depth);
2421 		if (trace) {
2422 			printk("%*s ... acquired at:\n", depth, "");
2423 			print_lock_trace(trace, 2);
2424 			printk("\n");
2425 		}
2426 
2427 		/*
2428 		 * Record the pointer to the trace for the next lock_list
2429 		 * entry, see the comments for the function.
2430 		 */
2431 		trace = entry->trace;
2432 
2433 		if (depth == 0 && (entry != root)) {
2434 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2435 			break;
2436 		}
2437 
2438 		entry = get_lock_parent(entry);
2439 		depth--;
2440 	} while (entry && (depth >= 0));
2441 }
2442 
2443 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2444 print_irq_lock_scenario(struct lock_list *safe_entry,
2445 			struct lock_list *unsafe_entry,
2446 			struct lock_class *prev_class,
2447 			struct lock_class *next_class)
2448 {
2449 	struct lock_class *safe_class = safe_entry->class;
2450 	struct lock_class *unsafe_class = unsafe_entry->class;
2451 	struct lock_class *middle_class = prev_class;
2452 
2453 	if (middle_class == safe_class)
2454 		middle_class = next_class;
2455 
2456 	/*
2457 	 * A direct locking problem where unsafe_class lock is taken
2458 	 * directly by safe_class lock, then all we need to show
2459 	 * is the deadlock scenario, as it is obvious that the
2460 	 * unsafe lock is taken under the safe lock.
2461 	 *
2462 	 * But if there is a chain instead, where the safe lock takes
2463 	 * an intermediate lock (middle_class) where this lock is
2464 	 * not the same as the safe lock, then the lock chain is
2465 	 * used to describe the problem. Otherwise we would need
2466 	 * to show a different CPU case for each link in the chain
2467 	 * from the safe_class lock to the unsafe_class lock.
2468 	 */
2469 	if (middle_class != unsafe_class) {
2470 		printk("Chain exists of:\n  ");
2471 		__print_lock_name(safe_class);
2472 		printk(KERN_CONT " --> ");
2473 		__print_lock_name(middle_class);
2474 		printk(KERN_CONT " --> ");
2475 		__print_lock_name(unsafe_class);
2476 		printk(KERN_CONT "\n\n");
2477 	}
2478 
2479 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2480 	printk("       CPU0                    CPU1\n");
2481 	printk("       ----                    ----\n");
2482 	printk("  lock(");
2483 	__print_lock_name(unsafe_class);
2484 	printk(KERN_CONT ");\n");
2485 	printk("                               local_irq_disable();\n");
2486 	printk("                               lock(");
2487 	__print_lock_name(safe_class);
2488 	printk(KERN_CONT ");\n");
2489 	printk("                               lock(");
2490 	__print_lock_name(middle_class);
2491 	printk(KERN_CONT ");\n");
2492 	printk("  <Interrupt>\n");
2493 	printk("    lock(");
2494 	__print_lock_name(safe_class);
2495 	printk(KERN_CONT ");\n");
2496 	printk("\n *** DEADLOCK ***\n\n");
2497 }
2498 
2499 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2500 print_bad_irq_dependency(struct task_struct *curr,
2501 			 struct lock_list *prev_root,
2502 			 struct lock_list *next_root,
2503 			 struct lock_list *backwards_entry,
2504 			 struct lock_list *forwards_entry,
2505 			 struct held_lock *prev,
2506 			 struct held_lock *next,
2507 			 enum lock_usage_bit bit1,
2508 			 enum lock_usage_bit bit2,
2509 			 const char *irqclass)
2510 {
2511 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2512 		return;
2513 
2514 	pr_warn("\n");
2515 	pr_warn("=====================================================\n");
2516 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2517 		irqclass, irqclass);
2518 	print_kernel_ident();
2519 	pr_warn("-----------------------------------------------------\n");
2520 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2521 		curr->comm, task_pid_nr(curr),
2522 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2523 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2524 		lockdep_hardirqs_enabled(),
2525 		curr->softirqs_enabled);
2526 	print_lock(next);
2527 
2528 	pr_warn("\nand this task is already holding:\n");
2529 	print_lock(prev);
2530 	pr_warn("which would create a new lock dependency:\n");
2531 	print_lock_name(hlock_class(prev));
2532 	pr_cont(" ->");
2533 	print_lock_name(hlock_class(next));
2534 	pr_cont("\n");
2535 
2536 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2537 		irqclass);
2538 	print_lock_name(backwards_entry->class);
2539 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2540 
2541 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2542 
2543 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2544 	print_lock_name(forwards_entry->class);
2545 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2546 	pr_warn("...");
2547 
2548 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2549 
2550 	pr_warn("\nother info that might help us debug this:\n\n");
2551 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2552 				hlock_class(prev), hlock_class(next));
2553 
2554 	lockdep_print_held_locks(curr);
2555 
2556 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2557 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2558 
2559 	pr_warn("\nthe dependencies between the lock to be acquired");
2560 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2561 	next_root->trace = save_trace();
2562 	if (!next_root->trace)
2563 		return;
2564 	print_shortest_lock_dependencies(forwards_entry, next_root);
2565 
2566 	pr_warn("\nstack backtrace:\n");
2567 	dump_stack();
2568 }
2569 
2570 static const char *state_names[] = {
2571 #define LOCKDEP_STATE(__STATE) \
2572 	__stringify(__STATE),
2573 #include "lockdep_states.h"
2574 #undef LOCKDEP_STATE
2575 };
2576 
2577 static const char *state_rnames[] = {
2578 #define LOCKDEP_STATE(__STATE) \
2579 	__stringify(__STATE)"-READ",
2580 #include "lockdep_states.h"
2581 #undef LOCKDEP_STATE
2582 };
2583 
state_name(enum lock_usage_bit bit)2584 static inline const char *state_name(enum lock_usage_bit bit)
2585 {
2586 	if (bit & LOCK_USAGE_READ_MASK)
2587 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2588 	else
2589 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2590 }
2591 
2592 /*
2593  * The bit number is encoded like:
2594  *
2595  *  bit0: 0 exclusive, 1 read lock
2596  *  bit1: 0 used in irq, 1 irq enabled
2597  *  bit2-n: state
2598  */
exclusive_bit(int new_bit)2599 static int exclusive_bit(int new_bit)
2600 {
2601 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2602 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2603 
2604 	/*
2605 	 * keep state, bit flip the direction and strip read.
2606 	 */
2607 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2608 }
2609 
2610 /*
2611  * Observe that when given a bitmask where each bitnr is encoded as above, a
2612  * right shift of the mask transforms the individual bitnrs as -1 and
2613  * conversely, a left shift transforms into +1 for the individual bitnrs.
2614  *
2615  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2616  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2617  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2618  *
2619  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2620  *
2621  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2622  * all bits set) and recompose with bitnr1 flipped.
2623  */
invert_dir_mask(unsigned long mask)2624 static unsigned long invert_dir_mask(unsigned long mask)
2625 {
2626 	unsigned long excl = 0;
2627 
2628 	/* Invert dir */
2629 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2630 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2631 
2632 	return excl;
2633 }
2634 
2635 /*
2636  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2637  * usage may cause deadlock too, for example:
2638  *
2639  * P1				P2
2640  * <irq disabled>
2641  * write_lock(l1);		<irq enabled>
2642  *				read_lock(l2);
2643  * write_lock(l2);
2644  * 				<in irq>
2645  * 				read_lock(l1);
2646  *
2647  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2648  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2649  * deadlock.
2650  *
2651  * In fact, all of the following cases may cause deadlocks:
2652  *
2653  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2654  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2655  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2656  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2657  *
2658  * As a result, to calculate the "exclusive mask", first we invert the
2659  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2660  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2661  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2662  */
exclusive_mask(unsigned long mask)2663 static unsigned long exclusive_mask(unsigned long mask)
2664 {
2665 	unsigned long excl = invert_dir_mask(mask);
2666 
2667 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2668 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2669 
2670 	return excl;
2671 }
2672 
2673 /*
2674  * Retrieve the _possible_ original mask to which @mask is
2675  * exclusive. Ie: this is the opposite of exclusive_mask().
2676  * Note that 2 possible original bits can match an exclusive
2677  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2678  * cleared. So both are returned for each exclusive bit.
2679  */
original_mask(unsigned long mask)2680 static unsigned long original_mask(unsigned long mask)
2681 {
2682 	unsigned long excl = invert_dir_mask(mask);
2683 
2684 	/* Include read in existing usages */
2685 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2686 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2687 
2688 	return excl;
2689 }
2690 
2691 /*
2692  * Find the first pair of bit match between an original
2693  * usage mask and an exclusive usage mask.
2694  */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2695 static int find_exclusive_match(unsigned long mask,
2696 				unsigned long excl_mask,
2697 				enum lock_usage_bit *bitp,
2698 				enum lock_usage_bit *excl_bitp)
2699 {
2700 	int bit, excl, excl_read;
2701 
2702 	for_each_set_bit(bit, &mask, LOCK_USED) {
2703 		/*
2704 		 * exclusive_bit() strips the read bit, however,
2705 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2706 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2707 		 */
2708 		excl = exclusive_bit(bit);
2709 		excl_read = excl | LOCK_USAGE_READ_MASK;
2710 		if (excl_mask & lock_flag(excl)) {
2711 			*bitp = bit;
2712 			*excl_bitp = excl;
2713 			return 0;
2714 		} else if (excl_mask & lock_flag(excl_read)) {
2715 			*bitp = bit;
2716 			*excl_bitp = excl_read;
2717 			return 0;
2718 		}
2719 	}
2720 	return -1;
2721 }
2722 
2723 /*
2724  * Prove that the new dependency does not connect a hardirq-safe(-read)
2725  * lock with a hardirq-unsafe lock - to achieve this we search
2726  * the backwards-subgraph starting at <prev>, and the
2727  * forwards-subgraph starting at <next>:
2728  */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2729 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2730 			   struct held_lock *next)
2731 {
2732 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2733 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2734 	struct lock_list *target_entry1;
2735 	struct lock_list *target_entry;
2736 	struct lock_list this, that;
2737 	enum bfs_result ret;
2738 
2739 	/*
2740 	 * Step 1: gather all hard/soft IRQs usages backward in an
2741 	 * accumulated usage mask.
2742 	 */
2743 	bfs_init_rootb(&this, prev);
2744 
2745 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2746 	if (bfs_error(ret)) {
2747 		print_bfs_bug(ret);
2748 		return 0;
2749 	}
2750 
2751 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2752 	if (!usage_mask)
2753 		return 1;
2754 
2755 	/*
2756 	 * Step 2: find exclusive uses forward that match the previous
2757 	 * backward accumulated mask.
2758 	 */
2759 	forward_mask = exclusive_mask(usage_mask);
2760 
2761 	bfs_init_root(&that, next);
2762 
2763 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2764 	if (bfs_error(ret)) {
2765 		print_bfs_bug(ret);
2766 		return 0;
2767 	}
2768 	if (ret == BFS_RNOMATCH)
2769 		return 1;
2770 
2771 	/*
2772 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2773 	 * list whose usage mask matches the exclusive usage mask from the
2774 	 * lock found on the forward list.
2775 	 *
2776 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2777 	 * the follow case:
2778 	 *
2779 	 * When trying to add A -> B to the graph, we find that there is a
2780 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2781 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2782 	 * invert bits of M's usage_mask, we will find another lock N that is
2783 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2784 	 * cause a inversion deadlock.
2785 	 */
2786 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2787 
2788 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2789 	if (bfs_error(ret)) {
2790 		print_bfs_bug(ret);
2791 		return 0;
2792 	}
2793 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2794 		return 1;
2795 
2796 	/*
2797 	 * Step 4: narrow down to a pair of incompatible usage bits
2798 	 * and report it.
2799 	 */
2800 	ret = find_exclusive_match(target_entry->class->usage_mask,
2801 				   target_entry1->class->usage_mask,
2802 				   &backward_bit, &forward_bit);
2803 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2804 		return 1;
2805 
2806 	print_bad_irq_dependency(curr, &this, &that,
2807 				 target_entry, target_entry1,
2808 				 prev, next,
2809 				 backward_bit, forward_bit,
2810 				 state_name(backward_bit));
2811 
2812 	return 0;
2813 }
2814 
2815 #else
2816 
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2817 static inline int check_irq_usage(struct task_struct *curr,
2818 				  struct held_lock *prev, struct held_lock *next)
2819 {
2820 	return 1;
2821 }
2822 
usage_skip(struct lock_list * entry,void * mask)2823 static inline bool usage_skip(struct lock_list *entry, void *mask)
2824 {
2825 	return false;
2826 }
2827 
2828 #endif /* CONFIG_TRACE_IRQFLAGS */
2829 
2830 #ifdef CONFIG_LOCKDEP_SMALL
2831 /*
2832  * Check that the dependency graph starting at <src> can lead to
2833  * <target> or not. If it can, <src> -> <target> dependency is already
2834  * in the graph.
2835  *
2836  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2837  * any error appears in the bfs search.
2838  */
2839 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2840 check_redundant(struct held_lock *src, struct held_lock *target)
2841 {
2842 	enum bfs_result ret;
2843 	struct lock_list *target_entry;
2844 	struct lock_list src_entry;
2845 
2846 	bfs_init_root(&src_entry, src);
2847 	/*
2848 	 * Special setup for check_redundant().
2849 	 *
2850 	 * To report redundant, we need to find a strong dependency path that
2851 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2852 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2853 	 * we achieve this by setting the initial node's ->only_xr to true in
2854 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2855 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2856 	 */
2857 	src_entry.only_xr = src->read == 0;
2858 
2859 	debug_atomic_inc(nr_redundant_checks);
2860 
2861 	/*
2862 	 * Note: we skip local_lock() for redundant check, because as the
2863 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2864 	 * the same.
2865 	 */
2866 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2867 
2868 	if (ret == BFS_RMATCH)
2869 		debug_atomic_inc(nr_redundant);
2870 
2871 	return ret;
2872 }
2873 
2874 #else
2875 
2876 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2877 check_redundant(struct held_lock *src, struct held_lock *target)
2878 {
2879 	return BFS_RNOMATCH;
2880 }
2881 
2882 #endif
2883 
inc_chains(int irq_context)2884 static void inc_chains(int irq_context)
2885 {
2886 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2887 		nr_hardirq_chains++;
2888 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2889 		nr_softirq_chains++;
2890 	else
2891 		nr_process_chains++;
2892 }
2893 
dec_chains(int irq_context)2894 static void dec_chains(int irq_context)
2895 {
2896 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2897 		nr_hardirq_chains--;
2898 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2899 		nr_softirq_chains--;
2900 	else
2901 		nr_process_chains--;
2902 }
2903 
2904 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2905 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2906 {
2907 	struct lock_class *next = hlock_class(nxt);
2908 	struct lock_class *prev = hlock_class(prv);
2909 
2910 	printk(" Possible unsafe locking scenario:\n\n");
2911 	printk("       CPU0\n");
2912 	printk("       ----\n");
2913 	printk("  lock(");
2914 	__print_lock_name(prev);
2915 	printk(KERN_CONT ");\n");
2916 	printk("  lock(");
2917 	__print_lock_name(next);
2918 	printk(KERN_CONT ");\n");
2919 	printk("\n *** DEADLOCK ***\n\n");
2920 	printk(" May be due to missing lock nesting notation\n\n");
2921 }
2922 
2923 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2924 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2925 		   struct held_lock *next)
2926 {
2927 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2928 		return;
2929 
2930 	pr_warn("\n");
2931 	pr_warn("============================================\n");
2932 	pr_warn("WARNING: possible recursive locking detected\n");
2933 	print_kernel_ident();
2934 	pr_warn("--------------------------------------------\n");
2935 	pr_warn("%s/%d is trying to acquire lock:\n",
2936 		curr->comm, task_pid_nr(curr));
2937 	print_lock(next);
2938 	pr_warn("\nbut task is already holding lock:\n");
2939 	print_lock(prev);
2940 
2941 	pr_warn("\nother info that might help us debug this:\n");
2942 	print_deadlock_scenario(next, prev);
2943 	lockdep_print_held_locks(curr);
2944 
2945 	pr_warn("\nstack backtrace:\n");
2946 	dump_stack();
2947 }
2948 
2949 /*
2950  * Check whether we are holding such a class already.
2951  *
2952  * (Note that this has to be done separately, because the graph cannot
2953  * detect such classes of deadlocks.)
2954  *
2955  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2956  * lock class is held but nest_lock is also held, i.e. we rely on the
2957  * nest_lock to avoid the deadlock.
2958  */
2959 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2960 check_deadlock(struct task_struct *curr, struct held_lock *next)
2961 {
2962 	struct held_lock *prev;
2963 	struct held_lock *nest = NULL;
2964 	int i;
2965 
2966 	for (i = 0; i < curr->lockdep_depth; i++) {
2967 		prev = curr->held_locks + i;
2968 
2969 		if (prev->instance == next->nest_lock)
2970 			nest = prev;
2971 
2972 		if (hlock_class(prev) != hlock_class(next))
2973 			continue;
2974 
2975 		/*
2976 		 * Allow read-after-read recursion of the same
2977 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2978 		 */
2979 		if ((next->read == 2) && prev->read)
2980 			continue;
2981 
2982 		/*
2983 		 * We're holding the nest_lock, which serializes this lock's
2984 		 * nesting behaviour.
2985 		 */
2986 		if (nest)
2987 			return 2;
2988 
2989 		print_deadlock_bug(curr, prev, next);
2990 		return 0;
2991 	}
2992 	return 1;
2993 }
2994 
2995 /*
2996  * There was a chain-cache miss, and we are about to add a new dependency
2997  * to a previous lock. We validate the following rules:
2998  *
2999  *  - would the adding of the <prev> -> <next> dependency create a
3000  *    circular dependency in the graph? [== circular deadlock]
3001  *
3002  *  - does the new prev->next dependency connect any hardirq-safe lock
3003  *    (in the full backwards-subgraph starting at <prev>) with any
3004  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3005  *    <next>)? [== illegal lock inversion with hardirq contexts]
3006  *
3007  *  - does the new prev->next dependency connect any softirq-safe lock
3008  *    (in the full backwards-subgraph starting at <prev>) with any
3009  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3010  *    <next>)? [== illegal lock inversion with softirq contexts]
3011  *
3012  * any of these scenarios could lead to a deadlock.
3013  *
3014  * Then if all the validations pass, we add the forwards and backwards
3015  * dependency.
3016  */
3017 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3018 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3019 	       struct held_lock *next, u16 distance,
3020 	       struct lock_trace **const trace)
3021 {
3022 	struct lock_list *entry;
3023 	enum bfs_result ret;
3024 
3025 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3026 		/*
3027 		 * The warning statements below may trigger a use-after-free
3028 		 * of the class name. It is better to trigger a use-after free
3029 		 * and to have the class name most of the time instead of not
3030 		 * having the class name available.
3031 		 */
3032 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3033 			  "Detected use-after-free of lock class %px/%s\n",
3034 			  hlock_class(prev),
3035 			  hlock_class(prev)->name);
3036 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3037 			  "Detected use-after-free of lock class %px/%s\n",
3038 			  hlock_class(next),
3039 			  hlock_class(next)->name);
3040 		return 2;
3041 	}
3042 
3043 	/*
3044 	 * Prove that the new <prev> -> <next> dependency would not
3045 	 * create a circular dependency in the graph. (We do this by
3046 	 * a breadth-first search into the graph starting at <next>,
3047 	 * and check whether we can reach <prev>.)
3048 	 *
3049 	 * The search is limited by the size of the circular queue (i.e.,
3050 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3051 	 * in the graph whose neighbours are to be checked.
3052 	 */
3053 	ret = check_noncircular(next, prev, trace);
3054 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3055 		return 0;
3056 
3057 	if (!check_irq_usage(curr, prev, next))
3058 		return 0;
3059 
3060 	/*
3061 	 * Is the <prev> -> <next> dependency already present?
3062 	 *
3063 	 * (this may occur even though this is a new chain: consider
3064 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3065 	 *  chains - the second one will be new, but L1 already has
3066 	 *  L2 added to its dependency list, due to the first chain.)
3067 	 */
3068 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3069 		if (entry->class == hlock_class(next)) {
3070 			if (distance == 1)
3071 				entry->distance = 1;
3072 			entry->dep |= calc_dep(prev, next);
3073 
3074 			/*
3075 			 * Also, update the reverse dependency in @next's
3076 			 * ->locks_before list.
3077 			 *
3078 			 *  Here we reuse @entry as the cursor, which is fine
3079 			 *  because we won't go to the next iteration of the
3080 			 *  outer loop:
3081 			 *
3082 			 *  For normal cases, we return in the inner loop.
3083 			 *
3084 			 *  If we fail to return, we have inconsistency, i.e.
3085 			 *  <prev>::locks_after contains <next> while
3086 			 *  <next>::locks_before doesn't contain <prev>. In
3087 			 *  that case, we return after the inner and indicate
3088 			 *  something is wrong.
3089 			 */
3090 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3091 				if (entry->class == hlock_class(prev)) {
3092 					if (distance == 1)
3093 						entry->distance = 1;
3094 					entry->dep |= calc_depb(prev, next);
3095 					return 1;
3096 				}
3097 			}
3098 
3099 			/* <prev> is not found in <next>::locks_before */
3100 			return 0;
3101 		}
3102 	}
3103 
3104 	/*
3105 	 * Is the <prev> -> <next> link redundant?
3106 	 */
3107 	ret = check_redundant(prev, next);
3108 	if (bfs_error(ret))
3109 		return 0;
3110 	else if (ret == BFS_RMATCH)
3111 		return 2;
3112 
3113 	if (!*trace) {
3114 		*trace = save_trace();
3115 		if (!*trace)
3116 			return 0;
3117 	}
3118 
3119 	/*
3120 	 * Ok, all validations passed, add the new lock
3121 	 * to the previous lock's dependency list:
3122 	 */
3123 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3124 			       &hlock_class(prev)->locks_after, distance,
3125 			       calc_dep(prev, next), *trace);
3126 
3127 	if (!ret)
3128 		return 0;
3129 
3130 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131 			       &hlock_class(next)->locks_before, distance,
3132 			       calc_depb(prev, next), *trace);
3133 	if (!ret)
3134 		return 0;
3135 
3136 	return 2;
3137 }
3138 
3139 /*
3140  * Add the dependency to all directly-previous locks that are 'relevant'.
3141  * The ones that are relevant are (in increasing distance from curr):
3142  * all consecutive trylock entries and the final non-trylock entry - or
3143  * the end of this context's lock-chain - whichever comes first.
3144  */
3145 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3146 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3147 {
3148 	struct lock_trace *trace = NULL;
3149 	int depth = curr->lockdep_depth;
3150 	struct held_lock *hlock;
3151 
3152 	/*
3153 	 * Debugging checks.
3154 	 *
3155 	 * Depth must not be zero for a non-head lock:
3156 	 */
3157 	if (!depth)
3158 		goto out_bug;
3159 	/*
3160 	 * At least two relevant locks must exist for this
3161 	 * to be a head:
3162 	 */
3163 	if (curr->held_locks[depth].irq_context !=
3164 			curr->held_locks[depth-1].irq_context)
3165 		goto out_bug;
3166 
3167 	for (;;) {
3168 		u16 distance = curr->lockdep_depth - depth + 1;
3169 		hlock = curr->held_locks + depth - 1;
3170 
3171 		if (hlock->check) {
3172 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3173 			if (!ret)
3174 				return 0;
3175 
3176 			/*
3177 			 * Stop after the first non-trylock entry,
3178 			 * as non-trylock entries have added their
3179 			 * own direct dependencies already, so this
3180 			 * lock is connected to them indirectly:
3181 			 */
3182 			if (!hlock->trylock)
3183 				break;
3184 		}
3185 
3186 		depth--;
3187 		/*
3188 		 * End of lock-stack?
3189 		 */
3190 		if (!depth)
3191 			break;
3192 		/*
3193 		 * Stop the search if we cross into another context:
3194 		 */
3195 		if (curr->held_locks[depth].irq_context !=
3196 				curr->held_locks[depth-1].irq_context)
3197 			break;
3198 	}
3199 	return 1;
3200 out_bug:
3201 	if (!debug_locks_off_graph_unlock())
3202 		return 0;
3203 
3204 	/*
3205 	 * Clearly we all shouldn't be here, but since we made it we
3206 	 * can reliable say we messed up our state. See the above two
3207 	 * gotos for reasons why we could possibly end up here.
3208 	 */
3209 	WARN_ON(1);
3210 
3211 	return 0;
3212 }
3213 
3214 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3215 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3216 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3217 unsigned long nr_zapped_lock_chains;
3218 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3219 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3220 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3221 
3222 /*
3223  * The first 2 chain_hlocks entries in the chain block in the bucket
3224  * list contains the following meta data:
3225  *
3226  *   entry[0]:
3227  *     Bit    15 - always set to 1 (it is not a class index)
3228  *     Bits 0-14 - upper 15 bits of the next block index
3229  *   entry[1]    - lower 16 bits of next block index
3230  *
3231  * A next block index of all 1 bits means it is the end of the list.
3232  *
3233  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3234  * the chain block size:
3235  *
3236  *   entry[2] - upper 16 bits of the chain block size
3237  *   entry[3] - lower 16 bits of the chain block size
3238  */
3239 #define MAX_CHAIN_BUCKETS	16
3240 #define CHAIN_BLK_FLAG		(1U << 15)
3241 #define CHAIN_BLK_LIST_END	0xFFFFU
3242 
3243 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3244 
size_to_bucket(int size)3245 static inline int size_to_bucket(int size)
3246 {
3247 	if (size > MAX_CHAIN_BUCKETS)
3248 		return 0;
3249 
3250 	return size - 1;
3251 }
3252 
3253 /*
3254  * Iterate all the chain blocks in a bucket.
3255  */
3256 #define for_each_chain_block(bucket, prev, curr)		\
3257 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3258 	     (curr) >= 0;					\
3259 	     (prev) = (curr), (curr) = chain_block_next(curr))
3260 
3261 /*
3262  * next block or -1
3263  */
chain_block_next(int offset)3264 static inline int chain_block_next(int offset)
3265 {
3266 	int next = chain_hlocks[offset];
3267 
3268 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3269 
3270 	if (next == CHAIN_BLK_LIST_END)
3271 		return -1;
3272 
3273 	next &= ~CHAIN_BLK_FLAG;
3274 	next <<= 16;
3275 	next |= chain_hlocks[offset + 1];
3276 
3277 	return next;
3278 }
3279 
3280 /*
3281  * bucket-0 only
3282  */
chain_block_size(int offset)3283 static inline int chain_block_size(int offset)
3284 {
3285 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3286 }
3287 
init_chain_block(int offset,int next,int bucket,int size)3288 static inline void init_chain_block(int offset, int next, int bucket, int size)
3289 {
3290 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3291 	chain_hlocks[offset + 1] = (u16)next;
3292 
3293 	if (size && !bucket) {
3294 		chain_hlocks[offset + 2] = size >> 16;
3295 		chain_hlocks[offset + 3] = (u16)size;
3296 	}
3297 }
3298 
add_chain_block(int offset,int size)3299 static inline void add_chain_block(int offset, int size)
3300 {
3301 	int bucket = size_to_bucket(size);
3302 	int next = chain_block_buckets[bucket];
3303 	int prev, curr;
3304 
3305 	if (unlikely(size < 2)) {
3306 		/*
3307 		 * We can't store single entries on the freelist. Leak them.
3308 		 *
3309 		 * One possible way out would be to uniquely mark them, other
3310 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3311 		 * the block before it is re-added.
3312 		 */
3313 		if (size)
3314 			nr_lost_chain_hlocks++;
3315 		return;
3316 	}
3317 
3318 	nr_free_chain_hlocks += size;
3319 	if (!bucket) {
3320 		nr_large_chain_blocks++;
3321 
3322 		/*
3323 		 * Variable sized, sort large to small.
3324 		 */
3325 		for_each_chain_block(0, prev, curr) {
3326 			if (size >= chain_block_size(curr))
3327 				break;
3328 		}
3329 		init_chain_block(offset, curr, 0, size);
3330 		if (prev < 0)
3331 			chain_block_buckets[0] = offset;
3332 		else
3333 			init_chain_block(prev, offset, 0, 0);
3334 		return;
3335 	}
3336 	/*
3337 	 * Fixed size, add to head.
3338 	 */
3339 	init_chain_block(offset, next, bucket, size);
3340 	chain_block_buckets[bucket] = offset;
3341 }
3342 
3343 /*
3344  * Only the first block in the list can be deleted.
3345  *
3346  * For the variable size bucket[0], the first block (the largest one) is
3347  * returned, broken up and put back into the pool. So if a chain block of
3348  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3349  * queued up after the primordial chain block and never be used until the
3350  * hlock entries in the primordial chain block is almost used up. That
3351  * causes fragmentation and reduce allocation efficiency. That can be
3352  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3353  */
del_chain_block(int bucket,int size,int next)3354 static inline void del_chain_block(int bucket, int size, int next)
3355 {
3356 	nr_free_chain_hlocks -= size;
3357 	chain_block_buckets[bucket] = next;
3358 
3359 	if (!bucket)
3360 		nr_large_chain_blocks--;
3361 }
3362 
init_chain_block_buckets(void)3363 static void init_chain_block_buckets(void)
3364 {
3365 	int i;
3366 
3367 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3368 		chain_block_buckets[i] = -1;
3369 
3370 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3371 }
3372 
3373 /*
3374  * Return offset of a chain block of the right size or -1 if not found.
3375  *
3376  * Fairly simple worst-fit allocator with the addition of a number of size
3377  * specific free lists.
3378  */
alloc_chain_hlocks(int req)3379 static int alloc_chain_hlocks(int req)
3380 {
3381 	int bucket, curr, size;
3382 
3383 	/*
3384 	 * We rely on the MSB to act as an escape bit to denote freelist
3385 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3386 	 */
3387 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3388 
3389 	init_data_structures_once();
3390 
3391 	if (nr_free_chain_hlocks < req)
3392 		return -1;
3393 
3394 	/*
3395 	 * We require a minimum of 2 (u16) entries to encode a freelist
3396 	 * 'pointer'.
3397 	 */
3398 	req = max(req, 2);
3399 	bucket = size_to_bucket(req);
3400 	curr = chain_block_buckets[bucket];
3401 
3402 	if (bucket) {
3403 		if (curr >= 0) {
3404 			del_chain_block(bucket, req, chain_block_next(curr));
3405 			return curr;
3406 		}
3407 		/* Try bucket 0 */
3408 		curr = chain_block_buckets[0];
3409 	}
3410 
3411 	/*
3412 	 * The variable sized freelist is sorted by size; the first entry is
3413 	 * the largest. Use it if it fits.
3414 	 */
3415 	if (curr >= 0) {
3416 		size = chain_block_size(curr);
3417 		if (likely(size >= req)) {
3418 			del_chain_block(0, size, chain_block_next(curr));
3419 			if (size > req)
3420 				add_chain_block(curr + req, size - req);
3421 			return curr;
3422 		}
3423 	}
3424 
3425 	/*
3426 	 * Last resort, split a block in a larger sized bucket.
3427 	 */
3428 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3429 		bucket = size_to_bucket(size);
3430 		curr = chain_block_buckets[bucket];
3431 		if (curr < 0)
3432 			continue;
3433 
3434 		del_chain_block(bucket, size, chain_block_next(curr));
3435 		add_chain_block(curr + req, size - req);
3436 		return curr;
3437 	}
3438 
3439 	return -1;
3440 }
3441 
free_chain_hlocks(int base,int size)3442 static inline void free_chain_hlocks(int base, int size)
3443 {
3444 	add_chain_block(base, max(size, 2));
3445 }
3446 
lock_chain_get_class(struct lock_chain * chain,int i)3447 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3448 {
3449 	u16 chain_hlock = chain_hlocks[chain->base + i];
3450 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3451 
3452 	return lock_classes + class_idx;
3453 }
3454 
3455 /*
3456  * Returns the index of the first held_lock of the current chain
3457  */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3458 static inline int get_first_held_lock(struct task_struct *curr,
3459 					struct held_lock *hlock)
3460 {
3461 	int i;
3462 	struct held_lock *hlock_curr;
3463 
3464 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3465 		hlock_curr = curr->held_locks + i;
3466 		if (hlock_curr->irq_context != hlock->irq_context)
3467 			break;
3468 
3469 	}
3470 
3471 	return ++i;
3472 }
3473 
3474 #ifdef CONFIG_DEBUG_LOCKDEP
3475 /*
3476  * Returns the next chain_key iteration
3477  */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3478 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3479 {
3480 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3481 
3482 	printk(" hlock_id:%d -> chain_key:%016Lx",
3483 		(unsigned int)hlock_id,
3484 		(unsigned long long)new_chain_key);
3485 	return new_chain_key;
3486 }
3487 
3488 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3489 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3490 {
3491 	struct held_lock *hlock;
3492 	u64 chain_key = INITIAL_CHAIN_KEY;
3493 	int depth = curr->lockdep_depth;
3494 	int i = get_first_held_lock(curr, hlock_next);
3495 
3496 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3497 		hlock_next->irq_context);
3498 	for (; i < depth; i++) {
3499 		hlock = curr->held_locks + i;
3500 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3501 
3502 		print_lock(hlock);
3503 	}
3504 
3505 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3506 	print_lock(hlock_next);
3507 }
3508 
print_chain_keys_chain(struct lock_chain * chain)3509 static void print_chain_keys_chain(struct lock_chain *chain)
3510 {
3511 	int i;
3512 	u64 chain_key = INITIAL_CHAIN_KEY;
3513 	u16 hlock_id;
3514 
3515 	printk("depth: %u\n", chain->depth);
3516 	for (i = 0; i < chain->depth; i++) {
3517 		hlock_id = chain_hlocks[chain->base + i];
3518 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3519 
3520 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3521 		printk("\n");
3522 	}
3523 }
3524 
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3525 static void print_collision(struct task_struct *curr,
3526 			struct held_lock *hlock_next,
3527 			struct lock_chain *chain)
3528 {
3529 	pr_warn("\n");
3530 	pr_warn("============================\n");
3531 	pr_warn("WARNING: chain_key collision\n");
3532 	print_kernel_ident();
3533 	pr_warn("----------------------------\n");
3534 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3535 	pr_warn("Hash chain already cached but the contents don't match!\n");
3536 
3537 	pr_warn("Held locks:");
3538 	print_chain_keys_held_locks(curr, hlock_next);
3539 
3540 	pr_warn("Locks in cached chain:");
3541 	print_chain_keys_chain(chain);
3542 
3543 	pr_warn("\nstack backtrace:\n");
3544 	dump_stack();
3545 }
3546 #endif
3547 
3548 /*
3549  * Checks whether the chain and the current held locks are consistent
3550  * in depth and also in content. If they are not it most likely means
3551  * that there was a collision during the calculation of the chain_key.
3552  * Returns: 0 not passed, 1 passed
3553  */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3554 static int check_no_collision(struct task_struct *curr,
3555 			struct held_lock *hlock,
3556 			struct lock_chain *chain)
3557 {
3558 #ifdef CONFIG_DEBUG_LOCKDEP
3559 	int i, j, id;
3560 
3561 	i = get_first_held_lock(curr, hlock);
3562 
3563 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3564 		print_collision(curr, hlock, chain);
3565 		return 0;
3566 	}
3567 
3568 	for (j = 0; j < chain->depth - 1; j++, i++) {
3569 		id = hlock_id(&curr->held_locks[i]);
3570 
3571 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3572 			print_collision(curr, hlock, chain);
3573 			return 0;
3574 		}
3575 	}
3576 #endif
3577 	return 1;
3578 }
3579 
3580 /*
3581  * Given an index that is >= -1, return the index of the next lock chain.
3582  * Return -2 if there is no next lock chain.
3583  */
lockdep_next_lockchain(long i)3584 long lockdep_next_lockchain(long i)
3585 {
3586 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3587 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3588 }
3589 
lock_chain_count(void)3590 unsigned long lock_chain_count(void)
3591 {
3592 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3593 }
3594 
3595 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3596 static struct lock_chain *alloc_lock_chain(void)
3597 {
3598 	int idx = find_first_zero_bit(lock_chains_in_use,
3599 				      ARRAY_SIZE(lock_chains));
3600 
3601 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3602 		return NULL;
3603 	__set_bit(idx, lock_chains_in_use);
3604 	return lock_chains + idx;
3605 }
3606 
3607 /*
3608  * Adds a dependency chain into chain hashtable. And must be called with
3609  * graph_lock held.
3610  *
3611  * Return 0 if fail, and graph_lock is released.
3612  * Return 1 if succeed, with graph_lock held.
3613  */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3614 static inline int add_chain_cache(struct task_struct *curr,
3615 				  struct held_lock *hlock,
3616 				  u64 chain_key)
3617 {
3618 	struct hlist_head *hash_head = chainhashentry(chain_key);
3619 	struct lock_chain *chain;
3620 	int i, j;
3621 
3622 	/*
3623 	 * The caller must hold the graph lock, ensure we've got IRQs
3624 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3625 	 * lockdep won't complain about its own locking errors.
3626 	 */
3627 	if (lockdep_assert_locked())
3628 		return 0;
3629 
3630 	chain = alloc_lock_chain();
3631 	if (!chain) {
3632 		if (!debug_locks_off_graph_unlock())
3633 			return 0;
3634 
3635 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3636 		dump_stack();
3637 		return 0;
3638 	}
3639 	chain->chain_key = chain_key;
3640 	chain->irq_context = hlock->irq_context;
3641 	i = get_first_held_lock(curr, hlock);
3642 	chain->depth = curr->lockdep_depth + 1 - i;
3643 
3644 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3645 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3646 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3647 
3648 	j = alloc_chain_hlocks(chain->depth);
3649 	if (j < 0) {
3650 		if (!debug_locks_off_graph_unlock())
3651 			return 0;
3652 
3653 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3654 		dump_stack();
3655 		return 0;
3656 	}
3657 
3658 	chain->base = j;
3659 	for (j = 0; j < chain->depth - 1; j++, i++) {
3660 		int lock_id = hlock_id(curr->held_locks + i);
3661 
3662 		chain_hlocks[chain->base + j] = lock_id;
3663 	}
3664 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3665 	hlist_add_head_rcu(&chain->entry, hash_head);
3666 	debug_atomic_inc(chain_lookup_misses);
3667 	inc_chains(chain->irq_context);
3668 
3669 	return 1;
3670 }
3671 
3672 /*
3673  * Look up a dependency chain. Must be called with either the graph lock or
3674  * the RCU read lock held.
3675  */
lookup_chain_cache(u64 chain_key)3676 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3677 {
3678 	struct hlist_head *hash_head = chainhashentry(chain_key);
3679 	struct lock_chain *chain;
3680 
3681 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3682 		if (READ_ONCE(chain->chain_key) == chain_key) {
3683 			debug_atomic_inc(chain_lookup_hits);
3684 			return chain;
3685 		}
3686 	}
3687 	return NULL;
3688 }
3689 
3690 /*
3691  * If the key is not present yet in dependency chain cache then
3692  * add it and return 1 - in this case the new dependency chain is
3693  * validated. If the key is already hashed, return 0.
3694  * (On return with 1 graph_lock is held.)
3695  */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3696 static inline int lookup_chain_cache_add(struct task_struct *curr,
3697 					 struct held_lock *hlock,
3698 					 u64 chain_key)
3699 {
3700 	struct lock_class *class = hlock_class(hlock);
3701 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3702 
3703 	if (chain) {
3704 cache_hit:
3705 		if (!check_no_collision(curr, hlock, chain))
3706 			return 0;
3707 
3708 		if (very_verbose(class)) {
3709 			printk("\nhash chain already cached, key: "
3710 					"%016Lx tail class: [%px] %s\n",
3711 					(unsigned long long)chain_key,
3712 					class->key, class->name);
3713 		}
3714 
3715 		return 0;
3716 	}
3717 
3718 	if (very_verbose(class)) {
3719 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3720 			(unsigned long long)chain_key, class->key, class->name);
3721 	}
3722 
3723 	if (!graph_lock())
3724 		return 0;
3725 
3726 	/*
3727 	 * We have to walk the chain again locked - to avoid duplicates:
3728 	 */
3729 	chain = lookup_chain_cache(chain_key);
3730 	if (chain) {
3731 		graph_unlock();
3732 		goto cache_hit;
3733 	}
3734 
3735 	if (!add_chain_cache(curr, hlock, chain_key))
3736 		return 0;
3737 
3738 	return 1;
3739 }
3740 
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3741 static int validate_chain(struct task_struct *curr,
3742 			  struct held_lock *hlock,
3743 			  int chain_head, u64 chain_key)
3744 {
3745 	/*
3746 	 * Trylock needs to maintain the stack of held locks, but it
3747 	 * does not add new dependencies, because trylock can be done
3748 	 * in any order.
3749 	 *
3750 	 * We look up the chain_key and do the O(N^2) check and update of
3751 	 * the dependencies only if this is a new dependency chain.
3752 	 * (If lookup_chain_cache_add() return with 1 it acquires
3753 	 * graph_lock for us)
3754 	 */
3755 	if (!hlock->trylock && hlock->check &&
3756 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3757 		/*
3758 		 * Check whether last held lock:
3759 		 *
3760 		 * - is irq-safe, if this lock is irq-unsafe
3761 		 * - is softirq-safe, if this lock is hardirq-unsafe
3762 		 *
3763 		 * And check whether the new lock's dependency graph
3764 		 * could lead back to the previous lock:
3765 		 *
3766 		 * - within the current held-lock stack
3767 		 * - across our accumulated lock dependency records
3768 		 *
3769 		 * any of these scenarios could lead to a deadlock.
3770 		 */
3771 		/*
3772 		 * The simple case: does the current hold the same lock
3773 		 * already?
3774 		 */
3775 		int ret = check_deadlock(curr, hlock);
3776 
3777 		if (!ret)
3778 			return 0;
3779 		/*
3780 		 * Add dependency only if this lock is not the head
3781 		 * of the chain, and if the new lock introduces no more
3782 		 * lock dependency (because we already hold a lock with the
3783 		 * same lock class) nor deadlock (because the nest_lock
3784 		 * serializes nesting locks), see the comments for
3785 		 * check_deadlock().
3786 		 */
3787 		if (!chain_head && ret != 2) {
3788 			if (!check_prevs_add(curr, hlock))
3789 				return 0;
3790 		}
3791 
3792 		graph_unlock();
3793 	} else {
3794 		/* after lookup_chain_cache_add(): */
3795 		if (unlikely(!debug_locks))
3796 			return 0;
3797 	}
3798 
3799 	return 1;
3800 }
3801 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3802 static inline int validate_chain(struct task_struct *curr,
3803 				 struct held_lock *hlock,
3804 				 int chain_head, u64 chain_key)
3805 {
3806 	return 1;
3807 }
3808 
init_chain_block_buckets(void)3809 static void init_chain_block_buckets(void)	{ }
3810 #endif /* CONFIG_PROVE_LOCKING */
3811 
3812 /*
3813  * We are building curr_chain_key incrementally, so double-check
3814  * it from scratch, to make sure that it's done correctly:
3815  */
check_chain_key(struct task_struct * curr)3816 static void check_chain_key(struct task_struct *curr)
3817 {
3818 #ifdef CONFIG_DEBUG_LOCKDEP
3819 	struct held_lock *hlock, *prev_hlock = NULL;
3820 	unsigned int i;
3821 	u64 chain_key = INITIAL_CHAIN_KEY;
3822 
3823 	for (i = 0; i < curr->lockdep_depth; i++) {
3824 		hlock = curr->held_locks + i;
3825 		if (chain_key != hlock->prev_chain_key) {
3826 			debug_locks_off();
3827 			/*
3828 			 * We got mighty confused, our chain keys don't match
3829 			 * with what we expect, someone trample on our task state?
3830 			 */
3831 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3832 				curr->lockdep_depth, i,
3833 				(unsigned long long)chain_key,
3834 				(unsigned long long)hlock->prev_chain_key);
3835 			return;
3836 		}
3837 
3838 		/*
3839 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3840 		 * it registered lock class index?
3841 		 */
3842 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3843 			return;
3844 
3845 		if (prev_hlock && (prev_hlock->irq_context !=
3846 							hlock->irq_context))
3847 			chain_key = INITIAL_CHAIN_KEY;
3848 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3849 		prev_hlock = hlock;
3850 	}
3851 	if (chain_key != curr->curr_chain_key) {
3852 		debug_locks_off();
3853 		/*
3854 		 * More smoking hash instead of calculating it, damn see these
3855 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3856 		 */
3857 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3858 			curr->lockdep_depth, i,
3859 			(unsigned long long)chain_key,
3860 			(unsigned long long)curr->curr_chain_key);
3861 	}
3862 #endif
3863 }
3864 
3865 #ifdef CONFIG_PROVE_LOCKING
3866 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3867 		     enum lock_usage_bit new_bit);
3868 
print_usage_bug_scenario(struct held_lock * lock)3869 static void print_usage_bug_scenario(struct held_lock *lock)
3870 {
3871 	struct lock_class *class = hlock_class(lock);
3872 
3873 	printk(" Possible unsafe locking scenario:\n\n");
3874 	printk("       CPU0\n");
3875 	printk("       ----\n");
3876 	printk("  lock(");
3877 	__print_lock_name(class);
3878 	printk(KERN_CONT ");\n");
3879 	printk("  <Interrupt>\n");
3880 	printk("    lock(");
3881 	__print_lock_name(class);
3882 	printk(KERN_CONT ");\n");
3883 	printk("\n *** DEADLOCK ***\n\n");
3884 }
3885 
3886 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3887 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3888 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3889 {
3890 	if (!debug_locks_off() || debug_locks_silent)
3891 		return;
3892 
3893 	pr_warn("\n");
3894 	pr_warn("================================\n");
3895 	pr_warn("WARNING: inconsistent lock state\n");
3896 	print_kernel_ident();
3897 	pr_warn("--------------------------------\n");
3898 
3899 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3900 		usage_str[prev_bit], usage_str[new_bit]);
3901 
3902 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3903 		curr->comm, task_pid_nr(curr),
3904 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3905 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3906 		lockdep_hardirqs_enabled(),
3907 		lockdep_softirqs_enabled(curr));
3908 	print_lock(this);
3909 
3910 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3911 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3912 
3913 	print_irqtrace_events(curr);
3914 	pr_warn("\nother info that might help us debug this:\n");
3915 	print_usage_bug_scenario(this);
3916 
3917 	lockdep_print_held_locks(curr);
3918 
3919 	pr_warn("\nstack backtrace:\n");
3920 	dump_stack();
3921 }
3922 
3923 /*
3924  * Print out an error if an invalid bit is set:
3925  */
3926 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3927 valid_state(struct task_struct *curr, struct held_lock *this,
3928 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3929 {
3930 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3931 		graph_unlock();
3932 		print_usage_bug(curr, this, bad_bit, new_bit);
3933 		return 0;
3934 	}
3935 	return 1;
3936 }
3937 
3938 
3939 /*
3940  * print irq inversion bug:
3941  */
3942 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3943 print_irq_inversion_bug(struct task_struct *curr,
3944 			struct lock_list *root, struct lock_list *other,
3945 			struct held_lock *this, int forwards,
3946 			const char *irqclass)
3947 {
3948 	struct lock_list *entry = other;
3949 	struct lock_list *middle = NULL;
3950 	int depth;
3951 
3952 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3953 		return;
3954 
3955 	pr_warn("\n");
3956 	pr_warn("========================================================\n");
3957 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3958 	print_kernel_ident();
3959 	pr_warn("--------------------------------------------------------\n");
3960 	pr_warn("%s/%d just changed the state of lock:\n",
3961 		curr->comm, task_pid_nr(curr));
3962 	print_lock(this);
3963 	if (forwards)
3964 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3965 	else
3966 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3967 	print_lock_name(other->class);
3968 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3969 
3970 	pr_warn("\nother info that might help us debug this:\n");
3971 
3972 	/* Find a middle lock (if one exists) */
3973 	depth = get_lock_depth(other);
3974 	do {
3975 		if (depth == 0 && (entry != root)) {
3976 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3977 			break;
3978 		}
3979 		middle = entry;
3980 		entry = get_lock_parent(entry);
3981 		depth--;
3982 	} while (entry && entry != root && (depth >= 0));
3983 	if (forwards)
3984 		print_irq_lock_scenario(root, other,
3985 			middle ? middle->class : root->class, other->class);
3986 	else
3987 		print_irq_lock_scenario(other, root,
3988 			middle ? middle->class : other->class, root->class);
3989 
3990 	lockdep_print_held_locks(curr);
3991 
3992 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3993 	root->trace = save_trace();
3994 	if (!root->trace)
3995 		return;
3996 	print_shortest_lock_dependencies(other, root);
3997 
3998 	pr_warn("\nstack backtrace:\n");
3999 	dump_stack();
4000 }
4001 
4002 /*
4003  * Prove that in the forwards-direction subgraph starting at <this>
4004  * there is no lock matching <mask>:
4005  */
4006 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4007 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4008 		     enum lock_usage_bit bit)
4009 {
4010 	enum bfs_result ret;
4011 	struct lock_list root;
4012 	struct lock_list *target_entry;
4013 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4014 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4015 
4016 	bfs_init_root(&root, this);
4017 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4018 	if (bfs_error(ret)) {
4019 		print_bfs_bug(ret);
4020 		return 0;
4021 	}
4022 	if (ret == BFS_RNOMATCH)
4023 		return 1;
4024 
4025 	/* Check whether write or read usage is the match */
4026 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4027 		print_irq_inversion_bug(curr, &root, target_entry,
4028 					this, 1, state_name(bit));
4029 	} else {
4030 		print_irq_inversion_bug(curr, &root, target_entry,
4031 					this, 1, state_name(read_bit));
4032 	}
4033 
4034 	return 0;
4035 }
4036 
4037 /*
4038  * Prove that in the backwards-direction subgraph starting at <this>
4039  * there is no lock matching <mask>:
4040  */
4041 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4042 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4043 		      enum lock_usage_bit bit)
4044 {
4045 	enum bfs_result ret;
4046 	struct lock_list root;
4047 	struct lock_list *target_entry;
4048 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4049 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4050 
4051 	bfs_init_rootb(&root, this);
4052 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4053 	if (bfs_error(ret)) {
4054 		print_bfs_bug(ret);
4055 		return 0;
4056 	}
4057 	if (ret == BFS_RNOMATCH)
4058 		return 1;
4059 
4060 	/* Check whether write or read usage is the match */
4061 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4062 		print_irq_inversion_bug(curr, &root, target_entry,
4063 					this, 0, state_name(bit));
4064 	} else {
4065 		print_irq_inversion_bug(curr, &root, target_entry,
4066 					this, 0, state_name(read_bit));
4067 	}
4068 
4069 	return 0;
4070 }
4071 
print_irqtrace_events(struct task_struct * curr)4072 void print_irqtrace_events(struct task_struct *curr)
4073 {
4074 	const struct irqtrace_events *trace = &curr->irqtrace;
4075 
4076 	printk("irq event stamp: %u\n", trace->irq_events);
4077 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4078 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4079 		(void *)trace->hardirq_enable_ip);
4080 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4081 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4082 		(void *)trace->hardirq_disable_ip);
4083 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4084 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4085 		(void *)trace->softirq_enable_ip);
4086 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4087 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4088 		(void *)trace->softirq_disable_ip);
4089 }
4090 
HARDIRQ_verbose(struct lock_class * class)4091 static int HARDIRQ_verbose(struct lock_class *class)
4092 {
4093 #if HARDIRQ_VERBOSE
4094 	return class_filter(class);
4095 #endif
4096 	return 0;
4097 }
4098 
SOFTIRQ_verbose(struct lock_class * class)4099 static int SOFTIRQ_verbose(struct lock_class *class)
4100 {
4101 #if SOFTIRQ_VERBOSE
4102 	return class_filter(class);
4103 #endif
4104 	return 0;
4105 }
4106 
4107 static int (*state_verbose_f[])(struct lock_class *class) = {
4108 #define LOCKDEP_STATE(__STATE) \
4109 	__STATE##_verbose,
4110 #include "lockdep_states.h"
4111 #undef LOCKDEP_STATE
4112 };
4113 
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4114 static inline int state_verbose(enum lock_usage_bit bit,
4115 				struct lock_class *class)
4116 {
4117 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4118 }
4119 
4120 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4121 			     enum lock_usage_bit bit, const char *name);
4122 
4123 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4124 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4125 		enum lock_usage_bit new_bit)
4126 {
4127 	int excl_bit = exclusive_bit(new_bit);
4128 	int read = new_bit & LOCK_USAGE_READ_MASK;
4129 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4130 
4131 	/*
4132 	 * Validate that this particular lock does not have conflicting
4133 	 * usage states.
4134 	 */
4135 	if (!valid_state(curr, this, new_bit, excl_bit))
4136 		return 0;
4137 
4138 	/*
4139 	 * Check for read in write conflicts
4140 	 */
4141 	if (!read && !valid_state(curr, this, new_bit,
4142 				  excl_bit + LOCK_USAGE_READ_MASK))
4143 		return 0;
4144 
4145 
4146 	/*
4147 	 * Validate that the lock dependencies don't have conflicting usage
4148 	 * states.
4149 	 */
4150 	if (dir) {
4151 		/*
4152 		 * mark ENABLED has to look backwards -- to ensure no dependee
4153 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4154 		 */
4155 		if (!check_usage_backwards(curr, this, excl_bit))
4156 			return 0;
4157 	} else {
4158 		/*
4159 		 * mark USED_IN has to look forwards -- to ensure no dependency
4160 		 * has ENABLED state, which would allow recursion deadlocks.
4161 		 */
4162 		if (!check_usage_forwards(curr, this, excl_bit))
4163 			return 0;
4164 	}
4165 
4166 	if (state_verbose(new_bit, hlock_class(this)))
4167 		return 2;
4168 
4169 	return 1;
4170 }
4171 
4172 /*
4173  * Mark all held locks with a usage bit:
4174  */
4175 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4176 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4177 {
4178 	struct held_lock *hlock;
4179 	int i;
4180 
4181 	for (i = 0; i < curr->lockdep_depth; i++) {
4182 		enum lock_usage_bit hlock_bit = base_bit;
4183 		hlock = curr->held_locks + i;
4184 
4185 		if (hlock->read)
4186 			hlock_bit += LOCK_USAGE_READ_MASK;
4187 
4188 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4189 
4190 		if (!hlock->check)
4191 			continue;
4192 
4193 		if (!mark_lock(curr, hlock, hlock_bit))
4194 			return 0;
4195 	}
4196 
4197 	return 1;
4198 }
4199 
4200 /*
4201  * Hardirqs will be enabled:
4202  */
__trace_hardirqs_on_caller(void)4203 static void __trace_hardirqs_on_caller(void)
4204 {
4205 	struct task_struct *curr = current;
4206 
4207 	/*
4208 	 * We are going to turn hardirqs on, so set the
4209 	 * usage bit for all held locks:
4210 	 */
4211 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4212 		return;
4213 	/*
4214 	 * If we have softirqs enabled, then set the usage
4215 	 * bit for all held locks. (disabled hardirqs prevented
4216 	 * this bit from being set before)
4217 	 */
4218 	if (curr->softirqs_enabled)
4219 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4220 }
4221 
4222 /**
4223  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4224  *
4225  * Invoked before a possible transition to RCU idle from exit to user or
4226  * guest mode. This ensures that all RCU operations are done before RCU
4227  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4228  * invoked to set the final state.
4229  */
lockdep_hardirqs_on_prepare(void)4230 void lockdep_hardirqs_on_prepare(void)
4231 {
4232 	if (unlikely(!debug_locks))
4233 		return;
4234 
4235 	/*
4236 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4237 	 */
4238 	if (unlikely(in_nmi()))
4239 		return;
4240 
4241 	if (unlikely(this_cpu_read(lockdep_recursion)))
4242 		return;
4243 
4244 	if (unlikely(lockdep_hardirqs_enabled())) {
4245 		/*
4246 		 * Neither irq nor preemption are disabled here
4247 		 * so this is racy by nature but losing one hit
4248 		 * in a stat is not a big deal.
4249 		 */
4250 		__debug_atomic_inc(redundant_hardirqs_on);
4251 		return;
4252 	}
4253 
4254 	/*
4255 	 * We're enabling irqs and according to our state above irqs weren't
4256 	 * already enabled, yet we find the hardware thinks they are in fact
4257 	 * enabled.. someone messed up their IRQ state tracing.
4258 	 */
4259 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4260 		return;
4261 
4262 	/*
4263 	 * See the fine text that goes along with this variable definition.
4264 	 */
4265 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4266 		return;
4267 
4268 	/*
4269 	 * Can't allow enabling interrupts while in an interrupt handler,
4270 	 * that's general bad form and such. Recursion, limited stack etc..
4271 	 */
4272 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4273 		return;
4274 
4275 	current->hardirq_chain_key = current->curr_chain_key;
4276 
4277 	lockdep_recursion_inc();
4278 	__trace_hardirqs_on_caller();
4279 	lockdep_recursion_finish();
4280 }
4281 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4282 
lockdep_hardirqs_on(unsigned long ip)4283 void noinstr lockdep_hardirqs_on(unsigned long ip)
4284 {
4285 	struct irqtrace_events *trace = &current->irqtrace;
4286 
4287 	if (unlikely(!debug_locks))
4288 		return;
4289 
4290 	/*
4291 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4292 	 * tracking state and hardware state are out of sync.
4293 	 *
4294 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4295 	 * and not rely on hardware state like normal interrupts.
4296 	 */
4297 	if (unlikely(in_nmi())) {
4298 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4299 			return;
4300 
4301 		/*
4302 		 * Skip:
4303 		 *  - recursion check, because NMI can hit lockdep;
4304 		 *  - hardware state check, because above;
4305 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4306 		 */
4307 		goto skip_checks;
4308 	}
4309 
4310 	if (unlikely(this_cpu_read(lockdep_recursion)))
4311 		return;
4312 
4313 	if (lockdep_hardirqs_enabled()) {
4314 		/*
4315 		 * Neither irq nor preemption are disabled here
4316 		 * so this is racy by nature but losing one hit
4317 		 * in a stat is not a big deal.
4318 		 */
4319 		__debug_atomic_inc(redundant_hardirqs_on);
4320 		return;
4321 	}
4322 
4323 	/*
4324 	 * We're enabling irqs and according to our state above irqs weren't
4325 	 * already enabled, yet we find the hardware thinks they are in fact
4326 	 * enabled.. someone messed up their IRQ state tracing.
4327 	 */
4328 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4329 		return;
4330 
4331 	/*
4332 	 * Ensure the lock stack remained unchanged between
4333 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4334 	 */
4335 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4336 			    current->curr_chain_key);
4337 
4338 skip_checks:
4339 	/* we'll do an OFF -> ON transition: */
4340 	__this_cpu_write(hardirqs_enabled, 1);
4341 	trace->hardirq_enable_ip = ip;
4342 	trace->hardirq_enable_event = ++trace->irq_events;
4343 	debug_atomic_inc(hardirqs_on_events);
4344 }
4345 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4346 
4347 /*
4348  * Hardirqs were disabled:
4349  */
lockdep_hardirqs_off(unsigned long ip)4350 void noinstr lockdep_hardirqs_off(unsigned long ip)
4351 {
4352 	if (unlikely(!debug_locks))
4353 		return;
4354 
4355 	/*
4356 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4357 	 * they will restore the software state. This ensures the software
4358 	 * state is consistent inside NMIs as well.
4359 	 */
4360 	if (in_nmi()) {
4361 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4362 			return;
4363 	} else if (__this_cpu_read(lockdep_recursion))
4364 		return;
4365 
4366 	/*
4367 	 * So we're supposed to get called after you mask local IRQs, but for
4368 	 * some reason the hardware doesn't quite think you did a proper job.
4369 	 */
4370 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4371 		return;
4372 
4373 	if (lockdep_hardirqs_enabled()) {
4374 		struct irqtrace_events *trace = &current->irqtrace;
4375 
4376 		/*
4377 		 * We have done an ON -> OFF transition:
4378 		 */
4379 		__this_cpu_write(hardirqs_enabled, 0);
4380 		trace->hardirq_disable_ip = ip;
4381 		trace->hardirq_disable_event = ++trace->irq_events;
4382 		debug_atomic_inc(hardirqs_off_events);
4383 	} else {
4384 		debug_atomic_inc(redundant_hardirqs_off);
4385 	}
4386 }
4387 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4388 
4389 /*
4390  * Softirqs will be enabled:
4391  */
lockdep_softirqs_on(unsigned long ip)4392 void lockdep_softirqs_on(unsigned long ip)
4393 {
4394 	struct irqtrace_events *trace = &current->irqtrace;
4395 
4396 	if (unlikely(!lockdep_enabled()))
4397 		return;
4398 
4399 	/*
4400 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4401 	 * funny state and nesting things.
4402 	 */
4403 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4404 		return;
4405 
4406 	if (current->softirqs_enabled) {
4407 		debug_atomic_inc(redundant_softirqs_on);
4408 		return;
4409 	}
4410 
4411 	lockdep_recursion_inc();
4412 	/*
4413 	 * We'll do an OFF -> ON transition:
4414 	 */
4415 	current->softirqs_enabled = 1;
4416 	trace->softirq_enable_ip = ip;
4417 	trace->softirq_enable_event = ++trace->irq_events;
4418 	debug_atomic_inc(softirqs_on_events);
4419 	/*
4420 	 * We are going to turn softirqs on, so set the
4421 	 * usage bit for all held locks, if hardirqs are
4422 	 * enabled too:
4423 	 */
4424 	if (lockdep_hardirqs_enabled())
4425 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4426 	lockdep_recursion_finish();
4427 }
4428 
4429 /*
4430  * Softirqs were disabled:
4431  */
lockdep_softirqs_off(unsigned long ip)4432 void lockdep_softirqs_off(unsigned long ip)
4433 {
4434 	if (unlikely(!lockdep_enabled()))
4435 		return;
4436 
4437 	/*
4438 	 * We fancy IRQs being disabled here, see softirq.c
4439 	 */
4440 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4441 		return;
4442 
4443 	if (current->softirqs_enabled) {
4444 		struct irqtrace_events *trace = &current->irqtrace;
4445 
4446 		/*
4447 		 * We have done an ON -> OFF transition:
4448 		 */
4449 		current->softirqs_enabled = 0;
4450 		trace->softirq_disable_ip = ip;
4451 		trace->softirq_disable_event = ++trace->irq_events;
4452 		debug_atomic_inc(softirqs_off_events);
4453 		/*
4454 		 * Whoops, we wanted softirqs off, so why aren't they?
4455 		 */
4456 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4457 	} else
4458 		debug_atomic_inc(redundant_softirqs_off);
4459 }
4460 
4461 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4462 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4463 {
4464 	if (!check)
4465 		goto lock_used;
4466 
4467 	/*
4468 	 * If non-trylock use in a hardirq or softirq context, then
4469 	 * mark the lock as used in these contexts:
4470 	 */
4471 	if (!hlock->trylock) {
4472 		if (hlock->read) {
4473 			if (lockdep_hardirq_context())
4474 				if (!mark_lock(curr, hlock,
4475 						LOCK_USED_IN_HARDIRQ_READ))
4476 					return 0;
4477 			if (curr->softirq_context)
4478 				if (!mark_lock(curr, hlock,
4479 						LOCK_USED_IN_SOFTIRQ_READ))
4480 					return 0;
4481 		} else {
4482 			if (lockdep_hardirq_context())
4483 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4484 					return 0;
4485 			if (curr->softirq_context)
4486 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4487 					return 0;
4488 		}
4489 	}
4490 	if (!hlock->hardirqs_off) {
4491 		if (hlock->read) {
4492 			if (!mark_lock(curr, hlock,
4493 					LOCK_ENABLED_HARDIRQ_READ))
4494 				return 0;
4495 			if (curr->softirqs_enabled)
4496 				if (!mark_lock(curr, hlock,
4497 						LOCK_ENABLED_SOFTIRQ_READ))
4498 					return 0;
4499 		} else {
4500 			if (!mark_lock(curr, hlock,
4501 					LOCK_ENABLED_HARDIRQ))
4502 				return 0;
4503 			if (curr->softirqs_enabled)
4504 				if (!mark_lock(curr, hlock,
4505 						LOCK_ENABLED_SOFTIRQ))
4506 					return 0;
4507 		}
4508 	}
4509 
4510 lock_used:
4511 	/* mark it as used: */
4512 	if (!mark_lock(curr, hlock, LOCK_USED))
4513 		return 0;
4514 
4515 	return 1;
4516 }
4517 
task_irq_context(struct task_struct * task)4518 static inline unsigned int task_irq_context(struct task_struct *task)
4519 {
4520 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4521 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4522 }
4523 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4524 static int separate_irq_context(struct task_struct *curr,
4525 		struct held_lock *hlock)
4526 {
4527 	unsigned int depth = curr->lockdep_depth;
4528 
4529 	/*
4530 	 * Keep track of points where we cross into an interrupt context:
4531 	 */
4532 	if (depth) {
4533 		struct held_lock *prev_hlock;
4534 
4535 		prev_hlock = curr->held_locks + depth-1;
4536 		/*
4537 		 * If we cross into another context, reset the
4538 		 * hash key (this also prevents the checking and the
4539 		 * adding of the dependency to 'prev'):
4540 		 */
4541 		if (prev_hlock->irq_context != hlock->irq_context)
4542 			return 1;
4543 	}
4544 	return 0;
4545 }
4546 
4547 /*
4548  * Mark a lock with a usage bit, and validate the state transition:
4549  */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4550 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4551 			     enum lock_usage_bit new_bit)
4552 {
4553 	unsigned int new_mask, ret = 1;
4554 
4555 	if (new_bit >= LOCK_USAGE_STATES) {
4556 		DEBUG_LOCKS_WARN_ON(1);
4557 		return 0;
4558 	}
4559 
4560 	if (new_bit == LOCK_USED && this->read)
4561 		new_bit = LOCK_USED_READ;
4562 
4563 	new_mask = 1 << new_bit;
4564 
4565 	/*
4566 	 * If already set then do not dirty the cacheline,
4567 	 * nor do any checks:
4568 	 */
4569 	if (likely(hlock_class(this)->usage_mask & new_mask))
4570 		return 1;
4571 
4572 	if (!graph_lock())
4573 		return 0;
4574 	/*
4575 	 * Make sure we didn't race:
4576 	 */
4577 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4578 		goto unlock;
4579 
4580 	if (!hlock_class(this)->usage_mask)
4581 		debug_atomic_dec(nr_unused_locks);
4582 
4583 	hlock_class(this)->usage_mask |= new_mask;
4584 
4585 	if (new_bit < LOCK_TRACE_STATES) {
4586 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4587 			return 0;
4588 	}
4589 
4590 	if (new_bit < LOCK_USED) {
4591 		ret = mark_lock_irq(curr, this, new_bit);
4592 		if (!ret)
4593 			return 0;
4594 	}
4595 
4596 unlock:
4597 	graph_unlock();
4598 
4599 	/*
4600 	 * We must printk outside of the graph_lock:
4601 	 */
4602 	if (ret == 2) {
4603 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4604 		print_lock(this);
4605 		print_irqtrace_events(curr);
4606 		dump_stack();
4607 	}
4608 
4609 	return ret;
4610 }
4611 
task_wait_context(struct task_struct * curr)4612 static inline short task_wait_context(struct task_struct *curr)
4613 {
4614 	/*
4615 	 * Set appropriate wait type for the context; for IRQs we have to take
4616 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4617 	 */
4618 	if (lockdep_hardirq_context()) {
4619 		/*
4620 		 * Check if force_irqthreads will run us threaded.
4621 		 */
4622 		if (curr->hardirq_threaded || curr->irq_config)
4623 			return LD_WAIT_CONFIG;
4624 
4625 		return LD_WAIT_SPIN;
4626 	} else if (curr->softirq_context) {
4627 		/*
4628 		 * Softirqs are always threaded.
4629 		 */
4630 		return LD_WAIT_CONFIG;
4631 	}
4632 
4633 	return LD_WAIT_MAX;
4634 }
4635 
4636 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4637 print_lock_invalid_wait_context(struct task_struct *curr,
4638 				struct held_lock *hlock)
4639 {
4640 	short curr_inner;
4641 
4642 	if (!debug_locks_off())
4643 		return 0;
4644 	if (debug_locks_silent)
4645 		return 0;
4646 
4647 	pr_warn("\n");
4648 	pr_warn("=============================\n");
4649 	pr_warn("[ BUG: Invalid wait context ]\n");
4650 	print_kernel_ident();
4651 	pr_warn("-----------------------------\n");
4652 
4653 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4654 	print_lock(hlock);
4655 
4656 	pr_warn("other info that might help us debug this:\n");
4657 
4658 	curr_inner = task_wait_context(curr);
4659 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4660 
4661 	lockdep_print_held_locks(curr);
4662 
4663 	pr_warn("stack backtrace:\n");
4664 	dump_stack();
4665 
4666 	return 0;
4667 }
4668 
4669 /*
4670  * Verify the wait_type context.
4671  *
4672  * This check validates we takes locks in the right wait-type order; that is it
4673  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4674  * acquire spinlocks inside raw_spinlocks and the sort.
4675  *
4676  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4677  * can be taken from (pretty much) any context but also has constraints.
4678  * However when taken in a stricter environment the RCU lock does not loosen
4679  * the constraints.
4680  *
4681  * Therefore we must look for the strictest environment in the lock stack and
4682  * compare that to the lock we're trying to acquire.
4683  */
check_wait_context(struct task_struct * curr,struct held_lock * next)4684 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4685 {
4686 	u8 next_inner = hlock_class(next)->wait_type_inner;
4687 	u8 next_outer = hlock_class(next)->wait_type_outer;
4688 	u8 curr_inner;
4689 	int depth;
4690 
4691 	if (!next_inner || next->trylock)
4692 		return 0;
4693 
4694 	if (!next_outer)
4695 		next_outer = next_inner;
4696 
4697 	/*
4698 	 * Find start of current irq_context..
4699 	 */
4700 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4701 		struct held_lock *prev = curr->held_locks + depth;
4702 		if (prev->irq_context != next->irq_context)
4703 			break;
4704 	}
4705 	depth++;
4706 
4707 	curr_inner = task_wait_context(curr);
4708 
4709 	for (; depth < curr->lockdep_depth; depth++) {
4710 		struct held_lock *prev = curr->held_locks + depth;
4711 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4712 
4713 		if (prev_inner) {
4714 			/*
4715 			 * We can have a bigger inner than a previous one
4716 			 * when outer is smaller than inner, as with RCU.
4717 			 *
4718 			 * Also due to trylocks.
4719 			 */
4720 			curr_inner = min(curr_inner, prev_inner);
4721 		}
4722 	}
4723 
4724 	if (next_outer > curr_inner)
4725 		return print_lock_invalid_wait_context(curr, next);
4726 
4727 	return 0;
4728 }
4729 
4730 #else /* CONFIG_PROVE_LOCKING */
4731 
4732 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4733 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4734 {
4735 	return 1;
4736 }
4737 
task_irq_context(struct task_struct * task)4738 static inline unsigned int task_irq_context(struct task_struct *task)
4739 {
4740 	return 0;
4741 }
4742 
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4743 static inline int separate_irq_context(struct task_struct *curr,
4744 		struct held_lock *hlock)
4745 {
4746 	return 0;
4747 }
4748 
check_wait_context(struct task_struct * curr,struct held_lock * next)4749 static inline int check_wait_context(struct task_struct *curr,
4750 				     struct held_lock *next)
4751 {
4752 	return 0;
4753 }
4754 
4755 #endif /* CONFIG_PROVE_LOCKING */
4756 
4757 /*
4758  * Initialize a lock instance's lock-class mapping info:
4759  */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4760 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4761 			    struct lock_class_key *key, int subclass,
4762 			    u8 inner, u8 outer, u8 lock_type)
4763 {
4764 	int i;
4765 
4766 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4767 		lock->class_cache[i] = NULL;
4768 
4769 #ifdef CONFIG_LOCK_STAT
4770 	lock->cpu = raw_smp_processor_id();
4771 #endif
4772 
4773 	/*
4774 	 * Can't be having no nameless bastards around this place!
4775 	 */
4776 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4777 		lock->name = "NULL";
4778 		return;
4779 	}
4780 
4781 	lock->name = name;
4782 
4783 	lock->wait_type_outer = outer;
4784 	lock->wait_type_inner = inner;
4785 	lock->lock_type = lock_type;
4786 
4787 	/*
4788 	 * No key, no joy, we need to hash something.
4789 	 */
4790 	if (DEBUG_LOCKS_WARN_ON(!key))
4791 		return;
4792 	/*
4793 	 * Sanity check, the lock-class key must either have been allocated
4794 	 * statically or must have been registered as a dynamic key.
4795 	 */
4796 	if (!static_obj(key) && !is_dynamic_key(key)) {
4797 		if (debug_locks)
4798 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4799 		DEBUG_LOCKS_WARN_ON(1);
4800 		return;
4801 	}
4802 	lock->key = key;
4803 
4804 	if (unlikely(!debug_locks))
4805 		return;
4806 
4807 	if (subclass) {
4808 		unsigned long flags;
4809 
4810 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4811 			return;
4812 
4813 		raw_local_irq_save(flags);
4814 		lockdep_recursion_inc();
4815 		register_lock_class(lock, subclass, 1);
4816 		lockdep_recursion_finish();
4817 		raw_local_irq_restore(flags);
4818 	}
4819 }
4820 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4821 
4822 struct lock_class_key __lockdep_no_validate__;
4823 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4824 
4825 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock)4826 print_lock_nested_lock_not_held(struct task_struct *curr,
4827 				struct held_lock *hlock)
4828 {
4829 	if (!debug_locks_off())
4830 		return;
4831 	if (debug_locks_silent)
4832 		return;
4833 
4834 	pr_warn("\n");
4835 	pr_warn("==================================\n");
4836 	pr_warn("WARNING: Nested lock was not taken\n");
4837 	print_kernel_ident();
4838 	pr_warn("----------------------------------\n");
4839 
4840 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4841 	print_lock(hlock);
4842 
4843 	pr_warn("\nbut this task is not holding:\n");
4844 	pr_warn("%s\n", hlock->nest_lock->name);
4845 
4846 	pr_warn("\nstack backtrace:\n");
4847 	dump_stack();
4848 
4849 	pr_warn("\nother info that might help us debug this:\n");
4850 	lockdep_print_held_locks(curr);
4851 
4852 	pr_warn("\nstack backtrace:\n");
4853 	dump_stack();
4854 }
4855 
4856 static int __lock_is_held(const struct lockdep_map *lock, int read);
4857 
4858 /*
4859  * This gets called for every mutex_lock*()/spin_lock*() operation.
4860  * We maintain the dependency maps and validate the locking attempt:
4861  *
4862  * The callers must make sure that IRQs are disabled before calling it,
4863  * otherwise we could get an interrupt which would want to take locks,
4864  * which would end up in lockdep again.
4865  */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4866 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4867 			  int trylock, int read, int check, int hardirqs_off,
4868 			  struct lockdep_map *nest_lock, unsigned long ip,
4869 			  int references, int pin_count)
4870 {
4871 	struct task_struct *curr = current;
4872 	struct lock_class *class = NULL;
4873 	struct held_lock *hlock;
4874 	unsigned int depth;
4875 	int chain_head = 0;
4876 	int class_idx;
4877 	u64 chain_key;
4878 
4879 	if (unlikely(!debug_locks))
4880 		return 0;
4881 
4882 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4883 		check = 0;
4884 
4885 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4886 		class = lock->class_cache[subclass];
4887 	/*
4888 	 * Not cached?
4889 	 */
4890 	if (unlikely(!class)) {
4891 		class = register_lock_class(lock, subclass, 0);
4892 		if (!class)
4893 			return 0;
4894 	}
4895 
4896 	debug_class_ops_inc(class);
4897 
4898 	if (very_verbose(class)) {
4899 		printk("\nacquire class [%px] %s", class->key, class->name);
4900 		if (class->name_version > 1)
4901 			printk(KERN_CONT "#%d", class->name_version);
4902 		printk(KERN_CONT "\n");
4903 		dump_stack();
4904 	}
4905 
4906 	/*
4907 	 * Add the lock to the list of currently held locks.
4908 	 * (we dont increase the depth just yet, up until the
4909 	 * dependency checks are done)
4910 	 */
4911 	depth = curr->lockdep_depth;
4912 	/*
4913 	 * Ran out of static storage for our per-task lock stack again have we?
4914 	 */
4915 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4916 		return 0;
4917 
4918 	class_idx = class - lock_classes;
4919 
4920 	if (depth) { /* we're holding locks */
4921 		hlock = curr->held_locks + depth - 1;
4922 		if (hlock->class_idx == class_idx && nest_lock) {
4923 			if (!references)
4924 				references++;
4925 
4926 			if (!hlock->references)
4927 				hlock->references++;
4928 
4929 			hlock->references += references;
4930 
4931 			/* Overflow */
4932 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4933 				return 0;
4934 
4935 			return 2;
4936 		}
4937 	}
4938 
4939 	hlock = curr->held_locks + depth;
4940 	/*
4941 	 * Plain impossible, we just registered it and checked it weren't no
4942 	 * NULL like.. I bet this mushroom I ate was good!
4943 	 */
4944 	if (DEBUG_LOCKS_WARN_ON(!class))
4945 		return 0;
4946 	hlock->class_idx = class_idx;
4947 	hlock->acquire_ip = ip;
4948 	hlock->instance = lock;
4949 	hlock->nest_lock = nest_lock;
4950 	hlock->irq_context = task_irq_context(curr);
4951 	hlock->trylock = trylock;
4952 	hlock->read = read;
4953 	hlock->check = check;
4954 	hlock->hardirqs_off = !!hardirqs_off;
4955 	hlock->references = references;
4956 #ifdef CONFIG_LOCK_STAT
4957 	hlock->waittime_stamp = 0;
4958 	hlock->holdtime_stamp = lockstat_clock();
4959 #endif
4960 	hlock->pin_count = pin_count;
4961 
4962 	if (check_wait_context(curr, hlock))
4963 		return 0;
4964 
4965 	/* Initialize the lock usage bit */
4966 	if (!mark_usage(curr, hlock, check))
4967 		return 0;
4968 
4969 	/*
4970 	 * Calculate the chain hash: it's the combined hash of all the
4971 	 * lock keys along the dependency chain. We save the hash value
4972 	 * at every step so that we can get the current hash easily
4973 	 * after unlock. The chain hash is then used to cache dependency
4974 	 * results.
4975 	 *
4976 	 * The 'key ID' is what is the most compact key value to drive
4977 	 * the hash, not class->key.
4978 	 */
4979 	/*
4980 	 * Whoops, we did it again.. class_idx is invalid.
4981 	 */
4982 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4983 		return 0;
4984 
4985 	chain_key = curr->curr_chain_key;
4986 	if (!depth) {
4987 		/*
4988 		 * How can we have a chain hash when we ain't got no keys?!
4989 		 */
4990 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4991 			return 0;
4992 		chain_head = 1;
4993 	}
4994 
4995 	hlock->prev_chain_key = chain_key;
4996 	if (separate_irq_context(curr, hlock)) {
4997 		chain_key = INITIAL_CHAIN_KEY;
4998 		chain_head = 1;
4999 	}
5000 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5001 
5002 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5003 		print_lock_nested_lock_not_held(curr, hlock);
5004 		return 0;
5005 	}
5006 
5007 	if (!debug_locks_silent) {
5008 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5009 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5010 	}
5011 
5012 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5013 		return 0;
5014 
5015 	curr->curr_chain_key = chain_key;
5016 	curr->lockdep_depth++;
5017 	check_chain_key(curr);
5018 #ifdef CONFIG_DEBUG_LOCKDEP
5019 	if (unlikely(!debug_locks))
5020 		return 0;
5021 #endif
5022 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5023 		debug_locks_off();
5024 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5025 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5026 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5027 
5028 		lockdep_print_held_locks(current);
5029 		debug_show_all_locks();
5030 		dump_stack();
5031 
5032 		return 0;
5033 	}
5034 
5035 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5036 		max_lockdep_depth = curr->lockdep_depth;
5037 
5038 	return 1;
5039 }
5040 
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5041 static void print_unlock_imbalance_bug(struct task_struct *curr,
5042 				       struct lockdep_map *lock,
5043 				       unsigned long ip)
5044 {
5045 	if (!debug_locks_off())
5046 		return;
5047 	if (debug_locks_silent)
5048 		return;
5049 
5050 	pr_warn("\n");
5051 	pr_warn("=====================================\n");
5052 	pr_warn("WARNING: bad unlock balance detected!\n");
5053 	print_kernel_ident();
5054 	pr_warn("-------------------------------------\n");
5055 	pr_warn("%s/%d is trying to release lock (",
5056 		curr->comm, task_pid_nr(curr));
5057 	print_lockdep_cache(lock);
5058 	pr_cont(") at:\n");
5059 	print_ip_sym(KERN_WARNING, ip);
5060 	pr_warn("but there are no more locks to release!\n");
5061 	pr_warn("\nother info that might help us debug this:\n");
5062 	lockdep_print_held_locks(curr);
5063 
5064 	pr_warn("\nstack backtrace:\n");
5065 	dump_stack();
5066 }
5067 
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5068 static noinstr int match_held_lock(const struct held_lock *hlock,
5069 				   const struct lockdep_map *lock)
5070 {
5071 	if (hlock->instance == lock)
5072 		return 1;
5073 
5074 	if (hlock->references) {
5075 		const struct lock_class *class = lock->class_cache[0];
5076 
5077 		if (!class)
5078 			class = look_up_lock_class(lock, 0);
5079 
5080 		/*
5081 		 * If look_up_lock_class() failed to find a class, we're trying
5082 		 * to test if we hold a lock that has never yet been acquired.
5083 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5084 		 * holding it either, so report failure.
5085 		 */
5086 		if (!class)
5087 			return 0;
5088 
5089 		/*
5090 		 * References, but not a lock we're actually ref-counting?
5091 		 * State got messed up, follow the sites that change ->references
5092 		 * and try to make sense of it.
5093 		 */
5094 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5095 			return 0;
5096 
5097 		if (hlock->class_idx == class - lock_classes)
5098 			return 1;
5099 	}
5100 
5101 	return 0;
5102 }
5103 
5104 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5105 static struct held_lock *find_held_lock(struct task_struct *curr,
5106 					struct lockdep_map *lock,
5107 					unsigned int depth, int *idx)
5108 {
5109 	struct held_lock *ret, *hlock, *prev_hlock;
5110 	int i;
5111 
5112 	i = depth - 1;
5113 	hlock = curr->held_locks + i;
5114 	ret = hlock;
5115 	if (match_held_lock(hlock, lock))
5116 		goto out;
5117 
5118 	ret = NULL;
5119 	for (i--, prev_hlock = hlock--;
5120 	     i >= 0;
5121 	     i--, prev_hlock = hlock--) {
5122 		/*
5123 		 * We must not cross into another context:
5124 		 */
5125 		if (prev_hlock->irq_context != hlock->irq_context) {
5126 			ret = NULL;
5127 			break;
5128 		}
5129 		if (match_held_lock(hlock, lock)) {
5130 			ret = hlock;
5131 			break;
5132 		}
5133 	}
5134 
5135 out:
5136 	*idx = i;
5137 	return ret;
5138 }
5139 
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5140 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5141 				int idx, unsigned int *merged)
5142 {
5143 	struct held_lock *hlock;
5144 	int first_idx = idx;
5145 
5146 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5147 		return 0;
5148 
5149 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5150 		switch (__lock_acquire(hlock->instance,
5151 				    hlock_class(hlock)->subclass,
5152 				    hlock->trylock,
5153 				    hlock->read, hlock->check,
5154 				    hlock->hardirqs_off,
5155 				    hlock->nest_lock, hlock->acquire_ip,
5156 				    hlock->references, hlock->pin_count)) {
5157 		case 0:
5158 			return 1;
5159 		case 1:
5160 			break;
5161 		case 2:
5162 			*merged += (idx == first_idx);
5163 			break;
5164 		default:
5165 			WARN_ON(1);
5166 			return 0;
5167 		}
5168 	}
5169 	return 0;
5170 }
5171 
5172 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5173 __lock_set_class(struct lockdep_map *lock, const char *name,
5174 		 struct lock_class_key *key, unsigned int subclass,
5175 		 unsigned long ip)
5176 {
5177 	struct task_struct *curr = current;
5178 	unsigned int depth, merged = 0;
5179 	struct held_lock *hlock;
5180 	struct lock_class *class;
5181 	int i;
5182 
5183 	if (unlikely(!debug_locks))
5184 		return 0;
5185 
5186 	depth = curr->lockdep_depth;
5187 	/*
5188 	 * This function is about (re)setting the class of a held lock,
5189 	 * yet we're not actually holding any locks. Naughty user!
5190 	 */
5191 	if (DEBUG_LOCKS_WARN_ON(!depth))
5192 		return 0;
5193 
5194 	hlock = find_held_lock(curr, lock, depth, &i);
5195 	if (!hlock) {
5196 		print_unlock_imbalance_bug(curr, lock, ip);
5197 		return 0;
5198 	}
5199 
5200 	lockdep_init_map_type(lock, name, key, 0,
5201 			      lock->wait_type_inner,
5202 			      lock->wait_type_outer,
5203 			      lock->lock_type);
5204 	class = register_lock_class(lock, subclass, 0);
5205 	hlock->class_idx = class - lock_classes;
5206 
5207 	curr->lockdep_depth = i;
5208 	curr->curr_chain_key = hlock->prev_chain_key;
5209 
5210 	if (reacquire_held_locks(curr, depth, i, &merged))
5211 		return 0;
5212 
5213 	/*
5214 	 * I took it apart and put it back together again, except now I have
5215 	 * these 'spare' parts.. where shall I put them.
5216 	 */
5217 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5218 		return 0;
5219 	return 1;
5220 }
5221 
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5222 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5223 {
5224 	struct task_struct *curr = current;
5225 	unsigned int depth, merged = 0;
5226 	struct held_lock *hlock;
5227 	int i;
5228 
5229 	if (unlikely(!debug_locks))
5230 		return 0;
5231 
5232 	depth = curr->lockdep_depth;
5233 	/*
5234 	 * This function is about (re)setting the class of a held lock,
5235 	 * yet we're not actually holding any locks. Naughty user!
5236 	 */
5237 	if (DEBUG_LOCKS_WARN_ON(!depth))
5238 		return 0;
5239 
5240 	hlock = find_held_lock(curr, lock, depth, &i);
5241 	if (!hlock) {
5242 		print_unlock_imbalance_bug(curr, lock, ip);
5243 		return 0;
5244 	}
5245 
5246 	curr->lockdep_depth = i;
5247 	curr->curr_chain_key = hlock->prev_chain_key;
5248 
5249 	WARN(hlock->read, "downgrading a read lock");
5250 	hlock->read = 1;
5251 	hlock->acquire_ip = ip;
5252 
5253 	if (reacquire_held_locks(curr, depth, i, &merged))
5254 		return 0;
5255 
5256 	/* Merging can't happen with unchanged classes.. */
5257 	if (DEBUG_LOCKS_WARN_ON(merged))
5258 		return 0;
5259 
5260 	/*
5261 	 * I took it apart and put it back together again, except now I have
5262 	 * these 'spare' parts.. where shall I put them.
5263 	 */
5264 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5265 		return 0;
5266 
5267 	return 1;
5268 }
5269 
5270 /*
5271  * Remove the lock from the list of currently held locks - this gets
5272  * called on mutex_unlock()/spin_unlock*() (or on a failed
5273  * mutex_lock_interruptible()).
5274  */
5275 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5276 __lock_release(struct lockdep_map *lock, unsigned long ip)
5277 {
5278 	struct task_struct *curr = current;
5279 	unsigned int depth, merged = 1;
5280 	struct held_lock *hlock;
5281 	int i;
5282 
5283 	if (unlikely(!debug_locks))
5284 		return 0;
5285 
5286 	depth = curr->lockdep_depth;
5287 	/*
5288 	 * So we're all set to release this lock.. wait what lock? We don't
5289 	 * own any locks, you've been drinking again?
5290 	 */
5291 	if (depth <= 0) {
5292 		print_unlock_imbalance_bug(curr, lock, ip);
5293 		return 0;
5294 	}
5295 
5296 	/*
5297 	 * Check whether the lock exists in the current stack
5298 	 * of held locks:
5299 	 */
5300 	hlock = find_held_lock(curr, lock, depth, &i);
5301 	if (!hlock) {
5302 		print_unlock_imbalance_bug(curr, lock, ip);
5303 		return 0;
5304 	}
5305 
5306 	if (hlock->instance == lock)
5307 		lock_release_holdtime(hlock);
5308 
5309 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5310 
5311 	if (hlock->references) {
5312 		hlock->references--;
5313 		if (hlock->references) {
5314 			/*
5315 			 * We had, and after removing one, still have
5316 			 * references, the current lock stack is still
5317 			 * valid. We're done!
5318 			 */
5319 			return 1;
5320 		}
5321 	}
5322 
5323 	/*
5324 	 * We have the right lock to unlock, 'hlock' points to it.
5325 	 * Now we remove it from the stack, and add back the other
5326 	 * entries (if any), recalculating the hash along the way:
5327 	 */
5328 
5329 	curr->lockdep_depth = i;
5330 	curr->curr_chain_key = hlock->prev_chain_key;
5331 
5332 	/*
5333 	 * The most likely case is when the unlock is on the innermost
5334 	 * lock. In this case, we are done!
5335 	 */
5336 	if (i == depth-1)
5337 		return 1;
5338 
5339 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5340 		return 0;
5341 
5342 	/*
5343 	 * We had N bottles of beer on the wall, we drank one, but now
5344 	 * there's not N-1 bottles of beer left on the wall...
5345 	 * Pouring two of the bottles together is acceptable.
5346 	 */
5347 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5348 
5349 	/*
5350 	 * Since reacquire_held_locks() would have called check_chain_key()
5351 	 * indirectly via __lock_acquire(), we don't need to do it again
5352 	 * on return.
5353 	 */
5354 	return 0;
5355 }
5356 
5357 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5358 int __lock_is_held(const struct lockdep_map *lock, int read)
5359 {
5360 	struct task_struct *curr = current;
5361 	int i;
5362 
5363 	for (i = 0; i < curr->lockdep_depth; i++) {
5364 		struct held_lock *hlock = curr->held_locks + i;
5365 
5366 		if (match_held_lock(hlock, lock)) {
5367 			if (read == -1 || !!hlock->read == read)
5368 				return LOCK_STATE_HELD;
5369 
5370 			return LOCK_STATE_NOT_HELD;
5371 		}
5372 	}
5373 
5374 	return LOCK_STATE_NOT_HELD;
5375 }
5376 
__lock_pin_lock(struct lockdep_map * lock)5377 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5378 {
5379 	struct pin_cookie cookie = NIL_COOKIE;
5380 	struct task_struct *curr = current;
5381 	int i;
5382 
5383 	if (unlikely(!debug_locks))
5384 		return cookie;
5385 
5386 	for (i = 0; i < curr->lockdep_depth; i++) {
5387 		struct held_lock *hlock = curr->held_locks + i;
5388 
5389 		if (match_held_lock(hlock, lock)) {
5390 			/*
5391 			 * Grab 16bits of randomness; this is sufficient to not
5392 			 * be guessable and still allows some pin nesting in
5393 			 * our u32 pin_count.
5394 			 */
5395 			cookie.val = 1 + (prandom_u32() >> 16);
5396 			hlock->pin_count += cookie.val;
5397 			return cookie;
5398 		}
5399 	}
5400 
5401 	WARN(1, "pinning an unheld lock\n");
5402 	return cookie;
5403 }
5404 
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5405 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5406 {
5407 	struct task_struct *curr = current;
5408 	int i;
5409 
5410 	if (unlikely(!debug_locks))
5411 		return;
5412 
5413 	for (i = 0; i < curr->lockdep_depth; i++) {
5414 		struct held_lock *hlock = curr->held_locks + i;
5415 
5416 		if (match_held_lock(hlock, lock)) {
5417 			hlock->pin_count += cookie.val;
5418 			return;
5419 		}
5420 	}
5421 
5422 	WARN(1, "pinning an unheld lock\n");
5423 }
5424 
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5425 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5426 {
5427 	struct task_struct *curr = current;
5428 	int i;
5429 
5430 	if (unlikely(!debug_locks))
5431 		return;
5432 
5433 	for (i = 0; i < curr->lockdep_depth; i++) {
5434 		struct held_lock *hlock = curr->held_locks + i;
5435 
5436 		if (match_held_lock(hlock, lock)) {
5437 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5438 				return;
5439 
5440 			hlock->pin_count -= cookie.val;
5441 
5442 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5443 				hlock->pin_count = 0;
5444 
5445 			return;
5446 		}
5447 	}
5448 
5449 	WARN(1, "unpinning an unheld lock\n");
5450 }
5451 
5452 /*
5453  * Check whether we follow the irq-flags state precisely:
5454  */
check_flags(unsigned long flags)5455 static noinstr void check_flags(unsigned long flags)
5456 {
5457 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5458 	if (!debug_locks)
5459 		return;
5460 
5461 	/* Get the warning out..  */
5462 	instrumentation_begin();
5463 
5464 	if (irqs_disabled_flags(flags)) {
5465 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5466 			printk("possible reason: unannotated irqs-off.\n");
5467 		}
5468 	} else {
5469 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5470 			printk("possible reason: unannotated irqs-on.\n");
5471 		}
5472 	}
5473 
5474 	/*
5475 	 * We dont accurately track softirq state in e.g.
5476 	 * hardirq contexts (such as on 4KSTACKS), so only
5477 	 * check if not in hardirq contexts:
5478 	 */
5479 	if (!hardirq_count()) {
5480 		if (softirq_count()) {
5481 			/* like the above, but with softirqs */
5482 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5483 		} else {
5484 			/* lick the above, does it taste good? */
5485 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5486 		}
5487 	}
5488 
5489 	if (!debug_locks)
5490 		print_irqtrace_events(current);
5491 
5492 	instrumentation_end();
5493 #endif
5494 }
5495 
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5496 void lock_set_class(struct lockdep_map *lock, const char *name,
5497 		    struct lock_class_key *key, unsigned int subclass,
5498 		    unsigned long ip)
5499 {
5500 	unsigned long flags;
5501 
5502 	if (unlikely(!lockdep_enabled()))
5503 		return;
5504 
5505 	raw_local_irq_save(flags);
5506 	lockdep_recursion_inc();
5507 	check_flags(flags);
5508 	if (__lock_set_class(lock, name, key, subclass, ip))
5509 		check_chain_key(current);
5510 	lockdep_recursion_finish();
5511 	raw_local_irq_restore(flags);
5512 }
5513 EXPORT_SYMBOL_GPL(lock_set_class);
5514 
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5515 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5516 {
5517 	unsigned long flags;
5518 
5519 	if (unlikely(!lockdep_enabled()))
5520 		return;
5521 
5522 	raw_local_irq_save(flags);
5523 	lockdep_recursion_inc();
5524 	check_flags(flags);
5525 	if (__lock_downgrade(lock, ip))
5526 		check_chain_key(current);
5527 	lockdep_recursion_finish();
5528 	raw_local_irq_restore(flags);
5529 }
5530 EXPORT_SYMBOL_GPL(lock_downgrade);
5531 
5532 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5533 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5534 {
5535 #ifdef CONFIG_PROVE_LOCKING
5536 	struct lock_class *class = look_up_lock_class(lock, subclass);
5537 	unsigned long mask = LOCKF_USED;
5538 
5539 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5540 	if (!class)
5541 		return;
5542 
5543 	/*
5544 	 * READ locks only conflict with USED, such that if we only ever use
5545 	 * READ locks, there is no deadlock possible -- RCU.
5546 	 */
5547 	if (!hlock->read)
5548 		mask |= LOCKF_USED_READ;
5549 
5550 	if (!(class->usage_mask & mask))
5551 		return;
5552 
5553 	hlock->class_idx = class - lock_classes;
5554 
5555 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5556 #endif
5557 }
5558 
lockdep_nmi(void)5559 static bool lockdep_nmi(void)
5560 {
5561 	if (raw_cpu_read(lockdep_recursion))
5562 		return false;
5563 
5564 	if (!in_nmi())
5565 		return false;
5566 
5567 	return true;
5568 }
5569 
5570 /*
5571  * read_lock() is recursive if:
5572  * 1. We force lockdep think this way in selftests or
5573  * 2. The implementation is not queued read/write lock or
5574  * 3. The locker is at an in_interrupt() context.
5575  */
read_lock_is_recursive(void)5576 bool read_lock_is_recursive(void)
5577 {
5578 	return force_read_lock_recursive ||
5579 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5580 	       in_interrupt();
5581 }
5582 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5583 
5584 /*
5585  * We are not always called with irqs disabled - do that here,
5586  * and also avoid lockdep recursion:
5587  */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5588 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5589 			  int trylock, int read, int check,
5590 			  struct lockdep_map *nest_lock, unsigned long ip)
5591 {
5592 	unsigned long flags;
5593 
5594 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5595 
5596 	if (!debug_locks)
5597 		return;
5598 
5599 	if (unlikely(!lockdep_enabled())) {
5600 		/* XXX allow trylock from NMI ?!? */
5601 		if (lockdep_nmi() && !trylock) {
5602 			struct held_lock hlock;
5603 
5604 			hlock.acquire_ip = ip;
5605 			hlock.instance = lock;
5606 			hlock.nest_lock = nest_lock;
5607 			hlock.irq_context = 2; // XXX
5608 			hlock.trylock = trylock;
5609 			hlock.read = read;
5610 			hlock.check = check;
5611 			hlock.hardirqs_off = true;
5612 			hlock.references = 0;
5613 
5614 			verify_lock_unused(lock, &hlock, subclass);
5615 		}
5616 		return;
5617 	}
5618 
5619 	raw_local_irq_save(flags);
5620 	check_flags(flags);
5621 
5622 	lockdep_recursion_inc();
5623 	__lock_acquire(lock, subclass, trylock, read, check,
5624 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5625 	lockdep_recursion_finish();
5626 	raw_local_irq_restore(flags);
5627 }
5628 EXPORT_SYMBOL_GPL(lock_acquire);
5629 
lock_release(struct lockdep_map * lock,unsigned long ip)5630 void lock_release(struct lockdep_map *lock, unsigned long ip)
5631 {
5632 	unsigned long flags;
5633 
5634 	trace_lock_release(lock, ip);
5635 
5636 	if (unlikely(!lockdep_enabled()))
5637 		return;
5638 
5639 	raw_local_irq_save(flags);
5640 	check_flags(flags);
5641 
5642 	lockdep_recursion_inc();
5643 	if (__lock_release(lock, ip))
5644 		check_chain_key(current);
5645 	lockdep_recursion_finish();
5646 	raw_local_irq_restore(flags);
5647 }
5648 EXPORT_SYMBOL_GPL(lock_release);
5649 
lock_is_held_type(const struct lockdep_map * lock,int read)5650 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5651 {
5652 	unsigned long flags;
5653 	int ret = LOCK_STATE_NOT_HELD;
5654 
5655 	/*
5656 	 * Avoid false negative lockdep_assert_held() and
5657 	 * lockdep_assert_not_held().
5658 	 */
5659 	if (unlikely(!lockdep_enabled()))
5660 		return LOCK_STATE_UNKNOWN;
5661 
5662 	raw_local_irq_save(flags);
5663 	check_flags(flags);
5664 
5665 	lockdep_recursion_inc();
5666 	ret = __lock_is_held(lock, read);
5667 	lockdep_recursion_finish();
5668 	raw_local_irq_restore(flags);
5669 
5670 	return ret;
5671 }
5672 EXPORT_SYMBOL_GPL(lock_is_held_type);
5673 NOKPROBE_SYMBOL(lock_is_held_type);
5674 
lock_pin_lock(struct lockdep_map * lock)5675 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5676 {
5677 	struct pin_cookie cookie = NIL_COOKIE;
5678 	unsigned long flags;
5679 
5680 	if (unlikely(!lockdep_enabled()))
5681 		return cookie;
5682 
5683 	raw_local_irq_save(flags);
5684 	check_flags(flags);
5685 
5686 	lockdep_recursion_inc();
5687 	cookie = __lock_pin_lock(lock);
5688 	lockdep_recursion_finish();
5689 	raw_local_irq_restore(flags);
5690 
5691 	return cookie;
5692 }
5693 EXPORT_SYMBOL_GPL(lock_pin_lock);
5694 
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5695 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5696 {
5697 	unsigned long flags;
5698 
5699 	if (unlikely(!lockdep_enabled()))
5700 		return;
5701 
5702 	raw_local_irq_save(flags);
5703 	check_flags(flags);
5704 
5705 	lockdep_recursion_inc();
5706 	__lock_repin_lock(lock, cookie);
5707 	lockdep_recursion_finish();
5708 	raw_local_irq_restore(flags);
5709 }
5710 EXPORT_SYMBOL_GPL(lock_repin_lock);
5711 
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5712 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5713 {
5714 	unsigned long flags;
5715 
5716 	if (unlikely(!lockdep_enabled()))
5717 		return;
5718 
5719 	raw_local_irq_save(flags);
5720 	check_flags(flags);
5721 
5722 	lockdep_recursion_inc();
5723 	__lock_unpin_lock(lock, cookie);
5724 	lockdep_recursion_finish();
5725 	raw_local_irq_restore(flags);
5726 }
5727 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5728 
5729 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5730 static void print_lock_contention_bug(struct task_struct *curr,
5731 				      struct lockdep_map *lock,
5732 				      unsigned long ip)
5733 {
5734 	if (!debug_locks_off())
5735 		return;
5736 	if (debug_locks_silent)
5737 		return;
5738 
5739 	pr_warn("\n");
5740 	pr_warn("=================================\n");
5741 	pr_warn("WARNING: bad contention detected!\n");
5742 	print_kernel_ident();
5743 	pr_warn("---------------------------------\n");
5744 	pr_warn("%s/%d is trying to contend lock (",
5745 		curr->comm, task_pid_nr(curr));
5746 	print_lockdep_cache(lock);
5747 	pr_cont(") at:\n");
5748 	print_ip_sym(KERN_WARNING, ip);
5749 	pr_warn("but there are no locks held!\n");
5750 	pr_warn("\nother info that might help us debug this:\n");
5751 	lockdep_print_held_locks(curr);
5752 
5753 	pr_warn("\nstack backtrace:\n");
5754 	dump_stack();
5755 }
5756 
5757 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5758 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5759 {
5760 	struct task_struct *curr = current;
5761 	struct held_lock *hlock;
5762 	struct lock_class_stats *stats;
5763 	unsigned int depth;
5764 	int i, contention_point, contending_point;
5765 
5766 	depth = curr->lockdep_depth;
5767 	/*
5768 	 * Whee, we contended on this lock, except it seems we're not
5769 	 * actually trying to acquire anything much at all..
5770 	 */
5771 	if (DEBUG_LOCKS_WARN_ON(!depth))
5772 		return;
5773 
5774 	hlock = find_held_lock(curr, lock, depth, &i);
5775 	if (!hlock) {
5776 		print_lock_contention_bug(curr, lock, ip);
5777 		return;
5778 	}
5779 
5780 	if (hlock->instance != lock)
5781 		return;
5782 
5783 	hlock->waittime_stamp = lockstat_clock();
5784 
5785 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5786 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5787 				      lock->ip);
5788 
5789 	stats = get_lock_stats(hlock_class(hlock));
5790 	if (contention_point < LOCKSTAT_POINTS)
5791 		stats->contention_point[contention_point]++;
5792 	if (contending_point < LOCKSTAT_POINTS)
5793 		stats->contending_point[contending_point]++;
5794 	if (lock->cpu != smp_processor_id())
5795 		stats->bounces[bounce_contended + !!hlock->read]++;
5796 }
5797 
5798 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5799 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5800 {
5801 	struct task_struct *curr = current;
5802 	struct held_lock *hlock;
5803 	struct lock_class_stats *stats;
5804 	unsigned int depth;
5805 	u64 now, waittime = 0;
5806 	int i, cpu;
5807 
5808 	depth = curr->lockdep_depth;
5809 	/*
5810 	 * Yay, we acquired ownership of this lock we didn't try to
5811 	 * acquire, how the heck did that happen?
5812 	 */
5813 	if (DEBUG_LOCKS_WARN_ON(!depth))
5814 		return;
5815 
5816 	hlock = find_held_lock(curr, lock, depth, &i);
5817 	if (!hlock) {
5818 		print_lock_contention_bug(curr, lock, _RET_IP_);
5819 		return;
5820 	}
5821 
5822 	if (hlock->instance != lock)
5823 		return;
5824 
5825 	cpu = smp_processor_id();
5826 	if (hlock->waittime_stamp) {
5827 		now = lockstat_clock();
5828 		waittime = now - hlock->waittime_stamp;
5829 		hlock->holdtime_stamp = now;
5830 	}
5831 
5832 	stats = get_lock_stats(hlock_class(hlock));
5833 	if (waittime) {
5834 		if (hlock->read)
5835 			lock_time_inc(&stats->read_waittime, waittime);
5836 		else
5837 			lock_time_inc(&stats->write_waittime, waittime);
5838 	}
5839 	if (lock->cpu != cpu)
5840 		stats->bounces[bounce_acquired + !!hlock->read]++;
5841 
5842 	lock->cpu = cpu;
5843 	lock->ip = ip;
5844 }
5845 
lock_contended(struct lockdep_map * lock,unsigned long ip)5846 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5847 {
5848 	unsigned long flags;
5849 
5850 	trace_lock_contended(lock, ip);
5851 
5852 	if (unlikely(!lock_stat || !lockdep_enabled()))
5853 		return;
5854 
5855 	raw_local_irq_save(flags);
5856 	check_flags(flags);
5857 	lockdep_recursion_inc();
5858 	__lock_contended(lock, ip);
5859 	lockdep_recursion_finish();
5860 	raw_local_irq_restore(flags);
5861 }
5862 EXPORT_SYMBOL_GPL(lock_contended);
5863 
lock_acquired(struct lockdep_map * lock,unsigned long ip)5864 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5865 {
5866 	unsigned long flags;
5867 
5868 	trace_lock_acquired(lock, ip);
5869 
5870 	if (unlikely(!lock_stat || !lockdep_enabled()))
5871 		return;
5872 
5873 	raw_local_irq_save(flags);
5874 	check_flags(flags);
5875 	lockdep_recursion_inc();
5876 	__lock_acquired(lock, ip);
5877 	lockdep_recursion_finish();
5878 	raw_local_irq_restore(flags);
5879 }
5880 EXPORT_SYMBOL_GPL(lock_acquired);
5881 #endif
5882 
5883 /*
5884  * Used by the testsuite, sanitize the validator state
5885  * after a simulated failure:
5886  */
5887 
lockdep_reset(void)5888 void lockdep_reset(void)
5889 {
5890 	unsigned long flags;
5891 	int i;
5892 
5893 	raw_local_irq_save(flags);
5894 	lockdep_init_task(current);
5895 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5896 	nr_hardirq_chains = 0;
5897 	nr_softirq_chains = 0;
5898 	nr_process_chains = 0;
5899 	debug_locks = 1;
5900 	for (i = 0; i < CHAINHASH_SIZE; i++)
5901 		INIT_HLIST_HEAD(chainhash_table + i);
5902 	raw_local_irq_restore(flags);
5903 }
5904 
5905 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5906 static void remove_class_from_lock_chain(struct pending_free *pf,
5907 					 struct lock_chain *chain,
5908 					 struct lock_class *class)
5909 {
5910 #ifdef CONFIG_PROVE_LOCKING
5911 	int i;
5912 
5913 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5914 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5915 			continue;
5916 		/*
5917 		 * Each lock class occurs at most once in a lock chain so once
5918 		 * we found a match we can break out of this loop.
5919 		 */
5920 		goto free_lock_chain;
5921 	}
5922 	/* Since the chain has not been modified, return. */
5923 	return;
5924 
5925 free_lock_chain:
5926 	free_chain_hlocks(chain->base, chain->depth);
5927 	/* Overwrite the chain key for concurrent RCU readers. */
5928 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5929 	dec_chains(chain->irq_context);
5930 
5931 	/*
5932 	 * Note: calling hlist_del_rcu() from inside a
5933 	 * hlist_for_each_entry_rcu() loop is safe.
5934 	 */
5935 	hlist_del_rcu(&chain->entry);
5936 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5937 	nr_zapped_lock_chains++;
5938 #endif
5939 }
5940 
5941 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5942 static void remove_class_from_lock_chains(struct pending_free *pf,
5943 					  struct lock_class *class)
5944 {
5945 	struct lock_chain *chain;
5946 	struct hlist_head *head;
5947 	int i;
5948 
5949 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5950 		head = chainhash_table + i;
5951 		hlist_for_each_entry_rcu(chain, head, entry) {
5952 			remove_class_from_lock_chain(pf, chain, class);
5953 		}
5954 	}
5955 }
5956 
5957 /*
5958  * Remove all references to a lock class. The caller must hold the graph lock.
5959  */
zap_class(struct pending_free * pf,struct lock_class * class)5960 static void zap_class(struct pending_free *pf, struct lock_class *class)
5961 {
5962 	struct lock_list *entry;
5963 	int i;
5964 
5965 	WARN_ON_ONCE(!class->key);
5966 
5967 	/*
5968 	 * Remove all dependencies this lock is
5969 	 * involved in:
5970 	 */
5971 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5972 		entry = list_entries + i;
5973 		if (entry->class != class && entry->links_to != class)
5974 			continue;
5975 		__clear_bit(i, list_entries_in_use);
5976 		nr_list_entries--;
5977 		list_del_rcu(&entry->entry);
5978 	}
5979 	if (list_empty(&class->locks_after) &&
5980 	    list_empty(&class->locks_before)) {
5981 		list_move_tail(&class->lock_entry, &pf->zapped);
5982 		hlist_del_rcu(&class->hash_entry);
5983 		WRITE_ONCE(class->key, NULL);
5984 		WRITE_ONCE(class->name, NULL);
5985 		nr_lock_classes--;
5986 		__clear_bit(class - lock_classes, lock_classes_in_use);
5987 		if (class - lock_classes == max_lock_class_idx)
5988 			max_lock_class_idx--;
5989 	} else {
5990 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5991 			  class->name);
5992 	}
5993 
5994 	remove_class_from_lock_chains(pf, class);
5995 	nr_zapped_classes++;
5996 }
5997 
reinit_class(struct lock_class * class)5998 static void reinit_class(struct lock_class *class)
5999 {
6000 	void *const p = class;
6001 	const unsigned int offset = offsetof(struct lock_class, key);
6002 
6003 	WARN_ON_ONCE(!class->lock_entry.next);
6004 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6005 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6006 	memset(p + offset, 0, sizeof(*class) - offset);
6007 	WARN_ON_ONCE(!class->lock_entry.next);
6008 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6009 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6010 }
6011 
within(const void * addr,void * start,unsigned long size)6012 static inline int within(const void *addr, void *start, unsigned long size)
6013 {
6014 	return addr >= start && addr < start + size;
6015 }
6016 
inside_selftest(void)6017 static bool inside_selftest(void)
6018 {
6019 	return current == lockdep_selftest_task_struct;
6020 }
6021 
6022 /* The caller must hold the graph lock. */
get_pending_free(void)6023 static struct pending_free *get_pending_free(void)
6024 {
6025 	return delayed_free.pf + delayed_free.index;
6026 }
6027 
6028 static void free_zapped_rcu(struct rcu_head *cb);
6029 
6030 /*
6031  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6032  * the graph lock held.
6033  */
call_rcu_zapped(struct pending_free * pf)6034 static void call_rcu_zapped(struct pending_free *pf)
6035 {
6036 	WARN_ON_ONCE(inside_selftest());
6037 
6038 	if (list_empty(&pf->zapped))
6039 		return;
6040 
6041 	if (delayed_free.scheduled)
6042 		return;
6043 
6044 	delayed_free.scheduled = true;
6045 
6046 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6047 	delayed_free.index ^= 1;
6048 
6049 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6050 }
6051 
6052 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6053 static void __free_zapped_classes(struct pending_free *pf)
6054 {
6055 	struct lock_class *class;
6056 
6057 	check_data_structures();
6058 
6059 	list_for_each_entry(class, &pf->zapped, lock_entry)
6060 		reinit_class(class);
6061 
6062 	list_splice_init(&pf->zapped, &free_lock_classes);
6063 
6064 #ifdef CONFIG_PROVE_LOCKING
6065 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6066 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6067 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6068 #endif
6069 }
6070 
free_zapped_rcu(struct rcu_head * ch)6071 static void free_zapped_rcu(struct rcu_head *ch)
6072 {
6073 	struct pending_free *pf;
6074 	unsigned long flags;
6075 
6076 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6077 		return;
6078 
6079 	raw_local_irq_save(flags);
6080 	lockdep_lock();
6081 
6082 	/* closed head */
6083 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6084 	__free_zapped_classes(pf);
6085 	delayed_free.scheduled = false;
6086 
6087 	/*
6088 	 * If there's anything on the open list, close and start a new callback.
6089 	 */
6090 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6091 
6092 	lockdep_unlock();
6093 	raw_local_irq_restore(flags);
6094 }
6095 
6096 /*
6097  * Remove all lock classes from the class hash table and from the
6098  * all_lock_classes list whose key or name is in the address range [start,
6099  * start + size). Move these lock classes to the zapped_classes list. Must
6100  * be called with the graph lock held.
6101  */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6102 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6103 				     unsigned long size)
6104 {
6105 	struct lock_class *class;
6106 	struct hlist_head *head;
6107 	int i;
6108 
6109 	/* Unhash all classes that were created by a module. */
6110 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6111 		head = classhash_table + i;
6112 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6113 			if (!within(class->key, start, size) &&
6114 			    !within(class->name, start, size))
6115 				continue;
6116 			zap_class(pf, class);
6117 		}
6118 	}
6119 }
6120 
6121 /*
6122  * Used in module.c to remove lock classes from memory that is going to be
6123  * freed; and possibly re-used by other modules.
6124  *
6125  * We will have had one synchronize_rcu() before getting here, so we're
6126  * guaranteed nobody will look up these exact classes -- they're properly dead
6127  * but still allocated.
6128  */
lockdep_free_key_range_reg(void * start,unsigned long size)6129 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6130 {
6131 	struct pending_free *pf;
6132 	unsigned long flags;
6133 
6134 	init_data_structures_once();
6135 
6136 	raw_local_irq_save(flags);
6137 	lockdep_lock();
6138 	pf = get_pending_free();
6139 	__lockdep_free_key_range(pf, start, size);
6140 	call_rcu_zapped(pf);
6141 	lockdep_unlock();
6142 	raw_local_irq_restore(flags);
6143 
6144 	/*
6145 	 * Wait for any possible iterators from look_up_lock_class() to pass
6146 	 * before continuing to free the memory they refer to.
6147 	 */
6148 	synchronize_rcu();
6149 }
6150 
6151 /*
6152  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6153  * Ignores debug_locks. Must only be used by the lockdep selftests.
6154  */
lockdep_free_key_range_imm(void * start,unsigned long size)6155 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6156 {
6157 	struct pending_free *pf = delayed_free.pf;
6158 	unsigned long flags;
6159 
6160 	init_data_structures_once();
6161 
6162 	raw_local_irq_save(flags);
6163 	lockdep_lock();
6164 	__lockdep_free_key_range(pf, start, size);
6165 	__free_zapped_classes(pf);
6166 	lockdep_unlock();
6167 	raw_local_irq_restore(flags);
6168 }
6169 
lockdep_free_key_range(void * start,unsigned long size)6170 void lockdep_free_key_range(void *start, unsigned long size)
6171 {
6172 	init_data_structures_once();
6173 
6174 	if (inside_selftest())
6175 		lockdep_free_key_range_imm(start, size);
6176 	else
6177 		lockdep_free_key_range_reg(start, size);
6178 }
6179 
6180 /*
6181  * Check whether any element of the @lock->class_cache[] array refers to a
6182  * registered lock class. The caller must hold either the graph lock or the
6183  * RCU read lock.
6184  */
lock_class_cache_is_registered(struct lockdep_map * lock)6185 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6186 {
6187 	struct lock_class *class;
6188 	struct hlist_head *head;
6189 	int i, j;
6190 
6191 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6192 		head = classhash_table + i;
6193 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6194 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6195 				if (lock->class_cache[j] == class)
6196 					return true;
6197 		}
6198 	}
6199 	return false;
6200 }
6201 
6202 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6203 static void __lockdep_reset_lock(struct pending_free *pf,
6204 				 struct lockdep_map *lock)
6205 {
6206 	struct lock_class *class;
6207 	int j;
6208 
6209 	/*
6210 	 * Remove all classes this lock might have:
6211 	 */
6212 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6213 		/*
6214 		 * If the class exists we look it up and zap it:
6215 		 */
6216 		class = look_up_lock_class(lock, j);
6217 		if (class)
6218 			zap_class(pf, class);
6219 	}
6220 	/*
6221 	 * Debug check: in the end all mapped classes should
6222 	 * be gone.
6223 	 */
6224 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6225 		debug_locks_off();
6226 }
6227 
6228 /*
6229  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6230  * released data structures from RCU context.
6231  */
lockdep_reset_lock_reg(struct lockdep_map * lock)6232 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6233 {
6234 	struct pending_free *pf;
6235 	unsigned long flags;
6236 	int locked;
6237 
6238 	raw_local_irq_save(flags);
6239 	locked = graph_lock();
6240 	if (!locked)
6241 		goto out_irq;
6242 
6243 	pf = get_pending_free();
6244 	__lockdep_reset_lock(pf, lock);
6245 	call_rcu_zapped(pf);
6246 
6247 	graph_unlock();
6248 out_irq:
6249 	raw_local_irq_restore(flags);
6250 }
6251 
6252 /*
6253  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6254  * lockdep selftests.
6255  */
lockdep_reset_lock_imm(struct lockdep_map * lock)6256 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6257 {
6258 	struct pending_free *pf = delayed_free.pf;
6259 	unsigned long flags;
6260 
6261 	raw_local_irq_save(flags);
6262 	lockdep_lock();
6263 	__lockdep_reset_lock(pf, lock);
6264 	__free_zapped_classes(pf);
6265 	lockdep_unlock();
6266 	raw_local_irq_restore(flags);
6267 }
6268 
lockdep_reset_lock(struct lockdep_map * lock)6269 void lockdep_reset_lock(struct lockdep_map *lock)
6270 {
6271 	init_data_structures_once();
6272 
6273 	if (inside_selftest())
6274 		lockdep_reset_lock_imm(lock);
6275 	else
6276 		lockdep_reset_lock_reg(lock);
6277 }
6278 
6279 /*
6280  * Unregister a dynamically allocated key.
6281  *
6282  * Unlike lockdep_register_key(), a search is always done to find a matching
6283  * key irrespective of debug_locks to avoid potential invalid access to freed
6284  * memory in lock_class entry.
6285  */
lockdep_unregister_key(struct lock_class_key * key)6286 void lockdep_unregister_key(struct lock_class_key *key)
6287 {
6288 	struct hlist_head *hash_head = keyhashentry(key);
6289 	struct lock_class_key *k;
6290 	struct pending_free *pf;
6291 	unsigned long flags;
6292 	bool found = false;
6293 
6294 	might_sleep();
6295 
6296 	if (WARN_ON_ONCE(static_obj(key)))
6297 		return;
6298 
6299 	raw_local_irq_save(flags);
6300 	lockdep_lock();
6301 
6302 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6303 		if (k == key) {
6304 			hlist_del_rcu(&k->hash_entry);
6305 			found = true;
6306 			break;
6307 		}
6308 	}
6309 	WARN_ON_ONCE(!found && debug_locks);
6310 	if (found) {
6311 		pf = get_pending_free();
6312 		__lockdep_free_key_range(pf, key, 1);
6313 		call_rcu_zapped(pf);
6314 	}
6315 	lockdep_unlock();
6316 	raw_local_irq_restore(flags);
6317 
6318 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6319 	synchronize_rcu();
6320 }
6321 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6322 
lockdep_init(void)6323 void __init lockdep_init(void)
6324 {
6325 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6326 
6327 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6328 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6329 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6330 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6331 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6332 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6333 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6334 
6335 	printk(" memory used by lock dependency info: %zu kB\n",
6336 	       (sizeof(lock_classes) +
6337 		sizeof(lock_classes_in_use) +
6338 		sizeof(classhash_table) +
6339 		sizeof(list_entries) +
6340 		sizeof(list_entries_in_use) +
6341 		sizeof(chainhash_table) +
6342 		sizeof(delayed_free)
6343 #ifdef CONFIG_PROVE_LOCKING
6344 		+ sizeof(lock_cq)
6345 		+ sizeof(lock_chains)
6346 		+ sizeof(lock_chains_in_use)
6347 		+ sizeof(chain_hlocks)
6348 #endif
6349 		) / 1024
6350 		);
6351 
6352 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6353 	printk(" memory used for stack traces: %zu kB\n",
6354 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6355 	       );
6356 #endif
6357 
6358 	printk(" per task-struct memory footprint: %zu bytes\n",
6359 	       sizeof(((struct task_struct *)NULL)->held_locks));
6360 }
6361 
6362 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6363 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6364 		     const void *mem_to, struct held_lock *hlock)
6365 {
6366 	if (!debug_locks_off())
6367 		return;
6368 	if (debug_locks_silent)
6369 		return;
6370 
6371 	pr_warn("\n");
6372 	pr_warn("=========================\n");
6373 	pr_warn("WARNING: held lock freed!\n");
6374 	print_kernel_ident();
6375 	pr_warn("-------------------------\n");
6376 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6377 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6378 	print_lock(hlock);
6379 	lockdep_print_held_locks(curr);
6380 
6381 	pr_warn("\nstack backtrace:\n");
6382 	dump_stack();
6383 }
6384 
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6385 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6386 				const void* lock_from, unsigned long lock_len)
6387 {
6388 	return lock_from + lock_len <= mem_from ||
6389 		mem_from + mem_len <= lock_from;
6390 }
6391 
6392 /*
6393  * Called when kernel memory is freed (or unmapped), or if a lock
6394  * is destroyed or reinitialized - this code checks whether there is
6395  * any held lock in the memory range of <from> to <to>:
6396  */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6397 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6398 {
6399 	struct task_struct *curr = current;
6400 	struct held_lock *hlock;
6401 	unsigned long flags;
6402 	int i;
6403 
6404 	if (unlikely(!debug_locks))
6405 		return;
6406 
6407 	raw_local_irq_save(flags);
6408 	for (i = 0; i < curr->lockdep_depth; i++) {
6409 		hlock = curr->held_locks + i;
6410 
6411 		if (not_in_range(mem_from, mem_len, hlock->instance,
6412 					sizeof(*hlock->instance)))
6413 			continue;
6414 
6415 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6416 		break;
6417 	}
6418 	raw_local_irq_restore(flags);
6419 }
6420 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6421 
print_held_locks_bug(void)6422 static void print_held_locks_bug(void)
6423 {
6424 	if (!debug_locks_off())
6425 		return;
6426 	if (debug_locks_silent)
6427 		return;
6428 
6429 	pr_warn("\n");
6430 	pr_warn("====================================\n");
6431 	pr_warn("WARNING: %s/%d still has locks held!\n",
6432 	       current->comm, task_pid_nr(current));
6433 	print_kernel_ident();
6434 	pr_warn("------------------------------------\n");
6435 	lockdep_print_held_locks(current);
6436 	pr_warn("\nstack backtrace:\n");
6437 	dump_stack();
6438 }
6439 
debug_check_no_locks_held(void)6440 void debug_check_no_locks_held(void)
6441 {
6442 	if (unlikely(current->lockdep_depth > 0))
6443 		print_held_locks_bug();
6444 }
6445 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6446 
6447 #ifdef __KERNEL__
debug_show_all_locks(void)6448 void debug_show_all_locks(void)
6449 {
6450 	struct task_struct *g, *p;
6451 
6452 	if (unlikely(!debug_locks)) {
6453 		pr_warn("INFO: lockdep is turned off.\n");
6454 		return;
6455 	}
6456 	pr_warn("\nShowing all locks held in the system:\n");
6457 
6458 	rcu_read_lock();
6459 	for_each_process_thread(g, p) {
6460 		if (!p->lockdep_depth)
6461 			continue;
6462 		lockdep_print_held_locks(p);
6463 		touch_nmi_watchdog();
6464 		touch_all_softlockup_watchdogs();
6465 	}
6466 	rcu_read_unlock();
6467 
6468 	pr_warn("\n");
6469 	pr_warn("=============================================\n\n");
6470 }
6471 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6472 #endif
6473 
6474 /*
6475  * Careful: only use this function if you are sure that
6476  * the task cannot run in parallel!
6477  */
debug_show_held_locks(struct task_struct * task)6478 void debug_show_held_locks(struct task_struct *task)
6479 {
6480 	if (unlikely(!debug_locks)) {
6481 		printk("INFO: lockdep is turned off.\n");
6482 		return;
6483 	}
6484 	lockdep_print_held_locks(task);
6485 }
6486 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6487 
lockdep_sys_exit(void)6488 asmlinkage __visible void lockdep_sys_exit(void)
6489 {
6490 	struct task_struct *curr = current;
6491 
6492 	if (unlikely(curr->lockdep_depth)) {
6493 		if (!debug_locks_off())
6494 			return;
6495 		pr_warn("\n");
6496 		pr_warn("================================================\n");
6497 		pr_warn("WARNING: lock held when returning to user space!\n");
6498 		print_kernel_ident();
6499 		pr_warn("------------------------------------------------\n");
6500 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6501 				curr->comm, curr->pid);
6502 		lockdep_print_held_locks(curr);
6503 	}
6504 
6505 	/*
6506 	 * The lock history for each syscall should be independent. So wipe the
6507 	 * slate clean on return to userspace.
6508 	 */
6509 	lockdep_invariant_state(false);
6510 }
6511 
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6512 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6513 {
6514 	struct task_struct *curr = current;
6515 	int dl = READ_ONCE(debug_locks);
6516 
6517 	/* Note: the following can be executed concurrently, so be careful. */
6518 	pr_warn("\n");
6519 	pr_warn("=============================\n");
6520 	pr_warn("WARNING: suspicious RCU usage\n");
6521 	print_kernel_ident();
6522 	pr_warn("-----------------------------\n");
6523 	pr_warn("%s:%d %s!\n", file, line, s);
6524 	pr_warn("\nother info that might help us debug this:\n\n");
6525 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6526 	       !rcu_lockdep_current_cpu_online()
6527 			? "RCU used illegally from offline CPU!\n"
6528 			: "",
6529 	       rcu_scheduler_active, dl,
6530 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6531 
6532 	/*
6533 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6534 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6535 	 * considers that CPU to be in an "extended quiescent state",
6536 	 * which means that RCU will be completely ignoring that CPU.
6537 	 * Therefore, rcu_read_lock() and friends have absolutely no
6538 	 * effect on a CPU running in that state. In other words, even if
6539 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6540 	 * delete data structures out from under it.  RCU really has no
6541 	 * choice here: we need to keep an RCU-free window in idle where
6542 	 * the CPU may possibly enter into low power mode. This way we can
6543 	 * notice an extended quiescent state to other CPUs that started a grace
6544 	 * period. Otherwise we would delay any grace period as long as we run
6545 	 * in the idle task.
6546 	 *
6547 	 * So complain bitterly if someone does call rcu_read_lock(),
6548 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6549 	 */
6550 	if (!rcu_is_watching())
6551 		pr_warn("RCU used illegally from extended quiescent state!\n");
6552 
6553 	lockdep_print_held_locks(curr);
6554 	pr_warn("\nstack backtrace:\n");
6555 	dump_stack();
6556 }
6557 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6558