1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15
16 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 #endif
20
21 /*
22 * On almost all architectures and configurations, 0 can be used as the
23 * upper ceiling to free_pgtables(): on many architectures it has the same
24 * effect as using TASK_SIZE. However, there is one configuration which
25 * must impose a more careful limit, to avoid freeing kernel pgtables.
26 */
27 #ifndef USER_PGTABLES_CEILING
28 #define USER_PGTABLES_CEILING 0UL
29 #endif
30
31 /*
32 * This defines the first usable user address. Platforms
33 * can override its value with custom FIRST_USER_ADDRESS
34 * defined in their respective <asm/pgtable.h>.
35 */
36 #ifndef FIRST_USER_ADDRESS
37 #define FIRST_USER_ADDRESS 0UL
38 #endif
39
40 /*
41 * This defines the generic helper for accessing PMD page
42 * table page. Although platforms can still override this
43 * via their respective <asm/pgtable.h>.
44 */
45 #ifndef pmd_pgtable
46 #define pmd_pgtable(pmd) pmd_page(pmd)
47 #endif
48
49 /*
50 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
51 *
52 * The pXx_index() functions return the index of the entry in the page
53 * table page which would control the given virtual address
54 *
55 * As these functions may be used by the same code for different levels of
56 * the page table folding, they are always available, regardless of
57 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58 * because in such cases PTRS_PER_PxD equals 1.
59 */
60
pte_index(unsigned long address)61 static inline unsigned long pte_index(unsigned long address)
62 {
63 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
64 }
65 #define pte_index pte_index
66
67 #ifndef pmd_index
pmd_index(unsigned long address)68 static inline unsigned long pmd_index(unsigned long address)
69 {
70 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
71 }
72 #define pmd_index pmd_index
73 #endif
74
75 #ifndef pud_index
pud_index(unsigned long address)76 static inline unsigned long pud_index(unsigned long address)
77 {
78 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
79 }
80 #define pud_index pud_index
81 #endif
82
83 #ifndef pgd_index
84 /* Must be a compile-time constant, so implement it as a macro */
85 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
86 #endif
87
88 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)89 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
90 {
91 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
92 }
93 #define pte_offset_kernel pte_offset_kernel
94 #endif
95
96 #if defined(CONFIG_HIGHPTE)
97 #define pte_offset_map(dir, address) \
98 ((pte_t *)kmap_atomic(pmd_page(*(dir))) + \
99 pte_index((address)))
100 #define pte_unmap(pte) kunmap_atomic((pte))
101 #else
102 #define pte_offset_map(dir, address) pte_offset_kernel((dir), (address))
103 #define pte_unmap(pte) ((void)(pte)) /* NOP */
104 #endif
105
106 /* Find an entry in the second-level page table.. */
107 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)108 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
109 {
110 return pud_pgtable(*pud) + pmd_index(address);
111 }
112 #define pmd_offset pmd_offset
113 #endif
114
115 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)116 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
117 {
118 return p4d_pgtable(*p4d) + pud_index(address);
119 }
120 #define pud_offset pud_offset
121 #endif
122
pgd_offset_pgd(pgd_t * pgd,unsigned long address)123 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
124 {
125 return (pgd + pgd_index(address));
126 };
127
128 /*
129 * a shortcut to get a pgd_t in a given mm
130 */
131 #ifndef pgd_offset
132 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
133 #endif
134
135 /*
136 * a shortcut which implies the use of the kernel's pgd, instead
137 * of a process's
138 */
139 #ifndef pgd_offset_k
140 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
141 #endif
142
143 /*
144 * In many cases it is known that a virtual address is mapped at PMD or PTE
145 * level, so instead of traversing all the page table levels, we can get a
146 * pointer to the PMD entry in user or kernel page table or translate a virtual
147 * address to the pointer in the PTE in the kernel page tables with simple
148 * helpers.
149 */
pmd_off(struct mm_struct * mm,unsigned long va)150 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
151 {
152 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
153 }
154
pmd_off_k(unsigned long va)155 static inline pmd_t *pmd_off_k(unsigned long va)
156 {
157 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
158 }
159
virt_to_kpte(unsigned long vaddr)160 static inline pte_t *virt_to_kpte(unsigned long vaddr)
161 {
162 pmd_t *pmd = pmd_off_k(vaddr);
163
164 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
165 }
166
167 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
168 extern int ptep_set_access_flags(struct vm_area_struct *vma,
169 unsigned long address, pte_t *ptep,
170 pte_t entry, int dirty);
171 #endif
172
173 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
176 unsigned long address, pmd_t *pmdp,
177 pmd_t entry, int dirty);
178 extern int pudp_set_access_flags(struct vm_area_struct *vma,
179 unsigned long address, pud_t *pudp,
180 pud_t entry, int dirty);
181 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)182 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
183 unsigned long address, pmd_t *pmdp,
184 pmd_t entry, int dirty)
185 {
186 BUILD_BUG();
187 return 0;
188 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)189 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
190 unsigned long address, pud_t *pudp,
191 pud_t entry, int dirty)
192 {
193 BUILD_BUG();
194 return 0;
195 }
196 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
197 #endif
198
199 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)200 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
201 unsigned long address,
202 pte_t *ptep)
203 {
204 pte_t pte = *ptep;
205 int r = 1;
206 if (!pte_young(pte))
207 r = 0;
208 else
209 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
210 return r;
211 }
212 #endif
213
214 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
215 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)216 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
217 unsigned long address,
218 pmd_t *pmdp)
219 {
220 pmd_t pmd = *pmdp;
221 int r = 1;
222 if (!pmd_young(pmd))
223 r = 0;
224 else
225 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
226 return r;
227 }
228 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)229 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
230 unsigned long address,
231 pmd_t *pmdp)
232 {
233 BUILD_BUG();
234 return 0;
235 }
236 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
237 #endif
238
239 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
240 int ptep_clear_flush_young(struct vm_area_struct *vma,
241 unsigned long address, pte_t *ptep);
242 #endif
243
244 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
247 unsigned long address, pmd_t *pmdp);
248 #else
249 /*
250 * Despite relevant to THP only, this API is called from generic rmap code
251 * under PageTransHuge(), hence needs a dummy implementation for !THP
252 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)253 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
254 unsigned long address, pmd_t *pmdp)
255 {
256 BUILD_BUG();
257 return 0;
258 }
259 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
260 #endif
261
262 #ifndef arch_has_hw_pte_young
263 /*
264 * Return whether the accessed bit is supported on the local CPU.
265 *
266 * This stub assumes accessing through an old PTE triggers a page fault.
267 * Architectures that automatically set the access bit should overwrite it.
268 */
arch_has_hw_pte_young(void)269 static inline bool arch_has_hw_pte_young(void)
270 {
271 return false;
272 }
273 #endif
274
275 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)276 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
277 unsigned long address,
278 pte_t *ptep)
279 {
280 pte_t pte = *ptep;
281 pte_clear(mm, address, ptep);
282 return pte;
283 }
284 #endif
285
286 #ifndef __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)287 static inline pte_t ptep_get(pte_t *ptep)
288 {
289 return READ_ONCE(*ptep);
290 }
291 #endif
292
293 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
294 /*
295 * WARNING: only to be used in the get_user_pages_fast() implementation.
296 *
297 * With get_user_pages_fast(), we walk down the pagetables without taking any
298 * locks. For this we would like to load the pointers atomically, but sometimes
299 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
300 * we do have is the guarantee that a PTE will only either go from not present
301 * to present, or present to not present or both -- it will not switch to a
302 * completely different present page without a TLB flush in between; something
303 * that we are blocking by holding interrupts off.
304 *
305 * Setting ptes from not present to present goes:
306 *
307 * ptep->pte_high = h;
308 * smp_wmb();
309 * ptep->pte_low = l;
310 *
311 * And present to not present goes:
312 *
313 * ptep->pte_low = 0;
314 * smp_wmb();
315 * ptep->pte_high = 0;
316 *
317 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
318 * We load pte_high *after* loading pte_low, which ensures we don't see an older
319 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
320 * picked up a changed pte high. We might have gotten rubbish values from
321 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
322 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
323 * operates on present ptes we're safe.
324 */
ptep_get_lockless(pte_t * ptep)325 static inline pte_t ptep_get_lockless(pte_t *ptep)
326 {
327 pte_t pte;
328
329 do {
330 pte.pte_low = ptep->pte_low;
331 smp_rmb();
332 pte.pte_high = ptep->pte_high;
333 smp_rmb();
334 } while (unlikely(pte.pte_low != ptep->pte_low));
335
336 return pte;
337 }
338 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
339 /*
340 * We require that the PTE can be read atomically.
341 */
ptep_get_lockless(pte_t * ptep)342 static inline pte_t ptep_get_lockless(pte_t *ptep)
343 {
344 return ptep_get(ptep);
345 }
346 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
347
348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)350 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
351 unsigned long address,
352 pmd_t *pmdp)
353 {
354 pmd_t pmd = *pmdp;
355 pmd_clear(pmdp);
356 return pmd;
357 }
358 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
359 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)360 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
361 unsigned long address,
362 pud_t *pudp)
363 {
364 pud_t pud = *pudp;
365
366 pud_clear(pudp);
367 return pud;
368 }
369 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
371
372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
373 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)374 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
375 unsigned long address, pmd_t *pmdp,
376 int full)
377 {
378 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
379 }
380 #endif
381
382 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)383 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
384 unsigned long address, pud_t *pudp,
385 int full)
386 {
387 return pudp_huge_get_and_clear(mm, address, pudp);
388 }
389 #endif
390 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
391
392 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)393 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
394 unsigned long address, pte_t *ptep,
395 int full)
396 {
397 pte_t pte;
398 pte = ptep_get_and_clear(mm, address, ptep);
399 return pte;
400 }
401 #endif
402
403
404 /*
405 * If two threads concurrently fault at the same page, the thread that
406 * won the race updates the PTE and its local TLB/Cache. The other thread
407 * gives up, simply does nothing, and continues; on architectures where
408 * software can update TLB, local TLB can be updated here to avoid next page
409 * fault. This function updates TLB only, do nothing with cache or others.
410 * It is the difference with function update_mmu_cache.
411 */
412 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)413 static inline void update_mmu_tlb(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep)
415 {
416 }
417 #define __HAVE_ARCH_UPDATE_MMU_TLB
418 #endif
419
420 /*
421 * Some architectures may be able to avoid expensive synchronization
422 * primitives when modifications are made to PTE's which are already
423 * not present, or in the process of an address space destruction.
424 */
425 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)426 static inline void pte_clear_not_present_full(struct mm_struct *mm,
427 unsigned long address,
428 pte_t *ptep,
429 int full)
430 {
431 pte_clear(mm, address, ptep);
432 }
433 #endif
434
435 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
436 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
437 unsigned long address,
438 pte_t *ptep);
439 #endif
440
441 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
442 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
443 unsigned long address,
444 pmd_t *pmdp);
445 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
446 unsigned long address,
447 pud_t *pudp);
448 #endif
449
450 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
451 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)452 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
453 {
454 pte_t old_pte = *ptep;
455 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
456 }
457 #endif
458
459 /*
460 * On some architectures hardware does not set page access bit when accessing
461 * memory page, it is responsibility of software setting this bit. It brings
462 * out extra page fault penalty to track page access bit. For optimization page
463 * access bit can be set during all page fault flow on these arches.
464 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
465 * where software maintains page access bit.
466 */
467 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)468 static inline pte_t pte_sw_mkyoung(pte_t pte)
469 {
470 return pte;
471 }
472 #define pte_sw_mkyoung pte_sw_mkyoung
473 #endif
474
475 #ifndef pte_savedwrite
476 #define pte_savedwrite pte_write
477 #endif
478
479 #ifndef pte_mk_savedwrite
480 #define pte_mk_savedwrite pte_mkwrite
481 #endif
482
483 #ifndef pte_clear_savedwrite
484 #define pte_clear_savedwrite pte_wrprotect
485 #endif
486
487 #ifndef pmd_savedwrite
488 #define pmd_savedwrite pmd_write
489 #endif
490
491 #ifndef pmd_mk_savedwrite
492 #define pmd_mk_savedwrite pmd_mkwrite
493 #endif
494
495 #ifndef pmd_clear_savedwrite
496 #define pmd_clear_savedwrite pmd_wrprotect
497 #endif
498
499 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)501 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
502 unsigned long address, pmd_t *pmdp)
503 {
504 pmd_t old_pmd = *pmdp;
505 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
506 }
507 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)508 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
509 unsigned long address, pmd_t *pmdp)
510 {
511 BUILD_BUG();
512 }
513 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
514 #endif
515 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
516 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)517 static inline void pudp_set_wrprotect(struct mm_struct *mm,
518 unsigned long address, pud_t *pudp)
519 {
520 pud_t old_pud = *pudp;
521
522 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
523 }
524 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)525 static inline void pudp_set_wrprotect(struct mm_struct *mm,
526 unsigned long address, pud_t *pudp)
527 {
528 BUILD_BUG();
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
531 #endif
532
533 #ifndef pmdp_collapse_flush
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
536 unsigned long address, pmd_t *pmdp);
537 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)538 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
539 unsigned long address,
540 pmd_t *pmdp)
541 {
542 BUILD_BUG();
543 return *pmdp;
544 }
545 #define pmdp_collapse_flush pmdp_collapse_flush
546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
547 #endif
548
549 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
550 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
551 pgtable_t pgtable);
552 #endif
553
554 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
555 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
556 #endif
557
558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
559 /*
560 * This is an implementation of pmdp_establish() that is only suitable for an
561 * architecture that doesn't have hardware dirty/accessed bits. In this case we
562 * can't race with CPU which sets these bits and non-atomic approach is fine.
563 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)564 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
565 unsigned long address, pmd_t *pmdp, pmd_t pmd)
566 {
567 pmd_t old_pmd = *pmdp;
568 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
569 return old_pmd;
570 }
571 #endif
572
573 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
574 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
575 pmd_t *pmdp);
576 #endif
577
578 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
579
580 /*
581 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
582 * hugepage mapping in the page tables. This function is similar to
583 * pmdp_invalidate(), but should only be used if the access and dirty bits would
584 * not be cleared by the software in the new PMD value. The function ensures
585 * that hardware changes of the access and dirty bits updates would not be lost.
586 *
587 * Doing so can allow in certain architectures to avoid a TLB flush in most
588 * cases. Yet, another TLB flush might be necessary later if the PMD update
589 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
590 * even when a TLB flush is needed because of the update, the caller may be able
591 * to batch these TLB flushing operations, so fewer TLB flush operations are
592 * needed.
593 */
594 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
595 unsigned long address, pmd_t *pmdp);
596 #endif
597
598 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)599 static inline int pte_same(pte_t pte_a, pte_t pte_b)
600 {
601 return pte_val(pte_a) == pte_val(pte_b);
602 }
603 #endif
604
605 #ifndef __HAVE_ARCH_PTE_UNUSED
606 /*
607 * Some architectures provide facilities to virtualization guests
608 * so that they can flag allocated pages as unused. This allows the
609 * host to transparently reclaim unused pages. This function returns
610 * whether the pte's page is unused.
611 */
pte_unused(pte_t pte)612 static inline int pte_unused(pte_t pte)
613 {
614 return 0;
615 }
616 #endif
617
618 #ifndef pte_access_permitted
619 #define pte_access_permitted(pte, write) \
620 (pte_present(pte) && (!(write) || pte_write(pte)))
621 #endif
622
623 #ifndef pmd_access_permitted
624 #define pmd_access_permitted(pmd, write) \
625 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
626 #endif
627
628 #ifndef pud_access_permitted
629 #define pud_access_permitted(pud, write) \
630 (pud_present(pud) && (!(write) || pud_write(pud)))
631 #endif
632
633 #ifndef p4d_access_permitted
634 #define p4d_access_permitted(p4d, write) \
635 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
636 #endif
637
638 #ifndef pgd_access_permitted
639 #define pgd_access_permitted(pgd, write) \
640 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
641 #endif
642
643 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)644 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
645 {
646 return pmd_val(pmd_a) == pmd_val(pmd_b);
647 }
648
pud_same(pud_t pud_a,pud_t pud_b)649 static inline int pud_same(pud_t pud_a, pud_t pud_b)
650 {
651 return pud_val(pud_a) == pud_val(pud_b);
652 }
653 #endif
654
655 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)656 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
657 {
658 return p4d_val(p4d_a) == p4d_val(p4d_b);
659 }
660 #endif
661
662 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)663 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
664 {
665 return pgd_val(pgd_a) == pgd_val(pgd_b);
666 }
667 #endif
668
669 /*
670 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
671 * TLB flush will be required as a result of the "set". For example, use
672 * in scenarios where it is known ahead of time that the routine is
673 * setting non-present entries, or re-setting an existing entry to the
674 * same value. Otherwise, use the typical "set" helpers and flush the
675 * TLB.
676 */
677 #define set_pte_safe(ptep, pte) \
678 ({ \
679 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
680 set_pte(ptep, pte); \
681 })
682
683 #define set_pmd_safe(pmdp, pmd) \
684 ({ \
685 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
686 set_pmd(pmdp, pmd); \
687 })
688
689 #define set_pud_safe(pudp, pud) \
690 ({ \
691 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
692 set_pud(pudp, pud); \
693 })
694
695 #define set_p4d_safe(p4dp, p4d) \
696 ({ \
697 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
698 set_p4d(p4dp, p4d); \
699 })
700
701 #define set_pgd_safe(pgdp, pgd) \
702 ({ \
703 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
704 set_pgd(pgdp, pgd); \
705 })
706
707 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
708 /*
709 * Some architectures support metadata associated with a page. When a
710 * page is being swapped out, this metadata must be saved so it can be
711 * restored when the page is swapped back in. SPARC M7 and newer
712 * processors support an ADI (Application Data Integrity) tag for the
713 * page as metadata for the page. arch_do_swap_page() can restore this
714 * metadata when a page is swapped back in.
715 */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)716 static inline void arch_do_swap_page(struct mm_struct *mm,
717 struct vm_area_struct *vma,
718 unsigned long addr,
719 pte_t pte, pte_t oldpte)
720 {
721
722 }
723 #endif
724
725 #ifndef __HAVE_ARCH_UNMAP_ONE
726 /*
727 * Some architectures support metadata associated with a page. When a
728 * page is being swapped out, this metadata must be saved so it can be
729 * restored when the page is swapped back in. SPARC M7 and newer
730 * processors support an ADI (Application Data Integrity) tag for the
731 * page as metadata for the page. arch_unmap_one() can save this
732 * metadata on a swap-out of a page.
733 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)734 static inline int arch_unmap_one(struct mm_struct *mm,
735 struct vm_area_struct *vma,
736 unsigned long addr,
737 pte_t orig_pte)
738 {
739 return 0;
740 }
741 #endif
742
743 /*
744 * Allow architectures to preserve additional metadata associated with
745 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
746 * prototypes must be defined in the arch-specific asm/pgtable.h file.
747 */
748 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)749 static inline int arch_prepare_to_swap(struct page *page)
750 {
751 return 0;
752 }
753 #endif
754
755 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)756 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
757 {
758 }
759
arch_swap_invalidate_area(int type)760 static inline void arch_swap_invalidate_area(int type)
761 {
762 }
763 #endif
764
765 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct page * page)766 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
767 {
768 }
769 #endif
770
771 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
772 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
773 #endif
774
775 #ifndef __HAVE_ARCH_MOVE_PTE
776 #define move_pte(pte, prot, old_addr, new_addr) (pte)
777 #endif
778
779 #ifndef pte_accessible
780 # define pte_accessible(mm, pte) ((void)(pte), 1)
781 #endif
782
783 #ifndef flush_tlb_fix_spurious_fault
784 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
785 #endif
786
787 /*
788 * When walking page tables, get the address of the next boundary,
789 * or the end address of the range if that comes earlier. Although no
790 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
791 */
792
793 #define pgd_addr_end(addr, end) \
794 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
795 (__boundary - 1 < (end) - 1)? __boundary: (end); \
796 })
797
798 #ifndef p4d_addr_end
799 #define p4d_addr_end(addr, end) \
800 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
801 (__boundary - 1 < (end) - 1)? __boundary: (end); \
802 })
803 #endif
804
805 #ifndef pud_addr_end
806 #define pud_addr_end(addr, end) \
807 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
808 (__boundary - 1 < (end) - 1)? __boundary: (end); \
809 })
810 #endif
811
812 #ifndef pmd_addr_end
813 #define pmd_addr_end(addr, end) \
814 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
815 (__boundary - 1 < (end) - 1)? __boundary: (end); \
816 })
817 #endif
818
819 /*
820 * When walking page tables, we usually want to skip any p?d_none entries;
821 * and any p?d_bad entries - reporting the error before resetting to none.
822 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
823 */
824 void pgd_clear_bad(pgd_t *);
825
826 #ifndef __PAGETABLE_P4D_FOLDED
827 void p4d_clear_bad(p4d_t *);
828 #else
829 #define p4d_clear_bad(p4d) do { } while (0)
830 #endif
831
832 #ifndef __PAGETABLE_PUD_FOLDED
833 void pud_clear_bad(pud_t *);
834 #else
835 #define pud_clear_bad(p4d) do { } while (0)
836 #endif
837
838 void pmd_clear_bad(pmd_t *);
839
pgd_none_or_clear_bad(pgd_t * pgd)840 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
841 {
842 if (pgd_none(*pgd))
843 return 1;
844 if (unlikely(pgd_bad(*pgd))) {
845 pgd_clear_bad(pgd);
846 return 1;
847 }
848 return 0;
849 }
850
p4d_none_or_clear_bad(p4d_t * p4d)851 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
852 {
853 if (p4d_none(*p4d))
854 return 1;
855 if (unlikely(p4d_bad(*p4d))) {
856 p4d_clear_bad(p4d);
857 return 1;
858 }
859 return 0;
860 }
861
pud_none_or_clear_bad(pud_t * pud)862 static inline int pud_none_or_clear_bad(pud_t *pud)
863 {
864 if (pud_none(*pud))
865 return 1;
866 if (unlikely(pud_bad(*pud))) {
867 pud_clear_bad(pud);
868 return 1;
869 }
870 return 0;
871 }
872
pmd_none_or_clear_bad(pmd_t * pmd)873 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
874 {
875 if (pmd_none(*pmd))
876 return 1;
877 if (unlikely(pmd_bad(*pmd))) {
878 pmd_clear_bad(pmd);
879 return 1;
880 }
881 return 0;
882 }
883
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)884 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
885 unsigned long addr,
886 pte_t *ptep)
887 {
888 /*
889 * Get the current pte state, but zero it out to make it
890 * non-present, preventing the hardware from asynchronously
891 * updating it.
892 */
893 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
894 }
895
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)896 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
897 unsigned long addr,
898 pte_t *ptep, pte_t pte)
899 {
900 /*
901 * The pte is non-present, so there's no hardware state to
902 * preserve.
903 */
904 set_pte_at(vma->vm_mm, addr, ptep, pte);
905 }
906
907 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
908 /*
909 * Start a pte protection read-modify-write transaction, which
910 * protects against asynchronous hardware modifications to the pte.
911 * The intention is not to prevent the hardware from making pte
912 * updates, but to prevent any updates it may make from being lost.
913 *
914 * This does not protect against other software modifications of the
915 * pte; the appropriate pte lock must be held over the transaction.
916 *
917 * Note that this interface is intended to be batchable, meaning that
918 * ptep_modify_prot_commit may not actually update the pte, but merely
919 * queue the update to be done at some later time. The update must be
920 * actually committed before the pte lock is released, however.
921 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)922 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
923 unsigned long addr,
924 pte_t *ptep)
925 {
926 return __ptep_modify_prot_start(vma, addr, ptep);
927 }
928
929 /*
930 * Commit an update to a pte, leaving any hardware-controlled bits in
931 * the PTE unmodified.
932 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)933 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
934 unsigned long addr,
935 pte_t *ptep, pte_t old_pte, pte_t pte)
936 {
937 __ptep_modify_prot_commit(vma, addr, ptep, pte);
938 }
939 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
940 #endif /* CONFIG_MMU */
941
942 /*
943 * No-op macros that just return the current protection value. Defined here
944 * because these macros can be used even if CONFIG_MMU is not defined.
945 */
946
947 #ifndef pgprot_nx
948 #define pgprot_nx(prot) (prot)
949 #endif
950
951 #ifndef pgprot_noncached
952 #define pgprot_noncached(prot) (prot)
953 #endif
954
955 #ifndef pgprot_writecombine
956 #define pgprot_writecombine pgprot_noncached
957 #endif
958
959 #ifndef pgprot_writethrough
960 #define pgprot_writethrough pgprot_noncached
961 #endif
962
963 #ifndef pgprot_device
964 #define pgprot_device pgprot_noncached
965 #endif
966
967 #ifndef pgprot_mhp
968 #define pgprot_mhp(prot) (prot)
969 #endif
970
971 #ifdef CONFIG_MMU
972 #ifndef pgprot_modify
973 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)974 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
975 {
976 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
977 newprot = pgprot_noncached(newprot);
978 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
979 newprot = pgprot_writecombine(newprot);
980 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
981 newprot = pgprot_device(newprot);
982 return newprot;
983 }
984 #endif
985 #endif /* CONFIG_MMU */
986
987 #ifndef pgprot_encrypted
988 #define pgprot_encrypted(prot) (prot)
989 #endif
990
991 #ifndef pgprot_decrypted
992 #define pgprot_decrypted(prot) (prot)
993 #endif
994
995 /*
996 * A facility to provide lazy MMU batching. This allows PTE updates and
997 * page invalidations to be delayed until a call to leave lazy MMU mode
998 * is issued. Some architectures may benefit from doing this, and it is
999 * beneficial for both shadow and direct mode hypervisors, which may batch
1000 * the PTE updates which happen during this window. Note that using this
1001 * interface requires that read hazards be removed from the code. A read
1002 * hazard could result in the direct mode hypervisor case, since the actual
1003 * write to the page tables may not yet have taken place, so reads though
1004 * a raw PTE pointer after it has been modified are not guaranteed to be
1005 * up to date. This mode can only be entered and left under the protection of
1006 * the page table locks for all page tables which may be modified. In the UP
1007 * case, this is required so that preemption is disabled, and in the SMP case,
1008 * it must synchronize the delayed page table writes properly on other CPUs.
1009 */
1010 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1011 #define arch_enter_lazy_mmu_mode() do {} while (0)
1012 #define arch_leave_lazy_mmu_mode() do {} while (0)
1013 #define arch_flush_lazy_mmu_mode() do {} while (0)
1014 #endif
1015
1016 /*
1017 * A facility to provide batching of the reload of page tables and
1018 * other process state with the actual context switch code for
1019 * paravirtualized guests. By convention, only one of the batched
1020 * update (lazy) modes (CPU, MMU) should be active at any given time,
1021 * entry should never be nested, and entry and exits should always be
1022 * paired. This is for sanity of maintaining and reasoning about the
1023 * kernel code. In this case, the exit (end of the context switch) is
1024 * in architecture-specific code, and so doesn't need a generic
1025 * definition.
1026 */
1027 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1028 #define arch_start_context_switch(prev) do {} while (0)
1029 #endif
1030
1031 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1032 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1033 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1034 {
1035 return pmd;
1036 }
1037
pmd_swp_soft_dirty(pmd_t pmd)1038 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1039 {
1040 return 0;
1041 }
1042
pmd_swp_clear_soft_dirty(pmd_t pmd)1043 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1044 {
1045 return pmd;
1046 }
1047 #endif
1048 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1049 static inline int pte_soft_dirty(pte_t pte)
1050 {
1051 return 0;
1052 }
1053
pmd_soft_dirty(pmd_t pmd)1054 static inline int pmd_soft_dirty(pmd_t pmd)
1055 {
1056 return 0;
1057 }
1058
pte_mksoft_dirty(pte_t pte)1059 static inline pte_t pte_mksoft_dirty(pte_t pte)
1060 {
1061 return pte;
1062 }
1063
pmd_mksoft_dirty(pmd_t pmd)1064 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1065 {
1066 return pmd;
1067 }
1068
pte_clear_soft_dirty(pte_t pte)1069 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1070 {
1071 return pte;
1072 }
1073
pmd_clear_soft_dirty(pmd_t pmd)1074 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1075 {
1076 return pmd;
1077 }
1078
pte_swp_mksoft_dirty(pte_t pte)1079 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1080 {
1081 return pte;
1082 }
1083
pte_swp_soft_dirty(pte_t pte)1084 static inline int pte_swp_soft_dirty(pte_t pte)
1085 {
1086 return 0;
1087 }
1088
pte_swp_clear_soft_dirty(pte_t pte)1089 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1090 {
1091 return pte;
1092 }
1093
pmd_swp_mksoft_dirty(pmd_t pmd)1094 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1095 {
1096 return pmd;
1097 }
1098
pmd_swp_soft_dirty(pmd_t pmd)1099 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1100 {
1101 return 0;
1102 }
1103
pmd_swp_clear_soft_dirty(pmd_t pmd)1104 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1105 {
1106 return pmd;
1107 }
1108 #endif
1109
1110 #ifndef __HAVE_PFNMAP_TRACKING
1111 /*
1112 * Interfaces that can be used by architecture code to keep track of
1113 * memory type of pfn mappings specified by the remap_pfn_range,
1114 * vmf_insert_pfn.
1115 */
1116
1117 /*
1118 * track_pfn_remap is called when a _new_ pfn mapping is being established
1119 * by remap_pfn_range() for physical range indicated by pfn and size.
1120 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1121 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1122 unsigned long pfn, unsigned long addr,
1123 unsigned long size)
1124 {
1125 return 0;
1126 }
1127
1128 /*
1129 * track_pfn_insert is called when a _new_ single pfn is established
1130 * by vmf_insert_pfn().
1131 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1132 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1133 pfn_t pfn)
1134 {
1135 }
1136
1137 /*
1138 * track_pfn_copy is called when vma that is covering the pfnmap gets
1139 * copied through copy_page_range().
1140 */
track_pfn_copy(struct vm_area_struct * vma)1141 static inline int track_pfn_copy(struct vm_area_struct *vma)
1142 {
1143 return 0;
1144 }
1145
1146 /*
1147 * untrack_pfn is called while unmapping a pfnmap for a region.
1148 * untrack can be called for a specific region indicated by pfn and size or
1149 * can be for the entire vma (in which case pfn, size are zero).
1150 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1151 static inline void untrack_pfn(struct vm_area_struct *vma,
1152 unsigned long pfn, unsigned long size)
1153 {
1154 }
1155
1156 /*
1157 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1158 */
untrack_pfn_moved(struct vm_area_struct * vma)1159 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1160 {
1161 }
1162 #else
1163 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1164 unsigned long pfn, unsigned long addr,
1165 unsigned long size);
1166 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1167 pfn_t pfn);
1168 extern int track_pfn_copy(struct vm_area_struct *vma);
1169 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1170 unsigned long size);
1171 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1172 #endif
1173
1174 #ifdef CONFIG_MMU
1175 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1176 static inline int is_zero_pfn(unsigned long pfn)
1177 {
1178 extern unsigned long zero_pfn;
1179 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1180 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1181 }
1182
1183 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1184
1185 #else
is_zero_pfn(unsigned long pfn)1186 static inline int is_zero_pfn(unsigned long pfn)
1187 {
1188 extern unsigned long zero_pfn;
1189 return pfn == zero_pfn;
1190 }
1191
my_zero_pfn(unsigned long addr)1192 static inline unsigned long my_zero_pfn(unsigned long addr)
1193 {
1194 extern unsigned long zero_pfn;
1195 return zero_pfn;
1196 }
1197 #endif
1198 #else
is_zero_pfn(unsigned long pfn)1199 static inline int is_zero_pfn(unsigned long pfn)
1200 {
1201 return 0;
1202 }
1203
my_zero_pfn(unsigned long addr)1204 static inline unsigned long my_zero_pfn(unsigned long addr)
1205 {
1206 return 0;
1207 }
1208 #endif /* CONFIG_MMU */
1209
1210 #ifdef CONFIG_MMU
1211
1212 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1213 static inline int pmd_trans_huge(pmd_t pmd)
1214 {
1215 return 0;
1216 }
1217 #ifndef pmd_write
pmd_write(pmd_t pmd)1218 static inline int pmd_write(pmd_t pmd)
1219 {
1220 BUG();
1221 return 0;
1222 }
1223 #endif /* pmd_write */
1224 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1225
1226 #ifndef pud_write
pud_write(pud_t pud)1227 static inline int pud_write(pud_t pud)
1228 {
1229 BUG();
1230 return 0;
1231 }
1232 #endif /* pud_write */
1233
1234 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1235 static inline int pmd_devmap(pmd_t pmd)
1236 {
1237 return 0;
1238 }
pud_devmap(pud_t pud)1239 static inline int pud_devmap(pud_t pud)
1240 {
1241 return 0;
1242 }
pgd_devmap(pgd_t pgd)1243 static inline int pgd_devmap(pgd_t pgd)
1244 {
1245 return 0;
1246 }
1247 #endif
1248
1249 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1250 (defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1251 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
pud_trans_huge(pud_t pud)1252 static inline int pud_trans_huge(pud_t pud)
1253 {
1254 return 0;
1255 }
1256 #endif
1257
1258 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t * pud)1259 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1260 {
1261 pud_t pudval = READ_ONCE(*pud);
1262
1263 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1264 return 1;
1265 if (unlikely(pud_bad(pudval))) {
1266 pud_clear_bad(pud);
1267 return 1;
1268 }
1269 return 0;
1270 }
1271
1272 /* See pmd_trans_unstable for discussion. */
pud_trans_unstable(pud_t * pud)1273 static inline int pud_trans_unstable(pud_t *pud)
1274 {
1275 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1276 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1277 return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1278 #else
1279 return 0;
1280 #endif
1281 }
1282
1283 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)1284 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1285 {
1286 /*
1287 * Depend on compiler for an atomic pmd read. NOTE: this is
1288 * only going to work, if the pmdval_t isn't larger than
1289 * an unsigned long.
1290 */
1291 return *pmdp;
1292 }
1293 #endif
1294
1295 #ifndef arch_needs_pgtable_deposit
1296 #define arch_needs_pgtable_deposit() (false)
1297 #endif
1298 /*
1299 * This function is meant to be used by sites walking pagetables with
1300 * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1301 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1302 * into a null pmd and the transhuge page fault can convert a null pmd
1303 * into an hugepmd or into a regular pmd (if the hugepage allocation
1304 * fails). While holding the mmap_lock in read mode the pmd becomes
1305 * stable and stops changing under us only if it's not null and not a
1306 * transhuge pmd. When those races occurs and this function makes a
1307 * difference vs the standard pmd_none_or_clear_bad, the result is
1308 * undefined so behaving like if the pmd was none is safe (because it
1309 * can return none anyway). The compiler level barrier() is critically
1310 * important to compute the two checks atomically on the same pmdval.
1311 *
1312 * For 32bit kernels with a 64bit large pmd_t this automatically takes
1313 * care of reading the pmd atomically to avoid SMP race conditions
1314 * against pmd_populate() when the mmap_lock is hold for reading by the
1315 * caller (a special atomic read not done by "gcc" as in the generic
1316 * version above, is also needed when THP is disabled because the page
1317 * fault can populate the pmd from under us).
1318 */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)1319 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1320 {
1321 pmd_t pmdval = pmd_read_atomic(pmd);
1322 /*
1323 * The barrier will stabilize the pmdval in a register or on
1324 * the stack so that it will stop changing under the code.
1325 *
1326 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1327 * pmd_read_atomic is allowed to return a not atomic pmdval
1328 * (for example pointing to an hugepage that has never been
1329 * mapped in the pmd). The below checks will only care about
1330 * the low part of the pmd with 32bit PAE x86 anyway, with the
1331 * exception of pmd_none(). So the important thing is that if
1332 * the low part of the pmd is found null, the high part will
1333 * be also null or the pmd_none() check below would be
1334 * confused.
1335 */
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1337 barrier();
1338 #endif
1339 /*
1340 * !pmd_present() checks for pmd migration entries
1341 *
1342 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1343 * But using that requires moving current function and pmd_trans_unstable()
1344 * to linux/swapops.h to resolve dependency, which is too much code move.
1345 *
1346 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1347 * because !pmd_present() pages can only be under migration not swapped
1348 * out.
1349 *
1350 * pmd_none() is preserved for future condition checks on pmd migration
1351 * entries and not confusing with this function name, although it is
1352 * redundant with !pmd_present().
1353 */
1354 if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1355 (IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1356 return 1;
1357 if (unlikely(pmd_bad(pmdval))) {
1358 pmd_clear_bad(pmd);
1359 return 1;
1360 }
1361 return 0;
1362 }
1363
1364 /*
1365 * This is a noop if Transparent Hugepage Support is not built into
1366 * the kernel. Otherwise it is equivalent to
1367 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1368 * places that already verified the pmd is not none and they want to
1369 * walk ptes while holding the mmap sem in read mode (write mode don't
1370 * need this). If THP is not enabled, the pmd can't go away under the
1371 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1372 * run a pmd_trans_unstable before walking the ptes after
1373 * split_huge_pmd returns (because it may have run when the pmd become
1374 * null, but then a page fault can map in a THP and not a regular page).
1375 */
pmd_trans_unstable(pmd_t * pmd)1376 static inline int pmd_trans_unstable(pmd_t *pmd)
1377 {
1378 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1379 return pmd_none_or_trans_huge_or_clear_bad(pmd);
1380 #else
1381 return 0;
1382 #endif
1383 }
1384
1385 /*
1386 * the ordering of these checks is important for pmds with _page_devmap set.
1387 * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1388 * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1389 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1390 */
pmd_devmap_trans_unstable(pmd_t * pmd)1391 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1392 {
1393 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1394 }
1395
1396 #ifndef CONFIG_NUMA_BALANCING
1397 /*
1398 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1399 * the only case the kernel cares is for NUMA balancing and is only ever set
1400 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1401 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1402 * is the responsibility of the caller to distinguish between PROT_NONE
1403 * protections and NUMA hinting fault protections.
1404 */
pte_protnone(pte_t pte)1405 static inline int pte_protnone(pte_t pte)
1406 {
1407 return 0;
1408 }
1409
pmd_protnone(pmd_t pmd)1410 static inline int pmd_protnone(pmd_t pmd)
1411 {
1412 return 0;
1413 }
1414 #endif /* CONFIG_NUMA_BALANCING */
1415
1416 #endif /* CONFIG_MMU */
1417
1418 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1419
1420 #ifndef __PAGETABLE_P4D_FOLDED
1421 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1422 int p4d_clear_huge(p4d_t *p4d);
1423 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1424 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1425 {
1426 return 0;
1427 }
p4d_clear_huge(p4d_t * p4d)1428 static inline int p4d_clear_huge(p4d_t *p4d)
1429 {
1430 return 0;
1431 }
1432 #endif /* !__PAGETABLE_P4D_FOLDED */
1433
1434 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1435 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1436 int pud_clear_huge(pud_t *pud);
1437 int pmd_clear_huge(pmd_t *pmd);
1438 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1439 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1440 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1441 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1442 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1443 {
1444 return 0;
1445 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1446 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1447 {
1448 return 0;
1449 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1450 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1451 {
1452 return 0;
1453 }
p4d_clear_huge(p4d_t * p4d)1454 static inline int p4d_clear_huge(p4d_t *p4d)
1455 {
1456 return 0;
1457 }
pud_clear_huge(pud_t * pud)1458 static inline int pud_clear_huge(pud_t *pud)
1459 {
1460 return 0;
1461 }
pmd_clear_huge(pmd_t * pmd)1462 static inline int pmd_clear_huge(pmd_t *pmd)
1463 {
1464 return 0;
1465 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1466 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1467 {
1468 return 0;
1469 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1470 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1471 {
1472 return 0;
1473 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1474 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1475 {
1476 return 0;
1477 }
1478 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1479
1480 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482 /*
1483 * ARCHes with special requirements for evicting THP backing TLB entries can
1484 * implement this. Otherwise also, it can help optimize normal TLB flush in
1485 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1486 * entire TLB if flush span is greater than a threshold, which will
1487 * likely be true for a single huge page. Thus a single THP flush will
1488 * invalidate the entire TLB which is not desirable.
1489 * e.g. see arch/arc: flush_pmd_tlb_range
1490 */
1491 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1492 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1493 #else
1494 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1495 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1496 #endif
1497 #endif
1498
1499 struct file;
1500 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1501 unsigned long size, pgprot_t *vma_prot);
1502
1503 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1504 static inline void init_espfix_bsp(void) { }
1505 #endif
1506
1507 extern void __init pgtable_cache_init(void);
1508
1509 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1510 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1511 {
1512 return true;
1513 }
1514
arch_has_pfn_modify_check(void)1515 static inline bool arch_has_pfn_modify_check(void)
1516 {
1517 return false;
1518 }
1519 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1520
1521 /*
1522 * Architecture PAGE_KERNEL_* fallbacks
1523 *
1524 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1525 * because they really don't support them, or the port needs to be updated to
1526 * reflect the required functionality. Below are a set of relatively safe
1527 * fallbacks, as best effort, which we can count on in lieu of the architectures
1528 * not defining them on their own yet.
1529 */
1530
1531 #ifndef PAGE_KERNEL_RO
1532 # define PAGE_KERNEL_RO PAGE_KERNEL
1533 #endif
1534
1535 #ifndef PAGE_KERNEL_EXEC
1536 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1537 #endif
1538
1539 /*
1540 * Page Table Modification bits for pgtbl_mod_mask.
1541 *
1542 * These are used by the p?d_alloc_track*() set of functions an in the generic
1543 * vmalloc/ioremap code to track at which page-table levels entries have been
1544 * modified. Based on that the code can better decide when vmalloc and ioremap
1545 * mapping changes need to be synchronized to other page-tables in the system.
1546 */
1547 #define __PGTBL_PGD_MODIFIED 0
1548 #define __PGTBL_P4D_MODIFIED 1
1549 #define __PGTBL_PUD_MODIFIED 2
1550 #define __PGTBL_PMD_MODIFIED 3
1551 #define __PGTBL_PTE_MODIFIED 4
1552
1553 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1554 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1555 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1556 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1557 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1558
1559 /* Page-Table Modification Mask */
1560 typedef unsigned int pgtbl_mod_mask;
1561
1562 #endif /* !__ASSEMBLY__ */
1563
1564 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1565 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1566 /*
1567 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1568 * with physical address space extension, but falls back to
1569 * BITS_PER_LONG otherwise.
1570 */
1571 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1572 #else
1573 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1574 #endif
1575 #endif
1576
1577 #ifndef has_transparent_hugepage
1578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1579 #define has_transparent_hugepage() 1
1580 #else
1581 #define has_transparent_hugepage() 0
1582 #endif
1583 #endif
1584
1585 /*
1586 * On some architectures it depends on the mm if the p4d/pud or pmd
1587 * layer of the page table hierarchy is folded or not.
1588 */
1589 #ifndef mm_p4d_folded
1590 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1591 #endif
1592
1593 #ifndef mm_pud_folded
1594 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1595 #endif
1596
1597 #ifndef mm_pmd_folded
1598 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1599 #endif
1600
1601 #ifndef p4d_offset_lockless
1602 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1603 #endif
1604 #ifndef pud_offset_lockless
1605 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1606 #endif
1607 #ifndef pmd_offset_lockless
1608 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1609 #endif
1610
1611 /*
1612 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1613 * This differs from p?d_huge() by the fact that they are always available (if
1614 * the architecture supports large pages at the appropriate level) even
1615 * if CONFIG_HUGETLB_PAGE is not defined.
1616 * Only meaningful when called on a valid entry.
1617 */
1618 #ifndef pgd_leaf
1619 #define pgd_leaf(x) 0
1620 #endif
1621 #ifndef p4d_leaf
1622 #define p4d_leaf(x) 0
1623 #endif
1624 #ifndef pud_leaf
1625 #define pud_leaf(x) 0
1626 #endif
1627 #ifndef pmd_leaf
1628 #define pmd_leaf(x) 0
1629 #endif
1630
1631 #ifndef pgd_leaf_size
1632 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1633 #endif
1634 #ifndef p4d_leaf_size
1635 #define p4d_leaf_size(x) P4D_SIZE
1636 #endif
1637 #ifndef pud_leaf_size
1638 #define pud_leaf_size(x) PUD_SIZE
1639 #endif
1640 #ifndef pmd_leaf_size
1641 #define pmd_leaf_size(x) PMD_SIZE
1642 #endif
1643 #ifndef pte_leaf_size
1644 #define pte_leaf_size(x) PAGE_SIZE
1645 #endif
1646
1647 /*
1648 * Some architectures have MMUs that are configurable or selectable at boot
1649 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1650 * helps to have a static maximum value.
1651 */
1652
1653 #ifndef MAX_PTRS_PER_PTE
1654 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1655 #endif
1656
1657 #ifndef MAX_PTRS_PER_PMD
1658 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1659 #endif
1660
1661 #ifndef MAX_PTRS_PER_PUD
1662 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1663 #endif
1664
1665 #ifndef MAX_PTRS_PER_P4D
1666 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1667 #endif
1668
1669 #endif /* _LINUX_PGTABLE_H */
1670