• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4 
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7 
8 #ifndef __ASSEMBLY__
9 #ifdef CONFIG_MMU
10 
11 #include <linux/mm_types.h>
12 #include <linux/bug.h>
13 #include <linux/errno.h>
14 #include <asm-generic/pgtable_uffd.h>
15 
16 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
17 	defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
18 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
19 #endif
20 
21 /*
22  * On almost all architectures and configurations, 0 can be used as the
23  * upper ceiling to free_pgtables(): on many architectures it has the same
24  * effect as using TASK_SIZE.  However, there is one configuration which
25  * must impose a more careful limit, to avoid freeing kernel pgtables.
26  */
27 #ifndef USER_PGTABLES_CEILING
28 #define USER_PGTABLES_CEILING	0UL
29 #endif
30 
31 /*
32  * This defines the first usable user address. Platforms
33  * can override its value with custom FIRST_USER_ADDRESS
34  * defined in their respective <asm/pgtable.h>.
35  */
36 #ifndef FIRST_USER_ADDRESS
37 #define FIRST_USER_ADDRESS	0UL
38 #endif
39 
40 /*
41  * This defines the generic helper for accessing PMD page
42  * table page. Although platforms can still override this
43  * via their respective <asm/pgtable.h>.
44  */
45 #ifndef pmd_pgtable
46 #define pmd_pgtable(pmd) pmd_page(pmd)
47 #endif
48 
49 /*
50  * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
51  *
52  * The pXx_index() functions return the index of the entry in the page
53  * table page which would control the given virtual address
54  *
55  * As these functions may be used by the same code for different levels of
56  * the page table folding, they are always available, regardless of
57  * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
58  * because in such cases PTRS_PER_PxD equals 1.
59  */
60 
pte_index(unsigned long address)61 static inline unsigned long pte_index(unsigned long address)
62 {
63 	return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
64 }
65 #define pte_index pte_index
66 
67 #ifndef pmd_index
pmd_index(unsigned long address)68 static inline unsigned long pmd_index(unsigned long address)
69 {
70 	return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
71 }
72 #define pmd_index pmd_index
73 #endif
74 
75 #ifndef pud_index
pud_index(unsigned long address)76 static inline unsigned long pud_index(unsigned long address)
77 {
78 	return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
79 }
80 #define pud_index pud_index
81 #endif
82 
83 #ifndef pgd_index
84 /* Must be a compile-time constant, so implement it as a macro */
85 #define pgd_index(a)  (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
86 #endif
87 
88 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)89 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
90 {
91 	return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
92 }
93 #define pte_offset_kernel pte_offset_kernel
94 #endif
95 
96 #if defined(CONFIG_HIGHPTE)
97 #define pte_offset_map(dir, address)				\
98 	((pte_t *)kmap_atomic(pmd_page(*(dir))) +		\
99 	 pte_index((address)))
100 #define pte_unmap(pte) kunmap_atomic((pte))
101 #else
102 #define pte_offset_map(dir, address)	pte_offset_kernel((dir), (address))
103 #define pte_unmap(pte) ((void)(pte))	/* NOP */
104 #endif
105 
106 /* Find an entry in the second-level page table.. */
107 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)108 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
109 {
110 	return pud_pgtable(*pud) + pmd_index(address);
111 }
112 #define pmd_offset pmd_offset
113 #endif
114 
115 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)116 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
117 {
118 	return p4d_pgtable(*p4d) + pud_index(address);
119 }
120 #define pud_offset pud_offset
121 #endif
122 
pgd_offset_pgd(pgd_t * pgd,unsigned long address)123 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
124 {
125 	return (pgd + pgd_index(address));
126 };
127 
128 /*
129  * a shortcut to get a pgd_t in a given mm
130  */
131 #ifndef pgd_offset
132 #define pgd_offset(mm, address)		pgd_offset_pgd((mm)->pgd, (address))
133 #endif
134 
135 /*
136  * a shortcut which implies the use of the kernel's pgd, instead
137  * of a process's
138  */
139 #ifndef pgd_offset_k
140 #define pgd_offset_k(address)		pgd_offset(&init_mm, (address))
141 #endif
142 
143 /*
144  * In many cases it is known that a virtual address is mapped at PMD or PTE
145  * level, so instead of traversing all the page table levels, we can get a
146  * pointer to the PMD entry in user or kernel page table or translate a virtual
147  * address to the pointer in the PTE in the kernel page tables with simple
148  * helpers.
149  */
pmd_off(struct mm_struct * mm,unsigned long va)150 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
151 {
152 	return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
153 }
154 
pmd_off_k(unsigned long va)155 static inline pmd_t *pmd_off_k(unsigned long va)
156 {
157 	return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
158 }
159 
virt_to_kpte(unsigned long vaddr)160 static inline pte_t *virt_to_kpte(unsigned long vaddr)
161 {
162 	pmd_t *pmd = pmd_off_k(vaddr);
163 
164 	return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
165 }
166 
167 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
168 extern int ptep_set_access_flags(struct vm_area_struct *vma,
169 				 unsigned long address, pte_t *ptep,
170 				 pte_t entry, int dirty);
171 #endif
172 
173 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
174 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
175 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
176 				 unsigned long address, pmd_t *pmdp,
177 				 pmd_t entry, int dirty);
178 extern int pudp_set_access_flags(struct vm_area_struct *vma,
179 				 unsigned long address, pud_t *pudp,
180 				 pud_t entry, int dirty);
181 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)182 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
183 					unsigned long address, pmd_t *pmdp,
184 					pmd_t entry, int dirty)
185 {
186 	BUILD_BUG();
187 	return 0;
188 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)189 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
190 					unsigned long address, pud_t *pudp,
191 					pud_t entry, int dirty)
192 {
193 	BUILD_BUG();
194 	return 0;
195 }
196 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
197 #endif
198 
199 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)200 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
201 					    unsigned long address,
202 					    pte_t *ptep)
203 {
204 	pte_t pte = *ptep;
205 	int r = 1;
206 	if (!pte_young(pte))
207 		r = 0;
208 	else
209 		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
210 	return r;
211 }
212 #endif
213 
214 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
215 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)216 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
217 					    unsigned long address,
218 					    pmd_t *pmdp)
219 {
220 	pmd_t pmd = *pmdp;
221 	int r = 1;
222 	if (!pmd_young(pmd))
223 		r = 0;
224 	else
225 		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
226 	return r;
227 }
228 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)229 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
230 					    unsigned long address,
231 					    pmd_t *pmdp)
232 {
233 	BUILD_BUG();
234 	return 0;
235 }
236 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
237 #endif
238 
239 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
240 int ptep_clear_flush_young(struct vm_area_struct *vma,
241 			   unsigned long address, pte_t *ptep);
242 #endif
243 
244 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
247 				  unsigned long address, pmd_t *pmdp);
248 #else
249 /*
250  * Despite relevant to THP only, this API is called from generic rmap code
251  * under PageTransHuge(), hence needs a dummy implementation for !THP
252  */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)253 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
254 					 unsigned long address, pmd_t *pmdp)
255 {
256 	BUILD_BUG();
257 	return 0;
258 }
259 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
260 #endif
261 
262 #ifndef arch_has_hw_pte_young
263 /*
264  * Return whether the accessed bit is supported on the local CPU.
265  *
266  * This stub assumes accessing through an old PTE triggers a page fault.
267  * Architectures that automatically set the access bit should overwrite it.
268  */
arch_has_hw_pte_young(void)269 static inline bool arch_has_hw_pte_young(void)
270 {
271 	return false;
272 }
273 #endif
274 
275 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)276 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
277 				       unsigned long address,
278 				       pte_t *ptep)
279 {
280 	pte_t pte = *ptep;
281 	pte_clear(mm, address, ptep);
282 	return pte;
283 }
284 #endif
285 
286 #ifndef __HAVE_ARCH_PTEP_GET
ptep_get(pte_t * ptep)287 static inline pte_t ptep_get(pte_t *ptep)
288 {
289 	return READ_ONCE(*ptep);
290 }
291 #endif
292 
293 #ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
294 /*
295  * WARNING: only to be used in the get_user_pages_fast() implementation.
296  *
297  * With get_user_pages_fast(), we walk down the pagetables without taking any
298  * locks.  For this we would like to load the pointers atomically, but sometimes
299  * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
300  * we do have is the guarantee that a PTE will only either go from not present
301  * to present, or present to not present or both -- it will not switch to a
302  * completely different present page without a TLB flush in between; something
303  * that we are blocking by holding interrupts off.
304  *
305  * Setting ptes from not present to present goes:
306  *
307  *   ptep->pte_high = h;
308  *   smp_wmb();
309  *   ptep->pte_low = l;
310  *
311  * And present to not present goes:
312  *
313  *   ptep->pte_low = 0;
314  *   smp_wmb();
315  *   ptep->pte_high = 0;
316  *
317  * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
318  * We load pte_high *after* loading pte_low, which ensures we don't see an older
319  * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
320  * picked up a changed pte high. We might have gotten rubbish values from
321  * pte_low and pte_high, but we are guaranteed that pte_low will not have the
322  * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
323  * operates on present ptes we're safe.
324  */
ptep_get_lockless(pte_t * ptep)325 static inline pte_t ptep_get_lockless(pte_t *ptep)
326 {
327 	pte_t pte;
328 
329 	do {
330 		pte.pte_low = ptep->pte_low;
331 		smp_rmb();
332 		pte.pte_high = ptep->pte_high;
333 		smp_rmb();
334 	} while (unlikely(pte.pte_low != ptep->pte_low));
335 
336 	return pte;
337 }
338 #else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
339 /*
340  * We require that the PTE can be read atomically.
341  */
ptep_get_lockless(pte_t * ptep)342 static inline pte_t ptep_get_lockless(pte_t *ptep)
343 {
344 	return ptep_get(ptep);
345 }
346 #endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
347 
348 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)350 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
351 					    unsigned long address,
352 					    pmd_t *pmdp)
353 {
354 	pmd_t pmd = *pmdp;
355 	pmd_clear(pmdp);
356 	return pmd;
357 }
358 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
359 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)360 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
361 					    unsigned long address,
362 					    pud_t *pudp)
363 {
364 	pud_t pud = *pudp;
365 
366 	pud_clear(pudp);
367 	return pud;
368 }
369 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
370 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
371 
372 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
373 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)374 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
375 					    unsigned long address, pmd_t *pmdp,
376 					    int full)
377 {
378 	return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
379 }
380 #endif
381 
382 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct mm_struct * mm,unsigned long address,pud_t * pudp,int full)383 static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
384 					    unsigned long address, pud_t *pudp,
385 					    int full)
386 {
387 	return pudp_huge_get_and_clear(mm, address, pudp);
388 }
389 #endif
390 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
391 
392 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)393 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
394 					    unsigned long address, pte_t *ptep,
395 					    int full)
396 {
397 	pte_t pte;
398 	pte = ptep_get_and_clear(mm, address, ptep);
399 	return pte;
400 }
401 #endif
402 
403 
404 /*
405  * If two threads concurrently fault at the same page, the thread that
406  * won the race updates the PTE and its local TLB/Cache. The other thread
407  * gives up, simply does nothing, and continues; on architectures where
408  * software can update TLB,  local TLB can be updated here to avoid next page
409  * fault. This function updates TLB only, do nothing with cache or others.
410  * It is the difference with function update_mmu_cache.
411  */
412 #ifndef __HAVE_ARCH_UPDATE_MMU_TLB
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)413 static inline void update_mmu_tlb(struct vm_area_struct *vma,
414 				unsigned long address, pte_t *ptep)
415 {
416 }
417 #define __HAVE_ARCH_UPDATE_MMU_TLB
418 #endif
419 
420 /*
421  * Some architectures may be able to avoid expensive synchronization
422  * primitives when modifications are made to PTE's which are already
423  * not present, or in the process of an address space destruction.
424  */
425 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)426 static inline void pte_clear_not_present_full(struct mm_struct *mm,
427 					      unsigned long address,
428 					      pte_t *ptep,
429 					      int full)
430 {
431 	pte_clear(mm, address, ptep);
432 }
433 #endif
434 
435 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
436 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
437 			      unsigned long address,
438 			      pte_t *ptep);
439 #endif
440 
441 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
442 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
443 			      unsigned long address,
444 			      pmd_t *pmdp);
445 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
446 			      unsigned long address,
447 			      pud_t *pudp);
448 #endif
449 
450 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
451 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)452 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
453 {
454 	pte_t old_pte = *ptep;
455 	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
456 }
457 #endif
458 
459 /*
460  * On some architectures hardware does not set page access bit when accessing
461  * memory page, it is responsibility of software setting this bit. It brings
462  * out extra page fault penalty to track page access bit. For optimization page
463  * access bit can be set during all page fault flow on these arches.
464  * To be differentiate with macro pte_mkyoung, this macro is used on platforms
465  * where software maintains page access bit.
466  */
467 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)468 static inline pte_t pte_sw_mkyoung(pte_t pte)
469 {
470 	return pte;
471 }
472 #define pte_sw_mkyoung	pte_sw_mkyoung
473 #endif
474 
475 #ifndef pte_savedwrite
476 #define pte_savedwrite pte_write
477 #endif
478 
479 #ifndef pte_mk_savedwrite
480 #define pte_mk_savedwrite pte_mkwrite
481 #endif
482 
483 #ifndef pte_clear_savedwrite
484 #define pte_clear_savedwrite pte_wrprotect
485 #endif
486 
487 #ifndef pmd_savedwrite
488 #define pmd_savedwrite pmd_write
489 #endif
490 
491 #ifndef pmd_mk_savedwrite
492 #define pmd_mk_savedwrite pmd_mkwrite
493 #endif
494 
495 #ifndef pmd_clear_savedwrite
496 #define pmd_clear_savedwrite pmd_wrprotect
497 #endif
498 
499 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
500 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)501 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
502 				      unsigned long address, pmd_t *pmdp)
503 {
504 	pmd_t old_pmd = *pmdp;
505 	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
506 }
507 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)508 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
509 				      unsigned long address, pmd_t *pmdp)
510 {
511 	BUILD_BUG();
512 }
513 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
514 #endif
515 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
516 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)517 static inline void pudp_set_wrprotect(struct mm_struct *mm,
518 				      unsigned long address, pud_t *pudp)
519 {
520 	pud_t old_pud = *pudp;
521 
522 	set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
523 }
524 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)525 static inline void pudp_set_wrprotect(struct mm_struct *mm,
526 				      unsigned long address, pud_t *pudp)
527 {
528 	BUILD_BUG();
529 }
530 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
531 #endif
532 
533 #ifndef pmdp_collapse_flush
534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
535 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
536 				 unsigned long address, pmd_t *pmdp);
537 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)538 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
539 					unsigned long address,
540 					pmd_t *pmdp)
541 {
542 	BUILD_BUG();
543 	return *pmdp;
544 }
545 #define pmdp_collapse_flush pmdp_collapse_flush
546 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
547 #endif
548 
549 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
550 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
551 				       pgtable_t pgtable);
552 #endif
553 
554 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
555 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
556 #endif
557 
558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
559 /*
560  * This is an implementation of pmdp_establish() that is only suitable for an
561  * architecture that doesn't have hardware dirty/accessed bits. In this case we
562  * can't race with CPU which sets these bits and non-atomic approach is fine.
563  */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)564 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
565 		unsigned long address, pmd_t *pmdp, pmd_t pmd)
566 {
567 	pmd_t old_pmd = *pmdp;
568 	set_pmd_at(vma->vm_mm, address, pmdp, pmd);
569 	return old_pmd;
570 }
571 #endif
572 
573 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
574 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
575 			    pmd_t *pmdp);
576 #endif
577 
578 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
579 
580 /*
581  * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
582  * hugepage mapping in the page tables. This function is similar to
583  * pmdp_invalidate(), but should only be used if the access and dirty bits would
584  * not be cleared by the software in the new PMD value. The function ensures
585  * that hardware changes of the access and dirty bits updates would not be lost.
586  *
587  * Doing so can allow in certain architectures to avoid a TLB flush in most
588  * cases. Yet, another TLB flush might be necessary later if the PMD update
589  * itself requires such flush (e.g., if protection was set to be stricter). Yet,
590  * even when a TLB flush is needed because of the update, the caller may be able
591  * to batch these TLB flushing operations, so fewer TLB flush operations are
592  * needed.
593  */
594 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
595 				unsigned long address, pmd_t *pmdp);
596 #endif
597 
598 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)599 static inline int pte_same(pte_t pte_a, pte_t pte_b)
600 {
601 	return pte_val(pte_a) == pte_val(pte_b);
602 }
603 #endif
604 
605 #ifndef __HAVE_ARCH_PTE_UNUSED
606 /*
607  * Some architectures provide facilities to virtualization guests
608  * so that they can flag allocated pages as unused. This allows the
609  * host to transparently reclaim unused pages. This function returns
610  * whether the pte's page is unused.
611  */
pte_unused(pte_t pte)612 static inline int pte_unused(pte_t pte)
613 {
614 	return 0;
615 }
616 #endif
617 
618 #ifndef pte_access_permitted
619 #define pte_access_permitted(pte, write) \
620 	(pte_present(pte) && (!(write) || pte_write(pte)))
621 #endif
622 
623 #ifndef pmd_access_permitted
624 #define pmd_access_permitted(pmd, write) \
625 	(pmd_present(pmd) && (!(write) || pmd_write(pmd)))
626 #endif
627 
628 #ifndef pud_access_permitted
629 #define pud_access_permitted(pud, write) \
630 	(pud_present(pud) && (!(write) || pud_write(pud)))
631 #endif
632 
633 #ifndef p4d_access_permitted
634 #define p4d_access_permitted(p4d, write) \
635 	(p4d_present(p4d) && (!(write) || p4d_write(p4d)))
636 #endif
637 
638 #ifndef pgd_access_permitted
639 #define pgd_access_permitted(pgd, write) \
640 	(pgd_present(pgd) && (!(write) || pgd_write(pgd)))
641 #endif
642 
643 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)644 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
645 {
646 	return pmd_val(pmd_a) == pmd_val(pmd_b);
647 }
648 
pud_same(pud_t pud_a,pud_t pud_b)649 static inline int pud_same(pud_t pud_a, pud_t pud_b)
650 {
651 	return pud_val(pud_a) == pud_val(pud_b);
652 }
653 #endif
654 
655 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)656 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
657 {
658 	return p4d_val(p4d_a) == p4d_val(p4d_b);
659 }
660 #endif
661 
662 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)663 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
664 {
665 	return pgd_val(pgd_a) == pgd_val(pgd_b);
666 }
667 #endif
668 
669 /*
670  * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
671  * TLB flush will be required as a result of the "set". For example, use
672  * in scenarios where it is known ahead of time that the routine is
673  * setting non-present entries, or re-setting an existing entry to the
674  * same value. Otherwise, use the typical "set" helpers and flush the
675  * TLB.
676  */
677 #define set_pte_safe(ptep, pte) \
678 ({ \
679 	WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
680 	set_pte(ptep, pte); \
681 })
682 
683 #define set_pmd_safe(pmdp, pmd) \
684 ({ \
685 	WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
686 	set_pmd(pmdp, pmd); \
687 })
688 
689 #define set_pud_safe(pudp, pud) \
690 ({ \
691 	WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
692 	set_pud(pudp, pud); \
693 })
694 
695 #define set_p4d_safe(p4dp, p4d) \
696 ({ \
697 	WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
698 	set_p4d(p4dp, p4d); \
699 })
700 
701 #define set_pgd_safe(pgdp, pgd) \
702 ({ \
703 	WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
704 	set_pgd(pgdp, pgd); \
705 })
706 
707 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
708 /*
709  * Some architectures support metadata associated with a page. When a
710  * page is being swapped out, this metadata must be saved so it can be
711  * restored when the page is swapped back in. SPARC M7 and newer
712  * processors support an ADI (Application Data Integrity) tag for the
713  * page as metadata for the page. arch_do_swap_page() can restore this
714  * metadata when a page is swapped back in.
715  */
arch_do_swap_page(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte)716 static inline void arch_do_swap_page(struct mm_struct *mm,
717 				     struct vm_area_struct *vma,
718 				     unsigned long addr,
719 				     pte_t pte, pte_t oldpte)
720 {
721 
722 }
723 #endif
724 
725 #ifndef __HAVE_ARCH_UNMAP_ONE
726 /*
727  * Some architectures support metadata associated with a page. When a
728  * page is being swapped out, this metadata must be saved so it can be
729  * restored when the page is swapped back in. SPARC M7 and newer
730  * processors support an ADI (Application Data Integrity) tag for the
731  * page as metadata for the page. arch_unmap_one() can save this
732  * metadata on a swap-out of a page.
733  */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)734 static inline int arch_unmap_one(struct mm_struct *mm,
735 				  struct vm_area_struct *vma,
736 				  unsigned long addr,
737 				  pte_t orig_pte)
738 {
739 	return 0;
740 }
741 #endif
742 
743 /*
744  * Allow architectures to preserve additional metadata associated with
745  * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
746  * prototypes must be defined in the arch-specific asm/pgtable.h file.
747  */
748 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct page * page)749 static inline int arch_prepare_to_swap(struct page *page)
750 {
751 	return 0;
752 }
753 #endif
754 
755 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)756 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
757 {
758 }
759 
arch_swap_invalidate_area(int type)760 static inline void arch_swap_invalidate_area(int type)
761 {
762 }
763 #endif
764 
765 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct page * page)766 static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
767 {
768 }
769 #endif
770 
771 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
772 #define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
773 #endif
774 
775 #ifndef __HAVE_ARCH_MOVE_PTE
776 #define move_pte(pte, prot, old_addr, new_addr)	(pte)
777 #endif
778 
779 #ifndef pte_accessible
780 # define pte_accessible(mm, pte)	((void)(pte), 1)
781 #endif
782 
783 #ifndef flush_tlb_fix_spurious_fault
784 #define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
785 #endif
786 
787 /*
788  * When walking page tables, get the address of the next boundary,
789  * or the end address of the range if that comes earlier.  Although no
790  * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
791  */
792 
793 #define pgd_addr_end(addr, end)						\
794 ({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
795 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
796 })
797 
798 #ifndef p4d_addr_end
799 #define p4d_addr_end(addr, end)						\
800 ({	unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK;	\
801 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
802 })
803 #endif
804 
805 #ifndef pud_addr_end
806 #define pud_addr_end(addr, end)						\
807 ({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
808 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
809 })
810 #endif
811 
812 #ifndef pmd_addr_end
813 #define pmd_addr_end(addr, end)						\
814 ({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
815 	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
816 })
817 #endif
818 
819 /*
820  * When walking page tables, we usually want to skip any p?d_none entries;
821  * and any p?d_bad entries - reporting the error before resetting to none.
822  * Do the tests inline, but report and clear the bad entry in mm/memory.c.
823  */
824 void pgd_clear_bad(pgd_t *);
825 
826 #ifndef __PAGETABLE_P4D_FOLDED
827 void p4d_clear_bad(p4d_t *);
828 #else
829 #define p4d_clear_bad(p4d)        do { } while (0)
830 #endif
831 
832 #ifndef __PAGETABLE_PUD_FOLDED
833 void pud_clear_bad(pud_t *);
834 #else
835 #define pud_clear_bad(p4d)        do { } while (0)
836 #endif
837 
838 void pmd_clear_bad(pmd_t *);
839 
pgd_none_or_clear_bad(pgd_t * pgd)840 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
841 {
842 	if (pgd_none(*pgd))
843 		return 1;
844 	if (unlikely(pgd_bad(*pgd))) {
845 		pgd_clear_bad(pgd);
846 		return 1;
847 	}
848 	return 0;
849 }
850 
p4d_none_or_clear_bad(p4d_t * p4d)851 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
852 {
853 	if (p4d_none(*p4d))
854 		return 1;
855 	if (unlikely(p4d_bad(*p4d))) {
856 		p4d_clear_bad(p4d);
857 		return 1;
858 	}
859 	return 0;
860 }
861 
pud_none_or_clear_bad(pud_t * pud)862 static inline int pud_none_or_clear_bad(pud_t *pud)
863 {
864 	if (pud_none(*pud))
865 		return 1;
866 	if (unlikely(pud_bad(*pud))) {
867 		pud_clear_bad(pud);
868 		return 1;
869 	}
870 	return 0;
871 }
872 
pmd_none_or_clear_bad(pmd_t * pmd)873 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
874 {
875 	if (pmd_none(*pmd))
876 		return 1;
877 	if (unlikely(pmd_bad(*pmd))) {
878 		pmd_clear_bad(pmd);
879 		return 1;
880 	}
881 	return 0;
882 }
883 
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)884 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
885 					     unsigned long addr,
886 					     pte_t *ptep)
887 {
888 	/*
889 	 * Get the current pte state, but zero it out to make it
890 	 * non-present, preventing the hardware from asynchronously
891 	 * updating it.
892 	 */
893 	return ptep_get_and_clear(vma->vm_mm, addr, ptep);
894 }
895 
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)896 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
897 					     unsigned long addr,
898 					     pte_t *ptep, pte_t pte)
899 {
900 	/*
901 	 * The pte is non-present, so there's no hardware state to
902 	 * preserve.
903 	 */
904 	set_pte_at(vma->vm_mm, addr, ptep, pte);
905 }
906 
907 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
908 /*
909  * Start a pte protection read-modify-write transaction, which
910  * protects against asynchronous hardware modifications to the pte.
911  * The intention is not to prevent the hardware from making pte
912  * updates, but to prevent any updates it may make from being lost.
913  *
914  * This does not protect against other software modifications of the
915  * pte; the appropriate pte lock must be held over the transaction.
916  *
917  * Note that this interface is intended to be batchable, meaning that
918  * ptep_modify_prot_commit may not actually update the pte, but merely
919  * queue the update to be done at some later time.  The update must be
920  * actually committed before the pte lock is released, however.
921  */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)922 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
923 					   unsigned long addr,
924 					   pte_t *ptep)
925 {
926 	return __ptep_modify_prot_start(vma, addr, ptep);
927 }
928 
929 /*
930  * Commit an update to a pte, leaving any hardware-controlled bits in
931  * the PTE unmodified.
932  */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)933 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
934 					   unsigned long addr,
935 					   pte_t *ptep, pte_t old_pte, pte_t pte)
936 {
937 	__ptep_modify_prot_commit(vma, addr, ptep, pte);
938 }
939 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
940 #endif /* CONFIG_MMU */
941 
942 /*
943  * No-op macros that just return the current protection value. Defined here
944  * because these macros can be used even if CONFIG_MMU is not defined.
945  */
946 
947 #ifndef pgprot_nx
948 #define pgprot_nx(prot)	(prot)
949 #endif
950 
951 #ifndef pgprot_noncached
952 #define pgprot_noncached(prot)	(prot)
953 #endif
954 
955 #ifndef pgprot_writecombine
956 #define pgprot_writecombine pgprot_noncached
957 #endif
958 
959 #ifndef pgprot_writethrough
960 #define pgprot_writethrough pgprot_noncached
961 #endif
962 
963 #ifndef pgprot_device
964 #define pgprot_device pgprot_noncached
965 #endif
966 
967 #ifndef pgprot_mhp
968 #define pgprot_mhp(prot)	(prot)
969 #endif
970 
971 #ifdef CONFIG_MMU
972 #ifndef pgprot_modify
973 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)974 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
975 {
976 	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
977 		newprot = pgprot_noncached(newprot);
978 	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
979 		newprot = pgprot_writecombine(newprot);
980 	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
981 		newprot = pgprot_device(newprot);
982 	return newprot;
983 }
984 #endif
985 #endif /* CONFIG_MMU */
986 
987 #ifndef pgprot_encrypted
988 #define pgprot_encrypted(prot)	(prot)
989 #endif
990 
991 #ifndef pgprot_decrypted
992 #define pgprot_decrypted(prot)	(prot)
993 #endif
994 
995 /*
996  * A facility to provide lazy MMU batching.  This allows PTE updates and
997  * page invalidations to be delayed until a call to leave lazy MMU mode
998  * is issued.  Some architectures may benefit from doing this, and it is
999  * beneficial for both shadow and direct mode hypervisors, which may batch
1000  * the PTE updates which happen during this window.  Note that using this
1001  * interface requires that read hazards be removed from the code.  A read
1002  * hazard could result in the direct mode hypervisor case, since the actual
1003  * write to the page tables may not yet have taken place, so reads though
1004  * a raw PTE pointer after it has been modified are not guaranteed to be
1005  * up to date.  This mode can only be entered and left under the protection of
1006  * the page table locks for all page tables which may be modified.  In the UP
1007  * case, this is required so that preemption is disabled, and in the SMP case,
1008  * it must synchronize the delayed page table writes properly on other CPUs.
1009  */
1010 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1011 #define arch_enter_lazy_mmu_mode()	do {} while (0)
1012 #define arch_leave_lazy_mmu_mode()	do {} while (0)
1013 #define arch_flush_lazy_mmu_mode()	do {} while (0)
1014 #endif
1015 
1016 /*
1017  * A facility to provide batching of the reload of page tables and
1018  * other process state with the actual context switch code for
1019  * paravirtualized guests.  By convention, only one of the batched
1020  * update (lazy) modes (CPU, MMU) should be active at any given time,
1021  * entry should never be nested, and entry and exits should always be
1022  * paired.  This is for sanity of maintaining and reasoning about the
1023  * kernel code.  In this case, the exit (end of the context switch) is
1024  * in architecture-specific code, and so doesn't need a generic
1025  * definition.
1026  */
1027 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1028 #define arch_start_context_switch(prev)	do {} while (0)
1029 #endif
1030 
1031 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1032 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1033 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1034 {
1035 	return pmd;
1036 }
1037 
pmd_swp_soft_dirty(pmd_t pmd)1038 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1039 {
1040 	return 0;
1041 }
1042 
pmd_swp_clear_soft_dirty(pmd_t pmd)1043 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1044 {
1045 	return pmd;
1046 }
1047 #endif
1048 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1049 static inline int pte_soft_dirty(pte_t pte)
1050 {
1051 	return 0;
1052 }
1053 
pmd_soft_dirty(pmd_t pmd)1054 static inline int pmd_soft_dirty(pmd_t pmd)
1055 {
1056 	return 0;
1057 }
1058 
pte_mksoft_dirty(pte_t pte)1059 static inline pte_t pte_mksoft_dirty(pte_t pte)
1060 {
1061 	return pte;
1062 }
1063 
pmd_mksoft_dirty(pmd_t pmd)1064 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1065 {
1066 	return pmd;
1067 }
1068 
pte_clear_soft_dirty(pte_t pte)1069 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1070 {
1071 	return pte;
1072 }
1073 
pmd_clear_soft_dirty(pmd_t pmd)1074 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1075 {
1076 	return pmd;
1077 }
1078 
pte_swp_mksoft_dirty(pte_t pte)1079 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1080 {
1081 	return pte;
1082 }
1083 
pte_swp_soft_dirty(pte_t pte)1084 static inline int pte_swp_soft_dirty(pte_t pte)
1085 {
1086 	return 0;
1087 }
1088 
pte_swp_clear_soft_dirty(pte_t pte)1089 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1090 {
1091 	return pte;
1092 }
1093 
pmd_swp_mksoft_dirty(pmd_t pmd)1094 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1095 {
1096 	return pmd;
1097 }
1098 
pmd_swp_soft_dirty(pmd_t pmd)1099 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1100 {
1101 	return 0;
1102 }
1103 
pmd_swp_clear_soft_dirty(pmd_t pmd)1104 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1105 {
1106 	return pmd;
1107 }
1108 #endif
1109 
1110 #ifndef __HAVE_PFNMAP_TRACKING
1111 /*
1112  * Interfaces that can be used by architecture code to keep track of
1113  * memory type of pfn mappings specified by the remap_pfn_range,
1114  * vmf_insert_pfn.
1115  */
1116 
1117 /*
1118  * track_pfn_remap is called when a _new_ pfn mapping is being established
1119  * by remap_pfn_range() for physical range indicated by pfn and size.
1120  */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1121 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1122 				  unsigned long pfn, unsigned long addr,
1123 				  unsigned long size)
1124 {
1125 	return 0;
1126 }
1127 
1128 /*
1129  * track_pfn_insert is called when a _new_ single pfn is established
1130  * by vmf_insert_pfn().
1131  */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1132 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1133 				    pfn_t pfn)
1134 {
1135 }
1136 
1137 /*
1138  * track_pfn_copy is called when vma that is covering the pfnmap gets
1139  * copied through copy_page_range().
1140  */
track_pfn_copy(struct vm_area_struct * vma)1141 static inline int track_pfn_copy(struct vm_area_struct *vma)
1142 {
1143 	return 0;
1144 }
1145 
1146 /*
1147  * untrack_pfn is called while unmapping a pfnmap for a region.
1148  * untrack can be called for a specific region indicated by pfn and size or
1149  * can be for the entire vma (in which case pfn, size are zero).
1150  */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size)1151 static inline void untrack_pfn(struct vm_area_struct *vma,
1152 			       unsigned long pfn, unsigned long size)
1153 {
1154 }
1155 
1156 /*
1157  * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
1158  */
untrack_pfn_moved(struct vm_area_struct * vma)1159 static inline void untrack_pfn_moved(struct vm_area_struct *vma)
1160 {
1161 }
1162 #else
1163 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1164 			   unsigned long pfn, unsigned long addr,
1165 			   unsigned long size);
1166 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1167 			     pfn_t pfn);
1168 extern int track_pfn_copy(struct vm_area_struct *vma);
1169 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1170 			unsigned long size);
1171 extern void untrack_pfn_moved(struct vm_area_struct *vma);
1172 #endif
1173 
1174 #ifdef CONFIG_MMU
1175 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1176 static inline int is_zero_pfn(unsigned long pfn)
1177 {
1178 	extern unsigned long zero_pfn;
1179 	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1180 	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1181 }
1182 
1183 #define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
1184 
1185 #else
is_zero_pfn(unsigned long pfn)1186 static inline int is_zero_pfn(unsigned long pfn)
1187 {
1188 	extern unsigned long zero_pfn;
1189 	return pfn == zero_pfn;
1190 }
1191 
my_zero_pfn(unsigned long addr)1192 static inline unsigned long my_zero_pfn(unsigned long addr)
1193 {
1194 	extern unsigned long zero_pfn;
1195 	return zero_pfn;
1196 }
1197 #endif
1198 #else
is_zero_pfn(unsigned long pfn)1199 static inline int is_zero_pfn(unsigned long pfn)
1200 {
1201 	return 0;
1202 }
1203 
my_zero_pfn(unsigned long addr)1204 static inline unsigned long my_zero_pfn(unsigned long addr)
1205 {
1206 	return 0;
1207 }
1208 #endif /* CONFIG_MMU */
1209 
1210 #ifdef CONFIG_MMU
1211 
1212 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1213 static inline int pmd_trans_huge(pmd_t pmd)
1214 {
1215 	return 0;
1216 }
1217 #ifndef pmd_write
pmd_write(pmd_t pmd)1218 static inline int pmd_write(pmd_t pmd)
1219 {
1220 	BUG();
1221 	return 0;
1222 }
1223 #endif /* pmd_write */
1224 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1225 
1226 #ifndef pud_write
pud_write(pud_t pud)1227 static inline int pud_write(pud_t pud)
1228 {
1229 	BUG();
1230 	return 0;
1231 }
1232 #endif /* pud_write */
1233 
1234 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1235 static inline int pmd_devmap(pmd_t pmd)
1236 {
1237 	return 0;
1238 }
pud_devmap(pud_t pud)1239 static inline int pud_devmap(pud_t pud)
1240 {
1241 	return 0;
1242 }
pgd_devmap(pgd_t pgd)1243 static inline int pgd_devmap(pgd_t pgd)
1244 {
1245 	return 0;
1246 }
1247 #endif
1248 
1249 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1250 	(defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1251 	 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD))
pud_trans_huge(pud_t pud)1252 static inline int pud_trans_huge(pud_t pud)
1253 {
1254 	return 0;
1255 }
1256 #endif
1257 
1258 /* See pmd_none_or_trans_huge_or_clear_bad for discussion. */
pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t * pud)1259 static inline int pud_none_or_trans_huge_or_dev_or_clear_bad(pud_t *pud)
1260 {
1261 	pud_t pudval = READ_ONCE(*pud);
1262 
1263 	if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1264 		return 1;
1265 	if (unlikely(pud_bad(pudval))) {
1266 		pud_clear_bad(pud);
1267 		return 1;
1268 	}
1269 	return 0;
1270 }
1271 
1272 /* See pmd_trans_unstable for discussion. */
pud_trans_unstable(pud_t * pud)1273 static inline int pud_trans_unstable(pud_t *pud)
1274 {
1275 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
1276 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1277 	return pud_none_or_trans_huge_or_dev_or_clear_bad(pud);
1278 #else
1279 	return 0;
1280 #endif
1281 }
1282 
1283 #ifndef pmd_read_atomic
pmd_read_atomic(pmd_t * pmdp)1284 static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
1285 {
1286 	/*
1287 	 * Depend on compiler for an atomic pmd read. NOTE: this is
1288 	 * only going to work, if the pmdval_t isn't larger than
1289 	 * an unsigned long.
1290 	 */
1291 	return *pmdp;
1292 }
1293 #endif
1294 
1295 #ifndef arch_needs_pgtable_deposit
1296 #define arch_needs_pgtable_deposit() (false)
1297 #endif
1298 /*
1299  * This function is meant to be used by sites walking pagetables with
1300  * the mmap_lock held in read mode to protect against MADV_DONTNEED and
1301  * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
1302  * into a null pmd and the transhuge page fault can convert a null pmd
1303  * into an hugepmd or into a regular pmd (if the hugepage allocation
1304  * fails). While holding the mmap_lock in read mode the pmd becomes
1305  * stable and stops changing under us only if it's not null and not a
1306  * transhuge pmd. When those races occurs and this function makes a
1307  * difference vs the standard pmd_none_or_clear_bad, the result is
1308  * undefined so behaving like if the pmd was none is safe (because it
1309  * can return none anyway). The compiler level barrier() is critically
1310  * important to compute the two checks atomically on the same pmdval.
1311  *
1312  * For 32bit kernels with a 64bit large pmd_t this automatically takes
1313  * care of reading the pmd atomically to avoid SMP race conditions
1314  * against pmd_populate() when the mmap_lock is hold for reading by the
1315  * caller (a special atomic read not done by "gcc" as in the generic
1316  * version above, is also needed when THP is disabled because the page
1317  * fault can populate the pmd from under us).
1318  */
pmd_none_or_trans_huge_or_clear_bad(pmd_t * pmd)1319 static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
1320 {
1321 	pmd_t pmdval = pmd_read_atomic(pmd);
1322 	/*
1323 	 * The barrier will stabilize the pmdval in a register or on
1324 	 * the stack so that it will stop changing under the code.
1325 	 *
1326 	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
1327 	 * pmd_read_atomic is allowed to return a not atomic pmdval
1328 	 * (for example pointing to an hugepage that has never been
1329 	 * mapped in the pmd). The below checks will only care about
1330 	 * the low part of the pmd with 32bit PAE x86 anyway, with the
1331 	 * exception of pmd_none(). So the important thing is that if
1332 	 * the low part of the pmd is found null, the high part will
1333 	 * be also null or the pmd_none() check below would be
1334 	 * confused.
1335 	 */
1336 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1337 	barrier();
1338 #endif
1339 	/*
1340 	 * !pmd_present() checks for pmd migration entries
1341 	 *
1342 	 * The complete check uses is_pmd_migration_entry() in linux/swapops.h
1343 	 * But using that requires moving current function and pmd_trans_unstable()
1344 	 * to linux/swapops.h to resolve dependency, which is too much code move.
1345 	 *
1346 	 * !pmd_present() is equivalent to is_pmd_migration_entry() currently,
1347 	 * because !pmd_present() pages can only be under migration not swapped
1348 	 * out.
1349 	 *
1350 	 * pmd_none() is preserved for future condition checks on pmd migration
1351 	 * entries and not confusing with this function name, although it is
1352 	 * redundant with !pmd_present().
1353 	 */
1354 	if (pmd_none(pmdval) || pmd_trans_huge(pmdval) ||
1355 		(IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION) && !pmd_present(pmdval)))
1356 		return 1;
1357 	if (unlikely(pmd_bad(pmdval))) {
1358 		pmd_clear_bad(pmd);
1359 		return 1;
1360 	}
1361 	return 0;
1362 }
1363 
1364 /*
1365  * This is a noop if Transparent Hugepage Support is not built into
1366  * the kernel. Otherwise it is equivalent to
1367  * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
1368  * places that already verified the pmd is not none and they want to
1369  * walk ptes while holding the mmap sem in read mode (write mode don't
1370  * need this). If THP is not enabled, the pmd can't go away under the
1371  * code even if MADV_DONTNEED runs, but if THP is enabled we need to
1372  * run a pmd_trans_unstable before walking the ptes after
1373  * split_huge_pmd returns (because it may have run when the pmd become
1374  * null, but then a page fault can map in a THP and not a regular page).
1375  */
pmd_trans_unstable(pmd_t * pmd)1376 static inline int pmd_trans_unstable(pmd_t *pmd)
1377 {
1378 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1379 	return pmd_none_or_trans_huge_or_clear_bad(pmd);
1380 #else
1381 	return 0;
1382 #endif
1383 }
1384 
1385 /*
1386  * the ordering of these checks is important for pmds with _page_devmap set.
1387  * if we check pmd_trans_unstable() first we will trip the bad_pmd() check
1388  * inside of pmd_none_or_trans_huge_or_clear_bad(). this will end up correctly
1389  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
1390  */
pmd_devmap_trans_unstable(pmd_t * pmd)1391 static inline int pmd_devmap_trans_unstable(pmd_t *pmd)
1392 {
1393 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
1394 }
1395 
1396 #ifndef CONFIG_NUMA_BALANCING
1397 /*
1398  * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1399  * the only case the kernel cares is for NUMA balancing and is only ever set
1400  * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1401  * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1402  * is the responsibility of the caller to distinguish between PROT_NONE
1403  * protections and NUMA hinting fault protections.
1404  */
pte_protnone(pte_t pte)1405 static inline int pte_protnone(pte_t pte)
1406 {
1407 	return 0;
1408 }
1409 
pmd_protnone(pmd_t pmd)1410 static inline int pmd_protnone(pmd_t pmd)
1411 {
1412 	return 0;
1413 }
1414 #endif /* CONFIG_NUMA_BALANCING */
1415 
1416 #endif /* CONFIG_MMU */
1417 
1418 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1419 
1420 #ifndef __PAGETABLE_P4D_FOLDED
1421 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1422 int p4d_clear_huge(p4d_t *p4d);
1423 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1424 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1425 {
1426 	return 0;
1427 }
p4d_clear_huge(p4d_t * p4d)1428 static inline int p4d_clear_huge(p4d_t *p4d)
1429 {
1430 	return 0;
1431 }
1432 #endif /* !__PAGETABLE_P4D_FOLDED */
1433 
1434 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1435 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1436 int pud_clear_huge(pud_t *pud);
1437 int pmd_clear_huge(pmd_t *pmd);
1438 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1439 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1440 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1441 #else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1442 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1443 {
1444 	return 0;
1445 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1446 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1447 {
1448 	return 0;
1449 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1450 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1451 {
1452 	return 0;
1453 }
p4d_clear_huge(p4d_t * p4d)1454 static inline int p4d_clear_huge(p4d_t *p4d)
1455 {
1456 	return 0;
1457 }
pud_clear_huge(pud_t * pud)1458 static inline int pud_clear_huge(pud_t *pud)
1459 {
1460 	return 0;
1461 }
pmd_clear_huge(pmd_t * pmd)1462 static inline int pmd_clear_huge(pmd_t *pmd)
1463 {
1464 	return 0;
1465 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1466 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1467 {
1468 	return 0;
1469 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1470 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1471 {
1472 	return 0;
1473 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1474 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1475 {
1476 	return 0;
1477 }
1478 #endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
1479 
1480 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1482 /*
1483  * ARCHes with special requirements for evicting THP backing TLB entries can
1484  * implement this. Otherwise also, it can help optimize normal TLB flush in
1485  * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1486  * entire TLB if flush span is greater than a threshold, which will
1487  * likely be true for a single huge page. Thus a single THP flush will
1488  * invalidate the entire TLB which is not desirable.
1489  * e.g. see arch/arc: flush_pmd_tlb_range
1490  */
1491 #define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1492 #define flush_pud_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
1493 #else
1494 #define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
1495 #define flush_pud_tlb_range(vma, addr, end)	BUILD_BUG()
1496 #endif
1497 #endif
1498 
1499 struct file;
1500 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1501 			unsigned long size, pgprot_t *vma_prot);
1502 
1503 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1504 static inline void init_espfix_bsp(void) { }
1505 #endif
1506 
1507 extern void __init pgtable_cache_init(void);
1508 
1509 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1510 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1511 {
1512 	return true;
1513 }
1514 
arch_has_pfn_modify_check(void)1515 static inline bool arch_has_pfn_modify_check(void)
1516 {
1517 	return false;
1518 }
1519 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1520 
1521 /*
1522  * Architecture PAGE_KERNEL_* fallbacks
1523  *
1524  * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1525  * because they really don't support them, or the port needs to be updated to
1526  * reflect the required functionality. Below are a set of relatively safe
1527  * fallbacks, as best effort, which we can count on in lieu of the architectures
1528  * not defining them on their own yet.
1529  */
1530 
1531 #ifndef PAGE_KERNEL_RO
1532 # define PAGE_KERNEL_RO PAGE_KERNEL
1533 #endif
1534 
1535 #ifndef PAGE_KERNEL_EXEC
1536 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1537 #endif
1538 
1539 /*
1540  * Page Table Modification bits for pgtbl_mod_mask.
1541  *
1542  * These are used by the p?d_alloc_track*() set of functions an in the generic
1543  * vmalloc/ioremap code to track at which page-table levels entries have been
1544  * modified. Based on that the code can better decide when vmalloc and ioremap
1545  * mapping changes need to be synchronized to other page-tables in the system.
1546  */
1547 #define		__PGTBL_PGD_MODIFIED	0
1548 #define		__PGTBL_P4D_MODIFIED	1
1549 #define		__PGTBL_PUD_MODIFIED	2
1550 #define		__PGTBL_PMD_MODIFIED	3
1551 #define		__PGTBL_PTE_MODIFIED	4
1552 
1553 #define		PGTBL_PGD_MODIFIED	BIT(__PGTBL_PGD_MODIFIED)
1554 #define		PGTBL_P4D_MODIFIED	BIT(__PGTBL_P4D_MODIFIED)
1555 #define		PGTBL_PUD_MODIFIED	BIT(__PGTBL_PUD_MODIFIED)
1556 #define		PGTBL_PMD_MODIFIED	BIT(__PGTBL_PMD_MODIFIED)
1557 #define		PGTBL_PTE_MODIFIED	BIT(__PGTBL_PTE_MODIFIED)
1558 
1559 /* Page-Table Modification Mask */
1560 typedef unsigned int pgtbl_mod_mask;
1561 
1562 #endif /* !__ASSEMBLY__ */
1563 
1564 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1565 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1566 /*
1567  * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1568  * with physical address space extension, but falls back to
1569  * BITS_PER_LONG otherwise.
1570  */
1571 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1572 #else
1573 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1574 #endif
1575 #endif
1576 
1577 #ifndef has_transparent_hugepage
1578 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1579 #define has_transparent_hugepage() 1
1580 #else
1581 #define has_transparent_hugepage() 0
1582 #endif
1583 #endif
1584 
1585 /*
1586  * On some architectures it depends on the mm if the p4d/pud or pmd
1587  * layer of the page table hierarchy is folded or not.
1588  */
1589 #ifndef mm_p4d_folded
1590 #define mm_p4d_folded(mm)	__is_defined(__PAGETABLE_P4D_FOLDED)
1591 #endif
1592 
1593 #ifndef mm_pud_folded
1594 #define mm_pud_folded(mm)	__is_defined(__PAGETABLE_PUD_FOLDED)
1595 #endif
1596 
1597 #ifndef mm_pmd_folded
1598 #define mm_pmd_folded(mm)	__is_defined(__PAGETABLE_PMD_FOLDED)
1599 #endif
1600 
1601 #ifndef p4d_offset_lockless
1602 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1603 #endif
1604 #ifndef pud_offset_lockless
1605 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1606 #endif
1607 #ifndef pmd_offset_lockless
1608 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1609 #endif
1610 
1611 /*
1612  * p?d_leaf() - true if this entry is a final mapping to a physical address.
1613  * This differs from p?d_huge() by the fact that they are always available (if
1614  * the architecture supports large pages at the appropriate level) even
1615  * if CONFIG_HUGETLB_PAGE is not defined.
1616  * Only meaningful when called on a valid entry.
1617  */
1618 #ifndef pgd_leaf
1619 #define pgd_leaf(x)	0
1620 #endif
1621 #ifndef p4d_leaf
1622 #define p4d_leaf(x)	0
1623 #endif
1624 #ifndef pud_leaf
1625 #define pud_leaf(x)	0
1626 #endif
1627 #ifndef pmd_leaf
1628 #define pmd_leaf(x)	0
1629 #endif
1630 
1631 #ifndef pgd_leaf_size
1632 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1633 #endif
1634 #ifndef p4d_leaf_size
1635 #define p4d_leaf_size(x) P4D_SIZE
1636 #endif
1637 #ifndef pud_leaf_size
1638 #define pud_leaf_size(x) PUD_SIZE
1639 #endif
1640 #ifndef pmd_leaf_size
1641 #define pmd_leaf_size(x) PMD_SIZE
1642 #endif
1643 #ifndef pte_leaf_size
1644 #define pte_leaf_size(x) PAGE_SIZE
1645 #endif
1646 
1647 /*
1648  * Some architectures have MMUs that are configurable or selectable at boot
1649  * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1650  * helps to have a static maximum value.
1651  */
1652 
1653 #ifndef MAX_PTRS_PER_PTE
1654 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1655 #endif
1656 
1657 #ifndef MAX_PTRS_PER_PMD
1658 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1659 #endif
1660 
1661 #ifndef MAX_PTRS_PER_PUD
1662 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1663 #endif
1664 
1665 #ifndef MAX_PTRS_PER_P4D
1666 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1667 #endif
1668 
1669 #endif /* _LINUX_PGTABLE_H */
1670