• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PTP 1588 clock support
4  *
5  * Copyright (C) 2010 OMICRON electronics GmbH
6  */
7 #include <linux/idr.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/init.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/posix-clock.h>
14 #include <linux/pps_kernel.h>
15 #include <linux/slab.h>
16 #include <linux/syscalls.h>
17 #include <linux/uaccess.h>
18 #include <uapi/linux/sched/types.h>
19 
20 #include "ptp_private.h"
21 
22 #define PTP_MAX_ALARMS 4
23 #define PTP_PPS_DEFAULTS (PPS_CAPTUREASSERT | PPS_OFFSETASSERT)
24 #define PTP_PPS_EVENT PPS_CAPTUREASSERT
25 #define PTP_PPS_MODE (PTP_PPS_DEFAULTS | PPS_CANWAIT | PPS_TSFMT_TSPEC)
26 
27 struct class *ptp_class;
28 
29 /* private globals */
30 
31 static dev_t ptp_devt;
32 
33 static DEFINE_IDA(ptp_clocks_map);
34 
35 /* time stamp event queue operations */
36 
queue_free(struct timestamp_event_queue * q)37 static inline int queue_free(struct timestamp_event_queue *q)
38 {
39 	return PTP_MAX_TIMESTAMPS - queue_cnt(q) - 1;
40 }
41 
enqueue_external_timestamp(struct timestamp_event_queue * queue,struct ptp_clock_event * src)42 static void enqueue_external_timestamp(struct timestamp_event_queue *queue,
43 				       struct ptp_clock_event *src)
44 {
45 	struct ptp_extts_event *dst;
46 	unsigned long flags;
47 	s64 seconds;
48 	u32 remainder;
49 
50 	seconds = div_u64_rem(src->timestamp, 1000000000, &remainder);
51 
52 	spin_lock_irqsave(&queue->lock, flags);
53 
54 	dst = &queue->buf[queue->tail];
55 	dst->index = src->index;
56 	dst->t.sec = seconds;
57 	dst->t.nsec = remainder;
58 
59 	/* Both WRITE_ONCE() are paired with READ_ONCE() in queue_cnt() */
60 	if (!queue_free(queue))
61 		WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
62 
63 	WRITE_ONCE(queue->tail, (queue->tail + 1) % PTP_MAX_TIMESTAMPS);
64 
65 	spin_unlock_irqrestore(&queue->lock, flags);
66 }
67 
68 /* posix clock implementation */
69 
ptp_clock_getres(struct posix_clock * pc,struct timespec64 * tp)70 static int ptp_clock_getres(struct posix_clock *pc, struct timespec64 *tp)
71 {
72 	tp->tv_sec = 0;
73 	tp->tv_nsec = 1;
74 	return 0;
75 }
76 
ptp_clock_settime(struct posix_clock * pc,const struct timespec64 * tp)77 static int ptp_clock_settime(struct posix_clock *pc, const struct timespec64 *tp)
78 {
79 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
80 
81 	if (ptp_vclock_in_use(ptp)) {
82 		pr_err("ptp: virtual clock in use\n");
83 		return -EBUSY;
84 	}
85 
86 	return  ptp->info->settime64(ptp->info, tp);
87 }
88 
ptp_clock_gettime(struct posix_clock * pc,struct timespec64 * tp)89 static int ptp_clock_gettime(struct posix_clock *pc, struct timespec64 *tp)
90 {
91 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
92 	int err;
93 
94 	if (ptp->info->gettimex64)
95 		err = ptp->info->gettimex64(ptp->info, tp, NULL);
96 	else
97 		err = ptp->info->gettime64(ptp->info, tp);
98 	return err;
99 }
100 
ptp_clock_adjtime(struct posix_clock * pc,struct __kernel_timex * tx)101 static int ptp_clock_adjtime(struct posix_clock *pc, struct __kernel_timex *tx)
102 {
103 	struct ptp_clock *ptp = container_of(pc, struct ptp_clock, clock);
104 	struct ptp_clock_info *ops;
105 	int err = -EOPNOTSUPP;
106 
107 	if (ptp_vclock_in_use(ptp)) {
108 		pr_err("ptp: virtual clock in use\n");
109 		return -EBUSY;
110 	}
111 
112 	ops = ptp->info;
113 
114 	if (tx->modes & ADJ_SETOFFSET) {
115 		struct timespec64 ts;
116 		ktime_t kt;
117 		s64 delta;
118 
119 		ts.tv_sec  = tx->time.tv_sec;
120 		ts.tv_nsec = tx->time.tv_usec;
121 
122 		if (!(tx->modes & ADJ_NANO))
123 			ts.tv_nsec *= 1000;
124 
125 		if ((unsigned long) ts.tv_nsec >= NSEC_PER_SEC)
126 			return -EINVAL;
127 
128 		kt = timespec64_to_ktime(ts);
129 		delta = ktime_to_ns(kt);
130 		err = ops->adjtime(ops, delta);
131 	} else if (tx->modes & ADJ_FREQUENCY) {
132 		long ppb = scaled_ppm_to_ppb(tx->freq);
133 		if (ppb > ops->max_adj || ppb < -ops->max_adj)
134 			return -ERANGE;
135 		if (ops->adjfine)
136 			err = ops->adjfine(ops, tx->freq);
137 		else
138 			err = ops->adjfreq(ops, ppb);
139 		ptp->dialed_frequency = tx->freq;
140 	} else if (tx->modes & ADJ_OFFSET) {
141 		if (ops->adjphase) {
142 			s32 offset = tx->offset;
143 
144 			if (!(tx->modes & ADJ_NANO))
145 				offset *= NSEC_PER_USEC;
146 
147 			err = ops->adjphase(ops, offset);
148 		}
149 	} else if (tx->modes == 0) {
150 		tx->freq = ptp->dialed_frequency;
151 		err = 0;
152 	}
153 
154 	return err;
155 }
156 
157 static struct posix_clock_operations ptp_clock_ops = {
158 	.owner		= THIS_MODULE,
159 	.clock_adjtime	= ptp_clock_adjtime,
160 	.clock_gettime	= ptp_clock_gettime,
161 	.clock_getres	= ptp_clock_getres,
162 	.clock_settime	= ptp_clock_settime,
163 	.ioctl		= ptp_ioctl,
164 	.open		= ptp_open,
165 	.poll		= ptp_poll,
166 	.read		= ptp_read,
167 };
168 
ptp_clock_release(struct device * dev)169 static void ptp_clock_release(struct device *dev)
170 {
171 	struct ptp_clock *ptp = container_of(dev, struct ptp_clock, dev);
172 
173 	ptp_cleanup_pin_groups(ptp);
174 	kfree(ptp->vclock_index);
175 	mutex_destroy(&ptp->tsevq_mux);
176 	mutex_destroy(&ptp->pincfg_mux);
177 	mutex_destroy(&ptp->n_vclocks_mux);
178 	ida_simple_remove(&ptp_clocks_map, ptp->index);
179 	kfree(ptp);
180 }
181 
ptp_aux_kworker(struct kthread_work * work)182 static void ptp_aux_kworker(struct kthread_work *work)
183 {
184 	struct ptp_clock *ptp = container_of(work, struct ptp_clock,
185 					     aux_work.work);
186 	struct ptp_clock_info *info = ptp->info;
187 	long delay;
188 
189 	delay = info->do_aux_work(info);
190 
191 	if (delay >= 0)
192 		kthread_queue_delayed_work(ptp->kworker, &ptp->aux_work, delay);
193 }
194 
195 /* public interface */
196 
ptp_clock_register(struct ptp_clock_info * info,struct device * parent)197 struct ptp_clock *ptp_clock_register(struct ptp_clock_info *info,
198 				     struct device *parent)
199 {
200 	struct ptp_clock *ptp;
201 	int err = 0, index, major = MAJOR(ptp_devt);
202 	size_t size;
203 
204 	if (info->n_alarm > PTP_MAX_ALARMS)
205 		return ERR_PTR(-EINVAL);
206 
207 	/* Initialize a clock structure. */
208 	err = -ENOMEM;
209 	ptp = kzalloc(sizeof(struct ptp_clock), GFP_KERNEL);
210 	if (ptp == NULL)
211 		goto no_memory;
212 
213 	index = ida_simple_get(&ptp_clocks_map, 0, MINORMASK + 1, GFP_KERNEL);
214 	if (index < 0) {
215 		err = index;
216 		goto no_slot;
217 	}
218 
219 	ptp->clock.ops = ptp_clock_ops;
220 	ptp->info = info;
221 	ptp->devid = MKDEV(major, index);
222 	ptp->index = index;
223 	spin_lock_init(&ptp->tsevq.lock);
224 	mutex_init(&ptp->tsevq_mux);
225 	mutex_init(&ptp->pincfg_mux);
226 	mutex_init(&ptp->n_vclocks_mux);
227 	init_waitqueue_head(&ptp->tsev_wq);
228 
229 	if (ptp->info->do_aux_work) {
230 		kthread_init_delayed_work(&ptp->aux_work, ptp_aux_kworker);
231 		ptp->kworker = kthread_create_worker(0, "ptp%d", ptp->index);
232 		if (IS_ERR(ptp->kworker)) {
233 			err = PTR_ERR(ptp->kworker);
234 			pr_err("failed to create ptp aux_worker %d\n", err);
235 			goto kworker_err;
236 		}
237 	}
238 
239 	/* PTP virtual clock is being registered under physical clock */
240 	if (parent && parent->class && parent->class->name &&
241 	    strcmp(parent->class->name, "ptp") == 0)
242 		ptp->is_virtual_clock = true;
243 
244 	if (!ptp->is_virtual_clock) {
245 		ptp->max_vclocks = PTP_DEFAULT_MAX_VCLOCKS;
246 
247 		size = sizeof(int) * ptp->max_vclocks;
248 		ptp->vclock_index = kzalloc(size, GFP_KERNEL);
249 		if (!ptp->vclock_index) {
250 			err = -ENOMEM;
251 			goto no_mem_for_vclocks;
252 		}
253 	}
254 
255 	err = ptp_populate_pin_groups(ptp);
256 	if (err)
257 		goto no_pin_groups;
258 
259 	/* Register a new PPS source. */
260 	if (info->pps) {
261 		struct pps_source_info pps;
262 		memset(&pps, 0, sizeof(pps));
263 		snprintf(pps.name, PPS_MAX_NAME_LEN, "ptp%d", index);
264 		pps.mode = PTP_PPS_MODE;
265 		pps.owner = info->owner;
266 		ptp->pps_source = pps_register_source(&pps, PTP_PPS_DEFAULTS);
267 		if (IS_ERR(ptp->pps_source)) {
268 			err = PTR_ERR(ptp->pps_source);
269 			pr_err("failed to register pps source\n");
270 			goto no_pps;
271 		}
272 		ptp->pps_source->lookup_cookie = ptp;
273 	}
274 
275 	/* Initialize a new device of our class in our clock structure. */
276 	device_initialize(&ptp->dev);
277 	ptp->dev.devt = ptp->devid;
278 	ptp->dev.class = ptp_class;
279 	ptp->dev.parent = parent;
280 	ptp->dev.groups = ptp->pin_attr_groups;
281 	ptp->dev.release = ptp_clock_release;
282 	dev_set_drvdata(&ptp->dev, ptp);
283 	dev_set_name(&ptp->dev, "ptp%d", ptp->index);
284 
285 	/* Create a posix clock and link it to the device. */
286 	err = posix_clock_register(&ptp->clock, &ptp->dev);
287 	if (err) {
288 	        if (ptp->pps_source)
289 	                pps_unregister_source(ptp->pps_source);
290 
291 		if (ptp->kworker)
292 	                kthread_destroy_worker(ptp->kworker);
293 
294 		put_device(&ptp->dev);
295 
296 		pr_err("failed to create posix clock\n");
297 		return ERR_PTR(err);
298 	}
299 
300 	return ptp;
301 
302 no_pps:
303 	ptp_cleanup_pin_groups(ptp);
304 no_pin_groups:
305 	kfree(ptp->vclock_index);
306 no_mem_for_vclocks:
307 	if (ptp->kworker)
308 		kthread_destroy_worker(ptp->kworker);
309 kworker_err:
310 	mutex_destroy(&ptp->tsevq_mux);
311 	mutex_destroy(&ptp->pincfg_mux);
312 	mutex_destroy(&ptp->n_vclocks_mux);
313 	ida_simple_remove(&ptp_clocks_map, index);
314 no_slot:
315 	kfree(ptp);
316 no_memory:
317 	return ERR_PTR(err);
318 }
319 EXPORT_SYMBOL(ptp_clock_register);
320 
unregister_vclock(struct device * dev,void * data)321 static int unregister_vclock(struct device *dev, void *data)
322 {
323 	struct ptp_clock *ptp = dev_get_drvdata(dev);
324 
325 	ptp_vclock_unregister(info_to_vclock(ptp->info));
326 	return 0;
327 }
328 
ptp_clock_unregister(struct ptp_clock * ptp)329 int ptp_clock_unregister(struct ptp_clock *ptp)
330 {
331 	if (ptp_vclock_in_use(ptp)) {
332 		device_for_each_child(&ptp->dev, NULL, unregister_vclock);
333 	}
334 
335 	ptp->defunct = 1;
336 	wake_up_interruptible(&ptp->tsev_wq);
337 
338 	if (ptp->kworker) {
339 		kthread_cancel_delayed_work_sync(&ptp->aux_work);
340 		kthread_destroy_worker(ptp->kworker);
341 	}
342 
343 	/* Release the clock's resources. */
344 	if (ptp->pps_source)
345 		pps_unregister_source(ptp->pps_source);
346 
347 	posix_clock_unregister(&ptp->clock);
348 
349 	return 0;
350 }
351 EXPORT_SYMBOL(ptp_clock_unregister);
352 
ptp_clock_event(struct ptp_clock * ptp,struct ptp_clock_event * event)353 void ptp_clock_event(struct ptp_clock *ptp, struct ptp_clock_event *event)
354 {
355 	struct pps_event_time evt;
356 
357 	switch (event->type) {
358 
359 	case PTP_CLOCK_ALARM:
360 		break;
361 
362 	case PTP_CLOCK_EXTTS:
363 		enqueue_external_timestamp(&ptp->tsevq, event);
364 		wake_up_interruptible(&ptp->tsev_wq);
365 		break;
366 
367 	case PTP_CLOCK_PPS:
368 		pps_get_ts(&evt);
369 		pps_event(ptp->pps_source, &evt, PTP_PPS_EVENT, NULL);
370 		break;
371 
372 	case PTP_CLOCK_PPSUSR:
373 		pps_event(ptp->pps_source, &event->pps_times,
374 			  PTP_PPS_EVENT, NULL);
375 		break;
376 	}
377 }
378 EXPORT_SYMBOL(ptp_clock_event);
379 
ptp_clock_index(struct ptp_clock * ptp)380 int ptp_clock_index(struct ptp_clock *ptp)
381 {
382 	return ptp->index;
383 }
384 EXPORT_SYMBOL(ptp_clock_index);
385 
ptp_find_pin(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)386 int ptp_find_pin(struct ptp_clock *ptp,
387 		 enum ptp_pin_function func, unsigned int chan)
388 {
389 	struct ptp_pin_desc *pin = NULL;
390 	int i;
391 
392 	for (i = 0; i < ptp->info->n_pins; i++) {
393 		if (ptp->info->pin_config[i].func == func &&
394 		    ptp->info->pin_config[i].chan == chan) {
395 			pin = &ptp->info->pin_config[i];
396 			break;
397 		}
398 	}
399 
400 	return pin ? i : -1;
401 }
402 EXPORT_SYMBOL(ptp_find_pin);
403 
ptp_find_pin_unlocked(struct ptp_clock * ptp,enum ptp_pin_function func,unsigned int chan)404 int ptp_find_pin_unlocked(struct ptp_clock *ptp,
405 			  enum ptp_pin_function func, unsigned int chan)
406 {
407 	int result;
408 
409 	mutex_lock(&ptp->pincfg_mux);
410 
411 	result = ptp_find_pin(ptp, func, chan);
412 
413 	mutex_unlock(&ptp->pincfg_mux);
414 
415 	return result;
416 }
417 EXPORT_SYMBOL(ptp_find_pin_unlocked);
418 
ptp_schedule_worker(struct ptp_clock * ptp,unsigned long delay)419 int ptp_schedule_worker(struct ptp_clock *ptp, unsigned long delay)
420 {
421 	return kthread_mod_delayed_work(ptp->kworker, &ptp->aux_work, delay);
422 }
423 EXPORT_SYMBOL(ptp_schedule_worker);
424 
ptp_cancel_worker_sync(struct ptp_clock * ptp)425 void ptp_cancel_worker_sync(struct ptp_clock *ptp)
426 {
427 	kthread_cancel_delayed_work_sync(&ptp->aux_work);
428 }
429 EXPORT_SYMBOL(ptp_cancel_worker_sync);
430 
431 /* module operations */
432 
ptp_exit(void)433 static void __exit ptp_exit(void)
434 {
435 	class_destroy(ptp_class);
436 	unregister_chrdev_region(ptp_devt, MINORMASK + 1);
437 	ida_destroy(&ptp_clocks_map);
438 }
439 
ptp_init(void)440 static int __init ptp_init(void)
441 {
442 	int err;
443 
444 	ptp_class = class_create(THIS_MODULE, "ptp");
445 	if (IS_ERR(ptp_class)) {
446 		pr_err("ptp: failed to allocate class\n");
447 		return PTR_ERR(ptp_class);
448 	}
449 
450 	err = alloc_chrdev_region(&ptp_devt, 0, MINORMASK + 1, "ptp");
451 	if (err < 0) {
452 		pr_err("ptp: failed to allocate device region\n");
453 		goto no_region;
454 	}
455 
456 	ptp_class->dev_groups = ptp_groups;
457 	pr_info("PTP clock support registered\n");
458 	return 0;
459 
460 no_region:
461 	class_destroy(ptp_class);
462 	return err;
463 }
464 
465 subsys_initcall(ptp_init);
466 module_exit(ptp_exit);
467 
468 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
469 MODULE_DESCRIPTION("PTP clocks support");
470 MODULE_LICENSE("GPL");
471