1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/interconnect.h>
13 #include <linux/pm_opp.h>
14 #include <linux/regulator/consumer.h>
15
16 #include "msm_drv.h"
17 #include "msm_fence.h"
18 #include "msm_ringbuffer.h"
19 #include "msm_gem.h"
20
21 struct msm_gem_submit;
22 struct msm_gpu_perfcntr;
23 struct msm_gpu_state;
24
25 struct msm_gpu_config {
26 const char *ioname;
27 unsigned int nr_rings;
28 };
29
30 /* So far, with hardware that I've seen to date, we can have:
31 * + zero, one, or two z180 2d cores
32 * + a3xx or a2xx 3d core, which share a common CP (the firmware
33 * for the CP seems to implement some different PM4 packet types
34 * but the basics of cmdstream submission are the same)
35 *
36 * Which means that the eventual complete "class" hierarchy, once
37 * support for all past and present hw is in place, becomes:
38 * + msm_gpu
39 * + adreno_gpu
40 * + a3xx_gpu
41 * + a2xx_gpu
42 * + z180_gpu
43 */
44 struct msm_gpu_funcs {
45 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
46 int (*hw_init)(struct msm_gpu *gpu);
47 int (*pm_suspend)(struct msm_gpu *gpu);
48 int (*pm_resume)(struct msm_gpu *gpu);
49 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
50 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
51 irqreturn_t (*irq)(struct msm_gpu *irq);
52 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
53 void (*recover)(struct msm_gpu *gpu);
54 void (*destroy)(struct msm_gpu *gpu);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 /* show GPU status in debugfs: */
57 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
58 struct drm_printer *p);
59 /* for generation specific debugfs: */
60 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 #endif
62 unsigned long (*gpu_busy)(struct msm_gpu *gpu);
63 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
64 int (*gpu_state_put)(struct msm_gpu_state *state);
65 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
66 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
67 struct msm_gem_address_space *(*create_address_space)
68 (struct msm_gpu *gpu, struct platform_device *pdev);
69 struct msm_gem_address_space *(*create_private_address_space)
70 (struct msm_gpu *gpu);
71 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
72 };
73
74 /* Additional state for iommu faults: */
75 struct msm_gpu_fault_info {
76 u64 ttbr0;
77 unsigned long iova;
78 int flags;
79 const char *type;
80 const char *block;
81 };
82
83 /**
84 * struct msm_gpu_devfreq - devfreq related state
85 */
86 struct msm_gpu_devfreq {
87 /** devfreq: devfreq instance */
88 struct devfreq *devfreq;
89
90 /**
91 * busy_cycles:
92 *
93 * Used by implementation of gpu->gpu_busy() to track the last
94 * busy counter value, for calculating elapsed busy cycles since
95 * last sampling period.
96 */
97 u64 busy_cycles;
98
99 /** time: Time of last sampling period. */
100 ktime_t time;
101
102 /** idle_time: Time of last transition to idle: */
103 ktime_t idle_time;
104
105 /**
106 * idle_freq:
107 *
108 * Shadow frequency used while the GPU is idle. From the PoV of
109 * the devfreq governor, we are continuing to sample busyness and
110 * adjust frequency while the GPU is idle, but we use this shadow
111 * value as the GPU is actually clamped to minimum frequency while
112 * it is inactive.
113 */
114 unsigned long idle_freq;
115 };
116
117 struct msm_gpu {
118 const char *name;
119 struct drm_device *dev;
120 struct platform_device *pdev;
121 const struct msm_gpu_funcs *funcs;
122
123 struct adreno_smmu_priv adreno_smmu;
124
125 /* performance counters (hw & sw): */
126 spinlock_t perf_lock;
127 bool perfcntr_active;
128 struct {
129 bool active;
130 ktime_t time;
131 } last_sample;
132 uint32_t totaltime, activetime; /* sw counters */
133 uint32_t last_cntrs[5]; /* hw counters */
134 const struct msm_gpu_perfcntr *perfcntrs;
135 uint32_t num_perfcntrs;
136
137 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
138 int nr_rings;
139
140 /*
141 * List of GEM active objects on this gpu. Protected by
142 * msm_drm_private::mm_lock
143 */
144 struct list_head active_list;
145
146 /**
147 * lock:
148 *
149 * General lock for serializing all the gpu things.
150 *
151 * TODO move to per-ring locking where feasible (ie. submit/retire
152 * path, etc)
153 */
154 struct mutex lock;
155
156 /**
157 * active_submits:
158 *
159 * The number of submitted but not yet retired submits, used to
160 * determine transitions between active and idle.
161 *
162 * Protected by active_lock
163 */
164 int active_submits;
165
166 /** lock: protects active_submits and idle/active transitions */
167 struct mutex active_lock;
168
169 /* does gpu need hw_init? */
170 bool needs_hw_init;
171
172 /* number of GPU hangs (for all contexts) */
173 int global_faults;
174
175 void __iomem *mmio;
176 int irq;
177
178 struct msm_gem_address_space *aspace;
179
180 /* Power Control: */
181 struct regulator *gpu_reg, *gpu_cx;
182 struct clk_bulk_data *grp_clks;
183 int nr_clocks;
184 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
185 uint32_t fast_rate;
186
187 /* Hang and Inactivity Detection:
188 */
189 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
190
191 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
192 struct timer_list hangcheck_timer;
193
194 /* Fault info for most recent iova fault: */
195 struct msm_gpu_fault_info fault_info;
196
197 /* work for handling GPU ioval faults: */
198 struct kthread_work fault_work;
199
200 /* work for handling GPU recovery: */
201 struct kthread_work recover_work;
202
203 /* work for handling active-list retiring: */
204 struct kthread_work retire_work;
205
206 /* worker for retire/recover: */
207 struct kthread_worker *worker;
208
209 struct drm_gem_object *memptrs_bo;
210
211 struct msm_gpu_devfreq devfreq;
212
213 uint32_t suspend_count;
214
215 struct msm_gpu_state *crashstate;
216
217 /* Enable clamping to idle freq when inactive: */
218 bool clamp_to_idle;
219
220 /* True if the hardware supports expanded apriv (a650 and newer) */
221 bool hw_apriv;
222
223 struct thermal_cooling_device *cooling;
224 };
225
dev_to_gpu(struct device * dev)226 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
227 {
228 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
229 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
230 }
231
232 /* It turns out that all targets use the same ringbuffer size */
233 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
234 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
235
236 #define MSM_GPU_RB_CNTL_DEFAULT \
237 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
238 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
239
msm_gpu_active(struct msm_gpu * gpu)240 static inline bool msm_gpu_active(struct msm_gpu *gpu)
241 {
242 int i;
243
244 for (i = 0; i < gpu->nr_rings; i++) {
245 struct msm_ringbuffer *ring = gpu->rb[i];
246
247 if (ring->seqno > ring->memptrs->fence)
248 return true;
249 }
250
251 return false;
252 }
253
254 /* Perf-Counters:
255 * The select_reg and select_val are just there for the benefit of the child
256 * class that actually enables the perf counter.. but msm_gpu base class
257 * will handle sampling/displaying the counters.
258 */
259
260 struct msm_gpu_perfcntr {
261 uint32_t select_reg;
262 uint32_t sample_reg;
263 uint32_t select_val;
264 const char *name;
265 };
266
267 /*
268 * The number of priority levels provided by drm gpu scheduler. The
269 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
270 * cases, so we don't use it (no need for kernel generated jobs).
271 */
272 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
273
274 /**
275 * struct msm_file_private - per-drm_file context
276 *
277 * @queuelock: synchronizes access to submitqueues list
278 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
279 * @queueid: counter incremented each time a submitqueue is created,
280 * used to assign &msm_gpu_submitqueue.id
281 * @aspace: the per-process GPU address-space
282 * @ref: reference count
283 * @seqno: unique per process seqno
284 */
285 struct msm_file_private {
286 rwlock_t queuelock;
287 struct list_head submitqueues;
288 int queueid;
289 struct msm_gem_address_space *aspace;
290 struct kref ref;
291 int seqno;
292
293 /**
294 * entities:
295 *
296 * Table of per-priority-level sched entities used by submitqueues
297 * associated with this &drm_file. Because some userspace apps
298 * make assumptions about rendering from multiple gl contexts
299 * (of the same priority) within the process happening in FIFO
300 * order without requiring any fencing beyond MakeCurrent(), we
301 * create at most one &drm_sched_entity per-process per-priority-
302 * level.
303 */
304 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
305 };
306
307 /**
308 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
309 *
310 * @gpu: the gpu instance
311 * @prio: the userspace priority level
312 * @ring_nr: [out] the ringbuffer the userspace priority maps to
313 * @sched_prio: [out] the gpu scheduler priority level which the userspace
314 * priority maps to
315 *
316 * With drm/scheduler providing it's own level of prioritization, our total
317 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
318 * Each ring is associated with it's own scheduler instance. However, our
319 * UABI is that lower numerical values are higher priority. So mapping the
320 * single userspace priority level into ring_nr and sched_prio takes some
321 * care. The userspace provided priority (when a submitqueue is created)
322 * is mapped to ring nr and scheduler priority as such:
323 *
324 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES
325 * sched_prio = NR_SCHED_PRIORITIES -
326 * (userspace_prio % NR_SCHED_PRIORITIES) - 1
327 *
328 * This allows generations without preemption (nr_rings==1) to have some
329 * amount of prioritization, and provides more priority levels for gens
330 * that do have preemption.
331 */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)332 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
333 unsigned *ring_nr, enum drm_sched_priority *sched_prio)
334 {
335 unsigned rn, sp;
336
337 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
338
339 /* invert sched priority to map to higher-numeric-is-higher-
340 * priority convention
341 */
342 sp = NR_SCHED_PRIORITIES - sp - 1;
343
344 if (rn >= gpu->nr_rings)
345 return -EINVAL;
346
347 *ring_nr = rn;
348 *sched_prio = sp;
349
350 return 0;
351 }
352
353 /**
354 * struct msm_gpu_submitqueues - Userspace created context.
355 *
356 * A submitqueue is associated with a gl context or vk queue (or equiv)
357 * in userspace.
358 *
359 * @id: userspace id for the submitqueue, unique within the drm_file
360 * @flags: userspace flags for the submitqueue, specified at creation
361 * (currently unusued)
362 * @ring_nr: the ringbuffer used by this submitqueue, which is determined
363 * by the submitqueue's priority
364 * @faults: the number of GPU hangs associated with this submitqueue
365 * @last_fence: the sequence number of the last allocated fence (for error
366 * checking)
367 * @ctx: the per-drm_file context associated with the submitqueue (ie.
368 * which set of pgtables do submits jobs associated with the
369 * submitqueue use)
370 * @node: node in the context's list of submitqueues
371 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
372 * seqno, protected by submitqueue lock
373 * @lock: submitqueue lock
374 * @ref: reference count
375 * @entity: the submit job-queue
376 */
377 struct msm_gpu_submitqueue {
378 int id;
379 u32 flags;
380 u32 ring_nr;
381 int faults;
382 uint32_t last_fence;
383 struct msm_file_private *ctx;
384 struct list_head node;
385 struct idr fence_idr;
386 struct mutex lock;
387 struct kref ref;
388 struct drm_sched_entity *entity;
389 };
390
391 struct msm_gpu_state_bo {
392 u64 iova;
393 size_t size;
394 void *data;
395 bool encoded;
396 };
397
398 struct msm_gpu_state {
399 struct kref ref;
400 struct timespec64 time;
401
402 struct {
403 u64 iova;
404 u32 fence;
405 u32 seqno;
406 u32 rptr;
407 u32 wptr;
408 void *data;
409 int data_size;
410 bool encoded;
411 } ring[MSM_GPU_MAX_RINGS];
412
413 int nr_registers;
414 u32 *registers;
415
416 u32 rbbm_status;
417
418 char *comm;
419 char *cmd;
420
421 struct msm_gpu_fault_info fault_info;
422
423 int nr_bos;
424 struct msm_gpu_state_bo *bos;
425 };
426
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)427 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
428 {
429 msm_writel(data, gpu->mmio + (reg << 2));
430 }
431
gpu_read(struct msm_gpu * gpu,u32 reg)432 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
433 {
434 return msm_readl(gpu->mmio + (reg << 2));
435 }
436
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)437 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
438 {
439 msm_rmw(gpu->mmio + (reg << 2), mask, or);
440 }
441
gpu_read64(struct msm_gpu * gpu,u32 lo,u32 hi)442 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
443 {
444 u64 val;
445
446 /*
447 * Why not a readq here? Two reasons: 1) many of the LO registers are
448 * not quad word aligned and 2) the GPU hardware designers have a bit
449 * of a history of putting registers where they fit, especially in
450 * spins. The longer a GPU family goes the higher the chance that
451 * we'll get burned. We could do a series of validity checks if we
452 * wanted to, but really is a readq() that much better? Nah.
453 */
454
455 /*
456 * For some lo/hi registers (like perfcounters), the hi value is latched
457 * when the lo is read, so make sure to read the lo first to trigger
458 * that
459 */
460 val = (u64) msm_readl(gpu->mmio + (lo << 2));
461 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
462
463 return val;
464 }
465
gpu_write64(struct msm_gpu * gpu,u32 lo,u32 hi,u64 val)466 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
467 {
468 /* Why not a writeq here? Read the screed above */
469 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
470 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
471 }
472
473 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
474 int msm_gpu_pm_resume(struct msm_gpu *gpu);
475
476 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
477 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
478 u32 id);
479 int msm_submitqueue_create(struct drm_device *drm,
480 struct msm_file_private *ctx,
481 u32 prio, u32 flags, u32 *id);
482 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
483 struct drm_msm_submitqueue_query *args);
484 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
485 void msm_submitqueue_close(struct msm_file_private *ctx);
486
487 void msm_submitqueue_destroy(struct kref *kref);
488
489 void __msm_file_private_destroy(struct kref *kref);
490
msm_file_private_put(struct msm_file_private * ctx)491 static inline void msm_file_private_put(struct msm_file_private *ctx)
492 {
493 kref_put(&ctx->ref, __msm_file_private_destroy);
494 }
495
msm_file_private_get(struct msm_file_private * ctx)496 static inline struct msm_file_private *msm_file_private_get(
497 struct msm_file_private *ctx)
498 {
499 kref_get(&ctx->ref);
500 return ctx;
501 }
502
503 void msm_devfreq_init(struct msm_gpu *gpu);
504 void msm_devfreq_cleanup(struct msm_gpu *gpu);
505 void msm_devfreq_resume(struct msm_gpu *gpu);
506 void msm_devfreq_suspend(struct msm_gpu *gpu);
507 void msm_devfreq_active(struct msm_gpu *gpu);
508 void msm_devfreq_idle(struct msm_gpu *gpu);
509
510 int msm_gpu_hw_init(struct msm_gpu *gpu);
511
512 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
513 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
514 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
515 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
516
517 void msm_gpu_retire(struct msm_gpu *gpu);
518 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
519
520 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
521 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
522 const char *name, struct msm_gpu_config *config);
523
524 struct msm_gem_address_space *
525 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
526
527 void msm_gpu_cleanup(struct msm_gpu *gpu);
528
529 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
530 void __init adreno_register(void);
531 void __exit adreno_unregister(void);
532
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)533 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
534 {
535 if (queue)
536 kref_put(&queue->ref, msm_submitqueue_destroy);
537 }
538
msm_gpu_crashstate_get(struct msm_gpu * gpu)539 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
540 {
541 struct msm_gpu_state *state = NULL;
542
543 mutex_lock(&gpu->lock);
544
545 if (gpu->crashstate) {
546 kref_get(&gpu->crashstate->ref);
547 state = gpu->crashstate;
548 }
549
550 mutex_unlock(&gpu->lock);
551
552 return state;
553 }
554
msm_gpu_crashstate_put(struct msm_gpu * gpu)555 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
556 {
557 mutex_lock(&gpu->lock);
558
559 if (gpu->crashstate) {
560 if (gpu->funcs->gpu_state_put(gpu->crashstate))
561 gpu->crashstate = NULL;
562 }
563
564 mutex_unlock(&gpu->lock);
565 }
566
567 /*
568 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
569 * support expanded privileges
570 */
571 #define check_apriv(gpu, flags) \
572 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
573
574
575 #endif /* __MSM_GPU_H__ */
576