1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * RCU segmented callback lists, function definitions
4 *
5 * Copyright IBM Corporation, 2017
6 *
7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8 */
9
10 #include <linux/cpu.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14
15 #include "rcu_segcblist.h"
16
17 /* Initialize simple callback list. */
rcu_cblist_init(struct rcu_cblist * rclp)18 void rcu_cblist_init(struct rcu_cblist *rclp)
19 {
20 rclp->head = NULL;
21 rclp->tail = &rclp->head;
22 rclp->len = 0;
23 }
24
25 /*
26 * Enqueue an rcu_head structure onto the specified callback list.
27 */
rcu_cblist_enqueue(struct rcu_cblist * rclp,struct rcu_head * rhp)28 void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp)
29 {
30 *rclp->tail = rhp;
31 rclp->tail = &rhp->next;
32 WRITE_ONCE(rclp->len, rclp->len + 1);
33 }
34
35 /*
36 * Flush the second rcu_cblist structure onto the first one, obliterating
37 * any contents of the first. If rhp is non-NULL, enqueue it as the sole
38 * element of the second rcu_cblist structure, but ensuring that the second
39 * rcu_cblist structure, if initially non-empty, always appears non-empty
40 * throughout the process. If rdp is NULL, the second rcu_cblist structure
41 * is instead initialized to empty.
42 */
rcu_cblist_flush_enqueue(struct rcu_cblist * drclp,struct rcu_cblist * srclp,struct rcu_head * rhp)43 void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp,
44 struct rcu_cblist *srclp,
45 struct rcu_head *rhp)
46 {
47 drclp->head = srclp->head;
48 if (drclp->head)
49 drclp->tail = srclp->tail;
50 else
51 drclp->tail = &drclp->head;
52 drclp->len = srclp->len;
53 if (!rhp) {
54 rcu_cblist_init(srclp);
55 } else {
56 rhp->next = NULL;
57 srclp->head = rhp;
58 srclp->tail = &rhp->next;
59 WRITE_ONCE(srclp->len, 1);
60 }
61 }
62
63 /*
64 * Dequeue the oldest rcu_head structure from the specified callback
65 * list.
66 */
rcu_cblist_dequeue(struct rcu_cblist * rclp)67 struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp)
68 {
69 struct rcu_head *rhp;
70
71 rhp = rclp->head;
72 if (!rhp)
73 return NULL;
74 rclp->len--;
75 rclp->head = rhp->next;
76 if (!rclp->head)
77 rclp->tail = &rclp->head;
78 return rhp;
79 }
80
81 /* Set the length of an rcu_segcblist structure. */
rcu_segcblist_set_len(struct rcu_segcblist * rsclp,long v)82 static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v)
83 {
84 #ifdef CONFIG_RCU_NOCB_CPU
85 atomic_long_set(&rsclp->len, v);
86 #else
87 WRITE_ONCE(rsclp->len, v);
88 #endif
89 }
90
91 /* Get the length of a segment of the rcu_segcblist structure. */
rcu_segcblist_get_seglen(struct rcu_segcblist * rsclp,int seg)92 static long rcu_segcblist_get_seglen(struct rcu_segcblist *rsclp, int seg)
93 {
94 return READ_ONCE(rsclp->seglen[seg]);
95 }
96
97 /* Return number of callbacks in segmented callback list by summing seglen. */
rcu_segcblist_n_segment_cbs(struct rcu_segcblist * rsclp)98 long rcu_segcblist_n_segment_cbs(struct rcu_segcblist *rsclp)
99 {
100 long len = 0;
101 int i;
102
103 for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++)
104 len += rcu_segcblist_get_seglen(rsclp, i);
105
106 return len;
107 }
108
109 /* Set the length of a segment of the rcu_segcblist structure. */
rcu_segcblist_set_seglen(struct rcu_segcblist * rsclp,int seg,long v)110 static void rcu_segcblist_set_seglen(struct rcu_segcblist *rsclp, int seg, long v)
111 {
112 WRITE_ONCE(rsclp->seglen[seg], v);
113 }
114
115 /* Increase the numeric length of a segment by a specified amount. */
rcu_segcblist_add_seglen(struct rcu_segcblist * rsclp,int seg,long v)116 static void rcu_segcblist_add_seglen(struct rcu_segcblist *rsclp, int seg, long v)
117 {
118 WRITE_ONCE(rsclp->seglen[seg], rsclp->seglen[seg] + v);
119 }
120
121 /* Move from's segment length to to's segment. */
rcu_segcblist_move_seglen(struct rcu_segcblist * rsclp,int from,int to)122 static void rcu_segcblist_move_seglen(struct rcu_segcblist *rsclp, int from, int to)
123 {
124 long len;
125
126 if (from == to)
127 return;
128
129 len = rcu_segcblist_get_seglen(rsclp, from);
130 if (!len)
131 return;
132
133 rcu_segcblist_add_seglen(rsclp, to, len);
134 rcu_segcblist_set_seglen(rsclp, from, 0);
135 }
136
137 /* Increment segment's length. */
rcu_segcblist_inc_seglen(struct rcu_segcblist * rsclp,int seg)138 static void rcu_segcblist_inc_seglen(struct rcu_segcblist *rsclp, int seg)
139 {
140 rcu_segcblist_add_seglen(rsclp, seg, 1);
141 }
142
143 /*
144 * Increase the numeric length of an rcu_segcblist structure by the
145 * specified amount, which can be negative. This can cause the ->len
146 * field to disagree with the actual number of callbacks on the structure.
147 * This increase is fully ordered with respect to the callers accesses
148 * both before and after.
149 *
150 * So why on earth is a memory barrier required both before and after
151 * the update to the ->len field???
152 *
153 * The reason is that rcu_barrier() locklessly samples each CPU's ->len
154 * field, and if a given CPU's field is zero, avoids IPIing that CPU.
155 * This can of course race with both queuing and invoking of callbacks.
156 * Failing to correctly handle either of these races could result in
157 * rcu_barrier() failing to IPI a CPU that actually had callbacks queued
158 * which rcu_barrier() was obligated to wait on. And if rcu_barrier()
159 * failed to wait on such a callback, unloading certain kernel modules
160 * would result in calls to functions whose code was no longer present in
161 * the kernel, for but one example.
162 *
163 * Therefore, ->len transitions from 1->0 and 0->1 have to be carefully
164 * ordered with respect with both list modifications and the rcu_barrier().
165 *
166 * The queuing case is CASE 1 and the invoking case is CASE 2.
167 *
168 * CASE 1: Suppose that CPU 0 has no callbacks queued, but invokes
169 * call_rcu() just as CPU 1 invokes rcu_barrier(). CPU 0's ->len field
170 * will transition from 0->1, which is one of the transitions that must
171 * be handled carefully. Without the full memory barriers after the ->len
172 * update and at the beginning of rcu_barrier(), the following could happen:
173 *
174 * CPU 0 CPU 1
175 *
176 * call_rcu().
177 * rcu_barrier() sees ->len as 0.
178 * set ->len = 1.
179 * rcu_barrier() does nothing.
180 * module is unloaded.
181 * callback invokes unloaded function!
182 *
183 * With the full barriers, any case where rcu_barrier() sees ->len as 0 will
184 * have unambiguously preceded the return from the racing call_rcu(), which
185 * means that this call_rcu() invocation is OK to not wait on. After all,
186 * you are supposed to make sure that any problematic call_rcu() invocations
187 * happen before the rcu_barrier().
188 *
189 *
190 * CASE 2: Suppose that CPU 0 is invoking its last callback just as
191 * CPU 1 invokes rcu_barrier(). CPU 0's ->len field will transition from
192 * 1->0, which is one of the transitions that must be handled carefully.
193 * Without the full memory barriers before the ->len update and at the
194 * end of rcu_barrier(), the following could happen:
195 *
196 * CPU 0 CPU 1
197 *
198 * start invoking last callback
199 * set ->len = 0 (reordered)
200 * rcu_barrier() sees ->len as 0
201 * rcu_barrier() does nothing.
202 * module is unloaded
203 * callback executing after unloaded!
204 *
205 * With the full barriers, any case where rcu_barrier() sees ->len as 0
206 * will be fully ordered after the completion of the callback function,
207 * so that the module unloading operation is completely safe.
208 *
209 */
rcu_segcblist_add_len(struct rcu_segcblist * rsclp,long v)210 void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v)
211 {
212 #ifdef CONFIG_RCU_NOCB_CPU
213 smp_mb__before_atomic(); // Read header comment above.
214 atomic_long_add(v, &rsclp->len);
215 smp_mb__after_atomic(); // Read header comment above.
216 #else
217 smp_mb(); // Read header comment above.
218 WRITE_ONCE(rsclp->len, rsclp->len + v);
219 smp_mb(); // Read header comment above.
220 #endif
221 }
222
223 /*
224 * Increase the numeric length of an rcu_segcblist structure by one.
225 * This can cause the ->len field to disagree with the actual number of
226 * callbacks on the structure. This increase is fully ordered with respect
227 * to the callers accesses both before and after.
228 */
rcu_segcblist_inc_len(struct rcu_segcblist * rsclp)229 void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp)
230 {
231 rcu_segcblist_add_len(rsclp, 1);
232 }
233
234 /*
235 * Initialize an rcu_segcblist structure.
236 */
rcu_segcblist_init(struct rcu_segcblist * rsclp)237 void rcu_segcblist_init(struct rcu_segcblist *rsclp)
238 {
239 int i;
240
241 BUILD_BUG_ON(RCU_NEXT_TAIL + 1 != ARRAY_SIZE(rsclp->gp_seq));
242 BUILD_BUG_ON(ARRAY_SIZE(rsclp->tails) != ARRAY_SIZE(rsclp->gp_seq));
243 rsclp->head = NULL;
244 for (i = 0; i < RCU_CBLIST_NSEGS; i++) {
245 rsclp->tails[i] = &rsclp->head;
246 rcu_segcblist_set_seglen(rsclp, i, 0);
247 }
248 rcu_segcblist_set_len(rsclp, 0);
249 rcu_segcblist_set_flags(rsclp, SEGCBLIST_ENABLED);
250 }
251
252 /*
253 * Disable the specified rcu_segcblist structure, so that callbacks can
254 * no longer be posted to it. This structure must be empty.
255 */
rcu_segcblist_disable(struct rcu_segcblist * rsclp)256 void rcu_segcblist_disable(struct rcu_segcblist *rsclp)
257 {
258 WARN_ON_ONCE(!rcu_segcblist_empty(rsclp));
259 WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp));
260 rcu_segcblist_clear_flags(rsclp, SEGCBLIST_ENABLED);
261 }
262
263 /*
264 * Mark the specified rcu_segcblist structure as offloaded.
265 */
rcu_segcblist_offload(struct rcu_segcblist * rsclp,bool offload)266 void rcu_segcblist_offload(struct rcu_segcblist *rsclp, bool offload)
267 {
268 if (offload) {
269 rcu_segcblist_clear_flags(rsclp, SEGCBLIST_SOFTIRQ_ONLY);
270 rcu_segcblist_set_flags(rsclp, SEGCBLIST_OFFLOADED);
271 } else {
272 rcu_segcblist_clear_flags(rsclp, SEGCBLIST_OFFLOADED);
273 }
274 }
275
276 /*
277 * Does the specified rcu_segcblist structure contain callbacks that
278 * are ready to be invoked?
279 */
rcu_segcblist_ready_cbs(struct rcu_segcblist * rsclp)280 bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp)
281 {
282 return rcu_segcblist_is_enabled(rsclp) &&
283 &rsclp->head != READ_ONCE(rsclp->tails[RCU_DONE_TAIL]);
284 }
285
286 /*
287 * Does the specified rcu_segcblist structure contain callbacks that
288 * are still pending, that is, not yet ready to be invoked?
289 */
rcu_segcblist_pend_cbs(struct rcu_segcblist * rsclp)290 bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp)
291 {
292 return rcu_segcblist_is_enabled(rsclp) &&
293 !rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL);
294 }
295
296 /*
297 * Return a pointer to the first callback in the specified rcu_segcblist
298 * structure. This is useful for diagnostics.
299 */
rcu_segcblist_first_cb(struct rcu_segcblist * rsclp)300 struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp)
301 {
302 if (rcu_segcblist_is_enabled(rsclp))
303 return rsclp->head;
304 return NULL;
305 }
306
307 /*
308 * Return a pointer to the first pending callback in the specified
309 * rcu_segcblist structure. This is useful just after posting a given
310 * callback -- if that callback is the first pending callback, then
311 * you cannot rely on someone else having already started up the required
312 * grace period.
313 */
rcu_segcblist_first_pend_cb(struct rcu_segcblist * rsclp)314 struct rcu_head *rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp)
315 {
316 if (rcu_segcblist_is_enabled(rsclp))
317 return *rsclp->tails[RCU_DONE_TAIL];
318 return NULL;
319 }
320
321 /*
322 * Return false if there are no CBs awaiting grace periods, otherwise,
323 * return true and store the nearest waited-upon grace period into *lp.
324 */
rcu_segcblist_nextgp(struct rcu_segcblist * rsclp,unsigned long * lp)325 bool rcu_segcblist_nextgp(struct rcu_segcblist *rsclp, unsigned long *lp)
326 {
327 if (!rcu_segcblist_pend_cbs(rsclp))
328 return false;
329 *lp = rsclp->gp_seq[RCU_WAIT_TAIL];
330 return true;
331 }
332
333 /*
334 * Enqueue the specified callback onto the specified rcu_segcblist
335 * structure, updating accounting as needed. Note that the ->len
336 * field may be accessed locklessly, hence the WRITE_ONCE().
337 * The ->len field is used by rcu_barrier() and friends to determine
338 * if it must post a callback on this structure, and it is OK
339 * for rcu_barrier() to sometimes post callbacks needlessly, but
340 * absolutely not OK for it to ever miss posting a callback.
341 */
rcu_segcblist_enqueue(struct rcu_segcblist * rsclp,struct rcu_head * rhp)342 void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp,
343 struct rcu_head *rhp)
344 {
345 rcu_segcblist_inc_len(rsclp);
346 rcu_segcblist_inc_seglen(rsclp, RCU_NEXT_TAIL);
347 rhp->next = NULL;
348 WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rhp);
349 WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], &rhp->next);
350 }
351
352 /*
353 * Entrain the specified callback onto the specified rcu_segcblist at
354 * the end of the last non-empty segment. If the entire rcu_segcblist
355 * is empty, make no change, but return false.
356 *
357 * This is intended for use by rcu_barrier()-like primitives, -not-
358 * for normal grace-period use. IMPORTANT: The callback you enqueue
359 * will wait for all prior callbacks, NOT necessarily for a grace
360 * period. You have been warned.
361 */
rcu_segcblist_entrain(struct rcu_segcblist * rsclp,struct rcu_head * rhp)362 bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp,
363 struct rcu_head *rhp)
364 {
365 int i;
366
367 if (rcu_segcblist_n_cbs(rsclp) == 0)
368 return false;
369 rcu_segcblist_inc_len(rsclp);
370 smp_mb(); /* Ensure counts are updated before callback is entrained. */
371 rhp->next = NULL;
372 for (i = RCU_NEXT_TAIL; i > RCU_DONE_TAIL; i--)
373 if (rsclp->tails[i] != rsclp->tails[i - 1])
374 break;
375 rcu_segcblist_inc_seglen(rsclp, i);
376 WRITE_ONCE(*rsclp->tails[i], rhp);
377 for (; i <= RCU_NEXT_TAIL; i++)
378 WRITE_ONCE(rsclp->tails[i], &rhp->next);
379 return true;
380 }
381
382 /*
383 * Extract only those callbacks ready to be invoked from the specified
384 * rcu_segcblist structure and place them in the specified rcu_cblist
385 * structure.
386 */
rcu_segcblist_extract_done_cbs(struct rcu_segcblist * rsclp,struct rcu_cblist * rclp)387 void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp,
388 struct rcu_cblist *rclp)
389 {
390 int i;
391
392 if (!rcu_segcblist_ready_cbs(rsclp))
393 return; /* Nothing to do. */
394 rclp->len = rcu_segcblist_get_seglen(rsclp, RCU_DONE_TAIL);
395 *rclp->tail = rsclp->head;
396 WRITE_ONCE(rsclp->head, *rsclp->tails[RCU_DONE_TAIL]);
397 WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL);
398 rclp->tail = rsclp->tails[RCU_DONE_TAIL];
399 for (i = RCU_CBLIST_NSEGS - 1; i >= RCU_DONE_TAIL; i--)
400 if (rsclp->tails[i] == rsclp->tails[RCU_DONE_TAIL])
401 WRITE_ONCE(rsclp->tails[i], &rsclp->head);
402 rcu_segcblist_set_seglen(rsclp, RCU_DONE_TAIL, 0);
403 }
404
405 /*
406 * Extract only those callbacks still pending (not yet ready to be
407 * invoked) from the specified rcu_segcblist structure and place them in
408 * the specified rcu_cblist structure. Note that this loses information
409 * about any callbacks that might have been partway done waiting for
410 * their grace period. Too bad! They will have to start over.
411 */
rcu_segcblist_extract_pend_cbs(struct rcu_segcblist * rsclp,struct rcu_cblist * rclp)412 void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp,
413 struct rcu_cblist *rclp)
414 {
415 int i;
416
417 if (!rcu_segcblist_pend_cbs(rsclp))
418 return; /* Nothing to do. */
419 rclp->len = 0;
420 *rclp->tail = *rsclp->tails[RCU_DONE_TAIL];
421 rclp->tail = rsclp->tails[RCU_NEXT_TAIL];
422 WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL);
423 for (i = RCU_DONE_TAIL + 1; i < RCU_CBLIST_NSEGS; i++) {
424 rclp->len += rcu_segcblist_get_seglen(rsclp, i);
425 WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_DONE_TAIL]);
426 rcu_segcblist_set_seglen(rsclp, i, 0);
427 }
428 }
429
430 /*
431 * Insert counts from the specified rcu_cblist structure in the
432 * specified rcu_segcblist structure.
433 */
rcu_segcblist_insert_count(struct rcu_segcblist * rsclp,struct rcu_cblist * rclp)434 void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp,
435 struct rcu_cblist *rclp)
436 {
437 rcu_segcblist_add_len(rsclp, rclp->len);
438 }
439
440 /*
441 * Move callbacks from the specified rcu_cblist to the beginning of the
442 * done-callbacks segment of the specified rcu_segcblist.
443 */
rcu_segcblist_insert_done_cbs(struct rcu_segcblist * rsclp,struct rcu_cblist * rclp)444 void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp,
445 struct rcu_cblist *rclp)
446 {
447 int i;
448
449 if (!rclp->head)
450 return; /* No callbacks to move. */
451 rcu_segcblist_add_seglen(rsclp, RCU_DONE_TAIL, rclp->len);
452 *rclp->tail = rsclp->head;
453 WRITE_ONCE(rsclp->head, rclp->head);
454 for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++)
455 if (&rsclp->head == rsclp->tails[i])
456 WRITE_ONCE(rsclp->tails[i], rclp->tail);
457 else
458 break;
459 rclp->head = NULL;
460 rclp->tail = &rclp->head;
461 }
462
463 /*
464 * Move callbacks from the specified rcu_cblist to the end of the
465 * new-callbacks segment of the specified rcu_segcblist.
466 */
rcu_segcblist_insert_pend_cbs(struct rcu_segcblist * rsclp,struct rcu_cblist * rclp)467 void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp,
468 struct rcu_cblist *rclp)
469 {
470 if (!rclp->head)
471 return; /* Nothing to do. */
472
473 rcu_segcblist_add_seglen(rsclp, RCU_NEXT_TAIL, rclp->len);
474 WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rclp->head);
475 WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], rclp->tail);
476 }
477
478 /*
479 * Advance the callbacks in the specified rcu_segcblist structure based
480 * on the current value passed in for the grace-period counter.
481 */
rcu_segcblist_advance(struct rcu_segcblist * rsclp,unsigned long seq)482 void rcu_segcblist_advance(struct rcu_segcblist *rsclp, unsigned long seq)
483 {
484 int i, j;
485
486 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
487 if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
488 return;
489
490 /*
491 * Find all callbacks whose ->gp_seq numbers indicate that they
492 * are ready to invoke, and put them into the RCU_DONE_TAIL segment.
493 */
494 for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
495 if (ULONG_CMP_LT(seq, rsclp->gp_seq[i]))
496 break;
497 WRITE_ONCE(rsclp->tails[RCU_DONE_TAIL], rsclp->tails[i]);
498 rcu_segcblist_move_seglen(rsclp, i, RCU_DONE_TAIL);
499 }
500
501 /* If no callbacks moved, nothing more need be done. */
502 if (i == RCU_WAIT_TAIL)
503 return;
504
505 /* Clean up tail pointers that might have been misordered above. */
506 for (j = RCU_WAIT_TAIL; j < i; j++)
507 WRITE_ONCE(rsclp->tails[j], rsclp->tails[RCU_DONE_TAIL]);
508
509 /*
510 * Callbacks moved, so clean up the misordered ->tails[] pointers
511 * that now point into the middle of the list of ready-to-invoke
512 * callbacks. The overall effect is to copy down the later pointers
513 * into the gap that was created by the now-ready segments.
514 */
515 for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
516 if (rsclp->tails[j] == rsclp->tails[RCU_NEXT_TAIL])
517 break; /* No more callbacks. */
518 WRITE_ONCE(rsclp->tails[j], rsclp->tails[i]);
519 rcu_segcblist_move_seglen(rsclp, i, j);
520 rsclp->gp_seq[j] = rsclp->gp_seq[i];
521 }
522 }
523
524 /*
525 * "Accelerate" callbacks based on more-accurate grace-period information.
526 * The reason for this is that RCU does not synchronize the beginnings and
527 * ends of grace periods, and that callbacks are posted locally. This in
528 * turn means that the callbacks must be labelled conservatively early
529 * on, as getting exact information would degrade both performance and
530 * scalability. When more accurate grace-period information becomes
531 * available, previously posted callbacks can be "accelerated", marking
532 * them to complete at the end of the earlier grace period.
533 *
534 * This function operates on an rcu_segcblist structure, and also the
535 * grace-period sequence number seq at which new callbacks would become
536 * ready to invoke. Returns true if there are callbacks that won't be
537 * ready to invoke until seq, false otherwise.
538 */
rcu_segcblist_accelerate(struct rcu_segcblist * rsclp,unsigned long seq)539 bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp, unsigned long seq)
540 {
541 int i, j;
542
543 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp));
544 if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL))
545 return false;
546
547 /*
548 * Find the segment preceding the oldest segment of callbacks
549 * whose ->gp_seq[] completion is at or after that passed in via
550 * "seq", skipping any empty segments. This oldest segment, along
551 * with any later segments, can be merged in with any newly arrived
552 * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq"
553 * as their ->gp_seq[] grace-period completion sequence number.
554 */
555 for (i = RCU_NEXT_READY_TAIL; i > RCU_DONE_TAIL; i--)
556 if (rsclp->tails[i] != rsclp->tails[i - 1] &&
557 ULONG_CMP_LT(rsclp->gp_seq[i], seq))
558 break;
559
560 /*
561 * If all the segments contain callbacks that correspond to
562 * earlier grace-period sequence numbers than "seq", leave.
563 * Assuming that the rcu_segcblist structure has enough
564 * segments in its arrays, this can only happen if some of
565 * the non-done segments contain callbacks that really are
566 * ready to invoke. This situation will get straightened
567 * out by the next call to rcu_segcblist_advance().
568 *
569 * Also advance to the oldest segment of callbacks whose
570 * ->gp_seq[] completion is at or after that passed in via "seq",
571 * skipping any empty segments.
572 *
573 * Note that segment "i" (and any lower-numbered segments
574 * containing older callbacks) will be unaffected, and their
575 * grace-period numbers remain unchanged. For example, if i ==
576 * WAIT_TAIL, then neither WAIT_TAIL nor DONE_TAIL will be touched.
577 * Instead, the CBs in NEXT_TAIL will be merged with those in
578 * NEXT_READY_TAIL and the grace-period number of NEXT_READY_TAIL
579 * would be updated. NEXT_TAIL would then be empty.
580 */
581 if (rcu_segcblist_restempty(rsclp, i) || ++i >= RCU_NEXT_TAIL)
582 return false;
583
584 /* Accounting: everything below i is about to get merged into i. */
585 for (j = i + 1; j <= RCU_NEXT_TAIL; j++)
586 rcu_segcblist_move_seglen(rsclp, j, i);
587
588 /*
589 * Merge all later callbacks, including newly arrived callbacks,
590 * into the segment located by the for-loop above. Assign "seq"
591 * as the ->gp_seq[] value in order to correctly handle the case
592 * where there were no pending callbacks in the rcu_segcblist
593 * structure other than in the RCU_NEXT_TAIL segment.
594 */
595 for (; i < RCU_NEXT_TAIL; i++) {
596 WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_NEXT_TAIL]);
597 rsclp->gp_seq[i] = seq;
598 }
599 return true;
600 }
601
602 /*
603 * Merge the source rcu_segcblist structure into the destination
604 * rcu_segcblist structure, then initialize the source. Any pending
605 * callbacks from the source get to start over. It is best to
606 * advance and accelerate both the destination and the source
607 * before merging.
608 */
rcu_segcblist_merge(struct rcu_segcblist * dst_rsclp,struct rcu_segcblist * src_rsclp)609 void rcu_segcblist_merge(struct rcu_segcblist *dst_rsclp,
610 struct rcu_segcblist *src_rsclp)
611 {
612 struct rcu_cblist donecbs;
613 struct rcu_cblist pendcbs;
614
615 lockdep_assert_cpus_held();
616
617 rcu_cblist_init(&donecbs);
618 rcu_cblist_init(&pendcbs);
619
620 rcu_segcblist_extract_done_cbs(src_rsclp, &donecbs);
621 rcu_segcblist_extract_pend_cbs(src_rsclp, &pendcbs);
622
623 /*
624 * No need smp_mb() before setting length to 0, because CPU hotplug
625 * lock excludes rcu_barrier.
626 */
627 rcu_segcblist_set_len(src_rsclp, 0);
628
629 rcu_segcblist_insert_count(dst_rsclp, &donecbs);
630 rcu_segcblist_insert_count(dst_rsclp, &pendcbs);
631 rcu_segcblist_insert_done_cbs(dst_rsclp, &donecbs);
632 rcu_segcblist_insert_pend_cbs(dst_rsclp, &pendcbs);
633
634 rcu_segcblist_init(src_rsclp);
635 }
636