1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <asm/processor.h>
31 #include <linux/cpumask.h>
32
33 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
34 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
35 #define ulong2long(a) (*(long *)(&(a)))
36 #define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b)))
37 #define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b)))
38
39 /* Exported common interfaces */
40 void call_rcu(struct rcu_head *head, rcu_callback_t func);
41 void rcu_barrier_tasks(void);
42 void rcu_barrier_tasks_rude(void);
43 void synchronize_rcu(void);
44
45 #ifdef CONFIG_PREEMPT_RCU
46
47 void __rcu_read_lock(void);
48 void __rcu_read_unlock(void);
49
50 /*
51 * Defined as a macro as it is a very low level header included from
52 * areas that don't even know about current. This gives the rcu_read_lock()
53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
55 */
56 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
57
58 #else /* #ifdef CONFIG_PREEMPT_RCU */
59
60 #ifdef CONFIG_TINY_RCU
61 #define rcu_read_unlock_strict() do { } while (0)
62 #else
63 void rcu_read_unlock_strict(void);
64 #endif
65
__rcu_read_lock(void)66 static inline void __rcu_read_lock(void)
67 {
68 preempt_disable();
69 }
70
__rcu_read_unlock(void)71 static inline void __rcu_read_unlock(void)
72 {
73 preempt_enable();
74 rcu_read_unlock_strict();
75 }
76
rcu_preempt_depth(void)77 static inline int rcu_preempt_depth(void)
78 {
79 return 0;
80 }
81
82 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
83
84 /* Internal to kernel */
85 void rcu_init(void);
86 extern int rcu_scheduler_active;
87 void rcu_sched_clock_irq(int user);
88 void rcu_report_dead(unsigned int cpu);
89 void rcutree_migrate_callbacks(int cpu);
90
91 #ifdef CONFIG_TASKS_RCU_GENERIC
92 void rcu_init_tasks_generic(void);
93 #else
rcu_init_tasks_generic(void)94 static inline void rcu_init_tasks_generic(void) { }
95 #endif
96
97 #ifdef CONFIG_RCU_STALL_COMMON
98 void rcu_sysrq_start(void);
99 void rcu_sysrq_end(void);
100 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)101 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)102 static inline void rcu_sysrq_end(void) { }
103 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
104
105 #ifdef CONFIG_NO_HZ_FULL
106 void rcu_user_enter(void);
107 void rcu_user_exit(void);
108 #else
rcu_user_enter(void)109 static inline void rcu_user_enter(void) { }
rcu_user_exit(void)110 static inline void rcu_user_exit(void) { }
111 #endif /* CONFIG_NO_HZ_FULL */
112
113 #ifdef CONFIG_RCU_NOCB_CPU
114 void rcu_init_nohz(void);
115 int rcu_nocb_cpu_offload(int cpu);
116 int rcu_nocb_cpu_deoffload(int cpu);
117 void rcu_nocb_flush_deferred_wakeup(void);
118 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
rcu_init_nohz(void)119 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)120 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)121 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)122 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
123 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
124
125 /**
126 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
127 * @a: Code that RCU needs to pay attention to.
128 *
129 * RCU read-side critical sections are forbidden in the inner idle loop,
130 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
131 * will happily ignore any such read-side critical sections. However,
132 * things like powertop need tracepoints in the inner idle loop.
133 *
134 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU())
135 * will tell RCU that it needs to pay attention, invoke its argument
136 * (in this example, calling the do_something_with_RCU() function),
137 * and then tell RCU to go back to ignoring this CPU. It is permissible
138 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
139 * on the order of a million or so, even on 32-bit systems). It is
140 * not legal to block within RCU_NONIDLE(), nor is it permissible to
141 * transfer control either into or out of RCU_NONIDLE()'s statement.
142 */
143 #define RCU_NONIDLE(a) \
144 do { \
145 rcu_irq_enter_irqson(); \
146 do { a; } while (0); \
147 rcu_irq_exit_irqson(); \
148 } while (0)
149
150 /*
151 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
152 * This is a macro rather than an inline function to avoid #include hell.
153 */
154 #ifdef CONFIG_TASKS_RCU_GENERIC
155
156 # ifdef CONFIG_TASKS_RCU
157 # define rcu_tasks_classic_qs(t, preempt) \
158 do { \
159 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
160 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
161 } while (0)
162 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
163 void synchronize_rcu_tasks(void);
164 # else
165 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
166 # define call_rcu_tasks call_rcu
167 # define synchronize_rcu_tasks synchronize_rcu
168 # endif
169
170 # ifdef CONFIG_TASKS_TRACE_RCU
171 # define rcu_tasks_trace_qs(t) \
172 do { \
173 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \
174 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \
175 smp_store_release(&(t)->trc_reader_checked, true); \
176 smp_mb(); /* Readers partitioned by store. */ \
177 } \
178 } while (0)
179 # else
180 # define rcu_tasks_trace_qs(t) do { } while (0)
181 # endif
182
183 #define rcu_tasks_qs(t, preempt) \
184 do { \
185 rcu_tasks_classic_qs((t), (preempt)); \
186 rcu_tasks_trace_qs((t)); \
187 } while (0)
188
189 # ifdef CONFIG_TASKS_RUDE_RCU
190 void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
191 void synchronize_rcu_tasks_rude(void);
192 # endif
193
194 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
195 void exit_tasks_rcu_start(void);
196 void exit_tasks_rcu_stop(void);
197 void exit_tasks_rcu_finish(void);
198 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
199 #define rcu_tasks_qs(t, preempt) do { } while (0)
200 #define rcu_note_voluntary_context_switch(t) do { } while (0)
201 #define call_rcu_tasks call_rcu
202 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)203 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)204 static inline void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)205 static inline void exit_tasks_rcu_finish(void) { }
206 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
207
208 /**
209 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
210 *
211 * This macro resembles cond_resched(), except that it is defined to
212 * report potential quiescent states to RCU-tasks even if the cond_resched()
213 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
214 */
215 #define cond_resched_tasks_rcu_qs() \
216 do { \
217 rcu_tasks_qs(current, false); \
218 cond_resched(); \
219 } while (0)
220
221 /*
222 * Infrastructure to implement the synchronize_() primitives in
223 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
224 */
225
226 #if defined(CONFIG_TREE_RCU)
227 #include <linux/rcutree.h>
228 #elif defined(CONFIG_TINY_RCU)
229 #include <linux/rcutiny.h>
230 #else
231 #error "Unknown RCU implementation specified to kernel configuration"
232 #endif
233
234 /*
235 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
236 * are needed for dynamic initialization and destruction of rcu_head
237 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
238 * dynamic initialization and destruction of statically allocated rcu_head
239 * structures. However, rcu_head structures allocated dynamically in the
240 * heap don't need any initialization.
241 */
242 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
243 void init_rcu_head(struct rcu_head *head);
244 void destroy_rcu_head(struct rcu_head *head);
245 void init_rcu_head_on_stack(struct rcu_head *head);
246 void destroy_rcu_head_on_stack(struct rcu_head *head);
247 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)248 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)249 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)250 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)251 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
252 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
253
254 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
255 bool rcu_lockdep_current_cpu_online(void);
256 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)257 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
258 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
259
260 extern struct lockdep_map rcu_lock_map;
261 extern struct lockdep_map rcu_bh_lock_map;
262 extern struct lockdep_map rcu_sched_lock_map;
263 extern struct lockdep_map rcu_callback_map;
264
265 #ifdef CONFIG_DEBUG_LOCK_ALLOC
266
rcu_lock_acquire(struct lockdep_map * map)267 static inline void rcu_lock_acquire(struct lockdep_map *map)
268 {
269 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
270 }
271
rcu_lock_release(struct lockdep_map * map)272 static inline void rcu_lock_release(struct lockdep_map *map)
273 {
274 lock_release(map, _THIS_IP_);
275 }
276
277 int debug_lockdep_rcu_enabled(void);
278 int rcu_read_lock_held(void);
279 int rcu_read_lock_bh_held(void);
280 int rcu_read_lock_sched_held(void);
281 int rcu_read_lock_any_held(void);
282
283 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
284
285 # define rcu_lock_acquire(a) do { } while (0)
286 # define rcu_lock_release(a) do { } while (0)
287
rcu_read_lock_held(void)288 static inline int rcu_read_lock_held(void)
289 {
290 return 1;
291 }
292
rcu_read_lock_bh_held(void)293 static inline int rcu_read_lock_bh_held(void)
294 {
295 return 1;
296 }
297
rcu_read_lock_sched_held(void)298 static inline int rcu_read_lock_sched_held(void)
299 {
300 return !preemptible();
301 }
302
rcu_read_lock_any_held(void)303 static inline int rcu_read_lock_any_held(void)
304 {
305 return !preemptible();
306 }
307
308 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
309
310 #ifdef CONFIG_PROVE_RCU
311
312 /**
313 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
314 * @c: condition to check
315 * @s: informative message
316 *
317 * This checks debug_lockdep_rcu_enabled() before checking (c) to
318 * prevent early boot splats due to lockdep not yet being initialized,
319 * and rechecks it after checking (c) to prevent false-positive splats
320 * due to races with lockdep being disabled. See commit 3066820034b5dd
321 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
322 */
323 #define RCU_LOCKDEP_WARN(c, s) \
324 do { \
325 static bool __section(".data.unlikely") __warned; \
326 if (debug_lockdep_rcu_enabled() && (c) && \
327 debug_lockdep_rcu_enabled() && !__warned) { \
328 __warned = true; \
329 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
330 } \
331 } while (0)
332
333 #if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
rcu_preempt_sleep_check(void)334 static inline void rcu_preempt_sleep_check(void)
335 {
336 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
337 "Illegal context switch in RCU read-side critical section");
338 }
339 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_preempt_sleep_check(void)340 static inline void rcu_preempt_sleep_check(void) { }
341 #endif /* #else #ifdef CONFIG_PROVE_RCU */
342
343 #define rcu_sleep_check() \
344 do { \
345 rcu_preempt_sleep_check(); \
346 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
347 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
348 "Illegal context switch in RCU-bh read-side critical section"); \
349 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
350 "Illegal context switch in RCU-sched read-side critical section"); \
351 } while (0)
352
353 #else /* #ifdef CONFIG_PROVE_RCU */
354
355 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
356 #define rcu_sleep_check() do { } while (0)
357
358 #endif /* #else #ifdef CONFIG_PROVE_RCU */
359
360 /*
361 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
362 * and rcu_assign_pointer(). Some of these could be folded into their
363 * callers, but they are left separate in order to ease introduction of
364 * multiple pointers markings to match different RCU implementations
365 * (e.g., __srcu), should this make sense in the future.
366 */
367
368 #ifdef __CHECKER__
369 #define rcu_check_sparse(p, space) \
370 ((void)(((typeof(*p) space *)p) == p))
371 #else /* #ifdef __CHECKER__ */
372 #define rcu_check_sparse(p, space)
373 #endif /* #else #ifdef __CHECKER__ */
374
375 /**
376 * unrcu_pointer - mark a pointer as not being RCU protected
377 * @p: pointer needing to lose its __rcu property
378 *
379 * Converts @p from an __rcu pointer to a __kernel pointer.
380 * This allows an __rcu pointer to be used with xchg() and friends.
381 */
382 #define unrcu_pointer(p) \
383 ({ \
384 typeof(*p) *_________p1 = (typeof(*p) *__force)(p); \
385 rcu_check_sparse(p, __rcu); \
386 ((typeof(*p) __force __kernel *)(_________p1)); \
387 })
388
389 #define __rcu_access_pointer(p, space) \
390 ({ \
391 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
392 rcu_check_sparse(p, space); \
393 ((typeof(*p) __force __kernel *)(_________p1)); \
394 })
395 #define __rcu_dereference_check(p, c, space) \
396 ({ \
397 /* Dependency order vs. p above. */ \
398 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
399 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
400 rcu_check_sparse(p, space); \
401 ((typeof(*p) __force __kernel *)(________p1)); \
402 })
403 #define __rcu_dereference_protected(p, c, space) \
404 ({ \
405 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
406 rcu_check_sparse(p, space); \
407 ((typeof(*p) __force __kernel *)(p)); \
408 })
409 #define rcu_dereference_raw(p) \
410 ({ \
411 /* Dependency order vs. p above. */ \
412 typeof(p) ________p1 = READ_ONCE(p); \
413 ((typeof(*p) __force __kernel *)(________p1)); \
414 })
415
416 /**
417 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
418 * @v: The value to statically initialize with.
419 */
420 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
421
422 /**
423 * rcu_assign_pointer() - assign to RCU-protected pointer
424 * @p: pointer to assign to
425 * @v: value to assign (publish)
426 *
427 * Assigns the specified value to the specified RCU-protected
428 * pointer, ensuring that any concurrent RCU readers will see
429 * any prior initialization.
430 *
431 * Inserts memory barriers on architectures that require them
432 * (which is most of them), and also prevents the compiler from
433 * reordering the code that initializes the structure after the pointer
434 * assignment. More importantly, this call documents which pointers
435 * will be dereferenced by RCU read-side code.
436 *
437 * In some special cases, you may use RCU_INIT_POINTER() instead
438 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
439 * to the fact that it does not constrain either the CPU or the compiler.
440 * That said, using RCU_INIT_POINTER() when you should have used
441 * rcu_assign_pointer() is a very bad thing that results in
442 * impossible-to-diagnose memory corruption. So please be careful.
443 * See the RCU_INIT_POINTER() comment header for details.
444 *
445 * Note that rcu_assign_pointer() evaluates each of its arguments only
446 * once, appearances notwithstanding. One of the "extra" evaluations
447 * is in typeof() and the other visible only to sparse (__CHECKER__),
448 * neither of which actually execute the argument. As with most cpp
449 * macros, this execute-arguments-only-once property is important, so
450 * please be careful when making changes to rcu_assign_pointer() and the
451 * other macros that it invokes.
452 */
453 #define rcu_assign_pointer(p, v) \
454 do { \
455 uintptr_t _r_a_p__v = (uintptr_t)(v); \
456 rcu_check_sparse(p, __rcu); \
457 \
458 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
459 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
460 else \
461 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
462 } while (0)
463
464 /**
465 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
466 * @rcu_ptr: RCU pointer, whose old value is returned
467 * @ptr: regular pointer
468 * @c: the lockdep conditions under which the dereference will take place
469 *
470 * Perform a replacement, where @rcu_ptr is an RCU-annotated
471 * pointer and @c is the lockdep argument that is passed to the
472 * rcu_dereference_protected() call used to read that pointer. The old
473 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
474 */
475 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
476 ({ \
477 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
478 rcu_assign_pointer((rcu_ptr), (ptr)); \
479 __tmp; \
480 })
481
482 /**
483 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
484 * @p: The pointer to read
485 *
486 * Return the value of the specified RCU-protected pointer, but omit the
487 * lockdep checks for being in an RCU read-side critical section. This is
488 * useful when the value of this pointer is accessed, but the pointer is
489 * not dereferenced, for example, when testing an RCU-protected pointer
490 * against NULL. Although rcu_access_pointer() may also be used in cases
491 * where update-side locks prevent the value of the pointer from changing,
492 * you should instead use rcu_dereference_protected() for this use case.
493 *
494 * It is also permissible to use rcu_access_pointer() when read-side
495 * access to the pointer was removed at least one grace period ago, as
496 * is the case in the context of the RCU callback that is freeing up
497 * the data, or after a synchronize_rcu() returns. This can be useful
498 * when tearing down multi-linked structures after a grace period
499 * has elapsed.
500 */
501 #define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
502
503 /**
504 * rcu_dereference_check() - rcu_dereference with debug checking
505 * @p: The pointer to read, prior to dereferencing
506 * @c: The conditions under which the dereference will take place
507 *
508 * Do an rcu_dereference(), but check that the conditions under which the
509 * dereference will take place are correct. Typically the conditions
510 * indicate the various locking conditions that should be held at that
511 * point. The check should return true if the conditions are satisfied.
512 * An implicit check for being in an RCU read-side critical section
513 * (rcu_read_lock()) is included.
514 *
515 * For example:
516 *
517 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
518 *
519 * could be used to indicate to lockdep that foo->bar may only be dereferenced
520 * if either rcu_read_lock() is held, or that the lock required to replace
521 * the bar struct at foo->bar is held.
522 *
523 * Note that the list of conditions may also include indications of when a lock
524 * need not be held, for example during initialisation or destruction of the
525 * target struct:
526 *
527 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
528 * atomic_read(&foo->usage) == 0);
529 *
530 * Inserts memory barriers on architectures that require them
531 * (currently only the Alpha), prevents the compiler from refetching
532 * (and from merging fetches), and, more importantly, documents exactly
533 * which pointers are protected by RCU and checks that the pointer is
534 * annotated as __rcu.
535 */
536 #define rcu_dereference_check(p, c) \
537 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
538
539 /**
540 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
541 * @p: The pointer to read, prior to dereferencing
542 * @c: The conditions under which the dereference will take place
543 *
544 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
545 * please note that starting in v5.0 kernels, vanilla RCU grace periods
546 * wait for local_bh_disable() regions of code in addition to regions of
547 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
548 * that synchronize_rcu(), call_rcu, and friends all take not only
549 * rcu_read_lock() but also rcu_read_lock_bh() into account.
550 */
551 #define rcu_dereference_bh_check(p, c) \
552 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
553
554 /**
555 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
556 * @p: The pointer to read, prior to dereferencing
557 * @c: The conditions under which the dereference will take place
558 *
559 * This is the RCU-sched counterpart to rcu_dereference_check().
560 * However, please note that starting in v5.0 kernels, vanilla RCU grace
561 * periods wait for preempt_disable() regions of code in addition to
562 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
563 * This means that synchronize_rcu(), call_rcu, and friends all take not
564 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
565 */
566 #define rcu_dereference_sched_check(p, c) \
567 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
568 __rcu)
569
570 /*
571 * The tracing infrastructure traces RCU (we want that), but unfortunately
572 * some of the RCU checks causes tracing to lock up the system.
573 *
574 * The no-tracing version of rcu_dereference_raw() must not call
575 * rcu_read_lock_held().
576 */
577 #define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
578
579 /**
580 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
581 * @p: The pointer to read, prior to dereferencing
582 * @c: The conditions under which the dereference will take place
583 *
584 * Return the value of the specified RCU-protected pointer, but omit
585 * the READ_ONCE(). This is useful in cases where update-side locks
586 * prevent the value of the pointer from changing. Please note that this
587 * primitive does *not* prevent the compiler from repeating this reference
588 * or combining it with other references, so it should not be used without
589 * protection of appropriate locks.
590 *
591 * This function is only for update-side use. Using this function
592 * when protected only by rcu_read_lock() will result in infrequent
593 * but very ugly failures.
594 */
595 #define rcu_dereference_protected(p, c) \
596 __rcu_dereference_protected((p), (c), __rcu)
597
598
599 /**
600 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
601 * @p: The pointer to read, prior to dereferencing
602 *
603 * This is a simple wrapper around rcu_dereference_check().
604 */
605 #define rcu_dereference(p) rcu_dereference_check(p, 0)
606
607 /**
608 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
609 * @p: The pointer to read, prior to dereferencing
610 *
611 * Makes rcu_dereference_check() do the dirty work.
612 */
613 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
614
615 /**
616 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
617 * @p: The pointer to read, prior to dereferencing
618 *
619 * Makes rcu_dereference_check() do the dirty work.
620 */
621 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
622
623 /**
624 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
625 * @p: The pointer to hand off
626 *
627 * This is simply an identity function, but it documents where a pointer
628 * is handed off from RCU to some other synchronization mechanism, for
629 * example, reference counting or locking. In C11, it would map to
630 * kill_dependency(). It could be used as follows::
631 *
632 * rcu_read_lock();
633 * p = rcu_dereference(gp);
634 * long_lived = is_long_lived(p);
635 * if (long_lived) {
636 * if (!atomic_inc_not_zero(p->refcnt))
637 * long_lived = false;
638 * else
639 * p = rcu_pointer_handoff(p);
640 * }
641 * rcu_read_unlock();
642 */
643 #define rcu_pointer_handoff(p) (p)
644
645 /**
646 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
647 *
648 * When synchronize_rcu() is invoked on one CPU while other CPUs
649 * are within RCU read-side critical sections, then the
650 * synchronize_rcu() is guaranteed to block until after all the other
651 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
652 * on one CPU while other CPUs are within RCU read-side critical
653 * sections, invocation of the corresponding RCU callback is deferred
654 * until after the all the other CPUs exit their critical sections.
655 *
656 * In v5.0 and later kernels, synchronize_rcu() and call_rcu() also
657 * wait for regions of code with preemption disabled, including regions of
658 * code with interrupts or softirqs disabled. In pre-v5.0 kernels, which
659 * define synchronize_sched(), only code enclosed within rcu_read_lock()
660 * and rcu_read_unlock() are guaranteed to be waited for.
661 *
662 * Note, however, that RCU callbacks are permitted to run concurrently
663 * with new RCU read-side critical sections. One way that this can happen
664 * is via the following sequence of events: (1) CPU 0 enters an RCU
665 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
666 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
667 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
668 * callback is invoked. This is legal, because the RCU read-side critical
669 * section that was running concurrently with the call_rcu() (and which
670 * therefore might be referencing something that the corresponding RCU
671 * callback would free up) has completed before the corresponding
672 * RCU callback is invoked.
673 *
674 * RCU read-side critical sections may be nested. Any deferred actions
675 * will be deferred until the outermost RCU read-side critical section
676 * completes.
677 *
678 * You can avoid reading and understanding the next paragraph by
679 * following this rule: don't put anything in an rcu_read_lock() RCU
680 * read-side critical section that would block in a !PREEMPTION kernel.
681 * But if you want the full story, read on!
682 *
683 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
684 * it is illegal to block while in an RCU read-side critical section.
685 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
686 * kernel builds, RCU read-side critical sections may be preempted,
687 * but explicit blocking is illegal. Finally, in preemptible RCU
688 * implementations in real-time (with -rt patchset) kernel builds, RCU
689 * read-side critical sections may be preempted and they may also block, but
690 * only when acquiring spinlocks that are subject to priority inheritance.
691 */
rcu_read_lock(void)692 static __always_inline void rcu_read_lock(void)
693 {
694 __rcu_read_lock();
695 __acquire(RCU);
696 rcu_lock_acquire(&rcu_lock_map);
697 RCU_LOCKDEP_WARN(!rcu_is_watching(),
698 "rcu_read_lock() used illegally while idle");
699 }
700
701 /*
702 * So where is rcu_write_lock()? It does not exist, as there is no
703 * way for writers to lock out RCU readers. This is a feature, not
704 * a bug -- this property is what provides RCU's performance benefits.
705 * Of course, writers must coordinate with each other. The normal
706 * spinlock primitives work well for this, but any other technique may be
707 * used as well. RCU does not care how the writers keep out of each
708 * others' way, as long as they do so.
709 */
710
711 /**
712 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
713 *
714 * In almost all situations, rcu_read_unlock() is immune from deadlock.
715 * In recent kernels that have consolidated synchronize_sched() and
716 * synchronize_rcu_bh() into synchronize_rcu(), this deadlock immunity
717 * also extends to the scheduler's runqueue and priority-inheritance
718 * spinlocks, courtesy of the quiescent-state deferral that is carried
719 * out when rcu_read_unlock() is invoked with interrupts disabled.
720 *
721 * See rcu_read_lock() for more information.
722 */
rcu_read_unlock(void)723 static inline void rcu_read_unlock(void)
724 {
725 RCU_LOCKDEP_WARN(!rcu_is_watching(),
726 "rcu_read_unlock() used illegally while idle");
727 __release(RCU);
728 __rcu_read_unlock();
729 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
730 }
731
732 /**
733 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
734 *
735 * This is equivalent to rcu_read_lock(), but also disables softirqs.
736 * Note that anything else that disables softirqs can also serve as an RCU
737 * read-side critical section. However, please note that this equivalence
738 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
739 * rcu_read_lock_bh() were unrelated.
740 *
741 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
742 * must occur in the same context, for example, it is illegal to invoke
743 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
744 * was invoked from some other task.
745 */
rcu_read_lock_bh(void)746 static inline void rcu_read_lock_bh(void)
747 {
748 local_bh_disable();
749 __acquire(RCU_BH);
750 rcu_lock_acquire(&rcu_bh_lock_map);
751 RCU_LOCKDEP_WARN(!rcu_is_watching(),
752 "rcu_read_lock_bh() used illegally while idle");
753 }
754
755 /**
756 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
757 *
758 * See rcu_read_lock_bh() for more information.
759 */
rcu_read_unlock_bh(void)760 static inline void rcu_read_unlock_bh(void)
761 {
762 RCU_LOCKDEP_WARN(!rcu_is_watching(),
763 "rcu_read_unlock_bh() used illegally while idle");
764 rcu_lock_release(&rcu_bh_lock_map);
765 __release(RCU_BH);
766 local_bh_enable();
767 }
768
769 /**
770 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
771 *
772 * This is equivalent to rcu_read_lock(), but also disables preemption.
773 * Read-side critical sections can also be introduced by anything else that
774 * disables preemption, including local_irq_disable() and friends. However,
775 * please note that the equivalence to rcu_read_lock() applies only to
776 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
777 * were unrelated.
778 *
779 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
780 * must occur in the same context, for example, it is illegal to invoke
781 * rcu_read_unlock_sched() from process context if the matching
782 * rcu_read_lock_sched() was invoked from an NMI handler.
783 */
rcu_read_lock_sched(void)784 static inline void rcu_read_lock_sched(void)
785 {
786 preempt_disable();
787 __acquire(RCU_SCHED);
788 rcu_lock_acquire(&rcu_sched_lock_map);
789 RCU_LOCKDEP_WARN(!rcu_is_watching(),
790 "rcu_read_lock_sched() used illegally while idle");
791 }
792
793 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)794 static inline notrace void rcu_read_lock_sched_notrace(void)
795 {
796 preempt_disable_notrace();
797 __acquire(RCU_SCHED);
798 }
799
800 /**
801 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
802 *
803 * See rcu_read_lock_sched() for more information.
804 */
rcu_read_unlock_sched(void)805 static inline void rcu_read_unlock_sched(void)
806 {
807 RCU_LOCKDEP_WARN(!rcu_is_watching(),
808 "rcu_read_unlock_sched() used illegally while idle");
809 rcu_lock_release(&rcu_sched_lock_map);
810 __release(RCU_SCHED);
811 preempt_enable();
812 }
813
814 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)815 static inline notrace void rcu_read_unlock_sched_notrace(void)
816 {
817 __release(RCU_SCHED);
818 preempt_enable_notrace();
819 }
820
821 /**
822 * RCU_INIT_POINTER() - initialize an RCU protected pointer
823 * @p: The pointer to be initialized.
824 * @v: The value to initialized the pointer to.
825 *
826 * Initialize an RCU-protected pointer in special cases where readers
827 * do not need ordering constraints on the CPU or the compiler. These
828 * special cases are:
829 *
830 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
831 * 2. The caller has taken whatever steps are required to prevent
832 * RCU readers from concurrently accessing this pointer *or*
833 * 3. The referenced data structure has already been exposed to
834 * readers either at compile time or via rcu_assign_pointer() *and*
835 *
836 * a. You have not made *any* reader-visible changes to
837 * this structure since then *or*
838 * b. It is OK for readers accessing this structure from its
839 * new location to see the old state of the structure. (For
840 * example, the changes were to statistical counters or to
841 * other state where exact synchronization is not required.)
842 *
843 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
844 * result in impossible-to-diagnose memory corruption. As in the structures
845 * will look OK in crash dumps, but any concurrent RCU readers might
846 * see pre-initialized values of the referenced data structure. So
847 * please be very careful how you use RCU_INIT_POINTER()!!!
848 *
849 * If you are creating an RCU-protected linked structure that is accessed
850 * by a single external-to-structure RCU-protected pointer, then you may
851 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
852 * pointers, but you must use rcu_assign_pointer() to initialize the
853 * external-to-structure pointer *after* you have completely initialized
854 * the reader-accessible portions of the linked structure.
855 *
856 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
857 * ordering guarantees for either the CPU or the compiler.
858 */
859 #define RCU_INIT_POINTER(p, v) \
860 do { \
861 rcu_check_sparse(p, __rcu); \
862 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
863 } while (0)
864
865 /**
866 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
867 * @p: The pointer to be initialized.
868 * @v: The value to initialized the pointer to.
869 *
870 * GCC-style initialization for an RCU-protected pointer in a structure field.
871 */
872 #define RCU_POINTER_INITIALIZER(p, v) \
873 .p = RCU_INITIALIZER(v)
874
875 /*
876 * Does the specified offset indicate that the corresponding rcu_head
877 * structure can be handled by kvfree_rcu()?
878 */
879 #define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
880
881 /**
882 * kfree_rcu() - kfree an object after a grace period.
883 * @ptr: pointer to kfree for both single- and double-argument invocations.
884 * @rhf: the name of the struct rcu_head within the type of @ptr,
885 * but only for double-argument invocations.
886 *
887 * Many rcu callbacks functions just call kfree() on the base structure.
888 * These functions are trivial, but their size adds up, and furthermore
889 * when they are used in a kernel module, that module must invoke the
890 * high-latency rcu_barrier() function at module-unload time.
891 *
892 * The kfree_rcu() function handles this issue. Rather than encoding a
893 * function address in the embedded rcu_head structure, kfree_rcu() instead
894 * encodes the offset of the rcu_head structure within the base structure.
895 * Because the functions are not allowed in the low-order 4096 bytes of
896 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
897 * If the offset is larger than 4095 bytes, a compile-time error will
898 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
899 * either fall back to use of call_rcu() or rearrange the structure to
900 * position the rcu_head structure into the first 4096 bytes.
901 *
902 * Note that the allowable offset might decrease in the future, for example,
903 * to allow something like kmem_cache_free_rcu().
904 *
905 * The BUILD_BUG_ON check must not involve any function calls, hence the
906 * checks are done in macros here.
907 */
908 #define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf)
909
910 /**
911 * kvfree_rcu() - kvfree an object after a grace period.
912 *
913 * This macro consists of one or two arguments and it is
914 * based on whether an object is head-less or not. If it
915 * has a head then a semantic stays the same as it used
916 * to be before:
917 *
918 * kvfree_rcu(ptr, rhf);
919 *
920 * where @ptr is a pointer to kvfree(), @rhf is the name
921 * of the rcu_head structure within the type of @ptr.
922 *
923 * When it comes to head-less variant, only one argument
924 * is passed and that is just a pointer which has to be
925 * freed after a grace period. Therefore the semantic is
926 *
927 * kvfree_rcu(ptr);
928 *
929 * where @ptr is a pointer to kvfree().
930 *
931 * Please note, head-less way of freeing is permitted to
932 * use from a context that has to follow might_sleep()
933 * annotation. Otherwise, please switch and embed the
934 * rcu_head structure within the type of @ptr.
935 */
936 #define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \
937 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
938
939 #define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
940 #define kvfree_rcu_arg_2(ptr, rhf) \
941 do { \
942 typeof (ptr) ___p = (ptr); \
943 \
944 if (___p) { \
945 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \
946 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \
947 (offsetof(typeof(*(ptr)), rhf))); \
948 } \
949 } while (0)
950
951 #define kvfree_rcu_arg_1(ptr) \
952 do { \
953 typeof(ptr) ___p = (ptr); \
954 \
955 if (___p) \
956 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
957 } while (0)
958
959 /*
960 * Place this after a lock-acquisition primitive to guarantee that
961 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
962 * if the UNLOCK and LOCK are executed by the same CPU or if the
963 * UNLOCK and LOCK operate on the same lock variable.
964 */
965 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
966 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
967 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
968 #define smp_mb__after_unlock_lock() do { } while (0)
969 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
970
971
972 /* Has the specified rcu_head structure been handed to call_rcu()? */
973
974 /**
975 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
976 * @rhp: The rcu_head structure to initialize.
977 *
978 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
979 * given rcu_head structure has already been passed to call_rcu(), then
980 * you must also invoke this rcu_head_init() function on it just after
981 * allocating that structure. Calls to this function must not race with
982 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
983 */
rcu_head_init(struct rcu_head * rhp)984 static inline void rcu_head_init(struct rcu_head *rhp)
985 {
986 rhp->func = (rcu_callback_t)~0L;
987 }
988
989 /**
990 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
991 * @rhp: The rcu_head structure to test.
992 * @f: The function passed to call_rcu() along with @rhp.
993 *
994 * Returns @true if the @rhp has been passed to call_rcu() with @func,
995 * and @false otherwise. Emits a warning in any other case, including
996 * the case where @rhp has already been invoked after a grace period.
997 * Calls to this function must not race with callback invocation. One way
998 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
999 * in an RCU read-side critical section that includes a read-side fetch
1000 * of the pointer to the structure containing @rhp.
1001 */
1002 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1003 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1004 {
1005 rcu_callback_t func = READ_ONCE(rhp->func);
1006
1007 if (func == f)
1008 return true;
1009 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1010 return false;
1011 }
1012
1013 /* kernel/ksysfs.c definitions */
1014 extern int rcu_expedited;
1015 extern int rcu_normal;
1016
1017 #endif /* __LINUX_RCUPDATE_H */
1018