• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include "../time/tick-internal.h"
67 
68 #include "tree.h"
69 #include "rcu.h"
70 
71 #ifdef MODULE_PARAM_PREFIX
72 #undef MODULE_PARAM_PREFIX
73 #endif
74 #define MODULE_PARAM_PREFIX "rcutree."
75 
76 /* Data structures. */
77 
78 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
79 	.dynticks_nesting = 1,
80 	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
81 	.dynticks = ATOMIC_INIT(1),
82 #ifdef CONFIG_RCU_NOCB_CPU
83 	.cblist.flags = SEGCBLIST_SOFTIRQ_ONLY,
84 #endif
85 };
86 static struct rcu_state rcu_state = {
87 	.level = { &rcu_state.node[0] },
88 	.gp_state = RCU_GP_IDLE,
89 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
90 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
91 	.name = RCU_NAME,
92 	.abbr = RCU_ABBR,
93 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
94 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
95 	.ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
96 };
97 
98 /* Dump rcu_node combining tree at boot to verify correct setup. */
99 static bool dump_tree;
100 module_param(dump_tree, bool, 0444);
101 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
102 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
103 #ifndef CONFIG_PREEMPT_RT
104 module_param(use_softirq, bool, 0444);
105 #endif
106 /* Control rcu_node-tree auto-balancing at boot time. */
107 static bool rcu_fanout_exact;
108 module_param(rcu_fanout_exact, bool, 0444);
109 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
110 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
111 module_param(rcu_fanout_leaf, int, 0444);
112 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
113 /* Number of rcu_nodes at specified level. */
114 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
115 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
116 
117 /*
118  * The rcu_scheduler_active variable is initialized to the value
119  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
120  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
121  * RCU can assume that there is but one task, allowing RCU to (for example)
122  * optimize synchronize_rcu() to a simple barrier().  When this variable
123  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
124  * to detect real grace periods.  This variable is also used to suppress
125  * boot-time false positives from lockdep-RCU error checking.  Finally, it
126  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
127  * is fully initialized, including all of its kthreads having been spawned.
128  */
129 int rcu_scheduler_active __read_mostly;
130 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
131 
132 /*
133  * The rcu_scheduler_fully_active variable transitions from zero to one
134  * during the early_initcall() processing, which is after the scheduler
135  * is capable of creating new tasks.  So RCU processing (for example,
136  * creating tasks for RCU priority boosting) must be delayed until after
137  * rcu_scheduler_fully_active transitions from zero to one.  We also
138  * currently delay invocation of any RCU callbacks until after this point.
139  *
140  * It might later prove better for people registering RCU callbacks during
141  * early boot to take responsibility for these callbacks, but one step at
142  * a time.
143  */
144 static int rcu_scheduler_fully_active __read_mostly;
145 
146 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
147 			      unsigned long gps, unsigned long flags);
148 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
149 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
150 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
151 static void invoke_rcu_core(void);
152 static void rcu_report_exp_rdp(struct rcu_data *rdp);
153 static void sync_sched_exp_online_cleanup(int cpu);
154 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
155 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
156 
157 /* rcuc/rcub kthread realtime priority */
158 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
159 module_param(kthread_prio, int, 0444);
160 
161 /* Delay in jiffies for grace-period initialization delays, debug only. */
162 
163 static int gp_preinit_delay;
164 module_param(gp_preinit_delay, int, 0444);
165 static int gp_init_delay;
166 module_param(gp_init_delay, int, 0444);
167 static int gp_cleanup_delay;
168 module_param(gp_cleanup_delay, int, 0444);
169 
170 // Add delay to rcu_read_unlock() for strict grace periods.
171 static int rcu_unlock_delay;
172 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
173 module_param(rcu_unlock_delay, int, 0444);
174 #endif
175 
176 /*
177  * This rcu parameter is runtime-read-only. It reflects
178  * a minimum allowed number of objects which can be cached
179  * per-CPU. Object size is equal to one page. This value
180  * can be changed at boot time.
181  */
182 static int rcu_min_cached_objs = 5;
183 module_param(rcu_min_cached_objs, int, 0444);
184 
185 // A page shrinker can ask for pages to be freed to make them
186 // available for other parts of the system. This usually happens
187 // under low memory conditions, and in that case we should also
188 // defer page-cache filling for a short time period.
189 //
190 // The default value is 5 seconds, which is long enough to reduce
191 // interference with the shrinker while it asks other systems to
192 // drain their caches.
193 static int rcu_delay_page_cache_fill_msec = 5000;
194 module_param(rcu_delay_page_cache_fill_msec, int, 0444);
195 
196 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)197 int rcu_get_gp_kthreads_prio(void)
198 {
199 	return kthread_prio;
200 }
201 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
202 
203 /*
204  * Number of grace periods between delays, normalized by the duration of
205  * the delay.  The longer the delay, the more the grace periods between
206  * each delay.  The reason for this normalization is that it means that,
207  * for non-zero delays, the overall slowdown of grace periods is constant
208  * regardless of the duration of the delay.  This arrangement balances
209  * the need for long delays to increase some race probabilities with the
210  * need for fast grace periods to increase other race probabilities.
211  */
212 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
213 
214 /*
215  * Compute the mask of online CPUs for the specified rcu_node structure.
216  * This will not be stable unless the rcu_node structure's ->lock is
217  * held, but the bit corresponding to the current CPU will be stable
218  * in most contexts.
219  */
rcu_rnp_online_cpus(struct rcu_node * rnp)220 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
221 {
222 	return READ_ONCE(rnp->qsmaskinitnext);
223 }
224 
225 /*
226  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
227  * permit this function to be invoked without holding the root rcu_node
228  * structure's ->lock, but of course results can be subject to change.
229  */
rcu_gp_in_progress(void)230 static int rcu_gp_in_progress(void)
231 {
232 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
233 }
234 
235 /*
236  * Return the number of callbacks queued on the specified CPU.
237  * Handles both the nocbs and normal cases.
238  */
rcu_get_n_cbs_cpu(int cpu)239 static long rcu_get_n_cbs_cpu(int cpu)
240 {
241 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
242 
243 	if (rcu_segcblist_is_enabled(&rdp->cblist))
244 		return rcu_segcblist_n_cbs(&rdp->cblist);
245 	return 0;
246 }
247 
rcu_softirq_qs(void)248 void rcu_softirq_qs(void)
249 {
250 	rcu_qs();
251 	rcu_preempt_deferred_qs(current);
252 	rcu_tasks_qs(current, false);
253 }
254 
255 /*
256  * Increment the current CPU's rcu_data structure's ->dynticks field
257  * with ordering.  Return the new value.
258  */
rcu_dynticks_inc(int incby)259 static noinline noinstr unsigned long rcu_dynticks_inc(int incby)
260 {
261 	return arch_atomic_add_return(incby, this_cpu_ptr(&rcu_data.dynticks));
262 }
263 
264 /*
265  * Record entry into an extended quiescent state.  This is only to be
266  * called when not already in an extended quiescent state, that is,
267  * RCU is watching prior to the call to this function and is no longer
268  * watching upon return.
269  */
rcu_dynticks_eqs_enter(void)270 static noinstr void rcu_dynticks_eqs_enter(void)
271 {
272 	int seq;
273 
274 	/*
275 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
276 	 * critical sections, and we also must force ordering with the
277 	 * next idle sojourn.
278 	 */
279 	rcu_dynticks_task_trace_enter();  // Before ->dynticks update!
280 	seq = rcu_dynticks_inc(1);
281 	// RCU is no longer watching.  Better be in extended quiescent state!
282 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && (seq & 0x1));
283 }
284 
285 /*
286  * Record exit from an extended quiescent state.  This is only to be
287  * called from an extended quiescent state, that is, RCU is not watching
288  * prior to the call to this function and is watching upon return.
289  */
rcu_dynticks_eqs_exit(void)290 static noinstr void rcu_dynticks_eqs_exit(void)
291 {
292 	int seq;
293 
294 	/*
295 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
296 	 * and we also must force ordering with the next RCU read-side
297 	 * critical section.
298 	 */
299 	seq = rcu_dynticks_inc(1);
300 	// RCU is now watching.  Better not be in an extended quiescent state!
301 	rcu_dynticks_task_trace_exit();  // After ->dynticks update!
302 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & 0x1));
303 }
304 
305 /*
306  * Reset the current CPU's ->dynticks counter to indicate that the
307  * newly onlined CPU is no longer in an extended quiescent state.
308  * This will either leave the counter unchanged, or increment it
309  * to the next non-quiescent value.
310  *
311  * The non-atomic test/increment sequence works because the upper bits
312  * of the ->dynticks counter are manipulated only by the corresponding CPU,
313  * or when the corresponding CPU is offline.
314  */
rcu_dynticks_eqs_online(void)315 static void rcu_dynticks_eqs_online(void)
316 {
317 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
318 
319 	if (atomic_read(&rdp->dynticks) & 0x1)
320 		return;
321 	rcu_dynticks_inc(1);
322 }
323 
324 /*
325  * Is the current CPU in an extended quiescent state?
326  *
327  * No ordering, as we are sampling CPU-local information.
328  */
rcu_dynticks_curr_cpu_in_eqs(void)329 static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
330 {
331 	return !(arch_atomic_read(this_cpu_ptr(&rcu_data.dynticks)) & 0x1);
332 }
333 
334 /*
335  * Snapshot the ->dynticks counter with full ordering so as to allow
336  * stable comparison of this counter with past and future snapshots.
337  */
rcu_dynticks_snap(struct rcu_data * rdp)338 static int rcu_dynticks_snap(struct rcu_data *rdp)
339 {
340 	smp_mb();  // Fundamental RCU ordering guarantee.
341 	return atomic_read_acquire(&rdp->dynticks);
342 }
343 
344 /*
345  * Return true if the snapshot returned from rcu_dynticks_snap()
346  * indicates that RCU is in an extended quiescent state.
347  */
rcu_dynticks_in_eqs(int snap)348 static bool rcu_dynticks_in_eqs(int snap)
349 {
350 	return !(snap & 0x1);
351 }
352 
353 /* Return true if the specified CPU is currently idle from an RCU viewpoint.  */
rcu_is_idle_cpu(int cpu)354 bool rcu_is_idle_cpu(int cpu)
355 {
356 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
357 
358 	return rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp));
359 }
360 
361 /*
362  * Return true if the CPU corresponding to the specified rcu_data
363  * structure has spent some time in an extended quiescent state since
364  * rcu_dynticks_snap() returned the specified snapshot.
365  */
rcu_dynticks_in_eqs_since(struct rcu_data * rdp,int snap)366 static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
367 {
368 	return snap != rcu_dynticks_snap(rdp);
369 }
370 
371 /*
372  * Return true if the referenced integer is zero while the specified
373  * CPU remains within a single extended quiescent state.
374  */
rcu_dynticks_zero_in_eqs(int cpu,int * vp)375 bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
376 {
377 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
378 	int snap;
379 
380 	// If not quiescent, force back to earlier extended quiescent state.
381 	snap = atomic_read(&rdp->dynticks) & ~0x1;
382 
383 	smp_rmb(); // Order ->dynticks and *vp reads.
384 	if (READ_ONCE(*vp))
385 		return false;  // Non-zero, so report failure;
386 	smp_rmb(); // Order *vp read and ->dynticks re-read.
387 
388 	// If still in the same extended quiescent state, we are good!
389 	return snap == atomic_read(&rdp->dynticks);
390 }
391 
392 /*
393  * Let the RCU core know that this CPU has gone through the scheduler,
394  * which is a quiescent state.  This is called when the need for a
395  * quiescent state is urgent, so we burn an atomic operation and full
396  * memory barriers to let the RCU core know about it, regardless of what
397  * this CPU might (or might not) do in the near future.
398  *
399  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
400  *
401  * The caller must have disabled interrupts and must not be idle.
402  */
rcu_momentary_dyntick_idle(void)403 notrace void rcu_momentary_dyntick_idle(void)
404 {
405 	int seq;
406 
407 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
408 	seq = rcu_dynticks_inc(2);
409 	/* It is illegal to call this from idle state. */
410 	WARN_ON_ONCE(!(seq & 0x1));
411 	rcu_preempt_deferred_qs(current);
412 }
413 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
414 
415 /**
416  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
417  *
418  * If the current CPU is idle and running at a first-level (not nested)
419  * interrupt, or directly, from idle, return true.
420  *
421  * The caller must have at least disabled IRQs.
422  */
rcu_is_cpu_rrupt_from_idle(void)423 static int rcu_is_cpu_rrupt_from_idle(void)
424 {
425 	long nesting;
426 
427 	/*
428 	 * Usually called from the tick; but also used from smp_function_call()
429 	 * for expedited grace periods. This latter can result in running from
430 	 * the idle task, instead of an actual IPI.
431 	 */
432 	lockdep_assert_irqs_disabled();
433 
434 	/* Check for counter underflows */
435 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
436 			 "RCU dynticks_nesting counter underflow!");
437 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
438 			 "RCU dynticks_nmi_nesting counter underflow/zero!");
439 
440 	/* Are we at first interrupt nesting level? */
441 	nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
442 	if (nesting > 1)
443 		return false;
444 
445 	/*
446 	 * If we're not in an interrupt, we must be in the idle task!
447 	 */
448 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
449 
450 	/* Does CPU appear to be idle from an RCU standpoint? */
451 	return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
452 }
453 
454 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
455 				// Maximum callbacks per rcu_do_batch ...
456 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
457 static long blimit = DEFAULT_RCU_BLIMIT;
458 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
459 static long qhimark = DEFAULT_RCU_QHIMARK;
460 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
461 static long qlowmark = DEFAULT_RCU_QLOMARK;
462 #define DEFAULT_RCU_QOVLD_MULT 2
463 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
464 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
465 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
466 
467 module_param(blimit, long, 0444);
468 module_param(qhimark, long, 0444);
469 module_param(qlowmark, long, 0444);
470 module_param(qovld, long, 0444);
471 
472 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
473 static ulong jiffies_till_next_fqs = ULONG_MAX;
474 static bool rcu_kick_kthreads;
475 static int rcu_divisor = 7;
476 module_param(rcu_divisor, int, 0644);
477 
478 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
479 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
480 module_param(rcu_resched_ns, long, 0644);
481 
482 /*
483  * How long the grace period must be before we start recruiting
484  * quiescent-state help from rcu_note_context_switch().
485  */
486 static ulong jiffies_till_sched_qs = ULONG_MAX;
487 module_param(jiffies_till_sched_qs, ulong, 0444);
488 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
489 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
490 
491 /*
492  * Make sure that we give the grace-period kthread time to detect any
493  * idle CPUs before taking active measures to force quiescent states.
494  * However, don't go below 100 milliseconds, adjusted upwards for really
495  * large systems.
496  */
adjust_jiffies_till_sched_qs(void)497 static void adjust_jiffies_till_sched_qs(void)
498 {
499 	unsigned long j;
500 
501 	/* If jiffies_till_sched_qs was specified, respect the request. */
502 	if (jiffies_till_sched_qs != ULONG_MAX) {
503 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
504 		return;
505 	}
506 	/* Otherwise, set to third fqs scan, but bound below on large system. */
507 	j = READ_ONCE(jiffies_till_first_fqs) +
508 		      2 * READ_ONCE(jiffies_till_next_fqs);
509 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
510 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
511 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
512 	WRITE_ONCE(jiffies_to_sched_qs, j);
513 }
514 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)515 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
516 {
517 	ulong j;
518 	int ret = kstrtoul(val, 0, &j);
519 
520 	if (!ret) {
521 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
522 		adjust_jiffies_till_sched_qs();
523 	}
524 	return ret;
525 }
526 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)527 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
528 {
529 	ulong j;
530 	int ret = kstrtoul(val, 0, &j);
531 
532 	if (!ret) {
533 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
534 		adjust_jiffies_till_sched_qs();
535 	}
536 	return ret;
537 }
538 
539 static const struct kernel_param_ops first_fqs_jiffies_ops = {
540 	.set = param_set_first_fqs_jiffies,
541 	.get = param_get_ulong,
542 };
543 
544 static const struct kernel_param_ops next_fqs_jiffies_ops = {
545 	.set = param_set_next_fqs_jiffies,
546 	.get = param_get_ulong,
547 };
548 
549 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
550 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
551 module_param(rcu_kick_kthreads, bool, 0644);
552 
553 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
554 static int rcu_pending(int user);
555 
556 /*
557  * Return the number of RCU GPs completed thus far for debug & stats.
558  */
rcu_get_gp_seq(void)559 unsigned long rcu_get_gp_seq(void)
560 {
561 	return READ_ONCE(rcu_state.gp_seq);
562 }
563 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
564 
565 /*
566  * Return the number of RCU expedited batches completed thus far for
567  * debug & stats.  Odd numbers mean that a batch is in progress, even
568  * numbers mean idle.  The value returned will thus be roughly double
569  * the cumulative batches since boot.
570  */
rcu_exp_batches_completed(void)571 unsigned long rcu_exp_batches_completed(void)
572 {
573 	return rcu_state.expedited_sequence;
574 }
575 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
576 
577 /*
578  * Return the root node of the rcu_state structure.
579  */
rcu_get_root(void)580 static struct rcu_node *rcu_get_root(void)
581 {
582 	return &rcu_state.node[0];
583 }
584 
585 /*
586  * Send along grace-period-related data for rcutorture diagnostics.
587  */
rcutorture_get_gp_data(enum rcutorture_type test_type,int * flags,unsigned long * gp_seq)588 void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
589 			    unsigned long *gp_seq)
590 {
591 	switch (test_type) {
592 	case RCU_FLAVOR:
593 		*flags = READ_ONCE(rcu_state.gp_flags);
594 		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
595 		break;
596 	default:
597 		break;
598 	}
599 }
600 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
601 
602 /*
603  * Enter an RCU extended quiescent state, which can be either the
604  * idle loop or adaptive-tickless usermode execution.
605  *
606  * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
607  * the possibility of usermode upcalls having messed up our count
608  * of interrupt nesting level during the prior busy period.
609  */
rcu_eqs_enter(bool user)610 static noinstr void rcu_eqs_enter(bool user)
611 {
612 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
613 
614 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
615 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
616 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
617 		     rdp->dynticks_nesting == 0);
618 	if (rdp->dynticks_nesting != 1) {
619 		// RCU will still be watching, so just do accounting and leave.
620 		rdp->dynticks_nesting--;
621 		return;
622 	}
623 
624 	lockdep_assert_irqs_disabled();
625 	instrumentation_begin();
626 	trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
627 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
628 	rcu_prepare_for_idle();
629 	rcu_preempt_deferred_qs(current);
630 
631 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
632 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
633 
634 	instrumentation_end();
635 	WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
636 	// RCU is watching here ...
637 	rcu_dynticks_eqs_enter();
638 	// ... but is no longer watching here.
639 	rcu_dynticks_task_enter();
640 }
641 
642 /**
643  * rcu_idle_enter - inform RCU that current CPU is entering idle
644  *
645  * Enter idle mode, in other words, -leave- the mode in which RCU
646  * read-side critical sections can occur.  (Though RCU read-side
647  * critical sections can occur in irq handlers in idle, a possibility
648  * handled by irq_enter() and irq_exit().)
649  *
650  * If you add or remove a call to rcu_idle_enter(), be sure to test with
651  * CONFIG_RCU_EQS_DEBUG=y.
652  */
rcu_idle_enter(void)653 void rcu_idle_enter(void)
654 {
655 	lockdep_assert_irqs_disabled();
656 	rcu_eqs_enter(false);
657 }
658 EXPORT_SYMBOL_GPL(rcu_idle_enter);
659 
660 #ifdef CONFIG_NO_HZ_FULL
661 
662 #if !defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)
663 /*
664  * An empty function that will trigger a reschedule on
665  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
666  */
late_wakeup_func(struct irq_work * work)667 static void late_wakeup_func(struct irq_work *work)
668 {
669 }
670 
671 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
672 	IRQ_WORK_INIT(late_wakeup_func);
673 
674 /*
675  * If either:
676  *
677  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
678  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
679  *
680  * In these cases the late RCU wake ups aren't supported in the resched loops and our
681  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
682  * get re-enabled again.
683  */
rcu_irq_work_resched(void)684 noinstr static void rcu_irq_work_resched(void)
685 {
686 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
687 
688 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
689 		return;
690 
691 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
692 		return;
693 
694 	instrumentation_begin();
695 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
696 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
697 	}
698 	instrumentation_end();
699 }
700 
701 #else
rcu_irq_work_resched(void)702 static inline void rcu_irq_work_resched(void) { }
703 #endif
704 
705 /**
706  * rcu_user_enter - inform RCU that we are resuming userspace.
707  *
708  * Enter RCU idle mode right before resuming userspace.  No use of RCU
709  * is permitted between this call and rcu_user_exit(). This way the
710  * CPU doesn't need to maintain the tick for RCU maintenance purposes
711  * when the CPU runs in userspace.
712  *
713  * If you add or remove a call to rcu_user_enter(), be sure to test with
714  * CONFIG_RCU_EQS_DEBUG=y.
715  */
rcu_user_enter(void)716 noinstr void rcu_user_enter(void)
717 {
718 	lockdep_assert_irqs_disabled();
719 
720 	/*
721 	 * Other than generic entry implementation, we may be past the last
722 	 * rescheduling opportunity in the entry code. Trigger a self IPI
723 	 * that will fire and reschedule once we resume in user/guest mode.
724 	 */
725 	rcu_irq_work_resched();
726 	rcu_eqs_enter(true);
727 }
728 
729 #endif /* CONFIG_NO_HZ_FULL */
730 
731 /**
732  * rcu_nmi_exit - inform RCU of exit from NMI context
733  *
734  * If we are returning from the outermost NMI handler that interrupted an
735  * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
736  * to let the RCU grace-period handling know that the CPU is back to
737  * being RCU-idle.
738  *
739  * If you add or remove a call to rcu_nmi_exit(), be sure to test
740  * with CONFIG_RCU_EQS_DEBUG=y.
741  */
rcu_nmi_exit(void)742 noinstr void rcu_nmi_exit(void)
743 {
744 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
745 
746 	instrumentation_begin();
747 	/*
748 	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
749 	 * (We are exiting an NMI handler, so RCU better be paying attention
750 	 * to us!)
751 	 */
752 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
753 	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
754 
755 	/*
756 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
757 	 * leave it in non-RCU-idle state.
758 	 */
759 	if (rdp->dynticks_nmi_nesting != 1) {
760 		trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
761 				  atomic_read(&rdp->dynticks));
762 		WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
763 			   rdp->dynticks_nmi_nesting - 2);
764 		instrumentation_end();
765 		return;
766 	}
767 
768 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
769 	trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
770 	WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
771 
772 	if (!in_nmi())
773 		rcu_prepare_for_idle();
774 
775 	// instrumentation for the noinstr rcu_dynticks_eqs_enter()
776 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
777 	instrumentation_end();
778 
779 	// RCU is watching here ...
780 	rcu_dynticks_eqs_enter();
781 	// ... but is no longer watching here.
782 
783 	if (!in_nmi())
784 		rcu_dynticks_task_enter();
785 }
786 
787 /**
788  * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
789  *
790  * Exit from an interrupt handler, which might possibly result in entering
791  * idle mode, in other words, leaving the mode in which read-side critical
792  * sections can occur.  The caller must have disabled interrupts.
793  *
794  * This code assumes that the idle loop never does anything that might
795  * result in unbalanced calls to irq_enter() and irq_exit().  If your
796  * architecture's idle loop violates this assumption, RCU will give you what
797  * you deserve, good and hard.  But very infrequently and irreproducibly.
798  *
799  * Use things like work queues to work around this limitation.
800  *
801  * You have been warned.
802  *
803  * If you add or remove a call to rcu_irq_exit(), be sure to test with
804  * CONFIG_RCU_EQS_DEBUG=y.
805  */
rcu_irq_exit(void)806 void noinstr rcu_irq_exit(void)
807 {
808 	lockdep_assert_irqs_disabled();
809 	rcu_nmi_exit();
810 }
811 
812 #ifdef CONFIG_PROVE_RCU
813 /**
814  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
815  */
rcu_irq_exit_check_preempt(void)816 void rcu_irq_exit_check_preempt(void)
817 {
818 	lockdep_assert_irqs_disabled();
819 
820 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
821 			 "RCU dynticks_nesting counter underflow/zero!");
822 	RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
823 			 DYNTICK_IRQ_NONIDLE,
824 			 "Bad RCU  dynticks_nmi_nesting counter\n");
825 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
826 			 "RCU in extended quiescent state!");
827 }
828 #endif /* #ifdef CONFIG_PROVE_RCU */
829 
830 /*
831  * Wrapper for rcu_irq_exit() where interrupts are enabled.
832  *
833  * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
834  * with CONFIG_RCU_EQS_DEBUG=y.
835  */
rcu_irq_exit_irqson(void)836 void rcu_irq_exit_irqson(void)
837 {
838 	unsigned long flags;
839 
840 	local_irq_save(flags);
841 	rcu_irq_exit();
842 	local_irq_restore(flags);
843 }
844 
845 /*
846  * Exit an RCU extended quiescent state, which can be either the
847  * idle loop or adaptive-tickless usermode execution.
848  *
849  * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
850  * allow for the possibility of usermode upcalls messing up our count of
851  * interrupt nesting level during the busy period that is just now starting.
852  */
rcu_eqs_exit(bool user)853 static void noinstr rcu_eqs_exit(bool user)
854 {
855 	struct rcu_data *rdp;
856 	long oldval;
857 
858 	lockdep_assert_irqs_disabled();
859 	rdp = this_cpu_ptr(&rcu_data);
860 	oldval = rdp->dynticks_nesting;
861 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
862 	if (oldval) {
863 		// RCU was already watching, so just do accounting and leave.
864 		rdp->dynticks_nesting++;
865 		return;
866 	}
867 	rcu_dynticks_task_exit();
868 	// RCU is not watching here ...
869 	rcu_dynticks_eqs_exit();
870 	// ... but is watching here.
871 	instrumentation_begin();
872 
873 	// instrumentation for the noinstr rcu_dynticks_eqs_exit()
874 	instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
875 
876 	rcu_cleanup_after_idle();
877 	trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
878 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
879 	WRITE_ONCE(rdp->dynticks_nesting, 1);
880 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
881 	WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
882 	instrumentation_end();
883 }
884 
885 /**
886  * rcu_idle_exit - inform RCU that current CPU is leaving idle
887  *
888  * Exit idle mode, in other words, -enter- the mode in which RCU
889  * read-side critical sections can occur.
890  *
891  * If you add or remove a call to rcu_idle_exit(), be sure to test with
892  * CONFIG_RCU_EQS_DEBUG=y.
893  */
rcu_idle_exit(void)894 void rcu_idle_exit(void)
895 {
896 	unsigned long flags;
897 
898 	local_irq_save(flags);
899 	rcu_eqs_exit(false);
900 	local_irq_restore(flags);
901 }
902 EXPORT_SYMBOL_GPL(rcu_idle_exit);
903 
904 #ifdef CONFIG_NO_HZ_FULL
905 /**
906  * rcu_user_exit - inform RCU that we are exiting userspace.
907  *
908  * Exit RCU idle mode while entering the kernel because it can
909  * run a RCU read side critical section anytime.
910  *
911  * If you add or remove a call to rcu_user_exit(), be sure to test with
912  * CONFIG_RCU_EQS_DEBUG=y.
913  */
rcu_user_exit(void)914 void noinstr rcu_user_exit(void)
915 {
916 	rcu_eqs_exit(true);
917 }
918 
919 /**
920  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
921  *
922  * The scheduler tick is not normally enabled when CPUs enter the kernel
923  * from nohz_full userspace execution.  After all, nohz_full userspace
924  * execution is an RCU quiescent state and the time executing in the kernel
925  * is quite short.  Except of course when it isn't.  And it is not hard to
926  * cause a large system to spend tens of seconds or even minutes looping
927  * in the kernel, which can cause a number of problems, include RCU CPU
928  * stall warnings.
929  *
930  * Therefore, if a nohz_full CPU fails to report a quiescent state
931  * in a timely manner, the RCU grace-period kthread sets that CPU's
932  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
933  * exception will invoke this function, which will turn on the scheduler
934  * tick, which will enable RCU to detect that CPU's quiescent states,
935  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
936  * The tick will be disabled once a quiescent state is reported for
937  * this CPU.
938  *
939  * Of course, in carefully tuned systems, there might never be an
940  * interrupt or exception.  In that case, the RCU grace-period kthread
941  * will eventually cause one to happen.  However, in less carefully
942  * controlled environments, this function allows RCU to get what it
943  * needs without creating otherwise useless interruptions.
944  */
__rcu_irq_enter_check_tick(void)945 void __rcu_irq_enter_check_tick(void)
946 {
947 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
948 
949 	// If we're here from NMI there's nothing to do.
950 	if (in_nmi())
951 		return;
952 
953 	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
954 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
955 
956 	if (!tick_nohz_full_cpu(rdp->cpu) ||
957 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
958 	    READ_ONCE(rdp->rcu_forced_tick)) {
959 		// RCU doesn't need nohz_full help from this CPU, or it is
960 		// already getting that help.
961 		return;
962 	}
963 
964 	// We get here only when not in an extended quiescent state and
965 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
966 	// already watching and (2) The fact that we are in an interrupt
967 	// handler and that the rcu_node lock is an irq-disabled lock
968 	// prevents self-deadlock.  So we can safely recheck under the lock.
969 	// Note that the nohz_full state currently cannot change.
970 	raw_spin_lock_rcu_node(rdp->mynode);
971 	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
972 		// A nohz_full CPU is in the kernel and RCU needs a
973 		// quiescent state.  Turn on the tick!
974 		WRITE_ONCE(rdp->rcu_forced_tick, true);
975 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
976 	}
977 	raw_spin_unlock_rcu_node(rdp->mynode);
978 }
979 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
980 #endif /* CONFIG_NO_HZ_FULL */
981 
982 /**
983  * rcu_nmi_enter - inform RCU of entry to NMI context
984  *
985  * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
986  * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
987  * that the CPU is active.  This implementation permits nested NMIs, as
988  * long as the nesting level does not overflow an int.  (You will probably
989  * run out of stack space first.)
990  *
991  * If you add or remove a call to rcu_nmi_enter(), be sure to test
992  * with CONFIG_RCU_EQS_DEBUG=y.
993  */
rcu_nmi_enter(void)994 noinstr void rcu_nmi_enter(void)
995 {
996 	long incby = 2;
997 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
998 
999 	/* Complain about underflow. */
1000 	WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
1001 
1002 	/*
1003 	 * If idle from RCU viewpoint, atomically increment ->dynticks
1004 	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
1005 	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
1006 	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
1007 	 * to be in the outermost NMI handler that interrupted an RCU-idle
1008 	 * period (observation due to Andy Lutomirski).
1009 	 */
1010 	if (rcu_dynticks_curr_cpu_in_eqs()) {
1011 
1012 		if (!in_nmi())
1013 			rcu_dynticks_task_exit();
1014 
1015 		// RCU is not watching here ...
1016 		rcu_dynticks_eqs_exit();
1017 		// ... but is watching here.
1018 
1019 		if (!in_nmi()) {
1020 			instrumentation_begin();
1021 			rcu_cleanup_after_idle();
1022 			instrumentation_end();
1023 		}
1024 
1025 		instrumentation_begin();
1026 		// instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1027 		instrument_atomic_read(&rdp->dynticks, sizeof(rdp->dynticks));
1028 		// instrumentation for the noinstr rcu_dynticks_eqs_exit()
1029 		instrument_atomic_write(&rdp->dynticks, sizeof(rdp->dynticks));
1030 
1031 		incby = 1;
1032 	} else if (!in_nmi()) {
1033 		instrumentation_begin();
1034 		rcu_irq_enter_check_tick();
1035 	} else  {
1036 		instrumentation_begin();
1037 	}
1038 
1039 	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1040 			  rdp->dynticks_nmi_nesting,
1041 			  rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
1042 	instrumentation_end();
1043 	WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
1044 		   rdp->dynticks_nmi_nesting + incby);
1045 	barrier();
1046 }
1047 
1048 /**
1049  * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1050  *
1051  * Enter an interrupt handler, which might possibly result in exiting
1052  * idle mode, in other words, entering the mode in which read-side critical
1053  * sections can occur.  The caller must have disabled interrupts.
1054  *
1055  * Note that the Linux kernel is fully capable of entering an interrupt
1056  * handler that it never exits, for example when doing upcalls to user mode!
1057  * This code assumes that the idle loop never does upcalls to user mode.
1058  * If your architecture's idle loop does do upcalls to user mode (or does
1059  * anything else that results in unbalanced calls to the irq_enter() and
1060  * irq_exit() functions), RCU will give you what you deserve, good and hard.
1061  * But very infrequently and irreproducibly.
1062  *
1063  * Use things like work queues to work around this limitation.
1064  *
1065  * You have been warned.
1066  *
1067  * If you add or remove a call to rcu_irq_enter(), be sure to test with
1068  * CONFIG_RCU_EQS_DEBUG=y.
1069  */
rcu_irq_enter(void)1070 noinstr void rcu_irq_enter(void)
1071 {
1072 	lockdep_assert_irqs_disabled();
1073 	rcu_nmi_enter();
1074 }
1075 
1076 /*
1077  * Wrapper for rcu_irq_enter() where interrupts are enabled.
1078  *
1079  * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1080  * with CONFIG_RCU_EQS_DEBUG=y.
1081  */
rcu_irq_enter_irqson(void)1082 void rcu_irq_enter_irqson(void)
1083 {
1084 	unsigned long flags;
1085 
1086 	local_irq_save(flags);
1087 	rcu_irq_enter();
1088 	local_irq_restore(flags);
1089 }
1090 
1091 /*
1092  * If any sort of urgency was applied to the current CPU (for example,
1093  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1094  * to get to a quiescent state, disable it.
1095  */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)1096 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
1097 {
1098 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
1099 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
1100 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
1101 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1102 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
1103 		WRITE_ONCE(rdp->rcu_forced_tick, false);
1104 	}
1105 }
1106 
1107 /**
1108  * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1109  *
1110  * Return true if RCU is watching the running CPU, which means that this
1111  * CPU can safely enter RCU read-side critical sections.  In other words,
1112  * if the current CPU is not in its idle loop or is in an interrupt or
1113  * NMI handler, return true.
1114  *
1115  * Make notrace because it can be called by the internal functions of
1116  * ftrace, and making this notrace removes unnecessary recursion calls.
1117  */
rcu_is_watching(void)1118 notrace bool rcu_is_watching(void)
1119 {
1120 	bool ret;
1121 
1122 	preempt_disable_notrace();
1123 	ret = !rcu_dynticks_curr_cpu_in_eqs();
1124 	preempt_enable_notrace();
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(rcu_is_watching);
1128 
1129 /*
1130  * If a holdout task is actually running, request an urgent quiescent
1131  * state from its CPU.  This is unsynchronized, so migrations can cause
1132  * the request to go to the wrong CPU.  Which is OK, all that will happen
1133  * is that the CPU's next context switch will be a bit slower and next
1134  * time around this task will generate another request.
1135  */
rcu_request_urgent_qs_task(struct task_struct * t)1136 void rcu_request_urgent_qs_task(struct task_struct *t)
1137 {
1138 	int cpu;
1139 
1140 	barrier();
1141 	cpu = task_cpu(t);
1142 	if (!task_curr(t))
1143 		return; /* This task is not running on that CPU. */
1144 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
1145 }
1146 
1147 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1148 
1149 /*
1150  * Is the current CPU online as far as RCU is concerned?
1151  *
1152  * Disable preemption to avoid false positives that could otherwise
1153  * happen due to the current CPU number being sampled, this task being
1154  * preempted, its old CPU being taken offline, resuming on some other CPU,
1155  * then determining that its old CPU is now offline.
1156  *
1157  * Disable checking if in an NMI handler because we cannot safely
1158  * report errors from NMI handlers anyway.  In addition, it is OK to use
1159  * RCU on an offline processor during initial boot, hence the check for
1160  * rcu_scheduler_fully_active.
1161  */
rcu_lockdep_current_cpu_online(void)1162 bool rcu_lockdep_current_cpu_online(void)
1163 {
1164 	struct rcu_data *rdp;
1165 	struct rcu_node *rnp;
1166 	bool ret = false;
1167 
1168 	if (in_nmi() || !rcu_scheduler_fully_active)
1169 		return true;
1170 	preempt_disable_notrace();
1171 	rdp = this_cpu_ptr(&rcu_data);
1172 	rnp = rdp->mynode;
1173 	if (rdp->grpmask & rcu_rnp_online_cpus(rnp) || READ_ONCE(rnp->ofl_seq) & 0x1)
1174 		ret = true;
1175 	preempt_enable_notrace();
1176 	return ret;
1177 }
1178 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1179 
1180 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1181 
1182 /*
1183  * When trying to report a quiescent state on behalf of some other CPU,
1184  * it is our responsibility to check for and handle potential overflow
1185  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1186  * After all, the CPU might be in deep idle state, and thus executing no
1187  * code whatsoever.
1188  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)1189 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1190 {
1191 	raw_lockdep_assert_held_rcu_node(rnp);
1192 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1193 			 rnp->gp_seq))
1194 		WRITE_ONCE(rdp->gpwrap, true);
1195 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1196 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
1197 }
1198 
1199 /*
1200  * Snapshot the specified CPU's dynticks counter so that we can later
1201  * credit them with an implicit quiescent state.  Return 1 if this CPU
1202  * is in dynticks idle mode, which is an extended quiescent state.
1203  */
dyntick_save_progress_counter(struct rcu_data * rdp)1204 static int dyntick_save_progress_counter(struct rcu_data *rdp)
1205 {
1206 	rdp->dynticks_snap = rcu_dynticks_snap(rdp);
1207 	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1208 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1209 		rcu_gpnum_ovf(rdp->mynode, rdp);
1210 		return 1;
1211 	}
1212 	return 0;
1213 }
1214 
1215 /*
1216  * Return true if the specified CPU has passed through a quiescent
1217  * state by virtue of being in or having passed through an dynticks
1218  * idle state since the last call to dyntick_save_progress_counter()
1219  * for this same CPU, or by virtue of having been offline.
1220  */
rcu_implicit_dynticks_qs(struct rcu_data * rdp)1221 static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1222 {
1223 	unsigned long jtsq;
1224 	bool *rnhqp;
1225 	bool *ruqp;
1226 	struct rcu_node *rnp = rdp->mynode;
1227 
1228 	/*
1229 	 * If the CPU passed through or entered a dynticks idle phase with
1230 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1231 	 * already acknowledged the request to pass through a quiescent
1232 	 * state.  Either way, that CPU cannot possibly be in an RCU
1233 	 * read-side critical section that started before the beginning
1234 	 * of the current RCU grace period.
1235 	 */
1236 	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
1237 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
1238 		rcu_gpnum_ovf(rnp, rdp);
1239 		return 1;
1240 	}
1241 
1242 	/*
1243 	 * Complain if a CPU that is considered to be offline from RCU's
1244 	 * perspective has not yet reported a quiescent state.  After all,
1245 	 * the offline CPU should have reported a quiescent state during
1246 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
1247 	 * if it ran concurrently with either the CPU going offline or the
1248 	 * last task on a leaf rcu_node structure exiting its RCU read-side
1249 	 * critical section while all CPUs corresponding to that structure
1250 	 * are offline.  This added warning detects bugs in any of these
1251 	 * code paths.
1252 	 *
1253 	 * The rcu_node structure's ->lock is held here, which excludes
1254 	 * the relevant portions the CPU-hotplug code, the grace-period
1255 	 * initialization code, and the rcu_read_unlock() code paths.
1256 	 *
1257 	 * For more detail, please refer to the "Hotplug CPU" section
1258 	 * of RCU's Requirements documentation.
1259 	 */
1260 	if (WARN_ON_ONCE(!(rdp->grpmask & rcu_rnp_online_cpus(rnp)))) {
1261 		bool onl;
1262 		struct rcu_node *rnp1;
1263 
1264 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1265 			__func__, rnp->grplo, rnp->grphi, rnp->level,
1266 			(long)rnp->gp_seq, (long)rnp->completedqs);
1267 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1268 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1269 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1270 		onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1271 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1272 			__func__, rdp->cpu, ".o"[onl],
1273 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1274 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1275 		return 1; /* Break things loose after complaining. */
1276 	}
1277 
1278 	/*
1279 	 * A CPU running for an extended time within the kernel can
1280 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1281 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1282 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
1283 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1284 	 * variable are safe because the assignments are repeated if this
1285 	 * CPU failed to pass through a quiescent state.  This code
1286 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
1287 	 * is set way high.
1288 	 */
1289 	jtsq = READ_ONCE(jiffies_to_sched_qs);
1290 	ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1291 	rnhqp = per_cpu_ptr(&rcu_data.rcu_need_heavy_qs, rdp->cpu);
1292 	if (!READ_ONCE(*rnhqp) &&
1293 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
1294 	     time_after(jiffies, rcu_state.jiffies_resched) ||
1295 	     rcu_state.cbovld)) {
1296 		WRITE_ONCE(*rnhqp, true);
1297 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1298 		smp_store_release(ruqp, true);
1299 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1300 		WRITE_ONCE(*ruqp, true);
1301 	}
1302 
1303 	/*
1304 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1305 	 * The above code handles this, but only for straight cond_resched().
1306 	 * And some in-kernel loops check need_resched() before calling
1307 	 * cond_resched(), which defeats the above code for CPUs that are
1308 	 * running in-kernel with scheduling-clock interrupts disabled.
1309 	 * So hit them over the head with the resched_cpu() hammer!
1310 	 */
1311 	if (tick_nohz_full_cpu(rdp->cpu) &&
1312 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1313 	     rcu_state.cbovld)) {
1314 		WRITE_ONCE(*ruqp, true);
1315 		resched_cpu(rdp->cpu);
1316 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1317 	}
1318 
1319 	/*
1320 	 * If more than halfway to RCU CPU stall-warning time, invoke
1321 	 * resched_cpu() more frequently to try to loosen things up a bit.
1322 	 * Also check to see if the CPU is getting hammered with interrupts,
1323 	 * but only once per grace period, just to keep the IPIs down to
1324 	 * a dull roar.
1325 	 */
1326 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
1327 		if (time_after(jiffies,
1328 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1329 			resched_cpu(rdp->cpu);
1330 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1331 		}
1332 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1333 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
1334 		    (rnp->ffmask & rdp->grpmask)) {
1335 			rdp->rcu_iw_pending = true;
1336 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
1337 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1338 		}
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)1345 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1346 			      unsigned long gp_seq_req, const char *s)
1347 {
1348 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1349 				      gp_seq_req, rnp->level,
1350 				      rnp->grplo, rnp->grphi, s);
1351 }
1352 
1353 /*
1354  * rcu_start_this_gp - Request the start of a particular grace period
1355  * @rnp_start: The leaf node of the CPU from which to start.
1356  * @rdp: The rcu_data corresponding to the CPU from which to start.
1357  * @gp_seq_req: The gp_seq of the grace period to start.
1358  *
1359  * Start the specified grace period, as needed to handle newly arrived
1360  * callbacks.  The required future grace periods are recorded in each
1361  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
1362  * is reason to awaken the grace-period kthread.
1363  *
1364  * The caller must hold the specified rcu_node structure's ->lock, which
1365  * is why the caller is responsible for waking the grace-period kthread.
1366  *
1367  * Returns true if the GP thread needs to be awakened else false.
1368  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)1369 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
1370 			      unsigned long gp_seq_req)
1371 {
1372 	bool ret = false;
1373 	struct rcu_node *rnp;
1374 
1375 	/*
1376 	 * Use funnel locking to either acquire the root rcu_node
1377 	 * structure's lock or bail out if the need for this grace period
1378 	 * has already been recorded -- or if that grace period has in
1379 	 * fact already started.  If there is already a grace period in
1380 	 * progress in a non-leaf node, no recording is needed because the
1381 	 * end of the grace period will scan the leaf rcu_node structures.
1382 	 * Note that rnp_start->lock must not be released.
1383 	 */
1384 	raw_lockdep_assert_held_rcu_node(rnp_start);
1385 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1386 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
1387 		if (rnp != rnp_start)
1388 			raw_spin_lock_rcu_node(rnp);
1389 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1390 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1391 		    (rnp != rnp_start &&
1392 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1393 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1394 					  TPS("Prestarted"));
1395 			goto unlock_out;
1396 		}
1397 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1398 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1399 			/*
1400 			 * We just marked the leaf or internal node, and a
1401 			 * grace period is in progress, which means that
1402 			 * rcu_gp_cleanup() will see the marking.  Bail to
1403 			 * reduce contention.
1404 			 */
1405 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1406 					  TPS("Startedleaf"));
1407 			goto unlock_out;
1408 		}
1409 		if (rnp != rnp_start && rnp->parent != NULL)
1410 			raw_spin_unlock_rcu_node(rnp);
1411 		if (!rnp->parent)
1412 			break;  /* At root, and perhaps also leaf. */
1413 	}
1414 
1415 	/* If GP already in progress, just leave, otherwise start one. */
1416 	if (rcu_gp_in_progress()) {
1417 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1418 		goto unlock_out;
1419 	}
1420 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1421 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1422 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1423 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1424 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1425 		goto unlock_out;
1426 	}
1427 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1428 	ret = true;  /* Caller must wake GP kthread. */
1429 unlock_out:
1430 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1431 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1432 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1433 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1434 	}
1435 	if (rnp != rnp_start)
1436 		raw_spin_unlock_rcu_node(rnp);
1437 	return ret;
1438 }
1439 
1440 /*
1441  * Clean up any old requests for the just-ended grace period.  Also return
1442  * whether any additional grace periods have been requested.
1443  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1444 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1445 {
1446 	bool needmore;
1447 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1448 
1449 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1450 	if (!needmore)
1451 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1452 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1453 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1454 	return needmore;
1455 }
1456 
1457 /*
1458  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1459  * interrupt or softirq handler, in which case we just might immediately
1460  * sleep upon return, resulting in a grace-period hang), and don't bother
1461  * awakening when there is nothing for the grace-period kthread to do
1462  * (as in several CPUs raced to awaken, we lost), and finally don't try
1463  * to awaken a kthread that has not yet been created.  If all those checks
1464  * are passed, track some debug information and awaken.
1465  *
1466  * So why do the self-wakeup when in an interrupt or softirq handler
1467  * in the grace-period kthread's context?  Because the kthread might have
1468  * been interrupted just as it was going to sleep, and just after the final
1469  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1470  * is required, and is therefore supplied.
1471  */
rcu_gp_kthread_wake(void)1472 static void rcu_gp_kthread_wake(void)
1473 {
1474 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1475 
1476 	if ((current == t && !in_irq() && !in_serving_softirq()) ||
1477 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1478 		return;
1479 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1480 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1481 	swake_up_one(&rcu_state.gp_wq);
1482 }
1483 
1484 /*
1485  * If there is room, assign a ->gp_seq number to any callbacks on this
1486  * CPU that have not already been assigned.  Also accelerate any callbacks
1487  * that were previously assigned a ->gp_seq number that has since proven
1488  * to be too conservative, which can happen if callbacks get assigned a
1489  * ->gp_seq number while RCU is idle, but with reference to a non-root
1490  * rcu_node structure.  This function is idempotent, so it does not hurt
1491  * to call it repeatedly.  Returns an flag saying that we should awaken
1492  * the RCU grace-period kthread.
1493  *
1494  * The caller must hold rnp->lock with interrupts disabled.
1495  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1496 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1497 {
1498 	unsigned long gp_seq_req;
1499 	bool ret = false;
1500 
1501 	rcu_lockdep_assert_cblist_protected(rdp);
1502 	raw_lockdep_assert_held_rcu_node(rnp);
1503 
1504 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1505 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1506 		return false;
1507 
1508 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1509 
1510 	/*
1511 	 * Callbacks are often registered with incomplete grace-period
1512 	 * information.  Something about the fact that getting exact
1513 	 * information requires acquiring a global lock...  RCU therefore
1514 	 * makes a conservative estimate of the grace period number at which
1515 	 * a given callback will become ready to invoke.	The following
1516 	 * code checks this estimate and improves it when possible, thus
1517 	 * accelerating callback invocation to an earlier grace-period
1518 	 * number.
1519 	 */
1520 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1521 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1522 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1523 
1524 	/* Trace depending on how much we were able to accelerate. */
1525 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1526 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1527 	else
1528 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1529 
1530 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1531 
1532 	return ret;
1533 }
1534 
1535 /*
1536  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1537  * rcu_node structure's ->lock be held.  It consults the cached value
1538  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1539  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1540  * while holding the leaf rcu_node structure's ->lock.
1541  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1542 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1543 					struct rcu_data *rdp)
1544 {
1545 	unsigned long c;
1546 	bool needwake;
1547 
1548 	rcu_lockdep_assert_cblist_protected(rdp);
1549 	c = rcu_seq_snap(&rcu_state.gp_seq);
1550 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1551 		/* Old request still live, so mark recent callbacks. */
1552 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1553 		return;
1554 	}
1555 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1556 	needwake = rcu_accelerate_cbs(rnp, rdp);
1557 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1558 	if (needwake)
1559 		rcu_gp_kthread_wake();
1560 }
1561 
1562 /*
1563  * Move any callbacks whose grace period has completed to the
1564  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1565  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1566  * sublist.  This function is idempotent, so it does not hurt to
1567  * invoke it repeatedly.  As long as it is not invoked -too- often...
1568  * Returns true if the RCU grace-period kthread needs to be awakened.
1569  *
1570  * The caller must hold rnp->lock with interrupts disabled.
1571  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1572 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1573 {
1574 	rcu_lockdep_assert_cblist_protected(rdp);
1575 	raw_lockdep_assert_held_rcu_node(rnp);
1576 
1577 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1578 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1579 		return false;
1580 
1581 	/*
1582 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1583 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1584 	 */
1585 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1586 
1587 	/* Classify any remaining callbacks. */
1588 	return rcu_accelerate_cbs(rnp, rdp);
1589 }
1590 
1591 /*
1592  * Move and classify callbacks, but only if doing so won't require
1593  * that the RCU grace-period kthread be awakened.
1594  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1595 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1596 						  struct rcu_data *rdp)
1597 {
1598 	rcu_lockdep_assert_cblist_protected(rdp);
1599 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1600 		return;
1601 	// The grace period cannot end while we hold the rcu_node lock.
1602 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1603 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1604 	raw_spin_unlock_rcu_node(rnp);
1605 }
1606 
1607 /*
1608  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1609  * quiescent state.  This is intended to be invoked when the CPU notices
1610  * a new grace period.
1611  */
rcu_strict_gp_check_qs(void)1612 static void rcu_strict_gp_check_qs(void)
1613 {
1614 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1615 		rcu_read_lock();
1616 		rcu_read_unlock();
1617 	}
1618 }
1619 
1620 /*
1621  * Update CPU-local rcu_data state to record the beginnings and ends of
1622  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1623  * structure corresponding to the current CPU, and must have irqs disabled.
1624  * Returns true if the grace-period kthread needs to be awakened.
1625  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1626 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1627 {
1628 	bool ret = false;
1629 	bool need_qs;
1630 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1631 
1632 	raw_lockdep_assert_held_rcu_node(rnp);
1633 
1634 	if (rdp->gp_seq == rnp->gp_seq)
1635 		return false; /* Nothing to do. */
1636 
1637 	/* Handle the ends of any preceding grace periods first. */
1638 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1639 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1640 		if (!offloaded)
1641 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1642 		rdp->core_needs_qs = false;
1643 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1644 	} else {
1645 		if (!offloaded)
1646 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1647 		if (rdp->core_needs_qs)
1648 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1649 	}
1650 
1651 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1652 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1653 	    unlikely(READ_ONCE(rdp->gpwrap))) {
1654 		/*
1655 		 * If the current grace period is waiting for this CPU,
1656 		 * set up to detect a quiescent state, otherwise don't
1657 		 * go looking for one.
1658 		 */
1659 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1660 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1661 		rdp->cpu_no_qs.b.norm = need_qs;
1662 		rdp->core_needs_qs = need_qs;
1663 		zero_cpu_stall_ticks(rdp);
1664 	}
1665 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1666 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1667 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1668 	WRITE_ONCE(rdp->gpwrap, false);
1669 	rcu_gpnum_ovf(rnp, rdp);
1670 	return ret;
1671 }
1672 
note_gp_changes(struct rcu_data * rdp)1673 static void note_gp_changes(struct rcu_data *rdp)
1674 {
1675 	unsigned long flags;
1676 	bool needwake;
1677 	struct rcu_node *rnp;
1678 
1679 	local_irq_save(flags);
1680 	rnp = rdp->mynode;
1681 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1682 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1683 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1684 		local_irq_restore(flags);
1685 		return;
1686 	}
1687 	needwake = __note_gp_changes(rnp, rdp);
1688 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1689 	rcu_strict_gp_check_qs();
1690 	if (needwake)
1691 		rcu_gp_kthread_wake();
1692 }
1693 
rcu_gp_slow(int delay)1694 static void rcu_gp_slow(int delay)
1695 {
1696 	if (delay > 0 &&
1697 	    !(rcu_seq_ctr(rcu_state.gp_seq) %
1698 	      (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1699 		schedule_timeout_idle(delay);
1700 }
1701 
1702 static unsigned long sleep_duration;
1703 
1704 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1705 void rcu_gp_set_torture_wait(int duration)
1706 {
1707 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1708 		WRITE_ONCE(sleep_duration, duration);
1709 }
1710 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1711 
1712 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1713 static void rcu_gp_torture_wait(void)
1714 {
1715 	unsigned long duration;
1716 
1717 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1718 		return;
1719 	duration = xchg(&sleep_duration, 0UL);
1720 	if (duration > 0) {
1721 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1722 		schedule_timeout_idle(duration);
1723 		pr_alert("%s: Wait complete\n", __func__);
1724 	}
1725 }
1726 
1727 /*
1728  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1729  * processing.
1730  */
rcu_strict_gp_boundary(void * unused)1731 static void rcu_strict_gp_boundary(void *unused)
1732 {
1733 	invoke_rcu_core();
1734 }
1735 
1736 /*
1737  * Initialize a new grace period.  Return false if no grace period required.
1738  */
rcu_gp_init(void)1739 static noinline_for_stack bool rcu_gp_init(void)
1740 {
1741 	unsigned long firstseq;
1742 	unsigned long flags;
1743 	unsigned long oldmask;
1744 	unsigned long mask;
1745 	struct rcu_data *rdp;
1746 	struct rcu_node *rnp = rcu_get_root();
1747 
1748 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1749 	raw_spin_lock_irq_rcu_node(rnp);
1750 	if (!READ_ONCE(rcu_state.gp_flags)) {
1751 		/* Spurious wakeup, tell caller to go back to sleep.  */
1752 		raw_spin_unlock_irq_rcu_node(rnp);
1753 		return false;
1754 	}
1755 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1756 
1757 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1758 		/*
1759 		 * Grace period already in progress, don't start another.
1760 		 * Not supposed to be able to happen.
1761 		 */
1762 		raw_spin_unlock_irq_rcu_node(rnp);
1763 		return false;
1764 	}
1765 
1766 	/* Advance to a new grace period and initialize state. */
1767 	record_gp_stall_check_time();
1768 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1769 	rcu_seq_start(&rcu_state.gp_seq);
1770 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1771 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1772 	raw_spin_unlock_irq_rcu_node(rnp);
1773 
1774 	/*
1775 	 * Apply per-leaf buffered online and offline operations to
1776 	 * the rcu_node tree. Note that this new grace period need not
1777 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1778 	 * offlining path, when combined with checks in this function,
1779 	 * will handle CPUs that are currently going offline or that will
1780 	 * go offline later.  Please also refer to "Hotplug CPU" section
1781 	 * of RCU's Requirements documentation.
1782 	 */
1783 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1784 	rcu_for_each_leaf_node(rnp) {
1785 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to odd values.
1786 		firstseq = READ_ONCE(rnp->ofl_seq);
1787 		if (firstseq & 0x1)
1788 			while (firstseq == READ_ONCE(rnp->ofl_seq))
1789 				schedule_timeout_idle(1);  // Can't wake unless RCU is watching.
1790 		smp_mb(); // Pair with barriers used when updating ->ofl_seq to even values.
1791 		raw_spin_lock(&rcu_state.ofl_lock);
1792 		raw_spin_lock_irq_rcu_node(rnp);
1793 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1794 		    !rnp->wait_blkd_tasks) {
1795 			/* Nothing to do on this leaf rcu_node structure. */
1796 			raw_spin_unlock_irq_rcu_node(rnp);
1797 			raw_spin_unlock(&rcu_state.ofl_lock);
1798 			continue;
1799 		}
1800 
1801 		/* Record old state, apply changes to ->qsmaskinit field. */
1802 		oldmask = rnp->qsmaskinit;
1803 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1804 
1805 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1806 		if (!oldmask != !rnp->qsmaskinit) {
1807 			if (!oldmask) { /* First online CPU for rcu_node. */
1808 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1809 					rcu_init_new_rnp(rnp);
1810 			} else if (rcu_preempt_has_tasks(rnp)) {
1811 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1812 			} else { /* Last offline CPU and can propagate. */
1813 				rcu_cleanup_dead_rnp(rnp);
1814 			}
1815 		}
1816 
1817 		/*
1818 		 * If all waited-on tasks from prior grace period are
1819 		 * done, and if all this rcu_node structure's CPUs are
1820 		 * still offline, propagate up the rcu_node tree and
1821 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1822 		 * rcu_node structure's CPUs has since come back online,
1823 		 * simply clear ->wait_blkd_tasks.
1824 		 */
1825 		if (rnp->wait_blkd_tasks &&
1826 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1827 			rnp->wait_blkd_tasks = false;
1828 			if (!rnp->qsmaskinit)
1829 				rcu_cleanup_dead_rnp(rnp);
1830 		}
1831 
1832 		raw_spin_unlock_irq_rcu_node(rnp);
1833 		raw_spin_unlock(&rcu_state.ofl_lock);
1834 	}
1835 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1836 
1837 	/*
1838 	 * Set the quiescent-state-needed bits in all the rcu_node
1839 	 * structures for all currently online CPUs in breadth-first
1840 	 * order, starting from the root rcu_node structure, relying on the
1841 	 * layout of the tree within the rcu_state.node[] array.  Note that
1842 	 * other CPUs will access only the leaves of the hierarchy, thus
1843 	 * seeing that no grace period is in progress, at least until the
1844 	 * corresponding leaf node has been initialized.
1845 	 *
1846 	 * The grace period cannot complete until the initialization
1847 	 * process finishes, because this kthread handles both.
1848 	 */
1849 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1850 	rcu_for_each_node_breadth_first(rnp) {
1851 		rcu_gp_slow(gp_init_delay);
1852 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1853 		rdp = this_cpu_ptr(&rcu_data);
1854 		rcu_preempt_check_blocked_tasks(rnp);
1855 		rnp->qsmask = rnp->qsmaskinit;
1856 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1857 		if (rnp == rdp->mynode)
1858 			(void)__note_gp_changes(rnp, rdp);
1859 		rcu_preempt_boost_start_gp(rnp);
1860 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1861 					    rnp->level, rnp->grplo,
1862 					    rnp->grphi, rnp->qsmask);
1863 		/* Quiescent states for tasks on any now-offline CPUs. */
1864 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1865 		rnp->rcu_gp_init_mask = mask;
1866 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1867 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1868 		else
1869 			raw_spin_unlock_irq_rcu_node(rnp);
1870 		cond_resched_tasks_rcu_qs();
1871 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1872 	}
1873 
1874 	// If strict, make all CPUs aware of new grace period.
1875 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1876 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1877 
1878 	return true;
1879 }
1880 
1881 /*
1882  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1883  * time.
1884  */
rcu_gp_fqs_check_wake(int * gfp)1885 static bool rcu_gp_fqs_check_wake(int *gfp)
1886 {
1887 	struct rcu_node *rnp = rcu_get_root();
1888 
1889 	// If under overload conditions, force an immediate FQS scan.
1890 	if (*gfp & RCU_GP_FLAG_OVLD)
1891 		return true;
1892 
1893 	// Someone like call_rcu() requested a force-quiescent-state scan.
1894 	*gfp = READ_ONCE(rcu_state.gp_flags);
1895 	if (*gfp & RCU_GP_FLAG_FQS)
1896 		return true;
1897 
1898 	// The current grace period has completed.
1899 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1900 		return true;
1901 
1902 	return false;
1903 }
1904 
1905 /*
1906  * Do one round of quiescent-state forcing.
1907  */
rcu_gp_fqs(bool first_time)1908 static void rcu_gp_fqs(bool first_time)
1909 {
1910 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1911 	struct rcu_node *rnp = rcu_get_root();
1912 
1913 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1914 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1915 
1916 	WARN_ON_ONCE(nr_fqs > 3);
1917 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1918 	if (nr_fqs) {
1919 		if (nr_fqs == 1) {
1920 			WRITE_ONCE(rcu_state.jiffies_stall,
1921 				   jiffies + rcu_jiffies_till_stall_check());
1922 		}
1923 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1924 	}
1925 
1926 	if (first_time) {
1927 		/* Collect dyntick-idle snapshots. */
1928 		force_qs_rnp(dyntick_save_progress_counter);
1929 	} else {
1930 		/* Handle dyntick-idle and offline CPUs. */
1931 		force_qs_rnp(rcu_implicit_dynticks_qs);
1932 	}
1933 	/* Clear flag to prevent immediate re-entry. */
1934 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1935 		raw_spin_lock_irq_rcu_node(rnp);
1936 		WRITE_ONCE(rcu_state.gp_flags,
1937 			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1938 		raw_spin_unlock_irq_rcu_node(rnp);
1939 	}
1940 }
1941 
1942 /*
1943  * Loop doing repeated quiescent-state forcing until the grace period ends.
1944  */
rcu_gp_fqs_loop(void)1945 static noinline_for_stack void rcu_gp_fqs_loop(void)
1946 {
1947 	bool first_gp_fqs;
1948 	int gf = 0;
1949 	unsigned long j;
1950 	int ret;
1951 	struct rcu_node *rnp = rcu_get_root();
1952 
1953 	first_gp_fqs = true;
1954 	j = READ_ONCE(jiffies_till_first_fqs);
1955 	if (rcu_state.cbovld)
1956 		gf = RCU_GP_FLAG_OVLD;
1957 	ret = 0;
1958 	for (;;) {
1959 		if (!ret) {
1960 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1961 			/*
1962 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1963 			 * update; required for stall checks.
1964 			 */
1965 			smp_wmb();
1966 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1967 				   jiffies + (j ? 3 * j : 2));
1968 		}
1969 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1970 				       TPS("fqswait"));
1971 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1972 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1973 				 rcu_gp_fqs_check_wake(&gf), j);
1974 		rcu_gp_torture_wait();
1975 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1976 		/* Locking provides needed memory barriers. */
1977 		/* If grace period done, leave loop. */
1978 		if (!READ_ONCE(rnp->qsmask) &&
1979 		    !rcu_preempt_blocked_readers_cgp(rnp))
1980 			break;
1981 		/* If time for quiescent-state forcing, do it. */
1982 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1983 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1984 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1985 					       TPS("fqsstart"));
1986 			rcu_gp_fqs(first_gp_fqs);
1987 			gf = 0;
1988 			if (first_gp_fqs) {
1989 				first_gp_fqs = false;
1990 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1991 			}
1992 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1993 					       TPS("fqsend"));
1994 			cond_resched_tasks_rcu_qs();
1995 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1996 			ret = 0; /* Force full wait till next FQS. */
1997 			j = READ_ONCE(jiffies_till_next_fqs);
1998 		} else {
1999 			/* Deal with stray signal. */
2000 			cond_resched_tasks_rcu_qs();
2001 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2002 			WARN_ON(signal_pending(current));
2003 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2004 					       TPS("fqswaitsig"));
2005 			ret = 1; /* Keep old FQS timing. */
2006 			j = jiffies;
2007 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2008 				j = 1;
2009 			else
2010 				j = rcu_state.jiffies_force_qs - j;
2011 			gf = 0;
2012 		}
2013 	}
2014 }
2015 
2016 /*
2017  * Clean up after the old grace period.
2018  */
rcu_gp_cleanup(void)2019 static noinline void rcu_gp_cleanup(void)
2020 {
2021 	int cpu;
2022 	bool needgp = false;
2023 	unsigned long gp_duration;
2024 	unsigned long new_gp_seq;
2025 	bool offloaded;
2026 	struct rcu_data *rdp;
2027 	struct rcu_node *rnp = rcu_get_root();
2028 	struct swait_queue_head *sq;
2029 
2030 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2031 	raw_spin_lock_irq_rcu_node(rnp);
2032 	rcu_state.gp_end = jiffies;
2033 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2034 	if (gp_duration > rcu_state.gp_max)
2035 		rcu_state.gp_max = gp_duration;
2036 
2037 	/*
2038 	 * We know the grace period is complete, but to everyone else
2039 	 * it appears to still be ongoing.  But it is also the case
2040 	 * that to everyone else it looks like there is nothing that
2041 	 * they can do to advance the grace period.  It is therefore
2042 	 * safe for us to drop the lock in order to mark the grace
2043 	 * period as completed in all of the rcu_node structures.
2044 	 */
2045 	raw_spin_unlock_irq_rcu_node(rnp);
2046 
2047 	/*
2048 	 * Propagate new ->gp_seq value to rcu_node structures so that
2049 	 * other CPUs don't have to wait until the start of the next grace
2050 	 * period to process their callbacks.  This also avoids some nasty
2051 	 * RCU grace-period initialization races by forcing the end of
2052 	 * the current grace period to be completely recorded in all of
2053 	 * the rcu_node structures before the beginning of the next grace
2054 	 * period is recorded in any of the rcu_node structures.
2055 	 */
2056 	new_gp_seq = rcu_state.gp_seq;
2057 	rcu_seq_end(&new_gp_seq);
2058 	rcu_for_each_node_breadth_first(rnp) {
2059 		raw_spin_lock_irq_rcu_node(rnp);
2060 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2061 			dump_blkd_tasks(rnp, 10);
2062 		WARN_ON_ONCE(rnp->qsmask);
2063 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2064 		rdp = this_cpu_ptr(&rcu_data);
2065 		if (rnp == rdp->mynode)
2066 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2067 		/* smp_mb() provided by prior unlock-lock pair. */
2068 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2069 		// Reset overload indication for CPUs no longer overloaded
2070 		if (rcu_is_leaf_node(rnp))
2071 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2072 				rdp = per_cpu_ptr(&rcu_data, cpu);
2073 				check_cb_ovld_locked(rdp, rnp);
2074 			}
2075 		sq = rcu_nocb_gp_get(rnp);
2076 		raw_spin_unlock_irq_rcu_node(rnp);
2077 		rcu_nocb_gp_cleanup(sq);
2078 		cond_resched_tasks_rcu_qs();
2079 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2080 		rcu_gp_slow(gp_cleanup_delay);
2081 	}
2082 	rnp = rcu_get_root();
2083 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2084 
2085 	/* Declare grace period done, trace first to use old GP number. */
2086 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2087 	rcu_seq_end(&rcu_state.gp_seq);
2088 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2089 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2090 	/* Check for GP requests since above loop. */
2091 	rdp = this_cpu_ptr(&rcu_data);
2092 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2093 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2094 				  TPS("CleanupMore"));
2095 		needgp = true;
2096 	}
2097 	/* Advance CBs to reduce false positives below. */
2098 	offloaded = rcu_rdp_is_offloaded(rdp);
2099 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2100 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2101 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2102 		trace_rcu_grace_period(rcu_state.name,
2103 				       rcu_state.gp_seq,
2104 				       TPS("newreq"));
2105 	} else {
2106 		WRITE_ONCE(rcu_state.gp_flags,
2107 			   rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2108 	}
2109 	raw_spin_unlock_irq_rcu_node(rnp);
2110 
2111 	// If strict, make all CPUs aware of the end of the old grace period.
2112 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2113 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2114 }
2115 
2116 /*
2117  * Body of kthread that handles grace periods.
2118  */
rcu_gp_kthread(void * unused)2119 static int __noreturn rcu_gp_kthread(void *unused)
2120 {
2121 	rcu_bind_gp_kthread();
2122 	for (;;) {
2123 
2124 		/* Handle grace-period start. */
2125 		for (;;) {
2126 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2127 					       TPS("reqwait"));
2128 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2129 			swait_event_idle_exclusive(rcu_state.gp_wq,
2130 					 READ_ONCE(rcu_state.gp_flags) &
2131 					 RCU_GP_FLAG_INIT);
2132 			rcu_gp_torture_wait();
2133 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2134 			/* Locking provides needed memory barrier. */
2135 			if (rcu_gp_init())
2136 				break;
2137 			cond_resched_tasks_rcu_qs();
2138 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2139 			WARN_ON(signal_pending(current));
2140 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2141 					       TPS("reqwaitsig"));
2142 		}
2143 
2144 		/* Handle quiescent-state forcing. */
2145 		rcu_gp_fqs_loop();
2146 
2147 		/* Handle grace-period end. */
2148 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2149 		rcu_gp_cleanup();
2150 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2151 	}
2152 }
2153 
2154 /*
2155  * Report a full set of quiescent states to the rcu_state data structure.
2156  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2157  * another grace period is required.  Whether we wake the grace-period
2158  * kthread or it awakens itself for the next round of quiescent-state
2159  * forcing, that kthread will clean up after the just-completed grace
2160  * period.  Note that the caller must hold rnp->lock, which is released
2161  * before return.
2162  */
rcu_report_qs_rsp(unsigned long flags)2163 static void rcu_report_qs_rsp(unsigned long flags)
2164 	__releases(rcu_get_root()->lock)
2165 {
2166 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2167 	WARN_ON_ONCE(!rcu_gp_in_progress());
2168 	WRITE_ONCE(rcu_state.gp_flags,
2169 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2170 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2171 	rcu_gp_kthread_wake();
2172 }
2173 
2174 /*
2175  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2176  * Allows quiescent states for a group of CPUs to be reported at one go
2177  * to the specified rcu_node structure, though all the CPUs in the group
2178  * must be represented by the same rcu_node structure (which need not be a
2179  * leaf rcu_node structure, though it often will be).  The gps parameter
2180  * is the grace-period snapshot, which means that the quiescent states
2181  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2182  * must be held upon entry, and it is released before return.
2183  *
2184  * As a special case, if mask is zero, the bit-already-cleared check is
2185  * disabled.  This allows propagating quiescent state due to resumed tasks
2186  * during grace-period initialization.
2187  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2188 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2189 			      unsigned long gps, unsigned long flags)
2190 	__releases(rnp->lock)
2191 {
2192 	unsigned long oldmask = 0;
2193 	struct rcu_node *rnp_c;
2194 
2195 	raw_lockdep_assert_held_rcu_node(rnp);
2196 
2197 	/* Walk up the rcu_node hierarchy. */
2198 	for (;;) {
2199 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2200 
2201 			/*
2202 			 * Our bit has already been cleared, or the
2203 			 * relevant grace period is already over, so done.
2204 			 */
2205 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2206 			return;
2207 		}
2208 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2209 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2210 			     rcu_preempt_blocked_readers_cgp(rnp));
2211 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2212 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2213 						 mask, rnp->qsmask, rnp->level,
2214 						 rnp->grplo, rnp->grphi,
2215 						 !!rnp->gp_tasks);
2216 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2217 
2218 			/* Other bits still set at this level, so done. */
2219 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2220 			return;
2221 		}
2222 		rnp->completedqs = rnp->gp_seq;
2223 		mask = rnp->grpmask;
2224 		if (rnp->parent == NULL) {
2225 
2226 			/* No more levels.  Exit loop holding root lock. */
2227 
2228 			break;
2229 		}
2230 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2231 		rnp_c = rnp;
2232 		rnp = rnp->parent;
2233 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2234 		oldmask = READ_ONCE(rnp_c->qsmask);
2235 	}
2236 
2237 	/*
2238 	 * Get here if we are the last CPU to pass through a quiescent
2239 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2240 	 * to clean up and start the next grace period if one is needed.
2241 	 */
2242 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2243 }
2244 
2245 /*
2246  * Record a quiescent state for all tasks that were previously queued
2247  * on the specified rcu_node structure and that were blocking the current
2248  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2249  * irqs disabled, and this lock is released upon return, but irqs remain
2250  * disabled.
2251  */
2252 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2253 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2254 	__releases(rnp->lock)
2255 {
2256 	unsigned long gps;
2257 	unsigned long mask;
2258 	struct rcu_node *rnp_p;
2259 
2260 	raw_lockdep_assert_held_rcu_node(rnp);
2261 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2262 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2263 	    rnp->qsmask != 0) {
2264 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2265 		return;  /* Still need more quiescent states! */
2266 	}
2267 
2268 	rnp->completedqs = rnp->gp_seq;
2269 	rnp_p = rnp->parent;
2270 	if (rnp_p == NULL) {
2271 		/*
2272 		 * Only one rcu_node structure in the tree, so don't
2273 		 * try to report up to its nonexistent parent!
2274 		 */
2275 		rcu_report_qs_rsp(flags);
2276 		return;
2277 	}
2278 
2279 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2280 	gps = rnp->gp_seq;
2281 	mask = rnp->grpmask;
2282 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2283 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2284 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2285 }
2286 
2287 /*
2288  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2289  * structure.  This must be called from the specified CPU.
2290  */
2291 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2292 rcu_report_qs_rdp(struct rcu_data *rdp)
2293 {
2294 	unsigned long flags;
2295 	unsigned long mask;
2296 	bool needwake = false;
2297 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2298 	struct rcu_node *rnp;
2299 
2300 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2301 	rnp = rdp->mynode;
2302 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2303 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2304 	    rdp->gpwrap) {
2305 
2306 		/*
2307 		 * The grace period in which this quiescent state was
2308 		 * recorded has ended, so don't report it upwards.
2309 		 * We will instead need a new quiescent state that lies
2310 		 * within the current grace period.
2311 		 */
2312 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2313 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2314 		return;
2315 	}
2316 	mask = rdp->grpmask;
2317 	rdp->core_needs_qs = false;
2318 	if ((rnp->qsmask & mask) == 0) {
2319 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2320 	} else {
2321 		/*
2322 		 * This GP can't end until cpu checks in, so all of our
2323 		 * callbacks can be processed during the next GP.
2324 		 */
2325 		if (!offloaded)
2326 			needwake = rcu_accelerate_cbs(rnp, rdp);
2327 
2328 		rcu_disable_urgency_upon_qs(rdp);
2329 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2330 		/* ^^^ Released rnp->lock */
2331 		if (needwake)
2332 			rcu_gp_kthread_wake();
2333 	}
2334 }
2335 
2336 /*
2337  * Check to see if there is a new grace period of which this CPU
2338  * is not yet aware, and if so, set up local rcu_data state for it.
2339  * Otherwise, see if this CPU has just passed through its first
2340  * quiescent state for this grace period, and record that fact if so.
2341  */
2342 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2343 rcu_check_quiescent_state(struct rcu_data *rdp)
2344 {
2345 	/* Check for grace-period ends and beginnings. */
2346 	note_gp_changes(rdp);
2347 
2348 	/*
2349 	 * Does this CPU still need to do its part for current grace period?
2350 	 * If no, return and let the other CPUs do their part as well.
2351 	 */
2352 	if (!rdp->core_needs_qs)
2353 		return;
2354 
2355 	/*
2356 	 * Was there a quiescent state since the beginning of the grace
2357 	 * period? If no, then exit and wait for the next call.
2358 	 */
2359 	if (rdp->cpu_no_qs.b.norm)
2360 		return;
2361 
2362 	/*
2363 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2364 	 * judge of that).
2365 	 */
2366 	rcu_report_qs_rdp(rdp);
2367 }
2368 
2369 /*
2370  * Near the end of the offline process.  Trace the fact that this CPU
2371  * is going offline.
2372  */
rcutree_dying_cpu(unsigned int cpu)2373 int rcutree_dying_cpu(unsigned int cpu)
2374 {
2375 	bool blkd;
2376 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2377 	struct rcu_node *rnp = rdp->mynode;
2378 
2379 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2380 		return 0;
2381 
2382 	blkd = !!(rnp->qsmask & rdp->grpmask);
2383 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2384 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2385 	return 0;
2386 }
2387 
2388 /*
2389  * All CPUs for the specified rcu_node structure have gone offline,
2390  * and all tasks that were preempted within an RCU read-side critical
2391  * section while running on one of those CPUs have since exited their RCU
2392  * read-side critical section.  Some other CPU is reporting this fact with
2393  * the specified rcu_node structure's ->lock held and interrupts disabled.
2394  * This function therefore goes up the tree of rcu_node structures,
2395  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2396  * the leaf rcu_node structure's ->qsmaskinit field has already been
2397  * updated.
2398  *
2399  * This function does check that the specified rcu_node structure has
2400  * all CPUs offline and no blocked tasks, so it is OK to invoke it
2401  * prematurely.  That said, invoking it after the fact will cost you
2402  * a needless lock acquisition.  So once it has done its work, don't
2403  * invoke it again.
2404  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)2405 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2406 {
2407 	long mask;
2408 	struct rcu_node *rnp = rnp_leaf;
2409 
2410 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2411 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2412 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2413 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2414 		return;
2415 	for (;;) {
2416 		mask = rnp->grpmask;
2417 		rnp = rnp->parent;
2418 		if (!rnp)
2419 			break;
2420 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2421 		rnp->qsmaskinit &= ~mask;
2422 		/* Between grace periods, so better already be zero! */
2423 		WARN_ON_ONCE(rnp->qsmask);
2424 		if (rnp->qsmaskinit) {
2425 			raw_spin_unlock_rcu_node(rnp);
2426 			/* irqs remain disabled. */
2427 			return;
2428 		}
2429 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2430 	}
2431 }
2432 
2433 /*
2434  * The CPU has been completely removed, and some other CPU is reporting
2435  * this fact from process context.  Do the remainder of the cleanup.
2436  * There can only be one CPU hotplug operation at a time, so no need for
2437  * explicit locking.
2438  */
rcutree_dead_cpu(unsigned int cpu)2439 int rcutree_dead_cpu(unsigned int cpu)
2440 {
2441 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2442 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2443 
2444 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2445 		return 0;
2446 
2447 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2448 	/* Adjust any no-longer-needed kthreads. */
2449 	rcu_boost_kthread_setaffinity(rnp, -1);
2450 	// Stop-machine done, so allow nohz_full to disable tick.
2451 	tick_dep_clear(TICK_DEP_BIT_RCU);
2452 	return 0;
2453 }
2454 
2455 /*
2456  * Invoke any RCU callbacks that have made it to the end of their grace
2457  * period.  Throttle as specified by rdp->blimit.
2458  */
rcu_do_batch(struct rcu_data * rdp)2459 static void rcu_do_batch(struct rcu_data *rdp)
2460 {
2461 	int div;
2462 	bool __maybe_unused empty;
2463 	unsigned long flags;
2464 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
2465 	struct rcu_head *rhp;
2466 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2467 	long bl, count = 0;
2468 	long pending, tlimit = 0;
2469 
2470 	/* If no callbacks are ready, just return. */
2471 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2472 		trace_rcu_batch_start(rcu_state.name,
2473 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2474 		trace_rcu_batch_end(rcu_state.name, 0,
2475 				    !rcu_segcblist_empty(&rdp->cblist),
2476 				    need_resched(), is_idle_task(current),
2477 				    rcu_is_callbacks_kthread());
2478 		return;
2479 	}
2480 
2481 	/*
2482 	 * Extract the list of ready callbacks, disabling to prevent
2483 	 * races with call_rcu() from interrupt handlers.  Leave the
2484 	 * callback counts, as rcu_barrier() needs to be conservative.
2485 	 */
2486 	local_irq_save(flags);
2487 	rcu_nocb_lock(rdp);
2488 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2489 	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2490 	div = READ_ONCE(rcu_divisor);
2491 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2492 	bl = max(rdp->blimit, pending >> div);
2493 	if (in_serving_softirq() && unlikely(bl > 100)) {
2494 		long rrn = READ_ONCE(rcu_resched_ns);
2495 
2496 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2497 		tlimit = local_clock() + rrn;
2498 	}
2499 	trace_rcu_batch_start(rcu_state.name,
2500 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2501 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2502 	if (offloaded)
2503 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2504 
2505 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2506 	rcu_nocb_unlock_irqrestore(rdp, flags);
2507 
2508 	/* Invoke callbacks. */
2509 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2510 	rhp = rcu_cblist_dequeue(&rcl);
2511 
2512 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2513 		rcu_callback_t f;
2514 
2515 		count++;
2516 		debug_rcu_head_unqueue(rhp);
2517 
2518 		rcu_lock_acquire(&rcu_callback_map);
2519 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2520 
2521 		f = rhp->func;
2522 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2523 		f(rhp);
2524 
2525 		rcu_lock_release(&rcu_callback_map);
2526 
2527 		/*
2528 		 * Stop only if limit reached and CPU has something to do.
2529 		 */
2530 		if (in_serving_softirq()) {
2531 			if (count >= bl && (need_resched() ||
2532 					(!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2533 				break;
2534 
2535 			/*
2536 			 * Make sure we don't spend too much time here and deprive other
2537 			 * softirq vectors of CPU cycles.
2538 			 */
2539 			if (unlikely(tlimit)) {
2540 				/* only call local_clock() every 32 callbacks */
2541 				if (likely((count & 31) || local_clock() < tlimit))
2542 					continue;
2543 				/* Exceeded the time limit, so leave. */
2544 				break;
2545 			}
2546 		} else {
2547 			local_bh_enable();
2548 			lockdep_assert_irqs_enabled();
2549 			cond_resched_tasks_rcu_qs();
2550 			lockdep_assert_irqs_enabled();
2551 			local_bh_disable();
2552 		}
2553 	}
2554 
2555 	local_irq_save(flags);
2556 	rcu_nocb_lock(rdp);
2557 	rdp->n_cbs_invoked += count;
2558 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2559 			    is_idle_task(current), rcu_is_callbacks_kthread());
2560 
2561 	/* Update counts and requeue any remaining callbacks. */
2562 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2563 	rcu_segcblist_add_len(&rdp->cblist, -count);
2564 
2565 	/* Reinstate batch limit if we have worked down the excess. */
2566 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2567 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2568 		rdp->blimit = blimit;
2569 
2570 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2571 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2572 		rdp->qlen_last_fqs_check = 0;
2573 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2574 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2575 		rdp->qlen_last_fqs_check = count;
2576 
2577 	/*
2578 	 * The following usually indicates a double call_rcu().  To track
2579 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2580 	 */
2581 	empty = rcu_segcblist_empty(&rdp->cblist);
2582 	WARN_ON_ONCE(count == 0 && !empty);
2583 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2584 		     count != 0 && empty);
2585 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2586 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2587 
2588 	rcu_nocb_unlock_irqrestore(rdp, flags);
2589 
2590 	/* Re-invoke RCU core processing if there are callbacks remaining. */
2591 	if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
2592 		invoke_rcu_core();
2593 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2594 }
2595 
2596 /*
2597  * This function is invoked from each scheduling-clock interrupt,
2598  * and checks to see if this CPU is in a non-context-switch quiescent
2599  * state, for example, user mode or idle loop.  It also schedules RCU
2600  * core processing.  If the current grace period has gone on too long,
2601  * it will ask the scheduler to manufacture a context switch for the sole
2602  * purpose of providing the needed quiescent state.
2603  */
rcu_sched_clock_irq(int user)2604 void rcu_sched_clock_irq(int user)
2605 {
2606 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2607 	lockdep_assert_irqs_disabled();
2608 	raw_cpu_inc(rcu_data.ticks_this_gp);
2609 	/* The load-acquire pairs with the store-release setting to true. */
2610 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2611 		/* Idle and userspace execution already are quiescent states. */
2612 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2613 			set_tsk_need_resched(current);
2614 			set_preempt_need_resched();
2615 		}
2616 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2617 	}
2618 	rcu_flavor_sched_clock_irq(user);
2619 	if (rcu_pending(user))
2620 		invoke_rcu_core();
2621 	lockdep_assert_irqs_disabled();
2622 
2623 	trace_rcu_utilization(TPS("End scheduler-tick"));
2624 }
2625 
2626 /*
2627  * Scan the leaf rcu_node structures.  For each structure on which all
2628  * CPUs have reported a quiescent state and on which there are tasks
2629  * blocking the current grace period, initiate RCU priority boosting.
2630  * Otherwise, invoke the specified function to check dyntick state for
2631  * each CPU that has not yet reported a quiescent state.
2632  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2633 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2634 {
2635 	int cpu;
2636 	unsigned long flags;
2637 	unsigned long mask;
2638 	struct rcu_data *rdp;
2639 	struct rcu_node *rnp;
2640 
2641 	rcu_state.cbovld = rcu_state.cbovldnext;
2642 	rcu_state.cbovldnext = false;
2643 	rcu_for_each_leaf_node(rnp) {
2644 		cond_resched_tasks_rcu_qs();
2645 		mask = 0;
2646 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2647 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2648 		if (rnp->qsmask == 0) {
2649 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2650 				/*
2651 				 * No point in scanning bits because they
2652 				 * are all zero.  But we might need to
2653 				 * priority-boost blocked readers.
2654 				 */
2655 				rcu_initiate_boost(rnp, flags);
2656 				/* rcu_initiate_boost() releases rnp->lock */
2657 				continue;
2658 			}
2659 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2660 			continue;
2661 		}
2662 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2663 			rdp = per_cpu_ptr(&rcu_data, cpu);
2664 			if (f(rdp)) {
2665 				mask |= rdp->grpmask;
2666 				rcu_disable_urgency_upon_qs(rdp);
2667 			}
2668 		}
2669 		if (mask != 0) {
2670 			/* Idle/offline CPUs, report (releases rnp->lock). */
2671 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2672 		} else {
2673 			/* Nothing to do here, so just drop the lock. */
2674 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2675 		}
2676 	}
2677 }
2678 
2679 /*
2680  * Force quiescent states on reluctant CPUs, and also detect which
2681  * CPUs are in dyntick-idle mode.
2682  */
rcu_force_quiescent_state(void)2683 void rcu_force_quiescent_state(void)
2684 {
2685 	unsigned long flags;
2686 	bool ret;
2687 	struct rcu_node *rnp;
2688 	struct rcu_node *rnp_old = NULL;
2689 
2690 	/* Funnel through hierarchy to reduce memory contention. */
2691 	rnp = raw_cpu_read(rcu_data.mynode);
2692 	for (; rnp != NULL; rnp = rnp->parent) {
2693 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2694 		       !raw_spin_trylock(&rnp->fqslock);
2695 		if (rnp_old != NULL)
2696 			raw_spin_unlock(&rnp_old->fqslock);
2697 		if (ret)
2698 			return;
2699 		rnp_old = rnp;
2700 	}
2701 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2702 
2703 	/* Reached the root of the rcu_node tree, acquire lock. */
2704 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2705 	raw_spin_unlock(&rnp_old->fqslock);
2706 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2707 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2708 		return;  /* Someone beat us to it. */
2709 	}
2710 	WRITE_ONCE(rcu_state.gp_flags,
2711 		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2712 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2713 	rcu_gp_kthread_wake();
2714 }
2715 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2716 
2717 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2718 // grace periods.
strict_work_handler(struct work_struct * work)2719 static void strict_work_handler(struct work_struct *work)
2720 {
2721 	rcu_read_lock();
2722 	rcu_read_unlock();
2723 }
2724 
2725 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2726 static __latent_entropy void rcu_core(void)
2727 {
2728 	unsigned long flags;
2729 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2730 	struct rcu_node *rnp = rdp->mynode;
2731 	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2732 
2733 	if (cpu_is_offline(smp_processor_id()))
2734 		return;
2735 	trace_rcu_utilization(TPS("Start RCU core"));
2736 	WARN_ON_ONCE(!rdp->beenonline);
2737 
2738 	/* Report any deferred quiescent states if preemption enabled. */
2739 	if (!(preempt_count() & PREEMPT_MASK)) {
2740 		rcu_preempt_deferred_qs(current);
2741 	} else if (rcu_preempt_need_deferred_qs(current)) {
2742 		set_tsk_need_resched(current);
2743 		set_preempt_need_resched();
2744 	}
2745 
2746 	/* Update RCU state based on any recent quiescent states. */
2747 	rcu_check_quiescent_state(rdp);
2748 
2749 	/* No grace period and unregistered callbacks? */
2750 	if (!rcu_gp_in_progress() &&
2751 	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2752 		rcu_nocb_lock_irqsave(rdp, flags);
2753 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2754 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2755 		rcu_nocb_unlock_irqrestore(rdp, flags);
2756 	}
2757 
2758 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2759 
2760 	/* If there are callbacks ready, invoke them. */
2761 	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2762 	    likely(READ_ONCE(rcu_scheduler_fully_active)))
2763 		rcu_do_batch(rdp);
2764 
2765 	/* Do any needed deferred wakeups of rcuo kthreads. */
2766 	do_nocb_deferred_wakeup(rdp);
2767 	trace_rcu_utilization(TPS("End RCU core"));
2768 
2769 	// If strict GPs, schedule an RCU reader in a clean environment.
2770 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2771 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2772 }
2773 
rcu_core_si(struct softirq_action * h)2774 static void rcu_core_si(struct softirq_action *h)
2775 {
2776 	rcu_core();
2777 }
2778 
rcu_wake_cond(struct task_struct * t,int status)2779 static void rcu_wake_cond(struct task_struct *t, int status)
2780 {
2781 	/*
2782 	 * If the thread is yielding, only wake it when this
2783 	 * is invoked from idle
2784 	 */
2785 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2786 		wake_up_process(t);
2787 }
2788 
invoke_rcu_core_kthread(void)2789 static void invoke_rcu_core_kthread(void)
2790 {
2791 	struct task_struct *t;
2792 	unsigned long flags;
2793 
2794 	local_irq_save(flags);
2795 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2796 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2797 	if (t != NULL && t != current)
2798 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2799 	local_irq_restore(flags);
2800 }
2801 
2802 /*
2803  * Wake up this CPU's rcuc kthread to do RCU core processing.
2804  */
invoke_rcu_core(void)2805 static void invoke_rcu_core(void)
2806 {
2807 	if (!cpu_online(smp_processor_id()))
2808 		return;
2809 	if (use_softirq)
2810 		raise_softirq(RCU_SOFTIRQ);
2811 	else
2812 		invoke_rcu_core_kthread();
2813 }
2814 
rcu_cpu_kthread_park(unsigned int cpu)2815 static void rcu_cpu_kthread_park(unsigned int cpu)
2816 {
2817 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2818 }
2819 
rcu_cpu_kthread_should_run(unsigned int cpu)2820 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2821 {
2822 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2823 }
2824 
2825 /*
2826  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2827  * the RCU softirq used in configurations of RCU that do not support RCU
2828  * priority boosting.
2829  */
rcu_cpu_kthread(unsigned int cpu)2830 static void rcu_cpu_kthread(unsigned int cpu)
2831 {
2832 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2833 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2834 	int spincnt;
2835 
2836 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2837 	for (spincnt = 0; spincnt < 10; spincnt++) {
2838 		local_bh_disable();
2839 		*statusp = RCU_KTHREAD_RUNNING;
2840 		local_irq_disable();
2841 		work = *workp;
2842 		*workp = 0;
2843 		local_irq_enable();
2844 		if (work)
2845 			rcu_core();
2846 		local_bh_enable();
2847 		if (*workp == 0) {
2848 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2849 			*statusp = RCU_KTHREAD_WAITING;
2850 			return;
2851 		}
2852 	}
2853 	*statusp = RCU_KTHREAD_YIELDING;
2854 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2855 	schedule_timeout_idle(2);
2856 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2857 	*statusp = RCU_KTHREAD_WAITING;
2858 }
2859 
2860 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2861 	.store			= &rcu_data.rcu_cpu_kthread_task,
2862 	.thread_should_run	= rcu_cpu_kthread_should_run,
2863 	.thread_fn		= rcu_cpu_kthread,
2864 	.thread_comm		= "rcuc/%u",
2865 	.setup			= rcu_cpu_kthread_setup,
2866 	.park			= rcu_cpu_kthread_park,
2867 };
2868 
2869 /*
2870  * Spawn per-CPU RCU core processing kthreads.
2871  */
rcu_spawn_core_kthreads(void)2872 static int __init rcu_spawn_core_kthreads(void)
2873 {
2874 	int cpu;
2875 
2876 	for_each_possible_cpu(cpu)
2877 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2878 	if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2879 		return 0;
2880 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2881 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2882 	return 0;
2883 }
2884 
2885 /*
2886  * Handle any core-RCU processing required by a call_rcu() invocation.
2887  */
__call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,unsigned long flags)2888 static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2889 			    unsigned long flags)
2890 {
2891 	/*
2892 	 * If called from an extended quiescent state, invoke the RCU
2893 	 * core in order to force a re-evaluation of RCU's idleness.
2894 	 */
2895 	if (!rcu_is_watching())
2896 		invoke_rcu_core();
2897 
2898 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2899 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2900 		return;
2901 
2902 	/*
2903 	 * Force the grace period if too many callbacks or too long waiting.
2904 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2905 	 * if some other CPU has recently done so.  Also, don't bother
2906 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2907 	 * is the only one waiting for a grace period to complete.
2908 	 */
2909 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2910 		     rdp->qlen_last_fqs_check + qhimark)) {
2911 
2912 		/* Are we ignoring a completed grace period? */
2913 		note_gp_changes(rdp);
2914 
2915 		/* Start a new grace period if one not already started. */
2916 		if (!rcu_gp_in_progress()) {
2917 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2918 		} else {
2919 			/* Give the grace period a kick. */
2920 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2921 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2922 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2923 				rcu_force_quiescent_state();
2924 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2925 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2926 		}
2927 	}
2928 }
2929 
2930 /*
2931  * RCU callback function to leak a callback.
2932  */
rcu_leak_callback(struct rcu_head * rhp)2933 static void rcu_leak_callback(struct rcu_head *rhp)
2934 {
2935 }
2936 
2937 /*
2938  * Check and if necessary update the leaf rcu_node structure's
2939  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2940  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2941  * structure's ->lock.
2942  */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)2943 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2944 {
2945 	raw_lockdep_assert_held_rcu_node(rnp);
2946 	if (qovld_calc <= 0)
2947 		return; // Early boot and wildcard value set.
2948 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2949 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2950 	else
2951 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2952 }
2953 
2954 /*
2955  * Check and if necessary update the leaf rcu_node structure's
2956  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2957  * number of queued RCU callbacks.  No locks need be held, but the
2958  * caller must have disabled interrupts.
2959  *
2960  * Note that this function ignores the possibility that there are a lot
2961  * of callbacks all of which have already seen the end of their respective
2962  * grace periods.  This omission is due to the need for no-CBs CPUs to
2963  * be holding ->nocb_lock to do this check, which is too heavy for a
2964  * common-case operation.
2965  */
check_cb_ovld(struct rcu_data * rdp)2966 static void check_cb_ovld(struct rcu_data *rdp)
2967 {
2968 	struct rcu_node *const rnp = rdp->mynode;
2969 
2970 	if (qovld_calc <= 0 ||
2971 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2972 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2973 		return; // Early boot wildcard value or already set correctly.
2974 	raw_spin_lock_rcu_node(rnp);
2975 	check_cb_ovld_locked(rdp, rnp);
2976 	raw_spin_unlock_rcu_node(rnp);
2977 }
2978 
2979 /* Helper function for call_rcu() and friends.  */
2980 static void
__call_rcu(struct rcu_head * head,rcu_callback_t func)2981 __call_rcu(struct rcu_head *head, rcu_callback_t func)
2982 {
2983 	static atomic_t doublefrees;
2984 	unsigned long flags;
2985 	struct rcu_data *rdp;
2986 	bool was_alldone;
2987 
2988 	/* Misaligned rcu_head! */
2989 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2990 
2991 	if (debug_rcu_head_queue(head)) {
2992 		/*
2993 		 * Probable double call_rcu(), so leak the callback.
2994 		 * Use rcu:rcu_callback trace event to find the previous
2995 		 * time callback was passed to __call_rcu().
2996 		 */
2997 		if (atomic_inc_return(&doublefrees) < 4) {
2998 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2999 			mem_dump_obj(head);
3000 		}
3001 		WRITE_ONCE(head->func, rcu_leak_callback);
3002 		return;
3003 	}
3004 	head->func = func;
3005 	head->next = NULL;
3006 	local_irq_save(flags);
3007 	kasan_record_aux_stack_noalloc(head);
3008 	rdp = this_cpu_ptr(&rcu_data);
3009 
3010 	/* Add the callback to our list. */
3011 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3012 		// This can trigger due to call_rcu() from offline CPU:
3013 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3014 		WARN_ON_ONCE(!rcu_is_watching());
3015 		// Very early boot, before rcu_init().  Initialize if needed
3016 		// and then drop through to queue the callback.
3017 		if (rcu_segcblist_empty(&rdp->cblist))
3018 			rcu_segcblist_init(&rdp->cblist);
3019 	}
3020 
3021 	check_cb_ovld(rdp);
3022 	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
3023 		return; // Enqueued onto ->nocb_bypass, so just leave.
3024 	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
3025 	rcu_segcblist_enqueue(&rdp->cblist, head);
3026 	if (__is_kvfree_rcu_offset((unsigned long)func))
3027 		trace_rcu_kvfree_callback(rcu_state.name, head,
3028 					 (unsigned long)func,
3029 					 rcu_segcblist_n_cbs(&rdp->cblist));
3030 	else
3031 		trace_rcu_callback(rcu_state.name, head,
3032 				   rcu_segcblist_n_cbs(&rdp->cblist));
3033 
3034 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
3035 
3036 	/* Go handle any RCU core processing required. */
3037 	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
3038 		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
3039 	} else {
3040 		__call_rcu_core(rdp, head, flags);
3041 		local_irq_restore(flags);
3042 	}
3043 }
3044 
3045 /**
3046  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3047  * @head: structure to be used for queueing the RCU updates.
3048  * @func: actual callback function to be invoked after the grace period
3049  *
3050  * The callback function will be invoked some time after a full grace
3051  * period elapses, in other words after all pre-existing RCU read-side
3052  * critical sections have completed.  However, the callback function
3053  * might well execute concurrently with RCU read-side critical sections
3054  * that started after call_rcu() was invoked.
3055  *
3056  * RCU read-side critical sections are delimited by rcu_read_lock()
3057  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3058  * v5.0 and later, regions of code across which interrupts, preemption,
3059  * or softirqs have been disabled also serve as RCU read-side critical
3060  * sections.  This includes hardware interrupt handlers, softirq handlers,
3061  * and NMI handlers.
3062  *
3063  * Note that all CPUs must agree that the grace period extended beyond
3064  * all pre-existing RCU read-side critical section.  On systems with more
3065  * than one CPU, this means that when "func()" is invoked, each CPU is
3066  * guaranteed to have executed a full memory barrier since the end of its
3067  * last RCU read-side critical section whose beginning preceded the call
3068  * to call_rcu().  It also means that each CPU executing an RCU read-side
3069  * critical section that continues beyond the start of "func()" must have
3070  * executed a memory barrier after the call_rcu() but before the beginning
3071  * of that RCU read-side critical section.  Note that these guarantees
3072  * include CPUs that are offline, idle, or executing in user mode, as
3073  * well as CPUs that are executing in the kernel.
3074  *
3075  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3076  * resulting RCU callback function "func()", then both CPU A and CPU B are
3077  * guaranteed to execute a full memory barrier during the time interval
3078  * between the call to call_rcu() and the invocation of "func()" -- even
3079  * if CPU A and CPU B are the same CPU (but again only if the system has
3080  * more than one CPU).
3081  *
3082  * Implementation of these memory-ordering guarantees is described here:
3083  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3084  */
call_rcu(struct rcu_head * head,rcu_callback_t func)3085 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3086 {
3087 	__call_rcu(head, func);
3088 }
3089 EXPORT_SYMBOL_GPL(call_rcu);
3090 
3091 
3092 /* Maximum number of jiffies to wait before draining a batch. */
3093 #define KFREE_DRAIN_JIFFIES (HZ / 50)
3094 #define KFREE_N_BATCHES 2
3095 #define FREE_N_CHANNELS 2
3096 
3097 /**
3098  * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3099  * @nr_records: Number of active pointers in the array
3100  * @next: Next bulk object in the block chain
3101  * @records: Array of the kvfree_rcu() pointers
3102  */
3103 struct kvfree_rcu_bulk_data {
3104 	unsigned long nr_records;
3105 	struct kvfree_rcu_bulk_data *next;
3106 	void *records[];
3107 };
3108 
3109 /*
3110  * This macro defines how many entries the "records" array
3111  * will contain. It is based on the fact that the size of
3112  * kvfree_rcu_bulk_data structure becomes exactly one page.
3113  */
3114 #define KVFREE_BULK_MAX_ENTR \
3115 	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3116 
3117 /**
3118  * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3119  * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3120  * @head_free: List of kfree_rcu() objects waiting for a grace period
3121  * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3122  * @krcp: Pointer to @kfree_rcu_cpu structure
3123  */
3124 
3125 struct kfree_rcu_cpu_work {
3126 	struct rcu_work rcu_work;
3127 	struct rcu_head *head_free;
3128 	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
3129 	struct kfree_rcu_cpu *krcp;
3130 };
3131 
3132 /**
3133  * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3134  * @head: List of kfree_rcu() objects not yet waiting for a grace period
3135  * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3136  * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3137  * @lock: Synchronize access to this structure
3138  * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3139  * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3140  * @initialized: The @rcu_work fields have been initialized
3141  * @count: Number of objects for which GP not started
3142  * @bkvcache:
3143  *	A simple cache list that contains objects for reuse purpose.
3144  *	In order to save some per-cpu space the list is singular.
3145  *	Even though it is lockless an access has to be protected by the
3146  *	per-cpu lock.
3147  * @page_cache_work: A work to refill the cache when it is empty
3148  * @backoff_page_cache_fill: Delay cache refills
3149  * @work_in_progress: Indicates that page_cache_work is running
3150  * @hrtimer: A hrtimer for scheduling a page_cache_work
3151  * @nr_bkv_objs: number of allocated objects at @bkvcache.
3152  *
3153  * This is a per-CPU structure.  The reason that it is not included in
3154  * the rcu_data structure is to permit this code to be extracted from
3155  * the RCU files.  Such extraction could allow further optimization of
3156  * the interactions with the slab allocators.
3157  */
3158 struct kfree_rcu_cpu {
3159 	struct rcu_head *head;
3160 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
3161 	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3162 	raw_spinlock_t lock;
3163 	struct delayed_work monitor_work;
3164 	bool monitor_todo;
3165 	bool initialized;
3166 	int count;
3167 
3168 	struct delayed_work page_cache_work;
3169 	atomic_t backoff_page_cache_fill;
3170 	atomic_t work_in_progress;
3171 	struct hrtimer hrtimer;
3172 
3173 	struct llist_head bkvcache;
3174 	int nr_bkv_objs;
3175 };
3176 
3177 static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3178 	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3179 };
3180 
3181 static __always_inline void
debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data * bhead)3182 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3183 {
3184 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3185 	int i;
3186 
3187 	for (i = 0; i < bhead->nr_records; i++)
3188 		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3189 #endif
3190 }
3191 
3192 static inline struct kfree_rcu_cpu *
krc_this_cpu_lock(unsigned long * flags)3193 krc_this_cpu_lock(unsigned long *flags)
3194 {
3195 	struct kfree_rcu_cpu *krcp;
3196 
3197 	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3198 	krcp = this_cpu_ptr(&krc);
3199 	raw_spin_lock(&krcp->lock);
3200 
3201 	return krcp;
3202 }
3203 
3204 static inline void
krc_this_cpu_unlock(struct kfree_rcu_cpu * krcp,unsigned long flags)3205 krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3206 {
3207 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3208 }
3209 
3210 static inline struct kvfree_rcu_bulk_data *
get_cached_bnode(struct kfree_rcu_cpu * krcp)3211 get_cached_bnode(struct kfree_rcu_cpu *krcp)
3212 {
3213 	if (!krcp->nr_bkv_objs)
3214 		return NULL;
3215 
3216 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3217 	return (struct kvfree_rcu_bulk_data *)
3218 		llist_del_first(&krcp->bkvcache);
3219 }
3220 
3221 static inline bool
put_cached_bnode(struct kfree_rcu_cpu * krcp,struct kvfree_rcu_bulk_data * bnode)3222 put_cached_bnode(struct kfree_rcu_cpu *krcp,
3223 	struct kvfree_rcu_bulk_data *bnode)
3224 {
3225 	// Check the limit.
3226 	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3227 		return false;
3228 
3229 	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3230 	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3231 	return true;
3232 }
3233 
3234 static int
drain_page_cache(struct kfree_rcu_cpu * krcp)3235 drain_page_cache(struct kfree_rcu_cpu *krcp)
3236 {
3237 	unsigned long flags;
3238 	struct llist_node *page_list, *pos, *n;
3239 	int freed = 0;
3240 
3241 	raw_spin_lock_irqsave(&krcp->lock, flags);
3242 	page_list = llist_del_all(&krcp->bkvcache);
3243 	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3244 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3245 
3246 	llist_for_each_safe(pos, n, page_list) {
3247 		free_page((unsigned long)pos);
3248 		freed++;
3249 	}
3250 
3251 	return freed;
3252 }
3253 
3254 /*
3255  * This function is invoked in workqueue context after a grace period.
3256  * It frees all the objects queued on ->bkvhead_free or ->head_free.
3257  */
kfree_rcu_work(struct work_struct * work)3258 static void kfree_rcu_work(struct work_struct *work)
3259 {
3260 	unsigned long flags;
3261 	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3262 	struct rcu_head *head, *next;
3263 	struct kfree_rcu_cpu *krcp;
3264 	struct kfree_rcu_cpu_work *krwp;
3265 	int i, j;
3266 
3267 	krwp = container_of(to_rcu_work(work),
3268 			    struct kfree_rcu_cpu_work, rcu_work);
3269 	krcp = krwp->krcp;
3270 
3271 	raw_spin_lock_irqsave(&krcp->lock, flags);
3272 	// Channels 1 and 2.
3273 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3274 		bkvhead[i] = krwp->bkvhead_free[i];
3275 		krwp->bkvhead_free[i] = NULL;
3276 	}
3277 
3278 	// Channel 3.
3279 	head = krwp->head_free;
3280 	krwp->head_free = NULL;
3281 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3282 
3283 	// Handle the first two channels.
3284 	for (i = 0; i < FREE_N_CHANNELS; i++) {
3285 		for (; bkvhead[i]; bkvhead[i] = bnext) {
3286 			bnext = bkvhead[i]->next;
3287 			debug_rcu_bhead_unqueue(bkvhead[i]);
3288 
3289 			rcu_lock_acquire(&rcu_callback_map);
3290 			if (i == 0) { // kmalloc() / kfree().
3291 				trace_rcu_invoke_kfree_bulk_callback(
3292 					rcu_state.name, bkvhead[i]->nr_records,
3293 					bkvhead[i]->records);
3294 
3295 				kfree_bulk(bkvhead[i]->nr_records,
3296 					bkvhead[i]->records);
3297 			} else { // vmalloc() / vfree().
3298 				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3299 					trace_rcu_invoke_kvfree_callback(
3300 						rcu_state.name,
3301 						bkvhead[i]->records[j], 0);
3302 
3303 					vfree(bkvhead[i]->records[j]);
3304 				}
3305 			}
3306 			rcu_lock_release(&rcu_callback_map);
3307 
3308 			raw_spin_lock_irqsave(&krcp->lock, flags);
3309 			if (put_cached_bnode(krcp, bkvhead[i]))
3310 				bkvhead[i] = NULL;
3311 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3312 
3313 			if (bkvhead[i])
3314 				free_page((unsigned long) bkvhead[i]);
3315 
3316 			cond_resched_tasks_rcu_qs();
3317 		}
3318 	}
3319 
3320 	/*
3321 	 * This is used when the "bulk" path can not be used for the
3322 	 * double-argument of kvfree_rcu().  This happens when the
3323 	 * page-cache is empty, which means that objects are instead
3324 	 * queued on a linked list through their rcu_head structures.
3325 	 * This list is named "Channel 3".
3326 	 */
3327 	for (; head; head = next) {
3328 		unsigned long offset = (unsigned long)head->func;
3329 		void *ptr = (void *)head - offset;
3330 
3331 		next = head->next;
3332 		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3333 		rcu_lock_acquire(&rcu_callback_map);
3334 		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3335 
3336 		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3337 			kvfree(ptr);
3338 
3339 		rcu_lock_release(&rcu_callback_map);
3340 		cond_resched_tasks_rcu_qs();
3341 	}
3342 }
3343 
3344 static bool
need_offload_krc(struct kfree_rcu_cpu * krcp)3345 need_offload_krc(struct kfree_rcu_cpu *krcp)
3346 {
3347 	int i;
3348 
3349 	for (i = 0; i < FREE_N_CHANNELS; i++)
3350 		if (krcp->bkvhead[i])
3351 			return true;
3352 
3353 	return !!krcp->head;
3354 }
3355 
3356 static bool
need_wait_for_krwp_work(struct kfree_rcu_cpu_work * krwp)3357 need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3358 {
3359 	int i;
3360 
3361 	for (i = 0; i < FREE_N_CHANNELS; i++)
3362 		if (krwp->bkvhead_free[i])
3363 			return true;
3364 
3365 	return !!krwp->head_free;
3366 }
3367 
3368 /*
3369  * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3370  */
kfree_rcu_monitor(struct work_struct * work)3371 static void kfree_rcu_monitor(struct work_struct *work)
3372 {
3373 	struct kfree_rcu_cpu *krcp = container_of(work,
3374 		struct kfree_rcu_cpu, monitor_work.work);
3375 	unsigned long flags;
3376 	int i, j;
3377 
3378 	raw_spin_lock_irqsave(&krcp->lock, flags);
3379 
3380 	// Attempt to start a new batch.
3381 	for (i = 0; i < KFREE_N_BATCHES; i++) {
3382 		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3383 
3384 		// Try to detach bulk_head or head and attach it, only when
3385 		// all channels are free.  Any channel is not free means at krwp
3386 		// there is on-going rcu work to handle krwp's free business.
3387 		if (need_wait_for_krwp_work(krwp))
3388 			continue;
3389 
3390 		if (need_offload_krc(krcp)) {
3391 			// Channel 1 corresponds to the SLAB-pointer bulk path.
3392 			// Channel 2 corresponds to vmalloc-pointer bulk path.
3393 			for (j = 0; j < FREE_N_CHANNELS; j++) {
3394 				if (!krwp->bkvhead_free[j]) {
3395 					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3396 					krcp->bkvhead[j] = NULL;
3397 				}
3398 			}
3399 
3400 			// Channel 3 corresponds to both SLAB and vmalloc
3401 			// objects queued on the linked list.
3402 			if (!krwp->head_free) {
3403 				krwp->head_free = krcp->head;
3404 				krcp->head = NULL;
3405 			}
3406 
3407 			WRITE_ONCE(krcp->count, 0);
3408 
3409 			// One work is per one batch, so there are three
3410 			// "free channels", the batch can handle. It can
3411 			// be that the work is in the pending state when
3412 			// channels have been detached following by each
3413 			// other.
3414 			queue_rcu_work(system_wq, &krwp->rcu_work);
3415 		}
3416 	}
3417 
3418 	// If there is nothing to detach, it means that our job is
3419 	// successfully done here. In case of having at least one
3420 	// of the channels that is still busy we should rearm the
3421 	// work to repeat an attempt. Because previous batches are
3422 	// still in progress.
3423 	if (!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head)
3424 		krcp->monitor_todo = false;
3425 	else
3426 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3427 
3428 	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3429 }
3430 
3431 static enum hrtimer_restart
schedule_page_work_fn(struct hrtimer * t)3432 schedule_page_work_fn(struct hrtimer *t)
3433 {
3434 	struct kfree_rcu_cpu *krcp =
3435 		container_of(t, struct kfree_rcu_cpu, hrtimer);
3436 
3437 	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3438 	return HRTIMER_NORESTART;
3439 }
3440 
fill_page_cache_func(struct work_struct * work)3441 static void fill_page_cache_func(struct work_struct *work)
3442 {
3443 	struct kvfree_rcu_bulk_data *bnode;
3444 	struct kfree_rcu_cpu *krcp =
3445 		container_of(work, struct kfree_rcu_cpu,
3446 			page_cache_work.work);
3447 	unsigned long flags;
3448 	int nr_pages;
3449 	bool pushed;
3450 	int i;
3451 
3452 	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3453 		1 : rcu_min_cached_objs;
3454 
3455 	for (i = 0; i < nr_pages; i++) {
3456 		bnode = (struct kvfree_rcu_bulk_data *)
3457 			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3458 
3459 		if (!bnode)
3460 			break;
3461 
3462 		raw_spin_lock_irqsave(&krcp->lock, flags);
3463 		pushed = put_cached_bnode(krcp, bnode);
3464 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3465 
3466 		if (!pushed) {
3467 			free_page((unsigned long) bnode);
3468 			break;
3469 		}
3470 	}
3471 
3472 	atomic_set(&krcp->work_in_progress, 0);
3473 	atomic_set(&krcp->backoff_page_cache_fill, 0);
3474 }
3475 
3476 static void
run_page_cache_worker(struct kfree_rcu_cpu * krcp)3477 run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3478 {
3479 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3480 			!atomic_xchg(&krcp->work_in_progress, 1)) {
3481 		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3482 			queue_delayed_work(system_wq,
3483 				&krcp->page_cache_work,
3484 					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3485 		} else {
3486 			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3487 			krcp->hrtimer.function = schedule_page_work_fn;
3488 			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3489 		}
3490 	}
3491 }
3492 
3493 // Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3494 // state specified by flags.  If can_alloc is true, the caller must
3495 // be schedulable and not be holding any locks or mutexes that might be
3496 // acquired by the memory allocator or anything that it might invoke.
3497 // Returns true if ptr was successfully recorded, else the caller must
3498 // use a fallback.
3499 static inline bool
add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu ** krcp,unsigned long * flags,void * ptr,bool can_alloc)3500 add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3501 	unsigned long *flags, void *ptr, bool can_alloc)
3502 {
3503 	struct kvfree_rcu_bulk_data *bnode;
3504 	int idx;
3505 
3506 	*krcp = krc_this_cpu_lock(flags);
3507 	if (unlikely(!(*krcp)->initialized))
3508 		return false;
3509 
3510 	idx = !!is_vmalloc_addr(ptr);
3511 
3512 	/* Check if a new block is required. */
3513 	if (!(*krcp)->bkvhead[idx] ||
3514 			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3515 		bnode = get_cached_bnode(*krcp);
3516 		if (!bnode && can_alloc) {
3517 			krc_this_cpu_unlock(*krcp, *flags);
3518 
3519 			// __GFP_NORETRY - allows a light-weight direct reclaim
3520 			// what is OK from minimizing of fallback hitting point of
3521 			// view. Apart of that it forbids any OOM invoking what is
3522 			// also beneficial since we are about to release memory soon.
3523 			//
3524 			// __GFP_NOMEMALLOC - prevents from consuming of all the
3525 			// memory reserves. Please note we have a fallback path.
3526 			//
3527 			// __GFP_NOWARN - it is supposed that an allocation can
3528 			// be failed under low memory or high memory pressure
3529 			// scenarios.
3530 			bnode = (struct kvfree_rcu_bulk_data *)
3531 				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3532 			*krcp = krc_this_cpu_lock(flags);
3533 		}
3534 
3535 		if (!bnode)
3536 			return false;
3537 
3538 		/* Initialize the new block. */
3539 		bnode->nr_records = 0;
3540 		bnode->next = (*krcp)->bkvhead[idx];
3541 
3542 		/* Attach it to the head. */
3543 		(*krcp)->bkvhead[idx] = bnode;
3544 	}
3545 
3546 	/* Finally insert. */
3547 	(*krcp)->bkvhead[idx]->records
3548 		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3549 
3550 	return true;
3551 }
3552 
3553 /*
3554  * Queue a request for lazy invocation of the appropriate free routine
3555  * after a grace period.  Please note that three paths are maintained,
3556  * two for the common case using arrays of pointers and a third one that
3557  * is used only when the main paths cannot be used, for example, due to
3558  * memory pressure.
3559  *
3560  * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3561  * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3562  * be free'd in workqueue context. This allows us to: batch requests together to
3563  * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3564  */
kvfree_call_rcu(struct rcu_head * head,rcu_callback_t func)3565 void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3566 {
3567 	unsigned long flags;
3568 	struct kfree_rcu_cpu *krcp;
3569 	bool success;
3570 	void *ptr;
3571 
3572 	if (head) {
3573 		ptr = (void *) head - (unsigned long) func;
3574 	} else {
3575 		/*
3576 		 * Please note there is a limitation for the head-less
3577 		 * variant, that is why there is a clear rule for such
3578 		 * objects: it can be used from might_sleep() context
3579 		 * only. For other places please embed an rcu_head to
3580 		 * your data.
3581 		 */
3582 		might_sleep();
3583 		ptr = (unsigned long *) func;
3584 	}
3585 
3586 	// Queue the object but don't yet schedule the batch.
3587 	if (debug_rcu_head_queue(ptr)) {
3588 		// Probable double kfree_rcu(), just leak.
3589 		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3590 			  __func__, head);
3591 
3592 		// Mark as success and leave.
3593 		return;
3594 	}
3595 
3596 	kasan_record_aux_stack_noalloc(ptr);
3597 	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3598 	if (!success) {
3599 		run_page_cache_worker(krcp);
3600 
3601 		if (head == NULL)
3602 			// Inline if kvfree_rcu(one_arg) call.
3603 			goto unlock_return;
3604 
3605 		head->func = func;
3606 		head->next = krcp->head;
3607 		krcp->head = head;
3608 		success = true;
3609 	}
3610 
3611 	WRITE_ONCE(krcp->count, krcp->count + 1);
3612 
3613 	/*
3614 	 * The kvfree_rcu() caller considers the pointer freed at this point
3615 	 * and likely removes any references to it. Since the actual slab
3616 	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3617 	 * this object (no scanning or false positives reporting).
3618 	 */
3619 	kmemleak_ignore(ptr);
3620 
3621 	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3622 	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3623 	    !krcp->monitor_todo) {
3624 		krcp->monitor_todo = true;
3625 		schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
3626 	}
3627 
3628 unlock_return:
3629 	krc_this_cpu_unlock(krcp, flags);
3630 
3631 	/*
3632 	 * Inline kvfree() after synchronize_rcu(). We can do
3633 	 * it from might_sleep() context only, so the current
3634 	 * CPU can pass the QS state.
3635 	 */
3636 	if (!success) {
3637 		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3638 		synchronize_rcu();
3639 		kvfree(ptr);
3640 	}
3641 }
3642 EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3643 
3644 static unsigned long
kfree_rcu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)3645 kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3646 {
3647 	int cpu;
3648 	unsigned long count = 0;
3649 
3650 	/* Snapshot count of all CPUs */
3651 	for_each_possible_cpu(cpu) {
3652 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3653 
3654 		count += READ_ONCE(krcp->count);
3655 		count += READ_ONCE(krcp->nr_bkv_objs);
3656 		atomic_set(&krcp->backoff_page_cache_fill, 1);
3657 	}
3658 
3659 	return count;
3660 }
3661 
3662 static unsigned long
kfree_rcu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)3663 kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3664 {
3665 	int cpu, freed = 0;
3666 
3667 	for_each_possible_cpu(cpu) {
3668 		int count;
3669 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3670 
3671 		count = krcp->count;
3672 		count += drain_page_cache(krcp);
3673 		kfree_rcu_monitor(&krcp->monitor_work.work);
3674 
3675 		sc->nr_to_scan -= count;
3676 		freed += count;
3677 
3678 		if (sc->nr_to_scan <= 0)
3679 			break;
3680 	}
3681 
3682 	return freed == 0 ? SHRINK_STOP : freed;
3683 }
3684 
3685 static struct shrinker kfree_rcu_shrinker = {
3686 	.count_objects = kfree_rcu_shrink_count,
3687 	.scan_objects = kfree_rcu_shrink_scan,
3688 	.batch = 0,
3689 	.seeks = DEFAULT_SEEKS,
3690 };
3691 
kfree_rcu_scheduler_running(void)3692 void __init kfree_rcu_scheduler_running(void)
3693 {
3694 	int cpu;
3695 	unsigned long flags;
3696 
3697 	for_each_possible_cpu(cpu) {
3698 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3699 
3700 		raw_spin_lock_irqsave(&krcp->lock, flags);
3701 		if ((!krcp->bkvhead[0] && !krcp->bkvhead[1] && !krcp->head) ||
3702 				krcp->monitor_todo) {
3703 			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3704 			continue;
3705 		}
3706 		krcp->monitor_todo = true;
3707 		schedule_delayed_work_on(cpu, &krcp->monitor_work,
3708 					 KFREE_DRAIN_JIFFIES);
3709 		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3710 	}
3711 }
3712 
3713 /*
3714  * During early boot, any blocking grace-period wait automatically
3715  * implies a grace period.  Later on, this is never the case for PREEMPTION.
3716  *
3717  * However, because a context switch is a grace period for !PREEMPTION, any
3718  * blocking grace-period wait automatically implies a grace period if
3719  * there is only one CPU online at any point time during execution of
3720  * either synchronize_rcu() or synchronize_rcu_expedited().  It is OK to
3721  * occasionally incorrectly indicate that there are multiple CPUs online
3722  * when there was in fact only one the whole time, as this just adds some
3723  * overhead: RCU still operates correctly.
3724  */
rcu_blocking_is_gp(void)3725 static int rcu_blocking_is_gp(void)
3726 {
3727 	int ret;
3728 
3729 	if (IS_ENABLED(CONFIG_PREEMPTION))
3730 		return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3731 	might_sleep();  /* Check for RCU read-side critical section. */
3732 	preempt_disable();
3733 	/*
3734 	 * If the rcu_state.n_online_cpus counter is equal to one,
3735 	 * there is only one CPU, and that CPU sees all prior accesses
3736 	 * made by any CPU that was online at the time of its access.
3737 	 * Furthermore, if this counter is equal to one, its value cannot
3738 	 * change until after the preempt_enable() below.
3739 	 *
3740 	 * Furthermore, if rcu_state.n_online_cpus is equal to one here,
3741 	 * all later CPUs (both this one and any that come online later
3742 	 * on) are guaranteed to see all accesses prior to this point
3743 	 * in the code, without the need for additional memory barriers.
3744 	 * Those memory barriers are provided by CPU-hotplug code.
3745 	 */
3746 	ret = READ_ONCE(rcu_state.n_online_cpus) <= 1;
3747 	preempt_enable();
3748 	return ret;
3749 }
3750 
3751 /**
3752  * synchronize_rcu - wait until a grace period has elapsed.
3753  *
3754  * Control will return to the caller some time after a full grace
3755  * period has elapsed, in other words after all currently executing RCU
3756  * read-side critical sections have completed.  Note, however, that
3757  * upon return from synchronize_rcu(), the caller might well be executing
3758  * concurrently with new RCU read-side critical sections that began while
3759  * synchronize_rcu() was waiting.
3760  *
3761  * RCU read-side critical sections are delimited by rcu_read_lock()
3762  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3763  * v5.0 and later, regions of code across which interrupts, preemption,
3764  * or softirqs have been disabled also serve as RCU read-side critical
3765  * sections.  This includes hardware interrupt handlers, softirq handlers,
3766  * and NMI handlers.
3767  *
3768  * Note that this guarantee implies further memory-ordering guarantees.
3769  * On systems with more than one CPU, when synchronize_rcu() returns,
3770  * each CPU is guaranteed to have executed a full memory barrier since
3771  * the end of its last RCU read-side critical section whose beginning
3772  * preceded the call to synchronize_rcu().  In addition, each CPU having
3773  * an RCU read-side critical section that extends beyond the return from
3774  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3775  * after the beginning of synchronize_rcu() and before the beginning of
3776  * that RCU read-side critical section.  Note that these guarantees include
3777  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3778  * that are executing in the kernel.
3779  *
3780  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3781  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3782  * to have executed a full memory barrier during the execution of
3783  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3784  * again only if the system has more than one CPU).
3785  *
3786  * Implementation of these memory-ordering guarantees is described here:
3787  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3788  */
synchronize_rcu(void)3789 void synchronize_rcu(void)
3790 {
3791 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3792 			 lock_is_held(&rcu_lock_map) ||
3793 			 lock_is_held(&rcu_sched_lock_map),
3794 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3795 	if (rcu_blocking_is_gp())
3796 		return;  // Context allows vacuous grace periods.
3797 	if (rcu_gp_is_expedited())
3798 		synchronize_rcu_expedited();
3799 	else
3800 		wait_rcu_gp(call_rcu);
3801 }
3802 EXPORT_SYMBOL_GPL(synchronize_rcu);
3803 
3804 /**
3805  * get_state_synchronize_rcu - Snapshot current RCU state
3806  *
3807  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3808  * or poll_state_synchronize_rcu() to determine whether or not a full
3809  * grace period has elapsed in the meantime.
3810  */
get_state_synchronize_rcu(void)3811 unsigned long get_state_synchronize_rcu(void)
3812 {
3813 	/*
3814 	 * Any prior manipulation of RCU-protected data must happen
3815 	 * before the load from ->gp_seq.
3816 	 */
3817 	smp_mb();  /* ^^^ */
3818 	return rcu_seq_snap(&rcu_state.gp_seq);
3819 }
3820 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3821 
3822 /**
3823  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3824  *
3825  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3826  * or poll_state_synchronize_rcu() to determine whether or not a full
3827  * grace period has elapsed in the meantime.  If the needed grace period
3828  * is not already slated to start, notifies RCU core of the need for that
3829  * grace period.
3830  *
3831  * Interrupts must be enabled for the case where it is necessary to awaken
3832  * the grace-period kthread.
3833  */
start_poll_synchronize_rcu(void)3834 unsigned long start_poll_synchronize_rcu(void)
3835 {
3836 	unsigned long flags;
3837 	unsigned long gp_seq = get_state_synchronize_rcu();
3838 	bool needwake;
3839 	struct rcu_data *rdp;
3840 	struct rcu_node *rnp;
3841 
3842 	lockdep_assert_irqs_enabled();
3843 	local_irq_save(flags);
3844 	rdp = this_cpu_ptr(&rcu_data);
3845 	rnp = rdp->mynode;
3846 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3847 	needwake = rcu_start_this_gp(rnp, rdp, gp_seq);
3848 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3849 	if (needwake)
3850 		rcu_gp_kthread_wake();
3851 	return gp_seq;
3852 }
3853 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3854 
3855 /**
3856  * poll_state_synchronize_rcu - Conditionally wait for an RCU grace period
3857  *
3858  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3859  *
3860  * If a full RCU grace period has elapsed since the earlier call from
3861  * which oldstate was obtained, return @true, otherwise return @false.
3862  * If @false is returned, it is the caller's responsibility to invoke this
3863  * function later on until it does return @true.  Alternatively, the caller
3864  * can explicitly wait for a grace period, for example, by passing @oldstate
3865  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3866  *
3867  * Yes, this function does not take counter wrap into account.
3868  * But counter wrap is harmless.  If the counter wraps, we have waited for
3869  * more than 2 billion grace periods (and way more on a 64-bit system!).
3870  * Those needing to keep oldstate values for very long time periods
3871  * (many hours even on 32-bit systems) should check them occasionally
3872  * and either refresh them or set a flag indicating that the grace period
3873  * has completed.
3874  *
3875  * This function provides the same memory-ordering guarantees that
3876  * would be provided by a synchronize_rcu() that was invoked at the call
3877  * to the function that provided @oldstate, and that returned at the end
3878  * of this function.
3879  */
poll_state_synchronize_rcu(unsigned long oldstate)3880 bool poll_state_synchronize_rcu(unsigned long oldstate)
3881 {
3882 	if (rcu_seq_done(&rcu_state.gp_seq, oldstate)) {
3883 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3884 		return true;
3885 	}
3886 	return false;
3887 }
3888 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3889 
3890 /**
3891  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3892  *
3893  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3894  *
3895  * If a full RCU grace period has elapsed since the earlier call to
3896  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3897  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3898  *
3899  * Yes, this function does not take counter wrap into account.  But
3900  * counter wrap is harmless.  If the counter wraps, we have waited for
3901  * more than 2 billion grace periods (and way more on a 64-bit system!),
3902  * so waiting for one additional grace period should be just fine.
3903  *
3904  * This function provides the same memory-ordering guarantees that
3905  * would be provided by a synchronize_rcu() that was invoked at the call
3906  * to the function that provided @oldstate, and that returned at the end
3907  * of this function.
3908  */
cond_synchronize_rcu(unsigned long oldstate)3909 void cond_synchronize_rcu(unsigned long oldstate)
3910 {
3911 	if (!poll_state_synchronize_rcu(oldstate))
3912 		synchronize_rcu();
3913 }
3914 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3915 
3916 /*
3917  * Check to see if there is any immediate RCU-related work to be done by
3918  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3919  * in order of increasing expense: checks that can be carried out against
3920  * CPU-local state are performed first.  However, we must check for CPU
3921  * stalls first, else we might not get a chance.
3922  */
rcu_pending(int user)3923 static int rcu_pending(int user)
3924 {
3925 	bool gp_in_progress;
3926 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3927 	struct rcu_node *rnp = rdp->mynode;
3928 
3929 	lockdep_assert_irqs_disabled();
3930 
3931 	/* Check for CPU stalls, if enabled. */
3932 	check_cpu_stall(rdp);
3933 
3934 	/* Does this CPU need a deferred NOCB wakeup? */
3935 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3936 		return 1;
3937 
3938 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3939 	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3940 		return 0;
3941 
3942 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3943 	gp_in_progress = rcu_gp_in_progress();
3944 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3945 		return 1;
3946 
3947 	/* Does this CPU have callbacks ready to invoke? */
3948 	if (!rcu_rdp_is_offloaded(rdp) &&
3949 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3950 		return 1;
3951 
3952 	/* Has RCU gone idle with this CPU needing another grace period? */
3953 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3954 	    !rcu_rdp_is_offloaded(rdp) &&
3955 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3956 		return 1;
3957 
3958 	/* Have RCU grace period completed or started?  */
3959 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3960 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3961 		return 1;
3962 
3963 	/* nothing to do */
3964 	return 0;
3965 }
3966 
3967 /*
3968  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3969  * the compiler is expected to optimize this away.
3970  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3971 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3972 {
3973 	trace_rcu_barrier(rcu_state.name, s, cpu,
3974 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3975 }
3976 
3977 /*
3978  * RCU callback function for rcu_barrier().  If we are last, wake
3979  * up the task executing rcu_barrier().
3980  *
3981  * Note that the value of rcu_state.barrier_sequence must be captured
3982  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3983  * other CPUs might count the value down to zero before this CPU gets
3984  * around to invoking rcu_barrier_trace(), which might result in bogus
3985  * data from the next instance of rcu_barrier().
3986  */
rcu_barrier_callback(struct rcu_head * rhp)3987 static void rcu_barrier_callback(struct rcu_head *rhp)
3988 {
3989 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3990 
3991 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3992 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3993 		complete(&rcu_state.barrier_completion);
3994 	} else {
3995 		rcu_barrier_trace(TPS("CB"), -1, s);
3996 	}
3997 }
3998 
3999 /*
4000  * Called with preemption disabled, and from cross-cpu IRQ context.
4001  */
rcu_barrier_func(void * cpu_in)4002 static void rcu_barrier_func(void *cpu_in)
4003 {
4004 	uintptr_t cpu = (uintptr_t)cpu_in;
4005 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4006 
4007 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4008 	rdp->barrier_head.func = rcu_barrier_callback;
4009 	debug_rcu_head_queue(&rdp->barrier_head);
4010 	rcu_nocb_lock(rdp);
4011 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
4012 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4013 		atomic_inc(&rcu_state.barrier_cpu_count);
4014 	} else {
4015 		debug_rcu_head_unqueue(&rdp->barrier_head);
4016 		rcu_barrier_trace(TPS("IRQNQ"), -1,
4017 				  rcu_state.barrier_sequence);
4018 	}
4019 	rcu_nocb_unlock(rdp);
4020 }
4021 
4022 /**
4023  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4024  *
4025  * Note that this primitive does not necessarily wait for an RCU grace period
4026  * to complete.  For example, if there are no RCU callbacks queued anywhere
4027  * in the system, then rcu_barrier() is within its rights to return
4028  * immediately, without waiting for anything, much less an RCU grace period.
4029  */
rcu_barrier(void)4030 void rcu_barrier(void)
4031 {
4032 	uintptr_t cpu;
4033 	struct rcu_data *rdp;
4034 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4035 
4036 	rcu_barrier_trace(TPS("Begin"), -1, s);
4037 
4038 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4039 	mutex_lock(&rcu_state.barrier_mutex);
4040 
4041 	/* Did someone else do our work for us? */
4042 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4043 		rcu_barrier_trace(TPS("EarlyExit"), -1,
4044 				  rcu_state.barrier_sequence);
4045 		smp_mb(); /* caller's subsequent code after above check. */
4046 		mutex_unlock(&rcu_state.barrier_mutex);
4047 		return;
4048 	}
4049 
4050 	/* Mark the start of the barrier operation. */
4051 	rcu_seq_start(&rcu_state.barrier_sequence);
4052 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4053 
4054 	/*
4055 	 * Initialize the count to two rather than to zero in order
4056 	 * to avoid a too-soon return to zero in case of an immediate
4057 	 * invocation of the just-enqueued callback (or preemption of
4058 	 * this task).  Exclude CPU-hotplug operations to ensure that no
4059 	 * offline non-offloaded CPU has callbacks queued.
4060 	 */
4061 	init_completion(&rcu_state.barrier_completion);
4062 	atomic_set(&rcu_state.barrier_cpu_count, 2);
4063 	cpus_read_lock();
4064 
4065 	/*
4066 	 * Force each CPU with callbacks to register a new callback.
4067 	 * When that callback is invoked, we will know that all of the
4068 	 * corresponding CPU's preceding callbacks have been invoked.
4069 	 */
4070 	for_each_possible_cpu(cpu) {
4071 		rdp = per_cpu_ptr(&rcu_data, cpu);
4072 		if (cpu_is_offline(cpu) &&
4073 		    !rcu_rdp_is_offloaded(rdp))
4074 			continue;
4075 		if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
4076 			rcu_barrier_trace(TPS("OnlineQ"), cpu,
4077 					  rcu_state.barrier_sequence);
4078 			smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
4079 		} else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
4080 			   cpu_is_offline(cpu)) {
4081 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
4082 					  rcu_state.barrier_sequence);
4083 			local_irq_disable();
4084 			rcu_barrier_func((void *)cpu);
4085 			local_irq_enable();
4086 		} else if (cpu_is_offline(cpu)) {
4087 			rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
4088 					  rcu_state.barrier_sequence);
4089 		} else {
4090 			rcu_barrier_trace(TPS("OnlineNQ"), cpu,
4091 					  rcu_state.barrier_sequence);
4092 		}
4093 	}
4094 	cpus_read_unlock();
4095 
4096 	/*
4097 	 * Now that we have an rcu_barrier_callback() callback on each
4098 	 * CPU, and thus each counted, remove the initial count.
4099 	 */
4100 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4101 		complete(&rcu_state.barrier_completion);
4102 
4103 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4104 	wait_for_completion(&rcu_state.barrier_completion);
4105 
4106 	/* Mark the end of the barrier operation. */
4107 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4108 	rcu_seq_end(&rcu_state.barrier_sequence);
4109 
4110 	/* Other rcu_barrier() invocations can now safely proceed. */
4111 	mutex_unlock(&rcu_state.barrier_mutex);
4112 }
4113 EXPORT_SYMBOL_GPL(rcu_barrier);
4114 
4115 /*
4116  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4117  * first CPU in a given leaf rcu_node structure coming online.  The caller
4118  * must hold the corresponding leaf rcu_node ->lock with interrupts
4119  * disabled.
4120  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4121 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4122 {
4123 	long mask;
4124 	long oldmask;
4125 	struct rcu_node *rnp = rnp_leaf;
4126 
4127 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4128 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4129 	for (;;) {
4130 		mask = rnp->grpmask;
4131 		rnp = rnp->parent;
4132 		if (rnp == NULL)
4133 			return;
4134 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4135 		oldmask = rnp->qsmaskinit;
4136 		rnp->qsmaskinit |= mask;
4137 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4138 		if (oldmask)
4139 			return;
4140 	}
4141 }
4142 
4143 /*
4144  * Do boot-time initialization of a CPU's per-CPU RCU data.
4145  */
4146 static void __init
rcu_boot_init_percpu_data(int cpu)4147 rcu_boot_init_percpu_data(int cpu)
4148 {
4149 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4150 
4151 	/* Set up local state, ensuring consistent view of global state. */
4152 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4153 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4154 	WARN_ON_ONCE(rdp->dynticks_nesting != 1);
4155 	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
4156 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4157 	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4158 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4159 	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4160 	rdp->cpu = cpu;
4161 	rcu_boot_init_nocb_percpu_data(rdp);
4162 }
4163 
4164 /*
4165  * Invoked early in the CPU-online process, when pretty much all services
4166  * are available.  The incoming CPU is not present.
4167  *
4168  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4169  * offline event can be happening at a given time.  Note also that we can
4170  * accept some slop in the rsp->gp_seq access due to the fact that this
4171  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4172  * And any offloaded callbacks are being numbered elsewhere.
4173  */
rcutree_prepare_cpu(unsigned int cpu)4174 int rcutree_prepare_cpu(unsigned int cpu)
4175 {
4176 	unsigned long flags;
4177 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4178 	struct rcu_node *rnp = rcu_get_root();
4179 
4180 	/* Set up local state, ensuring consistent view of global state. */
4181 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4182 	rdp->qlen_last_fqs_check = 0;
4183 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4184 	rdp->blimit = blimit;
4185 	rdp->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4186 	rcu_dynticks_eqs_online();
4187 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4188 
4189 	/*
4190 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4191 	 * (re-)initialized.
4192 	 */
4193 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4194 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4195 
4196 	/*
4197 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4198 	 * propagation up the rcu_node tree will happen at the beginning
4199 	 * of the next grace period.
4200 	 */
4201 	rnp = rdp->mynode;
4202 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4203 	rdp->beenonline = true;	 /* We have now been online. */
4204 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4205 	rdp->gp_seq_needed = rdp->gp_seq;
4206 	rdp->cpu_no_qs.b.norm = true;
4207 	rdp->core_needs_qs = false;
4208 	rdp->rcu_iw_pending = false;
4209 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4210 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4211 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4212 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4213 	rcu_spawn_one_boost_kthread(rnp);
4214 	rcu_spawn_cpu_nocb_kthread(cpu);
4215 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4216 
4217 	return 0;
4218 }
4219 
4220 /*
4221  * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4222  */
rcutree_affinity_setting(unsigned int cpu,int outgoing)4223 static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4224 {
4225 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4226 
4227 	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4228 }
4229 
4230 /*
4231  * Near the end of the CPU-online process.  Pretty much all services
4232  * enabled, and the CPU is now very much alive.
4233  */
rcutree_online_cpu(unsigned int cpu)4234 int rcutree_online_cpu(unsigned int cpu)
4235 {
4236 	unsigned long flags;
4237 	struct rcu_data *rdp;
4238 	struct rcu_node *rnp;
4239 
4240 	rdp = per_cpu_ptr(&rcu_data, cpu);
4241 	rnp = rdp->mynode;
4242 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4243 	rnp->ffmask |= rdp->grpmask;
4244 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4245 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4246 		return 0; /* Too early in boot for scheduler work. */
4247 	sync_sched_exp_online_cleanup(cpu);
4248 	rcutree_affinity_setting(cpu, -1);
4249 
4250 	// Stop-machine done, so allow nohz_full to disable tick.
4251 	tick_dep_clear(TICK_DEP_BIT_RCU);
4252 	return 0;
4253 }
4254 
4255 /*
4256  * Near the beginning of the process.  The CPU is still very much alive
4257  * with pretty much all services enabled.
4258  */
rcutree_offline_cpu(unsigned int cpu)4259 int rcutree_offline_cpu(unsigned int cpu)
4260 {
4261 	unsigned long flags;
4262 	struct rcu_data *rdp;
4263 	struct rcu_node *rnp;
4264 
4265 	rdp = per_cpu_ptr(&rcu_data, cpu);
4266 	rnp = rdp->mynode;
4267 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4268 	rnp->ffmask &= ~rdp->grpmask;
4269 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4270 
4271 	rcutree_affinity_setting(cpu, cpu);
4272 
4273 	// nohz_full CPUs need the tick for stop-machine to work quickly
4274 	tick_dep_set(TICK_DEP_BIT_RCU);
4275 	return 0;
4276 }
4277 
4278 /*
4279  * Mark the specified CPU as being online so that subsequent grace periods
4280  * (both expedited and normal) will wait on it.  Note that this means that
4281  * incoming CPUs are not allowed to use RCU read-side critical sections
4282  * until this function is called.  Failing to observe this restriction
4283  * will result in lockdep splats.
4284  *
4285  * Note that this function is special in that it is invoked directly
4286  * from the incoming CPU rather than from the cpuhp_step mechanism.
4287  * This is because this function must be invoked at a precise location.
4288  */
rcu_cpu_starting(unsigned int cpu)4289 void rcu_cpu_starting(unsigned int cpu)
4290 {
4291 	unsigned long flags;
4292 	unsigned long mask;
4293 	struct rcu_data *rdp;
4294 	struct rcu_node *rnp;
4295 	bool newcpu;
4296 
4297 	rdp = per_cpu_ptr(&rcu_data, cpu);
4298 	if (rdp->cpu_started)
4299 		return;
4300 	rdp->cpu_started = true;
4301 
4302 	rnp = rdp->mynode;
4303 	mask = rdp->grpmask;
4304 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4305 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4306 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4307 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4308 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4309 	newcpu = !(rnp->expmaskinitnext & mask);
4310 	rnp->expmaskinitnext |= mask;
4311 	/* Allow lockless access for expedited grace periods. */
4312 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4313 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4314 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4315 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4316 	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4317 
4318 	/* An incoming CPU should never be blocking a grace period. */
4319 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4320 		rcu_disable_urgency_upon_qs(rdp);
4321 		/* Report QS -after- changing ->qsmaskinitnext! */
4322 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4323 	} else {
4324 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4325 	}
4326 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4327 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4328 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4329 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4330 }
4331 
4332 /*
4333  * The outgoing function has no further need of RCU, so remove it from
4334  * the rcu_node tree's ->qsmaskinitnext bit masks.
4335  *
4336  * Note that this function is special in that it is invoked directly
4337  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4338  * This is because this function must be invoked at a precise location.
4339  */
rcu_report_dead(unsigned int cpu)4340 void rcu_report_dead(unsigned int cpu)
4341 {
4342 	unsigned long flags;
4343 	unsigned long mask;
4344 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4345 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4346 
4347 	// Do any dangling deferred wakeups.
4348 	do_nocb_deferred_wakeup(rdp);
4349 
4350 	/* QS for any half-done expedited grace period. */
4351 	preempt_disable();
4352 	rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
4353 	preempt_enable();
4354 	rcu_preempt_deferred_qs(current);
4355 
4356 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4357 	mask = rdp->grpmask;
4358 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4359 	WARN_ON_ONCE(!(rnp->ofl_seq & 0x1));
4360 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4361 	raw_spin_lock(&rcu_state.ofl_lock);
4362 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4363 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4364 	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4365 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4366 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4367 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4368 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4369 	}
4370 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4371 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4372 	raw_spin_unlock(&rcu_state.ofl_lock);
4373 	smp_mb(); // Pair with rcu_gp_cleanup()'s ->ofl_seq barrier().
4374 	WRITE_ONCE(rnp->ofl_seq, rnp->ofl_seq + 1);
4375 	WARN_ON_ONCE(rnp->ofl_seq & 0x1);
4376 
4377 	rdp->cpu_started = false;
4378 }
4379 
4380 #ifdef CONFIG_HOTPLUG_CPU
4381 /*
4382  * The outgoing CPU has just passed through the dying-idle state, and we
4383  * are being invoked from the CPU that was IPIed to continue the offline
4384  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4385  */
rcutree_migrate_callbacks(int cpu)4386 void rcutree_migrate_callbacks(int cpu)
4387 {
4388 	unsigned long flags;
4389 	struct rcu_data *my_rdp;
4390 	struct rcu_node *my_rnp;
4391 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4392 	bool needwake;
4393 
4394 	if (rcu_rdp_is_offloaded(rdp) ||
4395 	    rcu_segcblist_empty(&rdp->cblist))
4396 		return;  /* No callbacks to migrate. */
4397 
4398 	local_irq_save(flags);
4399 	my_rdp = this_cpu_ptr(&rcu_data);
4400 	my_rnp = my_rdp->mynode;
4401 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4402 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
4403 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4404 	/* Leverage recent GPs and set GP for new callbacks. */
4405 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4406 		   rcu_advance_cbs(my_rnp, my_rdp);
4407 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4408 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4409 	rcu_segcblist_disable(&rdp->cblist);
4410 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
4411 		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
4412 	if (rcu_rdp_is_offloaded(my_rdp)) {
4413 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4414 		__call_rcu_nocb_wake(my_rdp, true, flags);
4415 	} else {
4416 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4417 		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4418 	}
4419 	if (needwake)
4420 		rcu_gp_kthread_wake();
4421 	lockdep_assert_irqs_enabled();
4422 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4423 		  !rcu_segcblist_empty(&rdp->cblist),
4424 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4425 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4426 		  rcu_segcblist_first_cb(&rdp->cblist));
4427 }
4428 #endif
4429 
4430 /*
4431  * On non-huge systems, use expedited RCU grace periods to make suspend
4432  * and hibernation run faster.
4433  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4434 static int rcu_pm_notify(struct notifier_block *self,
4435 			 unsigned long action, void *hcpu)
4436 {
4437 	switch (action) {
4438 	case PM_HIBERNATION_PREPARE:
4439 	case PM_SUSPEND_PREPARE:
4440 		rcu_expedite_gp();
4441 		break;
4442 	case PM_POST_HIBERNATION:
4443 	case PM_POST_SUSPEND:
4444 		rcu_unexpedite_gp();
4445 		break;
4446 	default:
4447 		break;
4448 	}
4449 	return NOTIFY_OK;
4450 }
4451 
4452 #ifdef CONFIG_RCU_EXP_KTHREAD
4453 struct kthread_worker *rcu_exp_gp_kworker;
4454 struct kthread_worker *rcu_exp_par_gp_kworker;
4455 
rcu_start_exp_gp_kworkers(void)4456 static void __init rcu_start_exp_gp_kworkers(void)
4457 {
4458 	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4459 	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4460 	struct sched_param param = { .sched_priority = kthread_prio };
4461 
4462 	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4463 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4464 		pr_err("Failed to create %s!\n", gp_kworker_name);
4465 		return;
4466 	}
4467 
4468 	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4469 	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4470 		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4471 		kthread_destroy_worker(rcu_exp_gp_kworker);
4472 		return;
4473 	}
4474 
4475 	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4476 	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4477 				   &param);
4478 }
4479 
rcu_alloc_par_gp_wq(void)4480 static inline void rcu_alloc_par_gp_wq(void)
4481 {
4482 }
4483 #else /* !CONFIG_RCU_EXP_KTHREAD */
4484 struct workqueue_struct *rcu_par_gp_wq;
4485 
rcu_start_exp_gp_kworkers(void)4486 static void __init rcu_start_exp_gp_kworkers(void)
4487 {
4488 }
4489 
rcu_alloc_par_gp_wq(void)4490 static inline void rcu_alloc_par_gp_wq(void)
4491 {
4492 	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4493 	WARN_ON(!rcu_par_gp_wq);
4494 }
4495 #endif /* CONFIG_RCU_EXP_KTHREAD */
4496 
4497 /*
4498  * Spawn the kthreads that handle RCU's grace periods.
4499  */
rcu_spawn_gp_kthread(void)4500 static int __init rcu_spawn_gp_kthread(void)
4501 {
4502 	unsigned long flags;
4503 	int kthread_prio_in = kthread_prio;
4504 	struct rcu_node *rnp;
4505 	struct sched_param sp;
4506 	struct task_struct *t;
4507 
4508 	/* Force priority into range. */
4509 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4510 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4511 		kthread_prio = 2;
4512 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4513 		kthread_prio = 1;
4514 	else if (kthread_prio < 0)
4515 		kthread_prio = 0;
4516 	else if (kthread_prio > 99)
4517 		kthread_prio = 99;
4518 
4519 	if (kthread_prio != kthread_prio_in)
4520 		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4521 			 kthread_prio, kthread_prio_in);
4522 
4523 	rcu_scheduler_fully_active = 1;
4524 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4525 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4526 		return 0;
4527 	if (kthread_prio) {
4528 		sp.sched_priority = kthread_prio;
4529 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4530 	}
4531 	rnp = rcu_get_root();
4532 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4533 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4534 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4535 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4536 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4537 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4538 	wake_up_process(t);
4539 	rcu_spawn_nocb_kthreads();
4540 	rcu_spawn_boost_kthreads();
4541 	rcu_spawn_core_kthreads();
4542 	/* Create kthread worker for expedited GPs */
4543 	rcu_start_exp_gp_kworkers();
4544 	return 0;
4545 }
4546 early_initcall(rcu_spawn_gp_kthread);
4547 
4548 /*
4549  * This function is invoked towards the end of the scheduler's
4550  * initialization process.  Before this is called, the idle task might
4551  * contain synchronous grace-period primitives (during which time, this idle
4552  * task is booting the system, and such primitives are no-ops).  After this
4553  * function is called, any synchronous grace-period primitives are run as
4554  * expedited, with the requesting task driving the grace period forward.
4555  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4556  * runtime RCU functionality.
4557  */
rcu_scheduler_starting(void)4558 void rcu_scheduler_starting(void)
4559 {
4560 	WARN_ON(num_online_cpus() != 1);
4561 	WARN_ON(nr_context_switches() > 0);
4562 	rcu_test_sync_prims();
4563 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4564 	rcu_test_sync_prims();
4565 }
4566 
4567 /*
4568  * Helper function for rcu_init() that initializes the rcu_state structure.
4569  */
rcu_init_one(void)4570 static void __init rcu_init_one(void)
4571 {
4572 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4573 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4574 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4575 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4576 
4577 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4578 	int cpustride = 1;
4579 	int i;
4580 	int j;
4581 	struct rcu_node *rnp;
4582 
4583 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4584 
4585 	/* Silence gcc 4.8 false positive about array index out of range. */
4586 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4587 		panic("rcu_init_one: rcu_num_lvls out of range");
4588 
4589 	/* Initialize the level-tracking arrays. */
4590 
4591 	for (i = 1; i < rcu_num_lvls; i++)
4592 		rcu_state.level[i] =
4593 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4594 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4595 
4596 	/* Initialize the elements themselves, starting from the leaves. */
4597 
4598 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4599 		cpustride *= levelspread[i];
4600 		rnp = rcu_state.level[i];
4601 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4602 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4603 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4604 						   &rcu_node_class[i], buf[i]);
4605 			raw_spin_lock_init(&rnp->fqslock);
4606 			lockdep_set_class_and_name(&rnp->fqslock,
4607 						   &rcu_fqs_class[i], fqs[i]);
4608 			rnp->gp_seq = rcu_state.gp_seq;
4609 			rnp->gp_seq_needed = rcu_state.gp_seq;
4610 			rnp->completedqs = rcu_state.gp_seq;
4611 			rnp->qsmask = 0;
4612 			rnp->qsmaskinit = 0;
4613 			rnp->grplo = j * cpustride;
4614 			rnp->grphi = (j + 1) * cpustride - 1;
4615 			if (rnp->grphi >= nr_cpu_ids)
4616 				rnp->grphi = nr_cpu_ids - 1;
4617 			if (i == 0) {
4618 				rnp->grpnum = 0;
4619 				rnp->grpmask = 0;
4620 				rnp->parent = NULL;
4621 			} else {
4622 				rnp->grpnum = j % levelspread[i - 1];
4623 				rnp->grpmask = BIT(rnp->grpnum);
4624 				rnp->parent = rcu_state.level[i - 1] +
4625 					      j / levelspread[i - 1];
4626 			}
4627 			rnp->level = i;
4628 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4629 			rcu_init_one_nocb(rnp);
4630 			init_waitqueue_head(&rnp->exp_wq[0]);
4631 			init_waitqueue_head(&rnp->exp_wq[1]);
4632 			init_waitqueue_head(&rnp->exp_wq[2]);
4633 			init_waitqueue_head(&rnp->exp_wq[3]);
4634 			spin_lock_init(&rnp->exp_lock);
4635 		}
4636 	}
4637 
4638 	init_swait_queue_head(&rcu_state.gp_wq);
4639 	init_swait_queue_head(&rcu_state.expedited_wq);
4640 	rnp = rcu_first_leaf_node();
4641 	for_each_possible_cpu(i) {
4642 		while (i > rnp->grphi)
4643 			rnp++;
4644 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4645 		rcu_boot_init_percpu_data(i);
4646 	}
4647 }
4648 
4649 /*
4650  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4651  * replace the definitions in tree.h because those are needed to size
4652  * the ->node array in the rcu_state structure.
4653  */
rcu_init_geometry(void)4654 void rcu_init_geometry(void)
4655 {
4656 	ulong d;
4657 	int i;
4658 	static unsigned long old_nr_cpu_ids;
4659 	int rcu_capacity[RCU_NUM_LVLS];
4660 	static bool initialized;
4661 
4662 	if (initialized) {
4663 		/*
4664 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4665 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4666 		 */
4667 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4668 		return;
4669 	}
4670 
4671 	old_nr_cpu_ids = nr_cpu_ids;
4672 	initialized = true;
4673 
4674 	/*
4675 	 * Initialize any unspecified boot parameters.
4676 	 * The default values of jiffies_till_first_fqs and
4677 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4678 	 * value, which is a function of HZ, then adding one for each
4679 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4680 	 */
4681 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4682 	if (jiffies_till_first_fqs == ULONG_MAX)
4683 		jiffies_till_first_fqs = d;
4684 	if (jiffies_till_next_fqs == ULONG_MAX)
4685 		jiffies_till_next_fqs = d;
4686 	adjust_jiffies_till_sched_qs();
4687 
4688 	/* If the compile-time values are accurate, just leave. */
4689 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4690 	    nr_cpu_ids == NR_CPUS)
4691 		return;
4692 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4693 		rcu_fanout_leaf, nr_cpu_ids);
4694 
4695 	/*
4696 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4697 	 * and cannot exceed the number of bits in the rcu_node masks.
4698 	 * Complain and fall back to the compile-time values if this
4699 	 * limit is exceeded.
4700 	 */
4701 	if (rcu_fanout_leaf < 2 ||
4702 	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4703 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4704 		WARN_ON(1);
4705 		return;
4706 	}
4707 
4708 	/*
4709 	 * Compute number of nodes that can be handled an rcu_node tree
4710 	 * with the given number of levels.
4711 	 */
4712 	rcu_capacity[0] = rcu_fanout_leaf;
4713 	for (i = 1; i < RCU_NUM_LVLS; i++)
4714 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4715 
4716 	/*
4717 	 * The tree must be able to accommodate the configured number of CPUs.
4718 	 * If this limit is exceeded, fall back to the compile-time values.
4719 	 */
4720 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4721 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4722 		WARN_ON(1);
4723 		return;
4724 	}
4725 
4726 	/* Calculate the number of levels in the tree. */
4727 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4728 	}
4729 	rcu_num_lvls = i + 1;
4730 
4731 	/* Calculate the number of rcu_nodes at each level of the tree. */
4732 	for (i = 0; i < rcu_num_lvls; i++) {
4733 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4734 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4735 	}
4736 
4737 	/* Calculate the total number of rcu_node structures. */
4738 	rcu_num_nodes = 0;
4739 	for (i = 0; i < rcu_num_lvls; i++)
4740 		rcu_num_nodes += num_rcu_lvl[i];
4741 }
4742 
4743 /*
4744  * Dump out the structure of the rcu_node combining tree associated
4745  * with the rcu_state structure.
4746  */
rcu_dump_rcu_node_tree(void)4747 static void __init rcu_dump_rcu_node_tree(void)
4748 {
4749 	int level = 0;
4750 	struct rcu_node *rnp;
4751 
4752 	pr_info("rcu_node tree layout dump\n");
4753 	pr_info(" ");
4754 	rcu_for_each_node_breadth_first(rnp) {
4755 		if (rnp->level != level) {
4756 			pr_cont("\n");
4757 			pr_info(" ");
4758 			level = rnp->level;
4759 		}
4760 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4761 	}
4762 	pr_cont("\n");
4763 }
4764 
4765 struct workqueue_struct *rcu_gp_wq;
4766 
kfree_rcu_batch_init(void)4767 static void __init kfree_rcu_batch_init(void)
4768 {
4769 	int cpu;
4770 	int i;
4771 
4772 	/* Clamp it to [0:100] seconds interval. */
4773 	if (rcu_delay_page_cache_fill_msec < 0 ||
4774 		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4775 
4776 		rcu_delay_page_cache_fill_msec =
4777 			clamp(rcu_delay_page_cache_fill_msec, 0,
4778 				(int) (100 * MSEC_PER_SEC));
4779 
4780 		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4781 			rcu_delay_page_cache_fill_msec);
4782 	}
4783 
4784 	for_each_possible_cpu(cpu) {
4785 		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4786 
4787 		for (i = 0; i < KFREE_N_BATCHES; i++) {
4788 			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4789 			krcp->krw_arr[i].krcp = krcp;
4790 		}
4791 
4792 		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4793 		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4794 		krcp->initialized = true;
4795 	}
4796 	if (register_shrinker(&kfree_rcu_shrinker))
4797 		pr_err("Failed to register kfree_rcu() shrinker!\n");
4798 }
4799 
rcu_init(void)4800 void __init rcu_init(void)
4801 {
4802 	int cpu;
4803 
4804 	rcu_early_boot_tests();
4805 
4806 	kfree_rcu_batch_init();
4807 	rcu_bootup_announce();
4808 	rcu_init_geometry();
4809 	rcu_init_one();
4810 	if (dump_tree)
4811 		rcu_dump_rcu_node_tree();
4812 	if (use_softirq)
4813 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4814 
4815 	/*
4816 	 * We don't need protection against CPU-hotplug here because
4817 	 * this is called early in boot, before either interrupts
4818 	 * or the scheduler are operational.
4819 	 */
4820 	pm_notifier(rcu_pm_notify, 0);
4821 	for_each_online_cpu(cpu) {
4822 		rcutree_prepare_cpu(cpu);
4823 		rcu_cpu_starting(cpu);
4824 		rcutree_online_cpu(cpu);
4825 	}
4826 
4827 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4828 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4829 	WARN_ON(!rcu_gp_wq);
4830 	rcu_alloc_par_gp_wq();
4831 
4832 	/* Fill in default value for rcutree.qovld boot parameter. */
4833 	/* -After- the rcu_node ->lock fields are initialized! */
4834 	if (qovld < 0)
4835 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4836 	else
4837 		qovld_calc = qovld;
4838 }
4839 
4840 #include "tree_stall.h"
4841 #include "tree_exp.h"
4842 #include "tree_nocb.h"
4843 #include "tree_plugin.h"
4844