1 /*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
12 *
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
31 #include <linux/fs.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/kthread.h>
37 #include <linux/list.h>
38 #include <linux/mempolicy.h>
39 #include <linux/mm.h>
40 #include <linux/memory.h>
41 #include <linux/export.h>
42 #include <linux/mount.h>
43 #include <linux/fs_context.h>
44 #include <linux/namei.h>
45 #include <linux/pagemap.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rcupdate.h>
48 #include <linux/sched.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/mm.h>
51 #include <linux/sched/task.h>
52 #include <linux/seq_file.h>
53 #include <linux/security.h>
54 #include <linux/slab.h>
55 #include <linux/spinlock.h>
56 #include <linux/stat.h>
57 #include <linux/string.h>
58 #include <linux/time.h>
59 #include <linux/time64.h>
60 #include <linux/backing-dev.h>
61 #include <linux/sort.h>
62 #include <linux/oom.h>
63 #include <linux/sched/isolation.h>
64 #include <linux/uaccess.h>
65 #include <linux/atomic.h>
66 #include <linux/mutex.h>
67 #include <linux/cgroup.h>
68 #include <linux/wait.h>
69
70 #include <trace/hooks/sched.h>
71 #include <trace/hooks/cgroup.h>
72
73 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key);
74 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key);
75
76 /* See "Frequency meter" comments, below. */
77
78 struct fmeter {
79 int cnt; /* unprocessed events count */
80 int val; /* most recent output value */
81 time64_t time; /* clock (secs) when val computed */
82 spinlock_t lock; /* guards read or write of above */
83 };
84
85 struct cpuset {
86 struct cgroup_subsys_state css;
87
88 unsigned long flags; /* "unsigned long" so bitops work */
89
90 /*
91 * On default hierarchy:
92 *
93 * The user-configured masks can only be changed by writing to
94 * cpuset.cpus and cpuset.mems, and won't be limited by the
95 * parent masks.
96 *
97 * The effective masks is the real masks that apply to the tasks
98 * in the cpuset. They may be changed if the configured masks are
99 * changed or hotplug happens.
100 *
101 * effective_mask == configured_mask & parent's effective_mask,
102 * and if it ends up empty, it will inherit the parent's mask.
103 *
104 *
105 * On legacy hierarchy:
106 *
107 * The user-configured masks are always the same with effective masks.
108 */
109
110 /* user-configured CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t cpus_allowed;
112 cpumask_var_t cpus_requested;
113 nodemask_t mems_allowed;
114
115 /* effective CPUs and Memory Nodes allow to tasks */
116 cpumask_var_t effective_cpus;
117 nodemask_t effective_mems;
118
119 /*
120 * CPUs allocated to child sub-partitions (default hierarchy only)
121 * - CPUs granted by the parent = effective_cpus U subparts_cpus
122 * - effective_cpus and subparts_cpus are mutually exclusive.
123 *
124 * effective_cpus contains only onlined CPUs, but subparts_cpus
125 * may have offlined ones.
126 */
127 cpumask_var_t subparts_cpus;
128
129 /*
130 * This is old Memory Nodes tasks took on.
131 *
132 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
133 * - A new cpuset's old_mems_allowed is initialized when some
134 * task is moved into it.
135 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
136 * cpuset.mems_allowed and have tasks' nodemask updated, and
137 * then old_mems_allowed is updated to mems_allowed.
138 */
139 nodemask_t old_mems_allowed;
140
141 struct fmeter fmeter; /* memory_pressure filter */
142
143 /*
144 * Tasks are being attached to this cpuset. Used to prevent
145 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
146 */
147 int attach_in_progress;
148
149 /* partition number for rebuild_sched_domains() */
150 int pn;
151
152 /* for custom sched domain */
153 int relax_domain_level;
154
155 /* number of CPUs in subparts_cpus */
156 int nr_subparts_cpus;
157
158 /* partition root state */
159 int partition_root_state;
160
161 /*
162 * Default hierarchy only:
163 * use_parent_ecpus - set if using parent's effective_cpus
164 * child_ecpus_count - # of children with use_parent_ecpus set
165 */
166 int use_parent_ecpus;
167 int child_ecpus_count;
168
169 /*
170 * number of SCHED_DEADLINE tasks attached to this cpuset, so that we
171 * know when to rebuild associated root domain bandwidth information.
172 */
173 int nr_deadline_tasks;
174 int nr_migrate_dl_tasks;
175 u64 sum_migrate_dl_bw;
176
177 /* Handle for cpuset.cpus.partition */
178 struct cgroup_file partition_file;
179 };
180
181 /*
182 * Partition root states:
183 *
184 * 0 - not a partition root
185 *
186 * 1 - partition root
187 *
188 * -1 - invalid partition root
189 * None of the cpus in cpus_allowed can be put into the parent's
190 * subparts_cpus. In this case, the cpuset is not a real partition
191 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
192 * and the cpuset can be restored back to a partition root if the
193 * parent cpuset can give more CPUs back to this child cpuset.
194 */
195 #define PRS_DISABLED 0
196 #define PRS_ENABLED 1
197 #define PRS_ERROR -1
198
199 /*
200 * Temporary cpumasks for working with partitions that are passed among
201 * functions to avoid memory allocation in inner functions.
202 */
203 struct tmpmasks {
204 cpumask_var_t addmask, delmask; /* For partition root */
205 cpumask_var_t new_cpus; /* For update_cpumasks_hier() */
206 };
207
css_cs(struct cgroup_subsys_state * css)208 static inline struct cpuset *css_cs(struct cgroup_subsys_state *css)
209 {
210 return css ? container_of(css, struct cpuset, css) : NULL;
211 }
212
213 /* Retrieve the cpuset for a task */
task_cs(struct task_struct * task)214 static inline struct cpuset *task_cs(struct task_struct *task)
215 {
216 return css_cs(task_css(task, cpuset_cgrp_id));
217 }
218
parent_cs(struct cpuset * cs)219 static inline struct cpuset *parent_cs(struct cpuset *cs)
220 {
221 return css_cs(cs->css.parent);
222 }
223
inc_dl_tasks_cs(struct task_struct * p)224 void inc_dl_tasks_cs(struct task_struct *p)
225 {
226 struct cpuset *cs = task_cs(p);
227
228 cs->nr_deadline_tasks++;
229 }
230
dec_dl_tasks_cs(struct task_struct * p)231 void dec_dl_tasks_cs(struct task_struct *p)
232 {
233 struct cpuset *cs = task_cs(p);
234
235 cs->nr_deadline_tasks--;
236 }
237
238 /* bits in struct cpuset flags field */
239 typedef enum {
240 CS_ONLINE,
241 CS_CPU_EXCLUSIVE,
242 CS_MEM_EXCLUSIVE,
243 CS_MEM_HARDWALL,
244 CS_MEMORY_MIGRATE,
245 CS_SCHED_LOAD_BALANCE,
246 CS_SPREAD_PAGE,
247 CS_SPREAD_SLAB,
248 } cpuset_flagbits_t;
249
250 /* convenient tests for these bits */
is_cpuset_online(struct cpuset * cs)251 static inline bool is_cpuset_online(struct cpuset *cs)
252 {
253 return test_bit(CS_ONLINE, &cs->flags) && !css_is_dying(&cs->css);
254 }
255
is_cpu_exclusive(const struct cpuset * cs)256 static inline int is_cpu_exclusive(const struct cpuset *cs)
257 {
258 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
259 }
260
is_mem_exclusive(const struct cpuset * cs)261 static inline int is_mem_exclusive(const struct cpuset *cs)
262 {
263 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
264 }
265
is_mem_hardwall(const struct cpuset * cs)266 static inline int is_mem_hardwall(const struct cpuset *cs)
267 {
268 return test_bit(CS_MEM_HARDWALL, &cs->flags);
269 }
270
is_sched_load_balance(const struct cpuset * cs)271 static inline int is_sched_load_balance(const struct cpuset *cs)
272 {
273 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
274 }
275
is_memory_migrate(const struct cpuset * cs)276 static inline int is_memory_migrate(const struct cpuset *cs)
277 {
278 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
279 }
280
is_spread_page(const struct cpuset * cs)281 static inline int is_spread_page(const struct cpuset *cs)
282 {
283 return test_bit(CS_SPREAD_PAGE, &cs->flags);
284 }
285
is_spread_slab(const struct cpuset * cs)286 static inline int is_spread_slab(const struct cpuset *cs)
287 {
288 return test_bit(CS_SPREAD_SLAB, &cs->flags);
289 }
290
is_partition_root(const struct cpuset * cs)291 static inline int is_partition_root(const struct cpuset *cs)
292 {
293 return cs->partition_root_state > 0;
294 }
295
296 /*
297 * Send notification event of whenever partition_root_state changes.
298 */
notify_partition_change(struct cpuset * cs,int old_prs,int new_prs)299 static inline void notify_partition_change(struct cpuset *cs,
300 int old_prs, int new_prs)
301 {
302 if (old_prs != new_prs)
303 cgroup_file_notify(&cs->partition_file);
304 }
305
306 static struct cpuset top_cpuset = {
307 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
308 (1 << CS_MEM_EXCLUSIVE)),
309 .partition_root_state = PRS_ENABLED,
310 };
311
312 /**
313 * cpuset_for_each_child - traverse online children of a cpuset
314 * @child_cs: loop cursor pointing to the current child
315 * @pos_css: used for iteration
316 * @parent_cs: target cpuset to walk children of
317 *
318 * Walk @child_cs through the online children of @parent_cs. Must be used
319 * with RCU read locked.
320 */
321 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
322 css_for_each_child((pos_css), &(parent_cs)->css) \
323 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
324
325 /**
326 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
327 * @des_cs: loop cursor pointing to the current descendant
328 * @pos_css: used for iteration
329 * @root_cs: target cpuset to walk ancestor of
330 *
331 * Walk @des_cs through the online descendants of @root_cs. Must be used
332 * with RCU read locked. The caller may modify @pos_css by calling
333 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
334 * iteration and the first node to be visited.
335 */
336 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
337 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
338 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
339
340 /*
341 * There are two global locks guarding cpuset structures - cpuset_mutex and
342 * callback_lock. We also require taking task_lock() when dereferencing a
343 * task's cpuset pointer. See "The task_lock() exception", at the end of this
344 * comment. The cpuset code uses only cpuset_mutex. Other kernel subsystems
345 * can use cpuset_lock()/cpuset_unlock() to prevent change to cpuset
346 * structures. Note that cpuset_mutex needs to be a mutex as it is used in
347 * paths that rely on priority inheritance (e.g. scheduler - on RT) for
348 * correctness.
349 *
350 * A task must hold both locks to modify cpusets. If a task holds
351 * cpuset_mutex, it blocks others, ensuring that it is the only task able to
352 * also acquire callback_lock and be able to modify cpusets. It can perform
353 * various checks on the cpuset structure first, knowing nothing will change.
354 * It can also allocate memory while just holding cpuset_mutex. While it is
355 * performing these checks, various callback routines can briefly acquire
356 * callback_lock to query cpusets. Once it is ready to make the changes, it
357 * takes callback_lock, blocking everyone else.
358 *
359 * Calls to the kernel memory allocator can not be made while holding
360 * callback_lock, as that would risk double tripping on callback_lock
361 * from one of the callbacks into the cpuset code from within
362 * __alloc_pages().
363 *
364 * If a task is only holding callback_lock, then it has read-only
365 * access to cpusets.
366 *
367 * Now, the task_struct fields mems_allowed and mempolicy may be changed
368 * by other task, we use alloc_lock in the task_struct fields to protect
369 * them.
370 *
371 * The cpuset_common_file_read() handlers only hold callback_lock across
372 * small pieces of code, such as when reading out possibly multi-word
373 * cpumasks and nodemasks.
374 *
375 * Accessing a task's cpuset should be done in accordance with the
376 * guidelines for accessing subsystem state in kernel/cgroup.c
377 */
378
379 static DEFINE_MUTEX(cpuset_mutex);
380
cpuset_lock(void)381 void cpuset_lock(void)
382 {
383 mutex_lock(&cpuset_mutex);
384 }
385
cpuset_unlock(void)386 void cpuset_unlock(void)
387 {
388 mutex_unlock(&cpuset_mutex);
389 }
390
391 static DEFINE_SPINLOCK(callback_lock);
392
393 static struct workqueue_struct *cpuset_migrate_mm_wq;
394
395 /*
396 * CPU / memory hotplug is handled asynchronously.
397 */
398 static void cpuset_hotplug_workfn(struct work_struct *work);
399 static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
400
401 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq);
402
403 /*
404 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
405 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
406 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
407 * With v2 behavior, "cpus" and "mems" are always what the users have
408 * requested and won't be changed by hotplug events. Only the effective
409 * cpus or mems will be affected.
410 */
is_in_v2_mode(void)411 static inline bool is_in_v2_mode(void)
412 {
413 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
414 (cpuset_cgrp_subsys.root->flags & CGRP_ROOT_CPUSET_V2_MODE);
415 }
416
417 /*
418 * Return in pmask the portion of a task's cpusets's cpus_allowed that
419 * are online and are capable of running the task. If none are found,
420 * walk up the cpuset hierarchy until we find one that does have some
421 * appropriate cpus.
422 *
423 * One way or another, we guarantee to return some non-empty subset
424 * of cpu_online_mask.
425 *
426 * Call with callback_lock or cpuset_mutex held.
427 */
guarantee_online_cpus(struct task_struct * tsk,struct cpumask * pmask)428 static void guarantee_online_cpus(struct task_struct *tsk,
429 struct cpumask *pmask)
430 {
431 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
432 struct cpuset *cs;
433
434 if (WARN_ON(!cpumask_and(pmask, possible_mask, cpu_online_mask)))
435 cpumask_copy(pmask, cpu_online_mask);
436
437 rcu_read_lock();
438 cs = task_cs(tsk);
439
440 while (!cpumask_intersects(cs->effective_cpus, pmask)) {
441 cs = parent_cs(cs);
442 if (unlikely(!cs)) {
443 /*
444 * The top cpuset doesn't have any online cpu as a
445 * consequence of a race between cpuset_hotplug_work
446 * and cpu hotplug notifier. But we know the top
447 * cpuset's effective_cpus is on its way to be
448 * identical to cpu_online_mask.
449 */
450 goto out_unlock;
451 }
452 }
453 cpumask_and(pmask, pmask, cs->effective_cpus);
454
455 out_unlock:
456 rcu_read_unlock();
457 }
458
459 /*
460 * Return in *pmask the portion of a cpusets's mems_allowed that
461 * are online, with memory. If none are online with memory, walk
462 * up the cpuset hierarchy until we find one that does have some
463 * online mems. The top cpuset always has some mems online.
464 *
465 * One way or another, we guarantee to return some non-empty subset
466 * of node_states[N_MEMORY].
467 *
468 * Call with callback_lock or cpuset_mutex held.
469 */
guarantee_online_mems(struct cpuset * cs,nodemask_t * pmask)470 static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask)
471 {
472 while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY]))
473 cs = parent_cs(cs);
474 nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]);
475 }
476
477 /*
478 * update task's spread flag if cpuset's page/slab spread flag is set
479 *
480 * Call with callback_lock or cpuset_mutex held. The check can be skipped
481 * if on default hierarchy.
482 */
cpuset_update_task_spread_flag(struct cpuset * cs,struct task_struct * tsk)483 static void cpuset_update_task_spread_flag(struct cpuset *cs,
484 struct task_struct *tsk)
485 {
486 if (is_spread_page(cs))
487 task_set_spread_page(tsk);
488 else
489 task_clear_spread_page(tsk);
490
491 if (is_spread_slab(cs))
492 task_set_spread_slab(tsk);
493 else
494 task_clear_spread_slab(tsk);
495 }
496
497 /*
498 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
499 *
500 * One cpuset is a subset of another if all its allowed CPUs and
501 * Memory Nodes are a subset of the other, and its exclusive flags
502 * are only set if the other's are set. Call holding cpuset_mutex.
503 */
504
is_cpuset_subset(const struct cpuset * p,const struct cpuset * q)505 static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
506 {
507 return cpumask_subset(p->cpus_requested, q->cpus_requested) &&
508 nodes_subset(p->mems_allowed, q->mems_allowed) &&
509 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
510 is_mem_exclusive(p) <= is_mem_exclusive(q);
511 }
512
513 /**
514 * alloc_cpumasks - allocate three cpumasks for cpuset
515 * @cs: the cpuset that have cpumasks to be allocated.
516 * @tmp: the tmpmasks structure pointer
517 * Return: 0 if successful, -ENOMEM otherwise.
518 *
519 * Only one of the two input arguments should be non-NULL.
520 */
alloc_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)521 static inline int alloc_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
522 {
523 cpumask_var_t *pmask1, *pmask2, *pmask3;
524
525 if (cs) {
526 pmask1 = &cs->cpus_allowed;
527 pmask2 = &cs->effective_cpus;
528 pmask3 = &cs->subparts_cpus;
529 } else {
530 pmask1 = &tmp->new_cpus;
531 pmask2 = &tmp->addmask;
532 pmask3 = &tmp->delmask;
533 }
534
535 if (!zalloc_cpumask_var(pmask1, GFP_KERNEL))
536 return -ENOMEM;
537
538 if (!zalloc_cpumask_var(pmask2, GFP_KERNEL))
539 goto free_one;
540
541 if (!zalloc_cpumask_var(pmask3, GFP_KERNEL))
542 goto free_two;
543
544 if (cs && !zalloc_cpumask_var(&cs->cpus_requested, GFP_KERNEL))
545 goto free_three;
546
547 return 0;
548
549 free_three:
550 free_cpumask_var(*pmask3);
551 free_two:
552 free_cpumask_var(*pmask2);
553 free_one:
554 free_cpumask_var(*pmask1);
555 return -ENOMEM;
556 }
557
558 /**
559 * free_cpumasks - free cpumasks in a tmpmasks structure
560 * @cs: the cpuset that have cpumasks to be free.
561 * @tmp: the tmpmasks structure pointer
562 */
free_cpumasks(struct cpuset * cs,struct tmpmasks * tmp)563 static inline void free_cpumasks(struct cpuset *cs, struct tmpmasks *tmp)
564 {
565 if (cs) {
566 free_cpumask_var(cs->cpus_allowed);
567 free_cpumask_var(cs->cpus_requested);
568 free_cpumask_var(cs->effective_cpus);
569 free_cpumask_var(cs->subparts_cpus);
570 }
571 if (tmp) {
572 free_cpumask_var(tmp->new_cpus);
573 free_cpumask_var(tmp->addmask);
574 free_cpumask_var(tmp->delmask);
575 }
576 }
577
578 /**
579 * alloc_trial_cpuset - allocate a trial cpuset
580 * @cs: the cpuset that the trial cpuset duplicates
581 */
alloc_trial_cpuset(struct cpuset * cs)582 static struct cpuset *alloc_trial_cpuset(struct cpuset *cs)
583 {
584 struct cpuset *trial;
585
586 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
587 if (!trial)
588 return NULL;
589
590 if (alloc_cpumasks(trial, NULL)) {
591 kfree(trial);
592 return NULL;
593 }
594
595 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
596 cpumask_copy(trial->cpus_requested, cs->cpus_requested);
597 cpumask_copy(trial->effective_cpus, cs->effective_cpus);
598 return trial;
599 }
600
601 /**
602 * free_cpuset - free the cpuset
603 * @cs: the cpuset to be freed
604 */
free_cpuset(struct cpuset * cs)605 static inline void free_cpuset(struct cpuset *cs)
606 {
607 free_cpumasks(cs, NULL);
608 kfree(cs);
609 }
610
611 /*
612 * validate_change() - Used to validate that any proposed cpuset change
613 * follows the structural rules for cpusets.
614 *
615 * If we replaced the flag and mask values of the current cpuset
616 * (cur) with those values in the trial cpuset (trial), would
617 * our various subset and exclusive rules still be valid? Presumes
618 * cpuset_mutex held.
619 *
620 * 'cur' is the address of an actual, in-use cpuset. Operations
621 * such as list traversal that depend on the actual address of the
622 * cpuset in the list must use cur below, not trial.
623 *
624 * 'trial' is the address of bulk structure copy of cur, with
625 * perhaps one or more of the fields cpus_allowed, mems_allowed,
626 * or flags changed to new, trial values.
627 *
628 * Return 0 if valid, -errno if not.
629 */
630
validate_change(struct cpuset * cur,struct cpuset * trial)631 static int validate_change(struct cpuset *cur, struct cpuset *trial)
632 {
633 struct cgroup_subsys_state *css;
634 struct cpuset *c, *par;
635 int ret;
636
637 rcu_read_lock();
638
639 /* Each of our child cpusets must be a subset of us */
640 ret = -EBUSY;
641 cpuset_for_each_child(c, css, cur)
642 if (!is_cpuset_subset(c, trial))
643 goto out;
644
645 /* Remaining checks don't apply to root cpuset */
646 ret = 0;
647 if (cur == &top_cpuset)
648 goto out;
649
650 par = parent_cs(cur);
651
652 /* On legacy hierarchy, we must be a subset of our parent cpuset. */
653 ret = -EACCES;
654 if (!is_in_v2_mode() && !is_cpuset_subset(trial, par))
655 goto out;
656
657 /*
658 * If either I or some sibling (!= me) is exclusive, we can't
659 * overlap
660 */
661 ret = -EINVAL;
662 cpuset_for_each_child(c, css, par) {
663 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
664 c != cur &&
665 cpumask_intersects(trial->cpus_requested, c->cpus_requested))
666 goto out;
667 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
668 c != cur &&
669 nodes_intersects(trial->mems_allowed, c->mems_allowed))
670 goto out;
671 }
672
673 /*
674 * Cpusets with tasks - existing or newly being attached - can't
675 * be changed to have empty cpus_allowed or mems_allowed.
676 */
677 ret = -ENOSPC;
678 if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) {
679 if (!cpumask_empty(cur->cpus_allowed) &&
680 cpumask_empty(trial->cpus_allowed))
681 goto out;
682 if (!nodes_empty(cur->mems_allowed) &&
683 nodes_empty(trial->mems_allowed))
684 goto out;
685 }
686
687 /*
688 * We can't shrink if we won't have enough room for SCHED_DEADLINE
689 * tasks.
690 */
691 ret = -EBUSY;
692 if (is_cpu_exclusive(cur) &&
693 !cpuset_cpumask_can_shrink(cur->cpus_allowed,
694 trial->cpus_allowed))
695 goto out;
696
697 ret = 0;
698 out:
699 rcu_read_unlock();
700 return ret;
701 }
702
703 #ifdef CONFIG_SMP
704 /*
705 * Helper routine for generate_sched_domains().
706 * Do cpusets a, b have overlapping effective cpus_allowed masks?
707 */
cpusets_overlap(struct cpuset * a,struct cpuset * b)708 static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
709 {
710 return cpumask_intersects(a->effective_cpus, b->effective_cpus);
711 }
712
713 static void
update_domain_attr(struct sched_domain_attr * dattr,struct cpuset * c)714 update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
715 {
716 if (dattr->relax_domain_level < c->relax_domain_level)
717 dattr->relax_domain_level = c->relax_domain_level;
718 return;
719 }
720
update_domain_attr_tree(struct sched_domain_attr * dattr,struct cpuset * root_cs)721 static void update_domain_attr_tree(struct sched_domain_attr *dattr,
722 struct cpuset *root_cs)
723 {
724 struct cpuset *cp;
725 struct cgroup_subsys_state *pos_css;
726
727 rcu_read_lock();
728 cpuset_for_each_descendant_pre(cp, pos_css, root_cs) {
729 /* skip the whole subtree if @cp doesn't have any CPU */
730 if (cpumask_empty(cp->cpus_allowed)) {
731 pos_css = css_rightmost_descendant(pos_css);
732 continue;
733 }
734
735 if (is_sched_load_balance(cp))
736 update_domain_attr(dattr, cp);
737 }
738 rcu_read_unlock();
739 }
740
741 /* Must be called with cpuset_mutex held. */
nr_cpusets(void)742 static inline int nr_cpusets(void)
743 {
744 /* jump label reference count + the top-level cpuset */
745 return static_key_count(&cpusets_enabled_key.key) + 1;
746 }
747
748 /*
749 * generate_sched_domains()
750 *
751 * This function builds a partial partition of the systems CPUs
752 * A 'partial partition' is a set of non-overlapping subsets whose
753 * union is a subset of that set.
754 * The output of this function needs to be passed to kernel/sched/core.c
755 * partition_sched_domains() routine, which will rebuild the scheduler's
756 * load balancing domains (sched domains) as specified by that partial
757 * partition.
758 *
759 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
760 * for a background explanation of this.
761 *
762 * Does not return errors, on the theory that the callers of this
763 * routine would rather not worry about failures to rebuild sched
764 * domains when operating in the severe memory shortage situations
765 * that could cause allocation failures below.
766 *
767 * Must be called with cpuset_mutex held.
768 *
769 * The three key local variables below are:
770 * cp - cpuset pointer, used (together with pos_css) to perform a
771 * top-down scan of all cpusets. For our purposes, rebuilding
772 * the schedulers sched domains, we can ignore !is_sched_load_
773 * balance cpusets.
774 * csa - (for CpuSet Array) Array of pointers to all the cpusets
775 * that need to be load balanced, for convenient iterative
776 * access by the subsequent code that finds the best partition,
777 * i.e the set of domains (subsets) of CPUs such that the
778 * cpus_allowed of every cpuset marked is_sched_load_balance
779 * is a subset of one of these domains, while there are as
780 * many such domains as possible, each as small as possible.
781 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
782 * the kernel/sched/core.c routine partition_sched_domains() in a
783 * convenient format, that can be easily compared to the prior
784 * value to determine what partition elements (sched domains)
785 * were changed (added or removed.)
786 *
787 * Finding the best partition (set of domains):
788 * The triple nested loops below over i, j, k scan over the
789 * load balanced cpusets (using the array of cpuset pointers in
790 * csa[]) looking for pairs of cpusets that have overlapping
791 * cpus_allowed, but which don't have the same 'pn' partition
792 * number and gives them in the same partition number. It keeps
793 * looping on the 'restart' label until it can no longer find
794 * any such pairs.
795 *
796 * The union of the cpus_allowed masks from the set of
797 * all cpusets having the same 'pn' value then form the one
798 * element of the partition (one sched domain) to be passed to
799 * partition_sched_domains().
800 */
generate_sched_domains(cpumask_var_t ** domains,struct sched_domain_attr ** attributes)801 static int generate_sched_domains(cpumask_var_t **domains,
802 struct sched_domain_attr **attributes)
803 {
804 struct cpuset *cp; /* top-down scan of cpusets */
805 struct cpuset **csa; /* array of all cpuset ptrs */
806 int csn; /* how many cpuset ptrs in csa so far */
807 int i, j, k; /* indices for partition finding loops */
808 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
809 struct sched_domain_attr *dattr; /* attributes for custom domains */
810 int ndoms = 0; /* number of sched domains in result */
811 int nslot; /* next empty doms[] struct cpumask slot */
812 struct cgroup_subsys_state *pos_css;
813 bool root_load_balance = is_sched_load_balance(&top_cpuset);
814
815 doms = NULL;
816 dattr = NULL;
817 csa = NULL;
818
819 /* Special case for the 99% of systems with one, full, sched domain */
820 if (root_load_balance && !top_cpuset.nr_subparts_cpus) {
821 ndoms = 1;
822 doms = alloc_sched_domains(ndoms);
823 if (!doms)
824 goto done;
825
826 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
827 if (dattr) {
828 *dattr = SD_ATTR_INIT;
829 update_domain_attr_tree(dattr, &top_cpuset);
830 }
831 cpumask_and(doms[0], top_cpuset.effective_cpus,
832 housekeeping_cpumask(HK_FLAG_DOMAIN));
833
834 goto done;
835 }
836
837 csa = kmalloc_array(nr_cpusets(), sizeof(cp), GFP_KERNEL);
838 if (!csa)
839 goto done;
840 csn = 0;
841
842 rcu_read_lock();
843 if (root_load_balance)
844 csa[csn++] = &top_cpuset;
845 cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) {
846 if (cp == &top_cpuset)
847 continue;
848 /*
849 * Continue traversing beyond @cp iff @cp has some CPUs and
850 * isn't load balancing. The former is obvious. The
851 * latter: All child cpusets contain a subset of the
852 * parent's cpus, so just skip them, and then we call
853 * update_domain_attr_tree() to calc relax_domain_level of
854 * the corresponding sched domain.
855 *
856 * If root is load-balancing, we can skip @cp if it
857 * is a subset of the root's effective_cpus.
858 */
859 if (!cpumask_empty(cp->cpus_allowed) &&
860 !(is_sched_load_balance(cp) &&
861 cpumask_intersects(cp->cpus_allowed,
862 housekeeping_cpumask(HK_FLAG_DOMAIN))))
863 continue;
864
865 if (root_load_balance &&
866 cpumask_subset(cp->cpus_allowed, top_cpuset.effective_cpus))
867 continue;
868
869 if (is_sched_load_balance(cp) &&
870 !cpumask_empty(cp->effective_cpus))
871 csa[csn++] = cp;
872
873 /* skip @cp's subtree if not a partition root */
874 if (!is_partition_root(cp))
875 pos_css = css_rightmost_descendant(pos_css);
876 }
877 rcu_read_unlock();
878
879 for (i = 0; i < csn; i++)
880 csa[i]->pn = i;
881 ndoms = csn;
882
883 restart:
884 /* Find the best partition (set of sched domains) */
885 for (i = 0; i < csn; i++) {
886 struct cpuset *a = csa[i];
887 int apn = a->pn;
888
889 for (j = 0; j < csn; j++) {
890 struct cpuset *b = csa[j];
891 int bpn = b->pn;
892
893 if (apn != bpn && cpusets_overlap(a, b)) {
894 for (k = 0; k < csn; k++) {
895 struct cpuset *c = csa[k];
896
897 if (c->pn == bpn)
898 c->pn = apn;
899 }
900 ndoms--; /* one less element */
901 goto restart;
902 }
903 }
904 }
905
906 /*
907 * Now we know how many domains to create.
908 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
909 */
910 doms = alloc_sched_domains(ndoms);
911 if (!doms)
912 goto done;
913
914 /*
915 * The rest of the code, including the scheduler, can deal with
916 * dattr==NULL case. No need to abort if alloc fails.
917 */
918 dattr = kmalloc_array(ndoms, sizeof(struct sched_domain_attr),
919 GFP_KERNEL);
920
921 for (nslot = 0, i = 0; i < csn; i++) {
922 struct cpuset *a = csa[i];
923 struct cpumask *dp;
924 int apn = a->pn;
925
926 if (apn < 0) {
927 /* Skip completed partitions */
928 continue;
929 }
930
931 dp = doms[nslot];
932
933 if (nslot == ndoms) {
934 static int warnings = 10;
935 if (warnings) {
936 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
937 nslot, ndoms, csn, i, apn);
938 warnings--;
939 }
940 continue;
941 }
942
943 cpumask_clear(dp);
944 if (dattr)
945 *(dattr + nslot) = SD_ATTR_INIT;
946 for (j = i; j < csn; j++) {
947 struct cpuset *b = csa[j];
948
949 if (apn == b->pn) {
950 cpumask_or(dp, dp, b->effective_cpus);
951 cpumask_and(dp, dp, housekeeping_cpumask(HK_FLAG_DOMAIN));
952 if (dattr)
953 update_domain_attr_tree(dattr + nslot, b);
954
955 /* Done with this partition */
956 b->pn = -1;
957 }
958 }
959 nslot++;
960 }
961 BUG_ON(nslot != ndoms);
962
963 done:
964 kfree(csa);
965
966 /*
967 * Fallback to the default domain if kmalloc() failed.
968 * See comments in partition_sched_domains().
969 */
970 if (doms == NULL)
971 ndoms = 1;
972
973 *domains = doms;
974 *attributes = dattr;
975 return ndoms;
976 }
977
dl_update_tasks_root_domain(struct cpuset * cs)978 static void dl_update_tasks_root_domain(struct cpuset *cs)
979 {
980 struct css_task_iter it;
981 struct task_struct *task;
982
983 if (cs->nr_deadline_tasks == 0)
984 return;
985
986 css_task_iter_start(&cs->css, 0, &it);
987
988 while ((task = css_task_iter_next(&it)))
989 dl_add_task_root_domain(task);
990
991 css_task_iter_end(&it);
992 }
993
dl_rebuild_rd_accounting(void)994 static void dl_rebuild_rd_accounting(void)
995 {
996 struct cpuset *cs = NULL;
997 struct cgroup_subsys_state *pos_css;
998
999 lockdep_assert_held(&cpuset_mutex);
1000 lockdep_assert_cpus_held();
1001 lockdep_assert_held(&sched_domains_mutex);
1002
1003 rcu_read_lock();
1004
1005 /*
1006 * Clear default root domain DL accounting, it will be computed again
1007 * if a task belongs to it.
1008 */
1009 dl_clear_root_domain(&def_root_domain);
1010
1011 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1012
1013 if (cpumask_empty(cs->effective_cpus)) {
1014 pos_css = css_rightmost_descendant(pos_css);
1015 continue;
1016 }
1017
1018 css_get(&cs->css);
1019
1020 rcu_read_unlock();
1021
1022 dl_update_tasks_root_domain(cs);
1023
1024 rcu_read_lock();
1025 css_put(&cs->css);
1026 }
1027 rcu_read_unlock();
1028 }
1029
1030 static void
partition_and_rebuild_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)1031 partition_and_rebuild_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1032 struct sched_domain_attr *dattr_new)
1033 {
1034 mutex_lock(&sched_domains_mutex);
1035 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
1036 dl_rebuild_rd_accounting();
1037 mutex_unlock(&sched_domains_mutex);
1038 }
1039
1040 /*
1041 * Rebuild scheduler domains.
1042 *
1043 * If the flag 'sched_load_balance' of any cpuset with non-empty
1044 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
1045 * which has that flag enabled, or if any cpuset with a non-empty
1046 * 'cpus' is removed, then call this routine to rebuild the
1047 * scheduler's dynamic sched domains.
1048 *
1049 * Call with cpuset_mutex held. Takes cpus_read_lock().
1050 */
rebuild_sched_domains_locked(void)1051 static void rebuild_sched_domains_locked(void)
1052 {
1053 struct cgroup_subsys_state *pos_css;
1054 struct sched_domain_attr *attr;
1055 cpumask_var_t *doms;
1056 struct cpuset *cs;
1057 int ndoms;
1058
1059 lockdep_assert_cpus_held();
1060 lockdep_assert_held(&cpuset_mutex);
1061
1062 /*
1063 * If we have raced with CPU hotplug, return early to avoid
1064 * passing doms with offlined cpu to partition_sched_domains().
1065 * Anyways, cpuset_hotplug_workfn() will rebuild sched domains.
1066 *
1067 * With no CPUs in any subpartitions, top_cpuset's effective CPUs
1068 * should be the same as the active CPUs, so checking only top_cpuset
1069 * is enough to detect racing CPU offlines.
1070 */
1071 if (!top_cpuset.nr_subparts_cpus &&
1072 !cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask))
1073 return;
1074
1075 /*
1076 * With subpartition CPUs, however, the effective CPUs of a partition
1077 * root should be only a subset of the active CPUs. Since a CPU in any
1078 * partition root could be offlined, all must be checked.
1079 */
1080 if (top_cpuset.nr_subparts_cpus) {
1081 rcu_read_lock();
1082 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
1083 if (!is_partition_root(cs)) {
1084 pos_css = css_rightmost_descendant(pos_css);
1085 continue;
1086 }
1087 if (!cpumask_subset(cs->effective_cpus,
1088 cpu_active_mask)) {
1089 rcu_read_unlock();
1090 return;
1091 }
1092 }
1093 rcu_read_unlock();
1094 }
1095
1096 /* Generate domain masks and attrs */
1097 ndoms = generate_sched_domains(&doms, &attr);
1098
1099 /* Have scheduler rebuild the domains */
1100 partition_and_rebuild_sched_domains(ndoms, doms, attr);
1101 }
1102 #else /* !CONFIG_SMP */
rebuild_sched_domains_locked(void)1103 static void rebuild_sched_domains_locked(void)
1104 {
1105 }
1106 #endif /* CONFIG_SMP */
1107
rebuild_sched_domains(void)1108 void rebuild_sched_domains(void)
1109 {
1110 cpus_read_lock();
1111 mutex_lock(&cpuset_mutex);
1112 rebuild_sched_domains_locked();
1113 mutex_unlock(&cpuset_mutex);
1114 cpus_read_unlock();
1115 }
1116 EXPORT_SYMBOL_GPL(rebuild_sched_domains);
1117
update_cpus_allowed(struct cpuset * cs,struct task_struct * p,const struct cpumask * new_mask)1118 static int update_cpus_allowed(struct cpuset *cs, struct task_struct *p,
1119 const struct cpumask *new_mask)
1120 {
1121 int ret = -EINVAL;
1122
1123 trace_android_rvh_update_cpus_allowed(p, cs->cpus_requested, new_mask, &ret);
1124 if (!ret)
1125 return ret;
1126
1127 return set_cpus_allowed_ptr(p, new_mask);
1128 }
1129
1130 /**
1131 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1132 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1133 *
1134 * Iterate through each task of @cs updating its cpus_allowed to the
1135 * effective cpuset's. As this function is called with cpuset_mutex held,
1136 * cpuset membership stays stable.
1137 */
update_tasks_cpumask(struct cpuset * cs)1138 static void update_tasks_cpumask(struct cpuset *cs)
1139 {
1140 struct css_task_iter it;
1141 struct task_struct *task;
1142 bool top_cs = cs == &top_cpuset;
1143
1144 css_task_iter_start(&cs->css, 0, &it);
1145 while ((task = css_task_iter_next(&it))) {
1146 /*
1147 * Percpu kthreads in top_cpuset are ignored
1148 */
1149 if (top_cs && (task->flags & PF_KTHREAD) &&
1150 kthread_is_per_cpu(task))
1151 continue;
1152 update_cpus_allowed(cs, task, cs->effective_cpus);
1153 }
1154 css_task_iter_end(&it);
1155 }
1156
1157 /**
1158 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1159 * @new_cpus: the temp variable for the new effective_cpus mask
1160 * @cs: the cpuset the need to recompute the new effective_cpus mask
1161 * @parent: the parent cpuset
1162 *
1163 * If the parent has subpartition CPUs, include them in the list of
1164 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1165 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1166 * to mask those out.
1167 */
compute_effective_cpumask(struct cpumask * new_cpus,struct cpuset * cs,struct cpuset * parent)1168 static void compute_effective_cpumask(struct cpumask *new_cpus,
1169 struct cpuset *cs, struct cpuset *parent)
1170 {
1171 if (parent->nr_subparts_cpus) {
1172 cpumask_or(new_cpus, parent->effective_cpus,
1173 parent->subparts_cpus);
1174 cpumask_and(new_cpus, new_cpus, cs->cpus_requested);
1175 cpumask_and(new_cpus, new_cpus, cpu_active_mask);
1176 } else {
1177 cpumask_and(new_cpus, cs->cpus_requested, parent_cs(cs)->effective_cpus);
1178 }
1179 }
1180
1181 /*
1182 * Commands for update_parent_subparts_cpumask
1183 */
1184 enum subparts_cmd {
1185 partcmd_enable, /* Enable partition root */
1186 partcmd_disable, /* Disable partition root */
1187 partcmd_update, /* Update parent's subparts_cpus */
1188 };
1189
1190 /**
1191 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1192 * @cpuset: The cpuset that requests change in partition root state
1193 * @cmd: Partition root state change command
1194 * @newmask: Optional new cpumask for partcmd_update
1195 * @tmp: Temporary addmask and delmask
1196 * Return: 0, 1 or an error code
1197 *
1198 * For partcmd_enable, the cpuset is being transformed from a non-partition
1199 * root to a partition root. The cpus_allowed mask of the given cpuset will
1200 * be put into parent's subparts_cpus and taken away from parent's
1201 * effective_cpus. The function will return 0 if all the CPUs listed in
1202 * cpus_allowed can be granted or an error code will be returned.
1203 *
1204 * For partcmd_disable, the cpuset is being transofrmed from a partition
1205 * root back to a non-partition root. Any CPUs in cpus_allowed that are in
1206 * parent's subparts_cpus will be taken away from that cpumask and put back
1207 * into parent's effective_cpus. 0 should always be returned.
1208 *
1209 * For partcmd_update, if the optional newmask is specified, the cpu
1210 * list is to be changed from cpus_allowed to newmask. Otherwise,
1211 * cpus_allowed is assumed to remain the same. The cpuset should either
1212 * be a partition root or an invalid partition root. The partition root
1213 * state may change if newmask is NULL and none of the requested CPUs can
1214 * be granted by the parent. The function will return 1 if changes to
1215 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1216 * Error code should only be returned when newmask is non-NULL.
1217 *
1218 * The partcmd_enable and partcmd_disable commands are used by
1219 * update_prstate(). The partcmd_update command is used by
1220 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1221 * newmask set.
1222 *
1223 * The checking is more strict when enabling partition root than the
1224 * other two commands.
1225 *
1226 * Because of the implicit cpu exclusive nature of a partition root,
1227 * cpumask changes that violates the cpu exclusivity rule will not be
1228 * permitted when checked by validate_change(). The validate_change()
1229 * function will also prevent any changes to the cpu list if it is not
1230 * a superset of children's cpu lists.
1231 */
update_parent_subparts_cpumask(struct cpuset * cpuset,int cmd,struct cpumask * newmask,struct tmpmasks * tmp)1232 static int update_parent_subparts_cpumask(struct cpuset *cpuset, int cmd,
1233 struct cpumask *newmask,
1234 struct tmpmasks *tmp)
1235 {
1236 struct cpuset *parent = parent_cs(cpuset);
1237 int adding; /* Moving cpus from effective_cpus to subparts_cpus */
1238 int deleting; /* Moving cpus from subparts_cpus to effective_cpus */
1239 int old_prs, new_prs;
1240 bool part_error = false; /* Partition error? */
1241
1242 lockdep_assert_held(&cpuset_mutex);
1243
1244 /*
1245 * The parent must be a partition root.
1246 * The new cpumask, if present, or the current cpus_allowed must
1247 * not be empty.
1248 */
1249 if (!is_partition_root(parent) ||
1250 (newmask && cpumask_empty(newmask)) ||
1251 (!newmask && cpumask_empty(cpuset->cpus_allowed)))
1252 return -EINVAL;
1253
1254 /*
1255 * Enabling/disabling partition root is not allowed if there are
1256 * online children.
1257 */
1258 if ((cmd != partcmd_update) && css_has_online_children(&cpuset->css))
1259 return -EBUSY;
1260
1261 /*
1262 * Enabling partition root is not allowed if not all the CPUs
1263 * can be granted from parent's effective_cpus or at least one
1264 * CPU will be left after that.
1265 */
1266 if ((cmd == partcmd_enable) &&
1267 (!cpumask_subset(cpuset->cpus_allowed, parent->effective_cpus) ||
1268 cpumask_equal(cpuset->cpus_allowed, parent->effective_cpus)))
1269 return -EINVAL;
1270
1271 /*
1272 * A cpumask update cannot make parent's effective_cpus become empty.
1273 */
1274 adding = deleting = false;
1275 old_prs = new_prs = cpuset->partition_root_state;
1276 if (cmd == partcmd_enable) {
1277 cpumask_copy(tmp->addmask, cpuset->cpus_allowed);
1278 adding = true;
1279 } else if (cmd == partcmd_disable) {
1280 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1281 parent->subparts_cpus);
1282 } else if (newmask) {
1283 /*
1284 * partcmd_update with newmask:
1285 *
1286 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1287 * addmask = newmask & parent->effective_cpus
1288 * & ~parent->subparts_cpus
1289 */
1290 cpumask_andnot(tmp->delmask, cpuset->cpus_allowed, newmask);
1291 deleting = cpumask_and(tmp->delmask, tmp->delmask,
1292 parent->subparts_cpus);
1293
1294 cpumask_and(tmp->addmask, newmask, parent->effective_cpus);
1295 adding = cpumask_andnot(tmp->addmask, tmp->addmask,
1296 parent->subparts_cpus);
1297 /*
1298 * Return error if the new effective_cpus could become empty.
1299 */
1300 if (adding &&
1301 cpumask_equal(parent->effective_cpus, tmp->addmask)) {
1302 if (!deleting)
1303 return -EINVAL;
1304 /*
1305 * As some of the CPUs in subparts_cpus might have
1306 * been offlined, we need to compute the real delmask
1307 * to confirm that.
1308 */
1309 if (!cpumask_and(tmp->addmask, tmp->delmask,
1310 cpu_active_mask))
1311 return -EINVAL;
1312 cpumask_copy(tmp->addmask, parent->effective_cpus);
1313 }
1314 } else {
1315 /*
1316 * partcmd_update w/o newmask:
1317 *
1318 * addmask = cpus_allowed & parent->effective_cpus
1319 *
1320 * Note that parent's subparts_cpus may have been
1321 * pre-shrunk in case there is a change in the cpu list.
1322 * So no deletion is needed.
1323 */
1324 adding = cpumask_and(tmp->addmask, cpuset->cpus_allowed,
1325 parent->effective_cpus);
1326 part_error = cpumask_equal(tmp->addmask,
1327 parent->effective_cpus);
1328 }
1329
1330 if (cmd == partcmd_update) {
1331 int prev_prs = cpuset->partition_root_state;
1332
1333 /*
1334 * Check for possible transition between PRS_ENABLED
1335 * and PRS_ERROR.
1336 */
1337 switch (cpuset->partition_root_state) {
1338 case PRS_ENABLED:
1339 if (part_error)
1340 new_prs = PRS_ERROR;
1341 break;
1342 case PRS_ERROR:
1343 if (!part_error)
1344 new_prs = PRS_ENABLED;
1345 break;
1346 }
1347 /*
1348 * Set part_error if previously in invalid state.
1349 */
1350 part_error = (prev_prs == PRS_ERROR);
1351 }
1352
1353 if (!part_error && (new_prs == PRS_ERROR))
1354 return 0; /* Nothing need to be done */
1355
1356 if (new_prs == PRS_ERROR) {
1357 /*
1358 * Remove all its cpus from parent's subparts_cpus.
1359 */
1360 adding = false;
1361 deleting = cpumask_and(tmp->delmask, cpuset->cpus_allowed,
1362 parent->subparts_cpus);
1363 }
1364
1365 if (!adding && !deleting && (new_prs == old_prs))
1366 return 0;
1367
1368 /*
1369 * Change the parent's subparts_cpus.
1370 * Newly added CPUs will be removed from effective_cpus and
1371 * newly deleted ones will be added back to effective_cpus.
1372 */
1373 spin_lock_irq(&callback_lock);
1374 if (adding) {
1375 cpumask_or(parent->subparts_cpus,
1376 parent->subparts_cpus, tmp->addmask);
1377 cpumask_andnot(parent->effective_cpus,
1378 parent->effective_cpus, tmp->addmask);
1379 }
1380 if (deleting) {
1381 cpumask_andnot(parent->subparts_cpus,
1382 parent->subparts_cpus, tmp->delmask);
1383 /*
1384 * Some of the CPUs in subparts_cpus might have been offlined.
1385 */
1386 cpumask_and(tmp->delmask, tmp->delmask, cpu_active_mask);
1387 cpumask_or(parent->effective_cpus,
1388 parent->effective_cpus, tmp->delmask);
1389 }
1390
1391 parent->nr_subparts_cpus = cpumask_weight(parent->subparts_cpus);
1392
1393 if (old_prs != new_prs)
1394 cpuset->partition_root_state = new_prs;
1395
1396 spin_unlock_irq(&callback_lock);
1397 notify_partition_change(cpuset, old_prs, new_prs);
1398
1399 return cmd == partcmd_update;
1400 }
1401
1402 /*
1403 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1404 * @cs: the cpuset to consider
1405 * @tmp: temp variables for calculating effective_cpus & partition setup
1406 *
1407 * When configured cpumask is changed, the effective cpumasks of this cpuset
1408 * and all its descendants need to be updated.
1409 *
1410 * On legacy hierarchy, effective_cpus will be the same with cpu_allowed.
1411 *
1412 * Called with cpuset_mutex held
1413 */
update_cpumasks_hier(struct cpuset * cs,struct tmpmasks * tmp)1414 static void update_cpumasks_hier(struct cpuset *cs, struct tmpmasks *tmp)
1415 {
1416 struct cpuset *cp;
1417 struct cgroup_subsys_state *pos_css;
1418 bool need_rebuild_sched_domains = false;
1419 int old_prs, new_prs;
1420
1421 rcu_read_lock();
1422 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1423 struct cpuset *parent = parent_cs(cp);
1424
1425 compute_effective_cpumask(tmp->new_cpus, cp, parent);
1426
1427 /*
1428 * If it becomes empty, inherit the effective mask of the
1429 * parent, which is guaranteed to have some CPUs.
1430 */
1431 if (is_in_v2_mode() && cpumask_empty(tmp->new_cpus)) {
1432 cpumask_copy(tmp->new_cpus, parent->effective_cpus);
1433 if (!cp->use_parent_ecpus) {
1434 cp->use_parent_ecpus = true;
1435 parent->child_ecpus_count++;
1436 }
1437 } else if (cp->use_parent_ecpus) {
1438 cp->use_parent_ecpus = false;
1439 WARN_ON_ONCE(!parent->child_ecpus_count);
1440 parent->child_ecpus_count--;
1441 }
1442
1443 /*
1444 * Skip the whole subtree if the cpumask remains the same
1445 * and has no partition root state.
1446 */
1447 if (!cp->partition_root_state &&
1448 cpumask_equal(tmp->new_cpus, cp->effective_cpus)) {
1449 pos_css = css_rightmost_descendant(pos_css);
1450 continue;
1451 }
1452
1453 /*
1454 * update_parent_subparts_cpumask() should have been called
1455 * for cs already in update_cpumask(). We should also call
1456 * update_tasks_cpumask() again for tasks in the parent
1457 * cpuset if the parent's subparts_cpus changes.
1458 */
1459 old_prs = new_prs = cp->partition_root_state;
1460 if ((cp != cs) && old_prs) {
1461 switch (parent->partition_root_state) {
1462 case PRS_DISABLED:
1463 /*
1464 * If parent is not a partition root or an
1465 * invalid partition root, clear its state
1466 * and its CS_CPU_EXCLUSIVE flag.
1467 */
1468 WARN_ON_ONCE(cp->partition_root_state
1469 != PRS_ERROR);
1470 new_prs = PRS_DISABLED;
1471
1472 /*
1473 * clear_bit() is an atomic operation and
1474 * readers aren't interested in the state
1475 * of CS_CPU_EXCLUSIVE anyway. So we can
1476 * just update the flag without holding
1477 * the callback_lock.
1478 */
1479 clear_bit(CS_CPU_EXCLUSIVE, &cp->flags);
1480 break;
1481
1482 case PRS_ENABLED:
1483 if (update_parent_subparts_cpumask(cp, partcmd_update, NULL, tmp))
1484 update_tasks_cpumask(parent);
1485 break;
1486
1487 case PRS_ERROR:
1488 /*
1489 * When parent is invalid, it has to be too.
1490 */
1491 new_prs = PRS_ERROR;
1492 break;
1493 }
1494 }
1495
1496 if (!css_tryget_online(&cp->css))
1497 continue;
1498 rcu_read_unlock();
1499
1500 spin_lock_irq(&callback_lock);
1501
1502 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1503 if (cp->nr_subparts_cpus && (new_prs != PRS_ENABLED)) {
1504 cp->nr_subparts_cpus = 0;
1505 cpumask_clear(cp->subparts_cpus);
1506 } else if (cp->nr_subparts_cpus) {
1507 /*
1508 * Make sure that effective_cpus & subparts_cpus
1509 * are mutually exclusive.
1510 *
1511 * In the unlikely event that effective_cpus
1512 * becomes empty. we clear cp->nr_subparts_cpus and
1513 * let its child partition roots to compete for
1514 * CPUs again.
1515 */
1516 cpumask_andnot(cp->effective_cpus, cp->effective_cpus,
1517 cp->subparts_cpus);
1518 if (cpumask_empty(cp->effective_cpus)) {
1519 cpumask_copy(cp->effective_cpus, tmp->new_cpus);
1520 cpumask_clear(cp->subparts_cpus);
1521 cp->nr_subparts_cpus = 0;
1522 } else if (!cpumask_subset(cp->subparts_cpus,
1523 tmp->new_cpus)) {
1524 cpumask_andnot(cp->subparts_cpus,
1525 cp->subparts_cpus, tmp->new_cpus);
1526 cp->nr_subparts_cpus
1527 = cpumask_weight(cp->subparts_cpus);
1528 }
1529 }
1530
1531 if (new_prs != old_prs)
1532 cp->partition_root_state = new_prs;
1533
1534 spin_unlock_irq(&callback_lock);
1535 notify_partition_change(cp, old_prs, new_prs);
1536
1537 WARN_ON(!is_in_v2_mode() &&
1538 !cpumask_equal(cp->cpus_allowed, cp->effective_cpus));
1539
1540 update_tasks_cpumask(cp);
1541
1542 /*
1543 * On legacy hierarchy, if the effective cpumask of any non-
1544 * empty cpuset is changed, we need to rebuild sched domains.
1545 * On default hierarchy, the cpuset needs to be a partition
1546 * root as well.
1547 */
1548 if (!cpumask_empty(cp->cpus_allowed) &&
1549 is_sched_load_balance(cp) &&
1550 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) ||
1551 is_partition_root(cp)))
1552 need_rebuild_sched_domains = true;
1553
1554 rcu_read_lock();
1555 css_put(&cp->css);
1556 }
1557 rcu_read_unlock();
1558
1559 if (need_rebuild_sched_domains)
1560 rebuild_sched_domains_locked();
1561 }
1562
1563 /**
1564 * update_sibling_cpumasks - Update siblings cpumasks
1565 * @parent: Parent cpuset
1566 * @cs: Current cpuset
1567 * @tmp: Temp variables
1568 */
update_sibling_cpumasks(struct cpuset * parent,struct cpuset * cs,struct tmpmasks * tmp)1569 static void update_sibling_cpumasks(struct cpuset *parent, struct cpuset *cs,
1570 struct tmpmasks *tmp)
1571 {
1572 struct cpuset *sibling;
1573 struct cgroup_subsys_state *pos_css;
1574
1575 lockdep_assert_held(&cpuset_mutex);
1576
1577 /*
1578 * Check all its siblings and call update_cpumasks_hier()
1579 * if their use_parent_ecpus flag is set in order for them
1580 * to use the right effective_cpus value.
1581 *
1582 * The update_cpumasks_hier() function may sleep. So we have to
1583 * release the RCU read lock before calling it.
1584 */
1585 rcu_read_lock();
1586 cpuset_for_each_child(sibling, pos_css, parent) {
1587 if (sibling == cs)
1588 continue;
1589 if (!sibling->use_parent_ecpus)
1590 continue;
1591 if (!css_tryget_online(&sibling->css))
1592 continue;
1593
1594 rcu_read_unlock();
1595 update_cpumasks_hier(sibling, tmp);
1596 rcu_read_lock();
1597 css_put(&sibling->css);
1598 }
1599 rcu_read_unlock();
1600 }
1601
1602 /**
1603 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1604 * @cs: the cpuset to consider
1605 * @trialcs: trial cpuset
1606 * @buf: buffer of cpu numbers written to this cpuset
1607 */
update_cpumask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1608 static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
1609 const char *buf)
1610 {
1611 int retval;
1612 struct tmpmasks tmp;
1613
1614 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1615 if (cs == &top_cpuset)
1616 return -EACCES;
1617
1618 /*
1619 * An empty cpus_requested is ok only if the cpuset has no tasks.
1620 * Since cpulist_parse() fails on an empty mask, we special case
1621 * that parsing. The validate_change() call ensures that cpusets
1622 * with tasks have cpus.
1623 */
1624 if (!*buf) {
1625 cpumask_clear(trialcs->cpus_requested);
1626 } else {
1627 retval = cpulist_parse(buf, trialcs->cpus_requested);
1628 if (retval < 0)
1629 return retval;
1630 }
1631
1632 if (!cpumask_subset(trialcs->cpus_requested, cpu_present_mask))
1633 return -EINVAL;
1634
1635 cpumask_and(trialcs->cpus_allowed, trialcs->cpus_requested, cpu_active_mask);
1636
1637 /* Nothing to do if the cpus didn't change */
1638 if (cpumask_equal(cs->cpus_requested, trialcs->cpus_requested))
1639 return 0;
1640
1641 retval = validate_change(cs, trialcs);
1642 if (retval < 0)
1643 return retval;
1644
1645 #ifdef CONFIG_CPUMASK_OFFSTACK
1646 /*
1647 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1648 * to allocated cpumasks.
1649 */
1650 tmp.addmask = trialcs->subparts_cpus;
1651 tmp.delmask = trialcs->effective_cpus;
1652 tmp.new_cpus = trialcs->cpus_allowed;
1653 #endif
1654
1655 if (cs->partition_root_state) {
1656 /* Cpumask of a partition root cannot be empty */
1657 if (cpumask_empty(trialcs->cpus_allowed))
1658 return -EINVAL;
1659 if (update_parent_subparts_cpumask(cs, partcmd_update,
1660 trialcs->cpus_allowed, &tmp) < 0)
1661 return -EINVAL;
1662 }
1663
1664 spin_lock_irq(&callback_lock);
1665 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
1666 cpumask_copy(cs->cpus_requested, trialcs->cpus_requested);
1667
1668 /*
1669 * Make sure that subparts_cpus is a subset of cpus_allowed.
1670 */
1671 if (cs->nr_subparts_cpus) {
1672 cpumask_and(cs->subparts_cpus, cs->subparts_cpus, cs->cpus_allowed);
1673 cs->nr_subparts_cpus = cpumask_weight(cs->subparts_cpus);
1674 }
1675 spin_unlock_irq(&callback_lock);
1676
1677 update_cpumasks_hier(cs, &tmp);
1678
1679 if (cs->partition_root_state) {
1680 struct cpuset *parent = parent_cs(cs);
1681
1682 /*
1683 * For partition root, update the cpumasks of sibling
1684 * cpusets if they use parent's effective_cpus.
1685 */
1686 if (parent->child_ecpus_count)
1687 update_sibling_cpumasks(parent, cs, &tmp);
1688 }
1689 return 0;
1690 }
1691
1692 /*
1693 * Migrate memory region from one set of nodes to another. This is
1694 * performed asynchronously as it can be called from process migration path
1695 * holding locks involved in process management. All mm migrations are
1696 * performed in the queued order and can be waited for by flushing
1697 * cpuset_migrate_mm_wq.
1698 */
1699
1700 struct cpuset_migrate_mm_work {
1701 struct work_struct work;
1702 struct mm_struct *mm;
1703 nodemask_t from;
1704 nodemask_t to;
1705 };
1706
cpuset_migrate_mm_workfn(struct work_struct * work)1707 static void cpuset_migrate_mm_workfn(struct work_struct *work)
1708 {
1709 struct cpuset_migrate_mm_work *mwork =
1710 container_of(work, struct cpuset_migrate_mm_work, work);
1711
1712 /* on a wq worker, no need to worry about %current's mems_allowed */
1713 do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL);
1714 mmput(mwork->mm);
1715 kfree(mwork);
1716 }
1717
cpuset_migrate_mm(struct mm_struct * mm,const nodemask_t * from,const nodemask_t * to)1718 static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
1719 const nodemask_t *to)
1720 {
1721 struct cpuset_migrate_mm_work *mwork;
1722
1723 if (nodes_equal(*from, *to)) {
1724 mmput(mm);
1725 return;
1726 }
1727
1728 mwork = kzalloc(sizeof(*mwork), GFP_KERNEL);
1729 if (mwork) {
1730 mwork->mm = mm;
1731 mwork->from = *from;
1732 mwork->to = *to;
1733 INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn);
1734 queue_work(cpuset_migrate_mm_wq, &mwork->work);
1735 } else {
1736 mmput(mm);
1737 }
1738 }
1739
cpuset_post_attach(void)1740 static void cpuset_post_attach(void)
1741 {
1742 flush_workqueue(cpuset_migrate_mm_wq);
1743 }
1744
1745 /*
1746 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1747 * @tsk: the task to change
1748 * @newmems: new nodes that the task will be set
1749 *
1750 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1751 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1752 * parallel, it might temporarily see an empty intersection, which results in
1753 * a seqlock check and retry before OOM or allocation failure.
1754 */
cpuset_change_task_nodemask(struct task_struct * tsk,nodemask_t * newmems)1755 static void cpuset_change_task_nodemask(struct task_struct *tsk,
1756 nodemask_t *newmems)
1757 {
1758 task_lock(tsk);
1759
1760 local_irq_disable();
1761 write_seqcount_begin(&tsk->mems_allowed_seq);
1762
1763 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1764 mpol_rebind_task(tsk, newmems);
1765 tsk->mems_allowed = *newmems;
1766
1767 write_seqcount_end(&tsk->mems_allowed_seq);
1768 local_irq_enable();
1769
1770 task_unlock(tsk);
1771 }
1772
1773 static void *cpuset_being_rebound;
1774
1775 /**
1776 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1777 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1778 *
1779 * Iterate through each task of @cs updating its mems_allowed to the
1780 * effective cpuset's. As this function is called with cpuset_mutex held,
1781 * cpuset membership stays stable.
1782 */
update_tasks_nodemask(struct cpuset * cs)1783 static void update_tasks_nodemask(struct cpuset *cs)
1784 {
1785 static nodemask_t newmems; /* protected by cpuset_mutex */
1786 struct css_task_iter it;
1787 struct task_struct *task;
1788
1789 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
1790
1791 guarantee_online_mems(cs, &newmems);
1792
1793 /*
1794 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1795 * take while holding tasklist_lock. Forks can happen - the
1796 * mpol_dup() cpuset_being_rebound check will catch such forks,
1797 * and rebind their vma mempolicies too. Because we still hold
1798 * the global cpuset_mutex, we know that no other rebind effort
1799 * will be contending for the global variable cpuset_being_rebound.
1800 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1801 * is idempotent. Also migrate pages in each mm to new nodes.
1802 */
1803 css_task_iter_start(&cs->css, 0, &it);
1804 while ((task = css_task_iter_next(&it))) {
1805 struct mm_struct *mm;
1806 bool migrate;
1807
1808 cpuset_change_task_nodemask(task, &newmems);
1809
1810 mm = get_task_mm(task);
1811 if (!mm)
1812 continue;
1813
1814 migrate = is_memory_migrate(cs);
1815
1816 mpol_rebind_mm(mm, &cs->mems_allowed);
1817 if (migrate)
1818 cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems);
1819 else
1820 mmput(mm);
1821 }
1822 css_task_iter_end(&it);
1823
1824 /*
1825 * All the tasks' nodemasks have been updated, update
1826 * cs->old_mems_allowed.
1827 */
1828 cs->old_mems_allowed = newmems;
1829
1830 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1831 cpuset_being_rebound = NULL;
1832 }
1833
1834 /*
1835 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1836 * @cs: the cpuset to consider
1837 * @new_mems: a temp variable for calculating new effective_mems
1838 *
1839 * When configured nodemask is changed, the effective nodemasks of this cpuset
1840 * and all its descendants need to be updated.
1841 *
1842 * On legacy hierarchy, effective_mems will be the same with mems_allowed.
1843 *
1844 * Called with cpuset_mutex held
1845 */
update_nodemasks_hier(struct cpuset * cs,nodemask_t * new_mems)1846 static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems)
1847 {
1848 struct cpuset *cp;
1849 struct cgroup_subsys_state *pos_css;
1850
1851 rcu_read_lock();
1852 cpuset_for_each_descendant_pre(cp, pos_css, cs) {
1853 struct cpuset *parent = parent_cs(cp);
1854
1855 nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems);
1856
1857 /*
1858 * If it becomes empty, inherit the effective mask of the
1859 * parent, which is guaranteed to have some MEMs.
1860 */
1861 if (is_in_v2_mode() && nodes_empty(*new_mems))
1862 *new_mems = parent->effective_mems;
1863
1864 /* Skip the whole subtree if the nodemask remains the same. */
1865 if (nodes_equal(*new_mems, cp->effective_mems)) {
1866 pos_css = css_rightmost_descendant(pos_css);
1867 continue;
1868 }
1869
1870 if (!css_tryget_online(&cp->css))
1871 continue;
1872 rcu_read_unlock();
1873
1874 spin_lock_irq(&callback_lock);
1875 cp->effective_mems = *new_mems;
1876 spin_unlock_irq(&callback_lock);
1877
1878 WARN_ON(!is_in_v2_mode() &&
1879 !nodes_equal(cp->mems_allowed, cp->effective_mems));
1880
1881 update_tasks_nodemask(cp);
1882
1883 rcu_read_lock();
1884 css_put(&cp->css);
1885 }
1886 rcu_read_unlock();
1887 }
1888
1889 /*
1890 * Handle user request to change the 'mems' memory placement
1891 * of a cpuset. Needs to validate the request, update the
1892 * cpusets mems_allowed, and for each task in the cpuset,
1893 * update mems_allowed and rebind task's mempolicy and any vma
1894 * mempolicies and if the cpuset is marked 'memory_migrate',
1895 * migrate the tasks pages to the new memory.
1896 *
1897 * Call with cpuset_mutex held. May take callback_lock during call.
1898 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1899 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1900 * their mempolicies to the cpusets new mems_allowed.
1901 */
update_nodemask(struct cpuset * cs,struct cpuset * trialcs,const char * buf)1902 static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1903 const char *buf)
1904 {
1905 int retval;
1906
1907 /*
1908 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1909 * it's read-only
1910 */
1911 if (cs == &top_cpuset) {
1912 retval = -EACCES;
1913 goto done;
1914 }
1915
1916 /*
1917 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1918 * Since nodelist_parse() fails on an empty mask, we special case
1919 * that parsing. The validate_change() call ensures that cpusets
1920 * with tasks have memory.
1921 */
1922 if (!*buf) {
1923 nodes_clear(trialcs->mems_allowed);
1924 } else {
1925 retval = nodelist_parse(buf, trialcs->mems_allowed);
1926 if (retval < 0)
1927 goto done;
1928
1929 if (!nodes_subset(trialcs->mems_allowed,
1930 top_cpuset.mems_allowed)) {
1931 retval = -EINVAL;
1932 goto done;
1933 }
1934 }
1935
1936 if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) {
1937 retval = 0; /* Too easy - nothing to do */
1938 goto done;
1939 }
1940 retval = validate_change(cs, trialcs);
1941 if (retval < 0)
1942 goto done;
1943
1944 spin_lock_irq(&callback_lock);
1945 cs->mems_allowed = trialcs->mems_allowed;
1946 spin_unlock_irq(&callback_lock);
1947
1948 /* use trialcs->mems_allowed as a temp variable */
1949 update_nodemasks_hier(cs, &trialcs->mems_allowed);
1950 done:
1951 return retval;
1952 }
1953
current_cpuset_is_being_rebound(void)1954 bool current_cpuset_is_being_rebound(void)
1955 {
1956 bool ret;
1957
1958 rcu_read_lock();
1959 ret = task_cs(current) == cpuset_being_rebound;
1960 rcu_read_unlock();
1961
1962 return ret;
1963 }
1964
update_relax_domain_level(struct cpuset * cs,s64 val)1965 static int update_relax_domain_level(struct cpuset *cs, s64 val)
1966 {
1967 #ifdef CONFIG_SMP
1968 if (val < -1 || val >= sched_domain_level_max)
1969 return -EINVAL;
1970 #endif
1971
1972 if (val != cs->relax_domain_level) {
1973 cs->relax_domain_level = val;
1974 if (!cpumask_empty(cs->cpus_allowed) &&
1975 is_sched_load_balance(cs))
1976 rebuild_sched_domains_locked();
1977 }
1978
1979 return 0;
1980 }
1981
1982 /**
1983 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1984 * @cs: the cpuset in which each task's spread flags needs to be changed
1985 *
1986 * Iterate through each task of @cs updating its spread flags. As this
1987 * function is called with cpuset_mutex held, cpuset membership stays
1988 * stable.
1989 */
update_tasks_flags(struct cpuset * cs)1990 static void update_tasks_flags(struct cpuset *cs)
1991 {
1992 struct css_task_iter it;
1993 struct task_struct *task;
1994
1995 css_task_iter_start(&cs->css, 0, &it);
1996 while ((task = css_task_iter_next(&it)))
1997 cpuset_update_task_spread_flag(cs, task);
1998 css_task_iter_end(&it);
1999 }
2000
2001 /*
2002 * update_flag - read a 0 or a 1 in a file and update associated flag
2003 * bit: the bit to update (see cpuset_flagbits_t)
2004 * cs: the cpuset to update
2005 * turning_on: whether the flag is being set or cleared
2006 *
2007 * Call with cpuset_mutex held.
2008 */
2009
update_flag(cpuset_flagbits_t bit,struct cpuset * cs,int turning_on)2010 static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
2011 int turning_on)
2012 {
2013 struct cpuset *trialcs;
2014 int balance_flag_changed;
2015 int spread_flag_changed;
2016 int err;
2017
2018 trialcs = alloc_trial_cpuset(cs);
2019 if (!trialcs)
2020 return -ENOMEM;
2021
2022 if (turning_on)
2023 set_bit(bit, &trialcs->flags);
2024 else
2025 clear_bit(bit, &trialcs->flags);
2026
2027 err = validate_change(cs, trialcs);
2028 if (err < 0)
2029 goto out;
2030
2031 balance_flag_changed = (is_sched_load_balance(cs) !=
2032 is_sched_load_balance(trialcs));
2033
2034 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
2035 || (is_spread_page(cs) != is_spread_page(trialcs)));
2036
2037 spin_lock_irq(&callback_lock);
2038 cs->flags = trialcs->flags;
2039 spin_unlock_irq(&callback_lock);
2040
2041 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
2042 rebuild_sched_domains_locked();
2043
2044 if (spread_flag_changed)
2045 update_tasks_flags(cs);
2046 out:
2047 free_cpuset(trialcs);
2048 return err;
2049 }
2050
2051 /*
2052 * update_prstate - update partititon_root_state
2053 * cs: the cpuset to update
2054 * new_prs: new partition root state
2055 *
2056 * Call with cpuset_mutex held.
2057 */
update_prstate(struct cpuset * cs,int new_prs)2058 static int update_prstate(struct cpuset *cs, int new_prs)
2059 {
2060 int err, old_prs = cs->partition_root_state;
2061 struct cpuset *parent = parent_cs(cs);
2062 struct tmpmasks tmpmask;
2063
2064 if (old_prs == new_prs)
2065 return 0;
2066
2067 /*
2068 * Cannot force a partial or invalid partition root to a full
2069 * partition root.
2070 */
2071 if (new_prs && (old_prs == PRS_ERROR))
2072 return -EINVAL;
2073
2074 if (alloc_cpumasks(NULL, &tmpmask))
2075 return -ENOMEM;
2076
2077 err = -EINVAL;
2078 if (!old_prs) {
2079 /*
2080 * Turning on partition root requires setting the
2081 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
2082 * cannot be NULL.
2083 */
2084 if (cpumask_empty(cs->cpus_allowed))
2085 goto out;
2086
2087 err = update_flag(CS_CPU_EXCLUSIVE, cs, 1);
2088 if (err)
2089 goto out;
2090
2091 err = update_parent_subparts_cpumask(cs, partcmd_enable,
2092 NULL, &tmpmask);
2093 if (err) {
2094 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2095 goto out;
2096 }
2097 } else {
2098 /*
2099 * Turning off partition root will clear the
2100 * CS_CPU_EXCLUSIVE bit.
2101 */
2102 if (old_prs == PRS_ERROR) {
2103 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2104 err = 0;
2105 goto out;
2106 }
2107
2108 err = update_parent_subparts_cpumask(cs, partcmd_disable,
2109 NULL, &tmpmask);
2110 if (err)
2111 goto out;
2112
2113 /* Turning off CS_CPU_EXCLUSIVE will not return error */
2114 update_flag(CS_CPU_EXCLUSIVE, cs, 0);
2115 }
2116
2117 update_tasks_cpumask(parent);
2118
2119 if (parent->child_ecpus_count)
2120 update_sibling_cpumasks(parent, cs, &tmpmask);
2121
2122 rebuild_sched_domains_locked();
2123 out:
2124 if (!err) {
2125 spin_lock_irq(&callback_lock);
2126 cs->partition_root_state = new_prs;
2127 spin_unlock_irq(&callback_lock);
2128 notify_partition_change(cs, old_prs, new_prs);
2129 }
2130
2131 free_cpumasks(NULL, &tmpmask);
2132 return err;
2133 }
2134
2135 /*
2136 * Frequency meter - How fast is some event occurring?
2137 *
2138 * These routines manage a digitally filtered, constant time based,
2139 * event frequency meter. There are four routines:
2140 * fmeter_init() - initialize a frequency meter.
2141 * fmeter_markevent() - called each time the event happens.
2142 * fmeter_getrate() - returns the recent rate of such events.
2143 * fmeter_update() - internal routine used to update fmeter.
2144 *
2145 * A common data structure is passed to each of these routines,
2146 * which is used to keep track of the state required to manage the
2147 * frequency meter and its digital filter.
2148 *
2149 * The filter works on the number of events marked per unit time.
2150 * The filter is single-pole low-pass recursive (IIR). The time unit
2151 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2152 * simulate 3 decimal digits of precision (multiplied by 1000).
2153 *
2154 * With an FM_COEF of 933, and a time base of 1 second, the filter
2155 * has a half-life of 10 seconds, meaning that if the events quit
2156 * happening, then the rate returned from the fmeter_getrate()
2157 * will be cut in half each 10 seconds, until it converges to zero.
2158 *
2159 * It is not worth doing a real infinitely recursive filter. If more
2160 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2161 * just compute FM_MAXTICKS ticks worth, by which point the level
2162 * will be stable.
2163 *
2164 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2165 * arithmetic overflow in the fmeter_update() routine.
2166 *
2167 * Given the simple 32 bit integer arithmetic used, this meter works
2168 * best for reporting rates between one per millisecond (msec) and
2169 * one per 32 (approx) seconds. At constant rates faster than one
2170 * per msec it maxes out at values just under 1,000,000. At constant
2171 * rates between one per msec, and one per second it will stabilize
2172 * to a value N*1000, where N is the rate of events per second.
2173 * At constant rates between one per second and one per 32 seconds,
2174 * it will be choppy, moving up on the seconds that have an event,
2175 * and then decaying until the next event. At rates slower than
2176 * about one in 32 seconds, it decays all the way back to zero between
2177 * each event.
2178 */
2179
2180 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2181 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2182 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2183 #define FM_SCALE 1000 /* faux fixed point scale */
2184
2185 /* Initialize a frequency meter */
fmeter_init(struct fmeter * fmp)2186 static void fmeter_init(struct fmeter *fmp)
2187 {
2188 fmp->cnt = 0;
2189 fmp->val = 0;
2190 fmp->time = 0;
2191 spin_lock_init(&fmp->lock);
2192 }
2193
2194 /* Internal meter update - process cnt events and update value */
fmeter_update(struct fmeter * fmp)2195 static void fmeter_update(struct fmeter *fmp)
2196 {
2197 time64_t now;
2198 u32 ticks;
2199
2200 now = ktime_get_seconds();
2201 ticks = now - fmp->time;
2202
2203 if (ticks == 0)
2204 return;
2205
2206 ticks = min(FM_MAXTICKS, ticks);
2207 while (ticks-- > 0)
2208 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
2209 fmp->time = now;
2210
2211 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
2212 fmp->cnt = 0;
2213 }
2214
2215 /* Process any previous ticks, then bump cnt by one (times scale). */
fmeter_markevent(struct fmeter * fmp)2216 static void fmeter_markevent(struct fmeter *fmp)
2217 {
2218 spin_lock(&fmp->lock);
2219 fmeter_update(fmp);
2220 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
2221 spin_unlock(&fmp->lock);
2222 }
2223
2224 /* Process any previous ticks, then return current value. */
fmeter_getrate(struct fmeter * fmp)2225 static int fmeter_getrate(struct fmeter *fmp)
2226 {
2227 int val;
2228
2229 spin_lock(&fmp->lock);
2230 fmeter_update(fmp);
2231 val = fmp->val;
2232 spin_unlock(&fmp->lock);
2233 return val;
2234 }
2235
2236 static struct cpuset *cpuset_attach_old_cs;
2237
reset_migrate_dl_data(struct cpuset * cs)2238 static void reset_migrate_dl_data(struct cpuset *cs)
2239 {
2240 cs->nr_migrate_dl_tasks = 0;
2241 cs->sum_migrate_dl_bw = 0;
2242 }
2243
2244 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
cpuset_can_attach(struct cgroup_taskset * tset)2245 static int cpuset_can_attach(struct cgroup_taskset *tset)
2246 {
2247 struct cgroup_subsys_state *css;
2248 struct cpuset *cs, *oldcs;
2249 struct task_struct *task;
2250 int ret;
2251
2252 /* used later by cpuset_attach() */
2253 cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css));
2254 oldcs = cpuset_attach_old_cs;
2255 cs = css_cs(css);
2256
2257 mutex_lock(&cpuset_mutex);
2258
2259 /* allow moving tasks into an empty cpuset if on default hierarchy */
2260 ret = -ENOSPC;
2261 if (!is_in_v2_mode() &&
2262 (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed)))
2263 goto out_unlock;
2264
2265 cgroup_taskset_for_each(task, css, tset) {
2266 ret = task_can_attach(task);
2267 if (ret)
2268 goto out_unlock;
2269 ret = security_task_setscheduler(task);
2270 if (ret)
2271 goto out_unlock;
2272
2273 if (dl_task(task)) {
2274 cs->nr_migrate_dl_tasks++;
2275 cs->sum_migrate_dl_bw += task->dl.dl_bw;
2276 }
2277 }
2278
2279 if (!cs->nr_migrate_dl_tasks)
2280 goto out_success;
2281
2282 if (!cpumask_intersects(oldcs->effective_cpus, cs->effective_cpus)) {
2283 int cpu = cpumask_any_and(cpu_active_mask, cs->effective_cpus);
2284
2285 if (unlikely(cpu >= nr_cpu_ids)) {
2286 reset_migrate_dl_data(cs);
2287 ret = -EINVAL;
2288 goto out_unlock;
2289 }
2290
2291 ret = dl_bw_alloc(cpu, cs->sum_migrate_dl_bw);
2292 if (ret) {
2293 reset_migrate_dl_data(cs);
2294 goto out_unlock;
2295 }
2296 }
2297
2298 out_success:
2299 /*
2300 * Mark attach is in progress. This makes validate_change() fail
2301 * changes which zero cpus/mems_allowed.
2302 */
2303 cs->attach_in_progress++;
2304 ret = 0;
2305 out_unlock:
2306 mutex_unlock(&cpuset_mutex);
2307 return ret;
2308 }
2309
cpuset_cancel_attach(struct cgroup_taskset * tset)2310 static void cpuset_cancel_attach(struct cgroup_taskset *tset)
2311 {
2312 struct cgroup_subsys_state *css;
2313 struct cpuset *cs;
2314
2315 cgroup_taskset_first(tset, &css);
2316 cs = css_cs(css);
2317
2318 mutex_lock(&cpuset_mutex);
2319 cs->attach_in_progress--;
2320 if (!cs->attach_in_progress)
2321 wake_up(&cpuset_attach_wq);
2322
2323 if (cs->nr_migrate_dl_tasks) {
2324 int cpu = cpumask_any(cs->effective_cpus);
2325
2326 dl_bw_free(cpu, cs->sum_migrate_dl_bw);
2327 reset_migrate_dl_data(cs);
2328 }
2329
2330 mutex_unlock(&cpuset_mutex);
2331 }
2332
2333 /*
2334 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2335 * but we can't allocate it dynamically there. Define it global and
2336 * allocate from cpuset_init().
2337 */
2338 static cpumask_var_t cpus_attach;
2339
cpuset_attach(struct cgroup_taskset * tset)2340 static void cpuset_attach(struct cgroup_taskset *tset)
2341 {
2342 /* static buf protected by cpuset_mutex */
2343 static nodemask_t cpuset_attach_nodemask_to;
2344 struct task_struct *task;
2345 struct task_struct *leader;
2346 struct cgroup_subsys_state *css;
2347 struct cpuset *cs;
2348 struct cpuset *oldcs = cpuset_attach_old_cs;
2349
2350 cgroup_taskset_first(tset, &css);
2351 cs = css_cs(css);
2352
2353 lockdep_assert_cpus_held(); /* see cgroup_attach_lock() */
2354 mutex_lock(&cpuset_mutex);
2355
2356 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
2357
2358 cgroup_taskset_for_each(task, css, tset) {
2359 if (cs != &top_cpuset)
2360 guarantee_online_cpus(task, cpus_attach);
2361 else
2362 cpumask_copy(cpus_attach, task_cpu_possible_mask(task));
2363 /*
2364 * can_attach beforehand should guarantee that this doesn't
2365 * fail. TODO: have a better way to handle failure here
2366 */
2367 WARN_ON_ONCE(update_cpus_allowed(cs, task, cpus_attach));
2368
2369 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
2370 cpuset_update_task_spread_flag(cs, task);
2371 }
2372
2373 /*
2374 * Change mm for all threadgroup leaders. This is expensive and may
2375 * sleep and should be moved outside migration path proper.
2376 */
2377 cpuset_attach_nodemask_to = cs->effective_mems;
2378 cgroup_taskset_for_each_leader(leader, css, tset) {
2379 struct mm_struct *mm = get_task_mm(leader);
2380
2381 if (mm) {
2382 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2383
2384 /*
2385 * old_mems_allowed is the same with mems_allowed
2386 * here, except if this task is being moved
2387 * automatically due to hotplug. In that case
2388 * @mems_allowed has been updated and is empty, so
2389 * @old_mems_allowed is the right nodesets that we
2390 * migrate mm from.
2391 */
2392 if (is_memory_migrate(cs))
2393 cpuset_migrate_mm(mm, &oldcs->old_mems_allowed,
2394 &cpuset_attach_nodemask_to);
2395 else
2396 mmput(mm);
2397 }
2398 }
2399
2400 cs->old_mems_allowed = cpuset_attach_nodemask_to;
2401
2402 if (cs->nr_migrate_dl_tasks) {
2403 cs->nr_deadline_tasks += cs->nr_migrate_dl_tasks;
2404 oldcs->nr_deadline_tasks -= cs->nr_migrate_dl_tasks;
2405 reset_migrate_dl_data(cs);
2406 }
2407
2408 cs->attach_in_progress--;
2409 if (!cs->attach_in_progress)
2410 wake_up(&cpuset_attach_wq);
2411
2412 mutex_unlock(&cpuset_mutex);
2413 }
2414
2415 /* The various types of files and directories in a cpuset file system */
2416
2417 typedef enum {
2418 FILE_MEMORY_MIGRATE,
2419 FILE_CPULIST,
2420 FILE_MEMLIST,
2421 FILE_EFFECTIVE_CPULIST,
2422 FILE_EFFECTIVE_MEMLIST,
2423 FILE_SUBPARTS_CPULIST,
2424 FILE_CPU_EXCLUSIVE,
2425 FILE_MEM_EXCLUSIVE,
2426 FILE_MEM_HARDWALL,
2427 FILE_SCHED_LOAD_BALANCE,
2428 FILE_PARTITION_ROOT,
2429 FILE_SCHED_RELAX_DOMAIN_LEVEL,
2430 FILE_MEMORY_PRESSURE_ENABLED,
2431 FILE_MEMORY_PRESSURE,
2432 FILE_SPREAD_PAGE,
2433 FILE_SPREAD_SLAB,
2434 } cpuset_filetype_t;
2435
cpuset_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 val)2436 static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft,
2437 u64 val)
2438 {
2439 struct cpuset *cs = css_cs(css);
2440 cpuset_filetype_t type = cft->private;
2441 int retval = 0;
2442
2443 cpus_read_lock();
2444 mutex_lock(&cpuset_mutex);
2445 if (!is_cpuset_online(cs)) {
2446 retval = -ENODEV;
2447 goto out_unlock;
2448 }
2449
2450 switch (type) {
2451 case FILE_CPU_EXCLUSIVE:
2452 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
2453 break;
2454 case FILE_MEM_EXCLUSIVE:
2455 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
2456 break;
2457 case FILE_MEM_HARDWALL:
2458 retval = update_flag(CS_MEM_HARDWALL, cs, val);
2459 break;
2460 case FILE_SCHED_LOAD_BALANCE:
2461 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
2462 break;
2463 case FILE_MEMORY_MIGRATE:
2464 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
2465 break;
2466 case FILE_MEMORY_PRESSURE_ENABLED:
2467 cpuset_memory_pressure_enabled = !!val;
2468 break;
2469 case FILE_SPREAD_PAGE:
2470 retval = update_flag(CS_SPREAD_PAGE, cs, val);
2471 break;
2472 case FILE_SPREAD_SLAB:
2473 retval = update_flag(CS_SPREAD_SLAB, cs, val);
2474 break;
2475 default:
2476 retval = -EINVAL;
2477 break;
2478 }
2479 out_unlock:
2480 mutex_unlock(&cpuset_mutex);
2481 cpus_read_unlock();
2482 return retval;
2483 }
2484
cpuset_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)2485 static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft,
2486 s64 val)
2487 {
2488 struct cpuset *cs = css_cs(css);
2489 cpuset_filetype_t type = cft->private;
2490 int retval = -ENODEV;
2491
2492 cpus_read_lock();
2493 mutex_lock(&cpuset_mutex);
2494 if (!is_cpuset_online(cs))
2495 goto out_unlock;
2496
2497 switch (type) {
2498 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2499 retval = update_relax_domain_level(cs, val);
2500 break;
2501 default:
2502 retval = -EINVAL;
2503 break;
2504 }
2505 out_unlock:
2506 mutex_unlock(&cpuset_mutex);
2507 cpus_read_unlock();
2508 return retval;
2509 }
2510
2511 /*
2512 * Common handling for a write to a "cpus" or "mems" file.
2513 */
cpuset_write_resmask(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2514 static ssize_t cpuset_write_resmask(struct kernfs_open_file *of,
2515 char *buf, size_t nbytes, loff_t off)
2516 {
2517 struct cpuset *cs = css_cs(of_css(of));
2518 struct cpuset *trialcs;
2519 int retval = -ENODEV;
2520
2521 buf = strstrip(buf);
2522
2523 /*
2524 * CPU or memory hotunplug may leave @cs w/o any execution
2525 * resources, in which case the hotplug code asynchronously updates
2526 * configuration and transfers all tasks to the nearest ancestor
2527 * which can execute.
2528 *
2529 * As writes to "cpus" or "mems" may restore @cs's execution
2530 * resources, wait for the previously scheduled operations before
2531 * proceeding, so that we don't end up keep removing tasks added
2532 * after execution capability is restored.
2533 *
2534 * cpuset_hotplug_work calls back into cgroup core via
2535 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2536 * operation like this one can lead to a deadlock through kernfs
2537 * active_ref protection. Let's break the protection. Losing the
2538 * protection is okay as we check whether @cs is online after
2539 * grabbing cpuset_mutex anyway. This only happens on the legacy
2540 * hierarchies.
2541 */
2542 css_get(&cs->css);
2543 kernfs_break_active_protection(of->kn);
2544 flush_work(&cpuset_hotplug_work);
2545
2546 cpus_read_lock();
2547 mutex_lock(&cpuset_mutex);
2548 if (!is_cpuset_online(cs))
2549 goto out_unlock;
2550
2551 trialcs = alloc_trial_cpuset(cs);
2552 if (!trialcs) {
2553 retval = -ENOMEM;
2554 goto out_unlock;
2555 }
2556
2557 switch (of_cft(of)->private) {
2558 case FILE_CPULIST:
2559 retval = update_cpumask(cs, trialcs, buf);
2560 break;
2561 case FILE_MEMLIST:
2562 retval = update_nodemask(cs, trialcs, buf);
2563 break;
2564 default:
2565 retval = -EINVAL;
2566 break;
2567 }
2568
2569 free_cpuset(trialcs);
2570 out_unlock:
2571 mutex_unlock(&cpuset_mutex);
2572 cpus_read_unlock();
2573 kernfs_unbreak_active_protection(of->kn);
2574 css_put(&cs->css);
2575 flush_workqueue(cpuset_migrate_mm_wq);
2576 return retval ?: nbytes;
2577 }
2578
2579 /*
2580 * These ascii lists should be read in a single call, by using a user
2581 * buffer large enough to hold the entire map. If read in smaller
2582 * chunks, there is no guarantee of atomicity. Since the display format
2583 * used, list of ranges of sequential numbers, is variable length,
2584 * and since these maps can change value dynamically, one could read
2585 * gibberish by doing partial reads while a list was changing.
2586 */
cpuset_common_seq_show(struct seq_file * sf,void * v)2587 static int cpuset_common_seq_show(struct seq_file *sf, void *v)
2588 {
2589 struct cpuset *cs = css_cs(seq_css(sf));
2590 cpuset_filetype_t type = seq_cft(sf)->private;
2591 int ret = 0;
2592
2593 spin_lock_irq(&callback_lock);
2594
2595 switch (type) {
2596 case FILE_CPULIST:
2597 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_requested));
2598 break;
2599 case FILE_MEMLIST:
2600 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed));
2601 break;
2602 case FILE_EFFECTIVE_CPULIST:
2603 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus));
2604 break;
2605 case FILE_EFFECTIVE_MEMLIST:
2606 seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems));
2607 break;
2608 case FILE_SUBPARTS_CPULIST:
2609 seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->subparts_cpus));
2610 break;
2611 default:
2612 ret = -EINVAL;
2613 }
2614
2615 spin_unlock_irq(&callback_lock);
2616 return ret;
2617 }
2618
cpuset_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)2619 static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft)
2620 {
2621 struct cpuset *cs = css_cs(css);
2622 cpuset_filetype_t type = cft->private;
2623 switch (type) {
2624 case FILE_CPU_EXCLUSIVE:
2625 return is_cpu_exclusive(cs);
2626 case FILE_MEM_EXCLUSIVE:
2627 return is_mem_exclusive(cs);
2628 case FILE_MEM_HARDWALL:
2629 return is_mem_hardwall(cs);
2630 case FILE_SCHED_LOAD_BALANCE:
2631 return is_sched_load_balance(cs);
2632 case FILE_MEMORY_MIGRATE:
2633 return is_memory_migrate(cs);
2634 case FILE_MEMORY_PRESSURE_ENABLED:
2635 return cpuset_memory_pressure_enabled;
2636 case FILE_MEMORY_PRESSURE:
2637 return fmeter_getrate(&cs->fmeter);
2638 case FILE_SPREAD_PAGE:
2639 return is_spread_page(cs);
2640 case FILE_SPREAD_SLAB:
2641 return is_spread_slab(cs);
2642 default:
2643 BUG();
2644 }
2645
2646 /* Unreachable but makes gcc happy */
2647 return 0;
2648 }
2649
cpuset_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)2650 static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft)
2651 {
2652 struct cpuset *cs = css_cs(css);
2653 cpuset_filetype_t type = cft->private;
2654 switch (type) {
2655 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
2656 return cs->relax_domain_level;
2657 default:
2658 BUG();
2659 }
2660
2661 /* Unreachable but makes gcc happy */
2662 return 0;
2663 }
2664
sched_partition_show(struct seq_file * seq,void * v)2665 static int sched_partition_show(struct seq_file *seq, void *v)
2666 {
2667 struct cpuset *cs = css_cs(seq_css(seq));
2668
2669 switch (cs->partition_root_state) {
2670 case PRS_ENABLED:
2671 seq_puts(seq, "root\n");
2672 break;
2673 case PRS_DISABLED:
2674 seq_puts(seq, "member\n");
2675 break;
2676 case PRS_ERROR:
2677 seq_puts(seq, "root invalid\n");
2678 break;
2679 }
2680 return 0;
2681 }
2682
sched_partition_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)2683 static ssize_t sched_partition_write(struct kernfs_open_file *of, char *buf,
2684 size_t nbytes, loff_t off)
2685 {
2686 struct cpuset *cs = css_cs(of_css(of));
2687 int val;
2688 int retval = -ENODEV;
2689
2690 buf = strstrip(buf);
2691
2692 /*
2693 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2694 */
2695 if (!strcmp(buf, "root"))
2696 val = PRS_ENABLED;
2697 else if (!strcmp(buf, "member"))
2698 val = PRS_DISABLED;
2699 else
2700 return -EINVAL;
2701
2702 css_get(&cs->css);
2703 cpus_read_lock();
2704 mutex_lock(&cpuset_mutex);
2705 if (!is_cpuset_online(cs))
2706 goto out_unlock;
2707
2708 retval = update_prstate(cs, val);
2709 out_unlock:
2710 mutex_unlock(&cpuset_mutex);
2711 cpus_read_unlock();
2712 css_put(&cs->css);
2713 return retval ?: nbytes;
2714 }
2715
2716 /*
2717 * for the common functions, 'private' gives the type of file
2718 */
2719
2720 static struct cftype legacy_files[] = {
2721 {
2722 .name = "cpus",
2723 .seq_show = cpuset_common_seq_show,
2724 .write = cpuset_write_resmask,
2725 .max_write_len = (100U + 6 * NR_CPUS),
2726 .private = FILE_CPULIST,
2727 },
2728
2729 {
2730 .name = "mems",
2731 .seq_show = cpuset_common_seq_show,
2732 .write = cpuset_write_resmask,
2733 .max_write_len = (100U + 6 * MAX_NUMNODES),
2734 .private = FILE_MEMLIST,
2735 },
2736
2737 {
2738 .name = "effective_cpus",
2739 .seq_show = cpuset_common_seq_show,
2740 .private = FILE_EFFECTIVE_CPULIST,
2741 },
2742
2743 {
2744 .name = "effective_mems",
2745 .seq_show = cpuset_common_seq_show,
2746 .private = FILE_EFFECTIVE_MEMLIST,
2747 },
2748
2749 {
2750 .name = "cpu_exclusive",
2751 .read_u64 = cpuset_read_u64,
2752 .write_u64 = cpuset_write_u64,
2753 .private = FILE_CPU_EXCLUSIVE,
2754 },
2755
2756 {
2757 .name = "mem_exclusive",
2758 .read_u64 = cpuset_read_u64,
2759 .write_u64 = cpuset_write_u64,
2760 .private = FILE_MEM_EXCLUSIVE,
2761 },
2762
2763 {
2764 .name = "mem_hardwall",
2765 .read_u64 = cpuset_read_u64,
2766 .write_u64 = cpuset_write_u64,
2767 .private = FILE_MEM_HARDWALL,
2768 },
2769
2770 {
2771 .name = "sched_load_balance",
2772 .read_u64 = cpuset_read_u64,
2773 .write_u64 = cpuset_write_u64,
2774 .private = FILE_SCHED_LOAD_BALANCE,
2775 },
2776
2777 {
2778 .name = "sched_relax_domain_level",
2779 .read_s64 = cpuset_read_s64,
2780 .write_s64 = cpuset_write_s64,
2781 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
2782 },
2783
2784 {
2785 .name = "memory_migrate",
2786 .read_u64 = cpuset_read_u64,
2787 .write_u64 = cpuset_write_u64,
2788 .private = FILE_MEMORY_MIGRATE,
2789 },
2790
2791 {
2792 .name = "memory_pressure",
2793 .read_u64 = cpuset_read_u64,
2794 .private = FILE_MEMORY_PRESSURE,
2795 },
2796
2797 {
2798 .name = "memory_spread_page",
2799 .read_u64 = cpuset_read_u64,
2800 .write_u64 = cpuset_write_u64,
2801 .private = FILE_SPREAD_PAGE,
2802 },
2803
2804 {
2805 .name = "memory_spread_slab",
2806 .read_u64 = cpuset_read_u64,
2807 .write_u64 = cpuset_write_u64,
2808 .private = FILE_SPREAD_SLAB,
2809 },
2810
2811 {
2812 .name = "memory_pressure_enabled",
2813 .flags = CFTYPE_ONLY_ON_ROOT,
2814 .read_u64 = cpuset_read_u64,
2815 .write_u64 = cpuset_write_u64,
2816 .private = FILE_MEMORY_PRESSURE_ENABLED,
2817 },
2818
2819 { } /* terminate */
2820 };
2821
2822 /*
2823 * This is currently a minimal set for the default hierarchy. It can be
2824 * expanded later on by migrating more features and control files from v1.
2825 */
2826 static struct cftype dfl_files[] = {
2827 {
2828 .name = "cpus",
2829 .seq_show = cpuset_common_seq_show,
2830 .write = cpuset_write_resmask,
2831 .max_write_len = (100U + 6 * NR_CPUS),
2832 .private = FILE_CPULIST,
2833 .flags = CFTYPE_NOT_ON_ROOT,
2834 },
2835
2836 {
2837 .name = "mems",
2838 .seq_show = cpuset_common_seq_show,
2839 .write = cpuset_write_resmask,
2840 .max_write_len = (100U + 6 * MAX_NUMNODES),
2841 .private = FILE_MEMLIST,
2842 .flags = CFTYPE_NOT_ON_ROOT,
2843 },
2844
2845 {
2846 .name = "cpus.effective",
2847 .seq_show = cpuset_common_seq_show,
2848 .private = FILE_EFFECTIVE_CPULIST,
2849 },
2850
2851 {
2852 .name = "mems.effective",
2853 .seq_show = cpuset_common_seq_show,
2854 .private = FILE_EFFECTIVE_MEMLIST,
2855 },
2856
2857 {
2858 .name = "cpus.partition",
2859 .seq_show = sched_partition_show,
2860 .write = sched_partition_write,
2861 .private = FILE_PARTITION_ROOT,
2862 .flags = CFTYPE_NOT_ON_ROOT,
2863 .file_offset = offsetof(struct cpuset, partition_file),
2864 },
2865
2866 {
2867 .name = "cpus.subpartitions",
2868 .seq_show = cpuset_common_seq_show,
2869 .private = FILE_SUBPARTS_CPULIST,
2870 .flags = CFTYPE_DEBUG,
2871 },
2872
2873 { } /* terminate */
2874 };
2875
2876
2877 /*
2878 * cpuset_css_alloc - allocate a cpuset css
2879 * cgrp: control group that the new cpuset will be part of
2880 */
2881
2882 static struct cgroup_subsys_state *
cpuset_css_alloc(struct cgroup_subsys_state * parent_css)2883 cpuset_css_alloc(struct cgroup_subsys_state *parent_css)
2884 {
2885 struct cpuset *cs;
2886
2887 if (!parent_css)
2888 return &top_cpuset.css;
2889
2890 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
2891 if (!cs)
2892 return ERR_PTR(-ENOMEM);
2893
2894 if (alloc_cpumasks(cs, NULL)) {
2895 kfree(cs);
2896 return ERR_PTR(-ENOMEM);
2897 }
2898
2899 __set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
2900 nodes_clear(cs->mems_allowed);
2901 nodes_clear(cs->effective_mems);
2902 fmeter_init(&cs->fmeter);
2903 cs->relax_domain_level = -1;
2904
2905 /* Set CS_MEMORY_MIGRATE for default hierarchy */
2906 if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys))
2907 __set_bit(CS_MEMORY_MIGRATE, &cs->flags);
2908
2909 return &cs->css;
2910 }
2911
cpuset_css_online(struct cgroup_subsys_state * css)2912 static int cpuset_css_online(struct cgroup_subsys_state *css)
2913 {
2914 struct cpuset *cs = css_cs(css);
2915 struct cpuset *parent = parent_cs(cs);
2916 struct cpuset *tmp_cs;
2917 struct cgroup_subsys_state *pos_css;
2918
2919 if (!parent)
2920 return 0;
2921
2922 cpus_read_lock();
2923 mutex_lock(&cpuset_mutex);
2924
2925 set_bit(CS_ONLINE, &cs->flags);
2926 if (is_spread_page(parent))
2927 set_bit(CS_SPREAD_PAGE, &cs->flags);
2928 if (is_spread_slab(parent))
2929 set_bit(CS_SPREAD_SLAB, &cs->flags);
2930
2931 cpuset_inc();
2932
2933 spin_lock_irq(&callback_lock);
2934 if (is_in_v2_mode()) {
2935 cpumask_copy(cs->effective_cpus, parent->effective_cpus);
2936 cs->effective_mems = parent->effective_mems;
2937 cs->use_parent_ecpus = true;
2938 parent->child_ecpus_count++;
2939 }
2940 spin_unlock_irq(&callback_lock);
2941
2942 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags))
2943 goto out_unlock;
2944
2945 /*
2946 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2947 * set. This flag handling is implemented in cgroup core for
2948 * histrical reasons - the flag may be specified during mount.
2949 *
2950 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2951 * refuse to clone the configuration - thereby refusing the task to
2952 * be entered, and as a result refusing the sys_unshare() or
2953 * clone() which initiated it. If this becomes a problem for some
2954 * users who wish to allow that scenario, then this could be
2955 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2956 * (and likewise for mems) to the new cgroup.
2957 */
2958 rcu_read_lock();
2959 cpuset_for_each_child(tmp_cs, pos_css, parent) {
2960 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
2961 rcu_read_unlock();
2962 goto out_unlock;
2963 }
2964 }
2965 rcu_read_unlock();
2966
2967 spin_lock_irq(&callback_lock);
2968 cs->mems_allowed = parent->mems_allowed;
2969 cs->effective_mems = parent->mems_allowed;
2970 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
2971 cpumask_copy(cs->cpus_requested, parent->cpus_requested);
2972 cpumask_copy(cs->effective_cpus, parent->cpus_allowed);
2973 spin_unlock_irq(&callback_lock);
2974 out_unlock:
2975 mutex_unlock(&cpuset_mutex);
2976 cpus_read_unlock();
2977 return 0;
2978 }
2979
2980 /*
2981 * If the cpuset being removed has its flag 'sched_load_balance'
2982 * enabled, then simulate turning sched_load_balance off, which
2983 * will call rebuild_sched_domains_locked(). That is not needed
2984 * in the default hierarchy where only changes in partition
2985 * will cause repartitioning.
2986 *
2987 * If the cpuset has the 'sched.partition' flag enabled, simulate
2988 * turning 'sched.partition" off.
2989 */
2990
cpuset_css_offline(struct cgroup_subsys_state * css)2991 static void cpuset_css_offline(struct cgroup_subsys_state *css)
2992 {
2993 struct cpuset *cs = css_cs(css);
2994
2995 cpus_read_lock();
2996 mutex_lock(&cpuset_mutex);
2997
2998 if (is_partition_root(cs))
2999 update_prstate(cs, 0);
3000
3001 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) &&
3002 is_sched_load_balance(cs))
3003 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
3004
3005 if (cs->use_parent_ecpus) {
3006 struct cpuset *parent = parent_cs(cs);
3007
3008 cs->use_parent_ecpus = false;
3009 parent->child_ecpus_count--;
3010 }
3011
3012 cpuset_dec();
3013 clear_bit(CS_ONLINE, &cs->flags);
3014
3015 mutex_unlock(&cpuset_mutex);
3016 cpus_read_unlock();
3017 }
3018
cpuset_css_free(struct cgroup_subsys_state * css)3019 static void cpuset_css_free(struct cgroup_subsys_state *css)
3020 {
3021 struct cpuset *cs = css_cs(css);
3022
3023 free_cpuset(cs);
3024 }
3025
cpuset_bind(struct cgroup_subsys_state * root_css)3026 static void cpuset_bind(struct cgroup_subsys_state *root_css)
3027 {
3028 mutex_lock(&cpuset_mutex);
3029 spin_lock_irq(&callback_lock);
3030
3031 if (is_in_v2_mode()) {
3032 cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask);
3033 top_cpuset.mems_allowed = node_possible_map;
3034 } else {
3035 cpumask_copy(top_cpuset.cpus_allowed,
3036 top_cpuset.effective_cpus);
3037 top_cpuset.mems_allowed = top_cpuset.effective_mems;
3038 }
3039
3040 spin_unlock_irq(&callback_lock);
3041 mutex_unlock(&cpuset_mutex);
3042 }
3043
3044 /*
3045 * Make sure the new task conform to the current state of its parent,
3046 * which could have been changed by cpuset just after it inherits the
3047 * state from the parent and before it sits on the cgroup's task list.
3048 */
cpuset_fork(struct task_struct * task)3049 static void cpuset_fork(struct task_struct *task)
3050 {
3051 int inherit_cpus = 0;
3052 if (task_css_is_root(task, cpuset_cgrp_id))
3053 return;
3054
3055 trace_android_rvh_cpuset_fork(task, &inherit_cpus);
3056 if (!inherit_cpus)
3057 set_cpus_allowed_ptr(task, current->cpus_ptr);
3058 task->mems_allowed = current->mems_allowed;
3059 }
3060
3061 struct cgroup_subsys cpuset_cgrp_subsys = {
3062 .css_alloc = cpuset_css_alloc,
3063 .css_online = cpuset_css_online,
3064 .css_offline = cpuset_css_offline,
3065 .css_free = cpuset_css_free,
3066 .can_attach = cpuset_can_attach,
3067 .cancel_attach = cpuset_cancel_attach,
3068 .attach = cpuset_attach,
3069 .post_attach = cpuset_post_attach,
3070 .bind = cpuset_bind,
3071 .fork = cpuset_fork,
3072 .legacy_cftypes = legacy_files,
3073 .dfl_cftypes = dfl_files,
3074 .early_init = true,
3075 .threaded = true,
3076 };
3077
3078 /**
3079 * cpuset_init - initialize cpusets at system boot
3080 *
3081 * Description: Initialize top_cpuset
3082 **/
3083
cpuset_init(void)3084 int __init cpuset_init(void)
3085 {
3086 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL));
3087 BUG_ON(!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL));
3088 BUG_ON(!zalloc_cpumask_var(&top_cpuset.subparts_cpus, GFP_KERNEL));
3089 BUG_ON(!alloc_cpumask_var(&top_cpuset.cpus_requested, GFP_KERNEL));
3090
3091 cpumask_setall(top_cpuset.cpus_allowed);
3092 cpumask_setall(top_cpuset.cpus_requested);
3093 nodes_setall(top_cpuset.mems_allowed);
3094 cpumask_setall(top_cpuset.effective_cpus);
3095 nodes_setall(top_cpuset.effective_mems);
3096
3097 fmeter_init(&top_cpuset.fmeter);
3098 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
3099 top_cpuset.relax_domain_level = -1;
3100
3101 BUG_ON(!alloc_cpumask_var(&cpus_attach, GFP_KERNEL));
3102
3103 return 0;
3104 }
3105
3106 /*
3107 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
3108 * or memory nodes, we need to walk over the cpuset hierarchy,
3109 * removing that CPU or node from all cpusets. If this removes the
3110 * last CPU or node from a cpuset, then move the tasks in the empty
3111 * cpuset to its next-highest non-empty parent.
3112 */
remove_tasks_in_empty_cpuset(struct cpuset * cs)3113 static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
3114 {
3115 struct cpuset *parent;
3116
3117 /*
3118 * Find its next-highest non-empty parent, (top cpuset
3119 * has online cpus, so can't be empty).
3120 */
3121 parent = parent_cs(cs);
3122 while (cpumask_empty(parent->cpus_allowed) ||
3123 nodes_empty(parent->mems_allowed))
3124 parent = parent_cs(parent);
3125
3126 if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) {
3127 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
3128 pr_cont_cgroup_name(cs->css.cgroup);
3129 pr_cont("\n");
3130 }
3131 }
3132
3133 static void
hotplug_update_tasks_legacy(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3134 hotplug_update_tasks_legacy(struct cpuset *cs,
3135 struct cpumask *new_cpus, nodemask_t *new_mems,
3136 bool cpus_updated, bool mems_updated)
3137 {
3138 bool is_empty;
3139
3140 spin_lock_irq(&callback_lock);
3141 cpumask_copy(cs->cpus_allowed, new_cpus);
3142 cpumask_copy(cs->effective_cpus, new_cpus);
3143 cs->mems_allowed = *new_mems;
3144 cs->effective_mems = *new_mems;
3145 spin_unlock_irq(&callback_lock);
3146
3147 /*
3148 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
3149 * as the tasks will be migratecd to an ancestor.
3150 */
3151 if (cpus_updated && !cpumask_empty(cs->cpus_allowed))
3152 update_tasks_cpumask(cs);
3153 if (mems_updated && !nodes_empty(cs->mems_allowed))
3154 update_tasks_nodemask(cs);
3155
3156 is_empty = cpumask_empty(cs->cpus_allowed) ||
3157 nodes_empty(cs->mems_allowed);
3158
3159 mutex_unlock(&cpuset_mutex);
3160
3161 /*
3162 * Move tasks to the nearest ancestor with execution resources,
3163 * This is full cgroup operation which will also call back into
3164 * cpuset. Should be done outside any lock.
3165 */
3166 if (is_empty)
3167 remove_tasks_in_empty_cpuset(cs);
3168
3169 mutex_lock(&cpuset_mutex);
3170 }
3171
3172 static void
hotplug_update_tasks(struct cpuset * cs,struct cpumask * new_cpus,nodemask_t * new_mems,bool cpus_updated,bool mems_updated)3173 hotplug_update_tasks(struct cpuset *cs,
3174 struct cpumask *new_cpus, nodemask_t *new_mems,
3175 bool cpus_updated, bool mems_updated)
3176 {
3177 if (cpumask_empty(new_cpus))
3178 cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus);
3179 if (nodes_empty(*new_mems))
3180 *new_mems = parent_cs(cs)->effective_mems;
3181
3182 spin_lock_irq(&callback_lock);
3183 cpumask_copy(cs->effective_cpus, new_cpus);
3184 cs->effective_mems = *new_mems;
3185 spin_unlock_irq(&callback_lock);
3186
3187 if (cpus_updated)
3188 update_tasks_cpumask(cs);
3189 if (mems_updated)
3190 update_tasks_nodemask(cs);
3191 }
3192
3193 static bool force_rebuild;
3194
cpuset_force_rebuild(void)3195 void cpuset_force_rebuild(void)
3196 {
3197 force_rebuild = true;
3198 }
3199
3200 /**
3201 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3202 * @cs: cpuset in interest
3203 * @tmp: the tmpmasks structure pointer
3204 *
3205 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3206 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3207 * all its tasks are moved to the nearest ancestor with both resources.
3208 */
cpuset_hotplug_update_tasks(struct cpuset * cs,struct tmpmasks * tmp)3209 static void cpuset_hotplug_update_tasks(struct cpuset *cs, struct tmpmasks *tmp)
3210 {
3211 static cpumask_t new_cpus;
3212 static nodemask_t new_mems;
3213 bool cpus_updated;
3214 bool mems_updated;
3215 struct cpuset *parent;
3216 retry:
3217 wait_event(cpuset_attach_wq, cs->attach_in_progress == 0);
3218
3219 mutex_lock(&cpuset_mutex);
3220
3221 /*
3222 * We have raced with task attaching. We wait until attaching
3223 * is finished, so we won't attach a task to an empty cpuset.
3224 */
3225 if (cs->attach_in_progress) {
3226 mutex_unlock(&cpuset_mutex);
3227 goto retry;
3228 }
3229
3230 parent = parent_cs(cs);
3231 compute_effective_cpumask(&new_cpus, cs, parent);
3232 nodes_and(new_mems, cs->mems_allowed, parent->effective_mems);
3233
3234 if (cs->nr_subparts_cpus)
3235 /*
3236 * Make sure that CPUs allocated to child partitions
3237 * do not show up in effective_cpus.
3238 */
3239 cpumask_andnot(&new_cpus, &new_cpus, cs->subparts_cpus);
3240
3241 if (!tmp || !cs->partition_root_state)
3242 goto update_tasks;
3243
3244 /*
3245 * In the unlikely event that a partition root has empty
3246 * effective_cpus or its parent becomes erroneous, we have to
3247 * transition it to the erroneous state.
3248 */
3249 if (is_partition_root(cs) && (cpumask_empty(&new_cpus) ||
3250 (parent->partition_root_state == PRS_ERROR))) {
3251 if (cs->nr_subparts_cpus) {
3252 spin_lock_irq(&callback_lock);
3253 cs->nr_subparts_cpus = 0;
3254 cpumask_clear(cs->subparts_cpus);
3255 spin_unlock_irq(&callback_lock);
3256 compute_effective_cpumask(&new_cpus, cs, parent);
3257 }
3258
3259 /*
3260 * If the effective_cpus is empty because the child
3261 * partitions take away all the CPUs, we can keep
3262 * the current partition and let the child partitions
3263 * fight for available CPUs.
3264 */
3265 if ((parent->partition_root_state == PRS_ERROR) ||
3266 cpumask_empty(&new_cpus)) {
3267 int old_prs;
3268
3269 update_parent_subparts_cpumask(cs, partcmd_disable,
3270 NULL, tmp);
3271 old_prs = cs->partition_root_state;
3272 if (old_prs != PRS_ERROR) {
3273 spin_lock_irq(&callback_lock);
3274 cs->partition_root_state = PRS_ERROR;
3275 spin_unlock_irq(&callback_lock);
3276 notify_partition_change(cs, old_prs, PRS_ERROR);
3277 }
3278 }
3279 cpuset_force_rebuild();
3280 }
3281
3282 /*
3283 * On the other hand, an erroneous partition root may be transitioned
3284 * back to a regular one or a partition root with no CPU allocated
3285 * from the parent may change to erroneous.
3286 */
3287 if (is_partition_root(parent) &&
3288 ((cs->partition_root_state == PRS_ERROR) ||
3289 !cpumask_intersects(&new_cpus, parent->subparts_cpus)) &&
3290 update_parent_subparts_cpumask(cs, partcmd_update, NULL, tmp))
3291 cpuset_force_rebuild();
3292
3293 update_tasks:
3294 cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus);
3295 mems_updated = !nodes_equal(new_mems, cs->effective_mems);
3296
3297 if (is_in_v2_mode())
3298 hotplug_update_tasks(cs, &new_cpus, &new_mems,
3299 cpus_updated, mems_updated);
3300 else
3301 hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems,
3302 cpus_updated, mems_updated);
3303
3304 mutex_unlock(&cpuset_mutex);
3305 }
3306
3307 /**
3308 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3309 *
3310 * This function is called after either CPU or memory configuration has
3311 * changed and updates cpuset accordingly. The top_cpuset is always
3312 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3313 * order to make cpusets transparent (of no affect) on systems that are
3314 * actively using CPU hotplug but making no active use of cpusets.
3315 *
3316 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3317 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3318 * all descendants.
3319 *
3320 * Note that CPU offlining during suspend is ignored. We don't modify
3321 * cpusets across suspend/resume cycles at all.
3322 */
cpuset_hotplug_workfn(struct work_struct * work)3323 static void cpuset_hotplug_workfn(struct work_struct *work)
3324 {
3325 static cpumask_t new_cpus;
3326 static nodemask_t new_mems;
3327 bool cpus_updated, mems_updated;
3328 bool on_dfl = is_in_v2_mode();
3329 struct tmpmasks tmp, *ptmp = NULL;
3330
3331 if (on_dfl && !alloc_cpumasks(NULL, &tmp))
3332 ptmp = &tmp;
3333
3334 mutex_lock(&cpuset_mutex);
3335
3336 /* fetch the available cpus/mems and find out which changed how */
3337 cpumask_copy(&new_cpus, cpu_active_mask);
3338 new_mems = node_states[N_MEMORY];
3339
3340 /*
3341 * If subparts_cpus is populated, it is likely that the check below
3342 * will produce a false positive on cpus_updated when the cpu list
3343 * isn't changed. It is extra work, but it is better to be safe.
3344 */
3345 cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus);
3346 mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems);
3347
3348 /*
3349 * In the rare case that hotplug removes all the cpus in subparts_cpus,
3350 * we assumed that cpus are updated.
3351 */
3352 if (!cpus_updated && top_cpuset.nr_subparts_cpus)
3353 cpus_updated = true;
3354
3355 /* synchronize cpus_allowed to cpu_active_mask */
3356 if (cpus_updated) {
3357 spin_lock_irq(&callback_lock);
3358 if (!on_dfl)
3359 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
3360 /*
3361 * Make sure that CPUs allocated to child partitions
3362 * do not show up in effective_cpus. If no CPU is left,
3363 * we clear the subparts_cpus & let the child partitions
3364 * fight for the CPUs again.
3365 */
3366 if (top_cpuset.nr_subparts_cpus) {
3367 if (cpumask_subset(&new_cpus,
3368 top_cpuset.subparts_cpus)) {
3369 top_cpuset.nr_subparts_cpus = 0;
3370 cpumask_clear(top_cpuset.subparts_cpus);
3371 } else {
3372 cpumask_andnot(&new_cpus, &new_cpus,
3373 top_cpuset.subparts_cpus);
3374 }
3375 }
3376 cpumask_copy(top_cpuset.effective_cpus, &new_cpus);
3377 spin_unlock_irq(&callback_lock);
3378 /* we don't mess with cpumasks of tasks in top_cpuset */
3379 }
3380
3381 /* synchronize mems_allowed to N_MEMORY */
3382 if (mems_updated) {
3383 spin_lock_irq(&callback_lock);
3384 if (!on_dfl)
3385 top_cpuset.mems_allowed = new_mems;
3386 top_cpuset.effective_mems = new_mems;
3387 spin_unlock_irq(&callback_lock);
3388 update_tasks_nodemask(&top_cpuset);
3389 }
3390
3391 mutex_unlock(&cpuset_mutex);
3392
3393 /* if cpus or mems changed, we need to propagate to descendants */
3394 if (cpus_updated || mems_updated) {
3395 struct cpuset *cs;
3396 struct cgroup_subsys_state *pos_css;
3397
3398 rcu_read_lock();
3399 cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) {
3400 if (cs == &top_cpuset || !css_tryget_online(&cs->css))
3401 continue;
3402 rcu_read_unlock();
3403
3404 cpuset_hotplug_update_tasks(cs, ptmp);
3405
3406 rcu_read_lock();
3407 css_put(&cs->css);
3408 }
3409 rcu_read_unlock();
3410 }
3411
3412 /* rebuild sched domains if cpus_allowed has changed */
3413 if (cpus_updated || force_rebuild) {
3414 force_rebuild = false;
3415 rebuild_sched_domains();
3416 }
3417
3418 free_cpumasks(NULL, ptmp);
3419 }
3420
cpuset_update_active_cpus(void)3421 void cpuset_update_active_cpus(void)
3422 {
3423 /*
3424 * We're inside cpu hotplug critical region which usually nests
3425 * inside cgroup synchronization. Bounce actual hotplug processing
3426 * to a work item to avoid reverse locking order.
3427 */
3428 schedule_work(&cpuset_hotplug_work);
3429 }
3430
cpuset_wait_for_hotplug(void)3431 void cpuset_wait_for_hotplug(void)
3432 {
3433 flush_work(&cpuset_hotplug_work);
3434 }
3435
3436 /*
3437 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3438 * Call this routine anytime after node_states[N_MEMORY] changes.
3439 * See cpuset_update_active_cpus() for CPU hotplug handling.
3440 */
cpuset_track_online_nodes(struct notifier_block * self,unsigned long action,void * arg)3441 static int cpuset_track_online_nodes(struct notifier_block *self,
3442 unsigned long action, void *arg)
3443 {
3444 schedule_work(&cpuset_hotplug_work);
3445 return NOTIFY_OK;
3446 }
3447
3448 static struct notifier_block cpuset_track_online_nodes_nb = {
3449 .notifier_call = cpuset_track_online_nodes,
3450 .priority = 10, /* ??! */
3451 };
3452
3453 /**
3454 * cpuset_init_smp - initialize cpus_allowed
3455 *
3456 * Description: Finish top cpuset after cpu, node maps are initialized
3457 */
cpuset_init_smp(void)3458 void __init cpuset_init_smp(void)
3459 {
3460 /*
3461 * cpus_allowd/mems_allowed set to v2 values in the initial
3462 * cpuset_bind() call will be reset to v1 values in another
3463 * cpuset_bind() call when v1 cpuset is mounted.
3464 */
3465 top_cpuset.old_mems_allowed = top_cpuset.mems_allowed;
3466
3467 cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask);
3468 top_cpuset.effective_mems = node_states[N_MEMORY];
3469
3470 register_hotmemory_notifier(&cpuset_track_online_nodes_nb);
3471
3472 cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3473 BUG_ON(!cpuset_migrate_mm_wq);
3474 }
3475
3476 /**
3477 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3478 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3479 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3480 *
3481 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3482 * attached to the specified @tsk. Guaranteed to return some non-empty
3483 * subset of cpu_online_mask, even if this means going outside the
3484 * tasks cpuset, except when the task is in the top cpuset.
3485 **/
3486
cpuset_cpus_allowed(struct task_struct * tsk,struct cpumask * pmask)3487 void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
3488 {
3489 unsigned long flags;
3490 struct cpuset *cs;
3491
3492 spin_lock_irqsave(&callback_lock, flags);
3493 rcu_read_lock();
3494
3495 cs = task_cs(tsk);
3496 if (cs != &top_cpuset)
3497 guarantee_online_cpus(tsk, pmask);
3498 /*
3499 * Tasks in the top cpuset won't get update to their cpumasks
3500 * when a hotplug online/offline event happens. So we include all
3501 * offline cpus in the allowed cpu list.
3502 */
3503 if ((cs == &top_cpuset) || cpumask_empty(pmask)) {
3504 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3505
3506 /*
3507 * We first exclude cpus allocated to partitions. If there is no
3508 * allowable online cpu left, we fall back to all possible cpus.
3509 */
3510 cpumask_andnot(pmask, possible_mask, top_cpuset.subparts_cpus);
3511 if (!cpumask_intersects(pmask, cpu_online_mask))
3512 cpumask_copy(pmask, possible_mask);
3513 }
3514
3515 rcu_read_unlock();
3516 spin_unlock_irqrestore(&callback_lock, flags);
3517 }
3518 EXPORT_SYMBOL_GPL(cpuset_cpus_allowed);
3519 /**
3520 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3521 * @tsk: pointer to task_struct with which the scheduler is struggling
3522 *
3523 * Description: In the case that the scheduler cannot find an allowed cpu in
3524 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3525 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3526 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3527 * This is the absolute last resort for the scheduler and it is only used if
3528 * _every_ other avenue has been traveled.
3529 *
3530 * Returns true if the affinity of @tsk was changed, false otherwise.
3531 **/
3532
cpuset_cpus_allowed_fallback(struct task_struct * tsk)3533 bool cpuset_cpus_allowed_fallback(struct task_struct *tsk)
3534 {
3535 const struct cpumask *possible_mask = task_cpu_possible_mask(tsk);
3536 const struct cpumask *cs_mask;
3537 bool changed = false;
3538
3539 rcu_read_lock();
3540 cs_mask = task_cs(tsk)->cpus_allowed;
3541 if (is_in_v2_mode() && cpumask_subset(cs_mask, possible_mask)) {
3542 do_set_cpus_allowed(tsk, cs_mask);
3543 changed = true;
3544 }
3545 rcu_read_unlock();
3546
3547 /*
3548 * We own tsk->cpus_allowed, nobody can change it under us.
3549 *
3550 * But we used cs && cs->cpus_allowed lockless and thus can
3551 * race with cgroup_attach_task() or update_cpumask() and get
3552 * the wrong tsk->cpus_allowed. However, both cases imply the
3553 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3554 * which takes task_rq_lock().
3555 *
3556 * If we are called after it dropped the lock we must see all
3557 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3558 * set any mask even if it is not right from task_cs() pov,
3559 * the pending set_cpus_allowed_ptr() will fix things.
3560 *
3561 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3562 * if required.
3563 */
3564 return changed;
3565 }
3566
cpuset_init_current_mems_allowed(void)3567 void __init cpuset_init_current_mems_allowed(void)
3568 {
3569 nodes_setall(current->mems_allowed);
3570 }
3571
3572 /**
3573 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3574 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3575 *
3576 * Description: Returns the nodemask_t mems_allowed of the cpuset
3577 * attached to the specified @tsk. Guaranteed to return some non-empty
3578 * subset of node_states[N_MEMORY], even if this means going outside the
3579 * tasks cpuset.
3580 **/
3581
cpuset_mems_allowed(struct task_struct * tsk)3582 nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
3583 {
3584 nodemask_t mask;
3585 unsigned long flags;
3586
3587 spin_lock_irqsave(&callback_lock, flags);
3588 rcu_read_lock();
3589 guarantee_online_mems(task_cs(tsk), &mask);
3590 rcu_read_unlock();
3591 spin_unlock_irqrestore(&callback_lock, flags);
3592
3593 return mask;
3594 }
3595
3596 /**
3597 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. current mems_allowed
3598 * @nodemask: the nodemask to be checked
3599 *
3600 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3601 */
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)3602 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
3603 {
3604 return nodes_intersects(*nodemask, current->mems_allowed);
3605 }
3606
3607 /*
3608 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3609 * mem_hardwall ancestor to the specified cpuset. Call holding
3610 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3611 * (an unusual configuration), then returns the root cpuset.
3612 */
nearest_hardwall_ancestor(struct cpuset * cs)3613 static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs)
3614 {
3615 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
3616 cs = parent_cs(cs);
3617 return cs;
3618 }
3619
3620 /**
3621 * cpuset_node_allowed - Can we allocate on a memory node?
3622 * @node: is this an allowed node?
3623 * @gfp_mask: memory allocation flags
3624 *
3625 * If we're in interrupt, yes, we can always allocate. If @node is set in
3626 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3627 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3628 * yes. If current has access to memory reserves as an oom victim, yes.
3629 * Otherwise, no.
3630 *
3631 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3632 * and do not allow allocations outside the current tasks cpuset
3633 * unless the task has been OOM killed.
3634 * GFP_KERNEL allocations are not so marked, so can escape to the
3635 * nearest enclosing hardwalled ancestor cpuset.
3636 *
3637 * Scanning up parent cpusets requires callback_lock. The
3638 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3639 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3640 * current tasks mems_allowed came up empty on the first pass over
3641 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3642 * cpuset are short of memory, might require taking the callback_lock.
3643 *
3644 * The first call here from mm/page_alloc:get_page_from_freelist()
3645 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3646 * so no allocation on a node outside the cpuset is allowed (unless
3647 * in interrupt, of course).
3648 *
3649 * The second pass through get_page_from_freelist() doesn't even call
3650 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3651 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3652 * in alloc_flags. That logic and the checks below have the combined
3653 * affect that:
3654 * in_interrupt - any node ok (current task context irrelevant)
3655 * GFP_ATOMIC - any node ok
3656 * tsk_is_oom_victim - any node ok
3657 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3658 * GFP_USER - only nodes in current tasks mems allowed ok.
3659 */
__cpuset_node_allowed(int node,gfp_t gfp_mask)3660 bool __cpuset_node_allowed(int node, gfp_t gfp_mask)
3661 {
3662 struct cpuset *cs; /* current cpuset ancestors */
3663 int allowed; /* is allocation in zone z allowed? */
3664 unsigned long flags;
3665
3666 if (in_interrupt())
3667 return true;
3668 if (node_isset(node, current->mems_allowed))
3669 return true;
3670 /*
3671 * Allow tasks that have access to memory reserves because they have
3672 * been OOM killed to get memory anywhere.
3673 */
3674 if (unlikely(tsk_is_oom_victim(current)))
3675 return true;
3676 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
3677 return false;
3678
3679 if (current->flags & PF_EXITING) /* Let dying task have memory */
3680 return true;
3681
3682 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3683 spin_lock_irqsave(&callback_lock, flags);
3684
3685 rcu_read_lock();
3686 cs = nearest_hardwall_ancestor(task_cs(current));
3687 allowed = node_isset(node, cs->mems_allowed);
3688 rcu_read_unlock();
3689
3690 spin_unlock_irqrestore(&callback_lock, flags);
3691 return allowed;
3692 }
3693
3694 /**
3695 * cpuset_mem_spread_node() - On which node to begin search for a file page
3696 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3697 *
3698 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3699 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3700 * and if the memory allocation used cpuset_mem_spread_node()
3701 * to determine on which node to start looking, as it will for
3702 * certain page cache or slab cache pages such as used for file
3703 * system buffers and inode caches, then instead of starting on the
3704 * local node to look for a free page, rather spread the starting
3705 * node around the tasks mems_allowed nodes.
3706 *
3707 * We don't have to worry about the returned node being offline
3708 * because "it can't happen", and even if it did, it would be ok.
3709 *
3710 * The routines calling guarantee_online_mems() are careful to
3711 * only set nodes in task->mems_allowed that are online. So it
3712 * should not be possible for the following code to return an
3713 * offline node. But if it did, that would be ok, as this routine
3714 * is not returning the node where the allocation must be, only
3715 * the node where the search should start. The zonelist passed to
3716 * __alloc_pages() will include all nodes. If the slab allocator
3717 * is passed an offline node, it will fall back to the local node.
3718 * See kmem_cache_alloc_node().
3719 */
3720
cpuset_spread_node(int * rotor)3721 static int cpuset_spread_node(int *rotor)
3722 {
3723 return *rotor = next_node_in(*rotor, current->mems_allowed);
3724 }
3725
cpuset_mem_spread_node(void)3726 int cpuset_mem_spread_node(void)
3727 {
3728 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
3729 current->cpuset_mem_spread_rotor =
3730 node_random(¤t->mems_allowed);
3731
3732 return cpuset_spread_node(¤t->cpuset_mem_spread_rotor);
3733 }
3734
cpuset_slab_spread_node(void)3735 int cpuset_slab_spread_node(void)
3736 {
3737 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
3738 current->cpuset_slab_spread_rotor =
3739 node_random(¤t->mems_allowed);
3740
3741 return cpuset_spread_node(¤t->cpuset_slab_spread_rotor);
3742 }
3743
3744 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
3745
3746 /**
3747 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3748 * @tsk1: pointer to task_struct of some task.
3749 * @tsk2: pointer to task_struct of some other task.
3750 *
3751 * Description: Return true if @tsk1's mems_allowed intersects the
3752 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3753 * one of the task's memory usage might impact the memory available
3754 * to the other.
3755 **/
3756
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)3757 int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
3758 const struct task_struct *tsk2)
3759 {
3760 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
3761 }
3762
3763 /**
3764 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3765 *
3766 * Description: Prints current's name, cpuset name, and cached copy of its
3767 * mems_allowed to the kernel log.
3768 */
cpuset_print_current_mems_allowed(void)3769 void cpuset_print_current_mems_allowed(void)
3770 {
3771 struct cgroup *cgrp;
3772
3773 rcu_read_lock();
3774
3775 cgrp = task_cs(current)->css.cgroup;
3776 pr_cont(",cpuset=");
3777 pr_cont_cgroup_name(cgrp);
3778 pr_cont(",mems_allowed=%*pbl",
3779 nodemask_pr_args(¤t->mems_allowed));
3780
3781 rcu_read_unlock();
3782 }
3783
3784 /*
3785 * Collection of memory_pressure is suppressed unless
3786 * this flag is enabled by writing "1" to the special
3787 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3788 */
3789
3790 int cpuset_memory_pressure_enabled __read_mostly;
3791
3792 /**
3793 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3794 *
3795 * Keep a running average of the rate of synchronous (direct)
3796 * page reclaim efforts initiated by tasks in each cpuset.
3797 *
3798 * This represents the rate at which some task in the cpuset
3799 * ran low on memory on all nodes it was allowed to use, and
3800 * had to enter the kernels page reclaim code in an effort to
3801 * create more free memory by tossing clean pages or swapping
3802 * or writing dirty pages.
3803 *
3804 * Display to user space in the per-cpuset read-only file
3805 * "memory_pressure". Value displayed is an integer
3806 * representing the recent rate of entry into the synchronous
3807 * (direct) page reclaim by any task attached to the cpuset.
3808 **/
3809
__cpuset_memory_pressure_bump(void)3810 void __cpuset_memory_pressure_bump(void)
3811 {
3812 rcu_read_lock();
3813 fmeter_markevent(&task_cs(current)->fmeter);
3814 rcu_read_unlock();
3815 }
3816
3817 #ifdef CONFIG_PROC_PID_CPUSET
3818 /*
3819 * proc_cpuset_show()
3820 * - Print tasks cpuset path into seq_file.
3821 * - Used for /proc/<pid>/cpuset.
3822 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3823 * doesn't really matter if tsk->cpuset changes after we read it,
3824 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3825 * anyway.
3826 */
proc_cpuset_show(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * tsk)3827 int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
3828 struct pid *pid, struct task_struct *tsk)
3829 {
3830 char *buf;
3831 struct cgroup_subsys_state *css;
3832 int retval;
3833
3834 retval = -ENOMEM;
3835 buf = kmalloc(PATH_MAX, GFP_KERNEL);
3836 if (!buf)
3837 goto out;
3838
3839 css = task_get_css(tsk, cpuset_cgrp_id);
3840 retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX,
3841 current->nsproxy->cgroup_ns);
3842 css_put(css);
3843 if (retval >= PATH_MAX)
3844 retval = -ENAMETOOLONG;
3845 if (retval < 0)
3846 goto out_free;
3847 seq_puts(m, buf);
3848 seq_putc(m, '\n');
3849 retval = 0;
3850 out_free:
3851 kfree(buf);
3852 out:
3853 return retval;
3854 }
3855 #endif /* CONFIG_PROC_PID_CPUSET */
3856
3857 /* Display task mems_allowed in /proc/<pid>/status file. */
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)3858 void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
3859 {
3860 seq_printf(m, "Mems_allowed:\t%*pb\n",
3861 nodemask_pr_args(&task->mems_allowed));
3862 seq_printf(m, "Mems_allowed_list:\t%*pbl\n",
3863 nodemask_pr_args(&task->mems_allowed));
3864 }
3865