1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
regmap_should_log(struct regmap * map)36 static inline bool regmap_should_log(struct regmap *map)
37 {
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
regmap_should_log(struct regmap * map)41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
regmap_reg_in_ranges(unsigned int reg,const struct regmap_range * ranges,unsigned int nranges)60 bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63 {
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
regmap_check_range_table(struct regmap * map,unsigned int reg,const struct regmap_access_table * table)74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76 {
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
regmap_writeable(struct regmap * map,unsigned int reg)90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102 }
103
regmap_cached(struct regmap * map,unsigned int reg)104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125 }
126
regmap_readable(struct regmap * map,unsigned int reg)127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145 }
146
regmap_volatile(struct regmap * map,unsigned int reg)147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162 }
163
regmap_precious(struct regmap * map,unsigned int reg)164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176 }
177
regmap_writeable_noinc(struct regmap * map,unsigned int reg)178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187 }
188
regmap_readable_noinc(struct regmap * map,unsigned int reg)189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198 }
199
regmap_volatile_range(struct regmap * map,unsigned int reg,size_t num)200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202 {
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210 }
211
regmap_format_12_20_write(struct regmap * map,unsigned int reg,unsigned int val)212 static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214 {
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221 }
222
223
regmap_format_2_6_write(struct regmap * map,unsigned int reg,unsigned int val)224 static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226 {
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230 }
231
regmap_format_4_12_write(struct regmap * map,unsigned int reg,unsigned int val)232 static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234 {
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237 }
238
regmap_format_7_9_write(struct regmap * map,unsigned int reg,unsigned int val)239 static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241 {
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244 }
245
regmap_format_7_17_write(struct regmap * map,unsigned int reg,unsigned int val)246 static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248 {
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254 }
255
regmap_format_10_14_write(struct regmap * map,unsigned int reg,unsigned int val)256 static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258 {
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264 }
265
regmap_format_8(void * buf,unsigned int val,unsigned int shift)266 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267 {
268 u8 *b = buf;
269
270 b[0] = val << shift;
271 }
272
regmap_format_16_be(void * buf,unsigned int val,unsigned int shift)273 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274 {
275 put_unaligned_be16(val << shift, buf);
276 }
277
regmap_format_16_le(void * buf,unsigned int val,unsigned int shift)278 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279 {
280 put_unaligned_le16(val << shift, buf);
281 }
282
regmap_format_16_native(void * buf,unsigned int val,unsigned int shift)283 static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285 {
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289 }
290
regmap_format_24(void * buf,unsigned int val,unsigned int shift)291 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
292 {
293 u8 *b = buf;
294
295 val <<= shift;
296
297 b[0] = val >> 16;
298 b[1] = val >> 8;
299 b[2] = val;
300 }
301
regmap_format_32_be(void * buf,unsigned int val,unsigned int shift)302 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
303 {
304 put_unaligned_be32(val << shift, buf);
305 }
306
regmap_format_32_le(void * buf,unsigned int val,unsigned int shift)307 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
308 {
309 put_unaligned_le32(val << shift, buf);
310 }
311
regmap_format_32_native(void * buf,unsigned int val,unsigned int shift)312 static void regmap_format_32_native(void *buf, unsigned int val,
313 unsigned int shift)
314 {
315 u32 v = val << shift;
316
317 memcpy(buf, &v, sizeof(v));
318 }
319
320 #ifdef CONFIG_64BIT
regmap_format_64_be(void * buf,unsigned int val,unsigned int shift)321 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
322 {
323 put_unaligned_be64((u64) val << shift, buf);
324 }
325
regmap_format_64_le(void * buf,unsigned int val,unsigned int shift)326 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
327 {
328 put_unaligned_le64((u64) val << shift, buf);
329 }
330
regmap_format_64_native(void * buf,unsigned int val,unsigned int shift)331 static void regmap_format_64_native(void *buf, unsigned int val,
332 unsigned int shift)
333 {
334 u64 v = (u64) val << shift;
335
336 memcpy(buf, &v, sizeof(v));
337 }
338 #endif
339
regmap_parse_inplace_noop(void * buf)340 static void regmap_parse_inplace_noop(void *buf)
341 {
342 }
343
regmap_parse_8(const void * buf)344 static unsigned int regmap_parse_8(const void *buf)
345 {
346 const u8 *b = buf;
347
348 return b[0];
349 }
350
regmap_parse_16_be(const void * buf)351 static unsigned int regmap_parse_16_be(const void *buf)
352 {
353 return get_unaligned_be16(buf);
354 }
355
regmap_parse_16_le(const void * buf)356 static unsigned int regmap_parse_16_le(const void *buf)
357 {
358 return get_unaligned_le16(buf);
359 }
360
regmap_parse_16_be_inplace(void * buf)361 static void regmap_parse_16_be_inplace(void *buf)
362 {
363 u16 v = get_unaligned_be16(buf);
364
365 memcpy(buf, &v, sizeof(v));
366 }
367
regmap_parse_16_le_inplace(void * buf)368 static void regmap_parse_16_le_inplace(void *buf)
369 {
370 u16 v = get_unaligned_le16(buf);
371
372 memcpy(buf, &v, sizeof(v));
373 }
374
regmap_parse_16_native(const void * buf)375 static unsigned int regmap_parse_16_native(const void *buf)
376 {
377 u16 v;
378
379 memcpy(&v, buf, sizeof(v));
380 return v;
381 }
382
regmap_parse_24(const void * buf)383 static unsigned int regmap_parse_24(const void *buf)
384 {
385 const u8 *b = buf;
386 unsigned int ret = b[2];
387 ret |= ((unsigned int)b[1]) << 8;
388 ret |= ((unsigned int)b[0]) << 16;
389
390 return ret;
391 }
392
regmap_parse_32_be(const void * buf)393 static unsigned int regmap_parse_32_be(const void *buf)
394 {
395 return get_unaligned_be32(buf);
396 }
397
regmap_parse_32_le(const void * buf)398 static unsigned int regmap_parse_32_le(const void *buf)
399 {
400 return get_unaligned_le32(buf);
401 }
402
regmap_parse_32_be_inplace(void * buf)403 static void regmap_parse_32_be_inplace(void *buf)
404 {
405 u32 v = get_unaligned_be32(buf);
406
407 memcpy(buf, &v, sizeof(v));
408 }
409
regmap_parse_32_le_inplace(void * buf)410 static void regmap_parse_32_le_inplace(void *buf)
411 {
412 u32 v = get_unaligned_le32(buf);
413
414 memcpy(buf, &v, sizeof(v));
415 }
416
regmap_parse_32_native(const void * buf)417 static unsigned int regmap_parse_32_native(const void *buf)
418 {
419 u32 v;
420
421 memcpy(&v, buf, sizeof(v));
422 return v;
423 }
424
425 #ifdef CONFIG_64BIT
regmap_parse_64_be(const void * buf)426 static unsigned int regmap_parse_64_be(const void *buf)
427 {
428 return get_unaligned_be64(buf);
429 }
430
regmap_parse_64_le(const void * buf)431 static unsigned int regmap_parse_64_le(const void *buf)
432 {
433 return get_unaligned_le64(buf);
434 }
435
regmap_parse_64_be_inplace(void * buf)436 static void regmap_parse_64_be_inplace(void *buf)
437 {
438 u64 v = get_unaligned_be64(buf);
439
440 memcpy(buf, &v, sizeof(v));
441 }
442
regmap_parse_64_le_inplace(void * buf)443 static void regmap_parse_64_le_inplace(void *buf)
444 {
445 u64 v = get_unaligned_le64(buf);
446
447 memcpy(buf, &v, sizeof(v));
448 }
449
regmap_parse_64_native(const void * buf)450 static unsigned int regmap_parse_64_native(const void *buf)
451 {
452 u64 v;
453
454 memcpy(&v, buf, sizeof(v));
455 return v;
456 }
457 #endif
458
regmap_lock_hwlock(void * __map)459 static void regmap_lock_hwlock(void *__map)
460 {
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout(map->hwlock, UINT_MAX);
464 }
465
regmap_lock_hwlock_irq(void * __map)466 static void regmap_lock_hwlock_irq(void *__map)
467 {
468 struct regmap *map = __map;
469
470 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
471 }
472
regmap_lock_hwlock_irqsave(void * __map)473 static void regmap_lock_hwlock_irqsave(void *__map)
474 {
475 struct regmap *map = __map;
476
477 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
478 &map->spinlock_flags);
479 }
480
regmap_unlock_hwlock(void * __map)481 static void regmap_unlock_hwlock(void *__map)
482 {
483 struct regmap *map = __map;
484
485 hwspin_unlock(map->hwlock);
486 }
487
regmap_unlock_hwlock_irq(void * __map)488 static void regmap_unlock_hwlock_irq(void *__map)
489 {
490 struct regmap *map = __map;
491
492 hwspin_unlock_irq(map->hwlock);
493 }
494
regmap_unlock_hwlock_irqrestore(void * __map)495 static void regmap_unlock_hwlock_irqrestore(void *__map)
496 {
497 struct regmap *map = __map;
498
499 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
500 }
501
regmap_lock_unlock_none(void * __map)502 static void regmap_lock_unlock_none(void *__map)
503 {
504
505 }
506
regmap_lock_mutex(void * __map)507 static void regmap_lock_mutex(void *__map)
508 {
509 struct regmap *map = __map;
510 mutex_lock(&map->mutex);
511 }
512
regmap_unlock_mutex(void * __map)513 static void regmap_unlock_mutex(void *__map)
514 {
515 struct regmap *map = __map;
516 mutex_unlock(&map->mutex);
517 }
518
regmap_lock_spinlock(void * __map)519 static void regmap_lock_spinlock(void *__map)
520 __acquires(&map->spinlock)
521 {
522 struct regmap *map = __map;
523 unsigned long flags;
524
525 spin_lock_irqsave(&map->spinlock, flags);
526 map->spinlock_flags = flags;
527 }
528
regmap_unlock_spinlock(void * __map)529 static void regmap_unlock_spinlock(void *__map)
530 __releases(&map->spinlock)
531 {
532 struct regmap *map = __map;
533 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
534 }
535
regmap_lock_raw_spinlock(void * __map)536 static void regmap_lock_raw_spinlock(void *__map)
537 __acquires(&map->raw_spinlock)
538 {
539 struct regmap *map = __map;
540 unsigned long flags;
541
542 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
543 map->raw_spinlock_flags = flags;
544 }
545
regmap_unlock_raw_spinlock(void * __map)546 static void regmap_unlock_raw_spinlock(void *__map)
547 __releases(&map->raw_spinlock)
548 {
549 struct regmap *map = __map;
550 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
551 }
552
dev_get_regmap_release(struct device * dev,void * res)553 static void dev_get_regmap_release(struct device *dev, void *res)
554 {
555 /*
556 * We don't actually have anything to do here; the goal here
557 * is not to manage the regmap but to provide a simple way to
558 * get the regmap back given a struct device.
559 */
560 }
561
_regmap_range_add(struct regmap * map,struct regmap_range_node * data)562 static bool _regmap_range_add(struct regmap *map,
563 struct regmap_range_node *data)
564 {
565 struct rb_root *root = &map->range_tree;
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567
568 while (*new) {
569 struct regmap_range_node *this =
570 rb_entry(*new, struct regmap_range_node, node);
571
572 parent = *new;
573 if (data->range_max < this->range_min)
574 new = &((*new)->rb_left);
575 else if (data->range_min > this->range_max)
576 new = &((*new)->rb_right);
577 else
578 return false;
579 }
580
581 rb_link_node(&data->node, parent, new);
582 rb_insert_color(&data->node, root);
583
584 return true;
585 }
586
_regmap_range_lookup(struct regmap * map,unsigned int reg)587 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
588 unsigned int reg)
589 {
590 struct rb_node *node = map->range_tree.rb_node;
591
592 while (node) {
593 struct regmap_range_node *this =
594 rb_entry(node, struct regmap_range_node, node);
595
596 if (reg < this->range_min)
597 node = node->rb_left;
598 else if (reg > this->range_max)
599 node = node->rb_right;
600 else
601 return this;
602 }
603
604 return NULL;
605 }
606
regmap_range_exit(struct regmap * map)607 static void regmap_range_exit(struct regmap *map)
608 {
609 struct rb_node *next;
610 struct regmap_range_node *range_node;
611
612 next = rb_first(&map->range_tree);
613 while (next) {
614 range_node = rb_entry(next, struct regmap_range_node, node);
615 next = rb_next(&range_node->node);
616 rb_erase(&range_node->node, &map->range_tree);
617 kfree(range_node);
618 }
619
620 kfree(map->selector_work_buf);
621 }
622
regmap_set_name(struct regmap * map,const struct regmap_config * config)623 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
624 {
625 if (config->name) {
626 const char *name = kstrdup_const(config->name, GFP_KERNEL);
627
628 if (!name)
629 return -ENOMEM;
630
631 kfree_const(map->name);
632 map->name = name;
633 }
634
635 return 0;
636 }
637
regmap_attach_dev(struct device * dev,struct regmap * map,const struct regmap_config * config)638 int regmap_attach_dev(struct device *dev, struct regmap *map,
639 const struct regmap_config *config)
640 {
641 struct regmap **m;
642 int ret;
643
644 map->dev = dev;
645
646 ret = regmap_set_name(map, config);
647 if (ret)
648 return ret;
649
650 regmap_debugfs_exit(map);
651 regmap_debugfs_init(map);
652
653 /* Add a devres resource for dev_get_regmap() */
654 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
655 if (!m) {
656 regmap_debugfs_exit(map);
657 return -ENOMEM;
658 }
659 *m = map;
660 devres_add(dev, m);
661
662 return 0;
663 }
664 EXPORT_SYMBOL_GPL(regmap_attach_dev);
665
regmap_get_reg_endian(const struct regmap_bus * bus,const struct regmap_config * config)666 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
667 const struct regmap_config *config)
668 {
669 enum regmap_endian endian;
670
671 /* Retrieve the endianness specification from the regmap config */
672 endian = config->reg_format_endian;
673
674 /* If the regmap config specified a non-default value, use that */
675 if (endian != REGMAP_ENDIAN_DEFAULT)
676 return endian;
677
678 /* Retrieve the endianness specification from the bus config */
679 if (bus && bus->reg_format_endian_default)
680 endian = bus->reg_format_endian_default;
681
682 /* If the bus specified a non-default value, use that */
683 if (endian != REGMAP_ENDIAN_DEFAULT)
684 return endian;
685
686 /* Use this if no other value was found */
687 return REGMAP_ENDIAN_BIG;
688 }
689
regmap_get_val_endian(struct device * dev,const struct regmap_bus * bus,const struct regmap_config * config)690 enum regmap_endian regmap_get_val_endian(struct device *dev,
691 const struct regmap_bus *bus,
692 const struct regmap_config *config)
693 {
694 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
695 enum regmap_endian endian;
696
697 /* Retrieve the endianness specification from the regmap config */
698 endian = config->val_format_endian;
699
700 /* If the regmap config specified a non-default value, use that */
701 if (endian != REGMAP_ENDIAN_DEFAULT)
702 return endian;
703
704 /* If the firmware node exist try to get endianness from it */
705 if (fwnode_property_read_bool(fwnode, "big-endian"))
706 endian = REGMAP_ENDIAN_BIG;
707 else if (fwnode_property_read_bool(fwnode, "little-endian"))
708 endian = REGMAP_ENDIAN_LITTLE;
709 else if (fwnode_property_read_bool(fwnode, "native-endian"))
710 endian = REGMAP_ENDIAN_NATIVE;
711
712 /* If the endianness was specified in fwnode, use that */
713 if (endian != REGMAP_ENDIAN_DEFAULT)
714 return endian;
715
716 /* Retrieve the endianness specification from the bus config */
717 if (bus && bus->val_format_endian_default)
718 endian = bus->val_format_endian_default;
719
720 /* If the bus specified a non-default value, use that */
721 if (endian != REGMAP_ENDIAN_DEFAULT)
722 return endian;
723
724 /* Use this if no other value was found */
725 return REGMAP_ENDIAN_BIG;
726 }
727 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
728
__regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)729 struct regmap *__regmap_init(struct device *dev,
730 const struct regmap_bus *bus,
731 void *bus_context,
732 const struct regmap_config *config,
733 struct lock_class_key *lock_key,
734 const char *lock_name)
735 {
736 struct regmap *map;
737 int ret = -EINVAL;
738 enum regmap_endian reg_endian, val_endian;
739 int i, j;
740
741 if (!config)
742 goto err;
743
744 map = kzalloc(sizeof(*map), GFP_KERNEL);
745 if (map == NULL) {
746 ret = -ENOMEM;
747 goto err;
748 }
749
750 ret = regmap_set_name(map, config);
751 if (ret)
752 goto err_map;
753
754 ret = -EINVAL; /* Later error paths rely on this */
755
756 if (config->disable_locking) {
757 map->lock = map->unlock = regmap_lock_unlock_none;
758 map->can_sleep = config->can_sleep;
759 regmap_debugfs_disable(map);
760 } else if (config->lock && config->unlock) {
761 map->lock = config->lock;
762 map->unlock = config->unlock;
763 map->lock_arg = config->lock_arg;
764 map->can_sleep = config->can_sleep;
765 } else if (config->use_hwlock) {
766 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
767 if (!map->hwlock) {
768 ret = -ENXIO;
769 goto err_name;
770 }
771
772 switch (config->hwlock_mode) {
773 case HWLOCK_IRQSTATE:
774 map->lock = regmap_lock_hwlock_irqsave;
775 map->unlock = regmap_unlock_hwlock_irqrestore;
776 break;
777 case HWLOCK_IRQ:
778 map->lock = regmap_lock_hwlock_irq;
779 map->unlock = regmap_unlock_hwlock_irq;
780 break;
781 default:
782 map->lock = regmap_lock_hwlock;
783 map->unlock = regmap_unlock_hwlock;
784 break;
785 }
786
787 map->lock_arg = map;
788 } else {
789 if ((bus && bus->fast_io) ||
790 config->fast_io) {
791 if (config->use_raw_spinlock) {
792 raw_spin_lock_init(&map->raw_spinlock);
793 map->lock = regmap_lock_raw_spinlock;
794 map->unlock = regmap_unlock_raw_spinlock;
795 lockdep_set_class_and_name(&map->raw_spinlock,
796 lock_key, lock_name);
797 } else {
798 spin_lock_init(&map->spinlock);
799 map->lock = regmap_lock_spinlock;
800 map->unlock = regmap_unlock_spinlock;
801 lockdep_set_class_and_name(&map->spinlock,
802 lock_key, lock_name);
803 }
804 } else {
805 mutex_init(&map->mutex);
806 map->lock = regmap_lock_mutex;
807 map->unlock = regmap_unlock_mutex;
808 map->can_sleep = true;
809 lockdep_set_class_and_name(&map->mutex,
810 lock_key, lock_name);
811 }
812 map->lock_arg = map;
813 }
814
815 /*
816 * When we write in fast-paths with regmap_bulk_write() don't allocate
817 * scratch buffers with sleeping allocations.
818 */
819 if ((bus && bus->fast_io) || config->fast_io)
820 map->alloc_flags = GFP_ATOMIC;
821 else
822 map->alloc_flags = GFP_KERNEL;
823
824 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
825 map->format.pad_bytes = config->pad_bits / 8;
826 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
827 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
828 config->val_bits + config->pad_bits, 8);
829 map->reg_shift = config->pad_bits % 8;
830 if (config->reg_stride)
831 map->reg_stride = config->reg_stride;
832 else
833 map->reg_stride = 1;
834 if (is_power_of_2(map->reg_stride))
835 map->reg_stride_order = ilog2(map->reg_stride);
836 else
837 map->reg_stride_order = -1;
838 map->use_single_read = config->use_single_read || !bus || !bus->read;
839 map->use_single_write = config->use_single_write || !bus || !bus->write;
840 map->can_multi_write = config->can_multi_write && bus && bus->write;
841 if (bus) {
842 map->max_raw_read = bus->max_raw_read;
843 map->max_raw_write = bus->max_raw_write;
844 }
845 map->dev = dev;
846 map->bus = bus;
847 map->bus_context = bus_context;
848 map->max_register = config->max_register;
849 map->wr_table = config->wr_table;
850 map->rd_table = config->rd_table;
851 map->volatile_table = config->volatile_table;
852 map->precious_table = config->precious_table;
853 map->wr_noinc_table = config->wr_noinc_table;
854 map->rd_noinc_table = config->rd_noinc_table;
855 map->writeable_reg = config->writeable_reg;
856 map->readable_reg = config->readable_reg;
857 map->volatile_reg = config->volatile_reg;
858 map->precious_reg = config->precious_reg;
859 map->writeable_noinc_reg = config->writeable_noinc_reg;
860 map->readable_noinc_reg = config->readable_noinc_reg;
861 map->cache_type = config->cache_type;
862
863 spin_lock_init(&map->async_lock);
864 INIT_LIST_HEAD(&map->async_list);
865 INIT_LIST_HEAD(&map->async_free);
866 init_waitqueue_head(&map->async_waitq);
867
868 if (config->read_flag_mask ||
869 config->write_flag_mask ||
870 config->zero_flag_mask) {
871 map->read_flag_mask = config->read_flag_mask;
872 map->write_flag_mask = config->write_flag_mask;
873 } else if (bus) {
874 map->read_flag_mask = bus->read_flag_mask;
875 }
876
877 if (!bus) {
878 map->reg_read = config->reg_read;
879 map->reg_write = config->reg_write;
880 map->reg_update_bits = config->reg_update_bits;
881
882 map->defer_caching = false;
883 goto skip_format_initialization;
884 } else if (!bus->read || !bus->write) {
885 map->reg_read = _regmap_bus_reg_read;
886 map->reg_write = _regmap_bus_reg_write;
887 map->reg_update_bits = bus->reg_update_bits;
888
889 map->defer_caching = false;
890 goto skip_format_initialization;
891 } else {
892 map->reg_read = _regmap_bus_read;
893 map->reg_update_bits = bus->reg_update_bits;
894 }
895
896 reg_endian = regmap_get_reg_endian(bus, config);
897 val_endian = regmap_get_val_endian(dev, bus, config);
898
899 switch (config->reg_bits + map->reg_shift) {
900 case 2:
901 switch (config->val_bits) {
902 case 6:
903 map->format.format_write = regmap_format_2_6_write;
904 break;
905 default:
906 goto err_hwlock;
907 }
908 break;
909
910 case 4:
911 switch (config->val_bits) {
912 case 12:
913 map->format.format_write = regmap_format_4_12_write;
914 break;
915 default:
916 goto err_hwlock;
917 }
918 break;
919
920 case 7:
921 switch (config->val_bits) {
922 case 9:
923 map->format.format_write = regmap_format_7_9_write;
924 break;
925 case 17:
926 map->format.format_write = regmap_format_7_17_write;
927 break;
928 default:
929 goto err_hwlock;
930 }
931 break;
932
933 case 10:
934 switch (config->val_bits) {
935 case 14:
936 map->format.format_write = regmap_format_10_14_write;
937 break;
938 default:
939 goto err_hwlock;
940 }
941 break;
942
943 case 12:
944 switch (config->val_bits) {
945 case 20:
946 map->format.format_write = regmap_format_12_20_write;
947 break;
948 default:
949 goto err_hwlock;
950 }
951 break;
952
953 case 8:
954 map->format.format_reg = regmap_format_8;
955 break;
956
957 case 16:
958 switch (reg_endian) {
959 case REGMAP_ENDIAN_BIG:
960 map->format.format_reg = regmap_format_16_be;
961 break;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_reg = regmap_format_16_le;
964 break;
965 case REGMAP_ENDIAN_NATIVE:
966 map->format.format_reg = regmap_format_16_native;
967 break;
968 default:
969 goto err_hwlock;
970 }
971 break;
972
973 case 24:
974 if (reg_endian != REGMAP_ENDIAN_BIG)
975 goto err_hwlock;
976 map->format.format_reg = regmap_format_24;
977 break;
978
979 case 32:
980 switch (reg_endian) {
981 case REGMAP_ENDIAN_BIG:
982 map->format.format_reg = regmap_format_32_be;
983 break;
984 case REGMAP_ENDIAN_LITTLE:
985 map->format.format_reg = regmap_format_32_le;
986 break;
987 case REGMAP_ENDIAN_NATIVE:
988 map->format.format_reg = regmap_format_32_native;
989 break;
990 default:
991 goto err_hwlock;
992 }
993 break;
994
995 #ifdef CONFIG_64BIT
996 case 64:
997 switch (reg_endian) {
998 case REGMAP_ENDIAN_BIG:
999 map->format.format_reg = regmap_format_64_be;
1000 break;
1001 case REGMAP_ENDIAN_LITTLE:
1002 map->format.format_reg = regmap_format_64_le;
1003 break;
1004 case REGMAP_ENDIAN_NATIVE:
1005 map->format.format_reg = regmap_format_64_native;
1006 break;
1007 default:
1008 goto err_hwlock;
1009 }
1010 break;
1011 #endif
1012
1013 default:
1014 goto err_hwlock;
1015 }
1016
1017 if (val_endian == REGMAP_ENDIAN_NATIVE)
1018 map->format.parse_inplace = regmap_parse_inplace_noop;
1019
1020 switch (config->val_bits) {
1021 case 8:
1022 map->format.format_val = regmap_format_8;
1023 map->format.parse_val = regmap_parse_8;
1024 map->format.parse_inplace = regmap_parse_inplace_noop;
1025 break;
1026 case 16:
1027 switch (val_endian) {
1028 case REGMAP_ENDIAN_BIG:
1029 map->format.format_val = regmap_format_16_be;
1030 map->format.parse_val = regmap_parse_16_be;
1031 map->format.parse_inplace = regmap_parse_16_be_inplace;
1032 break;
1033 case REGMAP_ENDIAN_LITTLE:
1034 map->format.format_val = regmap_format_16_le;
1035 map->format.parse_val = regmap_parse_16_le;
1036 map->format.parse_inplace = regmap_parse_16_le_inplace;
1037 break;
1038 case REGMAP_ENDIAN_NATIVE:
1039 map->format.format_val = regmap_format_16_native;
1040 map->format.parse_val = regmap_parse_16_native;
1041 break;
1042 default:
1043 goto err_hwlock;
1044 }
1045 break;
1046 case 24:
1047 if (val_endian != REGMAP_ENDIAN_BIG)
1048 goto err_hwlock;
1049 map->format.format_val = regmap_format_24;
1050 map->format.parse_val = regmap_parse_24;
1051 break;
1052 case 32:
1053 switch (val_endian) {
1054 case REGMAP_ENDIAN_BIG:
1055 map->format.format_val = regmap_format_32_be;
1056 map->format.parse_val = regmap_parse_32_be;
1057 map->format.parse_inplace = regmap_parse_32_be_inplace;
1058 break;
1059 case REGMAP_ENDIAN_LITTLE:
1060 map->format.format_val = regmap_format_32_le;
1061 map->format.parse_val = regmap_parse_32_le;
1062 map->format.parse_inplace = regmap_parse_32_le_inplace;
1063 break;
1064 case REGMAP_ENDIAN_NATIVE:
1065 map->format.format_val = regmap_format_32_native;
1066 map->format.parse_val = regmap_parse_32_native;
1067 break;
1068 default:
1069 goto err_hwlock;
1070 }
1071 break;
1072 #ifdef CONFIG_64BIT
1073 case 64:
1074 switch (val_endian) {
1075 case REGMAP_ENDIAN_BIG:
1076 map->format.format_val = regmap_format_64_be;
1077 map->format.parse_val = regmap_parse_64_be;
1078 map->format.parse_inplace = regmap_parse_64_be_inplace;
1079 break;
1080 case REGMAP_ENDIAN_LITTLE:
1081 map->format.format_val = regmap_format_64_le;
1082 map->format.parse_val = regmap_parse_64_le;
1083 map->format.parse_inplace = regmap_parse_64_le_inplace;
1084 break;
1085 case REGMAP_ENDIAN_NATIVE:
1086 map->format.format_val = regmap_format_64_native;
1087 map->format.parse_val = regmap_parse_64_native;
1088 break;
1089 default:
1090 goto err_hwlock;
1091 }
1092 break;
1093 #endif
1094 }
1095
1096 if (map->format.format_write) {
1097 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1098 (val_endian != REGMAP_ENDIAN_BIG))
1099 goto err_hwlock;
1100 map->use_single_write = true;
1101 }
1102
1103 if (!map->format.format_write &&
1104 !(map->format.format_reg && map->format.format_val))
1105 goto err_hwlock;
1106
1107 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1108 if (map->work_buf == NULL) {
1109 ret = -ENOMEM;
1110 goto err_hwlock;
1111 }
1112
1113 if (map->format.format_write) {
1114 map->defer_caching = false;
1115 map->reg_write = _regmap_bus_formatted_write;
1116 } else if (map->format.format_val) {
1117 map->defer_caching = true;
1118 map->reg_write = _regmap_bus_raw_write;
1119 }
1120
1121 skip_format_initialization:
1122
1123 map->range_tree = RB_ROOT;
1124 for (i = 0; i < config->num_ranges; i++) {
1125 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1126 struct regmap_range_node *new;
1127
1128 /* Sanity check */
1129 if (range_cfg->range_max < range_cfg->range_min) {
1130 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1131 range_cfg->range_max, range_cfg->range_min);
1132 goto err_range;
1133 }
1134
1135 if (range_cfg->range_max > map->max_register) {
1136 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1137 range_cfg->range_max, map->max_register);
1138 goto err_range;
1139 }
1140
1141 if (range_cfg->selector_reg > map->max_register) {
1142 dev_err(map->dev,
1143 "Invalid range %d: selector out of map\n", i);
1144 goto err_range;
1145 }
1146
1147 if (range_cfg->window_len == 0) {
1148 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1149 i);
1150 goto err_range;
1151 }
1152
1153 /* Make sure, that this register range has no selector
1154 or data window within its boundary */
1155 for (j = 0; j < config->num_ranges; j++) {
1156 unsigned int sel_reg = config->ranges[j].selector_reg;
1157 unsigned int win_min = config->ranges[j].window_start;
1158 unsigned int win_max = win_min +
1159 config->ranges[j].window_len - 1;
1160
1161 /* Allow data window inside its own virtual range */
1162 if (j == i)
1163 continue;
1164
1165 if (range_cfg->range_min <= sel_reg &&
1166 sel_reg <= range_cfg->range_max) {
1167 dev_err(map->dev,
1168 "Range %d: selector for %d in window\n",
1169 i, j);
1170 goto err_range;
1171 }
1172
1173 if (!(win_max < range_cfg->range_min ||
1174 win_min > range_cfg->range_max)) {
1175 dev_err(map->dev,
1176 "Range %d: window for %d in window\n",
1177 i, j);
1178 goto err_range;
1179 }
1180 }
1181
1182 new = kzalloc(sizeof(*new), GFP_KERNEL);
1183 if (new == NULL) {
1184 ret = -ENOMEM;
1185 goto err_range;
1186 }
1187
1188 new->map = map;
1189 new->name = range_cfg->name;
1190 new->range_min = range_cfg->range_min;
1191 new->range_max = range_cfg->range_max;
1192 new->selector_reg = range_cfg->selector_reg;
1193 new->selector_mask = range_cfg->selector_mask;
1194 new->selector_shift = range_cfg->selector_shift;
1195 new->window_start = range_cfg->window_start;
1196 new->window_len = range_cfg->window_len;
1197
1198 if (!_regmap_range_add(map, new)) {
1199 dev_err(map->dev, "Failed to add range %d\n", i);
1200 kfree(new);
1201 goto err_range;
1202 }
1203
1204 if (map->selector_work_buf == NULL) {
1205 map->selector_work_buf =
1206 kzalloc(map->format.buf_size, GFP_KERNEL);
1207 if (map->selector_work_buf == NULL) {
1208 ret = -ENOMEM;
1209 goto err_range;
1210 }
1211 }
1212 }
1213
1214 ret = regcache_init(map, config);
1215 if (ret != 0)
1216 goto err_range;
1217
1218 if (dev) {
1219 ret = regmap_attach_dev(dev, map, config);
1220 if (ret != 0)
1221 goto err_regcache;
1222 } else {
1223 regmap_debugfs_init(map);
1224 }
1225
1226 return map;
1227
1228 err_regcache:
1229 regcache_exit(map);
1230 err_range:
1231 regmap_range_exit(map);
1232 kfree(map->work_buf);
1233 err_hwlock:
1234 if (map->hwlock)
1235 hwspin_lock_free(map->hwlock);
1236 err_name:
1237 kfree_const(map->name);
1238 err_map:
1239 kfree(map);
1240 err:
1241 return ERR_PTR(ret);
1242 }
1243 EXPORT_SYMBOL_GPL(__regmap_init);
1244
devm_regmap_release(struct device * dev,void * res)1245 static void devm_regmap_release(struct device *dev, void *res)
1246 {
1247 regmap_exit(*(struct regmap **)res);
1248 }
1249
__devm_regmap_init(struct device * dev,const struct regmap_bus * bus,void * bus_context,const struct regmap_config * config,struct lock_class_key * lock_key,const char * lock_name)1250 struct regmap *__devm_regmap_init(struct device *dev,
1251 const struct regmap_bus *bus,
1252 void *bus_context,
1253 const struct regmap_config *config,
1254 struct lock_class_key *lock_key,
1255 const char *lock_name)
1256 {
1257 struct regmap **ptr, *regmap;
1258
1259 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1260 if (!ptr)
1261 return ERR_PTR(-ENOMEM);
1262
1263 regmap = __regmap_init(dev, bus, bus_context, config,
1264 lock_key, lock_name);
1265 if (!IS_ERR(regmap)) {
1266 *ptr = regmap;
1267 devres_add(dev, ptr);
1268 } else {
1269 devres_free(ptr);
1270 }
1271
1272 return regmap;
1273 }
1274 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1275
regmap_field_init(struct regmap_field * rm_field,struct regmap * regmap,struct reg_field reg_field)1276 static void regmap_field_init(struct regmap_field *rm_field,
1277 struct regmap *regmap, struct reg_field reg_field)
1278 {
1279 rm_field->regmap = regmap;
1280 rm_field->reg = reg_field.reg;
1281 rm_field->shift = reg_field.lsb;
1282 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1283 rm_field->id_size = reg_field.id_size;
1284 rm_field->id_offset = reg_field.id_offset;
1285 }
1286
1287 /**
1288 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1289 *
1290 * @dev: Device that will be interacted with
1291 * @regmap: regmap bank in which this register field is located.
1292 * @reg_field: Register field with in the bank.
1293 *
1294 * The return value will be an ERR_PTR() on error or a valid pointer
1295 * to a struct regmap_field. The regmap_field will be automatically freed
1296 * by the device management code.
1297 */
devm_regmap_field_alloc(struct device * dev,struct regmap * regmap,struct reg_field reg_field)1298 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1299 struct regmap *regmap, struct reg_field reg_field)
1300 {
1301 struct regmap_field *rm_field = devm_kzalloc(dev,
1302 sizeof(*rm_field), GFP_KERNEL);
1303 if (!rm_field)
1304 return ERR_PTR(-ENOMEM);
1305
1306 regmap_field_init(rm_field, regmap, reg_field);
1307
1308 return rm_field;
1309
1310 }
1311 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1312
1313
1314 /**
1315 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1316 *
1317 * @regmap: regmap bank in which this register field is located.
1318 * @rm_field: regmap register fields within the bank.
1319 * @reg_field: Register fields within the bank.
1320 * @num_fields: Number of register fields.
1321 *
1322 * The return value will be an -ENOMEM on error or zero for success.
1323 * Newly allocated regmap_fields should be freed by calling
1324 * regmap_field_bulk_free()
1325 */
regmap_field_bulk_alloc(struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1326 int regmap_field_bulk_alloc(struct regmap *regmap,
1327 struct regmap_field **rm_field,
1328 const struct reg_field *reg_field,
1329 int num_fields)
1330 {
1331 struct regmap_field *rf;
1332 int i;
1333
1334 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1335 if (!rf)
1336 return -ENOMEM;
1337
1338 for (i = 0; i < num_fields; i++) {
1339 regmap_field_init(&rf[i], regmap, reg_field[i]);
1340 rm_field[i] = &rf[i];
1341 }
1342
1343 return 0;
1344 }
1345 EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1346
1347 /**
1348 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1349 * fields.
1350 *
1351 * @dev: Device that will be interacted with
1352 * @regmap: regmap bank in which this register field is located.
1353 * @rm_field: regmap register fields within the bank.
1354 * @reg_field: Register fields within the bank.
1355 * @num_fields: Number of register fields.
1356 *
1357 * The return value will be an -ENOMEM on error or zero for success.
1358 * Newly allocated regmap_fields will be automatically freed by the
1359 * device management code.
1360 */
devm_regmap_field_bulk_alloc(struct device * dev,struct regmap * regmap,struct regmap_field ** rm_field,const struct reg_field * reg_field,int num_fields)1361 int devm_regmap_field_bulk_alloc(struct device *dev,
1362 struct regmap *regmap,
1363 struct regmap_field **rm_field,
1364 const struct reg_field *reg_field,
1365 int num_fields)
1366 {
1367 struct regmap_field *rf;
1368 int i;
1369
1370 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1371 if (!rf)
1372 return -ENOMEM;
1373
1374 for (i = 0; i < num_fields; i++) {
1375 regmap_field_init(&rf[i], regmap, reg_field[i]);
1376 rm_field[i] = &rf[i];
1377 }
1378
1379 return 0;
1380 }
1381 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1382
1383 /**
1384 * regmap_field_bulk_free() - Free register field allocated using
1385 * regmap_field_bulk_alloc.
1386 *
1387 * @field: regmap fields which should be freed.
1388 */
regmap_field_bulk_free(struct regmap_field * field)1389 void regmap_field_bulk_free(struct regmap_field *field)
1390 {
1391 kfree(field);
1392 }
1393 EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1394
1395 /**
1396 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1397 * devm_regmap_field_bulk_alloc.
1398 *
1399 * @dev: Device that will be interacted with
1400 * @field: regmap field which should be freed.
1401 *
1402 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1403 * drivers need not call this function, as the memory allocated via devm
1404 * will be freed as per device-driver life-cycle.
1405 */
devm_regmap_field_bulk_free(struct device * dev,struct regmap_field * field)1406 void devm_regmap_field_bulk_free(struct device *dev,
1407 struct regmap_field *field)
1408 {
1409 devm_kfree(dev, field);
1410 }
1411 EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1412
1413 /**
1414 * devm_regmap_field_free() - Free a register field allocated using
1415 * devm_regmap_field_alloc.
1416 *
1417 * @dev: Device that will be interacted with
1418 * @field: regmap field which should be freed.
1419 *
1420 * Free register field allocated using devm_regmap_field_alloc(). Usually
1421 * drivers need not call this function, as the memory allocated via devm
1422 * will be freed as per device-driver life-cyle.
1423 */
devm_regmap_field_free(struct device * dev,struct regmap_field * field)1424 void devm_regmap_field_free(struct device *dev,
1425 struct regmap_field *field)
1426 {
1427 devm_kfree(dev, field);
1428 }
1429 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1430
1431 /**
1432 * regmap_field_alloc() - Allocate and initialise a register field.
1433 *
1434 * @regmap: regmap bank in which this register field is located.
1435 * @reg_field: Register field with in the bank.
1436 *
1437 * The return value will be an ERR_PTR() on error or a valid pointer
1438 * to a struct regmap_field. The regmap_field should be freed by the
1439 * user once its finished working with it using regmap_field_free().
1440 */
regmap_field_alloc(struct regmap * regmap,struct reg_field reg_field)1441 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1442 struct reg_field reg_field)
1443 {
1444 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1445
1446 if (!rm_field)
1447 return ERR_PTR(-ENOMEM);
1448
1449 regmap_field_init(rm_field, regmap, reg_field);
1450
1451 return rm_field;
1452 }
1453 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1454
1455 /**
1456 * regmap_field_free() - Free register field allocated using
1457 * regmap_field_alloc.
1458 *
1459 * @field: regmap field which should be freed.
1460 */
regmap_field_free(struct regmap_field * field)1461 void regmap_field_free(struct regmap_field *field)
1462 {
1463 kfree(field);
1464 }
1465 EXPORT_SYMBOL_GPL(regmap_field_free);
1466
1467 /**
1468 * regmap_reinit_cache() - Reinitialise the current register cache
1469 *
1470 * @map: Register map to operate on.
1471 * @config: New configuration. Only the cache data will be used.
1472 *
1473 * Discard any existing register cache for the map and initialize a
1474 * new cache. This can be used to restore the cache to defaults or to
1475 * update the cache configuration to reflect runtime discovery of the
1476 * hardware.
1477 *
1478 * No explicit locking is done here, the user needs to ensure that
1479 * this function will not race with other calls to regmap.
1480 */
regmap_reinit_cache(struct regmap * map,const struct regmap_config * config)1481 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1482 {
1483 int ret;
1484
1485 regcache_exit(map);
1486 regmap_debugfs_exit(map);
1487
1488 map->max_register = config->max_register;
1489 map->writeable_reg = config->writeable_reg;
1490 map->readable_reg = config->readable_reg;
1491 map->volatile_reg = config->volatile_reg;
1492 map->precious_reg = config->precious_reg;
1493 map->writeable_noinc_reg = config->writeable_noinc_reg;
1494 map->readable_noinc_reg = config->readable_noinc_reg;
1495 map->cache_type = config->cache_type;
1496
1497 ret = regmap_set_name(map, config);
1498 if (ret)
1499 return ret;
1500
1501 regmap_debugfs_init(map);
1502
1503 map->cache_bypass = false;
1504 map->cache_only = false;
1505
1506 return regcache_init(map, config);
1507 }
1508 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1509
1510 /**
1511 * regmap_exit() - Free a previously allocated register map
1512 *
1513 * @map: Register map to operate on.
1514 */
regmap_exit(struct regmap * map)1515 void regmap_exit(struct regmap *map)
1516 {
1517 struct regmap_async *async;
1518
1519 regcache_exit(map);
1520 regmap_debugfs_exit(map);
1521 regmap_range_exit(map);
1522 if (map->bus && map->bus->free_context)
1523 map->bus->free_context(map->bus_context);
1524 kfree(map->work_buf);
1525 while (!list_empty(&map->async_free)) {
1526 async = list_first_entry_or_null(&map->async_free,
1527 struct regmap_async,
1528 list);
1529 list_del(&async->list);
1530 kfree(async->work_buf);
1531 kfree(async);
1532 }
1533 if (map->hwlock)
1534 hwspin_lock_free(map->hwlock);
1535 if (map->lock == regmap_lock_mutex)
1536 mutex_destroy(&map->mutex);
1537 kfree_const(map->name);
1538 kfree(map->patch);
1539 if (map->bus && map->bus->free_on_exit)
1540 kfree(map->bus);
1541 kfree(map);
1542 }
1543 EXPORT_SYMBOL_GPL(regmap_exit);
1544
dev_get_regmap_match(struct device * dev,void * res,void * data)1545 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1546 {
1547 struct regmap **r = res;
1548 if (!r || !*r) {
1549 WARN_ON(!r || !*r);
1550 return 0;
1551 }
1552
1553 /* If the user didn't specify a name match any */
1554 if (data)
1555 return (*r)->name && !strcmp((*r)->name, data);
1556 else
1557 return 1;
1558 }
1559
1560 /**
1561 * dev_get_regmap() - Obtain the regmap (if any) for a device
1562 *
1563 * @dev: Device to retrieve the map for
1564 * @name: Optional name for the register map, usually NULL.
1565 *
1566 * Returns the regmap for the device if one is present, or NULL. If
1567 * name is specified then it must match the name specified when
1568 * registering the device, if it is NULL then the first regmap found
1569 * will be used. Devices with multiple register maps are very rare,
1570 * generic code should normally not need to specify a name.
1571 */
dev_get_regmap(struct device * dev,const char * name)1572 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1573 {
1574 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1575 dev_get_regmap_match, (void *)name);
1576
1577 if (!r)
1578 return NULL;
1579 return *r;
1580 }
1581 EXPORT_SYMBOL_GPL(dev_get_regmap);
1582
1583 /**
1584 * regmap_get_device() - Obtain the device from a regmap
1585 *
1586 * @map: Register map to operate on.
1587 *
1588 * Returns the underlying device that the regmap has been created for.
1589 */
regmap_get_device(struct regmap * map)1590 struct device *regmap_get_device(struct regmap *map)
1591 {
1592 return map->dev;
1593 }
1594 EXPORT_SYMBOL_GPL(regmap_get_device);
1595
_regmap_select_page(struct regmap * map,unsigned int * reg,struct regmap_range_node * range,unsigned int val_num)1596 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1597 struct regmap_range_node *range,
1598 unsigned int val_num)
1599 {
1600 void *orig_work_buf;
1601 unsigned int win_offset;
1602 unsigned int win_page;
1603 bool page_chg;
1604 int ret;
1605
1606 win_offset = (*reg - range->range_min) % range->window_len;
1607 win_page = (*reg - range->range_min) / range->window_len;
1608
1609 if (val_num > 1) {
1610 /* Bulk write shouldn't cross range boundary */
1611 if (*reg + val_num - 1 > range->range_max)
1612 return -EINVAL;
1613
1614 /* ... or single page boundary */
1615 if (val_num > range->window_len - win_offset)
1616 return -EINVAL;
1617 }
1618
1619 /* It is possible to have selector register inside data window.
1620 In that case, selector register is located on every page and
1621 it needs no page switching, when accessed alone. */
1622 if (val_num > 1 ||
1623 range->window_start + win_offset != range->selector_reg) {
1624 /* Use separate work_buf during page switching */
1625 orig_work_buf = map->work_buf;
1626 map->work_buf = map->selector_work_buf;
1627
1628 ret = _regmap_update_bits(map, range->selector_reg,
1629 range->selector_mask,
1630 win_page << range->selector_shift,
1631 &page_chg, false);
1632
1633 map->work_buf = orig_work_buf;
1634
1635 if (ret != 0)
1636 return ret;
1637 }
1638
1639 *reg = range->window_start + win_offset;
1640
1641 return 0;
1642 }
1643
regmap_set_work_buf_flag_mask(struct regmap * map,int max_bytes,unsigned long mask)1644 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1645 unsigned long mask)
1646 {
1647 u8 *buf;
1648 int i;
1649
1650 if (!mask || !map->work_buf)
1651 return;
1652
1653 buf = map->work_buf;
1654
1655 for (i = 0; i < max_bytes; i++)
1656 buf[i] |= (mask >> (8 * i)) & 0xff;
1657 }
1658
_regmap_raw_write_impl(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)1659 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1660 const void *val, size_t val_len, bool noinc)
1661 {
1662 struct regmap_range_node *range;
1663 unsigned long flags;
1664 void *work_val = map->work_buf + map->format.reg_bytes +
1665 map->format.pad_bytes;
1666 void *buf;
1667 int ret = -ENOTSUPP;
1668 size_t len;
1669 int i;
1670
1671 WARN_ON(!map->bus);
1672
1673 /* Check for unwritable or noinc registers in range
1674 * before we start
1675 */
1676 if (!regmap_writeable_noinc(map, reg)) {
1677 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1678 unsigned int element =
1679 reg + regmap_get_offset(map, i);
1680 if (!regmap_writeable(map, element) ||
1681 regmap_writeable_noinc(map, element))
1682 return -EINVAL;
1683 }
1684 }
1685
1686 if (!map->cache_bypass && map->format.parse_val) {
1687 unsigned int ival, offset;
1688 int val_bytes = map->format.val_bytes;
1689
1690 /* Cache the last written value for noinc writes */
1691 i = noinc ? val_len - val_bytes : 0;
1692 for (; i < val_len; i += val_bytes) {
1693 ival = map->format.parse_val(val + i);
1694 offset = noinc ? 0 : regmap_get_offset(map, i / val_bytes);
1695 ret = regcache_write(map, reg + offset, ival);
1696 if (ret) {
1697 dev_err(map->dev,
1698 "Error in caching of register: %x ret: %d\n",
1699 reg + offset, ret);
1700 return ret;
1701 }
1702 }
1703 if (map->cache_only) {
1704 map->cache_dirty = true;
1705 return 0;
1706 }
1707 }
1708
1709 range = _regmap_range_lookup(map, reg);
1710 if (range) {
1711 int val_num = val_len / map->format.val_bytes;
1712 int win_offset = (reg - range->range_min) % range->window_len;
1713 int win_residue = range->window_len - win_offset;
1714
1715 /* If the write goes beyond the end of the window split it */
1716 while (val_num > win_residue) {
1717 dev_dbg(map->dev, "Writing window %d/%zu\n",
1718 win_residue, val_len / map->format.val_bytes);
1719 ret = _regmap_raw_write_impl(map, reg, val,
1720 win_residue *
1721 map->format.val_bytes, noinc);
1722 if (ret != 0)
1723 return ret;
1724
1725 reg += win_residue;
1726 val_num -= win_residue;
1727 val += win_residue * map->format.val_bytes;
1728 val_len -= win_residue * map->format.val_bytes;
1729
1730 win_offset = (reg - range->range_min) %
1731 range->window_len;
1732 win_residue = range->window_len - win_offset;
1733 }
1734
1735 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1736 if (ret != 0)
1737 return ret;
1738 }
1739
1740 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1741 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1742 map->write_flag_mask);
1743
1744 /*
1745 * Essentially all I/O mechanisms will be faster with a single
1746 * buffer to write. Since register syncs often generate raw
1747 * writes of single registers optimise that case.
1748 */
1749 if (val != work_val && val_len == map->format.val_bytes) {
1750 memcpy(work_val, val, map->format.val_bytes);
1751 val = work_val;
1752 }
1753
1754 if (map->async && map->bus->async_write) {
1755 struct regmap_async *async;
1756
1757 trace_regmap_async_write_start(map, reg, val_len);
1758
1759 spin_lock_irqsave(&map->async_lock, flags);
1760 async = list_first_entry_or_null(&map->async_free,
1761 struct regmap_async,
1762 list);
1763 if (async)
1764 list_del(&async->list);
1765 spin_unlock_irqrestore(&map->async_lock, flags);
1766
1767 if (!async) {
1768 async = map->bus->async_alloc();
1769 if (!async)
1770 return -ENOMEM;
1771
1772 async->work_buf = kzalloc(map->format.buf_size,
1773 GFP_KERNEL | GFP_DMA);
1774 if (!async->work_buf) {
1775 kfree(async);
1776 return -ENOMEM;
1777 }
1778 }
1779
1780 async->map = map;
1781
1782 /* If the caller supplied the value we can use it safely. */
1783 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1784 map->format.reg_bytes + map->format.val_bytes);
1785
1786 spin_lock_irqsave(&map->async_lock, flags);
1787 list_add_tail(&async->list, &map->async_list);
1788 spin_unlock_irqrestore(&map->async_lock, flags);
1789
1790 if (val != work_val)
1791 ret = map->bus->async_write(map->bus_context,
1792 async->work_buf,
1793 map->format.reg_bytes +
1794 map->format.pad_bytes,
1795 val, val_len, async);
1796 else
1797 ret = map->bus->async_write(map->bus_context,
1798 async->work_buf,
1799 map->format.reg_bytes +
1800 map->format.pad_bytes +
1801 val_len, NULL, 0, async);
1802
1803 if (ret != 0) {
1804 dev_err(map->dev, "Failed to schedule write: %d\n",
1805 ret);
1806
1807 spin_lock_irqsave(&map->async_lock, flags);
1808 list_move(&async->list, &map->async_free);
1809 spin_unlock_irqrestore(&map->async_lock, flags);
1810 }
1811
1812 return ret;
1813 }
1814
1815 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1816
1817 /* If we're doing a single register write we can probably just
1818 * send the work_buf directly, otherwise try to do a gather
1819 * write.
1820 */
1821 if (val == work_val)
1822 ret = map->bus->write(map->bus_context, map->work_buf,
1823 map->format.reg_bytes +
1824 map->format.pad_bytes +
1825 val_len);
1826 else if (map->bus->gather_write)
1827 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1828 map->format.reg_bytes +
1829 map->format.pad_bytes,
1830 val, val_len);
1831 else
1832 ret = -ENOTSUPP;
1833
1834 /* If that didn't work fall back on linearising by hand. */
1835 if (ret == -ENOTSUPP) {
1836 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1837 buf = kzalloc(len, GFP_KERNEL);
1838 if (!buf)
1839 return -ENOMEM;
1840
1841 memcpy(buf, map->work_buf, map->format.reg_bytes);
1842 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1843 val, val_len);
1844 ret = map->bus->write(map->bus_context, buf, len);
1845
1846 kfree(buf);
1847 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1848 /* regcache_drop_region() takes lock that we already have,
1849 * thus call map->cache_ops->drop() directly
1850 */
1851 if (map->cache_ops && map->cache_ops->drop)
1852 map->cache_ops->drop(map, reg, reg + 1);
1853 }
1854
1855 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1856
1857 return ret;
1858 }
1859
1860 /**
1861 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1862 *
1863 * @map: Map to check.
1864 */
regmap_can_raw_write(struct regmap * map)1865 bool regmap_can_raw_write(struct regmap *map)
1866 {
1867 return map->bus && map->bus->write && map->format.format_val &&
1868 map->format.format_reg;
1869 }
1870 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1871
1872 /**
1873 * regmap_get_raw_read_max - Get the maximum size we can read
1874 *
1875 * @map: Map to check.
1876 */
regmap_get_raw_read_max(struct regmap * map)1877 size_t regmap_get_raw_read_max(struct regmap *map)
1878 {
1879 return map->max_raw_read;
1880 }
1881 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1882
1883 /**
1884 * regmap_get_raw_write_max - Get the maximum size we can read
1885 *
1886 * @map: Map to check.
1887 */
regmap_get_raw_write_max(struct regmap * map)1888 size_t regmap_get_raw_write_max(struct regmap *map)
1889 {
1890 return map->max_raw_write;
1891 }
1892 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1893
_regmap_bus_formatted_write(void * context,unsigned int reg,unsigned int val)1894 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1895 unsigned int val)
1896 {
1897 int ret;
1898 struct regmap_range_node *range;
1899 struct regmap *map = context;
1900
1901 WARN_ON(!map->bus || !map->format.format_write);
1902
1903 range = _regmap_range_lookup(map, reg);
1904 if (range) {
1905 ret = _regmap_select_page(map, ®, range, 1);
1906 if (ret != 0)
1907 return ret;
1908 }
1909
1910 map->format.format_write(map, reg, val);
1911
1912 trace_regmap_hw_write_start(map, reg, 1);
1913
1914 ret = map->bus->write(map->bus_context, map->work_buf,
1915 map->format.buf_size);
1916
1917 trace_regmap_hw_write_done(map, reg, 1);
1918
1919 return ret;
1920 }
1921
_regmap_bus_reg_write(void * context,unsigned int reg,unsigned int val)1922 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1923 unsigned int val)
1924 {
1925 struct regmap *map = context;
1926
1927 return map->bus->reg_write(map->bus_context, reg, val);
1928 }
1929
_regmap_bus_raw_write(void * context,unsigned int reg,unsigned int val)1930 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1931 unsigned int val)
1932 {
1933 struct regmap *map = context;
1934
1935 WARN_ON(!map->bus || !map->format.format_val);
1936
1937 map->format.format_val(map->work_buf + map->format.reg_bytes
1938 + map->format.pad_bytes, val, 0);
1939 return _regmap_raw_write_impl(map, reg,
1940 map->work_buf +
1941 map->format.reg_bytes +
1942 map->format.pad_bytes,
1943 map->format.val_bytes,
1944 false);
1945 }
1946
_regmap_map_get_context(struct regmap * map)1947 static inline void *_regmap_map_get_context(struct regmap *map)
1948 {
1949 return (map->bus) ? map : map->bus_context;
1950 }
1951
_regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1952 int _regmap_write(struct regmap *map, unsigned int reg,
1953 unsigned int val)
1954 {
1955 int ret;
1956 void *context = _regmap_map_get_context(map);
1957
1958 if (!regmap_writeable(map, reg))
1959 return -EIO;
1960
1961 if (!map->cache_bypass && !map->defer_caching) {
1962 ret = regcache_write(map, reg, val);
1963 if (ret != 0)
1964 return ret;
1965 if (map->cache_only) {
1966 map->cache_dirty = true;
1967 return 0;
1968 }
1969 }
1970
1971 ret = map->reg_write(context, reg, val);
1972 if (ret == 0) {
1973 if (regmap_should_log(map))
1974 dev_info(map->dev, "%x <= %x\n", reg, val);
1975
1976 trace_regmap_reg_write(map, reg, val);
1977 }
1978
1979 return ret;
1980 }
1981
1982 /**
1983 * regmap_write() - Write a value to a single register
1984 *
1985 * @map: Register map to write to
1986 * @reg: Register to write to
1987 * @val: Value to be written
1988 *
1989 * A value of zero will be returned on success, a negative errno will
1990 * be returned in error cases.
1991 */
regmap_write(struct regmap * map,unsigned int reg,unsigned int val)1992 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1993 {
1994 int ret;
1995
1996 if (!IS_ALIGNED(reg, map->reg_stride))
1997 return -EINVAL;
1998
1999 map->lock(map->lock_arg);
2000
2001 ret = _regmap_write(map, reg, val);
2002
2003 map->unlock(map->lock_arg);
2004
2005 return ret;
2006 }
2007 EXPORT_SYMBOL_GPL(regmap_write);
2008
2009 /**
2010 * regmap_write_async() - Write a value to a single register asynchronously
2011 *
2012 * @map: Register map to write to
2013 * @reg: Register to write to
2014 * @val: Value to be written
2015 *
2016 * A value of zero will be returned on success, a negative errno will
2017 * be returned in error cases.
2018 */
regmap_write_async(struct regmap * map,unsigned int reg,unsigned int val)2019 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2020 {
2021 int ret;
2022
2023 if (!IS_ALIGNED(reg, map->reg_stride))
2024 return -EINVAL;
2025
2026 map->lock(map->lock_arg);
2027
2028 map->async = true;
2029
2030 ret = _regmap_write(map, reg, val);
2031
2032 map->async = false;
2033
2034 map->unlock(map->lock_arg);
2035
2036 return ret;
2037 }
2038 EXPORT_SYMBOL_GPL(regmap_write_async);
2039
_regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len,bool noinc)2040 int _regmap_raw_write(struct regmap *map, unsigned int reg,
2041 const void *val, size_t val_len, bool noinc)
2042 {
2043 size_t val_bytes = map->format.val_bytes;
2044 size_t val_count = val_len / val_bytes;
2045 size_t chunk_count, chunk_bytes;
2046 size_t chunk_regs = val_count;
2047 int ret, i;
2048
2049 if (!val_count)
2050 return -EINVAL;
2051
2052 if (map->use_single_write)
2053 chunk_regs = 1;
2054 else if (map->max_raw_write && val_len > map->max_raw_write)
2055 chunk_regs = map->max_raw_write / val_bytes;
2056
2057 chunk_count = val_count / chunk_regs;
2058 chunk_bytes = chunk_regs * val_bytes;
2059
2060 /* Write as many bytes as possible with chunk_size */
2061 for (i = 0; i < chunk_count; i++) {
2062 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2063 if (ret)
2064 return ret;
2065
2066 reg += regmap_get_offset(map, chunk_regs);
2067 val += chunk_bytes;
2068 val_len -= chunk_bytes;
2069 }
2070
2071 /* Write remaining bytes */
2072 if (val_len)
2073 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2074
2075 return ret;
2076 }
2077
2078 /**
2079 * regmap_raw_write() - Write raw values to one or more registers
2080 *
2081 * @map: Register map to write to
2082 * @reg: Initial register to write to
2083 * @val: Block of data to be written, laid out for direct transmission to the
2084 * device
2085 * @val_len: Length of data pointed to by val.
2086 *
2087 * This function is intended to be used for things like firmware
2088 * download where a large block of data needs to be transferred to the
2089 * device. No formatting will be done on the data provided.
2090 *
2091 * A value of zero will be returned on success, a negative errno will
2092 * be returned in error cases.
2093 */
regmap_raw_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2094 int regmap_raw_write(struct regmap *map, unsigned int reg,
2095 const void *val, size_t val_len)
2096 {
2097 int ret;
2098
2099 if (!regmap_can_raw_write(map))
2100 return -EINVAL;
2101 if (val_len % map->format.val_bytes)
2102 return -EINVAL;
2103
2104 map->lock(map->lock_arg);
2105
2106 ret = _regmap_raw_write(map, reg, val, val_len, false);
2107
2108 map->unlock(map->lock_arg);
2109
2110 return ret;
2111 }
2112 EXPORT_SYMBOL_GPL(regmap_raw_write);
2113
2114 /**
2115 * regmap_noinc_write(): Write data from a register without incrementing the
2116 * register number
2117 *
2118 * @map: Register map to write to
2119 * @reg: Register to write to
2120 * @val: Pointer to data buffer
2121 * @val_len: Length of output buffer in bytes.
2122 *
2123 * The regmap API usually assumes that bulk bus write operations will write a
2124 * range of registers. Some devices have certain registers for which a write
2125 * operation can write to an internal FIFO.
2126 *
2127 * The target register must be volatile but registers after it can be
2128 * completely unrelated cacheable registers.
2129 *
2130 * This will attempt multiple writes as required to write val_len bytes.
2131 *
2132 * A value of zero will be returned on success, a negative errno will be
2133 * returned in error cases.
2134 */
regmap_noinc_write(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2135 int regmap_noinc_write(struct regmap *map, unsigned int reg,
2136 const void *val, size_t val_len)
2137 {
2138 size_t write_len;
2139 int ret;
2140
2141 if (!map->bus)
2142 return -EINVAL;
2143 if (!map->bus->write)
2144 return -ENOTSUPP;
2145 if (val_len % map->format.val_bytes)
2146 return -EINVAL;
2147 if (!IS_ALIGNED(reg, map->reg_stride))
2148 return -EINVAL;
2149 if (val_len == 0)
2150 return -EINVAL;
2151
2152 map->lock(map->lock_arg);
2153
2154 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2155 ret = -EINVAL;
2156 goto out_unlock;
2157 }
2158
2159 while (val_len) {
2160 if (map->max_raw_write && map->max_raw_write < val_len)
2161 write_len = map->max_raw_write;
2162 else
2163 write_len = val_len;
2164 ret = _regmap_raw_write(map, reg, val, write_len, true);
2165 if (ret)
2166 goto out_unlock;
2167 val = ((u8 *)val) + write_len;
2168 val_len -= write_len;
2169 }
2170
2171 out_unlock:
2172 map->unlock(map->lock_arg);
2173 return ret;
2174 }
2175 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2176
2177 /**
2178 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2179 * register field.
2180 *
2181 * @field: Register field to write to
2182 * @mask: Bitmask to change
2183 * @val: Value to be written
2184 * @change: Boolean indicating if a write was done
2185 * @async: Boolean indicating asynchronously
2186 * @force: Boolean indicating use force update
2187 *
2188 * Perform a read/modify/write cycle on the register field with change,
2189 * async, force option.
2190 *
2191 * A value of zero will be returned on success, a negative errno will
2192 * be returned in error cases.
2193 */
regmap_field_update_bits_base(struct regmap_field * field,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2194 int regmap_field_update_bits_base(struct regmap_field *field,
2195 unsigned int mask, unsigned int val,
2196 bool *change, bool async, bool force)
2197 {
2198 mask = (mask << field->shift) & field->mask;
2199
2200 return regmap_update_bits_base(field->regmap, field->reg,
2201 mask, val << field->shift,
2202 change, async, force);
2203 }
2204 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2205
2206 /**
2207 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2208 * register field with port ID
2209 *
2210 * @field: Register field to write to
2211 * @id: port ID
2212 * @mask: Bitmask to change
2213 * @val: Value to be written
2214 * @change: Boolean indicating if a write was done
2215 * @async: Boolean indicating asynchronously
2216 * @force: Boolean indicating use force update
2217 *
2218 * A value of zero will be returned on success, a negative errno will
2219 * be returned in error cases.
2220 */
regmap_fields_update_bits_base(struct regmap_field * field,unsigned int id,unsigned int mask,unsigned int val,bool * change,bool async,bool force)2221 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2222 unsigned int mask, unsigned int val,
2223 bool *change, bool async, bool force)
2224 {
2225 if (id >= field->id_size)
2226 return -EINVAL;
2227
2228 mask = (mask << field->shift) & field->mask;
2229
2230 return regmap_update_bits_base(field->regmap,
2231 field->reg + (field->id_offset * id),
2232 mask, val << field->shift,
2233 change, async, force);
2234 }
2235 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2236
2237 /**
2238 * regmap_bulk_write() - Write multiple registers to the device
2239 *
2240 * @map: Register map to write to
2241 * @reg: First register to be write from
2242 * @val: Block of data to be written, in native register size for device
2243 * @val_count: Number of registers to write
2244 *
2245 * This function is intended to be used for writing a large block of
2246 * data to the device either in single transfer or multiple transfer.
2247 *
2248 * A value of zero will be returned on success, a negative errno will
2249 * be returned in error cases.
2250 */
regmap_bulk_write(struct regmap * map,unsigned int reg,const void * val,size_t val_count)2251 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2252 size_t val_count)
2253 {
2254 int ret = 0, i;
2255 size_t val_bytes = map->format.val_bytes;
2256
2257 if (!IS_ALIGNED(reg, map->reg_stride))
2258 return -EINVAL;
2259
2260 /*
2261 * Some devices don't support bulk write, for them we have a series of
2262 * single write operations.
2263 */
2264 if (!map->bus || !map->format.parse_inplace) {
2265 map->lock(map->lock_arg);
2266 for (i = 0; i < val_count; i++) {
2267 unsigned int ival;
2268
2269 switch (val_bytes) {
2270 case 1:
2271 ival = *(u8 *)(val + (i * val_bytes));
2272 break;
2273 case 2:
2274 ival = *(u16 *)(val + (i * val_bytes));
2275 break;
2276 case 4:
2277 ival = *(u32 *)(val + (i * val_bytes));
2278 break;
2279 #ifdef CONFIG_64BIT
2280 case 8:
2281 ival = *(u64 *)(val + (i * val_bytes));
2282 break;
2283 #endif
2284 default:
2285 ret = -EINVAL;
2286 goto out;
2287 }
2288
2289 ret = _regmap_write(map,
2290 reg + regmap_get_offset(map, i),
2291 ival);
2292 if (ret != 0)
2293 goto out;
2294 }
2295 out:
2296 map->unlock(map->lock_arg);
2297 } else {
2298 void *wval;
2299
2300 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2301 if (!wval)
2302 return -ENOMEM;
2303
2304 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2305 map->format.parse_inplace(wval + i);
2306
2307 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2308
2309 kfree(wval);
2310 }
2311 return ret;
2312 }
2313 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2314
2315 /*
2316 * _regmap_raw_multi_reg_write()
2317 *
2318 * the (register,newvalue) pairs in regs have not been formatted, but
2319 * they are all in the same page and have been changed to being page
2320 * relative. The page register has been written if that was necessary.
2321 */
_regmap_raw_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2322 static int _regmap_raw_multi_reg_write(struct regmap *map,
2323 const struct reg_sequence *regs,
2324 size_t num_regs)
2325 {
2326 int ret;
2327 void *buf;
2328 int i;
2329 u8 *u8;
2330 size_t val_bytes = map->format.val_bytes;
2331 size_t reg_bytes = map->format.reg_bytes;
2332 size_t pad_bytes = map->format.pad_bytes;
2333 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2334 size_t len = pair_size * num_regs;
2335
2336 if (!len)
2337 return -EINVAL;
2338
2339 buf = kzalloc(len, GFP_KERNEL);
2340 if (!buf)
2341 return -ENOMEM;
2342
2343 /* We have to linearise by hand. */
2344
2345 u8 = buf;
2346
2347 for (i = 0; i < num_regs; i++) {
2348 unsigned int reg = regs[i].reg;
2349 unsigned int val = regs[i].def;
2350 trace_regmap_hw_write_start(map, reg, 1);
2351 map->format.format_reg(u8, reg, map->reg_shift);
2352 u8 += reg_bytes + pad_bytes;
2353 map->format.format_val(u8, val, 0);
2354 u8 += val_bytes;
2355 }
2356 u8 = buf;
2357 *u8 |= map->write_flag_mask;
2358
2359 ret = map->bus->write(map->bus_context, buf, len);
2360
2361 kfree(buf);
2362
2363 for (i = 0; i < num_regs; i++) {
2364 int reg = regs[i].reg;
2365 trace_regmap_hw_write_done(map, reg, 1);
2366 }
2367 return ret;
2368 }
2369
_regmap_register_page(struct regmap * map,unsigned int reg,struct regmap_range_node * range)2370 static unsigned int _regmap_register_page(struct regmap *map,
2371 unsigned int reg,
2372 struct regmap_range_node *range)
2373 {
2374 unsigned int win_page = (reg - range->range_min) / range->window_len;
2375
2376 return win_page;
2377 }
2378
_regmap_range_multi_paged_reg_write(struct regmap * map,struct reg_sequence * regs,size_t num_regs)2379 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2380 struct reg_sequence *regs,
2381 size_t num_regs)
2382 {
2383 int ret;
2384 int i, n;
2385 struct reg_sequence *base;
2386 unsigned int this_page = 0;
2387 unsigned int page_change = 0;
2388 /*
2389 * the set of registers are not neccessarily in order, but
2390 * since the order of write must be preserved this algorithm
2391 * chops the set each time the page changes. This also applies
2392 * if there is a delay required at any point in the sequence.
2393 */
2394 base = regs;
2395 for (i = 0, n = 0; i < num_regs; i++, n++) {
2396 unsigned int reg = regs[i].reg;
2397 struct regmap_range_node *range;
2398
2399 range = _regmap_range_lookup(map, reg);
2400 if (range) {
2401 unsigned int win_page = _regmap_register_page(map, reg,
2402 range);
2403
2404 if (i == 0)
2405 this_page = win_page;
2406 if (win_page != this_page) {
2407 this_page = win_page;
2408 page_change = 1;
2409 }
2410 }
2411
2412 /* If we have both a page change and a delay make sure to
2413 * write the regs and apply the delay before we change the
2414 * page.
2415 */
2416
2417 if (page_change || regs[i].delay_us) {
2418
2419 /* For situations where the first write requires
2420 * a delay we need to make sure we don't call
2421 * raw_multi_reg_write with n=0
2422 * This can't occur with page breaks as we
2423 * never write on the first iteration
2424 */
2425 if (regs[i].delay_us && i == 0)
2426 n = 1;
2427
2428 ret = _regmap_raw_multi_reg_write(map, base, n);
2429 if (ret != 0)
2430 return ret;
2431
2432 if (regs[i].delay_us) {
2433 if (map->can_sleep)
2434 fsleep(regs[i].delay_us);
2435 else
2436 udelay(regs[i].delay_us);
2437 }
2438
2439 base += n;
2440 n = 0;
2441
2442 if (page_change) {
2443 ret = _regmap_select_page(map,
2444 &base[n].reg,
2445 range, 1);
2446 if (ret != 0)
2447 return ret;
2448
2449 page_change = 0;
2450 }
2451
2452 }
2453
2454 }
2455 if (n > 0)
2456 return _regmap_raw_multi_reg_write(map, base, n);
2457 return 0;
2458 }
2459
_regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,size_t num_regs)2460 static int _regmap_multi_reg_write(struct regmap *map,
2461 const struct reg_sequence *regs,
2462 size_t num_regs)
2463 {
2464 int i;
2465 int ret;
2466
2467 if (!map->can_multi_write) {
2468 for (i = 0; i < num_regs; i++) {
2469 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2470 if (ret != 0)
2471 return ret;
2472
2473 if (regs[i].delay_us) {
2474 if (map->can_sleep)
2475 fsleep(regs[i].delay_us);
2476 else
2477 udelay(regs[i].delay_us);
2478 }
2479 }
2480 return 0;
2481 }
2482
2483 if (!map->format.parse_inplace)
2484 return -EINVAL;
2485
2486 if (map->writeable_reg)
2487 for (i = 0; i < num_regs; i++) {
2488 int reg = regs[i].reg;
2489 if (!map->writeable_reg(map->dev, reg))
2490 return -EINVAL;
2491 if (!IS_ALIGNED(reg, map->reg_stride))
2492 return -EINVAL;
2493 }
2494
2495 if (!map->cache_bypass) {
2496 for (i = 0; i < num_regs; i++) {
2497 unsigned int val = regs[i].def;
2498 unsigned int reg = regs[i].reg;
2499 ret = regcache_write(map, reg, val);
2500 if (ret) {
2501 dev_err(map->dev,
2502 "Error in caching of register: %x ret: %d\n",
2503 reg, ret);
2504 return ret;
2505 }
2506 }
2507 if (map->cache_only) {
2508 map->cache_dirty = true;
2509 return 0;
2510 }
2511 }
2512
2513 WARN_ON(!map->bus);
2514
2515 for (i = 0; i < num_regs; i++) {
2516 unsigned int reg = regs[i].reg;
2517 struct regmap_range_node *range;
2518
2519 /* Coalesce all the writes between a page break or a delay
2520 * in a sequence
2521 */
2522 range = _regmap_range_lookup(map, reg);
2523 if (range || regs[i].delay_us) {
2524 size_t len = sizeof(struct reg_sequence)*num_regs;
2525 struct reg_sequence *base = kmemdup(regs, len,
2526 GFP_KERNEL);
2527 if (!base)
2528 return -ENOMEM;
2529 ret = _regmap_range_multi_paged_reg_write(map, base,
2530 num_regs);
2531 kfree(base);
2532
2533 return ret;
2534 }
2535 }
2536 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2537 }
2538
2539 /**
2540 * regmap_multi_reg_write() - Write multiple registers to the device
2541 *
2542 * @map: Register map to write to
2543 * @regs: Array of structures containing register,value to be written
2544 * @num_regs: Number of registers to write
2545 *
2546 * Write multiple registers to the device where the set of register, value
2547 * pairs are supplied in any order, possibly not all in a single range.
2548 *
2549 * The 'normal' block write mode will send ultimately send data on the
2550 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2551 * addressed. However, this alternative block multi write mode will send
2552 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2553 * must of course support the mode.
2554 *
2555 * A value of zero will be returned on success, a negative errno will be
2556 * returned in error cases.
2557 */
regmap_multi_reg_write(struct regmap * map,const struct reg_sequence * regs,int num_regs)2558 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2559 int num_regs)
2560 {
2561 int ret;
2562
2563 map->lock(map->lock_arg);
2564
2565 ret = _regmap_multi_reg_write(map, regs, num_regs);
2566
2567 map->unlock(map->lock_arg);
2568
2569 return ret;
2570 }
2571 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2572
2573 /**
2574 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2575 * device but not the cache
2576 *
2577 * @map: Register map to write to
2578 * @regs: Array of structures containing register,value to be written
2579 * @num_regs: Number of registers to write
2580 *
2581 * Write multiple registers to the device but not the cache where the set
2582 * of register are supplied in any order.
2583 *
2584 * This function is intended to be used for writing a large block of data
2585 * atomically to the device in single transfer for those I2C client devices
2586 * that implement this alternative block write mode.
2587 *
2588 * A value of zero will be returned on success, a negative errno will
2589 * be returned in error cases.
2590 */
regmap_multi_reg_write_bypassed(struct regmap * map,const struct reg_sequence * regs,int num_regs)2591 int regmap_multi_reg_write_bypassed(struct regmap *map,
2592 const struct reg_sequence *regs,
2593 int num_regs)
2594 {
2595 int ret;
2596 bool bypass;
2597
2598 map->lock(map->lock_arg);
2599
2600 bypass = map->cache_bypass;
2601 map->cache_bypass = true;
2602
2603 ret = _regmap_multi_reg_write(map, regs, num_regs);
2604
2605 map->cache_bypass = bypass;
2606
2607 map->unlock(map->lock_arg);
2608
2609 return ret;
2610 }
2611 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2612
2613 /**
2614 * regmap_raw_write_async() - Write raw values to one or more registers
2615 * asynchronously
2616 *
2617 * @map: Register map to write to
2618 * @reg: Initial register to write to
2619 * @val: Block of data to be written, laid out for direct transmission to the
2620 * device. Must be valid until regmap_async_complete() is called.
2621 * @val_len: Length of data pointed to by val.
2622 *
2623 * This function is intended to be used for things like firmware
2624 * download where a large block of data needs to be transferred to the
2625 * device. No formatting will be done on the data provided.
2626 *
2627 * If supported by the underlying bus the write will be scheduled
2628 * asynchronously, helping maximise I/O speed on higher speed buses
2629 * like SPI. regmap_async_complete() can be called to ensure that all
2630 * asynchrnous writes have been completed.
2631 *
2632 * A value of zero will be returned on success, a negative errno will
2633 * be returned in error cases.
2634 */
regmap_raw_write_async(struct regmap * map,unsigned int reg,const void * val,size_t val_len)2635 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2636 const void *val, size_t val_len)
2637 {
2638 int ret;
2639
2640 if (val_len % map->format.val_bytes)
2641 return -EINVAL;
2642 if (!IS_ALIGNED(reg, map->reg_stride))
2643 return -EINVAL;
2644
2645 map->lock(map->lock_arg);
2646
2647 map->async = true;
2648
2649 ret = _regmap_raw_write(map, reg, val, val_len, false);
2650
2651 map->async = false;
2652
2653 map->unlock(map->lock_arg);
2654
2655 return ret;
2656 }
2657 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2658
_regmap_raw_read(struct regmap * map,unsigned int reg,void * val,unsigned int val_len,bool noinc)2659 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2660 unsigned int val_len, bool noinc)
2661 {
2662 struct regmap_range_node *range;
2663 int ret;
2664
2665 WARN_ON(!map->bus);
2666
2667 if (!map->bus || !map->bus->read)
2668 return -EINVAL;
2669
2670 range = _regmap_range_lookup(map, reg);
2671 if (range) {
2672 ret = _regmap_select_page(map, ®, range,
2673 noinc ? 1 : val_len / map->format.val_bytes);
2674 if (ret != 0)
2675 return ret;
2676 }
2677
2678 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2679 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2680 map->read_flag_mask);
2681 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2682
2683 ret = map->bus->read(map->bus_context, map->work_buf,
2684 map->format.reg_bytes + map->format.pad_bytes,
2685 val, val_len);
2686
2687 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2688
2689 return ret;
2690 }
2691
_regmap_bus_reg_read(void * context,unsigned int reg,unsigned int * val)2692 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2693 unsigned int *val)
2694 {
2695 struct regmap *map = context;
2696
2697 return map->bus->reg_read(map->bus_context, reg, val);
2698 }
2699
_regmap_bus_read(void * context,unsigned int reg,unsigned int * val)2700 static int _regmap_bus_read(void *context, unsigned int reg,
2701 unsigned int *val)
2702 {
2703 int ret;
2704 struct regmap *map = context;
2705 void *work_val = map->work_buf + map->format.reg_bytes +
2706 map->format.pad_bytes;
2707
2708 if (!map->format.parse_val)
2709 return -EINVAL;
2710
2711 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2712 if (ret == 0)
2713 *val = map->format.parse_val(work_val);
2714
2715 return ret;
2716 }
2717
_regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2718 static int _regmap_read(struct regmap *map, unsigned int reg,
2719 unsigned int *val)
2720 {
2721 int ret;
2722 void *context = _regmap_map_get_context(map);
2723
2724 if (!map->cache_bypass) {
2725 ret = regcache_read(map, reg, val);
2726 if (ret == 0)
2727 return 0;
2728 }
2729
2730 if (map->cache_only)
2731 return -EBUSY;
2732
2733 if (!regmap_readable(map, reg))
2734 return -EIO;
2735
2736 ret = map->reg_read(context, reg, val);
2737 if (ret == 0) {
2738 if (regmap_should_log(map))
2739 dev_info(map->dev, "%x => %x\n", reg, *val);
2740
2741 trace_regmap_reg_read(map, reg, *val);
2742
2743 if (!map->cache_bypass)
2744 regcache_write(map, reg, *val);
2745 }
2746
2747 return ret;
2748 }
2749
2750 /**
2751 * regmap_read() - Read a value from a single register
2752 *
2753 * @map: Register map to read from
2754 * @reg: Register to be read from
2755 * @val: Pointer to store read value
2756 *
2757 * A value of zero will be returned on success, a negative errno will
2758 * be returned in error cases.
2759 */
regmap_read(struct regmap * map,unsigned int reg,unsigned int * val)2760 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2761 {
2762 int ret;
2763
2764 if (!IS_ALIGNED(reg, map->reg_stride))
2765 return -EINVAL;
2766
2767 map->lock(map->lock_arg);
2768
2769 ret = _regmap_read(map, reg, val);
2770
2771 map->unlock(map->lock_arg);
2772
2773 return ret;
2774 }
2775 EXPORT_SYMBOL_GPL(regmap_read);
2776
2777 /**
2778 * regmap_raw_read() - Read raw data from the device
2779 *
2780 * @map: Register map to read from
2781 * @reg: First register to be read from
2782 * @val: Pointer to store read value
2783 * @val_len: Size of data to read
2784 *
2785 * A value of zero will be returned on success, a negative errno will
2786 * be returned in error cases.
2787 */
regmap_raw_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2788 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2789 size_t val_len)
2790 {
2791 size_t val_bytes = map->format.val_bytes;
2792 size_t val_count = val_len / val_bytes;
2793 unsigned int v;
2794 int ret, i;
2795
2796 if (!map->bus)
2797 return -EINVAL;
2798 if (val_len % map->format.val_bytes)
2799 return -EINVAL;
2800 if (!IS_ALIGNED(reg, map->reg_stride))
2801 return -EINVAL;
2802 if (val_count == 0)
2803 return -EINVAL;
2804
2805 map->lock(map->lock_arg);
2806
2807 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2808 map->cache_type == REGCACHE_NONE) {
2809 size_t chunk_count, chunk_bytes;
2810 size_t chunk_regs = val_count;
2811
2812 if (!map->bus->read) {
2813 ret = -ENOTSUPP;
2814 goto out;
2815 }
2816
2817 if (map->use_single_read)
2818 chunk_regs = 1;
2819 else if (map->max_raw_read && val_len > map->max_raw_read)
2820 chunk_regs = map->max_raw_read / val_bytes;
2821
2822 chunk_count = val_count / chunk_regs;
2823 chunk_bytes = chunk_regs * val_bytes;
2824
2825 /* Read bytes that fit into whole chunks */
2826 for (i = 0; i < chunk_count; i++) {
2827 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2828 if (ret != 0)
2829 goto out;
2830
2831 reg += regmap_get_offset(map, chunk_regs);
2832 val += chunk_bytes;
2833 val_len -= chunk_bytes;
2834 }
2835
2836 /* Read remaining bytes */
2837 if (val_len) {
2838 ret = _regmap_raw_read(map, reg, val, val_len, false);
2839 if (ret != 0)
2840 goto out;
2841 }
2842 } else {
2843 /* Otherwise go word by word for the cache; should be low
2844 * cost as we expect to hit the cache.
2845 */
2846 for (i = 0; i < val_count; i++) {
2847 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2848 &v);
2849 if (ret != 0)
2850 goto out;
2851
2852 map->format.format_val(val + (i * val_bytes), v, 0);
2853 }
2854 }
2855
2856 out:
2857 map->unlock(map->lock_arg);
2858
2859 return ret;
2860 }
2861 EXPORT_SYMBOL_GPL(regmap_raw_read);
2862
2863 /**
2864 * regmap_noinc_read(): Read data from a register without incrementing the
2865 * register number
2866 *
2867 * @map: Register map to read from
2868 * @reg: Register to read from
2869 * @val: Pointer to data buffer
2870 * @val_len: Length of output buffer in bytes.
2871 *
2872 * The regmap API usually assumes that bulk bus read operations will read a
2873 * range of registers. Some devices have certain registers for which a read
2874 * operation read will read from an internal FIFO.
2875 *
2876 * The target register must be volatile but registers after it can be
2877 * completely unrelated cacheable registers.
2878 *
2879 * This will attempt multiple reads as required to read val_len bytes.
2880 *
2881 * A value of zero will be returned on success, a negative errno will be
2882 * returned in error cases.
2883 */
regmap_noinc_read(struct regmap * map,unsigned int reg,void * val,size_t val_len)2884 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2885 void *val, size_t val_len)
2886 {
2887 size_t read_len;
2888 int ret;
2889
2890 if (!map->bus)
2891 return -EINVAL;
2892 if (!map->bus->read)
2893 return -ENOTSUPP;
2894 if (val_len % map->format.val_bytes)
2895 return -EINVAL;
2896 if (!IS_ALIGNED(reg, map->reg_stride))
2897 return -EINVAL;
2898 if (val_len == 0)
2899 return -EINVAL;
2900
2901 map->lock(map->lock_arg);
2902
2903 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2904 ret = -EINVAL;
2905 goto out_unlock;
2906 }
2907
2908 while (val_len) {
2909 if (map->max_raw_read && map->max_raw_read < val_len)
2910 read_len = map->max_raw_read;
2911 else
2912 read_len = val_len;
2913 ret = _regmap_raw_read(map, reg, val, read_len, true);
2914 if (ret)
2915 goto out_unlock;
2916 val = ((u8 *)val) + read_len;
2917 val_len -= read_len;
2918 }
2919
2920 out_unlock:
2921 map->unlock(map->lock_arg);
2922 return ret;
2923 }
2924 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2925
2926 /**
2927 * regmap_field_read(): Read a value to a single register field
2928 *
2929 * @field: Register field to read from
2930 * @val: Pointer to store read value
2931 *
2932 * A value of zero will be returned on success, a negative errno will
2933 * be returned in error cases.
2934 */
regmap_field_read(struct regmap_field * field,unsigned int * val)2935 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2936 {
2937 int ret;
2938 unsigned int reg_val;
2939 ret = regmap_read(field->regmap, field->reg, ®_val);
2940 if (ret != 0)
2941 return ret;
2942
2943 reg_val &= field->mask;
2944 reg_val >>= field->shift;
2945 *val = reg_val;
2946
2947 return ret;
2948 }
2949 EXPORT_SYMBOL_GPL(regmap_field_read);
2950
2951 /**
2952 * regmap_fields_read() - Read a value to a single register field with port ID
2953 *
2954 * @field: Register field to read from
2955 * @id: port ID
2956 * @val: Pointer to store read value
2957 *
2958 * A value of zero will be returned on success, a negative errno will
2959 * be returned in error cases.
2960 */
regmap_fields_read(struct regmap_field * field,unsigned int id,unsigned int * val)2961 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2962 unsigned int *val)
2963 {
2964 int ret;
2965 unsigned int reg_val;
2966
2967 if (id >= field->id_size)
2968 return -EINVAL;
2969
2970 ret = regmap_read(field->regmap,
2971 field->reg + (field->id_offset * id),
2972 ®_val);
2973 if (ret != 0)
2974 return ret;
2975
2976 reg_val &= field->mask;
2977 reg_val >>= field->shift;
2978 *val = reg_val;
2979
2980 return ret;
2981 }
2982 EXPORT_SYMBOL_GPL(regmap_fields_read);
2983
2984 /**
2985 * regmap_bulk_read() - Read multiple registers from the device
2986 *
2987 * @map: Register map to read from
2988 * @reg: First register to be read from
2989 * @val: Pointer to store read value, in native register size for device
2990 * @val_count: Number of registers to read
2991 *
2992 * A value of zero will be returned on success, a negative errno will
2993 * be returned in error cases.
2994 */
regmap_bulk_read(struct regmap * map,unsigned int reg,void * val,size_t val_count)2995 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2996 size_t val_count)
2997 {
2998 int ret, i;
2999 size_t val_bytes = map->format.val_bytes;
3000 bool vol = regmap_volatile_range(map, reg, val_count);
3001
3002 if (!IS_ALIGNED(reg, map->reg_stride))
3003 return -EINVAL;
3004 if (val_count == 0)
3005 return -EINVAL;
3006
3007 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3008 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3009 if (ret != 0)
3010 return ret;
3011
3012 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3013 map->format.parse_inplace(val + i);
3014 } else {
3015 #ifdef CONFIG_64BIT
3016 u64 *u64 = val;
3017 #endif
3018 u32 *u32 = val;
3019 u16 *u16 = val;
3020 u8 *u8 = val;
3021
3022 map->lock(map->lock_arg);
3023
3024 for (i = 0; i < val_count; i++) {
3025 unsigned int ival;
3026
3027 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3028 &ival);
3029 if (ret != 0)
3030 goto out;
3031
3032 switch (map->format.val_bytes) {
3033 #ifdef CONFIG_64BIT
3034 case 8:
3035 u64[i] = ival;
3036 break;
3037 #endif
3038 case 4:
3039 u32[i] = ival;
3040 break;
3041 case 2:
3042 u16[i] = ival;
3043 break;
3044 case 1:
3045 u8[i] = ival;
3046 break;
3047 default:
3048 ret = -EINVAL;
3049 goto out;
3050 }
3051 }
3052
3053 out:
3054 map->unlock(map->lock_arg);
3055 }
3056
3057 return ret;
3058 }
3059 EXPORT_SYMBOL_GPL(regmap_bulk_read);
3060
_regmap_update_bits(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool force_write)3061 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3062 unsigned int mask, unsigned int val,
3063 bool *change, bool force_write)
3064 {
3065 int ret;
3066 unsigned int tmp, orig;
3067
3068 if (change)
3069 *change = false;
3070
3071 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3072 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3073 if (ret == 0 && change)
3074 *change = true;
3075 } else {
3076 ret = _regmap_read(map, reg, &orig);
3077 if (ret != 0)
3078 return ret;
3079
3080 tmp = orig & ~mask;
3081 tmp |= val & mask;
3082
3083 if (force_write || (tmp != orig)) {
3084 ret = _regmap_write(map, reg, tmp);
3085 if (ret == 0 && change)
3086 *change = true;
3087 }
3088 }
3089
3090 return ret;
3091 }
3092
3093 /**
3094 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3095 *
3096 * @map: Register map to update
3097 * @reg: Register to update
3098 * @mask: Bitmask to change
3099 * @val: New value for bitmask
3100 * @change: Boolean indicating if a write was done
3101 * @async: Boolean indicating asynchronously
3102 * @force: Boolean indicating use force update
3103 *
3104 * Perform a read/modify/write cycle on a register map with change, async, force
3105 * options.
3106 *
3107 * If async is true:
3108 *
3109 * With most buses the read must be done synchronously so this is most useful
3110 * for devices with a cache which do not need to interact with the hardware to
3111 * determine the current register value.
3112 *
3113 * Returns zero for success, a negative number on error.
3114 */
regmap_update_bits_base(struct regmap * map,unsigned int reg,unsigned int mask,unsigned int val,bool * change,bool async,bool force)3115 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3116 unsigned int mask, unsigned int val,
3117 bool *change, bool async, bool force)
3118 {
3119 int ret;
3120
3121 map->lock(map->lock_arg);
3122
3123 map->async = async;
3124
3125 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3126
3127 map->async = false;
3128
3129 map->unlock(map->lock_arg);
3130
3131 return ret;
3132 }
3133 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3134
3135 /**
3136 * regmap_test_bits() - Check if all specified bits are set in a register.
3137 *
3138 * @map: Register map to operate on
3139 * @reg: Register to read from
3140 * @bits: Bits to test
3141 *
3142 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3143 * bits are set and a negative error number if the underlying regmap_read()
3144 * fails.
3145 */
regmap_test_bits(struct regmap * map,unsigned int reg,unsigned int bits)3146 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3147 {
3148 unsigned int val, ret;
3149
3150 ret = regmap_read(map, reg, &val);
3151 if (ret)
3152 return ret;
3153
3154 return (val & bits) == bits;
3155 }
3156 EXPORT_SYMBOL_GPL(regmap_test_bits);
3157
regmap_async_complete_cb(struct regmap_async * async,int ret)3158 void regmap_async_complete_cb(struct regmap_async *async, int ret)
3159 {
3160 struct regmap *map = async->map;
3161 bool wake;
3162
3163 trace_regmap_async_io_complete(map);
3164
3165 spin_lock(&map->async_lock);
3166 list_move(&async->list, &map->async_free);
3167 wake = list_empty(&map->async_list);
3168
3169 if (ret != 0)
3170 map->async_ret = ret;
3171
3172 spin_unlock(&map->async_lock);
3173
3174 if (wake)
3175 wake_up(&map->async_waitq);
3176 }
3177 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3178
regmap_async_is_done(struct regmap * map)3179 static int regmap_async_is_done(struct regmap *map)
3180 {
3181 unsigned long flags;
3182 int ret;
3183
3184 spin_lock_irqsave(&map->async_lock, flags);
3185 ret = list_empty(&map->async_list);
3186 spin_unlock_irqrestore(&map->async_lock, flags);
3187
3188 return ret;
3189 }
3190
3191 /**
3192 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3193 *
3194 * @map: Map to operate on.
3195 *
3196 * Blocks until any pending asynchronous I/O has completed. Returns
3197 * an error code for any failed I/O operations.
3198 */
regmap_async_complete(struct regmap * map)3199 int regmap_async_complete(struct regmap *map)
3200 {
3201 unsigned long flags;
3202 int ret;
3203
3204 /* Nothing to do with no async support */
3205 if (!map->bus || !map->bus->async_write)
3206 return 0;
3207
3208 trace_regmap_async_complete_start(map);
3209
3210 wait_event(map->async_waitq, regmap_async_is_done(map));
3211
3212 spin_lock_irqsave(&map->async_lock, flags);
3213 ret = map->async_ret;
3214 map->async_ret = 0;
3215 spin_unlock_irqrestore(&map->async_lock, flags);
3216
3217 trace_regmap_async_complete_done(map);
3218
3219 return ret;
3220 }
3221 EXPORT_SYMBOL_GPL(regmap_async_complete);
3222
3223 /**
3224 * regmap_register_patch - Register and apply register updates to be applied
3225 * on device initialistion
3226 *
3227 * @map: Register map to apply updates to.
3228 * @regs: Values to update.
3229 * @num_regs: Number of entries in regs.
3230 *
3231 * Register a set of register updates to be applied to the device
3232 * whenever the device registers are synchronised with the cache and
3233 * apply them immediately. Typically this is used to apply
3234 * corrections to be applied to the device defaults on startup, such
3235 * as the updates some vendors provide to undocumented registers.
3236 *
3237 * The caller must ensure that this function cannot be called
3238 * concurrently with either itself or regcache_sync().
3239 */
regmap_register_patch(struct regmap * map,const struct reg_sequence * regs,int num_regs)3240 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3241 int num_regs)
3242 {
3243 struct reg_sequence *p;
3244 int ret;
3245 bool bypass;
3246
3247 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3248 num_regs))
3249 return 0;
3250
3251 p = krealloc(map->patch,
3252 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3253 GFP_KERNEL);
3254 if (p) {
3255 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3256 map->patch = p;
3257 map->patch_regs += num_regs;
3258 } else {
3259 return -ENOMEM;
3260 }
3261
3262 map->lock(map->lock_arg);
3263
3264 bypass = map->cache_bypass;
3265
3266 map->cache_bypass = true;
3267 map->async = true;
3268
3269 ret = _regmap_multi_reg_write(map, regs, num_regs);
3270
3271 map->async = false;
3272 map->cache_bypass = bypass;
3273
3274 map->unlock(map->lock_arg);
3275
3276 regmap_async_complete(map);
3277
3278 return ret;
3279 }
3280 EXPORT_SYMBOL_GPL(regmap_register_patch);
3281
3282 /**
3283 * regmap_get_val_bytes() - Report the size of a register value
3284 *
3285 * @map: Register map to operate on.
3286 *
3287 * Report the size of a register value, mainly intended to for use by
3288 * generic infrastructure built on top of regmap.
3289 */
regmap_get_val_bytes(struct regmap * map)3290 int regmap_get_val_bytes(struct regmap *map)
3291 {
3292 if (map->format.format_write)
3293 return -EINVAL;
3294
3295 return map->format.val_bytes;
3296 }
3297 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3298
3299 /**
3300 * regmap_get_max_register() - Report the max register value
3301 *
3302 * @map: Register map to operate on.
3303 *
3304 * Report the max register value, mainly intended to for use by
3305 * generic infrastructure built on top of regmap.
3306 */
regmap_get_max_register(struct regmap * map)3307 int regmap_get_max_register(struct regmap *map)
3308 {
3309 return map->max_register ? map->max_register : -EINVAL;
3310 }
3311 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3312
3313 /**
3314 * regmap_get_reg_stride() - Report the register address stride
3315 *
3316 * @map: Register map to operate on.
3317 *
3318 * Report the register address stride, mainly intended to for use by
3319 * generic infrastructure built on top of regmap.
3320 */
regmap_get_reg_stride(struct regmap * map)3321 int regmap_get_reg_stride(struct regmap *map)
3322 {
3323 return map->reg_stride;
3324 }
3325 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3326
regmap_parse_val(struct regmap * map,const void * buf,unsigned int * val)3327 int regmap_parse_val(struct regmap *map, const void *buf,
3328 unsigned int *val)
3329 {
3330 if (!map->format.parse_val)
3331 return -EINVAL;
3332
3333 *val = map->format.parse_val(buf);
3334
3335 return 0;
3336 }
3337 EXPORT_SYMBOL_GPL(regmap_parse_val);
3338
regmap_initcall(void)3339 static int __init regmap_initcall(void)
3340 {
3341 regmap_debugfs_initcall();
3342
3343 return 0;
3344 }
3345 postcore_initcall(regmap_initcall);
3346