• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/net/sunrpc/sched.c
4  *
5  * Scheduling for synchronous and asynchronous RPC requests.
6  *
7  * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
8  *
9  * TCP NFS related read + write fixes
10  * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
11  */
12 
13 #include <linux/module.h>
14 
15 #include <linux/sched.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/mempool.h>
19 #include <linux/smp.h>
20 #include <linux/spinlock.h>
21 #include <linux/mutex.h>
22 #include <linux/freezer.h>
23 #include <linux/sched/mm.h>
24 
25 #include <linux/sunrpc/clnt.h>
26 #include <linux/sunrpc/metrics.h>
27 
28 #include "sunrpc.h"
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/sunrpc.h>
32 
33 /*
34  * RPC slabs and memory pools
35  */
36 #define RPC_BUFFER_MAXSIZE	(2048)
37 #define RPC_BUFFER_POOLSIZE	(8)
38 #define RPC_TASK_POOLSIZE	(8)
39 static struct kmem_cache	*rpc_task_slabp __read_mostly;
40 static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
41 static mempool_t	*rpc_task_mempool __read_mostly;
42 static mempool_t	*rpc_buffer_mempool __read_mostly;
43 
44 static void			rpc_async_schedule(struct work_struct *);
45 static void			 rpc_release_task(struct rpc_task *task);
46 static void __rpc_queue_timer_fn(struct work_struct *);
47 
48 /*
49  * RPC tasks sit here while waiting for conditions to improve.
50  */
51 static struct rpc_wait_queue delay_queue;
52 
53 /*
54  * rpciod-related stuff
55  */
56 struct workqueue_struct *rpciod_workqueue __read_mostly;
57 struct workqueue_struct *xprtiod_workqueue __read_mostly;
58 EXPORT_SYMBOL_GPL(xprtiod_workqueue);
59 
60 unsigned long
rpc_task_timeout(const struct rpc_task * task)61 rpc_task_timeout(const struct rpc_task *task)
62 {
63 	unsigned long timeout = READ_ONCE(task->tk_timeout);
64 
65 	if (timeout != 0) {
66 		unsigned long now = jiffies;
67 		if (time_before(now, timeout))
68 			return timeout - now;
69 	}
70 	return 0;
71 }
72 EXPORT_SYMBOL_GPL(rpc_task_timeout);
73 
74 /*
75  * Disable the timer for a given RPC task. Should be called with
76  * queue->lock and bh_disabled in order to avoid races within
77  * rpc_run_timer().
78  */
79 static void
__rpc_disable_timer(struct rpc_wait_queue * queue,struct rpc_task * task)80 __rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
81 {
82 	if (list_empty(&task->u.tk_wait.timer_list))
83 		return;
84 	task->tk_timeout = 0;
85 	list_del(&task->u.tk_wait.timer_list);
86 	if (list_empty(&queue->timer_list.list))
87 		cancel_delayed_work(&queue->timer_list.dwork);
88 }
89 
90 static void
rpc_set_queue_timer(struct rpc_wait_queue * queue,unsigned long expires)91 rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
92 {
93 	unsigned long now = jiffies;
94 	queue->timer_list.expires = expires;
95 	if (time_before_eq(expires, now))
96 		expires = 0;
97 	else
98 		expires -= now;
99 	mod_delayed_work(rpciod_workqueue, &queue->timer_list.dwork, expires);
100 }
101 
102 /*
103  * Set up a timer for the current task.
104  */
105 static void
__rpc_add_timer(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned long timeout)106 __rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task,
107 		unsigned long timeout)
108 {
109 	task->tk_timeout = timeout;
110 	if (list_empty(&queue->timer_list.list) || time_before(timeout, queue->timer_list.expires))
111 		rpc_set_queue_timer(queue, timeout);
112 	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
113 }
114 
rpc_set_waitqueue_priority(struct rpc_wait_queue * queue,int priority)115 static void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
116 {
117 	if (queue->priority != priority) {
118 		queue->priority = priority;
119 		queue->nr = 1U << priority;
120 	}
121 }
122 
rpc_reset_waitqueue_priority(struct rpc_wait_queue * queue)123 static void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
124 {
125 	rpc_set_waitqueue_priority(queue, queue->maxpriority);
126 }
127 
128 /*
129  * Add a request to a queue list
130  */
131 static void
__rpc_list_enqueue_task(struct list_head * q,struct rpc_task * task)132 __rpc_list_enqueue_task(struct list_head *q, struct rpc_task *task)
133 {
134 	struct rpc_task *t;
135 
136 	list_for_each_entry(t, q, u.tk_wait.list) {
137 		if (t->tk_owner == task->tk_owner) {
138 			list_add_tail(&task->u.tk_wait.links,
139 					&t->u.tk_wait.links);
140 			/* Cache the queue head in task->u.tk_wait.list */
141 			task->u.tk_wait.list.next = q;
142 			task->u.tk_wait.list.prev = NULL;
143 			return;
144 		}
145 	}
146 	INIT_LIST_HEAD(&task->u.tk_wait.links);
147 	list_add_tail(&task->u.tk_wait.list, q);
148 }
149 
150 /*
151  * Remove request from a queue list
152  */
153 static void
__rpc_list_dequeue_task(struct rpc_task * task)154 __rpc_list_dequeue_task(struct rpc_task *task)
155 {
156 	struct list_head *q;
157 	struct rpc_task *t;
158 
159 	if (task->u.tk_wait.list.prev == NULL) {
160 		list_del(&task->u.tk_wait.links);
161 		return;
162 	}
163 	if (!list_empty(&task->u.tk_wait.links)) {
164 		t = list_first_entry(&task->u.tk_wait.links,
165 				struct rpc_task,
166 				u.tk_wait.links);
167 		/* Assume __rpc_list_enqueue_task() cached the queue head */
168 		q = t->u.tk_wait.list.next;
169 		list_add_tail(&t->u.tk_wait.list, q);
170 		list_del(&task->u.tk_wait.links);
171 	}
172 	list_del(&task->u.tk_wait.list);
173 }
174 
175 /*
176  * Add new request to a priority queue.
177  */
__rpc_add_wait_queue_priority(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)178 static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
179 		struct rpc_task *task,
180 		unsigned char queue_priority)
181 {
182 	if (unlikely(queue_priority > queue->maxpriority))
183 		queue_priority = queue->maxpriority;
184 	__rpc_list_enqueue_task(&queue->tasks[queue_priority], task);
185 }
186 
187 /*
188  * Add new request to wait queue.
189  */
__rpc_add_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task,unsigned char queue_priority)190 static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
191 		struct rpc_task *task,
192 		unsigned char queue_priority)
193 {
194 	INIT_LIST_HEAD(&task->u.tk_wait.timer_list);
195 	if (RPC_IS_PRIORITY(queue))
196 		__rpc_add_wait_queue_priority(queue, task, queue_priority);
197 	else
198 		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
199 	task->tk_waitqueue = queue;
200 	queue->qlen++;
201 	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
202 	smp_wmb();
203 	rpc_set_queued(task);
204 }
205 
206 /*
207  * Remove request from a priority queue.
208  */
__rpc_remove_wait_queue_priority(struct rpc_task * task)209 static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
210 {
211 	__rpc_list_dequeue_task(task);
212 }
213 
214 /*
215  * Remove request from queue.
216  * Note: must be called with spin lock held.
217  */
__rpc_remove_wait_queue(struct rpc_wait_queue * queue,struct rpc_task * task)218 static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
219 {
220 	__rpc_disable_timer(queue, task);
221 	if (RPC_IS_PRIORITY(queue))
222 		__rpc_remove_wait_queue_priority(task);
223 	else
224 		list_del(&task->u.tk_wait.list);
225 	queue->qlen--;
226 }
227 
__rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname,unsigned char nr_queues)228 static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
229 {
230 	int i;
231 
232 	spin_lock_init(&queue->lock);
233 	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
234 		INIT_LIST_HEAD(&queue->tasks[i]);
235 	queue->maxpriority = nr_queues - 1;
236 	rpc_reset_waitqueue_priority(queue);
237 	queue->qlen = 0;
238 	queue->timer_list.expires = 0;
239 	INIT_DELAYED_WORK(&queue->timer_list.dwork, __rpc_queue_timer_fn);
240 	INIT_LIST_HEAD(&queue->timer_list.list);
241 	rpc_assign_waitqueue_name(queue, qname);
242 }
243 
rpc_init_priority_wait_queue(struct rpc_wait_queue * queue,const char * qname)244 void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
245 {
246 	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
247 }
248 EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
249 
rpc_init_wait_queue(struct rpc_wait_queue * queue,const char * qname)250 void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
251 {
252 	__rpc_init_priority_wait_queue(queue, qname, 1);
253 }
254 EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
255 
rpc_destroy_wait_queue(struct rpc_wait_queue * queue)256 void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
257 {
258 	cancel_delayed_work_sync(&queue->timer_list.dwork);
259 }
260 EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
261 
rpc_wait_bit_killable(struct wait_bit_key * key,int mode)262 static int rpc_wait_bit_killable(struct wait_bit_key *key, int mode)
263 {
264 	freezable_schedule_unsafe();
265 	if (signal_pending_state(mode, current))
266 		return -ERESTARTSYS;
267 	return 0;
268 }
269 
270 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG) || IS_ENABLED(CONFIG_TRACEPOINTS)
rpc_task_set_debuginfo(struct rpc_task * task)271 static void rpc_task_set_debuginfo(struct rpc_task *task)
272 {
273 	static atomic_t rpc_pid;
274 
275 	task->tk_pid = atomic_inc_return(&rpc_pid);
276 }
277 #else
rpc_task_set_debuginfo(struct rpc_task * task)278 static inline void rpc_task_set_debuginfo(struct rpc_task *task)
279 {
280 }
281 #endif
282 
rpc_set_active(struct rpc_task * task)283 static void rpc_set_active(struct rpc_task *task)
284 {
285 	rpc_task_set_debuginfo(task);
286 	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
287 	trace_rpc_task_begin(task, NULL);
288 }
289 
290 /*
291  * Mark an RPC call as having completed by clearing the 'active' bit
292  * and then waking up all tasks that were sleeping.
293  */
rpc_complete_task(struct rpc_task * task)294 static int rpc_complete_task(struct rpc_task *task)
295 {
296 	void *m = &task->tk_runstate;
297 	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
298 	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
299 	unsigned long flags;
300 	int ret;
301 
302 	trace_rpc_task_complete(task, NULL);
303 
304 	spin_lock_irqsave(&wq->lock, flags);
305 	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
306 	ret = atomic_dec_and_test(&task->tk_count);
307 	if (waitqueue_active(wq))
308 		__wake_up_locked_key(wq, TASK_NORMAL, &k);
309 	spin_unlock_irqrestore(&wq->lock, flags);
310 	return ret;
311 }
312 
313 /*
314  * Allow callers to wait for completion of an RPC call
315  *
316  * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
317  * to enforce taking of the wq->lock and hence avoid races with
318  * rpc_complete_task().
319  */
__rpc_wait_for_completion_task(struct rpc_task * task,wait_bit_action_f * action)320 int __rpc_wait_for_completion_task(struct rpc_task *task, wait_bit_action_f *action)
321 {
322 	if (action == NULL)
323 		action = rpc_wait_bit_killable;
324 	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
325 			action, TASK_KILLABLE);
326 }
327 EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
328 
329 /*
330  * Make an RPC task runnable.
331  *
332  * Note: If the task is ASYNC, and is being made runnable after sitting on an
333  * rpc_wait_queue, this must be called with the queue spinlock held to protect
334  * the wait queue operation.
335  * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
336  * which is needed to ensure that __rpc_execute() doesn't loop (due to the
337  * lockless RPC_IS_QUEUED() test) before we've had a chance to test
338  * the RPC_TASK_RUNNING flag.
339  */
rpc_make_runnable(struct workqueue_struct * wq,struct rpc_task * task)340 static void rpc_make_runnable(struct workqueue_struct *wq,
341 		struct rpc_task *task)
342 {
343 	bool need_wakeup = !rpc_test_and_set_running(task);
344 
345 	rpc_clear_queued(task);
346 	if (!need_wakeup)
347 		return;
348 	if (RPC_IS_ASYNC(task)) {
349 		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
350 		queue_work(wq, &task->u.tk_work);
351 	} else
352 		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
353 }
354 
355 /*
356  * Prepare for sleeping on a wait queue.
357  * By always appending tasks to the list we ensure FIFO behavior.
358  * NB: An RPC task will only receive interrupt-driven events as long
359  * as it's on a wait queue.
360  */
__rpc_do_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)361 static void __rpc_do_sleep_on_priority(struct rpc_wait_queue *q,
362 		struct rpc_task *task,
363 		unsigned char queue_priority)
364 {
365 	trace_rpc_task_sleep(task, q);
366 
367 	__rpc_add_wait_queue(q, task, queue_priority);
368 }
369 
__rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,unsigned char queue_priority)370 static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
371 		struct rpc_task *task,
372 		unsigned char queue_priority)
373 {
374 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
375 		return;
376 	__rpc_do_sleep_on_priority(q, task, queue_priority);
377 }
378 
__rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,unsigned char queue_priority)379 static void __rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
380 		struct rpc_task *task, unsigned long timeout,
381 		unsigned char queue_priority)
382 {
383 	if (WARN_ON_ONCE(RPC_IS_QUEUED(task)))
384 		return;
385 	if (time_is_after_jiffies(timeout)) {
386 		__rpc_do_sleep_on_priority(q, task, queue_priority);
387 		__rpc_add_timer(q, task, timeout);
388 	} else
389 		task->tk_status = -ETIMEDOUT;
390 }
391 
rpc_set_tk_callback(struct rpc_task * task,rpc_action action)392 static void rpc_set_tk_callback(struct rpc_task *task, rpc_action action)
393 {
394 	if (action && !WARN_ON_ONCE(task->tk_callback != NULL))
395 		task->tk_callback = action;
396 }
397 
rpc_sleep_check_activated(struct rpc_task * task)398 static bool rpc_sleep_check_activated(struct rpc_task *task)
399 {
400 	/* We shouldn't ever put an inactive task to sleep */
401 	if (WARN_ON_ONCE(!RPC_IS_ACTIVATED(task))) {
402 		task->tk_status = -EIO;
403 		rpc_put_task_async(task);
404 		return false;
405 	}
406 	return true;
407 }
408 
rpc_sleep_on_timeout(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action,unsigned long timeout)409 void rpc_sleep_on_timeout(struct rpc_wait_queue *q, struct rpc_task *task,
410 				rpc_action action, unsigned long timeout)
411 {
412 	if (!rpc_sleep_check_activated(task))
413 		return;
414 
415 	rpc_set_tk_callback(task, action);
416 
417 	/*
418 	 * Protect the queue operations.
419 	 */
420 	spin_lock(&q->lock);
421 	__rpc_sleep_on_priority_timeout(q, task, timeout, task->tk_priority);
422 	spin_unlock(&q->lock);
423 }
424 EXPORT_SYMBOL_GPL(rpc_sleep_on_timeout);
425 
rpc_sleep_on(struct rpc_wait_queue * q,struct rpc_task * task,rpc_action action)426 void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
427 				rpc_action action)
428 {
429 	if (!rpc_sleep_check_activated(task))
430 		return;
431 
432 	rpc_set_tk_callback(task, action);
433 
434 	WARN_ON_ONCE(task->tk_timeout != 0);
435 	/*
436 	 * Protect the queue operations.
437 	 */
438 	spin_lock(&q->lock);
439 	__rpc_sleep_on_priority(q, task, task->tk_priority);
440 	spin_unlock(&q->lock);
441 }
442 EXPORT_SYMBOL_GPL(rpc_sleep_on);
443 
rpc_sleep_on_priority_timeout(struct rpc_wait_queue * q,struct rpc_task * task,unsigned long timeout,int priority)444 void rpc_sleep_on_priority_timeout(struct rpc_wait_queue *q,
445 		struct rpc_task *task, unsigned long timeout, int priority)
446 {
447 	if (!rpc_sleep_check_activated(task))
448 		return;
449 
450 	priority -= RPC_PRIORITY_LOW;
451 	/*
452 	 * Protect the queue operations.
453 	 */
454 	spin_lock(&q->lock);
455 	__rpc_sleep_on_priority_timeout(q, task, timeout, priority);
456 	spin_unlock(&q->lock);
457 }
458 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority_timeout);
459 
rpc_sleep_on_priority(struct rpc_wait_queue * q,struct rpc_task * task,int priority)460 void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
461 		int priority)
462 {
463 	if (!rpc_sleep_check_activated(task))
464 		return;
465 
466 	WARN_ON_ONCE(task->tk_timeout != 0);
467 	priority -= RPC_PRIORITY_LOW;
468 	/*
469 	 * Protect the queue operations.
470 	 */
471 	spin_lock(&q->lock);
472 	__rpc_sleep_on_priority(q, task, priority);
473 	spin_unlock(&q->lock);
474 }
475 EXPORT_SYMBOL_GPL(rpc_sleep_on_priority);
476 
477 /**
478  * __rpc_do_wake_up_task_on_wq - wake up a single rpc_task
479  * @wq: workqueue on which to run task
480  * @queue: wait queue
481  * @task: task to be woken up
482  *
483  * Caller must hold queue->lock, and have cleared the task queued flag.
484  */
__rpc_do_wake_up_task_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task)485 static void __rpc_do_wake_up_task_on_wq(struct workqueue_struct *wq,
486 		struct rpc_wait_queue *queue,
487 		struct rpc_task *task)
488 {
489 	/* Has the task been executed yet? If not, we cannot wake it up! */
490 	if (!RPC_IS_ACTIVATED(task)) {
491 		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
492 		return;
493 	}
494 
495 	trace_rpc_task_wakeup(task, queue);
496 
497 	__rpc_remove_wait_queue(queue, task);
498 
499 	rpc_make_runnable(wq, task);
500 }
501 
502 /*
503  * Wake up a queued task while the queue lock is being held
504  */
505 static struct rpc_task *
rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct * wq,struct rpc_wait_queue * queue,struct rpc_task * task,bool (* action)(struct rpc_task *,void *),void * data)506 rpc_wake_up_task_on_wq_queue_action_locked(struct workqueue_struct *wq,
507 		struct rpc_wait_queue *queue, struct rpc_task *task,
508 		bool (*action)(struct rpc_task *, void *), void *data)
509 {
510 	if (RPC_IS_QUEUED(task)) {
511 		smp_rmb();
512 		if (task->tk_waitqueue == queue) {
513 			if (action == NULL || action(task, data)) {
514 				__rpc_do_wake_up_task_on_wq(wq, queue, task);
515 				return task;
516 			}
517 		}
518 	}
519 	return NULL;
520 }
521 
522 /*
523  * Wake up a queued task while the queue lock is being held
524  */
rpc_wake_up_task_queue_locked(struct rpc_wait_queue * queue,struct rpc_task * task)525 static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue,
526 					  struct rpc_task *task)
527 {
528 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
529 						   task, NULL, NULL);
530 }
531 
532 /*
533  * Wake up a task on a specific queue
534  */
rpc_wake_up_queued_task(struct rpc_wait_queue * queue,struct rpc_task * task)535 void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
536 {
537 	if (!RPC_IS_QUEUED(task))
538 		return;
539 	spin_lock(&queue->lock);
540 	rpc_wake_up_task_queue_locked(queue, task);
541 	spin_unlock(&queue->lock);
542 }
543 EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
544 
rpc_task_action_set_status(struct rpc_task * task,void * status)545 static bool rpc_task_action_set_status(struct rpc_task *task, void *status)
546 {
547 	task->tk_status = *(int *)status;
548 	return true;
549 }
550 
551 static void
rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue * queue,struct rpc_task * task,int status)552 rpc_wake_up_task_queue_set_status_locked(struct rpc_wait_queue *queue,
553 		struct rpc_task *task, int status)
554 {
555 	rpc_wake_up_task_on_wq_queue_action_locked(rpciod_workqueue, queue,
556 			task, rpc_task_action_set_status, &status);
557 }
558 
559 /**
560  * rpc_wake_up_queued_task_set_status - wake up a task and set task->tk_status
561  * @queue: pointer to rpc_wait_queue
562  * @task: pointer to rpc_task
563  * @status: integer error value
564  *
565  * If @task is queued on @queue, then it is woken up, and @task->tk_status is
566  * set to the value of @status.
567  */
568 void
rpc_wake_up_queued_task_set_status(struct rpc_wait_queue * queue,struct rpc_task * task,int status)569 rpc_wake_up_queued_task_set_status(struct rpc_wait_queue *queue,
570 		struct rpc_task *task, int status)
571 {
572 	if (!RPC_IS_QUEUED(task))
573 		return;
574 	spin_lock(&queue->lock);
575 	rpc_wake_up_task_queue_set_status_locked(queue, task, status);
576 	spin_unlock(&queue->lock);
577 }
578 
579 /*
580  * Wake up the next task on a priority queue.
581  */
__rpc_find_next_queued_priority(struct rpc_wait_queue * queue)582 static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
583 {
584 	struct list_head *q;
585 	struct rpc_task *task;
586 
587 	/*
588 	 * Service the privileged queue.
589 	 */
590 	q = &queue->tasks[RPC_NR_PRIORITY - 1];
591 	if (queue->maxpriority > RPC_PRIORITY_PRIVILEGED && !list_empty(q)) {
592 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
593 		goto out;
594 	}
595 
596 	/*
597 	 * Service a batch of tasks from a single owner.
598 	 */
599 	q = &queue->tasks[queue->priority];
600 	if (!list_empty(q) && queue->nr) {
601 		queue->nr--;
602 		task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
603 		goto out;
604 	}
605 
606 	/*
607 	 * Service the next queue.
608 	 */
609 	do {
610 		if (q == &queue->tasks[0])
611 			q = &queue->tasks[queue->maxpriority];
612 		else
613 			q = q - 1;
614 		if (!list_empty(q)) {
615 			task = list_first_entry(q, struct rpc_task, u.tk_wait.list);
616 			goto new_queue;
617 		}
618 	} while (q != &queue->tasks[queue->priority]);
619 
620 	rpc_reset_waitqueue_priority(queue);
621 	return NULL;
622 
623 new_queue:
624 	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
625 out:
626 	return task;
627 }
628 
__rpc_find_next_queued(struct rpc_wait_queue * queue)629 static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
630 {
631 	if (RPC_IS_PRIORITY(queue))
632 		return __rpc_find_next_queued_priority(queue);
633 	if (!list_empty(&queue->tasks[0]))
634 		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
635 	return NULL;
636 }
637 
638 /*
639  * Wake up the first task on the wait queue.
640  */
rpc_wake_up_first_on_wq(struct workqueue_struct * wq,struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)641 struct rpc_task *rpc_wake_up_first_on_wq(struct workqueue_struct *wq,
642 		struct rpc_wait_queue *queue,
643 		bool (*func)(struct rpc_task *, void *), void *data)
644 {
645 	struct rpc_task	*task = NULL;
646 
647 	spin_lock(&queue->lock);
648 	task = __rpc_find_next_queued(queue);
649 	if (task != NULL)
650 		task = rpc_wake_up_task_on_wq_queue_action_locked(wq, queue,
651 				task, func, data);
652 	spin_unlock(&queue->lock);
653 
654 	return task;
655 }
656 
657 /*
658  * Wake up the first task on the wait queue.
659  */
rpc_wake_up_first(struct rpc_wait_queue * queue,bool (* func)(struct rpc_task *,void *),void * data)660 struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
661 		bool (*func)(struct rpc_task *, void *), void *data)
662 {
663 	return rpc_wake_up_first_on_wq(rpciod_workqueue, queue, func, data);
664 }
665 EXPORT_SYMBOL_GPL(rpc_wake_up_first);
666 
rpc_wake_up_next_func(struct rpc_task * task,void * data)667 static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
668 {
669 	return true;
670 }
671 
672 /*
673  * Wake up the next task on the wait queue.
674 */
rpc_wake_up_next(struct rpc_wait_queue * queue)675 struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
676 {
677 	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
678 }
679 EXPORT_SYMBOL_GPL(rpc_wake_up_next);
680 
681 /**
682  * rpc_wake_up_locked - wake up all rpc_tasks
683  * @queue: rpc_wait_queue on which the tasks are sleeping
684  *
685  */
rpc_wake_up_locked(struct rpc_wait_queue * queue)686 static void rpc_wake_up_locked(struct rpc_wait_queue *queue)
687 {
688 	struct rpc_task *task;
689 
690 	for (;;) {
691 		task = __rpc_find_next_queued(queue);
692 		if (task == NULL)
693 			break;
694 		rpc_wake_up_task_queue_locked(queue, task);
695 	}
696 }
697 
698 /**
699  * rpc_wake_up - wake up all rpc_tasks
700  * @queue: rpc_wait_queue on which the tasks are sleeping
701  *
702  * Grabs queue->lock
703  */
rpc_wake_up(struct rpc_wait_queue * queue)704 void rpc_wake_up(struct rpc_wait_queue *queue)
705 {
706 	spin_lock(&queue->lock);
707 	rpc_wake_up_locked(queue);
708 	spin_unlock(&queue->lock);
709 }
710 EXPORT_SYMBOL_GPL(rpc_wake_up);
711 
712 /**
713  * rpc_wake_up_status_locked - wake up all rpc_tasks and set their status value.
714  * @queue: rpc_wait_queue on which the tasks are sleeping
715  * @status: status value to set
716  */
rpc_wake_up_status_locked(struct rpc_wait_queue * queue,int status)717 static void rpc_wake_up_status_locked(struct rpc_wait_queue *queue, int status)
718 {
719 	struct rpc_task *task;
720 
721 	for (;;) {
722 		task = __rpc_find_next_queued(queue);
723 		if (task == NULL)
724 			break;
725 		rpc_wake_up_task_queue_set_status_locked(queue, task, status);
726 	}
727 }
728 
729 /**
730  * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
731  * @queue: rpc_wait_queue on which the tasks are sleeping
732  * @status: status value to set
733  *
734  * Grabs queue->lock
735  */
rpc_wake_up_status(struct rpc_wait_queue * queue,int status)736 void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
737 {
738 	spin_lock(&queue->lock);
739 	rpc_wake_up_status_locked(queue, status);
740 	spin_unlock(&queue->lock);
741 }
742 EXPORT_SYMBOL_GPL(rpc_wake_up_status);
743 
__rpc_queue_timer_fn(struct work_struct * work)744 static void __rpc_queue_timer_fn(struct work_struct *work)
745 {
746 	struct rpc_wait_queue *queue = container_of(work,
747 			struct rpc_wait_queue,
748 			timer_list.dwork.work);
749 	struct rpc_task *task, *n;
750 	unsigned long expires, now, timeo;
751 
752 	spin_lock(&queue->lock);
753 	expires = now = jiffies;
754 	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
755 		timeo = task->tk_timeout;
756 		if (time_after_eq(now, timeo)) {
757 			trace_rpc_task_timeout(task, task->tk_action);
758 			task->tk_status = -ETIMEDOUT;
759 			rpc_wake_up_task_queue_locked(queue, task);
760 			continue;
761 		}
762 		if (expires == now || time_after(expires, timeo))
763 			expires = timeo;
764 	}
765 	if (!list_empty(&queue->timer_list.list))
766 		rpc_set_queue_timer(queue, expires);
767 	spin_unlock(&queue->lock);
768 }
769 
__rpc_atrun(struct rpc_task * task)770 static void __rpc_atrun(struct rpc_task *task)
771 {
772 	if (task->tk_status == -ETIMEDOUT)
773 		task->tk_status = 0;
774 }
775 
776 /*
777  * Run a task at a later time
778  */
rpc_delay(struct rpc_task * task,unsigned long delay)779 void rpc_delay(struct rpc_task *task, unsigned long delay)
780 {
781 	rpc_sleep_on_timeout(&delay_queue, task, __rpc_atrun, jiffies + delay);
782 }
783 EXPORT_SYMBOL_GPL(rpc_delay);
784 
785 /*
786  * Helper to call task->tk_ops->rpc_call_prepare
787  */
rpc_prepare_task(struct rpc_task * task)788 void rpc_prepare_task(struct rpc_task *task)
789 {
790 	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
791 }
792 
793 static void
rpc_init_task_statistics(struct rpc_task * task)794 rpc_init_task_statistics(struct rpc_task *task)
795 {
796 	/* Initialize retry counters */
797 	task->tk_garb_retry = 2;
798 	task->tk_cred_retry = 2;
799 
800 	/* starting timestamp */
801 	task->tk_start = ktime_get();
802 }
803 
804 static void
rpc_reset_task_statistics(struct rpc_task * task)805 rpc_reset_task_statistics(struct rpc_task *task)
806 {
807 	task->tk_timeouts = 0;
808 	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_SENT);
809 	rpc_init_task_statistics(task);
810 }
811 
812 /*
813  * Helper that calls task->tk_ops->rpc_call_done if it exists
814  */
rpc_exit_task(struct rpc_task * task)815 void rpc_exit_task(struct rpc_task *task)
816 {
817 	trace_rpc_task_end(task, task->tk_action);
818 	task->tk_action = NULL;
819 	if (task->tk_ops->rpc_count_stats)
820 		task->tk_ops->rpc_count_stats(task, task->tk_calldata);
821 	else if (task->tk_client)
822 		rpc_count_iostats(task, task->tk_client->cl_metrics);
823 	if (task->tk_ops->rpc_call_done != NULL) {
824 		task->tk_ops->rpc_call_done(task, task->tk_calldata);
825 		if (task->tk_action != NULL) {
826 			/* Always release the RPC slot and buffer memory */
827 			xprt_release(task);
828 			rpc_reset_task_statistics(task);
829 		}
830 	}
831 }
832 
rpc_signal_task(struct rpc_task * task)833 void rpc_signal_task(struct rpc_task *task)
834 {
835 	struct rpc_wait_queue *queue;
836 
837 	if (!RPC_IS_ACTIVATED(task))
838 		return;
839 
840 	trace_rpc_task_signalled(task, task->tk_action);
841 	set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
842 	smp_mb__after_atomic();
843 	queue = READ_ONCE(task->tk_waitqueue);
844 	if (queue)
845 		rpc_wake_up_queued_task_set_status(queue, task, -ERESTARTSYS);
846 }
847 
rpc_exit(struct rpc_task * task,int status)848 void rpc_exit(struct rpc_task *task, int status)
849 {
850 	task->tk_status = status;
851 	task->tk_action = rpc_exit_task;
852 	rpc_wake_up_queued_task(task->tk_waitqueue, task);
853 }
854 EXPORT_SYMBOL_GPL(rpc_exit);
855 
rpc_release_calldata(const struct rpc_call_ops * ops,void * calldata)856 void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
857 {
858 	if (ops->rpc_release != NULL)
859 		ops->rpc_release(calldata);
860 }
861 
862 /*
863  * This is the RPC `scheduler' (or rather, the finite state machine).
864  */
__rpc_execute(struct rpc_task * task)865 static void __rpc_execute(struct rpc_task *task)
866 {
867 	struct rpc_wait_queue *queue;
868 	int task_is_async = RPC_IS_ASYNC(task);
869 	int status = 0;
870 
871 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
872 	if (RPC_IS_QUEUED(task))
873 		return;
874 
875 	for (;;) {
876 		void (*do_action)(struct rpc_task *);
877 
878 		/*
879 		 * Perform the next FSM step or a pending callback.
880 		 *
881 		 * tk_action may be NULL if the task has been killed.
882 		 * In particular, note that rpc_killall_tasks may
883 		 * do this at any time, so beware when dereferencing.
884 		 */
885 		do_action = task->tk_action;
886 		if (task->tk_callback) {
887 			do_action = task->tk_callback;
888 			task->tk_callback = NULL;
889 		}
890 		if (!do_action)
891 			break;
892 		trace_rpc_task_run_action(task, do_action);
893 		do_action(task);
894 
895 		/*
896 		 * Lockless check for whether task is sleeping or not.
897 		 */
898 		if (!RPC_IS_QUEUED(task))
899 			continue;
900 
901 		/*
902 		 * Signalled tasks should exit rather than sleep.
903 		 */
904 		if (RPC_SIGNALLED(task)) {
905 			task->tk_rpc_status = -ERESTARTSYS;
906 			rpc_exit(task, -ERESTARTSYS);
907 		}
908 
909 		/*
910 		 * The queue->lock protects against races with
911 		 * rpc_make_runnable().
912 		 *
913 		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
914 		 * rpc_task, rpc_make_runnable() can assign it to a
915 		 * different workqueue. We therefore cannot assume that the
916 		 * rpc_task pointer may still be dereferenced.
917 		 */
918 		queue = task->tk_waitqueue;
919 		spin_lock(&queue->lock);
920 		if (!RPC_IS_QUEUED(task)) {
921 			spin_unlock(&queue->lock);
922 			continue;
923 		}
924 		rpc_clear_running(task);
925 		spin_unlock(&queue->lock);
926 		if (task_is_async)
927 			return;
928 
929 		/* sync task: sleep here */
930 		trace_rpc_task_sync_sleep(task, task->tk_action);
931 		status = out_of_line_wait_on_bit(&task->tk_runstate,
932 				RPC_TASK_QUEUED, rpc_wait_bit_killable,
933 				TASK_KILLABLE);
934 		if (status < 0) {
935 			/*
936 			 * When a sync task receives a signal, it exits with
937 			 * -ERESTARTSYS. In order to catch any callbacks that
938 			 * clean up after sleeping on some queue, we don't
939 			 * break the loop here, but go around once more.
940 			 */
941 			trace_rpc_task_signalled(task, task->tk_action);
942 			set_bit(RPC_TASK_SIGNALLED, &task->tk_runstate);
943 			task->tk_rpc_status = -ERESTARTSYS;
944 			rpc_exit(task, -ERESTARTSYS);
945 		}
946 		trace_rpc_task_sync_wake(task, task->tk_action);
947 	}
948 
949 	/* Release all resources associated with the task */
950 	rpc_release_task(task);
951 }
952 
953 /*
954  * User-visible entry point to the scheduler.
955  *
956  * This may be called recursively if e.g. an async NFS task updates
957  * the attributes and finds that dirty pages must be flushed.
958  * NOTE: Upon exit of this function the task is guaranteed to be
959  *	 released. In particular note that tk_release() will have
960  *	 been called, so your task memory may have been freed.
961  */
rpc_execute(struct rpc_task * task)962 void rpc_execute(struct rpc_task *task)
963 {
964 	bool is_async = RPC_IS_ASYNC(task);
965 
966 	rpc_set_active(task);
967 	rpc_make_runnable(rpciod_workqueue, task);
968 	if (!is_async) {
969 		unsigned int pflags = memalloc_nofs_save();
970 		__rpc_execute(task);
971 		memalloc_nofs_restore(pflags);
972 	}
973 }
974 
rpc_async_schedule(struct work_struct * work)975 static void rpc_async_schedule(struct work_struct *work)
976 {
977 	unsigned int pflags = memalloc_nofs_save();
978 
979 	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
980 	memalloc_nofs_restore(pflags);
981 }
982 
983 /**
984  * rpc_malloc - allocate RPC buffer resources
985  * @task: RPC task
986  *
987  * A single memory region is allocated, which is split between the
988  * RPC call and RPC reply that this task is being used for. When
989  * this RPC is retired, the memory is released by calling rpc_free.
990  *
991  * To prevent rpciod from hanging, this allocator never sleeps,
992  * returning -ENOMEM and suppressing warning if the request cannot
993  * be serviced immediately. The caller can arrange to sleep in a
994  * way that is safe for rpciod.
995  *
996  * Most requests are 'small' (under 2KiB) and can be serviced from a
997  * mempool, ensuring that NFS reads and writes can always proceed,
998  * and that there is good locality of reference for these buffers.
999  */
rpc_malloc(struct rpc_task * task)1000 int rpc_malloc(struct rpc_task *task)
1001 {
1002 	struct rpc_rqst *rqst = task->tk_rqstp;
1003 	size_t size = rqst->rq_callsize + rqst->rq_rcvsize;
1004 	struct rpc_buffer *buf;
1005 	gfp_t gfp = GFP_NOFS;
1006 
1007 	if (RPC_IS_ASYNC(task))
1008 		gfp = GFP_NOWAIT | __GFP_NOWARN;
1009 	if (RPC_IS_SWAPPER(task))
1010 		gfp |= __GFP_MEMALLOC;
1011 
1012 	size += sizeof(struct rpc_buffer);
1013 	if (size <= RPC_BUFFER_MAXSIZE)
1014 		buf = mempool_alloc(rpc_buffer_mempool, gfp);
1015 	else
1016 		buf = kmalloc(size, gfp);
1017 
1018 	if (!buf)
1019 		return -ENOMEM;
1020 
1021 	buf->len = size;
1022 	rqst->rq_buffer = buf->data;
1023 	rqst->rq_rbuffer = (char *)rqst->rq_buffer + rqst->rq_callsize;
1024 	return 0;
1025 }
1026 EXPORT_SYMBOL_GPL(rpc_malloc);
1027 
1028 /**
1029  * rpc_free - free RPC buffer resources allocated via rpc_malloc
1030  * @task: RPC task
1031  *
1032  */
rpc_free(struct rpc_task * task)1033 void rpc_free(struct rpc_task *task)
1034 {
1035 	void *buffer = task->tk_rqstp->rq_buffer;
1036 	size_t size;
1037 	struct rpc_buffer *buf;
1038 
1039 	buf = container_of(buffer, struct rpc_buffer, data);
1040 	size = buf->len;
1041 
1042 	if (size <= RPC_BUFFER_MAXSIZE)
1043 		mempool_free(buf, rpc_buffer_mempool);
1044 	else
1045 		kfree(buf);
1046 }
1047 EXPORT_SYMBOL_GPL(rpc_free);
1048 
1049 /*
1050  * Creation and deletion of RPC task structures
1051  */
rpc_init_task(struct rpc_task * task,const struct rpc_task_setup * task_setup_data)1052 static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
1053 {
1054 	memset(task, 0, sizeof(*task));
1055 	atomic_set(&task->tk_count, 1);
1056 	task->tk_flags  = task_setup_data->flags;
1057 	task->tk_ops = task_setup_data->callback_ops;
1058 	task->tk_calldata = task_setup_data->callback_data;
1059 	INIT_LIST_HEAD(&task->tk_task);
1060 
1061 	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
1062 	task->tk_owner = current->tgid;
1063 
1064 	/* Initialize workqueue for async tasks */
1065 	task->tk_workqueue = task_setup_data->workqueue;
1066 
1067 	task->tk_xprt = rpc_task_get_xprt(task_setup_data->rpc_client,
1068 			xprt_get(task_setup_data->rpc_xprt));
1069 
1070 	task->tk_op_cred = get_rpccred(task_setup_data->rpc_op_cred);
1071 
1072 	if (task->tk_ops->rpc_call_prepare != NULL)
1073 		task->tk_action = rpc_prepare_task;
1074 
1075 	rpc_init_task_statistics(task);
1076 }
1077 
1078 static struct rpc_task *
rpc_alloc_task(void)1079 rpc_alloc_task(void)
1080 {
1081 	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
1082 }
1083 
1084 /*
1085  * Create a new task for the specified client.
1086  */
rpc_new_task(const struct rpc_task_setup * setup_data)1087 struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
1088 {
1089 	struct rpc_task	*task = setup_data->task;
1090 	unsigned short flags = 0;
1091 
1092 	if (task == NULL) {
1093 		task = rpc_alloc_task();
1094 		flags = RPC_TASK_DYNAMIC;
1095 	}
1096 
1097 	rpc_init_task(task, setup_data);
1098 	task->tk_flags |= flags;
1099 	return task;
1100 }
1101 
1102 /*
1103  * rpc_free_task - release rpc task and perform cleanups
1104  *
1105  * Note that we free up the rpc_task _after_ rpc_release_calldata()
1106  * in order to work around a workqueue dependency issue.
1107  *
1108  * Tejun Heo states:
1109  * "Workqueue currently considers two work items to be the same if they're
1110  * on the same address and won't execute them concurrently - ie. it
1111  * makes a work item which is queued again while being executed wait
1112  * for the previous execution to complete.
1113  *
1114  * If a work function frees the work item, and then waits for an event
1115  * which should be performed by another work item and *that* work item
1116  * recycles the freed work item, it can create a false dependency loop.
1117  * There really is no reliable way to detect this short of verifying
1118  * every memory free."
1119  *
1120  */
rpc_free_task(struct rpc_task * task)1121 static void rpc_free_task(struct rpc_task *task)
1122 {
1123 	unsigned short tk_flags = task->tk_flags;
1124 
1125 	put_rpccred(task->tk_op_cred);
1126 	rpc_release_calldata(task->tk_ops, task->tk_calldata);
1127 
1128 	if (tk_flags & RPC_TASK_DYNAMIC)
1129 		mempool_free(task, rpc_task_mempool);
1130 }
1131 
rpc_async_release(struct work_struct * work)1132 static void rpc_async_release(struct work_struct *work)
1133 {
1134 	unsigned int pflags = memalloc_nofs_save();
1135 
1136 	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
1137 	memalloc_nofs_restore(pflags);
1138 }
1139 
rpc_release_resources_task(struct rpc_task * task)1140 static void rpc_release_resources_task(struct rpc_task *task)
1141 {
1142 	xprt_release(task);
1143 	if (task->tk_msg.rpc_cred) {
1144 		if (!(task->tk_flags & RPC_TASK_CRED_NOREF))
1145 			put_cred(task->tk_msg.rpc_cred);
1146 		task->tk_msg.rpc_cred = NULL;
1147 	}
1148 	rpc_task_release_client(task);
1149 }
1150 
rpc_final_put_task(struct rpc_task * task,struct workqueue_struct * q)1151 static void rpc_final_put_task(struct rpc_task *task,
1152 		struct workqueue_struct *q)
1153 {
1154 	if (q != NULL) {
1155 		INIT_WORK(&task->u.tk_work, rpc_async_release);
1156 		queue_work(q, &task->u.tk_work);
1157 	} else
1158 		rpc_free_task(task);
1159 }
1160 
rpc_do_put_task(struct rpc_task * task,struct workqueue_struct * q)1161 static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
1162 {
1163 	if (atomic_dec_and_test(&task->tk_count)) {
1164 		rpc_release_resources_task(task);
1165 		rpc_final_put_task(task, q);
1166 	}
1167 }
1168 
rpc_put_task(struct rpc_task * task)1169 void rpc_put_task(struct rpc_task *task)
1170 {
1171 	rpc_do_put_task(task, NULL);
1172 }
1173 EXPORT_SYMBOL_GPL(rpc_put_task);
1174 
rpc_put_task_async(struct rpc_task * task)1175 void rpc_put_task_async(struct rpc_task *task)
1176 {
1177 	rpc_do_put_task(task, task->tk_workqueue);
1178 }
1179 EXPORT_SYMBOL_GPL(rpc_put_task_async);
1180 
rpc_release_task(struct rpc_task * task)1181 static void rpc_release_task(struct rpc_task *task)
1182 {
1183 	WARN_ON_ONCE(RPC_IS_QUEUED(task));
1184 
1185 	rpc_release_resources_task(task);
1186 
1187 	/*
1188 	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
1189 	 * so it should be safe to use task->tk_count as a test for whether
1190 	 * or not any other processes still hold references to our rpc_task.
1191 	 */
1192 	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
1193 		/* Wake up anyone who may be waiting for task completion */
1194 		if (!rpc_complete_task(task))
1195 			return;
1196 	} else {
1197 		if (!atomic_dec_and_test(&task->tk_count))
1198 			return;
1199 	}
1200 	rpc_final_put_task(task, task->tk_workqueue);
1201 }
1202 
rpciod_up(void)1203 int rpciod_up(void)
1204 {
1205 	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
1206 }
1207 
rpciod_down(void)1208 void rpciod_down(void)
1209 {
1210 	module_put(THIS_MODULE);
1211 }
1212 
1213 /*
1214  * Start up the rpciod workqueue.
1215  */
rpciod_start(void)1216 static int rpciod_start(void)
1217 {
1218 	struct workqueue_struct *wq;
1219 
1220 	/*
1221 	 * Create the rpciod thread and wait for it to start.
1222 	 */
1223 	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM | WQ_UNBOUND, 0);
1224 	if (!wq)
1225 		goto out_failed;
1226 	rpciod_workqueue = wq;
1227 	/* Note: highpri because network receive is latency sensitive */
1228 	wq = alloc_workqueue("xprtiod", WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_HIGHPRI, 0);
1229 	if (!wq)
1230 		goto free_rpciod;
1231 	xprtiod_workqueue = wq;
1232 	return 1;
1233 free_rpciod:
1234 	wq = rpciod_workqueue;
1235 	rpciod_workqueue = NULL;
1236 	destroy_workqueue(wq);
1237 out_failed:
1238 	return 0;
1239 }
1240 
rpciod_stop(void)1241 static void rpciod_stop(void)
1242 {
1243 	struct workqueue_struct *wq = NULL;
1244 
1245 	if (rpciod_workqueue == NULL)
1246 		return;
1247 
1248 	wq = rpciod_workqueue;
1249 	rpciod_workqueue = NULL;
1250 	destroy_workqueue(wq);
1251 	wq = xprtiod_workqueue;
1252 	xprtiod_workqueue = NULL;
1253 	destroy_workqueue(wq);
1254 }
1255 
1256 void
rpc_destroy_mempool(void)1257 rpc_destroy_mempool(void)
1258 {
1259 	rpciod_stop();
1260 	mempool_destroy(rpc_buffer_mempool);
1261 	mempool_destroy(rpc_task_mempool);
1262 	kmem_cache_destroy(rpc_task_slabp);
1263 	kmem_cache_destroy(rpc_buffer_slabp);
1264 	rpc_destroy_wait_queue(&delay_queue);
1265 }
1266 
1267 int
rpc_init_mempool(void)1268 rpc_init_mempool(void)
1269 {
1270 	/*
1271 	 * The following is not strictly a mempool initialisation,
1272 	 * but there is no harm in doing it here
1273 	 */
1274 	rpc_init_wait_queue(&delay_queue, "delayq");
1275 	if (!rpciod_start())
1276 		goto err_nomem;
1277 
1278 	rpc_task_slabp = kmem_cache_create("rpc_tasks",
1279 					     sizeof(struct rpc_task),
1280 					     0, SLAB_HWCACHE_ALIGN,
1281 					     NULL);
1282 	if (!rpc_task_slabp)
1283 		goto err_nomem;
1284 	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
1285 					     RPC_BUFFER_MAXSIZE,
1286 					     0, SLAB_HWCACHE_ALIGN,
1287 					     NULL);
1288 	if (!rpc_buffer_slabp)
1289 		goto err_nomem;
1290 	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
1291 						    rpc_task_slabp);
1292 	if (!rpc_task_mempool)
1293 		goto err_nomem;
1294 	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
1295 						      rpc_buffer_slabp);
1296 	if (!rpc_buffer_mempool)
1297 		goto err_nomem;
1298 	return 0;
1299 err_nomem:
1300 	rpc_destroy_mempool();
1301 	return -ENOMEM;
1302 }
1303