1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (c) 2014-2017 Oracle. All rights reserved.
4 * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the BSD-type
10 * license below:
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 *
16 * Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 *
19 * Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials provided
22 * with the distribution.
23 *
24 * Neither the name of the Network Appliance, Inc. nor the names of
25 * its contributors may be used to endorse or promote products
26 * derived from this software without specific prior written
27 * permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42 /*
43 * verbs.c
44 *
45 * Encapsulates the major functions managing:
46 * o adapters
47 * o endpoints
48 * o connections
49 * o buffer memory
50 */
51
52 #include <linux/interrupt.h>
53 #include <linux/slab.h>
54 #include <linux/sunrpc/addr.h>
55 #include <linux/sunrpc/svc_rdma.h>
56 #include <linux/log2.h>
57
58 #include <asm-generic/barrier.h>
59 #include <asm/bitops.h>
60
61 #include <rdma/ib_cm.h>
62
63 #include "xprt_rdma.h"
64 #include <trace/events/rpcrdma.h>
65
66 /*
67 * Globals/Macros
68 */
69
70 #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
71 # define RPCDBG_FACILITY RPCDBG_TRANS
72 #endif
73
74 /*
75 * internal functions
76 */
77 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt);
78 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt);
79 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
80 struct rpcrdma_sendctx *sc);
81 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt);
82 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt);
83 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep);
84 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt);
85 static void rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt);
86 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt);
87 static void rpcrdma_ep_get(struct rpcrdma_ep *ep);
88 static int rpcrdma_ep_put(struct rpcrdma_ep *ep);
89 static struct rpcrdma_regbuf *
90 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
91 gfp_t flags);
92 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb);
93 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb);
94
95 /* Wait for outstanding transport work to finish. ib_drain_qp
96 * handles the drains in the wrong order for us, so open code
97 * them here.
98 */
rpcrdma_xprt_drain(struct rpcrdma_xprt * r_xprt)99 static void rpcrdma_xprt_drain(struct rpcrdma_xprt *r_xprt)
100 {
101 struct rpcrdma_ep *ep = r_xprt->rx_ep;
102 struct rdma_cm_id *id = ep->re_id;
103
104 /* Wait for rpcrdma_post_recvs() to leave its critical
105 * section.
106 */
107 if (atomic_inc_return(&ep->re_receiving) > 1)
108 wait_for_completion(&ep->re_done);
109
110 /* Flush Receives, then wait for deferred Reply work
111 * to complete.
112 */
113 ib_drain_rq(id->qp);
114
115 /* Deferred Reply processing might have scheduled
116 * local invalidations.
117 */
118 ib_drain_sq(id->qp);
119
120 rpcrdma_ep_put(ep);
121 }
122
123 /* Ensure xprt_force_disconnect() is invoked exactly once when a
124 * connection is closed or lost. (The important thing is it needs
125 * to be invoked "at least" once).
126 */
rpcrdma_force_disconnect(struct rpcrdma_ep * ep)127 void rpcrdma_force_disconnect(struct rpcrdma_ep *ep)
128 {
129 if (atomic_add_unless(&ep->re_force_disconnect, 1, 1))
130 xprt_force_disconnect(ep->re_xprt);
131 }
132
133 /**
134 * rpcrdma_flush_disconnect - Disconnect on flushed completion
135 * @r_xprt: transport to disconnect
136 * @wc: work completion entry
137 *
138 * Must be called in process context.
139 */
rpcrdma_flush_disconnect(struct rpcrdma_xprt * r_xprt,struct ib_wc * wc)140 void rpcrdma_flush_disconnect(struct rpcrdma_xprt *r_xprt, struct ib_wc *wc)
141 {
142 if (wc->status != IB_WC_SUCCESS)
143 rpcrdma_force_disconnect(r_xprt->rx_ep);
144 }
145
146 /**
147 * rpcrdma_wc_send - Invoked by RDMA provider for each polled Send WC
148 * @cq: completion queue
149 * @wc: WCE for a completed Send WR
150 *
151 */
rpcrdma_wc_send(struct ib_cq * cq,struct ib_wc * wc)152 static void rpcrdma_wc_send(struct ib_cq *cq, struct ib_wc *wc)
153 {
154 struct ib_cqe *cqe = wc->wr_cqe;
155 struct rpcrdma_sendctx *sc =
156 container_of(cqe, struct rpcrdma_sendctx, sc_cqe);
157 struct rpcrdma_xprt *r_xprt = cq->cq_context;
158
159 /* WARNING: Only wr_cqe and status are reliable at this point */
160 trace_xprtrdma_wc_send(wc, &sc->sc_cid);
161 rpcrdma_sendctx_put_locked(r_xprt, sc);
162 rpcrdma_flush_disconnect(r_xprt, wc);
163 }
164
165 /**
166 * rpcrdma_wc_receive - Invoked by RDMA provider for each polled Receive WC
167 * @cq: completion queue
168 * @wc: WCE for a completed Receive WR
169 *
170 */
rpcrdma_wc_receive(struct ib_cq * cq,struct ib_wc * wc)171 static void rpcrdma_wc_receive(struct ib_cq *cq, struct ib_wc *wc)
172 {
173 struct ib_cqe *cqe = wc->wr_cqe;
174 struct rpcrdma_rep *rep = container_of(cqe, struct rpcrdma_rep,
175 rr_cqe);
176 struct rpcrdma_xprt *r_xprt = cq->cq_context;
177
178 /* WARNING: Only wr_cqe and status are reliable at this point */
179 trace_xprtrdma_wc_receive(wc, &rep->rr_cid);
180 --r_xprt->rx_ep->re_receive_count;
181 if (wc->status != IB_WC_SUCCESS)
182 goto out_flushed;
183
184 /* status == SUCCESS means all fields in wc are trustworthy */
185 rpcrdma_set_xdrlen(&rep->rr_hdrbuf, wc->byte_len);
186 rep->rr_wc_flags = wc->wc_flags;
187 rep->rr_inv_rkey = wc->ex.invalidate_rkey;
188
189 ib_dma_sync_single_for_cpu(rdmab_device(rep->rr_rdmabuf),
190 rdmab_addr(rep->rr_rdmabuf),
191 wc->byte_len, DMA_FROM_DEVICE);
192
193 rpcrdma_reply_handler(rep);
194 return;
195
196 out_flushed:
197 rpcrdma_flush_disconnect(r_xprt, wc);
198 rpcrdma_rep_put(&r_xprt->rx_buf, rep);
199 }
200
rpcrdma_update_cm_private(struct rpcrdma_ep * ep,struct rdma_conn_param * param)201 static void rpcrdma_update_cm_private(struct rpcrdma_ep *ep,
202 struct rdma_conn_param *param)
203 {
204 const struct rpcrdma_connect_private *pmsg = param->private_data;
205 unsigned int rsize, wsize;
206
207 /* Default settings for RPC-over-RDMA Version One */
208 ep->re_implicit_roundup = xprt_rdma_pad_optimize;
209 rsize = RPCRDMA_V1_DEF_INLINE_SIZE;
210 wsize = RPCRDMA_V1_DEF_INLINE_SIZE;
211
212 if (pmsg &&
213 pmsg->cp_magic == rpcrdma_cmp_magic &&
214 pmsg->cp_version == RPCRDMA_CMP_VERSION) {
215 ep->re_implicit_roundup = true;
216 rsize = rpcrdma_decode_buffer_size(pmsg->cp_send_size);
217 wsize = rpcrdma_decode_buffer_size(pmsg->cp_recv_size);
218 }
219
220 if (rsize < ep->re_inline_recv)
221 ep->re_inline_recv = rsize;
222 if (wsize < ep->re_inline_send)
223 ep->re_inline_send = wsize;
224
225 rpcrdma_set_max_header_sizes(ep);
226 }
227
228 /**
229 * rpcrdma_cm_event_handler - Handle RDMA CM events
230 * @id: rdma_cm_id on which an event has occurred
231 * @event: details of the event
232 *
233 * Called with @id's mutex held. Returns 1 if caller should
234 * destroy @id, otherwise 0.
235 */
236 static int
rpcrdma_cm_event_handler(struct rdma_cm_id * id,struct rdma_cm_event * event)237 rpcrdma_cm_event_handler(struct rdma_cm_id *id, struct rdma_cm_event *event)
238 {
239 struct sockaddr *sap = (struct sockaddr *)&id->route.addr.dst_addr;
240 struct rpcrdma_ep *ep = id->context;
241
242 might_sleep();
243
244 switch (event->event) {
245 case RDMA_CM_EVENT_ADDR_RESOLVED:
246 case RDMA_CM_EVENT_ROUTE_RESOLVED:
247 ep->re_async_rc = 0;
248 complete(&ep->re_done);
249 return 0;
250 case RDMA_CM_EVENT_ADDR_ERROR:
251 ep->re_async_rc = -EPROTO;
252 complete(&ep->re_done);
253 return 0;
254 case RDMA_CM_EVENT_ROUTE_ERROR:
255 ep->re_async_rc = -ENETUNREACH;
256 complete(&ep->re_done);
257 return 0;
258 case RDMA_CM_EVENT_DEVICE_REMOVAL:
259 pr_info("rpcrdma: removing device %s for %pISpc\n",
260 ep->re_id->device->name, sap);
261 fallthrough;
262 case RDMA_CM_EVENT_ADDR_CHANGE:
263 ep->re_connect_status = -ENODEV;
264 goto disconnected;
265 case RDMA_CM_EVENT_ESTABLISHED:
266 rpcrdma_ep_get(ep);
267 ep->re_connect_status = 1;
268 rpcrdma_update_cm_private(ep, &event->param.conn);
269 trace_xprtrdma_inline_thresh(ep);
270 wake_up_all(&ep->re_connect_wait);
271 break;
272 case RDMA_CM_EVENT_CONNECT_ERROR:
273 ep->re_connect_status = -ENOTCONN;
274 goto wake_connect_worker;
275 case RDMA_CM_EVENT_UNREACHABLE:
276 ep->re_connect_status = -ENETUNREACH;
277 goto wake_connect_worker;
278 case RDMA_CM_EVENT_REJECTED:
279 dprintk("rpcrdma: connection to %pISpc rejected: %s\n",
280 sap, rdma_reject_msg(id, event->status));
281 ep->re_connect_status = -ECONNREFUSED;
282 if (event->status == IB_CM_REJ_STALE_CONN)
283 ep->re_connect_status = -ENOTCONN;
284 wake_connect_worker:
285 wake_up_all(&ep->re_connect_wait);
286 return 0;
287 case RDMA_CM_EVENT_DISCONNECTED:
288 ep->re_connect_status = -ECONNABORTED;
289 disconnected:
290 rpcrdma_force_disconnect(ep);
291 return rpcrdma_ep_put(ep);
292 default:
293 break;
294 }
295
296 dprintk("RPC: %s: %pISpc on %s/frwr: %s\n", __func__, sap,
297 ep->re_id->device->name, rdma_event_msg(event->event));
298 return 0;
299 }
300
rpcrdma_create_id(struct rpcrdma_xprt * r_xprt,struct rpcrdma_ep * ep)301 static struct rdma_cm_id *rpcrdma_create_id(struct rpcrdma_xprt *r_xprt,
302 struct rpcrdma_ep *ep)
303 {
304 unsigned long wtimeout = msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT) + 1;
305 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
306 struct rdma_cm_id *id;
307 int rc;
308
309 init_completion(&ep->re_done);
310
311 id = rdma_create_id(xprt->xprt_net, rpcrdma_cm_event_handler, ep,
312 RDMA_PS_TCP, IB_QPT_RC);
313 if (IS_ERR(id))
314 return id;
315
316 ep->re_async_rc = -ETIMEDOUT;
317 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)&xprt->addr,
318 RDMA_RESOLVE_TIMEOUT);
319 if (rc)
320 goto out;
321 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
322 if (rc < 0)
323 goto out;
324
325 rc = ep->re_async_rc;
326 if (rc)
327 goto out;
328
329 ep->re_async_rc = -ETIMEDOUT;
330 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
331 if (rc)
332 goto out;
333 rc = wait_for_completion_interruptible_timeout(&ep->re_done, wtimeout);
334 if (rc < 0)
335 goto out;
336 rc = ep->re_async_rc;
337 if (rc)
338 goto out;
339
340 return id;
341
342 out:
343 rdma_destroy_id(id);
344 return ERR_PTR(rc);
345 }
346
rpcrdma_ep_destroy(struct kref * kref)347 static void rpcrdma_ep_destroy(struct kref *kref)
348 {
349 struct rpcrdma_ep *ep = container_of(kref, struct rpcrdma_ep, re_kref);
350
351 if (ep->re_id->qp) {
352 rdma_destroy_qp(ep->re_id);
353 ep->re_id->qp = NULL;
354 }
355
356 if (ep->re_attr.recv_cq)
357 ib_free_cq(ep->re_attr.recv_cq);
358 ep->re_attr.recv_cq = NULL;
359 if (ep->re_attr.send_cq)
360 ib_free_cq(ep->re_attr.send_cq);
361 ep->re_attr.send_cq = NULL;
362
363 if (ep->re_pd)
364 ib_dealloc_pd(ep->re_pd);
365 ep->re_pd = NULL;
366
367 kfree(ep);
368 module_put(THIS_MODULE);
369 }
370
rpcrdma_ep_get(struct rpcrdma_ep * ep)371 static noinline void rpcrdma_ep_get(struct rpcrdma_ep *ep)
372 {
373 kref_get(&ep->re_kref);
374 }
375
376 /* Returns:
377 * %0 if @ep still has a positive kref count, or
378 * %1 if @ep was destroyed successfully.
379 */
rpcrdma_ep_put(struct rpcrdma_ep * ep)380 static noinline int rpcrdma_ep_put(struct rpcrdma_ep *ep)
381 {
382 return kref_put(&ep->re_kref, rpcrdma_ep_destroy);
383 }
384
rpcrdma_ep_create(struct rpcrdma_xprt * r_xprt)385 static int rpcrdma_ep_create(struct rpcrdma_xprt *r_xprt)
386 {
387 struct rpcrdma_connect_private *pmsg;
388 struct ib_device *device;
389 struct rdma_cm_id *id;
390 struct rpcrdma_ep *ep;
391 int rc;
392
393 ep = kzalloc(sizeof(*ep), GFP_NOFS);
394 if (!ep)
395 return -ENOTCONN;
396 ep->re_xprt = &r_xprt->rx_xprt;
397 kref_init(&ep->re_kref);
398
399 id = rpcrdma_create_id(r_xprt, ep);
400 if (IS_ERR(id)) {
401 kfree(ep);
402 return PTR_ERR(id);
403 }
404 __module_get(THIS_MODULE);
405 device = id->device;
406 ep->re_id = id;
407 reinit_completion(&ep->re_done);
408
409 ep->re_max_requests = r_xprt->rx_xprt.max_reqs;
410 ep->re_inline_send = xprt_rdma_max_inline_write;
411 ep->re_inline_recv = xprt_rdma_max_inline_read;
412 rc = frwr_query_device(ep, device);
413 if (rc)
414 goto out_destroy;
415
416 r_xprt->rx_buf.rb_max_requests = cpu_to_be32(ep->re_max_requests);
417
418 ep->re_attr.srq = NULL;
419 ep->re_attr.cap.max_inline_data = 0;
420 ep->re_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
421 ep->re_attr.qp_type = IB_QPT_RC;
422 ep->re_attr.port_num = ~0;
423
424 dprintk("RPC: %s: requested max: dtos: send %d recv %d; "
425 "iovs: send %d recv %d\n",
426 __func__,
427 ep->re_attr.cap.max_send_wr,
428 ep->re_attr.cap.max_recv_wr,
429 ep->re_attr.cap.max_send_sge,
430 ep->re_attr.cap.max_recv_sge);
431
432 ep->re_send_batch = ep->re_max_requests >> 3;
433 ep->re_send_count = ep->re_send_batch;
434 init_waitqueue_head(&ep->re_connect_wait);
435
436 ep->re_attr.send_cq = ib_alloc_cq_any(device, r_xprt,
437 ep->re_attr.cap.max_send_wr,
438 IB_POLL_WORKQUEUE);
439 if (IS_ERR(ep->re_attr.send_cq)) {
440 rc = PTR_ERR(ep->re_attr.send_cq);
441 ep->re_attr.send_cq = NULL;
442 goto out_destroy;
443 }
444
445 ep->re_attr.recv_cq = ib_alloc_cq_any(device, r_xprt,
446 ep->re_attr.cap.max_recv_wr,
447 IB_POLL_WORKQUEUE);
448 if (IS_ERR(ep->re_attr.recv_cq)) {
449 rc = PTR_ERR(ep->re_attr.recv_cq);
450 ep->re_attr.recv_cq = NULL;
451 goto out_destroy;
452 }
453 ep->re_receive_count = 0;
454
455 /* Initialize cma parameters */
456 memset(&ep->re_remote_cma, 0, sizeof(ep->re_remote_cma));
457
458 /* Prepare RDMA-CM private message */
459 pmsg = &ep->re_cm_private;
460 pmsg->cp_magic = rpcrdma_cmp_magic;
461 pmsg->cp_version = RPCRDMA_CMP_VERSION;
462 pmsg->cp_flags |= RPCRDMA_CMP_F_SND_W_INV_OK;
463 pmsg->cp_send_size = rpcrdma_encode_buffer_size(ep->re_inline_send);
464 pmsg->cp_recv_size = rpcrdma_encode_buffer_size(ep->re_inline_recv);
465 ep->re_remote_cma.private_data = pmsg;
466 ep->re_remote_cma.private_data_len = sizeof(*pmsg);
467
468 /* Client offers RDMA Read but does not initiate */
469 ep->re_remote_cma.initiator_depth = 0;
470 ep->re_remote_cma.responder_resources =
471 min_t(int, U8_MAX, device->attrs.max_qp_rd_atom);
472
473 /* Limit transport retries so client can detect server
474 * GID changes quickly. RPC layer handles re-establishing
475 * transport connection and retransmission.
476 */
477 ep->re_remote_cma.retry_count = 6;
478
479 /* RPC-over-RDMA handles its own flow control. In addition,
480 * make all RNR NAKs visible so we know that RPC-over-RDMA
481 * flow control is working correctly (no NAKs should be seen).
482 */
483 ep->re_remote_cma.flow_control = 0;
484 ep->re_remote_cma.rnr_retry_count = 0;
485
486 ep->re_pd = ib_alloc_pd(device, 0);
487 if (IS_ERR(ep->re_pd)) {
488 rc = PTR_ERR(ep->re_pd);
489 ep->re_pd = NULL;
490 goto out_destroy;
491 }
492
493 rc = rdma_create_qp(id, ep->re_pd, &ep->re_attr);
494 if (rc)
495 goto out_destroy;
496
497 r_xprt->rx_ep = ep;
498 return 0;
499
500 out_destroy:
501 rpcrdma_ep_put(ep);
502 rdma_destroy_id(id);
503 return rc;
504 }
505
506 /**
507 * rpcrdma_xprt_connect - Connect an unconnected transport
508 * @r_xprt: controlling transport instance
509 *
510 * Returns 0 on success or a negative errno.
511 */
rpcrdma_xprt_connect(struct rpcrdma_xprt * r_xprt)512 int rpcrdma_xprt_connect(struct rpcrdma_xprt *r_xprt)
513 {
514 struct rpc_xprt *xprt = &r_xprt->rx_xprt;
515 struct rpcrdma_ep *ep;
516 int rc;
517
518 rc = rpcrdma_ep_create(r_xprt);
519 if (rc)
520 return rc;
521 ep = r_xprt->rx_ep;
522
523 xprt_clear_connected(xprt);
524 rpcrdma_reset_cwnd(r_xprt);
525
526 /* Bump the ep's reference count while there are
527 * outstanding Receives.
528 */
529 rpcrdma_ep_get(ep);
530 rpcrdma_post_recvs(r_xprt, 1, true);
531
532 rc = rdma_connect(ep->re_id, &ep->re_remote_cma);
533 if (rc)
534 goto out;
535
536 if (xprt->reestablish_timeout < RPCRDMA_INIT_REEST_TO)
537 xprt->reestablish_timeout = RPCRDMA_INIT_REEST_TO;
538 wait_event_interruptible(ep->re_connect_wait,
539 ep->re_connect_status != 0);
540 if (ep->re_connect_status <= 0) {
541 rc = ep->re_connect_status;
542 goto out;
543 }
544
545 rc = rpcrdma_sendctxs_create(r_xprt);
546 if (rc) {
547 rc = -ENOTCONN;
548 goto out;
549 }
550
551 rc = rpcrdma_reqs_setup(r_xprt);
552 if (rc) {
553 rc = -ENOTCONN;
554 goto out;
555 }
556 rpcrdma_mrs_create(r_xprt);
557
558 out:
559 trace_xprtrdma_connect(r_xprt, rc);
560 return rc;
561 }
562
563 /**
564 * rpcrdma_xprt_disconnect - Disconnect underlying transport
565 * @r_xprt: controlling transport instance
566 *
567 * Caller serializes. Either the transport send lock is held,
568 * or we're being called to destroy the transport.
569 *
570 * On return, @r_xprt is completely divested of all hardware
571 * resources and prepared for the next ->connect operation.
572 */
rpcrdma_xprt_disconnect(struct rpcrdma_xprt * r_xprt)573 void rpcrdma_xprt_disconnect(struct rpcrdma_xprt *r_xprt)
574 {
575 struct rpcrdma_ep *ep = r_xprt->rx_ep;
576 struct rdma_cm_id *id;
577 int rc;
578
579 if (!ep)
580 return;
581
582 id = ep->re_id;
583 rc = rdma_disconnect(id);
584 trace_xprtrdma_disconnect(r_xprt, rc);
585
586 rpcrdma_xprt_drain(r_xprt);
587 rpcrdma_reps_unmap(r_xprt);
588 rpcrdma_reqs_reset(r_xprt);
589 rpcrdma_mrs_destroy(r_xprt);
590 rpcrdma_sendctxs_destroy(r_xprt);
591
592 if (rpcrdma_ep_put(ep))
593 rdma_destroy_id(id);
594
595 r_xprt->rx_ep = NULL;
596 }
597
598 /* Fixed-size circular FIFO queue. This implementation is wait-free and
599 * lock-free.
600 *
601 * Consumer is the code path that posts Sends. This path dequeues a
602 * sendctx for use by a Send operation. Multiple consumer threads
603 * are serialized by the RPC transport lock, which allows only one
604 * ->send_request call at a time.
605 *
606 * Producer is the code path that handles Send completions. This path
607 * enqueues a sendctx that has been completed. Multiple producer
608 * threads are serialized by the ib_poll_cq() function.
609 */
610
611 /* rpcrdma_sendctxs_destroy() assumes caller has already quiesced
612 * queue activity, and rpcrdma_xprt_drain has flushed all remaining
613 * Send requests.
614 */
rpcrdma_sendctxs_destroy(struct rpcrdma_xprt * r_xprt)615 static void rpcrdma_sendctxs_destroy(struct rpcrdma_xprt *r_xprt)
616 {
617 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
618 unsigned long i;
619
620 if (!buf->rb_sc_ctxs)
621 return;
622 for (i = 0; i <= buf->rb_sc_last; i++)
623 kfree(buf->rb_sc_ctxs[i]);
624 kfree(buf->rb_sc_ctxs);
625 buf->rb_sc_ctxs = NULL;
626 }
627
rpcrdma_sendctx_create(struct rpcrdma_ep * ep)628 static struct rpcrdma_sendctx *rpcrdma_sendctx_create(struct rpcrdma_ep *ep)
629 {
630 struct rpcrdma_sendctx *sc;
631
632 sc = kzalloc(struct_size(sc, sc_sges, ep->re_attr.cap.max_send_sge),
633 GFP_KERNEL);
634 if (!sc)
635 return NULL;
636
637 sc->sc_cqe.done = rpcrdma_wc_send;
638 sc->sc_cid.ci_queue_id = ep->re_attr.send_cq->res.id;
639 sc->sc_cid.ci_completion_id =
640 atomic_inc_return(&ep->re_completion_ids);
641 return sc;
642 }
643
rpcrdma_sendctxs_create(struct rpcrdma_xprt * r_xprt)644 static int rpcrdma_sendctxs_create(struct rpcrdma_xprt *r_xprt)
645 {
646 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
647 struct rpcrdma_sendctx *sc;
648 unsigned long i;
649
650 /* Maximum number of concurrent outstanding Send WRs. Capping
651 * the circular queue size stops Send Queue overflow by causing
652 * the ->send_request call to fail temporarily before too many
653 * Sends are posted.
654 */
655 i = r_xprt->rx_ep->re_max_requests + RPCRDMA_MAX_BC_REQUESTS;
656 buf->rb_sc_ctxs = kcalloc(i, sizeof(sc), GFP_KERNEL);
657 if (!buf->rb_sc_ctxs)
658 return -ENOMEM;
659
660 buf->rb_sc_last = i - 1;
661 for (i = 0; i <= buf->rb_sc_last; i++) {
662 sc = rpcrdma_sendctx_create(r_xprt->rx_ep);
663 if (!sc)
664 return -ENOMEM;
665
666 buf->rb_sc_ctxs[i] = sc;
667 }
668
669 buf->rb_sc_head = 0;
670 buf->rb_sc_tail = 0;
671 return 0;
672 }
673
674 /* The sendctx queue is not guaranteed to have a size that is a
675 * power of two, thus the helpers in circ_buf.h cannot be used.
676 * The other option is to use modulus (%), which can be expensive.
677 */
rpcrdma_sendctx_next(struct rpcrdma_buffer * buf,unsigned long item)678 static unsigned long rpcrdma_sendctx_next(struct rpcrdma_buffer *buf,
679 unsigned long item)
680 {
681 return likely(item < buf->rb_sc_last) ? item + 1 : 0;
682 }
683
684 /**
685 * rpcrdma_sendctx_get_locked - Acquire a send context
686 * @r_xprt: controlling transport instance
687 *
688 * Returns pointer to a free send completion context; or NULL if
689 * the queue is empty.
690 *
691 * Usage: Called to acquire an SGE array before preparing a Send WR.
692 *
693 * The caller serializes calls to this function (per transport), and
694 * provides an effective memory barrier that flushes the new value
695 * of rb_sc_head.
696 */
rpcrdma_sendctx_get_locked(struct rpcrdma_xprt * r_xprt)697 struct rpcrdma_sendctx *rpcrdma_sendctx_get_locked(struct rpcrdma_xprt *r_xprt)
698 {
699 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
700 struct rpcrdma_sendctx *sc;
701 unsigned long next_head;
702
703 next_head = rpcrdma_sendctx_next(buf, buf->rb_sc_head);
704
705 if (next_head == READ_ONCE(buf->rb_sc_tail))
706 goto out_emptyq;
707
708 /* ORDER: item must be accessed _before_ head is updated */
709 sc = buf->rb_sc_ctxs[next_head];
710
711 /* Releasing the lock in the caller acts as a memory
712 * barrier that flushes rb_sc_head.
713 */
714 buf->rb_sc_head = next_head;
715
716 return sc;
717
718 out_emptyq:
719 /* The queue is "empty" if there have not been enough Send
720 * completions recently. This is a sign the Send Queue is
721 * backing up. Cause the caller to pause and try again.
722 */
723 xprt_wait_for_buffer_space(&r_xprt->rx_xprt);
724 r_xprt->rx_stats.empty_sendctx_q++;
725 return NULL;
726 }
727
728 /**
729 * rpcrdma_sendctx_put_locked - Release a send context
730 * @r_xprt: controlling transport instance
731 * @sc: send context to release
732 *
733 * Usage: Called from Send completion to return a sendctxt
734 * to the queue.
735 *
736 * The caller serializes calls to this function (per transport).
737 */
rpcrdma_sendctx_put_locked(struct rpcrdma_xprt * r_xprt,struct rpcrdma_sendctx * sc)738 static void rpcrdma_sendctx_put_locked(struct rpcrdma_xprt *r_xprt,
739 struct rpcrdma_sendctx *sc)
740 {
741 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
742 unsigned long next_tail;
743
744 /* Unmap SGEs of previously completed but unsignaled
745 * Sends by walking up the queue until @sc is found.
746 */
747 next_tail = buf->rb_sc_tail;
748 do {
749 next_tail = rpcrdma_sendctx_next(buf, next_tail);
750
751 /* ORDER: item must be accessed _before_ tail is updated */
752 rpcrdma_sendctx_unmap(buf->rb_sc_ctxs[next_tail]);
753
754 } while (buf->rb_sc_ctxs[next_tail] != sc);
755
756 /* Paired with READ_ONCE */
757 smp_store_release(&buf->rb_sc_tail, next_tail);
758
759 xprt_write_space(&r_xprt->rx_xprt);
760 }
761
762 static void
rpcrdma_mrs_create(struct rpcrdma_xprt * r_xprt)763 rpcrdma_mrs_create(struct rpcrdma_xprt *r_xprt)
764 {
765 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
766 struct rpcrdma_ep *ep = r_xprt->rx_ep;
767 unsigned int count;
768
769 for (count = 0; count < ep->re_max_rdma_segs; count++) {
770 struct rpcrdma_mr *mr;
771 int rc;
772
773 mr = kzalloc(sizeof(*mr), GFP_NOFS);
774 if (!mr)
775 break;
776
777 rc = frwr_mr_init(r_xprt, mr);
778 if (rc) {
779 kfree(mr);
780 break;
781 }
782
783 spin_lock(&buf->rb_lock);
784 rpcrdma_mr_push(mr, &buf->rb_mrs);
785 list_add(&mr->mr_all, &buf->rb_all_mrs);
786 spin_unlock(&buf->rb_lock);
787 }
788
789 r_xprt->rx_stats.mrs_allocated += count;
790 trace_xprtrdma_createmrs(r_xprt, count);
791 }
792
793 static void
rpcrdma_mr_refresh_worker(struct work_struct * work)794 rpcrdma_mr_refresh_worker(struct work_struct *work)
795 {
796 struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
797 rb_refresh_worker);
798 struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
799 rx_buf);
800
801 rpcrdma_mrs_create(r_xprt);
802 xprt_write_space(&r_xprt->rx_xprt);
803 }
804
805 /**
806 * rpcrdma_mrs_refresh - Wake the MR refresh worker
807 * @r_xprt: controlling transport instance
808 *
809 */
rpcrdma_mrs_refresh(struct rpcrdma_xprt * r_xprt)810 void rpcrdma_mrs_refresh(struct rpcrdma_xprt *r_xprt)
811 {
812 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
813 struct rpcrdma_ep *ep = r_xprt->rx_ep;
814
815 /* If there is no underlying connection, it's no use
816 * to wake the refresh worker.
817 */
818 if (ep->re_connect_status == 1) {
819 /* The work is scheduled on a WQ_MEM_RECLAIM
820 * workqueue in order to prevent MR allocation
821 * from recursing into NFS during direct reclaim.
822 */
823 queue_work(xprtiod_workqueue, &buf->rb_refresh_worker);
824 }
825 }
826
827 /**
828 * rpcrdma_req_create - Allocate an rpcrdma_req object
829 * @r_xprt: controlling r_xprt
830 * @size: initial size, in bytes, of send and receive buffers
831 * @flags: GFP flags passed to memory allocators
832 *
833 * Returns an allocated and fully initialized rpcrdma_req or NULL.
834 */
rpcrdma_req_create(struct rpcrdma_xprt * r_xprt,size_t size,gfp_t flags)835 struct rpcrdma_req *rpcrdma_req_create(struct rpcrdma_xprt *r_xprt, size_t size,
836 gfp_t flags)
837 {
838 struct rpcrdma_buffer *buffer = &r_xprt->rx_buf;
839 struct rpcrdma_req *req;
840
841 req = kzalloc(sizeof(*req), flags);
842 if (req == NULL)
843 goto out1;
844
845 req->rl_sendbuf = rpcrdma_regbuf_alloc(size, DMA_TO_DEVICE, flags);
846 if (!req->rl_sendbuf)
847 goto out2;
848
849 req->rl_recvbuf = rpcrdma_regbuf_alloc(size, DMA_NONE, flags);
850 if (!req->rl_recvbuf)
851 goto out3;
852
853 INIT_LIST_HEAD(&req->rl_free_mrs);
854 INIT_LIST_HEAD(&req->rl_registered);
855 spin_lock(&buffer->rb_lock);
856 list_add(&req->rl_all, &buffer->rb_allreqs);
857 spin_unlock(&buffer->rb_lock);
858 return req;
859
860 out3:
861 rpcrdma_regbuf_free(req->rl_sendbuf);
862 out2:
863 kfree(req);
864 out1:
865 return NULL;
866 }
867
868 /**
869 * rpcrdma_req_setup - Per-connection instance setup of an rpcrdma_req object
870 * @r_xprt: controlling transport instance
871 * @req: rpcrdma_req object to set up
872 *
873 * Returns zero on success, and a negative errno on failure.
874 */
rpcrdma_req_setup(struct rpcrdma_xprt * r_xprt,struct rpcrdma_req * req)875 int rpcrdma_req_setup(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
876 {
877 struct rpcrdma_regbuf *rb;
878 size_t maxhdrsize;
879
880 /* Compute maximum header buffer size in bytes */
881 maxhdrsize = rpcrdma_fixed_maxsz + 3 +
882 r_xprt->rx_ep->re_max_rdma_segs * rpcrdma_readchunk_maxsz;
883 maxhdrsize *= sizeof(__be32);
884 rb = rpcrdma_regbuf_alloc(__roundup_pow_of_two(maxhdrsize),
885 DMA_TO_DEVICE, GFP_KERNEL);
886 if (!rb)
887 goto out;
888
889 if (!__rpcrdma_regbuf_dma_map(r_xprt, rb))
890 goto out_free;
891
892 req->rl_rdmabuf = rb;
893 xdr_buf_init(&req->rl_hdrbuf, rdmab_data(rb), rdmab_length(rb));
894 return 0;
895
896 out_free:
897 rpcrdma_regbuf_free(rb);
898 out:
899 return -ENOMEM;
900 }
901
902 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
903 * and thus can be walked without holding rb_lock. Eg. the
904 * caller is holding the transport send lock to exclude
905 * device removal or disconnection.
906 */
rpcrdma_reqs_setup(struct rpcrdma_xprt * r_xprt)907 static int rpcrdma_reqs_setup(struct rpcrdma_xprt *r_xprt)
908 {
909 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
910 struct rpcrdma_req *req;
911 int rc;
912
913 list_for_each_entry(req, &buf->rb_allreqs, rl_all) {
914 rc = rpcrdma_req_setup(r_xprt, req);
915 if (rc)
916 return rc;
917 }
918 return 0;
919 }
920
rpcrdma_req_reset(struct rpcrdma_req * req)921 static void rpcrdma_req_reset(struct rpcrdma_req *req)
922 {
923 /* Credits are valid for only one connection */
924 req->rl_slot.rq_cong = 0;
925
926 rpcrdma_regbuf_free(req->rl_rdmabuf);
927 req->rl_rdmabuf = NULL;
928
929 rpcrdma_regbuf_dma_unmap(req->rl_sendbuf);
930 rpcrdma_regbuf_dma_unmap(req->rl_recvbuf);
931
932 frwr_reset(req);
933 }
934
935 /* ASSUMPTION: the rb_allreqs list is stable for the duration,
936 * and thus can be walked without holding rb_lock. Eg. the
937 * caller is holding the transport send lock to exclude
938 * device removal or disconnection.
939 */
rpcrdma_reqs_reset(struct rpcrdma_xprt * r_xprt)940 static void rpcrdma_reqs_reset(struct rpcrdma_xprt *r_xprt)
941 {
942 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
943 struct rpcrdma_req *req;
944
945 list_for_each_entry(req, &buf->rb_allreqs, rl_all)
946 rpcrdma_req_reset(req);
947 }
948
949 static noinline
rpcrdma_rep_create(struct rpcrdma_xprt * r_xprt,bool temp)950 struct rpcrdma_rep *rpcrdma_rep_create(struct rpcrdma_xprt *r_xprt,
951 bool temp)
952 {
953 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
954 struct rpcrdma_rep *rep;
955
956 rep = kzalloc(sizeof(*rep), GFP_KERNEL);
957 if (rep == NULL)
958 goto out;
959
960 rep->rr_rdmabuf = rpcrdma_regbuf_alloc(r_xprt->rx_ep->re_inline_recv,
961 DMA_FROM_DEVICE, GFP_KERNEL);
962 if (!rep->rr_rdmabuf)
963 goto out_free;
964
965 rep->rr_cid.ci_completion_id =
966 atomic_inc_return(&r_xprt->rx_ep->re_completion_ids);
967
968 xdr_buf_init(&rep->rr_hdrbuf, rdmab_data(rep->rr_rdmabuf),
969 rdmab_length(rep->rr_rdmabuf));
970 rep->rr_cqe.done = rpcrdma_wc_receive;
971 rep->rr_rxprt = r_xprt;
972 rep->rr_recv_wr.next = NULL;
973 rep->rr_recv_wr.wr_cqe = &rep->rr_cqe;
974 rep->rr_recv_wr.sg_list = &rep->rr_rdmabuf->rg_iov;
975 rep->rr_recv_wr.num_sge = 1;
976 rep->rr_temp = temp;
977
978 spin_lock(&buf->rb_lock);
979 list_add(&rep->rr_all, &buf->rb_all_reps);
980 spin_unlock(&buf->rb_lock);
981 return rep;
982
983 out_free:
984 kfree(rep);
985 out:
986 return NULL;
987 }
988
rpcrdma_rep_free(struct rpcrdma_rep * rep)989 static void rpcrdma_rep_free(struct rpcrdma_rep *rep)
990 {
991 rpcrdma_regbuf_free(rep->rr_rdmabuf);
992 kfree(rep);
993 }
994
rpcrdma_rep_destroy(struct rpcrdma_rep * rep)995 static void rpcrdma_rep_destroy(struct rpcrdma_rep *rep)
996 {
997 struct rpcrdma_buffer *buf = &rep->rr_rxprt->rx_buf;
998
999 spin_lock(&buf->rb_lock);
1000 list_del(&rep->rr_all);
1001 spin_unlock(&buf->rb_lock);
1002
1003 rpcrdma_rep_free(rep);
1004 }
1005
rpcrdma_rep_get_locked(struct rpcrdma_buffer * buf)1006 static struct rpcrdma_rep *rpcrdma_rep_get_locked(struct rpcrdma_buffer *buf)
1007 {
1008 struct llist_node *node;
1009
1010 /* Calls to llist_del_first are required to be serialized */
1011 node = llist_del_first(&buf->rb_free_reps);
1012 if (!node)
1013 return NULL;
1014 return llist_entry(node, struct rpcrdma_rep, rr_node);
1015 }
1016
1017 /**
1018 * rpcrdma_rep_put - Release rpcrdma_rep back to free list
1019 * @buf: buffer pool
1020 * @rep: rep to release
1021 *
1022 */
rpcrdma_rep_put(struct rpcrdma_buffer * buf,struct rpcrdma_rep * rep)1023 void rpcrdma_rep_put(struct rpcrdma_buffer *buf, struct rpcrdma_rep *rep)
1024 {
1025 llist_add(&rep->rr_node, &buf->rb_free_reps);
1026 }
1027
1028 /* Caller must ensure the QP is quiescent (RQ is drained) before
1029 * invoking this function, to guarantee rb_all_reps is not
1030 * changing.
1031 */
rpcrdma_reps_unmap(struct rpcrdma_xprt * r_xprt)1032 static void rpcrdma_reps_unmap(struct rpcrdma_xprt *r_xprt)
1033 {
1034 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1035 struct rpcrdma_rep *rep;
1036
1037 list_for_each_entry(rep, &buf->rb_all_reps, rr_all) {
1038 rpcrdma_regbuf_dma_unmap(rep->rr_rdmabuf);
1039 rep->rr_temp = true; /* Mark this rep for destruction */
1040 }
1041 }
1042
rpcrdma_reps_destroy(struct rpcrdma_buffer * buf)1043 static void rpcrdma_reps_destroy(struct rpcrdma_buffer *buf)
1044 {
1045 struct rpcrdma_rep *rep;
1046
1047 spin_lock(&buf->rb_lock);
1048 while ((rep = list_first_entry_or_null(&buf->rb_all_reps,
1049 struct rpcrdma_rep,
1050 rr_all)) != NULL) {
1051 list_del(&rep->rr_all);
1052 spin_unlock(&buf->rb_lock);
1053
1054 rpcrdma_rep_free(rep);
1055
1056 spin_lock(&buf->rb_lock);
1057 }
1058 spin_unlock(&buf->rb_lock);
1059 }
1060
1061 /**
1062 * rpcrdma_buffer_create - Create initial set of req/rep objects
1063 * @r_xprt: transport instance to (re)initialize
1064 *
1065 * Returns zero on success, otherwise a negative errno.
1066 */
rpcrdma_buffer_create(struct rpcrdma_xprt * r_xprt)1067 int rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
1068 {
1069 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1070 int i, rc;
1071
1072 buf->rb_bc_srv_max_requests = 0;
1073 spin_lock_init(&buf->rb_lock);
1074 INIT_LIST_HEAD(&buf->rb_mrs);
1075 INIT_LIST_HEAD(&buf->rb_all_mrs);
1076 INIT_WORK(&buf->rb_refresh_worker, rpcrdma_mr_refresh_worker);
1077
1078 INIT_LIST_HEAD(&buf->rb_send_bufs);
1079 INIT_LIST_HEAD(&buf->rb_allreqs);
1080 INIT_LIST_HEAD(&buf->rb_all_reps);
1081
1082 rc = -ENOMEM;
1083 for (i = 0; i < r_xprt->rx_xprt.max_reqs; i++) {
1084 struct rpcrdma_req *req;
1085
1086 req = rpcrdma_req_create(r_xprt, RPCRDMA_V1_DEF_INLINE_SIZE * 2,
1087 GFP_KERNEL);
1088 if (!req)
1089 goto out;
1090 list_add(&req->rl_list, &buf->rb_send_bufs);
1091 }
1092
1093 init_llist_head(&buf->rb_free_reps);
1094
1095 return 0;
1096 out:
1097 rpcrdma_buffer_destroy(buf);
1098 return rc;
1099 }
1100
1101 /**
1102 * rpcrdma_req_destroy - Destroy an rpcrdma_req object
1103 * @req: unused object to be destroyed
1104 *
1105 * Relies on caller holding the transport send lock to protect
1106 * removing req->rl_all from buf->rb_all_reqs safely.
1107 */
rpcrdma_req_destroy(struct rpcrdma_req * req)1108 void rpcrdma_req_destroy(struct rpcrdma_req *req)
1109 {
1110 struct rpcrdma_mr *mr;
1111
1112 list_del(&req->rl_all);
1113
1114 while ((mr = rpcrdma_mr_pop(&req->rl_free_mrs))) {
1115 struct rpcrdma_buffer *buf = &mr->mr_xprt->rx_buf;
1116
1117 spin_lock(&buf->rb_lock);
1118 list_del(&mr->mr_all);
1119 spin_unlock(&buf->rb_lock);
1120
1121 frwr_mr_release(mr);
1122 }
1123
1124 rpcrdma_regbuf_free(req->rl_recvbuf);
1125 rpcrdma_regbuf_free(req->rl_sendbuf);
1126 rpcrdma_regbuf_free(req->rl_rdmabuf);
1127 kfree(req);
1128 }
1129
1130 /**
1131 * rpcrdma_mrs_destroy - Release all of a transport's MRs
1132 * @r_xprt: controlling transport instance
1133 *
1134 * Relies on caller holding the transport send lock to protect
1135 * removing mr->mr_list from req->rl_free_mrs safely.
1136 */
rpcrdma_mrs_destroy(struct rpcrdma_xprt * r_xprt)1137 static void rpcrdma_mrs_destroy(struct rpcrdma_xprt *r_xprt)
1138 {
1139 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1140 struct rpcrdma_mr *mr;
1141
1142 cancel_work_sync(&buf->rb_refresh_worker);
1143
1144 spin_lock(&buf->rb_lock);
1145 while ((mr = list_first_entry_or_null(&buf->rb_all_mrs,
1146 struct rpcrdma_mr,
1147 mr_all)) != NULL) {
1148 list_del(&mr->mr_list);
1149 list_del(&mr->mr_all);
1150 spin_unlock(&buf->rb_lock);
1151
1152 frwr_mr_release(mr);
1153
1154 spin_lock(&buf->rb_lock);
1155 }
1156 spin_unlock(&buf->rb_lock);
1157 }
1158
1159 /**
1160 * rpcrdma_buffer_destroy - Release all hw resources
1161 * @buf: root control block for resources
1162 *
1163 * ORDERING: relies on a prior rpcrdma_xprt_drain :
1164 * - No more Send or Receive completions can occur
1165 * - All MRs, reps, and reqs are returned to their free lists
1166 */
1167 void
rpcrdma_buffer_destroy(struct rpcrdma_buffer * buf)1168 rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
1169 {
1170 rpcrdma_reps_destroy(buf);
1171
1172 while (!list_empty(&buf->rb_send_bufs)) {
1173 struct rpcrdma_req *req;
1174
1175 req = list_first_entry(&buf->rb_send_bufs,
1176 struct rpcrdma_req, rl_list);
1177 list_del(&req->rl_list);
1178 rpcrdma_req_destroy(req);
1179 }
1180 }
1181
1182 /**
1183 * rpcrdma_mr_get - Allocate an rpcrdma_mr object
1184 * @r_xprt: controlling transport
1185 *
1186 * Returns an initialized rpcrdma_mr or NULL if no free
1187 * rpcrdma_mr objects are available.
1188 */
1189 struct rpcrdma_mr *
rpcrdma_mr_get(struct rpcrdma_xprt * r_xprt)1190 rpcrdma_mr_get(struct rpcrdma_xprt *r_xprt)
1191 {
1192 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1193 struct rpcrdma_mr *mr;
1194
1195 spin_lock(&buf->rb_lock);
1196 mr = rpcrdma_mr_pop(&buf->rb_mrs);
1197 spin_unlock(&buf->rb_lock);
1198 return mr;
1199 }
1200
1201 /**
1202 * rpcrdma_reply_put - Put reply buffers back into pool
1203 * @buffers: buffer pool
1204 * @req: object to return
1205 *
1206 */
rpcrdma_reply_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1207 void rpcrdma_reply_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1208 {
1209 if (req->rl_reply) {
1210 rpcrdma_rep_put(buffers, req->rl_reply);
1211 req->rl_reply = NULL;
1212 }
1213 }
1214
1215 /**
1216 * rpcrdma_buffer_get - Get a request buffer
1217 * @buffers: Buffer pool from which to obtain a buffer
1218 *
1219 * Returns a fresh rpcrdma_req, or NULL if none are available.
1220 */
1221 struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer * buffers)1222 rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
1223 {
1224 struct rpcrdma_req *req;
1225
1226 spin_lock(&buffers->rb_lock);
1227 req = list_first_entry_or_null(&buffers->rb_send_bufs,
1228 struct rpcrdma_req, rl_list);
1229 if (req)
1230 list_del_init(&req->rl_list);
1231 spin_unlock(&buffers->rb_lock);
1232 return req;
1233 }
1234
1235 /**
1236 * rpcrdma_buffer_put - Put request/reply buffers back into pool
1237 * @buffers: buffer pool
1238 * @req: object to return
1239 *
1240 */
rpcrdma_buffer_put(struct rpcrdma_buffer * buffers,struct rpcrdma_req * req)1241 void rpcrdma_buffer_put(struct rpcrdma_buffer *buffers, struct rpcrdma_req *req)
1242 {
1243 rpcrdma_reply_put(buffers, req);
1244
1245 spin_lock(&buffers->rb_lock);
1246 list_add(&req->rl_list, &buffers->rb_send_bufs);
1247 spin_unlock(&buffers->rb_lock);
1248 }
1249
1250 /* Returns a pointer to a rpcrdma_regbuf object, or NULL.
1251 *
1252 * xprtrdma uses a regbuf for posting an outgoing RDMA SEND, or for
1253 * receiving the payload of RDMA RECV operations. During Long Calls
1254 * or Replies they may be registered externally via frwr_map.
1255 */
1256 static struct rpcrdma_regbuf *
rpcrdma_regbuf_alloc(size_t size,enum dma_data_direction direction,gfp_t flags)1257 rpcrdma_regbuf_alloc(size_t size, enum dma_data_direction direction,
1258 gfp_t flags)
1259 {
1260 struct rpcrdma_regbuf *rb;
1261
1262 rb = kmalloc(sizeof(*rb), flags);
1263 if (!rb)
1264 return NULL;
1265 rb->rg_data = kmalloc(size, flags);
1266 if (!rb->rg_data) {
1267 kfree(rb);
1268 return NULL;
1269 }
1270
1271 rb->rg_device = NULL;
1272 rb->rg_direction = direction;
1273 rb->rg_iov.length = size;
1274 return rb;
1275 }
1276
1277 /**
1278 * rpcrdma_regbuf_realloc - re-allocate a SEND/RECV buffer
1279 * @rb: regbuf to reallocate
1280 * @size: size of buffer to be allocated, in bytes
1281 * @flags: GFP flags
1282 *
1283 * Returns true if reallocation was successful. If false is
1284 * returned, @rb is left untouched.
1285 */
rpcrdma_regbuf_realloc(struct rpcrdma_regbuf * rb,size_t size,gfp_t flags)1286 bool rpcrdma_regbuf_realloc(struct rpcrdma_regbuf *rb, size_t size, gfp_t flags)
1287 {
1288 void *buf;
1289
1290 buf = kmalloc(size, flags);
1291 if (!buf)
1292 return false;
1293
1294 rpcrdma_regbuf_dma_unmap(rb);
1295 kfree(rb->rg_data);
1296
1297 rb->rg_data = buf;
1298 rb->rg_iov.length = size;
1299 return true;
1300 }
1301
1302 /**
1303 * __rpcrdma_regbuf_dma_map - DMA-map a regbuf
1304 * @r_xprt: controlling transport instance
1305 * @rb: regbuf to be mapped
1306 *
1307 * Returns true if the buffer is now DMA mapped to @r_xprt's device
1308 */
__rpcrdma_regbuf_dma_map(struct rpcrdma_xprt * r_xprt,struct rpcrdma_regbuf * rb)1309 bool __rpcrdma_regbuf_dma_map(struct rpcrdma_xprt *r_xprt,
1310 struct rpcrdma_regbuf *rb)
1311 {
1312 struct ib_device *device = r_xprt->rx_ep->re_id->device;
1313
1314 if (rb->rg_direction == DMA_NONE)
1315 return false;
1316
1317 rb->rg_iov.addr = ib_dma_map_single(device, rdmab_data(rb),
1318 rdmab_length(rb), rb->rg_direction);
1319 if (ib_dma_mapping_error(device, rdmab_addr(rb))) {
1320 trace_xprtrdma_dma_maperr(rdmab_addr(rb));
1321 return false;
1322 }
1323
1324 rb->rg_device = device;
1325 rb->rg_iov.lkey = r_xprt->rx_ep->re_pd->local_dma_lkey;
1326 return true;
1327 }
1328
rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf * rb)1329 static void rpcrdma_regbuf_dma_unmap(struct rpcrdma_regbuf *rb)
1330 {
1331 if (!rb)
1332 return;
1333
1334 if (!rpcrdma_regbuf_is_mapped(rb))
1335 return;
1336
1337 ib_dma_unmap_single(rb->rg_device, rdmab_addr(rb), rdmab_length(rb),
1338 rb->rg_direction);
1339 rb->rg_device = NULL;
1340 }
1341
rpcrdma_regbuf_free(struct rpcrdma_regbuf * rb)1342 static void rpcrdma_regbuf_free(struct rpcrdma_regbuf *rb)
1343 {
1344 rpcrdma_regbuf_dma_unmap(rb);
1345 if (rb)
1346 kfree(rb->rg_data);
1347 kfree(rb);
1348 }
1349
1350 /**
1351 * rpcrdma_post_recvs - Refill the Receive Queue
1352 * @r_xprt: controlling transport instance
1353 * @needed: current credit grant
1354 * @temp: mark Receive buffers to be deleted after one use
1355 *
1356 */
rpcrdma_post_recvs(struct rpcrdma_xprt * r_xprt,int needed,bool temp)1357 void rpcrdma_post_recvs(struct rpcrdma_xprt *r_xprt, int needed, bool temp)
1358 {
1359 struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
1360 struct rpcrdma_ep *ep = r_xprt->rx_ep;
1361 struct ib_recv_wr *wr, *bad_wr;
1362 struct rpcrdma_rep *rep;
1363 int count, rc;
1364
1365 rc = 0;
1366 count = 0;
1367
1368 if (likely(ep->re_receive_count > needed))
1369 goto out;
1370 needed -= ep->re_receive_count;
1371 if (!temp)
1372 needed += RPCRDMA_MAX_RECV_BATCH;
1373
1374 if (atomic_inc_return(&ep->re_receiving) > 1)
1375 goto out;
1376
1377 /* fast path: all needed reps can be found on the free list */
1378 wr = NULL;
1379 while (needed) {
1380 rep = rpcrdma_rep_get_locked(buf);
1381 if (rep && rep->rr_temp) {
1382 rpcrdma_rep_destroy(rep);
1383 continue;
1384 }
1385 if (!rep)
1386 rep = rpcrdma_rep_create(r_xprt, temp);
1387 if (!rep)
1388 break;
1389 if (!rpcrdma_regbuf_dma_map(r_xprt, rep->rr_rdmabuf)) {
1390 rpcrdma_rep_put(buf, rep);
1391 break;
1392 }
1393
1394 rep->rr_cid.ci_queue_id = ep->re_attr.recv_cq->res.id;
1395 trace_xprtrdma_post_recv(rep);
1396 rep->rr_recv_wr.next = wr;
1397 wr = &rep->rr_recv_wr;
1398 --needed;
1399 ++count;
1400 }
1401 if (!wr)
1402 goto out;
1403
1404 rc = ib_post_recv(ep->re_id->qp, wr,
1405 (const struct ib_recv_wr **)&bad_wr);
1406 if (rc) {
1407 trace_xprtrdma_post_recvs_err(r_xprt, rc);
1408 for (wr = bad_wr; wr;) {
1409 struct rpcrdma_rep *rep;
1410
1411 rep = container_of(wr, struct rpcrdma_rep, rr_recv_wr);
1412 wr = wr->next;
1413 rpcrdma_rep_put(buf, rep);
1414 --count;
1415 }
1416 }
1417 if (atomic_dec_return(&ep->re_receiving) > 0)
1418 complete(&ep->re_done);
1419
1420 out:
1421 trace_xprtrdma_post_recvs(r_xprt, count);
1422 ep->re_receive_count += count;
1423 return;
1424 }
1425