• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Message Protocol driver
4  *
5  * SCMI Message Protocol is used between the System Control Processor(SCP)
6  * and the Application Processors(AP). The Message Handling Unit(MHU)
7  * provides a mechanism for inter-processor communication between SCP's
8  * Cortex M3 and AP.
9  *
10  * SCP offers control and management of the core/cluster power states,
11  * various power domain DVFS including the core/cluster, certain system
12  * clocks configuration, thermal sensors and many others.
13  *
14  * Copyright (C) 2018-2021 ARM Ltd.
15  */
16 
17 #include <linux/bitmap.h>
18 #include <linux/device.h>
19 #include <linux/export.h>
20 #include <linux/idr.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/hashtable.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/processor.h>
30 #include <linux/refcount.h>
31 #include <linux/slab.h>
32 
33 #include "common.h"
34 #include "notify.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/scmi.h>
38 
39 enum scmi_error_codes {
40 	SCMI_SUCCESS = 0,	/* Success */
41 	SCMI_ERR_SUPPORT = -1,	/* Not supported */
42 	SCMI_ERR_PARAMS = -2,	/* Invalid Parameters */
43 	SCMI_ERR_ACCESS = -3,	/* Invalid access/permission denied */
44 	SCMI_ERR_ENTRY = -4,	/* Not found */
45 	SCMI_ERR_RANGE = -5,	/* Value out of range */
46 	SCMI_ERR_BUSY = -6,	/* Device busy */
47 	SCMI_ERR_COMMS = -7,	/* Communication Error */
48 	SCMI_ERR_GENERIC = -8,	/* Generic Error */
49 	SCMI_ERR_HARDWARE = -9,	/* Hardware Error */
50 	SCMI_ERR_PROTOCOL = -10,/* Protocol Error */
51 };
52 
53 /* List of all SCMI devices active in system */
54 static LIST_HEAD(scmi_list);
55 /* Protection for the entire list */
56 static DEFINE_MUTEX(scmi_list_mutex);
57 /* Track the unique id for the transfers for debug & profiling purpose */
58 static atomic_t transfer_last_id;
59 
60 static DEFINE_IDR(scmi_requested_devices);
61 static DEFINE_MUTEX(scmi_requested_devices_mtx);
62 
63 struct scmi_requested_dev {
64 	const struct scmi_device_id *id_table;
65 	struct list_head node;
66 };
67 
68 /**
69  * struct scmi_xfers_info - Structure to manage transfer information
70  *
71  * @xfer_alloc_table: Bitmap table for allocated messages.
72  *	Index of this bitmap table is also used for message
73  *	sequence identifier.
74  * @xfer_lock: Protection for message allocation
75  * @max_msg: Maximum number of messages that can be pending
76  * @free_xfers: A free list for available to use xfers. It is initialized with
77  *		a number of xfers equal to the maximum allowed in-flight
78  *		messages.
79  * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
80  *		   currently in-flight messages.
81  */
82 struct scmi_xfers_info {
83 	unsigned long *xfer_alloc_table;
84 	spinlock_t xfer_lock;
85 	int max_msg;
86 	struct hlist_head free_xfers;
87 	DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
88 };
89 
90 /**
91  * struct scmi_protocol_instance  - Describe an initialized protocol instance.
92  * @handle: Reference to the SCMI handle associated to this protocol instance.
93  * @proto: A reference to the protocol descriptor.
94  * @gid: A reference for per-protocol devres management.
95  * @users: A refcount to track effective users of this protocol.
96  * @priv: Reference for optional protocol private data.
97  * @ph: An embedded protocol handle that will be passed down to protocol
98  *	initialization code to identify this instance.
99  *
100  * Each protocol is initialized independently once for each SCMI platform in
101  * which is defined by DT and implemented by the SCMI server fw.
102  */
103 struct scmi_protocol_instance {
104 	const struct scmi_handle	*handle;
105 	const struct scmi_protocol	*proto;
106 	void				*gid;
107 	refcount_t			users;
108 	void				*priv;
109 	struct scmi_protocol_handle	ph;
110 };
111 
112 #define ph_to_pi(h)	container_of(h, struct scmi_protocol_instance, ph)
113 
114 /**
115  * struct scmi_info - Structure representing a SCMI instance
116  *
117  * @dev: Device pointer
118  * @desc: SoC description for this instance
119  * @version: SCMI revision information containing protocol version,
120  *	implementation version and (sub-)vendor identification.
121  * @handle: Instance of SCMI handle to send to clients
122  * @tx_minfo: Universal Transmit Message management info
123  * @rx_minfo: Universal Receive Message management info
124  * @tx_idr: IDR object to map protocol id to Tx channel info pointer
125  * @rx_idr: IDR object to map protocol id to Rx channel info pointer
126  * @protocols: IDR for protocols' instance descriptors initialized for
127  *	       this SCMI instance: populated on protocol's first attempted
128  *	       usage.
129  * @protocols_mtx: A mutex to protect protocols instances initialization.
130  * @protocols_imp: List of protocols implemented, currently maximum of
131  *	MAX_PROTOCOLS_IMP elements allocated by the base protocol
132  * @active_protocols: IDR storing device_nodes for protocols actually defined
133  *		      in the DT and confirmed as implemented by fw.
134  * @notify_priv: Pointer to private data structure specific to notifications.
135  * @node: List head
136  * @users: Number of users of this instance
137  */
138 struct scmi_info {
139 	struct device *dev;
140 	const struct scmi_desc *desc;
141 	struct scmi_revision_info version;
142 	struct scmi_handle handle;
143 	struct scmi_xfers_info tx_minfo;
144 	struct scmi_xfers_info rx_minfo;
145 	struct idr tx_idr;
146 	struct idr rx_idr;
147 	struct idr protocols;
148 	/* Ensure mutual exclusive access to protocols instance array */
149 	struct mutex protocols_mtx;
150 	u8 *protocols_imp;
151 	struct idr active_protocols;
152 	void *notify_priv;
153 	struct list_head node;
154 	int users;
155 };
156 
157 #define handle_to_scmi_info(h)	container_of(h, struct scmi_info, handle)
158 
159 static const int scmi_linux_errmap[] = {
160 	/* better than switch case as long as return value is continuous */
161 	0,			/* SCMI_SUCCESS */
162 	-EOPNOTSUPP,		/* SCMI_ERR_SUPPORT */
163 	-EINVAL,		/* SCMI_ERR_PARAM */
164 	-EACCES,		/* SCMI_ERR_ACCESS */
165 	-ENOENT,		/* SCMI_ERR_ENTRY */
166 	-ERANGE,		/* SCMI_ERR_RANGE */
167 	-EBUSY,			/* SCMI_ERR_BUSY */
168 	-ECOMM,			/* SCMI_ERR_COMMS */
169 	-EIO,			/* SCMI_ERR_GENERIC */
170 	-EREMOTEIO,		/* SCMI_ERR_HARDWARE */
171 	-EPROTO,		/* SCMI_ERR_PROTOCOL */
172 };
173 
scmi_to_linux_errno(int errno)174 static inline int scmi_to_linux_errno(int errno)
175 {
176 	int err_idx = -errno;
177 
178 	if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap))
179 		return scmi_linux_errmap[err_idx];
180 	return -EIO;
181 }
182 
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)183 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
184 					 void *priv)
185 {
186 	struct scmi_info *info = handle_to_scmi_info(handle);
187 
188 	info->notify_priv = priv;
189 	/* Ensure updated protocol private date are visible */
190 	smp_wmb();
191 }
192 
scmi_notification_instance_data_get(const struct scmi_handle * handle)193 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
194 {
195 	struct scmi_info *info = handle_to_scmi_info(handle);
196 
197 	/* Ensure protocols_private_data has been updated */
198 	smp_rmb();
199 	return info->notify_priv;
200 }
201 
202 /**
203  * scmi_xfer_token_set  - Reserve and set new token for the xfer at hand
204  *
205  * @minfo: Pointer to Tx/Rx Message management info based on channel type
206  * @xfer: The xfer to act upon
207  *
208  * Pick the next unused monotonically increasing token and set it into
209  * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
210  * reuse of freshly completed or timed-out xfers, thus mitigating the risk
211  * of incorrect association of a late and expired xfer with a live in-flight
212  * transaction, both happening to re-use the same token identifier.
213  *
214  * Since platform is NOT required to answer our request in-order we should
215  * account for a few rare but possible scenarios:
216  *
217  *  - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
218  *    using find_next_zero_bit() starting from candidate next_token bit
219  *
220  *  - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
221  *    are plenty of free tokens at start, so try a second pass using
222  *    find_next_zero_bit() and starting from 0.
223  *
224  *  X = used in-flight
225  *
226  * Normal
227  * ------
228  *
229  *		|- xfer_id picked
230  *   -----------+----------------------------------------------------------
231  *   | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
232  *   ----------------------------------------------------------------------
233  *		^
234  *		|- next_token
235  *
236  * Out-of-order pending at start
237  * -----------------------------
238  *
239  *	  |- xfer_id picked, last_token fixed
240  *   -----+----------------------------------------------------------------
241  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
242  *   ----------------------------------------------------------------------
243  *    ^
244  *    |- next_token
245  *
246  *
247  * Out-of-order pending at end
248  * ---------------------------
249  *
250  *	  |- xfer_id picked, last_token fixed
251  *   -----+----------------------------------------------------------------
252  *   |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
253  *   ----------------------------------------------------------------------
254  *								^
255  *								|- next_token
256  *
257  * Context: Assumes to be called with @xfer_lock already acquired.
258  *
259  * Return: 0 on Success or error
260  */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)261 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
262 			       struct scmi_xfer *xfer)
263 {
264 	unsigned long xfer_id, next_token;
265 
266 	/*
267 	 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
268 	 * using the pre-allocated transfer_id as a base.
269 	 * Note that the global transfer_id is shared across all message types
270 	 * so there could be holes in the allocated set of monotonic sequence
271 	 * numbers, but that is going to limit the effectiveness of the
272 	 * mitigation only in very rare limit conditions.
273 	 */
274 	next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
275 
276 	/* Pick the next available xfer_id >= next_token */
277 	xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
278 				     MSG_TOKEN_MAX, next_token);
279 	if (xfer_id == MSG_TOKEN_MAX) {
280 		/*
281 		 * After heavily out-of-order responses, there are no free
282 		 * tokens ahead, but only at start of xfer_alloc_table so
283 		 * try again from the beginning.
284 		 */
285 		xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
286 					     MSG_TOKEN_MAX, 0);
287 		/*
288 		 * Something is wrong if we got here since there can be a
289 		 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
290 		 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
291 		 */
292 		if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
293 			return -ENOMEM;
294 	}
295 
296 	/* Update +/- last_token accordingly if we skipped some hole */
297 	if (xfer_id != next_token)
298 		atomic_add((int)(xfer_id - next_token), &transfer_last_id);
299 
300 	/* Set in-flight */
301 	set_bit(xfer_id, minfo->xfer_alloc_table);
302 	xfer->hdr.seq = (u16)xfer_id;
303 
304 	return 0;
305 }
306 
307 /**
308  * scmi_xfer_token_clear  - Release the token
309  *
310  * @minfo: Pointer to Tx/Rx Message management info based on channel type
311  * @xfer: The xfer to act upon
312  */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)313 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
314 					 struct scmi_xfer *xfer)
315 {
316 	clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
317 }
318 
319 /**
320  * scmi_xfer_get() - Allocate one message
321  *
322  * @handle: Pointer to SCMI entity handle
323  * @minfo: Pointer to Tx/Rx Message management info based on channel type
324  * @set_pending: If true a monotonic token is picked and the xfer is added to
325  *		 the pending hash table.
326  *
327  * Helper function which is used by various message functions that are
328  * exposed to clients of this driver for allocating a message traffic event.
329  *
330  * Picks an xfer from the free list @free_xfers (if any available) and, if
331  * required, sets a monotonically increasing token and stores the inflight xfer
332  * into the @pending_xfers hashtable for later retrieval.
333  *
334  * The successfully initialized xfer is refcounted.
335  *
336  * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and
337  *	    @free_xfers.
338  *
339  * Return: 0 if all went fine, else corresponding error.
340  */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo,bool set_pending)341 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
342 				       struct scmi_xfers_info *minfo,
343 				       bool set_pending)
344 {
345 	int ret;
346 	unsigned long flags;
347 	struct scmi_xfer *xfer;
348 
349 	spin_lock_irqsave(&minfo->xfer_lock, flags);
350 	if (hlist_empty(&minfo->free_xfers)) {
351 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
352 		return ERR_PTR(-ENOMEM);
353 	}
354 
355 	/* grab an xfer from the free_list */
356 	xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
357 	hlist_del_init(&xfer->node);
358 
359 	/*
360 	 * Allocate transfer_id early so that can be used also as base for
361 	 * monotonic sequence number generation if needed.
362 	 */
363 	xfer->transfer_id = atomic_inc_return(&transfer_last_id);
364 
365 	if (set_pending) {
366 		/* Pick and set monotonic token */
367 		ret = scmi_xfer_token_set(minfo, xfer);
368 		if (!ret) {
369 			hash_add(minfo->pending_xfers, &xfer->node,
370 				 xfer->hdr.seq);
371 			xfer->pending = true;
372 		} else {
373 			dev_err(handle->dev,
374 				"Failed to get monotonic token %d\n", ret);
375 			hlist_add_head(&xfer->node, &minfo->free_xfers);
376 			xfer = ERR_PTR(ret);
377 		}
378 	}
379 
380 	if (!IS_ERR(xfer)) {
381 		refcount_set(&xfer->users, 1);
382 		atomic_set(&xfer->busy, SCMI_XFER_FREE);
383 	}
384 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
385 
386 	return xfer;
387 }
388 
389 /**
390  * __scmi_xfer_put() - Release a message
391  *
392  * @minfo: Pointer to Tx/Rx Message management info based on channel type
393  * @xfer: message that was reserved by scmi_xfer_get
394  *
395  * After refcount check, possibly release an xfer, clearing the token slot,
396  * removing xfer from @pending_xfers and putting it back into free_xfers.
397  *
398  * This holds a spinlock to maintain integrity of internal data structures.
399  */
400 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)401 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
402 {
403 	unsigned long flags;
404 
405 	spin_lock_irqsave(&minfo->xfer_lock, flags);
406 	if (refcount_dec_and_test(&xfer->users)) {
407 		if (xfer->pending) {
408 			scmi_xfer_token_clear(minfo, xfer);
409 			hash_del(&xfer->node);
410 			xfer->pending = false;
411 		}
412 		hlist_add_head(&xfer->node, &minfo->free_xfers);
413 	}
414 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
415 }
416 
417 /**
418  * scmi_xfer_lookup_unlocked  -  Helper to lookup an xfer_id
419  *
420  * @minfo: Pointer to Tx/Rx Message management info based on channel type
421  * @xfer_id: Token ID to lookup in @pending_xfers
422  *
423  * Refcounting is untouched.
424  *
425  * Context: Assumes to be called with @xfer_lock already acquired.
426  *
427  * Return: A valid xfer on Success or error otherwise
428  */
429 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)430 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
431 {
432 	struct scmi_xfer *xfer = NULL;
433 
434 	if (test_bit(xfer_id, minfo->xfer_alloc_table))
435 		xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
436 
437 	return xfer ?: ERR_PTR(-EINVAL);
438 }
439 
440 /**
441  * scmi_msg_response_validate  - Validate message type against state of related
442  * xfer
443  *
444  * @cinfo: A reference to the channel descriptor.
445  * @msg_type: Message type to check
446  * @xfer: A reference to the xfer to validate against @msg_type
447  *
448  * This function checks if @msg_type is congruent with the current state of
449  * a pending @xfer; if an asynchronous delayed response is received before the
450  * related synchronous response (Out-of-Order Delayed Response) the missing
451  * synchronous response is assumed to be OK and completed, carrying on with the
452  * Delayed Response: this is done to address the case in which the underlying
453  * SCMI transport can deliver such out-of-order responses.
454  *
455  * Context: Assumes to be called with xfer->lock already acquired.
456  *
457  * Return: 0 on Success, error otherwise
458  */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)459 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
460 					     u8 msg_type,
461 					     struct scmi_xfer *xfer)
462 {
463 	/*
464 	 * Even if a response was indeed expected on this slot at this point,
465 	 * a buggy platform could wrongly reply feeding us an unexpected
466 	 * delayed response we're not prepared to handle: bail-out safely
467 	 * blaming firmware.
468 	 */
469 	if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
470 		dev_err(cinfo->dev,
471 			"Delayed Response for %d not expected! Buggy F/W ?\n",
472 			xfer->hdr.seq);
473 		return -EINVAL;
474 	}
475 
476 	switch (xfer->state) {
477 	case SCMI_XFER_SENT_OK:
478 		if (msg_type == MSG_TYPE_DELAYED_RESP) {
479 			/*
480 			 * Delayed Response expected but delivered earlier.
481 			 * Assume message RESPONSE was OK and skip state.
482 			 */
483 			xfer->hdr.status = SCMI_SUCCESS;
484 			xfer->state = SCMI_XFER_RESP_OK;
485 			complete(&xfer->done);
486 			dev_warn(cinfo->dev,
487 				 "Received valid OoO Delayed Response for %d\n",
488 				 xfer->hdr.seq);
489 		}
490 		break;
491 	case SCMI_XFER_RESP_OK:
492 		if (msg_type != MSG_TYPE_DELAYED_RESP)
493 			return -EINVAL;
494 		break;
495 	case SCMI_XFER_DRESP_OK:
496 		/* No further message expected once in SCMI_XFER_DRESP_OK */
497 		return -EINVAL;
498 	}
499 
500 	return 0;
501 }
502 
503 /**
504  * scmi_xfer_state_update  - Update xfer state
505  *
506  * @xfer: A reference to the xfer to update
507  * @msg_type: Type of message being processed.
508  *
509  * Note that this message is assumed to have been already successfully validated
510  * by @scmi_msg_response_validate(), so here we just update the state.
511  *
512  * Context: Assumes to be called on an xfer exclusively acquired using the
513  *	    busy flag.
514  */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)515 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
516 {
517 	xfer->hdr.type = msg_type;
518 
519 	/* Unknown command types were already discarded earlier */
520 	if (xfer->hdr.type == MSG_TYPE_COMMAND)
521 		xfer->state = SCMI_XFER_RESP_OK;
522 	else
523 		xfer->state = SCMI_XFER_DRESP_OK;
524 }
525 
scmi_xfer_acquired(struct scmi_xfer * xfer)526 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
527 {
528 	int ret;
529 
530 	ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
531 
532 	return ret == SCMI_XFER_FREE;
533 }
534 
535 /**
536  * scmi_xfer_command_acquire  -  Helper to lookup and acquire a command xfer
537  *
538  * @cinfo: A reference to the channel descriptor.
539  * @msg_hdr: A message header to use as lookup key
540  *
541  * When a valid xfer is found for the sequence number embedded in the provided
542  * msg_hdr, reference counting is properly updated and exclusive access to this
543  * xfer is granted till released with @scmi_xfer_command_release.
544  *
545  * Return: A valid @xfer on Success or error otherwise.
546  */
547 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)548 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
549 {
550 	int ret;
551 	unsigned long flags;
552 	struct scmi_xfer *xfer;
553 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
554 	struct scmi_xfers_info *minfo = &info->tx_minfo;
555 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
556 	u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
557 
558 	/* Are we even expecting this? */
559 	spin_lock_irqsave(&minfo->xfer_lock, flags);
560 	xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
561 	if (IS_ERR(xfer)) {
562 		dev_err(cinfo->dev,
563 			"Message for %d type %d is not expected!\n",
564 			xfer_id, msg_type);
565 		spin_unlock_irqrestore(&minfo->xfer_lock, flags);
566 		return xfer;
567 	}
568 	refcount_inc(&xfer->users);
569 	spin_unlock_irqrestore(&minfo->xfer_lock, flags);
570 
571 	spin_lock_irqsave(&xfer->lock, flags);
572 	ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
573 	/*
574 	 * If a pending xfer was found which was also in a congruent state with
575 	 * the received message, acquire exclusive access to it setting the busy
576 	 * flag.
577 	 * Spins only on the rare limit condition of concurrent reception of
578 	 * RESP and DRESP for the same xfer.
579 	 */
580 	if (!ret) {
581 		spin_until_cond(scmi_xfer_acquired(xfer));
582 		scmi_xfer_state_update(xfer, msg_type);
583 	}
584 	spin_unlock_irqrestore(&xfer->lock, flags);
585 
586 	if (ret) {
587 		dev_err(cinfo->dev,
588 			"Invalid message type:%d for %d - HDR:0x%X  state:%d\n",
589 			msg_type, xfer_id, msg_hdr, xfer->state);
590 		/* On error the refcount incremented above has to be dropped */
591 		__scmi_xfer_put(minfo, xfer);
592 		xfer = ERR_PTR(-EINVAL);
593 	}
594 
595 	return xfer;
596 }
597 
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)598 static inline void scmi_xfer_command_release(struct scmi_info *info,
599 					     struct scmi_xfer *xfer)
600 {
601 	atomic_set(&xfer->busy, SCMI_XFER_FREE);
602 	__scmi_xfer_put(&info->tx_minfo, xfer);
603 }
604 
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)605 static inline void scmi_clear_channel(struct scmi_info *info,
606 				      struct scmi_chan_info *cinfo)
607 {
608 	if (info->desc->ops->clear_channel)
609 		info->desc->ops->clear_channel(cinfo);
610 }
611 
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)612 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
613 				     u32 msg_hdr, void *priv)
614 {
615 	struct scmi_xfer *xfer;
616 	struct device *dev = cinfo->dev;
617 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
618 	struct scmi_xfers_info *minfo = &info->rx_minfo;
619 	ktime_t ts;
620 
621 	ts = ktime_get_boottime();
622 	xfer = scmi_xfer_get(cinfo->handle, minfo, false);
623 	if (IS_ERR(xfer)) {
624 		dev_err(dev, "failed to get free message slot (%ld)\n",
625 			PTR_ERR(xfer));
626 		scmi_clear_channel(info, cinfo);
627 		return;
628 	}
629 
630 	unpack_scmi_header(msg_hdr, &xfer->hdr);
631 	if (priv)
632 		xfer->priv = priv;
633 	info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
634 					    xfer);
635 	scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
636 		    xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
637 
638 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
639 			   xfer->hdr.protocol_id, xfer->hdr.seq,
640 			   MSG_TYPE_NOTIFICATION);
641 
642 	__scmi_xfer_put(minfo, xfer);
643 
644 	scmi_clear_channel(info, cinfo);
645 }
646 
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)647 static void scmi_handle_response(struct scmi_chan_info *cinfo,
648 				 u32 msg_hdr, void *priv)
649 {
650 	struct scmi_xfer *xfer;
651 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
652 
653 	xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
654 	if (IS_ERR(xfer)) {
655 		if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
656 			scmi_clear_channel(info, cinfo);
657 		return;
658 	}
659 
660 	/* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
661 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
662 		xfer->rx.len = info->desc->max_msg_size;
663 
664 	if (priv)
665 		xfer->priv = priv;
666 	info->desc->ops->fetch_response(cinfo, xfer);
667 
668 	trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
669 			   xfer->hdr.protocol_id, xfer->hdr.seq,
670 			   xfer->hdr.type);
671 
672 	if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
673 		scmi_clear_channel(info, cinfo);
674 		complete(xfer->async_done);
675 	} else {
676 		complete(&xfer->done);
677 	}
678 
679 	scmi_xfer_command_release(info, xfer);
680 }
681 
682 /**
683  * scmi_rx_callback() - callback for receiving messages
684  *
685  * @cinfo: SCMI channel info
686  * @msg_hdr: Message header
687  * @priv: Transport specific private data.
688  *
689  * Processes one received message to appropriate transfer information and
690  * signals completion of the transfer.
691  *
692  * NOTE: This function will be invoked in IRQ context, hence should be
693  * as optimal as possible.
694  */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)695 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
696 {
697 	u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
698 
699 	switch (msg_type) {
700 	case MSG_TYPE_NOTIFICATION:
701 		scmi_handle_notification(cinfo, msg_hdr, priv);
702 		break;
703 	case MSG_TYPE_COMMAND:
704 	case MSG_TYPE_DELAYED_RESP:
705 		scmi_handle_response(cinfo, msg_hdr, priv);
706 		break;
707 	default:
708 		WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
709 		break;
710 	}
711 }
712 
713 /**
714  * xfer_put() - Release a transmit message
715  *
716  * @ph: Pointer to SCMI protocol handle
717  * @xfer: message that was reserved by xfer_get_init
718  */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)719 static void xfer_put(const struct scmi_protocol_handle *ph,
720 		     struct scmi_xfer *xfer)
721 {
722 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
723 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
724 
725 	__scmi_xfer_put(&info->tx_minfo, xfer);
726 }
727 
728 #define SCMI_MAX_POLL_TO_NS	(100 * NSEC_PER_USEC)
729 
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop)730 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
731 				      struct scmi_xfer *xfer, ktime_t stop)
732 {
733 	struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
734 
735 	/*
736 	 * Poll also on xfer->done so that polling can be forcibly terminated
737 	 * in case of out-of-order receptions of delayed responses
738 	 */
739 	return info->desc->ops->poll_done(cinfo, xfer) ||
740 	       try_wait_for_completion(&xfer->done) ||
741 	       ktime_after(ktime_get(), stop);
742 }
743 
744 /**
745  * do_xfer() - Do one transfer
746  *
747  * @ph: Pointer to SCMI protocol handle
748  * @xfer: Transfer to initiate and wait for response
749  *
750  * Return: -ETIMEDOUT in case of no response, if transmit error,
751  *	return corresponding error, else if all goes well,
752  *	return 0.
753  */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)754 static int do_xfer(const struct scmi_protocol_handle *ph,
755 		   struct scmi_xfer *xfer)
756 {
757 	int ret;
758 	int timeout;
759 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
760 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
761 	struct device *dev = info->dev;
762 	struct scmi_chan_info *cinfo;
763 
764 	if (xfer->hdr.poll_completion && !info->desc->ops->poll_done) {
765 		dev_warn_once(dev,
766 			      "Polling mode is not supported by transport.\n");
767 		return -EINVAL;
768 	}
769 
770 	/*
771 	 * Initialise protocol id now from protocol handle to avoid it being
772 	 * overridden by mistake (or malice) by the protocol code mangling with
773 	 * the scmi_xfer structure prior to this.
774 	 */
775 	xfer->hdr.protocol_id = pi->proto->id;
776 	reinit_completion(&xfer->done);
777 
778 	cinfo = idr_find(&info->tx_idr, xfer->hdr.protocol_id);
779 	if (unlikely(!cinfo))
780 		return -EINVAL;
781 
782 	trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
783 			      xfer->hdr.protocol_id, xfer->hdr.seq,
784 			      xfer->hdr.poll_completion);
785 
786 	/* Clear any stale status */
787 	xfer->hdr.status = SCMI_SUCCESS;
788 	xfer->state = SCMI_XFER_SENT_OK;
789 	/*
790 	 * Even though spinlocking is not needed here since no race is possible
791 	 * on xfer->state due to the monotonically increasing tokens allocation,
792 	 * we must anyway ensure xfer->state initialization is not re-ordered
793 	 * after the .send_message() to be sure that on the RX path an early
794 	 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
795 	 */
796 	smp_mb();
797 
798 	ret = info->desc->ops->send_message(cinfo, xfer);
799 	if (ret < 0) {
800 		dev_dbg(dev, "Failed to send message %d\n", ret);
801 		return ret;
802 	}
803 
804 	if (xfer->hdr.poll_completion) {
805 		ktime_t stop = ktime_add_ns(ktime_get(), SCMI_MAX_POLL_TO_NS);
806 
807 		spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer, stop));
808 		if (ktime_before(ktime_get(), stop)) {
809 			unsigned long flags;
810 
811 			/*
812 			 * Do not fetch_response if an out-of-order delayed
813 			 * response is being processed.
814 			 */
815 			spin_lock_irqsave(&xfer->lock, flags);
816 			if (xfer->state == SCMI_XFER_SENT_OK) {
817 				info->desc->ops->fetch_response(cinfo, xfer);
818 				xfer->state = SCMI_XFER_RESP_OK;
819 			}
820 			spin_unlock_irqrestore(&xfer->lock, flags);
821 		} else {
822 			ret = -ETIMEDOUT;
823 		}
824 	} else {
825 		/* And we wait for the response. */
826 		timeout = msecs_to_jiffies(info->desc->max_rx_timeout_ms);
827 		if (!wait_for_completion_timeout(&xfer->done, timeout)) {
828 			dev_err(dev, "timed out in resp(caller: %pS)\n",
829 				(void *)_RET_IP_);
830 			ret = -ETIMEDOUT;
831 		}
832 	}
833 
834 	if (!ret && xfer->hdr.status)
835 		ret = scmi_to_linux_errno(xfer->hdr.status);
836 
837 	if (info->desc->ops->mark_txdone)
838 		info->desc->ops->mark_txdone(cinfo, ret);
839 
840 	trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
841 			    xfer->hdr.protocol_id, xfer->hdr.seq, ret);
842 
843 	return ret;
844 }
845 
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)846 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
847 			      struct scmi_xfer *xfer)
848 {
849 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
850 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
851 
852 	xfer->rx.len = info->desc->max_msg_size;
853 }
854 
855 #define SCMI_MAX_RESPONSE_TIMEOUT	(2 * MSEC_PER_SEC)
856 
857 /**
858  * do_xfer_with_response() - Do one transfer and wait until the delayed
859  *	response is received
860  *
861  * @ph: Pointer to SCMI protocol handle
862  * @xfer: Transfer to initiate and wait for response
863  *
864  * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
865  *	return corresponding error, else if all goes well, return 0.
866  */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)867 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
868 				 struct scmi_xfer *xfer)
869 {
870 	int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
871 	DECLARE_COMPLETION_ONSTACK(async_response);
872 
873 	xfer->async_done = &async_response;
874 
875 	ret = do_xfer(ph, xfer);
876 	if (!ret) {
877 		if (!wait_for_completion_timeout(xfer->async_done, timeout))
878 			ret = -ETIMEDOUT;
879 		else if (xfer->hdr.status)
880 			ret = scmi_to_linux_errno(xfer->hdr.status);
881 	}
882 
883 	xfer->async_done = NULL;
884 	return ret;
885 }
886 
887 /**
888  * xfer_get_init() - Allocate and initialise one message for transmit
889  *
890  * @ph: Pointer to SCMI protocol handle
891  * @msg_id: Message identifier
892  * @tx_size: transmit message size
893  * @rx_size: receive message size
894  * @p: pointer to the allocated and initialised message
895  *
896  * This function allocates the message using @scmi_xfer_get and
897  * initialise the header.
898  *
899  * Return: 0 if all went fine with @p pointing to message, else
900  *	corresponding error.
901  */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)902 static int xfer_get_init(const struct scmi_protocol_handle *ph,
903 			 u8 msg_id, size_t tx_size, size_t rx_size,
904 			 struct scmi_xfer **p)
905 {
906 	int ret;
907 	struct scmi_xfer *xfer;
908 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
909 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
910 	struct scmi_xfers_info *minfo = &info->tx_minfo;
911 	struct device *dev = info->dev;
912 
913 	/* Ensure we have sane transfer sizes */
914 	if (rx_size > info->desc->max_msg_size ||
915 	    tx_size > info->desc->max_msg_size)
916 		return -ERANGE;
917 
918 	xfer = scmi_xfer_get(pi->handle, minfo, true);
919 	if (IS_ERR(xfer)) {
920 		ret = PTR_ERR(xfer);
921 		dev_err(dev, "failed to get free message slot(%d)\n", ret);
922 		return ret;
923 	}
924 
925 	xfer->tx.len = tx_size;
926 	xfer->rx.len = rx_size ? : info->desc->max_msg_size;
927 	xfer->hdr.type = MSG_TYPE_COMMAND;
928 	xfer->hdr.id = msg_id;
929 	xfer->hdr.poll_completion = false;
930 
931 	*p = xfer;
932 
933 	return 0;
934 }
935 
936 /**
937  * version_get() - command to get the revision of the SCMI entity
938  *
939  * @ph: Pointer to SCMI protocol handle
940  * @version: Holds returned version of protocol.
941  *
942  * Updates the SCMI information in the internal data structure.
943  *
944  * Return: 0 if all went fine, else return appropriate error.
945  */
version_get(const struct scmi_protocol_handle * ph,u32 * version)946 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
947 {
948 	int ret;
949 	__le32 *rev_info;
950 	struct scmi_xfer *t;
951 
952 	ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
953 	if (ret)
954 		return ret;
955 
956 	ret = do_xfer(ph, t);
957 	if (!ret) {
958 		rev_info = t->rx.buf;
959 		*version = le32_to_cpu(*rev_info);
960 	}
961 
962 	xfer_put(ph, t);
963 	return ret;
964 }
965 
966 /**
967  * scmi_set_protocol_priv  - Set protocol specific data at init time
968  *
969  * @ph: A reference to the protocol handle.
970  * @priv: The private data to set.
971  *
972  * Return: 0 on Success
973  */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv)974 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
975 				  void *priv)
976 {
977 	struct scmi_protocol_instance *pi = ph_to_pi(ph);
978 
979 	pi->priv = priv;
980 
981 	return 0;
982 }
983 
984 /**
985  * scmi_get_protocol_priv  - Set protocol specific data at init time
986  *
987  * @ph: A reference to the protocol handle.
988  *
989  * Return: Protocol private data if any was set.
990  */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)991 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
992 {
993 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
994 
995 	return pi->priv;
996 }
997 
998 static const struct scmi_xfer_ops xfer_ops = {
999 	.version_get = version_get,
1000 	.xfer_get_init = xfer_get_init,
1001 	.reset_rx_to_maxsz = reset_rx_to_maxsz,
1002 	.do_xfer = do_xfer,
1003 	.do_xfer_with_response = do_xfer_with_response,
1004 	.xfer_put = xfer_put,
1005 };
1006 
1007 /**
1008  * scmi_revision_area_get  - Retrieve version memory area.
1009  *
1010  * @ph: A reference to the protocol handle.
1011  *
1012  * A helper to grab the version memory area reference during SCMI Base protocol
1013  * initialization.
1014  *
1015  * Return: A reference to the version memory area associated to the SCMI
1016  *	   instance underlying this protocol handle.
1017  */
1018 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)1019 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1020 {
1021 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1022 
1023 	return pi->handle->version;
1024 }
1025 
1026 /**
1027  * scmi_alloc_init_protocol_instance  - Allocate and initialize a protocol
1028  * instance descriptor.
1029  * @info: The reference to the related SCMI instance.
1030  * @proto: The protocol descriptor.
1031  *
1032  * Allocate a new protocol instance descriptor, using the provided @proto
1033  * description, against the specified SCMI instance @info, and initialize it;
1034  * all resources management is handled via a dedicated per-protocol devres
1035  * group.
1036  *
1037  * Context: Assumes to be called with @protocols_mtx already acquired.
1038  * Return: A reference to a freshly allocated and initialized protocol instance
1039  *	   or ERR_PTR on failure. On failure the @proto reference is at first
1040  *	   put using @scmi_protocol_put() before releasing all the devres group.
1041  */
1042 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)1043 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1044 				  const struct scmi_protocol *proto)
1045 {
1046 	int ret = -ENOMEM;
1047 	void *gid;
1048 	struct scmi_protocol_instance *pi;
1049 	const struct scmi_handle *handle = &info->handle;
1050 
1051 	/* Protocol specific devres group */
1052 	gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1053 	if (!gid) {
1054 		scmi_protocol_put(proto->id);
1055 		goto out;
1056 	}
1057 
1058 	pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1059 	if (!pi)
1060 		goto clean;
1061 
1062 	pi->gid = gid;
1063 	pi->proto = proto;
1064 	pi->handle = handle;
1065 	pi->ph.dev = handle->dev;
1066 	pi->ph.xops = &xfer_ops;
1067 	pi->ph.set_priv = scmi_set_protocol_priv;
1068 	pi->ph.get_priv = scmi_get_protocol_priv;
1069 	refcount_set(&pi->users, 1);
1070 	/* proto->init is assured NON NULL by scmi_protocol_register */
1071 	ret = pi->proto->instance_init(&pi->ph);
1072 	if (ret)
1073 		goto clean;
1074 
1075 	ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1076 			GFP_KERNEL);
1077 	if (ret != proto->id)
1078 		goto clean;
1079 
1080 	/*
1081 	 * Warn but ignore events registration errors since we do not want
1082 	 * to skip whole protocols if their notifications are messed up.
1083 	 */
1084 	if (pi->proto->events) {
1085 		ret = scmi_register_protocol_events(handle, pi->proto->id,
1086 						    &pi->ph,
1087 						    pi->proto->events);
1088 		if (ret)
1089 			dev_warn(handle->dev,
1090 				 "Protocol:%X - Events Registration Failed - err:%d\n",
1091 				 pi->proto->id, ret);
1092 	}
1093 
1094 	devres_close_group(handle->dev, pi->gid);
1095 	dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1096 
1097 	return pi;
1098 
1099 clean:
1100 	/* Take care to put the protocol module's owner before releasing all */
1101 	scmi_protocol_put(proto->id);
1102 	devres_release_group(handle->dev, gid);
1103 out:
1104 	return ERR_PTR(ret);
1105 }
1106 
1107 /**
1108  * scmi_get_protocol_instance  - Protocol initialization helper.
1109  * @handle: A reference to the SCMI platform instance.
1110  * @protocol_id: The protocol being requested.
1111  *
1112  * In case the required protocol has never been requested before for this
1113  * instance, allocate and initialize all the needed structures while handling
1114  * resource allocation with a dedicated per-protocol devres subgroup.
1115  *
1116  * Return: A reference to an initialized protocol instance or error on failure:
1117  *	   in particular returns -EPROBE_DEFER when the desired protocol could
1118  *	   NOT be found.
1119  */
1120 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)1121 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1122 {
1123 	struct scmi_protocol_instance *pi;
1124 	struct scmi_info *info = handle_to_scmi_info(handle);
1125 
1126 	mutex_lock(&info->protocols_mtx);
1127 	pi = idr_find(&info->protocols, protocol_id);
1128 
1129 	if (pi) {
1130 		refcount_inc(&pi->users);
1131 	} else {
1132 		const struct scmi_protocol *proto;
1133 
1134 		/* Fails if protocol not registered on bus */
1135 		proto = scmi_protocol_get(protocol_id);
1136 		if (proto)
1137 			pi = scmi_alloc_init_protocol_instance(info, proto);
1138 		else
1139 			pi = ERR_PTR(-EPROBE_DEFER);
1140 	}
1141 	mutex_unlock(&info->protocols_mtx);
1142 
1143 	return pi;
1144 }
1145 
1146 /**
1147  * scmi_protocol_acquire  - Protocol acquire
1148  * @handle: A reference to the SCMI platform instance.
1149  * @protocol_id: The protocol being requested.
1150  *
1151  * Register a new user for the requested protocol on the specified SCMI
1152  * platform instance, possibly triggering its initialization on first user.
1153  *
1154  * Return: 0 if protocol was acquired successfully.
1155  */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)1156 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1157 {
1158 	return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1159 }
1160 
1161 /**
1162  * scmi_protocol_release  - Protocol de-initialization helper.
1163  * @handle: A reference to the SCMI platform instance.
1164  * @protocol_id: The protocol being requested.
1165  *
1166  * Remove one user for the specified protocol and triggers de-initialization
1167  * and resources de-allocation once the last user has gone.
1168  */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)1169 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1170 {
1171 	struct scmi_info *info = handle_to_scmi_info(handle);
1172 	struct scmi_protocol_instance *pi;
1173 
1174 	mutex_lock(&info->protocols_mtx);
1175 	pi = idr_find(&info->protocols, protocol_id);
1176 	if (WARN_ON(!pi))
1177 		goto out;
1178 
1179 	if (refcount_dec_and_test(&pi->users)) {
1180 		void *gid = pi->gid;
1181 
1182 		if (pi->proto->events)
1183 			scmi_deregister_protocol_events(handle, protocol_id);
1184 
1185 		if (pi->proto->instance_deinit)
1186 			pi->proto->instance_deinit(&pi->ph);
1187 
1188 		idr_remove(&info->protocols, protocol_id);
1189 
1190 		scmi_protocol_put(protocol_id);
1191 
1192 		devres_release_group(handle->dev, gid);
1193 		dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1194 			protocol_id);
1195 	}
1196 
1197 out:
1198 	mutex_unlock(&info->protocols_mtx);
1199 }
1200 
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)1201 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1202 				     u8 *prot_imp)
1203 {
1204 	const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1205 	struct scmi_info *info = handle_to_scmi_info(pi->handle);
1206 
1207 	info->protocols_imp = prot_imp;
1208 }
1209 
1210 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)1211 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1212 {
1213 	int i;
1214 	struct scmi_info *info = handle_to_scmi_info(handle);
1215 
1216 	if (!info->protocols_imp)
1217 		return false;
1218 
1219 	for (i = 0; i < MAX_PROTOCOLS_IMP; i++)
1220 		if (info->protocols_imp[i] == prot_id)
1221 			return true;
1222 	return false;
1223 }
1224 
1225 struct scmi_protocol_devres {
1226 	const struct scmi_handle *handle;
1227 	u8 protocol_id;
1228 };
1229 
scmi_devm_release_protocol(struct device * dev,void * res)1230 static void scmi_devm_release_protocol(struct device *dev, void *res)
1231 {
1232 	struct scmi_protocol_devres *dres = res;
1233 
1234 	scmi_protocol_release(dres->handle, dres->protocol_id);
1235 }
1236 
1237 /**
1238  * scmi_devm_protocol_get  - Devres managed get protocol operations and handle
1239  * @sdev: A reference to an scmi_device whose embedded struct device is to
1240  *	  be used for devres accounting.
1241  * @protocol_id: The protocol being requested.
1242  * @ph: A pointer reference used to pass back the associated protocol handle.
1243  *
1244  * Get hold of a protocol accounting for its usage, eventually triggering its
1245  * initialization, and returning the protocol specific operations and related
1246  * protocol handle which will be used as first argument in most of the
1247  * protocols operations methods.
1248  * Being a devres based managed method, protocol hold will be automatically
1249  * released, and possibly de-initialized on last user, once the SCMI driver
1250  * owning the scmi_device is unbound from it.
1251  *
1252  * Return: A reference to the requested protocol operations or error.
1253  *	   Must be checked for errors by caller.
1254  */
1255 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)1256 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
1257 		       struct scmi_protocol_handle **ph)
1258 {
1259 	struct scmi_protocol_instance *pi;
1260 	struct scmi_protocol_devres *dres;
1261 	struct scmi_handle *handle = sdev->handle;
1262 
1263 	if (!ph)
1264 		return ERR_PTR(-EINVAL);
1265 
1266 	dres = devres_alloc(scmi_devm_release_protocol,
1267 			    sizeof(*dres), GFP_KERNEL);
1268 	if (!dres)
1269 		return ERR_PTR(-ENOMEM);
1270 
1271 	pi = scmi_get_protocol_instance(handle, protocol_id);
1272 	if (IS_ERR(pi)) {
1273 		devres_free(dres);
1274 		return pi;
1275 	}
1276 
1277 	dres->handle = handle;
1278 	dres->protocol_id = protocol_id;
1279 	devres_add(&sdev->dev, dres);
1280 
1281 	*ph = &pi->ph;
1282 
1283 	return pi->proto->ops;
1284 }
1285 
scmi_devm_protocol_match(struct device * dev,void * res,void * data)1286 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
1287 {
1288 	struct scmi_protocol_devres *dres = res;
1289 
1290 	if (WARN_ON(!dres || !data))
1291 		return 0;
1292 
1293 	return dres->protocol_id == *((u8 *)data);
1294 }
1295 
1296 /**
1297  * scmi_devm_protocol_put  - Devres managed put protocol operations and handle
1298  * @sdev: A reference to an scmi_device whose embedded struct device is to
1299  *	  be used for devres accounting.
1300  * @protocol_id: The protocol being requested.
1301  *
1302  * Explicitly release a protocol hold previously obtained calling the above
1303  * @scmi_devm_protocol_get.
1304  */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)1305 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
1306 {
1307 	int ret;
1308 
1309 	ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
1310 			     scmi_devm_protocol_match, &protocol_id);
1311 	WARN_ON(ret);
1312 }
1313 
1314 static inline
scmi_handle_get_from_info_unlocked(struct scmi_info * info)1315 struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info)
1316 {
1317 	info->users++;
1318 	return &info->handle;
1319 }
1320 
1321 /**
1322  * scmi_handle_get() - Get the SCMI handle for a device
1323  *
1324  * @dev: pointer to device for which we want SCMI handle
1325  *
1326  * NOTE: The function does not track individual clients of the framework
1327  * and is expected to be maintained by caller of SCMI protocol library.
1328  * scmi_handle_put must be balanced with successful scmi_handle_get
1329  *
1330  * Return: pointer to handle if successful, NULL on error
1331  */
scmi_handle_get(struct device * dev)1332 struct scmi_handle *scmi_handle_get(struct device *dev)
1333 {
1334 	struct list_head *p;
1335 	struct scmi_info *info;
1336 	struct scmi_handle *handle = NULL;
1337 
1338 	mutex_lock(&scmi_list_mutex);
1339 	list_for_each(p, &scmi_list) {
1340 		info = list_entry(p, struct scmi_info, node);
1341 		if (dev->parent == info->dev) {
1342 			handle = scmi_handle_get_from_info_unlocked(info);
1343 			break;
1344 		}
1345 	}
1346 	mutex_unlock(&scmi_list_mutex);
1347 
1348 	return handle;
1349 }
1350 
1351 /**
1352  * scmi_handle_put() - Release the handle acquired by scmi_handle_get
1353  *
1354  * @handle: handle acquired by scmi_handle_get
1355  *
1356  * NOTE: The function does not track individual clients of the framework
1357  * and is expected to be maintained by caller of SCMI protocol library.
1358  * scmi_handle_put must be balanced with successful scmi_handle_get
1359  *
1360  * Return: 0 is successfully released
1361  *	if null was passed, it returns -EINVAL;
1362  */
scmi_handle_put(const struct scmi_handle * handle)1363 int scmi_handle_put(const struct scmi_handle *handle)
1364 {
1365 	struct scmi_info *info;
1366 
1367 	if (!handle)
1368 		return -EINVAL;
1369 
1370 	info = handle_to_scmi_info(handle);
1371 	mutex_lock(&scmi_list_mutex);
1372 	if (!WARN_ON(!info->users))
1373 		info->users--;
1374 	mutex_unlock(&scmi_list_mutex);
1375 
1376 	return 0;
1377 }
1378 
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)1379 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
1380 				 struct scmi_xfers_info *info)
1381 {
1382 	int i;
1383 	struct scmi_xfer *xfer;
1384 	struct device *dev = sinfo->dev;
1385 	const struct scmi_desc *desc = sinfo->desc;
1386 
1387 	/* Pre-allocated messages, no more than what hdr.seq can support */
1388 	if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
1389 		dev_err(dev,
1390 			"Invalid maximum messages %d, not in range [1 - %lu]\n",
1391 			info->max_msg, MSG_TOKEN_MAX);
1392 		return -EINVAL;
1393 	}
1394 
1395 	hash_init(info->pending_xfers);
1396 
1397 	/* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
1398 	info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX),
1399 					      sizeof(long), GFP_KERNEL);
1400 	if (!info->xfer_alloc_table)
1401 		return -ENOMEM;
1402 
1403 	/*
1404 	 * Preallocate a number of xfers equal to max inflight messages,
1405 	 * pre-initialize the buffer pointer to pre-allocated buffers and
1406 	 * attach all of them to the free list
1407 	 */
1408 	INIT_HLIST_HEAD(&info->free_xfers);
1409 	for (i = 0; i < info->max_msg; i++) {
1410 		xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
1411 		if (!xfer)
1412 			return -ENOMEM;
1413 
1414 		xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
1415 					    GFP_KERNEL);
1416 		if (!xfer->rx.buf)
1417 			return -ENOMEM;
1418 
1419 		xfer->tx.buf = xfer->rx.buf;
1420 		init_completion(&xfer->done);
1421 		spin_lock_init(&xfer->lock);
1422 
1423 		/* Add initialized xfer to the free list */
1424 		hlist_add_head(&xfer->node, &info->free_xfers);
1425 	}
1426 
1427 	spin_lock_init(&info->xfer_lock);
1428 
1429 	return 0;
1430 }
1431 
scmi_channels_max_msg_configure(struct scmi_info * sinfo)1432 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
1433 {
1434 	const struct scmi_desc *desc = sinfo->desc;
1435 
1436 	if (!desc->ops->get_max_msg) {
1437 		sinfo->tx_minfo.max_msg = desc->max_msg;
1438 		sinfo->rx_minfo.max_msg = desc->max_msg;
1439 	} else {
1440 		struct scmi_chan_info *base_cinfo;
1441 
1442 		base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
1443 		if (!base_cinfo)
1444 			return -EINVAL;
1445 		sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
1446 
1447 		/* RX channel is optional so can be skipped */
1448 		base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
1449 		if (base_cinfo)
1450 			sinfo->rx_minfo.max_msg =
1451 				desc->ops->get_max_msg(base_cinfo);
1452 	}
1453 
1454 	return 0;
1455 }
1456 
scmi_xfer_info_init(struct scmi_info * sinfo)1457 static int scmi_xfer_info_init(struct scmi_info *sinfo)
1458 {
1459 	int ret;
1460 
1461 	ret = scmi_channels_max_msg_configure(sinfo);
1462 	if (ret)
1463 		return ret;
1464 
1465 	ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
1466 	if (!ret && !idr_is_empty(&sinfo->rx_idr))
1467 		ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
1468 
1469 	return ret;
1470 }
1471 
scmi_chan_setup(struct scmi_info * info,struct device * dev,int prot_id,bool tx)1472 static int scmi_chan_setup(struct scmi_info *info, struct device *dev,
1473 			   int prot_id, bool tx)
1474 {
1475 	int ret, idx;
1476 	struct scmi_chan_info *cinfo;
1477 	struct idr *idr;
1478 
1479 	/* Transmit channel is first entry i.e. index 0 */
1480 	idx = tx ? 0 : 1;
1481 	idr = tx ? &info->tx_idr : &info->rx_idr;
1482 
1483 	/* check if already allocated, used for multiple device per protocol */
1484 	cinfo = idr_find(idr, prot_id);
1485 	if (cinfo)
1486 		return 0;
1487 
1488 	if (!info->desc->ops->chan_available(dev, idx)) {
1489 		cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
1490 		if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
1491 			return -EINVAL;
1492 		goto idr_alloc;
1493 	}
1494 
1495 	cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
1496 	if (!cinfo)
1497 		return -ENOMEM;
1498 
1499 	cinfo->dev = dev;
1500 
1501 	ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
1502 	if (ret)
1503 		return ret;
1504 
1505 idr_alloc:
1506 	ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
1507 	if (ret != prot_id) {
1508 		dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret);
1509 		return ret;
1510 	}
1511 
1512 	cinfo->handle = &info->handle;
1513 	return 0;
1514 }
1515 
1516 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device * dev,int prot_id)1517 scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id)
1518 {
1519 	int ret = scmi_chan_setup(info, dev, prot_id, true);
1520 
1521 	if (!ret) {
1522 		/* Rx is optional, report only memory errors */
1523 		ret = scmi_chan_setup(info, dev, prot_id, false);
1524 		if (ret && ret != -ENOMEM)
1525 			ret = 0;
1526 	}
1527 
1528 	return ret;
1529 }
1530 
1531 /**
1532  * scmi_get_protocol_device  - Helper to get/create an SCMI device.
1533  *
1534  * @np: A device node representing a valid active protocols for the referred
1535  * SCMI instance.
1536  * @info: The referred SCMI instance for which we are getting/creating this
1537  * device.
1538  * @prot_id: The protocol ID.
1539  * @name: The device name.
1540  *
1541  * Referring to the specific SCMI instance identified by @info, this helper
1542  * takes care to return a properly initialized device matching the requested
1543  * @proto_id and @name: if device was still not existent it is created as a
1544  * child of the specified SCMI instance @info and its transport properly
1545  * initialized as usual.
1546  *
1547  * Return: A properly initialized scmi device, NULL otherwise.
1548  */
1549 static inline struct scmi_device *
scmi_get_protocol_device(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)1550 scmi_get_protocol_device(struct device_node *np, struct scmi_info *info,
1551 			 int prot_id, const char *name)
1552 {
1553 	struct scmi_device *sdev;
1554 
1555 	/* Already created for this parent SCMI instance ? */
1556 	sdev = scmi_child_dev_find(info->dev, prot_id, name);
1557 	if (sdev)
1558 		return sdev;
1559 
1560 	pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id);
1561 
1562 	sdev = scmi_device_create(np, info->dev, prot_id, name);
1563 	if (!sdev) {
1564 		dev_err(info->dev, "failed to create %d protocol device\n",
1565 			prot_id);
1566 		return NULL;
1567 	}
1568 
1569 	if (scmi_txrx_setup(info, &sdev->dev, prot_id)) {
1570 		dev_err(&sdev->dev, "failed to setup transport\n");
1571 		scmi_device_destroy(sdev);
1572 		return NULL;
1573 	}
1574 
1575 	return sdev;
1576 }
1577 
1578 static inline void
scmi_create_protocol_device(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)1579 scmi_create_protocol_device(struct device_node *np, struct scmi_info *info,
1580 			    int prot_id, const char *name)
1581 {
1582 	struct scmi_device *sdev;
1583 
1584 	sdev = scmi_get_protocol_device(np, info, prot_id, name);
1585 	if (!sdev)
1586 		return;
1587 
1588 	/* setup handle now as the transport is ready */
1589 	scmi_set_handle(sdev);
1590 }
1591 
1592 /**
1593  * scmi_create_protocol_devices  - Create devices for all pending requests for
1594  * this SCMI instance.
1595  *
1596  * @np: The device node describing the protocol
1597  * @info: The SCMI instance descriptor
1598  * @prot_id: The protocol ID
1599  *
1600  * All devices previously requested for this instance (if any) are found and
1601  * created by scanning the proper @&scmi_requested_devices entry.
1602  */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id)1603 static void scmi_create_protocol_devices(struct device_node *np,
1604 					 struct scmi_info *info, int prot_id)
1605 {
1606 	struct list_head *phead;
1607 
1608 	mutex_lock(&scmi_requested_devices_mtx);
1609 	phead = idr_find(&scmi_requested_devices, prot_id);
1610 	if (phead) {
1611 		struct scmi_requested_dev *rdev;
1612 
1613 		list_for_each_entry(rdev, phead, node)
1614 			scmi_create_protocol_device(np, info, prot_id,
1615 						    rdev->id_table->name);
1616 	}
1617 	mutex_unlock(&scmi_requested_devices_mtx);
1618 }
1619 
1620 /**
1621  * scmi_protocol_device_request  - Helper to request a device
1622  *
1623  * @id_table: A protocol/name pair descriptor for the device to be created.
1624  *
1625  * This helper let an SCMI driver request specific devices identified by the
1626  * @id_table to be created for each active SCMI instance.
1627  *
1628  * The requested device name MUST NOT be already existent for any protocol;
1629  * at first the freshly requested @id_table is annotated in the IDR table
1630  * @scmi_requested_devices, then a matching device is created for each already
1631  * active SCMI instance. (if any)
1632  *
1633  * This way the requested device is created straight-away for all the already
1634  * initialized(probed) SCMI instances (handles) and it remains also annotated
1635  * as pending creation if the requesting SCMI driver was loaded before some
1636  * SCMI instance and related transports were available: when such late instance
1637  * is probed, its probe will take care to scan the list of pending requested
1638  * devices and create those on its own (see @scmi_create_protocol_devices and
1639  * its enclosing loop)
1640  *
1641  * Return: 0 on Success
1642  */
scmi_protocol_device_request(const struct scmi_device_id * id_table)1643 int scmi_protocol_device_request(const struct scmi_device_id *id_table)
1644 {
1645 	int ret = 0;
1646 	unsigned int id = 0;
1647 	struct list_head *head, *phead = NULL;
1648 	struct scmi_requested_dev *rdev;
1649 	struct scmi_info *info;
1650 
1651 	pr_debug("Requesting SCMI device (%s) for protocol %x\n",
1652 		 id_table->name, id_table->protocol_id);
1653 
1654 	/*
1655 	 * Search for the matching protocol rdev list and then search
1656 	 * of any existent equally named device...fails if any duplicate found.
1657 	 */
1658 	mutex_lock(&scmi_requested_devices_mtx);
1659 	idr_for_each_entry(&scmi_requested_devices, head, id) {
1660 		if (!phead) {
1661 			/* A list found registered in the IDR is never empty */
1662 			rdev = list_first_entry(head, struct scmi_requested_dev,
1663 						node);
1664 			if (rdev->id_table->protocol_id ==
1665 			    id_table->protocol_id)
1666 				phead = head;
1667 		}
1668 		list_for_each_entry(rdev, head, node) {
1669 			if (!strcmp(rdev->id_table->name, id_table->name)) {
1670 				pr_err("Ignoring duplicate request [%d] %s\n",
1671 				       rdev->id_table->protocol_id,
1672 				       rdev->id_table->name);
1673 				ret = -EINVAL;
1674 				goto out;
1675 			}
1676 		}
1677 	}
1678 
1679 	/*
1680 	 * No duplicate found for requested id_table, so let's create a new
1681 	 * requested device entry for this new valid request.
1682 	 */
1683 	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1684 	if (!rdev) {
1685 		ret = -ENOMEM;
1686 		goto out;
1687 	}
1688 	rdev->id_table = id_table;
1689 
1690 	/*
1691 	 * Append the new requested device table descriptor to the head of the
1692 	 * related protocol list, eventually creating such head if not already
1693 	 * there.
1694 	 */
1695 	if (!phead) {
1696 		phead = kzalloc(sizeof(*phead), GFP_KERNEL);
1697 		if (!phead) {
1698 			kfree(rdev);
1699 			ret = -ENOMEM;
1700 			goto out;
1701 		}
1702 		INIT_LIST_HEAD(phead);
1703 
1704 		ret = idr_alloc(&scmi_requested_devices, (void *)phead,
1705 				id_table->protocol_id,
1706 				id_table->protocol_id + 1, GFP_KERNEL);
1707 		if (ret != id_table->protocol_id) {
1708 			pr_err("Failed to save SCMI device - ret:%d\n", ret);
1709 			kfree(rdev);
1710 			kfree(phead);
1711 			ret = -EINVAL;
1712 			goto out;
1713 		}
1714 		ret = 0;
1715 	}
1716 	list_add(&rdev->node, phead);
1717 
1718 	/*
1719 	 * Now effectively create and initialize the requested device for every
1720 	 * already initialized SCMI instance which has registered the requested
1721 	 * protocol as a valid active one: i.e. defined in DT and supported by
1722 	 * current platform FW.
1723 	 */
1724 	mutex_lock(&scmi_list_mutex);
1725 	list_for_each_entry(info, &scmi_list, node) {
1726 		struct device_node *child;
1727 
1728 		child = idr_find(&info->active_protocols,
1729 				 id_table->protocol_id);
1730 		if (child) {
1731 			struct scmi_device *sdev;
1732 
1733 			sdev = scmi_get_protocol_device(child, info,
1734 							id_table->protocol_id,
1735 							id_table->name);
1736 			if (sdev) {
1737 				/* Set handle if not already set: device existed */
1738 				if (!sdev->handle)
1739 					sdev->handle =
1740 						scmi_handle_get_from_info_unlocked(info);
1741 				/* Relink consumer and suppliers */
1742 				if (sdev->handle)
1743 					scmi_device_link_add(&sdev->dev,
1744 							     sdev->handle->dev);
1745 			}
1746 		} else {
1747 			dev_err(info->dev,
1748 				"Failed. SCMI protocol %d not active.\n",
1749 				id_table->protocol_id);
1750 		}
1751 	}
1752 	mutex_unlock(&scmi_list_mutex);
1753 
1754 out:
1755 	mutex_unlock(&scmi_requested_devices_mtx);
1756 
1757 	return ret;
1758 }
1759 
1760 /**
1761  * scmi_protocol_device_unrequest  - Helper to unrequest a device
1762  *
1763  * @id_table: A protocol/name pair descriptor for the device to be unrequested.
1764  *
1765  * An helper to let an SCMI driver release its request about devices; note that
1766  * devices are created and initialized once the first SCMI driver request them
1767  * but they destroyed only on SCMI core unloading/unbinding.
1768  *
1769  * The current SCMI transport layer uses such devices as internal references and
1770  * as such they could be shared as same transport between multiple drivers so
1771  * that cannot be safely destroyed till the whole SCMI stack is removed.
1772  * (unless adding further burden of refcounting.)
1773  */
scmi_protocol_device_unrequest(const struct scmi_device_id * id_table)1774 void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table)
1775 {
1776 	struct list_head *phead;
1777 
1778 	pr_debug("Unrequesting SCMI device (%s) for protocol %x\n",
1779 		 id_table->name, id_table->protocol_id);
1780 
1781 	mutex_lock(&scmi_requested_devices_mtx);
1782 	phead = idr_find(&scmi_requested_devices, id_table->protocol_id);
1783 	if (phead) {
1784 		struct scmi_requested_dev *victim, *tmp;
1785 
1786 		list_for_each_entry_safe(victim, tmp, phead, node) {
1787 			if (!strcmp(victim->id_table->name, id_table->name)) {
1788 				list_del(&victim->node);
1789 				kfree(victim);
1790 				break;
1791 			}
1792 		}
1793 
1794 		if (list_empty(phead)) {
1795 			idr_remove(&scmi_requested_devices,
1796 				   id_table->protocol_id);
1797 			kfree(phead);
1798 		}
1799 	}
1800 	mutex_unlock(&scmi_requested_devices_mtx);
1801 }
1802 
scmi_cleanup_txrx_channels(struct scmi_info * info)1803 static int scmi_cleanup_txrx_channels(struct scmi_info *info)
1804 {
1805 	int ret;
1806 	struct idr *idr = &info->tx_idr;
1807 
1808 	ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
1809 	idr_destroy(&info->tx_idr);
1810 
1811 	idr = &info->rx_idr;
1812 	ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
1813 	idr_destroy(&info->rx_idr);
1814 
1815 	return ret;
1816 }
1817 
scmi_probe(struct platform_device * pdev)1818 static int scmi_probe(struct platform_device *pdev)
1819 {
1820 	int ret;
1821 	struct scmi_handle *handle;
1822 	const struct scmi_desc *desc;
1823 	struct scmi_info *info;
1824 	struct device *dev = &pdev->dev;
1825 	struct device_node *child, *np = dev->of_node;
1826 
1827 	desc = of_device_get_match_data(dev);
1828 	if (!desc)
1829 		return -EINVAL;
1830 
1831 	info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
1832 	if (!info)
1833 		return -ENOMEM;
1834 
1835 	info->dev = dev;
1836 	info->desc = desc;
1837 	INIT_LIST_HEAD(&info->node);
1838 	idr_init(&info->protocols);
1839 	mutex_init(&info->protocols_mtx);
1840 	idr_init(&info->active_protocols);
1841 
1842 	platform_set_drvdata(pdev, info);
1843 	idr_init(&info->tx_idr);
1844 	idr_init(&info->rx_idr);
1845 
1846 	handle = &info->handle;
1847 	handle->dev = info->dev;
1848 	handle->version = &info->version;
1849 	handle->devm_protocol_get = scmi_devm_protocol_get;
1850 	handle->devm_protocol_put = scmi_devm_protocol_put;
1851 
1852 	if (desc->ops->link_supplier) {
1853 		ret = desc->ops->link_supplier(dev);
1854 		if (ret)
1855 			return ret;
1856 	}
1857 
1858 	ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE);
1859 	if (ret)
1860 		return ret;
1861 
1862 	ret = scmi_xfer_info_init(info);
1863 	if (ret)
1864 		goto clear_txrx_setup;
1865 
1866 	if (scmi_notification_init(handle))
1867 		dev_err(dev, "SCMI Notifications NOT available.\n");
1868 
1869 	/*
1870 	 * Trigger SCMI Base protocol initialization.
1871 	 * It's mandatory and won't be ever released/deinit until the
1872 	 * SCMI stack is shutdown/unloaded as a whole.
1873 	 */
1874 	ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
1875 	if (ret) {
1876 		dev_err(dev, "unable to communicate with SCMI\n");
1877 		goto notification_exit;
1878 	}
1879 
1880 	mutex_lock(&scmi_list_mutex);
1881 	list_add_tail(&info->node, &scmi_list);
1882 	mutex_unlock(&scmi_list_mutex);
1883 
1884 	for_each_available_child_of_node(np, child) {
1885 		u32 prot_id;
1886 
1887 		if (of_property_read_u32(child, "reg", &prot_id))
1888 			continue;
1889 
1890 		if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
1891 			dev_err(dev, "Out of range protocol %d\n", prot_id);
1892 
1893 		if (!scmi_is_protocol_implemented(handle, prot_id)) {
1894 			dev_err(dev, "SCMI protocol %d not implemented\n",
1895 				prot_id);
1896 			continue;
1897 		}
1898 
1899 		/*
1900 		 * Save this valid DT protocol descriptor amongst
1901 		 * @active_protocols for this SCMI instance/
1902 		 */
1903 		ret = idr_alloc(&info->active_protocols, child,
1904 				prot_id, prot_id + 1, GFP_KERNEL);
1905 		if (ret != prot_id) {
1906 			dev_err(dev, "SCMI protocol %d already activated. Skip\n",
1907 				prot_id);
1908 			continue;
1909 		}
1910 
1911 		of_node_get(child);
1912 		scmi_create_protocol_devices(child, info, prot_id);
1913 	}
1914 
1915 	return 0;
1916 
1917 notification_exit:
1918 	scmi_notification_exit(&info->handle);
1919 clear_txrx_setup:
1920 	scmi_cleanup_txrx_channels(info);
1921 	return ret;
1922 }
1923 
scmi_free_channel(struct scmi_chan_info * cinfo,struct idr * idr,int id)1924 void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id)
1925 {
1926 	idr_remove(idr, id);
1927 }
1928 
scmi_remove(struct platform_device * pdev)1929 static int scmi_remove(struct platform_device *pdev)
1930 {
1931 	int ret, id;
1932 	struct scmi_info *info = platform_get_drvdata(pdev);
1933 	struct device_node *child;
1934 
1935 	mutex_lock(&scmi_list_mutex);
1936 	if (info->users)
1937 		dev_warn(&pdev->dev,
1938 			 "Still active SCMI users will be forcibly unbound.\n");
1939 	list_del(&info->node);
1940 	mutex_unlock(&scmi_list_mutex);
1941 
1942 	scmi_notification_exit(&info->handle);
1943 
1944 	mutex_lock(&info->protocols_mtx);
1945 	idr_destroy(&info->protocols);
1946 	mutex_unlock(&info->protocols_mtx);
1947 
1948 	idr_for_each_entry(&info->active_protocols, child, id)
1949 		of_node_put(child);
1950 	idr_destroy(&info->active_protocols);
1951 
1952 	/* Safe to free channels since no more users */
1953 	ret = scmi_cleanup_txrx_channels(info);
1954 	if (ret)
1955 		dev_warn(&pdev->dev, "Failed to cleanup SCMI channels.\n");
1956 
1957 	return 0;
1958 }
1959 
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)1960 static ssize_t protocol_version_show(struct device *dev,
1961 				     struct device_attribute *attr, char *buf)
1962 {
1963 	struct scmi_info *info = dev_get_drvdata(dev);
1964 
1965 	return sprintf(buf, "%u.%u\n", info->version.major_ver,
1966 		       info->version.minor_ver);
1967 }
1968 static DEVICE_ATTR_RO(protocol_version);
1969 
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)1970 static ssize_t firmware_version_show(struct device *dev,
1971 				     struct device_attribute *attr, char *buf)
1972 {
1973 	struct scmi_info *info = dev_get_drvdata(dev);
1974 
1975 	return sprintf(buf, "0x%x\n", info->version.impl_ver);
1976 }
1977 static DEVICE_ATTR_RO(firmware_version);
1978 
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)1979 static ssize_t vendor_id_show(struct device *dev,
1980 			      struct device_attribute *attr, char *buf)
1981 {
1982 	struct scmi_info *info = dev_get_drvdata(dev);
1983 
1984 	return sprintf(buf, "%s\n", info->version.vendor_id);
1985 }
1986 static DEVICE_ATTR_RO(vendor_id);
1987 
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)1988 static ssize_t sub_vendor_id_show(struct device *dev,
1989 				  struct device_attribute *attr, char *buf)
1990 {
1991 	struct scmi_info *info = dev_get_drvdata(dev);
1992 
1993 	return sprintf(buf, "%s\n", info->version.sub_vendor_id);
1994 }
1995 static DEVICE_ATTR_RO(sub_vendor_id);
1996 
1997 static struct attribute *versions_attrs[] = {
1998 	&dev_attr_firmware_version.attr,
1999 	&dev_attr_protocol_version.attr,
2000 	&dev_attr_vendor_id.attr,
2001 	&dev_attr_sub_vendor_id.attr,
2002 	NULL,
2003 };
2004 ATTRIBUTE_GROUPS(versions);
2005 
2006 /* Each compatible listed below must have descriptor associated with it */
2007 static const struct of_device_id scmi_of_match[] = {
2008 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2009 	{ .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2010 #endif
2011 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2012 	{ .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2013 #endif
2014 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2015 	{ .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2016 #endif
2017 	{ /* Sentinel */ },
2018 };
2019 
2020 MODULE_DEVICE_TABLE(of, scmi_of_match);
2021 
2022 static struct platform_driver scmi_driver = {
2023 	.driver = {
2024 		   .name = "arm-scmi",
2025 		   .suppress_bind_attrs = true,
2026 		   .of_match_table = scmi_of_match,
2027 		   .dev_groups = versions_groups,
2028 		   },
2029 	.probe = scmi_probe,
2030 	.remove = scmi_remove,
2031 };
2032 
2033 /**
2034  * __scmi_transports_setup  - Common helper to call transport-specific
2035  * .init/.exit code if provided.
2036  *
2037  * @init: A flag to distinguish between init and exit.
2038  *
2039  * Note that, if provided, we invoke .init/.exit functions for all the
2040  * transports currently compiled in.
2041  *
2042  * Return: 0 on Success.
2043  */
__scmi_transports_setup(bool init)2044 static inline int __scmi_transports_setup(bool init)
2045 {
2046 	int ret = 0;
2047 	const struct of_device_id *trans;
2048 
2049 	for (trans = scmi_of_match; trans->data; trans++) {
2050 		const struct scmi_desc *tdesc = trans->data;
2051 
2052 		if ((init && !tdesc->transport_init) ||
2053 		    (!init && !tdesc->transport_exit))
2054 			continue;
2055 
2056 		if (init)
2057 			ret = tdesc->transport_init();
2058 		else
2059 			tdesc->transport_exit();
2060 
2061 		if (ret) {
2062 			pr_err("SCMI transport %s FAILED initialization!\n",
2063 			       trans->compatible);
2064 			break;
2065 		}
2066 	}
2067 
2068 	return ret;
2069 }
2070 
scmi_transports_init(void)2071 static int __init scmi_transports_init(void)
2072 {
2073 	return __scmi_transports_setup(true);
2074 }
2075 
scmi_transports_exit(void)2076 static void __exit scmi_transports_exit(void)
2077 {
2078 	__scmi_transports_setup(false);
2079 }
2080 
scmi_driver_init(void)2081 static int __init scmi_driver_init(void)
2082 {
2083 	int ret;
2084 
2085 	/* Bail out if no SCMI transport was configured */
2086 	if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
2087 		return -EINVAL;
2088 
2089 	scmi_bus_init();
2090 
2091 	/* Initialize any compiled-in transport which provided an init/exit */
2092 	ret = scmi_transports_init();
2093 	if (ret)
2094 		return ret;
2095 
2096 	scmi_base_register();
2097 
2098 	scmi_clock_register();
2099 	scmi_perf_register();
2100 	scmi_power_register();
2101 	scmi_reset_register();
2102 	scmi_sensors_register();
2103 	scmi_voltage_register();
2104 	scmi_system_register();
2105 
2106 	return platform_driver_register(&scmi_driver);
2107 }
2108 subsys_initcall(scmi_driver_init);
2109 
scmi_driver_exit(void)2110 static void __exit scmi_driver_exit(void)
2111 {
2112 	scmi_base_unregister();
2113 
2114 	scmi_clock_unregister();
2115 	scmi_perf_unregister();
2116 	scmi_power_unregister();
2117 	scmi_reset_unregister();
2118 	scmi_sensors_unregister();
2119 	scmi_voltage_unregister();
2120 	scmi_system_unregister();
2121 
2122 	scmi_bus_exit();
2123 
2124 	scmi_transports_exit();
2125 
2126 	platform_driver_unregister(&scmi_driver);
2127 }
2128 module_exit(scmi_driver_exit);
2129 
2130 MODULE_ALIAS("platform:arm-scmi");
2131 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
2132 MODULE_DESCRIPTION("ARM SCMI protocol driver");
2133 MODULE_LICENSE("GPL v2");
2134