1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * System Control and Management Interface (SCMI) Message Protocol driver
4 *
5 * SCMI Message Protocol is used between the System Control Processor(SCP)
6 * and the Application Processors(AP). The Message Handling Unit(MHU)
7 * provides a mechanism for inter-processor communication between SCP's
8 * Cortex M3 and AP.
9 *
10 * SCP offers control and management of the core/cluster power states,
11 * various power domain DVFS including the core/cluster, certain system
12 * clocks configuration, thermal sensors and many others.
13 *
14 * Copyright (C) 2018-2021 ARM Ltd.
15 */
16
17 #include <linux/bitmap.h>
18 #include <linux/device.h>
19 #include <linux/export.h>
20 #include <linux/idr.h>
21 #include <linux/io.h>
22 #include <linux/kernel.h>
23 #include <linux/ktime.h>
24 #include <linux/hashtable.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/processor.h>
30 #include <linux/refcount.h>
31 #include <linux/slab.h>
32
33 #include "common.h"
34 #include "notify.h"
35
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/scmi.h>
38
39 enum scmi_error_codes {
40 SCMI_SUCCESS = 0, /* Success */
41 SCMI_ERR_SUPPORT = -1, /* Not supported */
42 SCMI_ERR_PARAMS = -2, /* Invalid Parameters */
43 SCMI_ERR_ACCESS = -3, /* Invalid access/permission denied */
44 SCMI_ERR_ENTRY = -4, /* Not found */
45 SCMI_ERR_RANGE = -5, /* Value out of range */
46 SCMI_ERR_BUSY = -6, /* Device busy */
47 SCMI_ERR_COMMS = -7, /* Communication Error */
48 SCMI_ERR_GENERIC = -8, /* Generic Error */
49 SCMI_ERR_HARDWARE = -9, /* Hardware Error */
50 SCMI_ERR_PROTOCOL = -10,/* Protocol Error */
51 };
52
53 /* List of all SCMI devices active in system */
54 static LIST_HEAD(scmi_list);
55 /* Protection for the entire list */
56 static DEFINE_MUTEX(scmi_list_mutex);
57 /* Track the unique id for the transfers for debug & profiling purpose */
58 static atomic_t transfer_last_id;
59
60 static DEFINE_IDR(scmi_requested_devices);
61 static DEFINE_MUTEX(scmi_requested_devices_mtx);
62
63 struct scmi_requested_dev {
64 const struct scmi_device_id *id_table;
65 struct list_head node;
66 };
67
68 /**
69 * struct scmi_xfers_info - Structure to manage transfer information
70 *
71 * @xfer_alloc_table: Bitmap table for allocated messages.
72 * Index of this bitmap table is also used for message
73 * sequence identifier.
74 * @xfer_lock: Protection for message allocation
75 * @max_msg: Maximum number of messages that can be pending
76 * @free_xfers: A free list for available to use xfers. It is initialized with
77 * a number of xfers equal to the maximum allowed in-flight
78 * messages.
79 * @pending_xfers: An hashtable, indexed by msg_hdr.seq, used to keep all the
80 * currently in-flight messages.
81 */
82 struct scmi_xfers_info {
83 unsigned long *xfer_alloc_table;
84 spinlock_t xfer_lock;
85 int max_msg;
86 struct hlist_head free_xfers;
87 DECLARE_HASHTABLE(pending_xfers, SCMI_PENDING_XFERS_HT_ORDER_SZ);
88 };
89
90 /**
91 * struct scmi_protocol_instance - Describe an initialized protocol instance.
92 * @handle: Reference to the SCMI handle associated to this protocol instance.
93 * @proto: A reference to the protocol descriptor.
94 * @gid: A reference for per-protocol devres management.
95 * @users: A refcount to track effective users of this protocol.
96 * @priv: Reference for optional protocol private data.
97 * @ph: An embedded protocol handle that will be passed down to protocol
98 * initialization code to identify this instance.
99 *
100 * Each protocol is initialized independently once for each SCMI platform in
101 * which is defined by DT and implemented by the SCMI server fw.
102 */
103 struct scmi_protocol_instance {
104 const struct scmi_handle *handle;
105 const struct scmi_protocol *proto;
106 void *gid;
107 refcount_t users;
108 void *priv;
109 struct scmi_protocol_handle ph;
110 };
111
112 #define ph_to_pi(h) container_of(h, struct scmi_protocol_instance, ph)
113
114 /**
115 * struct scmi_info - Structure representing a SCMI instance
116 *
117 * @dev: Device pointer
118 * @desc: SoC description for this instance
119 * @version: SCMI revision information containing protocol version,
120 * implementation version and (sub-)vendor identification.
121 * @handle: Instance of SCMI handle to send to clients
122 * @tx_minfo: Universal Transmit Message management info
123 * @rx_minfo: Universal Receive Message management info
124 * @tx_idr: IDR object to map protocol id to Tx channel info pointer
125 * @rx_idr: IDR object to map protocol id to Rx channel info pointer
126 * @protocols: IDR for protocols' instance descriptors initialized for
127 * this SCMI instance: populated on protocol's first attempted
128 * usage.
129 * @protocols_mtx: A mutex to protect protocols instances initialization.
130 * @protocols_imp: List of protocols implemented, currently maximum of
131 * MAX_PROTOCOLS_IMP elements allocated by the base protocol
132 * @active_protocols: IDR storing device_nodes for protocols actually defined
133 * in the DT and confirmed as implemented by fw.
134 * @notify_priv: Pointer to private data structure specific to notifications.
135 * @node: List head
136 * @users: Number of users of this instance
137 */
138 struct scmi_info {
139 struct device *dev;
140 const struct scmi_desc *desc;
141 struct scmi_revision_info version;
142 struct scmi_handle handle;
143 struct scmi_xfers_info tx_minfo;
144 struct scmi_xfers_info rx_minfo;
145 struct idr tx_idr;
146 struct idr rx_idr;
147 struct idr protocols;
148 /* Ensure mutual exclusive access to protocols instance array */
149 struct mutex protocols_mtx;
150 u8 *protocols_imp;
151 struct idr active_protocols;
152 void *notify_priv;
153 struct list_head node;
154 int users;
155 };
156
157 #define handle_to_scmi_info(h) container_of(h, struct scmi_info, handle)
158
159 static const int scmi_linux_errmap[] = {
160 /* better than switch case as long as return value is continuous */
161 0, /* SCMI_SUCCESS */
162 -EOPNOTSUPP, /* SCMI_ERR_SUPPORT */
163 -EINVAL, /* SCMI_ERR_PARAM */
164 -EACCES, /* SCMI_ERR_ACCESS */
165 -ENOENT, /* SCMI_ERR_ENTRY */
166 -ERANGE, /* SCMI_ERR_RANGE */
167 -EBUSY, /* SCMI_ERR_BUSY */
168 -ECOMM, /* SCMI_ERR_COMMS */
169 -EIO, /* SCMI_ERR_GENERIC */
170 -EREMOTEIO, /* SCMI_ERR_HARDWARE */
171 -EPROTO, /* SCMI_ERR_PROTOCOL */
172 };
173
scmi_to_linux_errno(int errno)174 static inline int scmi_to_linux_errno(int errno)
175 {
176 int err_idx = -errno;
177
178 if (err_idx >= SCMI_SUCCESS && err_idx < ARRAY_SIZE(scmi_linux_errmap))
179 return scmi_linux_errmap[err_idx];
180 return -EIO;
181 }
182
scmi_notification_instance_data_set(const struct scmi_handle * handle,void * priv)183 void scmi_notification_instance_data_set(const struct scmi_handle *handle,
184 void *priv)
185 {
186 struct scmi_info *info = handle_to_scmi_info(handle);
187
188 info->notify_priv = priv;
189 /* Ensure updated protocol private date are visible */
190 smp_wmb();
191 }
192
scmi_notification_instance_data_get(const struct scmi_handle * handle)193 void *scmi_notification_instance_data_get(const struct scmi_handle *handle)
194 {
195 struct scmi_info *info = handle_to_scmi_info(handle);
196
197 /* Ensure protocols_private_data has been updated */
198 smp_rmb();
199 return info->notify_priv;
200 }
201
202 /**
203 * scmi_xfer_token_set - Reserve and set new token for the xfer at hand
204 *
205 * @minfo: Pointer to Tx/Rx Message management info based on channel type
206 * @xfer: The xfer to act upon
207 *
208 * Pick the next unused monotonically increasing token and set it into
209 * xfer->hdr.seq: picking a monotonically increasing value avoids immediate
210 * reuse of freshly completed or timed-out xfers, thus mitigating the risk
211 * of incorrect association of a late and expired xfer with a live in-flight
212 * transaction, both happening to re-use the same token identifier.
213 *
214 * Since platform is NOT required to answer our request in-order we should
215 * account for a few rare but possible scenarios:
216 *
217 * - exactly 'next_token' may be NOT available so pick xfer_id >= next_token
218 * using find_next_zero_bit() starting from candidate next_token bit
219 *
220 * - all tokens ahead upto (MSG_TOKEN_ID_MASK - 1) are used in-flight but we
221 * are plenty of free tokens at start, so try a second pass using
222 * find_next_zero_bit() and starting from 0.
223 *
224 * X = used in-flight
225 *
226 * Normal
227 * ------
228 *
229 * |- xfer_id picked
230 * -----------+----------------------------------------------------------
231 * | | |X|X|X| | | | | | ... ... ... ... ... ... ... ... ... ... ...|X|X|
232 * ----------------------------------------------------------------------
233 * ^
234 * |- next_token
235 *
236 * Out-of-order pending at start
237 * -----------------------------
238 *
239 * |- xfer_id picked, last_token fixed
240 * -----+----------------------------------------------------------------
241 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... ... ...|X| |
242 * ----------------------------------------------------------------------
243 * ^
244 * |- next_token
245 *
246 *
247 * Out-of-order pending at end
248 * ---------------------------
249 *
250 * |- xfer_id picked, last_token fixed
251 * -----+----------------------------------------------------------------
252 * |X|X| | | | |X|X| ... ... ... ... ... ... ... ... ... ... |X|X|X||X|X|
253 * ----------------------------------------------------------------------
254 * ^
255 * |- next_token
256 *
257 * Context: Assumes to be called with @xfer_lock already acquired.
258 *
259 * Return: 0 on Success or error
260 */
scmi_xfer_token_set(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)261 static int scmi_xfer_token_set(struct scmi_xfers_info *minfo,
262 struct scmi_xfer *xfer)
263 {
264 unsigned long xfer_id, next_token;
265
266 /*
267 * Pick a candidate monotonic token in range [0, MSG_TOKEN_MAX - 1]
268 * using the pre-allocated transfer_id as a base.
269 * Note that the global transfer_id is shared across all message types
270 * so there could be holes in the allocated set of monotonic sequence
271 * numbers, but that is going to limit the effectiveness of the
272 * mitigation only in very rare limit conditions.
273 */
274 next_token = (xfer->transfer_id & (MSG_TOKEN_MAX - 1));
275
276 /* Pick the next available xfer_id >= next_token */
277 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
278 MSG_TOKEN_MAX, next_token);
279 if (xfer_id == MSG_TOKEN_MAX) {
280 /*
281 * After heavily out-of-order responses, there are no free
282 * tokens ahead, but only at start of xfer_alloc_table so
283 * try again from the beginning.
284 */
285 xfer_id = find_next_zero_bit(minfo->xfer_alloc_table,
286 MSG_TOKEN_MAX, 0);
287 /*
288 * Something is wrong if we got here since there can be a
289 * maximum number of (MSG_TOKEN_MAX - 1) in-flight messages
290 * but we have not found any free token [0, MSG_TOKEN_MAX - 1].
291 */
292 if (WARN_ON_ONCE(xfer_id == MSG_TOKEN_MAX))
293 return -ENOMEM;
294 }
295
296 /* Update +/- last_token accordingly if we skipped some hole */
297 if (xfer_id != next_token)
298 atomic_add((int)(xfer_id - next_token), &transfer_last_id);
299
300 /* Set in-flight */
301 set_bit(xfer_id, minfo->xfer_alloc_table);
302 xfer->hdr.seq = (u16)xfer_id;
303
304 return 0;
305 }
306
307 /**
308 * scmi_xfer_token_clear - Release the token
309 *
310 * @minfo: Pointer to Tx/Rx Message management info based on channel type
311 * @xfer: The xfer to act upon
312 */
scmi_xfer_token_clear(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)313 static inline void scmi_xfer_token_clear(struct scmi_xfers_info *minfo,
314 struct scmi_xfer *xfer)
315 {
316 clear_bit(xfer->hdr.seq, minfo->xfer_alloc_table);
317 }
318
319 /**
320 * scmi_xfer_get() - Allocate one message
321 *
322 * @handle: Pointer to SCMI entity handle
323 * @minfo: Pointer to Tx/Rx Message management info based on channel type
324 * @set_pending: If true a monotonic token is picked and the xfer is added to
325 * the pending hash table.
326 *
327 * Helper function which is used by various message functions that are
328 * exposed to clients of this driver for allocating a message traffic event.
329 *
330 * Picks an xfer from the free list @free_xfers (if any available) and, if
331 * required, sets a monotonically increasing token and stores the inflight xfer
332 * into the @pending_xfers hashtable for later retrieval.
333 *
334 * The successfully initialized xfer is refcounted.
335 *
336 * Context: Holds @xfer_lock while manipulating @xfer_alloc_table and
337 * @free_xfers.
338 *
339 * Return: 0 if all went fine, else corresponding error.
340 */
scmi_xfer_get(const struct scmi_handle * handle,struct scmi_xfers_info * minfo,bool set_pending)341 static struct scmi_xfer *scmi_xfer_get(const struct scmi_handle *handle,
342 struct scmi_xfers_info *minfo,
343 bool set_pending)
344 {
345 int ret;
346 unsigned long flags;
347 struct scmi_xfer *xfer;
348
349 spin_lock_irqsave(&minfo->xfer_lock, flags);
350 if (hlist_empty(&minfo->free_xfers)) {
351 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
352 return ERR_PTR(-ENOMEM);
353 }
354
355 /* grab an xfer from the free_list */
356 xfer = hlist_entry(minfo->free_xfers.first, struct scmi_xfer, node);
357 hlist_del_init(&xfer->node);
358
359 /*
360 * Allocate transfer_id early so that can be used also as base for
361 * monotonic sequence number generation if needed.
362 */
363 xfer->transfer_id = atomic_inc_return(&transfer_last_id);
364
365 if (set_pending) {
366 /* Pick and set monotonic token */
367 ret = scmi_xfer_token_set(minfo, xfer);
368 if (!ret) {
369 hash_add(minfo->pending_xfers, &xfer->node,
370 xfer->hdr.seq);
371 xfer->pending = true;
372 } else {
373 dev_err(handle->dev,
374 "Failed to get monotonic token %d\n", ret);
375 hlist_add_head(&xfer->node, &minfo->free_xfers);
376 xfer = ERR_PTR(ret);
377 }
378 }
379
380 if (!IS_ERR(xfer)) {
381 refcount_set(&xfer->users, 1);
382 atomic_set(&xfer->busy, SCMI_XFER_FREE);
383 }
384 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
385
386 return xfer;
387 }
388
389 /**
390 * __scmi_xfer_put() - Release a message
391 *
392 * @minfo: Pointer to Tx/Rx Message management info based on channel type
393 * @xfer: message that was reserved by scmi_xfer_get
394 *
395 * After refcount check, possibly release an xfer, clearing the token slot,
396 * removing xfer from @pending_xfers and putting it back into free_xfers.
397 *
398 * This holds a spinlock to maintain integrity of internal data structures.
399 */
400 static void
__scmi_xfer_put(struct scmi_xfers_info * minfo,struct scmi_xfer * xfer)401 __scmi_xfer_put(struct scmi_xfers_info *minfo, struct scmi_xfer *xfer)
402 {
403 unsigned long flags;
404
405 spin_lock_irqsave(&minfo->xfer_lock, flags);
406 if (refcount_dec_and_test(&xfer->users)) {
407 if (xfer->pending) {
408 scmi_xfer_token_clear(minfo, xfer);
409 hash_del(&xfer->node);
410 xfer->pending = false;
411 }
412 hlist_add_head(&xfer->node, &minfo->free_xfers);
413 }
414 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
415 }
416
417 /**
418 * scmi_xfer_lookup_unlocked - Helper to lookup an xfer_id
419 *
420 * @minfo: Pointer to Tx/Rx Message management info based on channel type
421 * @xfer_id: Token ID to lookup in @pending_xfers
422 *
423 * Refcounting is untouched.
424 *
425 * Context: Assumes to be called with @xfer_lock already acquired.
426 *
427 * Return: A valid xfer on Success or error otherwise
428 */
429 static struct scmi_xfer *
scmi_xfer_lookup_unlocked(struct scmi_xfers_info * minfo,u16 xfer_id)430 scmi_xfer_lookup_unlocked(struct scmi_xfers_info *minfo, u16 xfer_id)
431 {
432 struct scmi_xfer *xfer = NULL;
433
434 if (test_bit(xfer_id, minfo->xfer_alloc_table))
435 xfer = XFER_FIND(minfo->pending_xfers, xfer_id);
436
437 return xfer ?: ERR_PTR(-EINVAL);
438 }
439
440 /**
441 * scmi_msg_response_validate - Validate message type against state of related
442 * xfer
443 *
444 * @cinfo: A reference to the channel descriptor.
445 * @msg_type: Message type to check
446 * @xfer: A reference to the xfer to validate against @msg_type
447 *
448 * This function checks if @msg_type is congruent with the current state of
449 * a pending @xfer; if an asynchronous delayed response is received before the
450 * related synchronous response (Out-of-Order Delayed Response) the missing
451 * synchronous response is assumed to be OK and completed, carrying on with the
452 * Delayed Response: this is done to address the case in which the underlying
453 * SCMI transport can deliver such out-of-order responses.
454 *
455 * Context: Assumes to be called with xfer->lock already acquired.
456 *
457 * Return: 0 on Success, error otherwise
458 */
scmi_msg_response_validate(struct scmi_chan_info * cinfo,u8 msg_type,struct scmi_xfer * xfer)459 static inline int scmi_msg_response_validate(struct scmi_chan_info *cinfo,
460 u8 msg_type,
461 struct scmi_xfer *xfer)
462 {
463 /*
464 * Even if a response was indeed expected on this slot at this point,
465 * a buggy platform could wrongly reply feeding us an unexpected
466 * delayed response we're not prepared to handle: bail-out safely
467 * blaming firmware.
468 */
469 if (msg_type == MSG_TYPE_DELAYED_RESP && !xfer->async_done) {
470 dev_err(cinfo->dev,
471 "Delayed Response for %d not expected! Buggy F/W ?\n",
472 xfer->hdr.seq);
473 return -EINVAL;
474 }
475
476 switch (xfer->state) {
477 case SCMI_XFER_SENT_OK:
478 if (msg_type == MSG_TYPE_DELAYED_RESP) {
479 /*
480 * Delayed Response expected but delivered earlier.
481 * Assume message RESPONSE was OK and skip state.
482 */
483 xfer->hdr.status = SCMI_SUCCESS;
484 xfer->state = SCMI_XFER_RESP_OK;
485 complete(&xfer->done);
486 dev_warn(cinfo->dev,
487 "Received valid OoO Delayed Response for %d\n",
488 xfer->hdr.seq);
489 }
490 break;
491 case SCMI_XFER_RESP_OK:
492 if (msg_type != MSG_TYPE_DELAYED_RESP)
493 return -EINVAL;
494 break;
495 case SCMI_XFER_DRESP_OK:
496 /* No further message expected once in SCMI_XFER_DRESP_OK */
497 return -EINVAL;
498 }
499
500 return 0;
501 }
502
503 /**
504 * scmi_xfer_state_update - Update xfer state
505 *
506 * @xfer: A reference to the xfer to update
507 * @msg_type: Type of message being processed.
508 *
509 * Note that this message is assumed to have been already successfully validated
510 * by @scmi_msg_response_validate(), so here we just update the state.
511 *
512 * Context: Assumes to be called on an xfer exclusively acquired using the
513 * busy flag.
514 */
scmi_xfer_state_update(struct scmi_xfer * xfer,u8 msg_type)515 static inline void scmi_xfer_state_update(struct scmi_xfer *xfer, u8 msg_type)
516 {
517 xfer->hdr.type = msg_type;
518
519 /* Unknown command types were already discarded earlier */
520 if (xfer->hdr.type == MSG_TYPE_COMMAND)
521 xfer->state = SCMI_XFER_RESP_OK;
522 else
523 xfer->state = SCMI_XFER_DRESP_OK;
524 }
525
scmi_xfer_acquired(struct scmi_xfer * xfer)526 static bool scmi_xfer_acquired(struct scmi_xfer *xfer)
527 {
528 int ret;
529
530 ret = atomic_cmpxchg(&xfer->busy, SCMI_XFER_FREE, SCMI_XFER_BUSY);
531
532 return ret == SCMI_XFER_FREE;
533 }
534
535 /**
536 * scmi_xfer_command_acquire - Helper to lookup and acquire a command xfer
537 *
538 * @cinfo: A reference to the channel descriptor.
539 * @msg_hdr: A message header to use as lookup key
540 *
541 * When a valid xfer is found for the sequence number embedded in the provided
542 * msg_hdr, reference counting is properly updated and exclusive access to this
543 * xfer is granted till released with @scmi_xfer_command_release.
544 *
545 * Return: A valid @xfer on Success or error otherwise.
546 */
547 static inline struct scmi_xfer *
scmi_xfer_command_acquire(struct scmi_chan_info * cinfo,u32 msg_hdr)548 scmi_xfer_command_acquire(struct scmi_chan_info *cinfo, u32 msg_hdr)
549 {
550 int ret;
551 unsigned long flags;
552 struct scmi_xfer *xfer;
553 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
554 struct scmi_xfers_info *minfo = &info->tx_minfo;
555 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
556 u16 xfer_id = MSG_XTRACT_TOKEN(msg_hdr);
557
558 /* Are we even expecting this? */
559 spin_lock_irqsave(&minfo->xfer_lock, flags);
560 xfer = scmi_xfer_lookup_unlocked(minfo, xfer_id);
561 if (IS_ERR(xfer)) {
562 dev_err(cinfo->dev,
563 "Message for %d type %d is not expected!\n",
564 xfer_id, msg_type);
565 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
566 return xfer;
567 }
568 refcount_inc(&xfer->users);
569 spin_unlock_irqrestore(&minfo->xfer_lock, flags);
570
571 spin_lock_irqsave(&xfer->lock, flags);
572 ret = scmi_msg_response_validate(cinfo, msg_type, xfer);
573 /*
574 * If a pending xfer was found which was also in a congruent state with
575 * the received message, acquire exclusive access to it setting the busy
576 * flag.
577 * Spins only on the rare limit condition of concurrent reception of
578 * RESP and DRESP for the same xfer.
579 */
580 if (!ret) {
581 spin_until_cond(scmi_xfer_acquired(xfer));
582 scmi_xfer_state_update(xfer, msg_type);
583 }
584 spin_unlock_irqrestore(&xfer->lock, flags);
585
586 if (ret) {
587 dev_err(cinfo->dev,
588 "Invalid message type:%d for %d - HDR:0x%X state:%d\n",
589 msg_type, xfer_id, msg_hdr, xfer->state);
590 /* On error the refcount incremented above has to be dropped */
591 __scmi_xfer_put(minfo, xfer);
592 xfer = ERR_PTR(-EINVAL);
593 }
594
595 return xfer;
596 }
597
scmi_xfer_command_release(struct scmi_info * info,struct scmi_xfer * xfer)598 static inline void scmi_xfer_command_release(struct scmi_info *info,
599 struct scmi_xfer *xfer)
600 {
601 atomic_set(&xfer->busy, SCMI_XFER_FREE);
602 __scmi_xfer_put(&info->tx_minfo, xfer);
603 }
604
scmi_clear_channel(struct scmi_info * info,struct scmi_chan_info * cinfo)605 static inline void scmi_clear_channel(struct scmi_info *info,
606 struct scmi_chan_info *cinfo)
607 {
608 if (info->desc->ops->clear_channel)
609 info->desc->ops->clear_channel(cinfo);
610 }
611
scmi_handle_notification(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)612 static void scmi_handle_notification(struct scmi_chan_info *cinfo,
613 u32 msg_hdr, void *priv)
614 {
615 struct scmi_xfer *xfer;
616 struct device *dev = cinfo->dev;
617 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
618 struct scmi_xfers_info *minfo = &info->rx_minfo;
619 ktime_t ts;
620
621 ts = ktime_get_boottime();
622 xfer = scmi_xfer_get(cinfo->handle, minfo, false);
623 if (IS_ERR(xfer)) {
624 dev_err(dev, "failed to get free message slot (%ld)\n",
625 PTR_ERR(xfer));
626 scmi_clear_channel(info, cinfo);
627 return;
628 }
629
630 unpack_scmi_header(msg_hdr, &xfer->hdr);
631 if (priv)
632 xfer->priv = priv;
633 info->desc->ops->fetch_notification(cinfo, info->desc->max_msg_size,
634 xfer);
635 scmi_notify(cinfo->handle, xfer->hdr.protocol_id,
636 xfer->hdr.id, xfer->rx.buf, xfer->rx.len, ts);
637
638 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
639 xfer->hdr.protocol_id, xfer->hdr.seq,
640 MSG_TYPE_NOTIFICATION);
641
642 __scmi_xfer_put(minfo, xfer);
643
644 scmi_clear_channel(info, cinfo);
645 }
646
scmi_handle_response(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)647 static void scmi_handle_response(struct scmi_chan_info *cinfo,
648 u32 msg_hdr, void *priv)
649 {
650 struct scmi_xfer *xfer;
651 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
652
653 xfer = scmi_xfer_command_acquire(cinfo, msg_hdr);
654 if (IS_ERR(xfer)) {
655 if (MSG_XTRACT_TYPE(msg_hdr) == MSG_TYPE_DELAYED_RESP)
656 scmi_clear_channel(info, cinfo);
657 return;
658 }
659
660 /* rx.len could be shrunk in the sync do_xfer, so reset to maxsz */
661 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP)
662 xfer->rx.len = info->desc->max_msg_size;
663
664 if (priv)
665 xfer->priv = priv;
666 info->desc->ops->fetch_response(cinfo, xfer);
667
668 trace_scmi_rx_done(xfer->transfer_id, xfer->hdr.id,
669 xfer->hdr.protocol_id, xfer->hdr.seq,
670 xfer->hdr.type);
671
672 if (xfer->hdr.type == MSG_TYPE_DELAYED_RESP) {
673 scmi_clear_channel(info, cinfo);
674 complete(xfer->async_done);
675 } else {
676 complete(&xfer->done);
677 }
678
679 scmi_xfer_command_release(info, xfer);
680 }
681
682 /**
683 * scmi_rx_callback() - callback for receiving messages
684 *
685 * @cinfo: SCMI channel info
686 * @msg_hdr: Message header
687 * @priv: Transport specific private data.
688 *
689 * Processes one received message to appropriate transfer information and
690 * signals completion of the transfer.
691 *
692 * NOTE: This function will be invoked in IRQ context, hence should be
693 * as optimal as possible.
694 */
scmi_rx_callback(struct scmi_chan_info * cinfo,u32 msg_hdr,void * priv)695 void scmi_rx_callback(struct scmi_chan_info *cinfo, u32 msg_hdr, void *priv)
696 {
697 u8 msg_type = MSG_XTRACT_TYPE(msg_hdr);
698
699 switch (msg_type) {
700 case MSG_TYPE_NOTIFICATION:
701 scmi_handle_notification(cinfo, msg_hdr, priv);
702 break;
703 case MSG_TYPE_COMMAND:
704 case MSG_TYPE_DELAYED_RESP:
705 scmi_handle_response(cinfo, msg_hdr, priv);
706 break;
707 default:
708 WARN_ONCE(1, "received unknown msg_type:%d\n", msg_type);
709 break;
710 }
711 }
712
713 /**
714 * xfer_put() - Release a transmit message
715 *
716 * @ph: Pointer to SCMI protocol handle
717 * @xfer: message that was reserved by xfer_get_init
718 */
xfer_put(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)719 static void xfer_put(const struct scmi_protocol_handle *ph,
720 struct scmi_xfer *xfer)
721 {
722 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
723 struct scmi_info *info = handle_to_scmi_info(pi->handle);
724
725 __scmi_xfer_put(&info->tx_minfo, xfer);
726 }
727
728 #define SCMI_MAX_POLL_TO_NS (100 * NSEC_PER_USEC)
729
scmi_xfer_done_no_timeout(struct scmi_chan_info * cinfo,struct scmi_xfer * xfer,ktime_t stop)730 static bool scmi_xfer_done_no_timeout(struct scmi_chan_info *cinfo,
731 struct scmi_xfer *xfer, ktime_t stop)
732 {
733 struct scmi_info *info = handle_to_scmi_info(cinfo->handle);
734
735 /*
736 * Poll also on xfer->done so that polling can be forcibly terminated
737 * in case of out-of-order receptions of delayed responses
738 */
739 return info->desc->ops->poll_done(cinfo, xfer) ||
740 try_wait_for_completion(&xfer->done) ||
741 ktime_after(ktime_get(), stop);
742 }
743
744 /**
745 * do_xfer() - Do one transfer
746 *
747 * @ph: Pointer to SCMI protocol handle
748 * @xfer: Transfer to initiate and wait for response
749 *
750 * Return: -ETIMEDOUT in case of no response, if transmit error,
751 * return corresponding error, else if all goes well,
752 * return 0.
753 */
do_xfer(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)754 static int do_xfer(const struct scmi_protocol_handle *ph,
755 struct scmi_xfer *xfer)
756 {
757 int ret;
758 int timeout;
759 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
760 struct scmi_info *info = handle_to_scmi_info(pi->handle);
761 struct device *dev = info->dev;
762 struct scmi_chan_info *cinfo;
763
764 if (xfer->hdr.poll_completion && !info->desc->ops->poll_done) {
765 dev_warn_once(dev,
766 "Polling mode is not supported by transport.\n");
767 return -EINVAL;
768 }
769
770 /*
771 * Initialise protocol id now from protocol handle to avoid it being
772 * overridden by mistake (or malice) by the protocol code mangling with
773 * the scmi_xfer structure prior to this.
774 */
775 xfer->hdr.protocol_id = pi->proto->id;
776 reinit_completion(&xfer->done);
777
778 cinfo = idr_find(&info->tx_idr, xfer->hdr.protocol_id);
779 if (unlikely(!cinfo))
780 return -EINVAL;
781
782 trace_scmi_xfer_begin(xfer->transfer_id, xfer->hdr.id,
783 xfer->hdr.protocol_id, xfer->hdr.seq,
784 xfer->hdr.poll_completion);
785
786 /* Clear any stale status */
787 xfer->hdr.status = SCMI_SUCCESS;
788 xfer->state = SCMI_XFER_SENT_OK;
789 /*
790 * Even though spinlocking is not needed here since no race is possible
791 * on xfer->state due to the monotonically increasing tokens allocation,
792 * we must anyway ensure xfer->state initialization is not re-ordered
793 * after the .send_message() to be sure that on the RX path an early
794 * ISR calling scmi_rx_callback() cannot see an old stale xfer->state.
795 */
796 smp_mb();
797
798 ret = info->desc->ops->send_message(cinfo, xfer);
799 if (ret < 0) {
800 dev_dbg(dev, "Failed to send message %d\n", ret);
801 return ret;
802 }
803
804 if (xfer->hdr.poll_completion) {
805 ktime_t stop = ktime_add_ns(ktime_get(), SCMI_MAX_POLL_TO_NS);
806
807 spin_until_cond(scmi_xfer_done_no_timeout(cinfo, xfer, stop));
808 if (ktime_before(ktime_get(), stop)) {
809 unsigned long flags;
810
811 /*
812 * Do not fetch_response if an out-of-order delayed
813 * response is being processed.
814 */
815 spin_lock_irqsave(&xfer->lock, flags);
816 if (xfer->state == SCMI_XFER_SENT_OK) {
817 info->desc->ops->fetch_response(cinfo, xfer);
818 xfer->state = SCMI_XFER_RESP_OK;
819 }
820 spin_unlock_irqrestore(&xfer->lock, flags);
821 } else {
822 ret = -ETIMEDOUT;
823 }
824 } else {
825 /* And we wait for the response. */
826 timeout = msecs_to_jiffies(info->desc->max_rx_timeout_ms);
827 if (!wait_for_completion_timeout(&xfer->done, timeout)) {
828 dev_err(dev, "timed out in resp(caller: %pS)\n",
829 (void *)_RET_IP_);
830 ret = -ETIMEDOUT;
831 }
832 }
833
834 if (!ret && xfer->hdr.status)
835 ret = scmi_to_linux_errno(xfer->hdr.status);
836
837 if (info->desc->ops->mark_txdone)
838 info->desc->ops->mark_txdone(cinfo, ret);
839
840 trace_scmi_xfer_end(xfer->transfer_id, xfer->hdr.id,
841 xfer->hdr.protocol_id, xfer->hdr.seq, ret);
842
843 return ret;
844 }
845
reset_rx_to_maxsz(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)846 static void reset_rx_to_maxsz(const struct scmi_protocol_handle *ph,
847 struct scmi_xfer *xfer)
848 {
849 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
850 struct scmi_info *info = handle_to_scmi_info(pi->handle);
851
852 xfer->rx.len = info->desc->max_msg_size;
853 }
854
855 #define SCMI_MAX_RESPONSE_TIMEOUT (2 * MSEC_PER_SEC)
856
857 /**
858 * do_xfer_with_response() - Do one transfer and wait until the delayed
859 * response is received
860 *
861 * @ph: Pointer to SCMI protocol handle
862 * @xfer: Transfer to initiate and wait for response
863 *
864 * Return: -ETIMEDOUT in case of no delayed response, if transmit error,
865 * return corresponding error, else if all goes well, return 0.
866 */
do_xfer_with_response(const struct scmi_protocol_handle * ph,struct scmi_xfer * xfer)867 static int do_xfer_with_response(const struct scmi_protocol_handle *ph,
868 struct scmi_xfer *xfer)
869 {
870 int ret, timeout = msecs_to_jiffies(SCMI_MAX_RESPONSE_TIMEOUT);
871 DECLARE_COMPLETION_ONSTACK(async_response);
872
873 xfer->async_done = &async_response;
874
875 ret = do_xfer(ph, xfer);
876 if (!ret) {
877 if (!wait_for_completion_timeout(xfer->async_done, timeout))
878 ret = -ETIMEDOUT;
879 else if (xfer->hdr.status)
880 ret = scmi_to_linux_errno(xfer->hdr.status);
881 }
882
883 xfer->async_done = NULL;
884 return ret;
885 }
886
887 /**
888 * xfer_get_init() - Allocate and initialise one message for transmit
889 *
890 * @ph: Pointer to SCMI protocol handle
891 * @msg_id: Message identifier
892 * @tx_size: transmit message size
893 * @rx_size: receive message size
894 * @p: pointer to the allocated and initialised message
895 *
896 * This function allocates the message using @scmi_xfer_get and
897 * initialise the header.
898 *
899 * Return: 0 if all went fine with @p pointing to message, else
900 * corresponding error.
901 */
xfer_get_init(const struct scmi_protocol_handle * ph,u8 msg_id,size_t tx_size,size_t rx_size,struct scmi_xfer ** p)902 static int xfer_get_init(const struct scmi_protocol_handle *ph,
903 u8 msg_id, size_t tx_size, size_t rx_size,
904 struct scmi_xfer **p)
905 {
906 int ret;
907 struct scmi_xfer *xfer;
908 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
909 struct scmi_info *info = handle_to_scmi_info(pi->handle);
910 struct scmi_xfers_info *minfo = &info->tx_minfo;
911 struct device *dev = info->dev;
912
913 /* Ensure we have sane transfer sizes */
914 if (rx_size > info->desc->max_msg_size ||
915 tx_size > info->desc->max_msg_size)
916 return -ERANGE;
917
918 xfer = scmi_xfer_get(pi->handle, minfo, true);
919 if (IS_ERR(xfer)) {
920 ret = PTR_ERR(xfer);
921 dev_err(dev, "failed to get free message slot(%d)\n", ret);
922 return ret;
923 }
924
925 xfer->tx.len = tx_size;
926 xfer->rx.len = rx_size ? : info->desc->max_msg_size;
927 xfer->hdr.type = MSG_TYPE_COMMAND;
928 xfer->hdr.id = msg_id;
929 xfer->hdr.poll_completion = false;
930
931 *p = xfer;
932
933 return 0;
934 }
935
936 /**
937 * version_get() - command to get the revision of the SCMI entity
938 *
939 * @ph: Pointer to SCMI protocol handle
940 * @version: Holds returned version of protocol.
941 *
942 * Updates the SCMI information in the internal data structure.
943 *
944 * Return: 0 if all went fine, else return appropriate error.
945 */
version_get(const struct scmi_protocol_handle * ph,u32 * version)946 static int version_get(const struct scmi_protocol_handle *ph, u32 *version)
947 {
948 int ret;
949 __le32 *rev_info;
950 struct scmi_xfer *t;
951
952 ret = xfer_get_init(ph, PROTOCOL_VERSION, 0, sizeof(*version), &t);
953 if (ret)
954 return ret;
955
956 ret = do_xfer(ph, t);
957 if (!ret) {
958 rev_info = t->rx.buf;
959 *version = le32_to_cpu(*rev_info);
960 }
961
962 xfer_put(ph, t);
963 return ret;
964 }
965
966 /**
967 * scmi_set_protocol_priv - Set protocol specific data at init time
968 *
969 * @ph: A reference to the protocol handle.
970 * @priv: The private data to set.
971 *
972 * Return: 0 on Success
973 */
scmi_set_protocol_priv(const struct scmi_protocol_handle * ph,void * priv)974 static int scmi_set_protocol_priv(const struct scmi_protocol_handle *ph,
975 void *priv)
976 {
977 struct scmi_protocol_instance *pi = ph_to_pi(ph);
978
979 pi->priv = priv;
980
981 return 0;
982 }
983
984 /**
985 * scmi_get_protocol_priv - Set protocol specific data at init time
986 *
987 * @ph: A reference to the protocol handle.
988 *
989 * Return: Protocol private data if any was set.
990 */
scmi_get_protocol_priv(const struct scmi_protocol_handle * ph)991 static void *scmi_get_protocol_priv(const struct scmi_protocol_handle *ph)
992 {
993 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
994
995 return pi->priv;
996 }
997
998 static const struct scmi_xfer_ops xfer_ops = {
999 .version_get = version_get,
1000 .xfer_get_init = xfer_get_init,
1001 .reset_rx_to_maxsz = reset_rx_to_maxsz,
1002 .do_xfer = do_xfer,
1003 .do_xfer_with_response = do_xfer_with_response,
1004 .xfer_put = xfer_put,
1005 };
1006
1007 /**
1008 * scmi_revision_area_get - Retrieve version memory area.
1009 *
1010 * @ph: A reference to the protocol handle.
1011 *
1012 * A helper to grab the version memory area reference during SCMI Base protocol
1013 * initialization.
1014 *
1015 * Return: A reference to the version memory area associated to the SCMI
1016 * instance underlying this protocol handle.
1017 */
1018 struct scmi_revision_info *
scmi_revision_area_get(const struct scmi_protocol_handle * ph)1019 scmi_revision_area_get(const struct scmi_protocol_handle *ph)
1020 {
1021 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1022
1023 return pi->handle->version;
1024 }
1025
1026 /**
1027 * scmi_alloc_init_protocol_instance - Allocate and initialize a protocol
1028 * instance descriptor.
1029 * @info: The reference to the related SCMI instance.
1030 * @proto: The protocol descriptor.
1031 *
1032 * Allocate a new protocol instance descriptor, using the provided @proto
1033 * description, against the specified SCMI instance @info, and initialize it;
1034 * all resources management is handled via a dedicated per-protocol devres
1035 * group.
1036 *
1037 * Context: Assumes to be called with @protocols_mtx already acquired.
1038 * Return: A reference to a freshly allocated and initialized protocol instance
1039 * or ERR_PTR on failure. On failure the @proto reference is at first
1040 * put using @scmi_protocol_put() before releasing all the devres group.
1041 */
1042 static struct scmi_protocol_instance *
scmi_alloc_init_protocol_instance(struct scmi_info * info,const struct scmi_protocol * proto)1043 scmi_alloc_init_protocol_instance(struct scmi_info *info,
1044 const struct scmi_protocol *proto)
1045 {
1046 int ret = -ENOMEM;
1047 void *gid;
1048 struct scmi_protocol_instance *pi;
1049 const struct scmi_handle *handle = &info->handle;
1050
1051 /* Protocol specific devres group */
1052 gid = devres_open_group(handle->dev, NULL, GFP_KERNEL);
1053 if (!gid) {
1054 scmi_protocol_put(proto->id);
1055 goto out;
1056 }
1057
1058 pi = devm_kzalloc(handle->dev, sizeof(*pi), GFP_KERNEL);
1059 if (!pi)
1060 goto clean;
1061
1062 pi->gid = gid;
1063 pi->proto = proto;
1064 pi->handle = handle;
1065 pi->ph.dev = handle->dev;
1066 pi->ph.xops = &xfer_ops;
1067 pi->ph.set_priv = scmi_set_protocol_priv;
1068 pi->ph.get_priv = scmi_get_protocol_priv;
1069 refcount_set(&pi->users, 1);
1070 /* proto->init is assured NON NULL by scmi_protocol_register */
1071 ret = pi->proto->instance_init(&pi->ph);
1072 if (ret)
1073 goto clean;
1074
1075 ret = idr_alloc(&info->protocols, pi, proto->id, proto->id + 1,
1076 GFP_KERNEL);
1077 if (ret != proto->id)
1078 goto clean;
1079
1080 /*
1081 * Warn but ignore events registration errors since we do not want
1082 * to skip whole protocols if their notifications are messed up.
1083 */
1084 if (pi->proto->events) {
1085 ret = scmi_register_protocol_events(handle, pi->proto->id,
1086 &pi->ph,
1087 pi->proto->events);
1088 if (ret)
1089 dev_warn(handle->dev,
1090 "Protocol:%X - Events Registration Failed - err:%d\n",
1091 pi->proto->id, ret);
1092 }
1093
1094 devres_close_group(handle->dev, pi->gid);
1095 dev_dbg(handle->dev, "Initialized protocol: 0x%X\n", pi->proto->id);
1096
1097 return pi;
1098
1099 clean:
1100 /* Take care to put the protocol module's owner before releasing all */
1101 scmi_protocol_put(proto->id);
1102 devres_release_group(handle->dev, gid);
1103 out:
1104 return ERR_PTR(ret);
1105 }
1106
1107 /**
1108 * scmi_get_protocol_instance - Protocol initialization helper.
1109 * @handle: A reference to the SCMI platform instance.
1110 * @protocol_id: The protocol being requested.
1111 *
1112 * In case the required protocol has never been requested before for this
1113 * instance, allocate and initialize all the needed structures while handling
1114 * resource allocation with a dedicated per-protocol devres subgroup.
1115 *
1116 * Return: A reference to an initialized protocol instance or error on failure:
1117 * in particular returns -EPROBE_DEFER when the desired protocol could
1118 * NOT be found.
1119 */
1120 static struct scmi_protocol_instance * __must_check
scmi_get_protocol_instance(const struct scmi_handle * handle,u8 protocol_id)1121 scmi_get_protocol_instance(const struct scmi_handle *handle, u8 protocol_id)
1122 {
1123 struct scmi_protocol_instance *pi;
1124 struct scmi_info *info = handle_to_scmi_info(handle);
1125
1126 mutex_lock(&info->protocols_mtx);
1127 pi = idr_find(&info->protocols, protocol_id);
1128
1129 if (pi) {
1130 refcount_inc(&pi->users);
1131 } else {
1132 const struct scmi_protocol *proto;
1133
1134 /* Fails if protocol not registered on bus */
1135 proto = scmi_protocol_get(protocol_id);
1136 if (proto)
1137 pi = scmi_alloc_init_protocol_instance(info, proto);
1138 else
1139 pi = ERR_PTR(-EPROBE_DEFER);
1140 }
1141 mutex_unlock(&info->protocols_mtx);
1142
1143 return pi;
1144 }
1145
1146 /**
1147 * scmi_protocol_acquire - Protocol acquire
1148 * @handle: A reference to the SCMI platform instance.
1149 * @protocol_id: The protocol being requested.
1150 *
1151 * Register a new user for the requested protocol on the specified SCMI
1152 * platform instance, possibly triggering its initialization on first user.
1153 *
1154 * Return: 0 if protocol was acquired successfully.
1155 */
scmi_protocol_acquire(const struct scmi_handle * handle,u8 protocol_id)1156 int scmi_protocol_acquire(const struct scmi_handle *handle, u8 protocol_id)
1157 {
1158 return PTR_ERR_OR_ZERO(scmi_get_protocol_instance(handle, protocol_id));
1159 }
1160
1161 /**
1162 * scmi_protocol_release - Protocol de-initialization helper.
1163 * @handle: A reference to the SCMI platform instance.
1164 * @protocol_id: The protocol being requested.
1165 *
1166 * Remove one user for the specified protocol and triggers de-initialization
1167 * and resources de-allocation once the last user has gone.
1168 */
scmi_protocol_release(const struct scmi_handle * handle,u8 protocol_id)1169 void scmi_protocol_release(const struct scmi_handle *handle, u8 protocol_id)
1170 {
1171 struct scmi_info *info = handle_to_scmi_info(handle);
1172 struct scmi_protocol_instance *pi;
1173
1174 mutex_lock(&info->protocols_mtx);
1175 pi = idr_find(&info->protocols, protocol_id);
1176 if (WARN_ON(!pi))
1177 goto out;
1178
1179 if (refcount_dec_and_test(&pi->users)) {
1180 void *gid = pi->gid;
1181
1182 if (pi->proto->events)
1183 scmi_deregister_protocol_events(handle, protocol_id);
1184
1185 if (pi->proto->instance_deinit)
1186 pi->proto->instance_deinit(&pi->ph);
1187
1188 idr_remove(&info->protocols, protocol_id);
1189
1190 scmi_protocol_put(protocol_id);
1191
1192 devres_release_group(handle->dev, gid);
1193 dev_dbg(handle->dev, "De-Initialized protocol: 0x%X\n",
1194 protocol_id);
1195 }
1196
1197 out:
1198 mutex_unlock(&info->protocols_mtx);
1199 }
1200
scmi_setup_protocol_implemented(const struct scmi_protocol_handle * ph,u8 * prot_imp)1201 void scmi_setup_protocol_implemented(const struct scmi_protocol_handle *ph,
1202 u8 *prot_imp)
1203 {
1204 const struct scmi_protocol_instance *pi = ph_to_pi(ph);
1205 struct scmi_info *info = handle_to_scmi_info(pi->handle);
1206
1207 info->protocols_imp = prot_imp;
1208 }
1209
1210 static bool
scmi_is_protocol_implemented(const struct scmi_handle * handle,u8 prot_id)1211 scmi_is_protocol_implemented(const struct scmi_handle *handle, u8 prot_id)
1212 {
1213 int i;
1214 struct scmi_info *info = handle_to_scmi_info(handle);
1215
1216 if (!info->protocols_imp)
1217 return false;
1218
1219 for (i = 0; i < MAX_PROTOCOLS_IMP; i++)
1220 if (info->protocols_imp[i] == prot_id)
1221 return true;
1222 return false;
1223 }
1224
1225 struct scmi_protocol_devres {
1226 const struct scmi_handle *handle;
1227 u8 protocol_id;
1228 };
1229
scmi_devm_release_protocol(struct device * dev,void * res)1230 static void scmi_devm_release_protocol(struct device *dev, void *res)
1231 {
1232 struct scmi_protocol_devres *dres = res;
1233
1234 scmi_protocol_release(dres->handle, dres->protocol_id);
1235 }
1236
1237 /**
1238 * scmi_devm_protocol_get - Devres managed get protocol operations and handle
1239 * @sdev: A reference to an scmi_device whose embedded struct device is to
1240 * be used for devres accounting.
1241 * @protocol_id: The protocol being requested.
1242 * @ph: A pointer reference used to pass back the associated protocol handle.
1243 *
1244 * Get hold of a protocol accounting for its usage, eventually triggering its
1245 * initialization, and returning the protocol specific operations and related
1246 * protocol handle which will be used as first argument in most of the
1247 * protocols operations methods.
1248 * Being a devres based managed method, protocol hold will be automatically
1249 * released, and possibly de-initialized on last user, once the SCMI driver
1250 * owning the scmi_device is unbound from it.
1251 *
1252 * Return: A reference to the requested protocol operations or error.
1253 * Must be checked for errors by caller.
1254 */
1255 static const void __must_check *
scmi_devm_protocol_get(struct scmi_device * sdev,u8 protocol_id,struct scmi_protocol_handle ** ph)1256 scmi_devm_protocol_get(struct scmi_device *sdev, u8 protocol_id,
1257 struct scmi_protocol_handle **ph)
1258 {
1259 struct scmi_protocol_instance *pi;
1260 struct scmi_protocol_devres *dres;
1261 struct scmi_handle *handle = sdev->handle;
1262
1263 if (!ph)
1264 return ERR_PTR(-EINVAL);
1265
1266 dres = devres_alloc(scmi_devm_release_protocol,
1267 sizeof(*dres), GFP_KERNEL);
1268 if (!dres)
1269 return ERR_PTR(-ENOMEM);
1270
1271 pi = scmi_get_protocol_instance(handle, protocol_id);
1272 if (IS_ERR(pi)) {
1273 devres_free(dres);
1274 return pi;
1275 }
1276
1277 dres->handle = handle;
1278 dres->protocol_id = protocol_id;
1279 devres_add(&sdev->dev, dres);
1280
1281 *ph = &pi->ph;
1282
1283 return pi->proto->ops;
1284 }
1285
scmi_devm_protocol_match(struct device * dev,void * res,void * data)1286 static int scmi_devm_protocol_match(struct device *dev, void *res, void *data)
1287 {
1288 struct scmi_protocol_devres *dres = res;
1289
1290 if (WARN_ON(!dres || !data))
1291 return 0;
1292
1293 return dres->protocol_id == *((u8 *)data);
1294 }
1295
1296 /**
1297 * scmi_devm_protocol_put - Devres managed put protocol operations and handle
1298 * @sdev: A reference to an scmi_device whose embedded struct device is to
1299 * be used for devres accounting.
1300 * @protocol_id: The protocol being requested.
1301 *
1302 * Explicitly release a protocol hold previously obtained calling the above
1303 * @scmi_devm_protocol_get.
1304 */
scmi_devm_protocol_put(struct scmi_device * sdev,u8 protocol_id)1305 static void scmi_devm_protocol_put(struct scmi_device *sdev, u8 protocol_id)
1306 {
1307 int ret;
1308
1309 ret = devres_release(&sdev->dev, scmi_devm_release_protocol,
1310 scmi_devm_protocol_match, &protocol_id);
1311 WARN_ON(ret);
1312 }
1313
1314 static inline
scmi_handle_get_from_info_unlocked(struct scmi_info * info)1315 struct scmi_handle *scmi_handle_get_from_info_unlocked(struct scmi_info *info)
1316 {
1317 info->users++;
1318 return &info->handle;
1319 }
1320
1321 /**
1322 * scmi_handle_get() - Get the SCMI handle for a device
1323 *
1324 * @dev: pointer to device for which we want SCMI handle
1325 *
1326 * NOTE: The function does not track individual clients of the framework
1327 * and is expected to be maintained by caller of SCMI protocol library.
1328 * scmi_handle_put must be balanced with successful scmi_handle_get
1329 *
1330 * Return: pointer to handle if successful, NULL on error
1331 */
scmi_handle_get(struct device * dev)1332 struct scmi_handle *scmi_handle_get(struct device *dev)
1333 {
1334 struct list_head *p;
1335 struct scmi_info *info;
1336 struct scmi_handle *handle = NULL;
1337
1338 mutex_lock(&scmi_list_mutex);
1339 list_for_each(p, &scmi_list) {
1340 info = list_entry(p, struct scmi_info, node);
1341 if (dev->parent == info->dev) {
1342 handle = scmi_handle_get_from_info_unlocked(info);
1343 break;
1344 }
1345 }
1346 mutex_unlock(&scmi_list_mutex);
1347
1348 return handle;
1349 }
1350
1351 /**
1352 * scmi_handle_put() - Release the handle acquired by scmi_handle_get
1353 *
1354 * @handle: handle acquired by scmi_handle_get
1355 *
1356 * NOTE: The function does not track individual clients of the framework
1357 * and is expected to be maintained by caller of SCMI protocol library.
1358 * scmi_handle_put must be balanced with successful scmi_handle_get
1359 *
1360 * Return: 0 is successfully released
1361 * if null was passed, it returns -EINVAL;
1362 */
scmi_handle_put(const struct scmi_handle * handle)1363 int scmi_handle_put(const struct scmi_handle *handle)
1364 {
1365 struct scmi_info *info;
1366
1367 if (!handle)
1368 return -EINVAL;
1369
1370 info = handle_to_scmi_info(handle);
1371 mutex_lock(&scmi_list_mutex);
1372 if (!WARN_ON(!info->users))
1373 info->users--;
1374 mutex_unlock(&scmi_list_mutex);
1375
1376 return 0;
1377 }
1378
__scmi_xfer_info_init(struct scmi_info * sinfo,struct scmi_xfers_info * info)1379 static int __scmi_xfer_info_init(struct scmi_info *sinfo,
1380 struct scmi_xfers_info *info)
1381 {
1382 int i;
1383 struct scmi_xfer *xfer;
1384 struct device *dev = sinfo->dev;
1385 const struct scmi_desc *desc = sinfo->desc;
1386
1387 /* Pre-allocated messages, no more than what hdr.seq can support */
1388 if (WARN_ON(!info->max_msg || info->max_msg > MSG_TOKEN_MAX)) {
1389 dev_err(dev,
1390 "Invalid maximum messages %d, not in range [1 - %lu]\n",
1391 info->max_msg, MSG_TOKEN_MAX);
1392 return -EINVAL;
1393 }
1394
1395 hash_init(info->pending_xfers);
1396
1397 /* Allocate a bitmask sized to hold MSG_TOKEN_MAX tokens */
1398 info->xfer_alloc_table = devm_kcalloc(dev, BITS_TO_LONGS(MSG_TOKEN_MAX),
1399 sizeof(long), GFP_KERNEL);
1400 if (!info->xfer_alloc_table)
1401 return -ENOMEM;
1402
1403 /*
1404 * Preallocate a number of xfers equal to max inflight messages,
1405 * pre-initialize the buffer pointer to pre-allocated buffers and
1406 * attach all of them to the free list
1407 */
1408 INIT_HLIST_HEAD(&info->free_xfers);
1409 for (i = 0; i < info->max_msg; i++) {
1410 xfer = devm_kzalloc(dev, sizeof(*xfer), GFP_KERNEL);
1411 if (!xfer)
1412 return -ENOMEM;
1413
1414 xfer->rx.buf = devm_kcalloc(dev, sizeof(u8), desc->max_msg_size,
1415 GFP_KERNEL);
1416 if (!xfer->rx.buf)
1417 return -ENOMEM;
1418
1419 xfer->tx.buf = xfer->rx.buf;
1420 init_completion(&xfer->done);
1421 spin_lock_init(&xfer->lock);
1422
1423 /* Add initialized xfer to the free list */
1424 hlist_add_head(&xfer->node, &info->free_xfers);
1425 }
1426
1427 spin_lock_init(&info->xfer_lock);
1428
1429 return 0;
1430 }
1431
scmi_channels_max_msg_configure(struct scmi_info * sinfo)1432 static int scmi_channels_max_msg_configure(struct scmi_info *sinfo)
1433 {
1434 const struct scmi_desc *desc = sinfo->desc;
1435
1436 if (!desc->ops->get_max_msg) {
1437 sinfo->tx_minfo.max_msg = desc->max_msg;
1438 sinfo->rx_minfo.max_msg = desc->max_msg;
1439 } else {
1440 struct scmi_chan_info *base_cinfo;
1441
1442 base_cinfo = idr_find(&sinfo->tx_idr, SCMI_PROTOCOL_BASE);
1443 if (!base_cinfo)
1444 return -EINVAL;
1445 sinfo->tx_minfo.max_msg = desc->ops->get_max_msg(base_cinfo);
1446
1447 /* RX channel is optional so can be skipped */
1448 base_cinfo = idr_find(&sinfo->rx_idr, SCMI_PROTOCOL_BASE);
1449 if (base_cinfo)
1450 sinfo->rx_minfo.max_msg =
1451 desc->ops->get_max_msg(base_cinfo);
1452 }
1453
1454 return 0;
1455 }
1456
scmi_xfer_info_init(struct scmi_info * sinfo)1457 static int scmi_xfer_info_init(struct scmi_info *sinfo)
1458 {
1459 int ret;
1460
1461 ret = scmi_channels_max_msg_configure(sinfo);
1462 if (ret)
1463 return ret;
1464
1465 ret = __scmi_xfer_info_init(sinfo, &sinfo->tx_minfo);
1466 if (!ret && !idr_is_empty(&sinfo->rx_idr))
1467 ret = __scmi_xfer_info_init(sinfo, &sinfo->rx_minfo);
1468
1469 return ret;
1470 }
1471
scmi_chan_setup(struct scmi_info * info,struct device * dev,int prot_id,bool tx)1472 static int scmi_chan_setup(struct scmi_info *info, struct device *dev,
1473 int prot_id, bool tx)
1474 {
1475 int ret, idx;
1476 struct scmi_chan_info *cinfo;
1477 struct idr *idr;
1478
1479 /* Transmit channel is first entry i.e. index 0 */
1480 idx = tx ? 0 : 1;
1481 idr = tx ? &info->tx_idr : &info->rx_idr;
1482
1483 /* check if already allocated, used for multiple device per protocol */
1484 cinfo = idr_find(idr, prot_id);
1485 if (cinfo)
1486 return 0;
1487
1488 if (!info->desc->ops->chan_available(dev, idx)) {
1489 cinfo = idr_find(idr, SCMI_PROTOCOL_BASE);
1490 if (unlikely(!cinfo)) /* Possible only if platform has no Rx */
1491 return -EINVAL;
1492 goto idr_alloc;
1493 }
1494
1495 cinfo = devm_kzalloc(info->dev, sizeof(*cinfo), GFP_KERNEL);
1496 if (!cinfo)
1497 return -ENOMEM;
1498
1499 cinfo->dev = dev;
1500
1501 ret = info->desc->ops->chan_setup(cinfo, info->dev, tx);
1502 if (ret)
1503 return ret;
1504
1505 idr_alloc:
1506 ret = idr_alloc(idr, cinfo, prot_id, prot_id + 1, GFP_KERNEL);
1507 if (ret != prot_id) {
1508 dev_err(dev, "unable to allocate SCMI idr slot err %d\n", ret);
1509 return ret;
1510 }
1511
1512 cinfo->handle = &info->handle;
1513 return 0;
1514 }
1515
1516 static inline int
scmi_txrx_setup(struct scmi_info * info,struct device * dev,int prot_id)1517 scmi_txrx_setup(struct scmi_info *info, struct device *dev, int prot_id)
1518 {
1519 int ret = scmi_chan_setup(info, dev, prot_id, true);
1520
1521 if (!ret) {
1522 /* Rx is optional, report only memory errors */
1523 ret = scmi_chan_setup(info, dev, prot_id, false);
1524 if (ret && ret != -ENOMEM)
1525 ret = 0;
1526 }
1527
1528 return ret;
1529 }
1530
1531 /**
1532 * scmi_get_protocol_device - Helper to get/create an SCMI device.
1533 *
1534 * @np: A device node representing a valid active protocols for the referred
1535 * SCMI instance.
1536 * @info: The referred SCMI instance for which we are getting/creating this
1537 * device.
1538 * @prot_id: The protocol ID.
1539 * @name: The device name.
1540 *
1541 * Referring to the specific SCMI instance identified by @info, this helper
1542 * takes care to return a properly initialized device matching the requested
1543 * @proto_id and @name: if device was still not existent it is created as a
1544 * child of the specified SCMI instance @info and its transport properly
1545 * initialized as usual.
1546 *
1547 * Return: A properly initialized scmi device, NULL otherwise.
1548 */
1549 static inline struct scmi_device *
scmi_get_protocol_device(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)1550 scmi_get_protocol_device(struct device_node *np, struct scmi_info *info,
1551 int prot_id, const char *name)
1552 {
1553 struct scmi_device *sdev;
1554
1555 /* Already created for this parent SCMI instance ? */
1556 sdev = scmi_child_dev_find(info->dev, prot_id, name);
1557 if (sdev)
1558 return sdev;
1559
1560 pr_debug("Creating SCMI device (%s) for protocol %x\n", name, prot_id);
1561
1562 sdev = scmi_device_create(np, info->dev, prot_id, name);
1563 if (!sdev) {
1564 dev_err(info->dev, "failed to create %d protocol device\n",
1565 prot_id);
1566 return NULL;
1567 }
1568
1569 if (scmi_txrx_setup(info, &sdev->dev, prot_id)) {
1570 dev_err(&sdev->dev, "failed to setup transport\n");
1571 scmi_device_destroy(sdev);
1572 return NULL;
1573 }
1574
1575 return sdev;
1576 }
1577
1578 static inline void
scmi_create_protocol_device(struct device_node * np,struct scmi_info * info,int prot_id,const char * name)1579 scmi_create_protocol_device(struct device_node *np, struct scmi_info *info,
1580 int prot_id, const char *name)
1581 {
1582 struct scmi_device *sdev;
1583
1584 sdev = scmi_get_protocol_device(np, info, prot_id, name);
1585 if (!sdev)
1586 return;
1587
1588 /* setup handle now as the transport is ready */
1589 scmi_set_handle(sdev);
1590 }
1591
1592 /**
1593 * scmi_create_protocol_devices - Create devices for all pending requests for
1594 * this SCMI instance.
1595 *
1596 * @np: The device node describing the protocol
1597 * @info: The SCMI instance descriptor
1598 * @prot_id: The protocol ID
1599 *
1600 * All devices previously requested for this instance (if any) are found and
1601 * created by scanning the proper @&scmi_requested_devices entry.
1602 */
scmi_create_protocol_devices(struct device_node * np,struct scmi_info * info,int prot_id)1603 static void scmi_create_protocol_devices(struct device_node *np,
1604 struct scmi_info *info, int prot_id)
1605 {
1606 struct list_head *phead;
1607
1608 mutex_lock(&scmi_requested_devices_mtx);
1609 phead = idr_find(&scmi_requested_devices, prot_id);
1610 if (phead) {
1611 struct scmi_requested_dev *rdev;
1612
1613 list_for_each_entry(rdev, phead, node)
1614 scmi_create_protocol_device(np, info, prot_id,
1615 rdev->id_table->name);
1616 }
1617 mutex_unlock(&scmi_requested_devices_mtx);
1618 }
1619
1620 /**
1621 * scmi_protocol_device_request - Helper to request a device
1622 *
1623 * @id_table: A protocol/name pair descriptor for the device to be created.
1624 *
1625 * This helper let an SCMI driver request specific devices identified by the
1626 * @id_table to be created for each active SCMI instance.
1627 *
1628 * The requested device name MUST NOT be already existent for any protocol;
1629 * at first the freshly requested @id_table is annotated in the IDR table
1630 * @scmi_requested_devices, then a matching device is created for each already
1631 * active SCMI instance. (if any)
1632 *
1633 * This way the requested device is created straight-away for all the already
1634 * initialized(probed) SCMI instances (handles) and it remains also annotated
1635 * as pending creation if the requesting SCMI driver was loaded before some
1636 * SCMI instance and related transports were available: when such late instance
1637 * is probed, its probe will take care to scan the list of pending requested
1638 * devices and create those on its own (see @scmi_create_protocol_devices and
1639 * its enclosing loop)
1640 *
1641 * Return: 0 on Success
1642 */
scmi_protocol_device_request(const struct scmi_device_id * id_table)1643 int scmi_protocol_device_request(const struct scmi_device_id *id_table)
1644 {
1645 int ret = 0;
1646 unsigned int id = 0;
1647 struct list_head *head, *phead = NULL;
1648 struct scmi_requested_dev *rdev;
1649 struct scmi_info *info;
1650
1651 pr_debug("Requesting SCMI device (%s) for protocol %x\n",
1652 id_table->name, id_table->protocol_id);
1653
1654 /*
1655 * Search for the matching protocol rdev list and then search
1656 * of any existent equally named device...fails if any duplicate found.
1657 */
1658 mutex_lock(&scmi_requested_devices_mtx);
1659 idr_for_each_entry(&scmi_requested_devices, head, id) {
1660 if (!phead) {
1661 /* A list found registered in the IDR is never empty */
1662 rdev = list_first_entry(head, struct scmi_requested_dev,
1663 node);
1664 if (rdev->id_table->protocol_id ==
1665 id_table->protocol_id)
1666 phead = head;
1667 }
1668 list_for_each_entry(rdev, head, node) {
1669 if (!strcmp(rdev->id_table->name, id_table->name)) {
1670 pr_err("Ignoring duplicate request [%d] %s\n",
1671 rdev->id_table->protocol_id,
1672 rdev->id_table->name);
1673 ret = -EINVAL;
1674 goto out;
1675 }
1676 }
1677 }
1678
1679 /*
1680 * No duplicate found for requested id_table, so let's create a new
1681 * requested device entry for this new valid request.
1682 */
1683 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1684 if (!rdev) {
1685 ret = -ENOMEM;
1686 goto out;
1687 }
1688 rdev->id_table = id_table;
1689
1690 /*
1691 * Append the new requested device table descriptor to the head of the
1692 * related protocol list, eventually creating such head if not already
1693 * there.
1694 */
1695 if (!phead) {
1696 phead = kzalloc(sizeof(*phead), GFP_KERNEL);
1697 if (!phead) {
1698 kfree(rdev);
1699 ret = -ENOMEM;
1700 goto out;
1701 }
1702 INIT_LIST_HEAD(phead);
1703
1704 ret = idr_alloc(&scmi_requested_devices, (void *)phead,
1705 id_table->protocol_id,
1706 id_table->protocol_id + 1, GFP_KERNEL);
1707 if (ret != id_table->protocol_id) {
1708 pr_err("Failed to save SCMI device - ret:%d\n", ret);
1709 kfree(rdev);
1710 kfree(phead);
1711 ret = -EINVAL;
1712 goto out;
1713 }
1714 ret = 0;
1715 }
1716 list_add(&rdev->node, phead);
1717
1718 /*
1719 * Now effectively create and initialize the requested device for every
1720 * already initialized SCMI instance which has registered the requested
1721 * protocol as a valid active one: i.e. defined in DT and supported by
1722 * current platform FW.
1723 */
1724 mutex_lock(&scmi_list_mutex);
1725 list_for_each_entry(info, &scmi_list, node) {
1726 struct device_node *child;
1727
1728 child = idr_find(&info->active_protocols,
1729 id_table->protocol_id);
1730 if (child) {
1731 struct scmi_device *sdev;
1732
1733 sdev = scmi_get_protocol_device(child, info,
1734 id_table->protocol_id,
1735 id_table->name);
1736 if (sdev) {
1737 /* Set handle if not already set: device existed */
1738 if (!sdev->handle)
1739 sdev->handle =
1740 scmi_handle_get_from_info_unlocked(info);
1741 /* Relink consumer and suppliers */
1742 if (sdev->handle)
1743 scmi_device_link_add(&sdev->dev,
1744 sdev->handle->dev);
1745 }
1746 } else {
1747 dev_err(info->dev,
1748 "Failed. SCMI protocol %d not active.\n",
1749 id_table->protocol_id);
1750 }
1751 }
1752 mutex_unlock(&scmi_list_mutex);
1753
1754 out:
1755 mutex_unlock(&scmi_requested_devices_mtx);
1756
1757 return ret;
1758 }
1759
1760 /**
1761 * scmi_protocol_device_unrequest - Helper to unrequest a device
1762 *
1763 * @id_table: A protocol/name pair descriptor for the device to be unrequested.
1764 *
1765 * An helper to let an SCMI driver release its request about devices; note that
1766 * devices are created and initialized once the first SCMI driver request them
1767 * but they destroyed only on SCMI core unloading/unbinding.
1768 *
1769 * The current SCMI transport layer uses such devices as internal references and
1770 * as such they could be shared as same transport between multiple drivers so
1771 * that cannot be safely destroyed till the whole SCMI stack is removed.
1772 * (unless adding further burden of refcounting.)
1773 */
scmi_protocol_device_unrequest(const struct scmi_device_id * id_table)1774 void scmi_protocol_device_unrequest(const struct scmi_device_id *id_table)
1775 {
1776 struct list_head *phead;
1777
1778 pr_debug("Unrequesting SCMI device (%s) for protocol %x\n",
1779 id_table->name, id_table->protocol_id);
1780
1781 mutex_lock(&scmi_requested_devices_mtx);
1782 phead = idr_find(&scmi_requested_devices, id_table->protocol_id);
1783 if (phead) {
1784 struct scmi_requested_dev *victim, *tmp;
1785
1786 list_for_each_entry_safe(victim, tmp, phead, node) {
1787 if (!strcmp(victim->id_table->name, id_table->name)) {
1788 list_del(&victim->node);
1789 kfree(victim);
1790 break;
1791 }
1792 }
1793
1794 if (list_empty(phead)) {
1795 idr_remove(&scmi_requested_devices,
1796 id_table->protocol_id);
1797 kfree(phead);
1798 }
1799 }
1800 mutex_unlock(&scmi_requested_devices_mtx);
1801 }
1802
scmi_cleanup_txrx_channels(struct scmi_info * info)1803 static int scmi_cleanup_txrx_channels(struct scmi_info *info)
1804 {
1805 int ret;
1806 struct idr *idr = &info->tx_idr;
1807
1808 ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
1809 idr_destroy(&info->tx_idr);
1810
1811 idr = &info->rx_idr;
1812 ret = idr_for_each(idr, info->desc->ops->chan_free, idr);
1813 idr_destroy(&info->rx_idr);
1814
1815 return ret;
1816 }
1817
scmi_probe(struct platform_device * pdev)1818 static int scmi_probe(struct platform_device *pdev)
1819 {
1820 int ret;
1821 struct scmi_handle *handle;
1822 const struct scmi_desc *desc;
1823 struct scmi_info *info;
1824 struct device *dev = &pdev->dev;
1825 struct device_node *child, *np = dev->of_node;
1826
1827 desc = of_device_get_match_data(dev);
1828 if (!desc)
1829 return -EINVAL;
1830
1831 info = devm_kzalloc(dev, sizeof(*info), GFP_KERNEL);
1832 if (!info)
1833 return -ENOMEM;
1834
1835 info->dev = dev;
1836 info->desc = desc;
1837 INIT_LIST_HEAD(&info->node);
1838 idr_init(&info->protocols);
1839 mutex_init(&info->protocols_mtx);
1840 idr_init(&info->active_protocols);
1841
1842 platform_set_drvdata(pdev, info);
1843 idr_init(&info->tx_idr);
1844 idr_init(&info->rx_idr);
1845
1846 handle = &info->handle;
1847 handle->dev = info->dev;
1848 handle->version = &info->version;
1849 handle->devm_protocol_get = scmi_devm_protocol_get;
1850 handle->devm_protocol_put = scmi_devm_protocol_put;
1851
1852 if (desc->ops->link_supplier) {
1853 ret = desc->ops->link_supplier(dev);
1854 if (ret)
1855 return ret;
1856 }
1857
1858 ret = scmi_txrx_setup(info, dev, SCMI_PROTOCOL_BASE);
1859 if (ret)
1860 return ret;
1861
1862 ret = scmi_xfer_info_init(info);
1863 if (ret)
1864 goto clear_txrx_setup;
1865
1866 if (scmi_notification_init(handle))
1867 dev_err(dev, "SCMI Notifications NOT available.\n");
1868
1869 /*
1870 * Trigger SCMI Base protocol initialization.
1871 * It's mandatory and won't be ever released/deinit until the
1872 * SCMI stack is shutdown/unloaded as a whole.
1873 */
1874 ret = scmi_protocol_acquire(handle, SCMI_PROTOCOL_BASE);
1875 if (ret) {
1876 dev_err(dev, "unable to communicate with SCMI\n");
1877 goto notification_exit;
1878 }
1879
1880 mutex_lock(&scmi_list_mutex);
1881 list_add_tail(&info->node, &scmi_list);
1882 mutex_unlock(&scmi_list_mutex);
1883
1884 for_each_available_child_of_node(np, child) {
1885 u32 prot_id;
1886
1887 if (of_property_read_u32(child, "reg", &prot_id))
1888 continue;
1889
1890 if (!FIELD_FIT(MSG_PROTOCOL_ID_MASK, prot_id))
1891 dev_err(dev, "Out of range protocol %d\n", prot_id);
1892
1893 if (!scmi_is_protocol_implemented(handle, prot_id)) {
1894 dev_err(dev, "SCMI protocol %d not implemented\n",
1895 prot_id);
1896 continue;
1897 }
1898
1899 /*
1900 * Save this valid DT protocol descriptor amongst
1901 * @active_protocols for this SCMI instance/
1902 */
1903 ret = idr_alloc(&info->active_protocols, child,
1904 prot_id, prot_id + 1, GFP_KERNEL);
1905 if (ret != prot_id) {
1906 dev_err(dev, "SCMI protocol %d already activated. Skip\n",
1907 prot_id);
1908 continue;
1909 }
1910
1911 of_node_get(child);
1912 scmi_create_protocol_devices(child, info, prot_id);
1913 }
1914
1915 return 0;
1916
1917 notification_exit:
1918 scmi_notification_exit(&info->handle);
1919 clear_txrx_setup:
1920 scmi_cleanup_txrx_channels(info);
1921 return ret;
1922 }
1923
scmi_free_channel(struct scmi_chan_info * cinfo,struct idr * idr,int id)1924 void scmi_free_channel(struct scmi_chan_info *cinfo, struct idr *idr, int id)
1925 {
1926 idr_remove(idr, id);
1927 }
1928
scmi_remove(struct platform_device * pdev)1929 static int scmi_remove(struct platform_device *pdev)
1930 {
1931 int ret, id;
1932 struct scmi_info *info = platform_get_drvdata(pdev);
1933 struct device_node *child;
1934
1935 mutex_lock(&scmi_list_mutex);
1936 if (info->users)
1937 dev_warn(&pdev->dev,
1938 "Still active SCMI users will be forcibly unbound.\n");
1939 list_del(&info->node);
1940 mutex_unlock(&scmi_list_mutex);
1941
1942 scmi_notification_exit(&info->handle);
1943
1944 mutex_lock(&info->protocols_mtx);
1945 idr_destroy(&info->protocols);
1946 mutex_unlock(&info->protocols_mtx);
1947
1948 idr_for_each_entry(&info->active_protocols, child, id)
1949 of_node_put(child);
1950 idr_destroy(&info->active_protocols);
1951
1952 /* Safe to free channels since no more users */
1953 ret = scmi_cleanup_txrx_channels(info);
1954 if (ret)
1955 dev_warn(&pdev->dev, "Failed to cleanup SCMI channels.\n");
1956
1957 return 0;
1958 }
1959
protocol_version_show(struct device * dev,struct device_attribute * attr,char * buf)1960 static ssize_t protocol_version_show(struct device *dev,
1961 struct device_attribute *attr, char *buf)
1962 {
1963 struct scmi_info *info = dev_get_drvdata(dev);
1964
1965 return sprintf(buf, "%u.%u\n", info->version.major_ver,
1966 info->version.minor_ver);
1967 }
1968 static DEVICE_ATTR_RO(protocol_version);
1969
firmware_version_show(struct device * dev,struct device_attribute * attr,char * buf)1970 static ssize_t firmware_version_show(struct device *dev,
1971 struct device_attribute *attr, char *buf)
1972 {
1973 struct scmi_info *info = dev_get_drvdata(dev);
1974
1975 return sprintf(buf, "0x%x\n", info->version.impl_ver);
1976 }
1977 static DEVICE_ATTR_RO(firmware_version);
1978
vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)1979 static ssize_t vendor_id_show(struct device *dev,
1980 struct device_attribute *attr, char *buf)
1981 {
1982 struct scmi_info *info = dev_get_drvdata(dev);
1983
1984 return sprintf(buf, "%s\n", info->version.vendor_id);
1985 }
1986 static DEVICE_ATTR_RO(vendor_id);
1987
sub_vendor_id_show(struct device * dev,struct device_attribute * attr,char * buf)1988 static ssize_t sub_vendor_id_show(struct device *dev,
1989 struct device_attribute *attr, char *buf)
1990 {
1991 struct scmi_info *info = dev_get_drvdata(dev);
1992
1993 return sprintf(buf, "%s\n", info->version.sub_vendor_id);
1994 }
1995 static DEVICE_ATTR_RO(sub_vendor_id);
1996
1997 static struct attribute *versions_attrs[] = {
1998 &dev_attr_firmware_version.attr,
1999 &dev_attr_protocol_version.attr,
2000 &dev_attr_vendor_id.attr,
2001 &dev_attr_sub_vendor_id.attr,
2002 NULL,
2003 };
2004 ATTRIBUTE_GROUPS(versions);
2005
2006 /* Each compatible listed below must have descriptor associated with it */
2007 static const struct of_device_id scmi_of_match[] = {
2008 #ifdef CONFIG_ARM_SCMI_TRANSPORT_MAILBOX
2009 { .compatible = "arm,scmi", .data = &scmi_mailbox_desc },
2010 #endif
2011 #ifdef CONFIG_ARM_SCMI_TRANSPORT_SMC
2012 { .compatible = "arm,scmi-smc", .data = &scmi_smc_desc},
2013 #endif
2014 #ifdef CONFIG_ARM_SCMI_TRANSPORT_VIRTIO
2015 { .compatible = "arm,scmi-virtio", .data = &scmi_virtio_desc},
2016 #endif
2017 { /* Sentinel */ },
2018 };
2019
2020 MODULE_DEVICE_TABLE(of, scmi_of_match);
2021
2022 static struct platform_driver scmi_driver = {
2023 .driver = {
2024 .name = "arm-scmi",
2025 .suppress_bind_attrs = true,
2026 .of_match_table = scmi_of_match,
2027 .dev_groups = versions_groups,
2028 },
2029 .probe = scmi_probe,
2030 .remove = scmi_remove,
2031 };
2032
2033 /**
2034 * __scmi_transports_setup - Common helper to call transport-specific
2035 * .init/.exit code if provided.
2036 *
2037 * @init: A flag to distinguish between init and exit.
2038 *
2039 * Note that, if provided, we invoke .init/.exit functions for all the
2040 * transports currently compiled in.
2041 *
2042 * Return: 0 on Success.
2043 */
__scmi_transports_setup(bool init)2044 static inline int __scmi_transports_setup(bool init)
2045 {
2046 int ret = 0;
2047 const struct of_device_id *trans;
2048
2049 for (trans = scmi_of_match; trans->data; trans++) {
2050 const struct scmi_desc *tdesc = trans->data;
2051
2052 if ((init && !tdesc->transport_init) ||
2053 (!init && !tdesc->transport_exit))
2054 continue;
2055
2056 if (init)
2057 ret = tdesc->transport_init();
2058 else
2059 tdesc->transport_exit();
2060
2061 if (ret) {
2062 pr_err("SCMI transport %s FAILED initialization!\n",
2063 trans->compatible);
2064 break;
2065 }
2066 }
2067
2068 return ret;
2069 }
2070
scmi_transports_init(void)2071 static int __init scmi_transports_init(void)
2072 {
2073 return __scmi_transports_setup(true);
2074 }
2075
scmi_transports_exit(void)2076 static void __exit scmi_transports_exit(void)
2077 {
2078 __scmi_transports_setup(false);
2079 }
2080
scmi_driver_init(void)2081 static int __init scmi_driver_init(void)
2082 {
2083 int ret;
2084
2085 /* Bail out if no SCMI transport was configured */
2086 if (WARN_ON(!IS_ENABLED(CONFIG_ARM_SCMI_HAVE_TRANSPORT)))
2087 return -EINVAL;
2088
2089 scmi_bus_init();
2090
2091 /* Initialize any compiled-in transport which provided an init/exit */
2092 ret = scmi_transports_init();
2093 if (ret)
2094 return ret;
2095
2096 scmi_base_register();
2097
2098 scmi_clock_register();
2099 scmi_perf_register();
2100 scmi_power_register();
2101 scmi_reset_register();
2102 scmi_sensors_register();
2103 scmi_voltage_register();
2104 scmi_system_register();
2105
2106 return platform_driver_register(&scmi_driver);
2107 }
2108 subsys_initcall(scmi_driver_init);
2109
scmi_driver_exit(void)2110 static void __exit scmi_driver_exit(void)
2111 {
2112 scmi_base_unregister();
2113
2114 scmi_clock_unregister();
2115 scmi_perf_unregister();
2116 scmi_power_unregister();
2117 scmi_reset_unregister();
2118 scmi_sensors_unregister();
2119 scmi_voltage_unregister();
2120 scmi_system_unregister();
2121
2122 scmi_bus_exit();
2123
2124 scmi_transports_exit();
2125
2126 platform_driver_unregister(&scmi_driver);
2127 }
2128 module_exit(scmi_driver_exit);
2129
2130 MODULE_ALIAS("platform:arm-scmi");
2131 MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
2132 MODULE_DESCRIPTION("ARM SCMI protocol driver");
2133 MODULE_LICENSE("GPL v2");
2134