• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 1999 Eric Youngdale
4  * Copyright (C) 2014 Christoph Hellwig
5  *
6  *  SCSI queueing library.
7  *      Initial versions: Eric Youngdale (eric@andante.org).
8  *                        Based upon conversations with large numbers
9  *                        of people at Linux Expo.
10  */
11 
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26 
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36 
37 #include <trace/events/scsi.h>
38 
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42 
43 /*
44  * Size of integrity metadata is usually small, 1 inline sg should
45  * cover normal cases.
46  */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define  SCSI_INLINE_PROT_SG_CNT  0
49 #define  SCSI_INLINE_SG_CNT  0
50 #else
51 #define  SCSI_INLINE_PROT_SG_CNT  1
52 #define  SCSI_INLINE_SG_CNT  2
53 #endif
54 
55 static struct kmem_cache *scsi_sense_cache;
56 static DEFINE_MUTEX(scsi_sense_cache_mutex);
57 
58 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
59 
scsi_init_sense_cache(struct Scsi_Host * shost)60 int scsi_init_sense_cache(struct Scsi_Host *shost)
61 {
62 	int ret = 0;
63 
64 	mutex_lock(&scsi_sense_cache_mutex);
65 	if (!scsi_sense_cache) {
66 		scsi_sense_cache =
67 			kmem_cache_create_usercopy("scsi_sense_cache",
68 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
69 				0, SCSI_SENSE_BUFFERSIZE, NULL);
70 		if (!scsi_sense_cache)
71 			ret = -ENOMEM;
72 	}
73 	mutex_unlock(&scsi_sense_cache_mutex);
74 	return ret;
75 }
76 
77 /*
78  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
79  * not change behaviour from the previous unplug mechanism, experimentation
80  * may prove this needs changing.
81  */
82 #define SCSI_QUEUE_DELAY	3
83 
84 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)85 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
86 {
87 	struct Scsi_Host *host = cmd->device->host;
88 	struct scsi_device *device = cmd->device;
89 	struct scsi_target *starget = scsi_target(device);
90 
91 	/*
92 	 * Set the appropriate busy bit for the device/host.
93 	 *
94 	 * If the host/device isn't busy, assume that something actually
95 	 * completed, and that we should be able to queue a command now.
96 	 *
97 	 * Note that the prior mid-layer assumption that any host could
98 	 * always queue at least one command is now broken.  The mid-layer
99 	 * will implement a user specifiable stall (see
100 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
101 	 * if a command is requeued with no other commands outstanding
102 	 * either for the device or for the host.
103 	 */
104 	switch (reason) {
105 	case SCSI_MLQUEUE_HOST_BUSY:
106 		atomic_set(&host->host_blocked, host->max_host_blocked);
107 		break;
108 	case SCSI_MLQUEUE_DEVICE_BUSY:
109 	case SCSI_MLQUEUE_EH_RETRY:
110 		atomic_set(&device->device_blocked,
111 			   device->max_device_blocked);
112 		break;
113 	case SCSI_MLQUEUE_TARGET_BUSY:
114 		atomic_set(&starget->target_blocked,
115 			   starget->max_target_blocked);
116 		break;
117 	}
118 }
119 
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)120 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
121 {
122 	struct request *rq = scsi_cmd_to_rq(cmd);
123 
124 	if (rq->rq_flags & RQF_DONTPREP) {
125 		rq->rq_flags &= ~RQF_DONTPREP;
126 		scsi_mq_uninit_cmd(cmd);
127 	} else {
128 		WARN_ON_ONCE(true);
129 	}
130 	blk_mq_requeue_request(rq, true);
131 }
132 
133 /**
134  * __scsi_queue_insert - private queue insertion
135  * @cmd: The SCSI command being requeued
136  * @reason:  The reason for the requeue
137  * @unbusy: Whether the queue should be unbusied
138  *
139  * This is a private queue insertion.  The public interface
140  * scsi_queue_insert() always assumes the queue should be unbusied
141  * because it's always called before the completion.  This function is
142  * for a requeue after completion, which should only occur in this
143  * file.
144  */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)145 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
146 {
147 	struct scsi_device *device = cmd->device;
148 
149 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
150 		"Inserting command %p into mlqueue\n", cmd));
151 
152 	scsi_set_blocked(cmd, reason);
153 
154 	/*
155 	 * Decrement the counters, since these commands are no longer
156 	 * active on the host/device.
157 	 */
158 	if (unbusy)
159 		scsi_device_unbusy(device, cmd);
160 
161 	/*
162 	 * Requeue this command.  It will go before all other commands
163 	 * that are already in the queue. Schedule requeue work under
164 	 * lock such that the kblockd_schedule_work() call happens
165 	 * before blk_cleanup_queue() finishes.
166 	 */
167 	cmd->result = 0;
168 
169 	blk_mq_requeue_request(scsi_cmd_to_rq(cmd), true);
170 }
171 
172 /**
173  * scsi_queue_insert - Reinsert a command in the queue.
174  * @cmd:    command that we are adding to queue.
175  * @reason: why we are inserting command to queue.
176  *
177  * We do this for one of two cases. Either the host is busy and it cannot accept
178  * any more commands for the time being, or the device returned QUEUE_FULL and
179  * can accept no more commands.
180  *
181  * Context: This could be called either from an interrupt context or a normal
182  * process context.
183  */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)184 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
185 {
186 	__scsi_queue_insert(cmd, reason, true);
187 }
188 
189 
190 /**
191  * __scsi_execute - insert request and wait for the result
192  * @sdev:	scsi device
193  * @cmd:	scsi command
194  * @data_direction: data direction
195  * @buffer:	data buffer
196  * @bufflen:	len of buffer
197  * @sense:	optional sense buffer
198  * @sshdr:	optional decoded sense header
199  * @timeout:	request timeout in HZ
200  * @retries:	number of times to retry request
201  * @flags:	flags for ->cmd_flags
202  * @rq_flags:	flags for ->rq_flags
203  * @resid:	optional residual length
204  *
205  * Returns the scsi_cmnd result field if a command was executed, or a negative
206  * Linux error code if we didn't get that far.
207  */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)208 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
209 		 int data_direction, void *buffer, unsigned bufflen,
210 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
211 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
212 		 int *resid)
213 {
214 	struct request *req;
215 	struct scsi_request *rq;
216 	int ret;
217 
218 	req = blk_get_request(sdev->request_queue,
219 			data_direction == DMA_TO_DEVICE ?
220 			REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
221 			rq_flags & RQF_PM ? BLK_MQ_REQ_PM : 0);
222 	if (IS_ERR(req))
223 		return PTR_ERR(req);
224 
225 	rq = scsi_req(req);
226 
227 	if (bufflen) {
228 		ret = blk_rq_map_kern(sdev->request_queue, req,
229 				      buffer, bufflen, GFP_NOIO);
230 		if (ret)
231 			goto out;
232 	}
233 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
234 	memcpy(rq->cmd, cmd, rq->cmd_len);
235 	rq->retries = retries;
236 	req->timeout = timeout;
237 	req->cmd_flags |= flags;
238 	req->rq_flags |= rq_flags | RQF_QUIET;
239 
240 	/*
241 	 * head injection *required* here otherwise quiesce won't work
242 	 */
243 	blk_execute_rq(NULL, req, 1);
244 
245 	/*
246 	 * Some devices (USB mass-storage in particular) may transfer
247 	 * garbage data together with a residue indicating that the data
248 	 * is invalid.  Prevent the garbage from being misinterpreted
249 	 * and prevent security leaks by zeroing out the excess data.
250 	 */
251 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
252 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
253 
254 	if (resid)
255 		*resid = rq->resid_len;
256 	if (sense && rq->sense_len)
257 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
258 	if (sshdr)
259 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
260 	ret = rq->result;
261  out:
262 	blk_put_request(req);
263 
264 	return ret;
265 }
266 EXPORT_SYMBOL(__scsi_execute);
267 
268 /*
269  * Wake up the error handler if necessary. Avoid as follows that the error
270  * handler is not woken up if host in-flight requests number ==
271  * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
272  * with an RCU read lock in this function to ensure that this function in
273  * its entirety either finishes before scsi_eh_scmd_add() increases the
274  * host_failed counter or that it notices the shost state change made by
275  * scsi_eh_scmd_add().
276  */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)277 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
278 {
279 	unsigned long flags;
280 
281 	rcu_read_lock();
282 	__clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
283 	if (unlikely(scsi_host_in_recovery(shost))) {
284 		unsigned int busy = scsi_host_busy(shost);
285 
286 		spin_lock_irqsave(shost->host_lock, flags);
287 		if (shost->host_failed || shost->host_eh_scheduled)
288 			scsi_eh_wakeup(shost, busy);
289 		spin_unlock_irqrestore(shost->host_lock, flags);
290 	}
291 	rcu_read_unlock();
292 }
293 
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)294 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
295 {
296 	struct Scsi_Host *shost = sdev->host;
297 	struct scsi_target *starget = scsi_target(sdev);
298 
299 	scsi_dec_host_busy(shost, cmd);
300 
301 	if (starget->can_queue > 0)
302 		atomic_dec(&starget->target_busy);
303 
304 	sbitmap_put(&sdev->budget_map, cmd->budget_token);
305 	cmd->budget_token = -1;
306 }
307 
scsi_kick_queue(struct request_queue * q)308 static void scsi_kick_queue(struct request_queue *q)
309 {
310 	blk_mq_run_hw_queues(q, false);
311 }
312 
313 /*
314  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
315  * and call blk_run_queue for all the scsi_devices on the target -
316  * including current_sdev first.
317  *
318  * Called with *no* scsi locks held.
319  */
scsi_single_lun_run(struct scsi_device * current_sdev)320 static void scsi_single_lun_run(struct scsi_device *current_sdev)
321 {
322 	struct Scsi_Host *shost = current_sdev->host;
323 	struct scsi_device *sdev, *tmp;
324 	struct scsi_target *starget = scsi_target(current_sdev);
325 	unsigned long flags;
326 
327 	spin_lock_irqsave(shost->host_lock, flags);
328 	starget->starget_sdev_user = NULL;
329 	spin_unlock_irqrestore(shost->host_lock, flags);
330 
331 	/*
332 	 * Call blk_run_queue for all LUNs on the target, starting with
333 	 * current_sdev. We race with others (to set starget_sdev_user),
334 	 * but in most cases, we will be first. Ideally, each LU on the
335 	 * target would get some limited time or requests on the target.
336 	 */
337 	scsi_kick_queue(current_sdev->request_queue);
338 
339 	spin_lock_irqsave(shost->host_lock, flags);
340 	if (starget->starget_sdev_user)
341 		goto out;
342 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
343 			same_target_siblings) {
344 		if (sdev == current_sdev)
345 			continue;
346 		if (scsi_device_get(sdev))
347 			continue;
348 
349 		spin_unlock_irqrestore(shost->host_lock, flags);
350 		scsi_kick_queue(sdev->request_queue);
351 		spin_lock_irqsave(shost->host_lock, flags);
352 
353 		scsi_device_put(sdev);
354 	}
355  out:
356 	spin_unlock_irqrestore(shost->host_lock, flags);
357 }
358 
scsi_device_is_busy(struct scsi_device * sdev)359 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
360 {
361 	if (scsi_device_busy(sdev) >= sdev->queue_depth)
362 		return true;
363 	if (atomic_read(&sdev->device_blocked) > 0)
364 		return true;
365 	return false;
366 }
367 
scsi_target_is_busy(struct scsi_target * starget)368 static inline bool scsi_target_is_busy(struct scsi_target *starget)
369 {
370 	if (starget->can_queue > 0) {
371 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
372 			return true;
373 		if (atomic_read(&starget->target_blocked) > 0)
374 			return true;
375 	}
376 	return false;
377 }
378 
scsi_host_is_busy(struct Scsi_Host * shost)379 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
380 {
381 	if (atomic_read(&shost->host_blocked) > 0)
382 		return true;
383 	if (shost->host_self_blocked)
384 		return true;
385 	return false;
386 }
387 
scsi_starved_list_run(struct Scsi_Host * shost)388 static void scsi_starved_list_run(struct Scsi_Host *shost)
389 {
390 	LIST_HEAD(starved_list);
391 	struct scsi_device *sdev;
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(shost->host_lock, flags);
395 	list_splice_init(&shost->starved_list, &starved_list);
396 
397 	while (!list_empty(&starved_list)) {
398 		struct request_queue *slq;
399 
400 		/*
401 		 * As long as shost is accepting commands and we have
402 		 * starved queues, call blk_run_queue. scsi_request_fn
403 		 * drops the queue_lock and can add us back to the
404 		 * starved_list.
405 		 *
406 		 * host_lock protects the starved_list and starved_entry.
407 		 * scsi_request_fn must get the host_lock before checking
408 		 * or modifying starved_list or starved_entry.
409 		 */
410 		if (scsi_host_is_busy(shost))
411 			break;
412 
413 		sdev = list_entry(starved_list.next,
414 				  struct scsi_device, starved_entry);
415 		list_del_init(&sdev->starved_entry);
416 		if (scsi_target_is_busy(scsi_target(sdev))) {
417 			list_move_tail(&sdev->starved_entry,
418 				       &shost->starved_list);
419 			continue;
420 		}
421 
422 		/*
423 		 * Once we drop the host lock, a racing scsi_remove_device()
424 		 * call may remove the sdev from the starved list and destroy
425 		 * it and the queue.  Mitigate by taking a reference to the
426 		 * queue and never touching the sdev again after we drop the
427 		 * host lock.  Note: if __scsi_remove_device() invokes
428 		 * blk_cleanup_queue() before the queue is run from this
429 		 * function then blk_run_queue() will return immediately since
430 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
431 		 */
432 		slq = sdev->request_queue;
433 		if (!blk_get_queue(slq))
434 			continue;
435 		spin_unlock_irqrestore(shost->host_lock, flags);
436 
437 		scsi_kick_queue(slq);
438 		blk_put_queue(slq);
439 
440 		spin_lock_irqsave(shost->host_lock, flags);
441 	}
442 	/* put any unprocessed entries back */
443 	list_splice(&starved_list, &shost->starved_list);
444 	spin_unlock_irqrestore(shost->host_lock, flags);
445 }
446 
447 /**
448  * scsi_run_queue - Select a proper request queue to serve next.
449  * @q:  last request's queue
450  *
451  * The previous command was completely finished, start a new one if possible.
452  */
scsi_run_queue(struct request_queue * q)453 static void scsi_run_queue(struct request_queue *q)
454 {
455 	struct scsi_device *sdev = q->queuedata;
456 
457 	if (scsi_target(sdev)->single_lun)
458 		scsi_single_lun_run(sdev);
459 	if (!list_empty(&sdev->host->starved_list))
460 		scsi_starved_list_run(sdev->host);
461 
462 	blk_mq_run_hw_queues(q, false);
463 }
464 
scsi_requeue_run_queue(struct work_struct * work)465 void scsi_requeue_run_queue(struct work_struct *work)
466 {
467 	struct scsi_device *sdev;
468 	struct request_queue *q;
469 
470 	sdev = container_of(work, struct scsi_device, requeue_work);
471 	q = sdev->request_queue;
472 	scsi_run_queue(q);
473 }
474 
scsi_run_host_queues(struct Scsi_Host * shost)475 void scsi_run_host_queues(struct Scsi_Host *shost)
476 {
477 	struct scsi_device *sdev;
478 
479 	shost_for_each_device(sdev, shost)
480 		scsi_run_queue(sdev->request_queue);
481 }
482 
scsi_uninit_cmd(struct scsi_cmnd * cmd)483 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
484 {
485 	if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
486 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
487 
488 		if (drv->uninit_command)
489 			drv->uninit_command(cmd);
490 	}
491 }
492 
scsi_free_sgtables(struct scsi_cmnd * cmd)493 void scsi_free_sgtables(struct scsi_cmnd *cmd)
494 {
495 	if (cmd->sdb.table.nents)
496 		sg_free_table_chained(&cmd->sdb.table,
497 				SCSI_INLINE_SG_CNT);
498 	if (scsi_prot_sg_count(cmd))
499 		sg_free_table_chained(&cmd->prot_sdb->table,
500 				SCSI_INLINE_PROT_SG_CNT);
501 }
502 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
503 
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)504 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
505 {
506 	scsi_free_sgtables(cmd);
507 	scsi_uninit_cmd(cmd);
508 }
509 
scsi_run_queue_async(struct scsi_device * sdev)510 static void scsi_run_queue_async(struct scsi_device *sdev)
511 {
512 	if (scsi_target(sdev)->single_lun ||
513 	    !list_empty(&sdev->host->starved_list)) {
514 		kblockd_schedule_work(&sdev->requeue_work);
515 	} else {
516 		/*
517 		 * smp_mb() present in sbitmap_queue_clear() or implied in
518 		 * .end_io is for ordering writing .device_busy in
519 		 * scsi_device_unbusy() and reading sdev->restarts.
520 		 */
521 		int old = atomic_read(&sdev->restarts);
522 
523 		/*
524 		 * ->restarts has to be kept as non-zero if new budget
525 		 *  contention occurs.
526 		 *
527 		 *  No need to run queue when either another re-run
528 		 *  queue wins in updating ->restarts or a new budget
529 		 *  contention occurs.
530 		 */
531 		if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
532 			blk_mq_run_hw_queues(sdev->request_queue, true);
533 	}
534 }
535 
536 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)537 static bool scsi_end_request(struct request *req, blk_status_t error,
538 		unsigned int bytes)
539 {
540 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
541 	struct scsi_device *sdev = cmd->device;
542 	struct request_queue *q = sdev->request_queue;
543 
544 	if (blk_update_request(req, error, bytes))
545 		return true;
546 
547 	if (blk_queue_add_random(q))
548 		add_disk_randomness(req->rq_disk);
549 
550 	if (!blk_rq_is_passthrough(req)) {
551 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
552 		cmd->flags &= ~SCMD_INITIALIZED;
553 	}
554 
555 	/*
556 	 * Calling rcu_barrier() is not necessary here because the
557 	 * SCSI error handler guarantees that the function called by
558 	 * call_rcu() has been called before scsi_end_request() is
559 	 * called.
560 	 */
561 	destroy_rcu_head(&cmd->rcu);
562 
563 	/*
564 	 * In the MQ case the command gets freed by __blk_mq_end_request,
565 	 * so we have to do all cleanup that depends on it earlier.
566 	 *
567 	 * We also can't kick the queues from irq context, so we
568 	 * will have to defer it to a workqueue.
569 	 */
570 	scsi_mq_uninit_cmd(cmd);
571 
572 	/*
573 	 * queue is still alive, so grab the ref for preventing it
574 	 * from being cleaned up during running queue.
575 	 */
576 	percpu_ref_get(&q->q_usage_counter);
577 
578 	__blk_mq_end_request(req, error);
579 
580 	scsi_run_queue_async(sdev);
581 
582 	percpu_ref_put(&q->q_usage_counter);
583 	return false;
584 }
585 
586 /**
587  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
588  * @cmd:	SCSI command
589  * @result:	scsi error code
590  *
591  * Translate a SCSI result code into a blk_status_t value. May reset the host
592  * byte of @cmd->result.
593  */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)594 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
595 {
596 	switch (host_byte(result)) {
597 	case DID_OK:
598 		if (scsi_status_is_good(result))
599 			return BLK_STS_OK;
600 		return BLK_STS_IOERR;
601 	case DID_TRANSPORT_FAILFAST:
602 	case DID_TRANSPORT_MARGINAL:
603 		return BLK_STS_TRANSPORT;
604 	case DID_TARGET_FAILURE:
605 		set_host_byte(cmd, DID_OK);
606 		return BLK_STS_TARGET;
607 	case DID_NEXUS_FAILURE:
608 		set_host_byte(cmd, DID_OK);
609 		return BLK_STS_NEXUS;
610 	case DID_ALLOC_FAILURE:
611 		set_host_byte(cmd, DID_OK);
612 		return BLK_STS_NOSPC;
613 	case DID_MEDIUM_ERROR:
614 		set_host_byte(cmd, DID_OK);
615 		return BLK_STS_MEDIUM;
616 	default:
617 		return BLK_STS_IOERR;
618 	}
619 }
620 
621 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)622 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
623 				      struct request_queue *q)
624 {
625 	/* A new command will be prepared and issued. */
626 	scsi_mq_requeue_cmd(cmd);
627 }
628 
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)629 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
630 {
631 	struct request *req = scsi_cmd_to_rq(cmd);
632 	unsigned long wait_for;
633 
634 	if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
635 		return false;
636 
637 	wait_for = (cmd->allowed + 1) * req->timeout;
638 	if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
639 		scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
640 			    wait_for/HZ);
641 		return true;
642 	}
643 	return false;
644 }
645 
646 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)647 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
648 {
649 	struct request_queue *q = cmd->device->request_queue;
650 	struct request *req = scsi_cmd_to_rq(cmd);
651 	int level = 0;
652 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
653 	      ACTION_DELAYED_RETRY} action;
654 	struct scsi_sense_hdr sshdr;
655 	bool sense_valid;
656 	bool sense_current = true;      /* false implies "deferred sense" */
657 	blk_status_t blk_stat;
658 
659 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
660 	if (sense_valid)
661 		sense_current = !scsi_sense_is_deferred(&sshdr);
662 
663 	blk_stat = scsi_result_to_blk_status(cmd, result);
664 
665 	if (host_byte(result) == DID_RESET) {
666 		/* Third party bus reset or reset for error recovery
667 		 * reasons.  Just retry the command and see what
668 		 * happens.
669 		 */
670 		action = ACTION_RETRY;
671 	} else if (sense_valid && sense_current) {
672 		switch (sshdr.sense_key) {
673 		case UNIT_ATTENTION:
674 			if (cmd->device->removable) {
675 				/* Detected disc change.  Set a bit
676 				 * and quietly refuse further access.
677 				 */
678 				cmd->device->changed = 1;
679 				action = ACTION_FAIL;
680 			} else {
681 				/* Must have been a power glitch, or a
682 				 * bus reset.  Could not have been a
683 				 * media change, so we just retry the
684 				 * command and see what happens.
685 				 */
686 				action = ACTION_RETRY;
687 			}
688 			break;
689 		case ILLEGAL_REQUEST:
690 			/* If we had an ILLEGAL REQUEST returned, then
691 			 * we may have performed an unsupported
692 			 * command.  The only thing this should be
693 			 * would be a ten byte read where only a six
694 			 * byte read was supported.  Also, on a system
695 			 * where READ CAPACITY failed, we may have
696 			 * read past the end of the disk.
697 			 */
698 			if ((cmd->device->use_10_for_rw &&
699 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
700 			    (cmd->cmnd[0] == READ_10 ||
701 			     cmd->cmnd[0] == WRITE_10)) {
702 				/* This will issue a new 6-byte command. */
703 				cmd->device->use_10_for_rw = 0;
704 				action = ACTION_REPREP;
705 			} else if (sshdr.asc == 0x10) /* DIX */ {
706 				action = ACTION_FAIL;
707 				blk_stat = BLK_STS_PROTECTION;
708 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
709 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
710 				action = ACTION_FAIL;
711 				blk_stat = BLK_STS_TARGET;
712 			} else
713 				action = ACTION_FAIL;
714 			break;
715 		case ABORTED_COMMAND:
716 			action = ACTION_FAIL;
717 			if (sshdr.asc == 0x10) /* DIF */
718 				blk_stat = BLK_STS_PROTECTION;
719 			break;
720 		case NOT_READY:
721 			/* If the device is in the process of becoming
722 			 * ready, or has a temporary blockage, retry.
723 			 */
724 			if (sshdr.asc == 0x04) {
725 				switch (sshdr.ascq) {
726 				case 0x01: /* becoming ready */
727 				case 0x04: /* format in progress */
728 				case 0x05: /* rebuild in progress */
729 				case 0x06: /* recalculation in progress */
730 				case 0x07: /* operation in progress */
731 				case 0x08: /* Long write in progress */
732 				case 0x09: /* self test in progress */
733 				case 0x11: /* notify (enable spinup) required */
734 				case 0x14: /* space allocation in progress */
735 				case 0x1a: /* start stop unit in progress */
736 				case 0x1b: /* sanitize in progress */
737 				case 0x1d: /* configuration in progress */
738 				case 0x24: /* depopulation in progress */
739 					action = ACTION_DELAYED_RETRY;
740 					break;
741 				case 0x0a: /* ALUA state transition */
742 					blk_stat = BLK_STS_AGAIN;
743 					fallthrough;
744 				default:
745 					action = ACTION_FAIL;
746 					break;
747 				}
748 			} else
749 				action = ACTION_FAIL;
750 			break;
751 		case VOLUME_OVERFLOW:
752 			/* See SSC3rXX or current. */
753 			action = ACTION_FAIL;
754 			break;
755 		case DATA_PROTECT:
756 			action = ACTION_FAIL;
757 			if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
758 			    (sshdr.asc == 0x55 &&
759 			     (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
760 				/* Insufficient zone resources */
761 				blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
762 			}
763 			break;
764 		default:
765 			action = ACTION_FAIL;
766 			break;
767 		}
768 	} else
769 		action = ACTION_FAIL;
770 
771 	if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
772 		action = ACTION_FAIL;
773 
774 	switch (action) {
775 	case ACTION_FAIL:
776 		/* Give up and fail the remainder of the request */
777 		if (!(req->rq_flags & RQF_QUIET)) {
778 			static DEFINE_RATELIMIT_STATE(_rs,
779 					DEFAULT_RATELIMIT_INTERVAL,
780 					DEFAULT_RATELIMIT_BURST);
781 
782 			if (unlikely(scsi_logging_level))
783 				level =
784 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
785 						    SCSI_LOG_MLCOMPLETE_BITS);
786 
787 			/*
788 			 * if logging is enabled the failure will be printed
789 			 * in scsi_log_completion(), so avoid duplicate messages
790 			 */
791 			if (!level && __ratelimit(&_rs)) {
792 				scsi_print_result(cmd, NULL, FAILED);
793 				if (sense_valid)
794 					scsi_print_sense(cmd);
795 				scsi_print_command(cmd);
796 			}
797 		}
798 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
799 			return;
800 		fallthrough;
801 	case ACTION_REPREP:
802 		scsi_io_completion_reprep(cmd, q);
803 		break;
804 	case ACTION_RETRY:
805 		/* Retry the same command immediately */
806 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
807 		break;
808 	case ACTION_DELAYED_RETRY:
809 		/* Retry the same command after a delay */
810 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
811 		break;
812 	}
813 }
814 
815 /*
816  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
817  * new result that may suppress further error checking. Also modifies
818  * *blk_statp in some cases.
819  */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)820 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
821 					blk_status_t *blk_statp)
822 {
823 	bool sense_valid;
824 	bool sense_current = true;	/* false implies "deferred sense" */
825 	struct request *req = scsi_cmd_to_rq(cmd);
826 	struct scsi_sense_hdr sshdr;
827 
828 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
829 	if (sense_valid)
830 		sense_current = !scsi_sense_is_deferred(&sshdr);
831 
832 	if (blk_rq_is_passthrough(req)) {
833 		if (sense_valid) {
834 			/*
835 			 * SG_IO wants current and deferred errors
836 			 */
837 			scsi_req(req)->sense_len =
838 				min(8 + cmd->sense_buffer[7],
839 				    SCSI_SENSE_BUFFERSIZE);
840 		}
841 		if (sense_current)
842 			*blk_statp = scsi_result_to_blk_status(cmd, result);
843 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
844 		/*
845 		 * Flush commands do not transfers any data, and thus cannot use
846 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
847 		 * This sets *blk_statp explicitly for the problem case.
848 		 */
849 		*blk_statp = scsi_result_to_blk_status(cmd, result);
850 	}
851 	/*
852 	 * Recovered errors need reporting, but they're always treated as
853 	 * success, so fiddle the result code here.  For passthrough requests
854 	 * we already took a copy of the original into sreq->result which
855 	 * is what gets returned to the user
856 	 */
857 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
858 		bool do_print = true;
859 		/*
860 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
861 		 * skip print since caller wants ATA registers. Only occurs
862 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
863 		 */
864 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
865 			do_print = false;
866 		else if (req->rq_flags & RQF_QUIET)
867 			do_print = false;
868 		if (do_print)
869 			scsi_print_sense(cmd);
870 		result = 0;
871 		/* for passthrough, *blk_statp may be set */
872 		*blk_statp = BLK_STS_OK;
873 	}
874 	/*
875 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
876 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
877 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
878 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
879 	 * intermediate statuses (both obsolete in SAM-4) as good.
880 	 */
881 	if ((result & 0xff) && scsi_status_is_good(result)) {
882 		result = 0;
883 		*blk_statp = BLK_STS_OK;
884 	}
885 	return result;
886 }
887 
888 /**
889  * scsi_io_completion - Completion processing for SCSI commands.
890  * @cmd:	command that is finished.
891  * @good_bytes:	number of processed bytes.
892  *
893  * We will finish off the specified number of sectors. If we are done, the
894  * command block will be released and the queue function will be goosed. If we
895  * are not done then we have to figure out what to do next:
896  *
897  *   a) We can call scsi_io_completion_reprep().  The request will be
898  *	unprepared and put back on the queue.  Then a new command will
899  *	be created for it.  This should be used if we made forward
900  *	progress, or if we want to switch from READ(10) to READ(6) for
901  *	example.
902  *
903  *   b) We can call scsi_io_completion_action().  The request will be
904  *	put back on the queue and retried using the same command as
905  *	before, possibly after a delay.
906  *
907  *   c) We can call scsi_end_request() with blk_stat other than
908  *	BLK_STS_OK, to fail the remainder of the request.
909  */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)910 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
911 {
912 	int result = cmd->result;
913 	struct request_queue *q = cmd->device->request_queue;
914 	struct request *req = scsi_cmd_to_rq(cmd);
915 	blk_status_t blk_stat = BLK_STS_OK;
916 
917 	if (unlikely(result))	/* a nz result may or may not be an error */
918 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
919 
920 	if (unlikely(blk_rq_is_passthrough(req))) {
921 		/*
922 		 * scsi_result_to_blk_status may have reset the host_byte
923 		 */
924 		scsi_req(req)->result = cmd->result;
925 	}
926 
927 	/*
928 	 * Next deal with any sectors which we were able to correctly
929 	 * handle.
930 	 */
931 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
932 		"%u sectors total, %d bytes done.\n",
933 		blk_rq_sectors(req), good_bytes));
934 
935 	/*
936 	 * Failed, zero length commands always need to drop down
937 	 * to retry code. Fast path should return in this block.
938 	 */
939 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
940 		if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
941 			return; /* no bytes remaining */
942 	}
943 
944 	/* Kill remainder if no retries. */
945 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
946 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
947 			WARN_ONCE(true,
948 			    "Bytes remaining after failed, no-retry command");
949 		return;
950 	}
951 
952 	/*
953 	 * If there had been no error, but we have leftover bytes in the
954 	 * requeues just queue the command up again.
955 	 */
956 	if (likely(result == 0))
957 		scsi_io_completion_reprep(cmd, q);
958 	else
959 		scsi_io_completion_action(cmd, result);
960 }
961 
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)962 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
963 		struct request *rq)
964 {
965 	return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
966 	       !op_is_write(req_op(rq)) &&
967 	       sdev->host->hostt->dma_need_drain(rq);
968 }
969 
970 /**
971  * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
972  * @cmd: SCSI command data structure to initialize.
973  *
974  * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
975  * for @cmd.
976  *
977  * Returns:
978  * * BLK_STS_OK       - on success
979  * * BLK_STS_RESOURCE - if the failure is retryable
980  * * BLK_STS_IOERR    - if the failure is fatal
981  */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)982 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
983 {
984 	struct scsi_device *sdev = cmd->device;
985 	struct request *rq = scsi_cmd_to_rq(cmd);
986 	unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
987 	struct scatterlist *last_sg = NULL;
988 	blk_status_t ret;
989 	bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
990 	int count;
991 
992 	if (WARN_ON_ONCE(!nr_segs))
993 		return BLK_STS_IOERR;
994 
995 	/*
996 	 * Make sure there is space for the drain.  The driver must adjust
997 	 * max_hw_segments to be prepared for this.
998 	 */
999 	if (need_drain)
1000 		nr_segs++;
1001 
1002 	/*
1003 	 * If sg table allocation fails, requeue request later.
1004 	 */
1005 	if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1006 			cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1007 		return BLK_STS_RESOURCE;
1008 
1009 	/*
1010 	 * Next, walk the list, and fill in the addresses and sizes of
1011 	 * each segment.
1012 	 */
1013 	count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1014 
1015 	if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1016 		unsigned int pad_len =
1017 			(rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1018 
1019 		last_sg->length += pad_len;
1020 		cmd->extra_len += pad_len;
1021 	}
1022 
1023 	if (need_drain) {
1024 		sg_unmark_end(last_sg);
1025 		last_sg = sg_next(last_sg);
1026 		sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1027 		sg_mark_end(last_sg);
1028 
1029 		cmd->extra_len += sdev->dma_drain_len;
1030 		count++;
1031 	}
1032 
1033 	BUG_ON(count > cmd->sdb.table.nents);
1034 	cmd->sdb.table.nents = count;
1035 	cmd->sdb.length = blk_rq_payload_bytes(rq);
1036 
1037 	if (blk_integrity_rq(rq)) {
1038 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1039 		int ivecs;
1040 
1041 		if (WARN_ON_ONCE(!prot_sdb)) {
1042 			/*
1043 			 * This can happen if someone (e.g. multipath)
1044 			 * queues a command to a device on an adapter
1045 			 * that does not support DIX.
1046 			 */
1047 			ret = BLK_STS_IOERR;
1048 			goto out_free_sgtables;
1049 		}
1050 
1051 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1052 
1053 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1054 				prot_sdb->table.sgl,
1055 				SCSI_INLINE_PROT_SG_CNT)) {
1056 			ret = BLK_STS_RESOURCE;
1057 			goto out_free_sgtables;
1058 		}
1059 
1060 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1061 						prot_sdb->table.sgl);
1062 		BUG_ON(count > ivecs);
1063 		BUG_ON(count > queue_max_integrity_segments(rq->q));
1064 
1065 		cmd->prot_sdb = prot_sdb;
1066 		cmd->prot_sdb->table.nents = count;
1067 	}
1068 
1069 	return BLK_STS_OK;
1070 out_free_sgtables:
1071 	scsi_free_sgtables(cmd);
1072 	return ret;
1073 }
1074 EXPORT_SYMBOL(scsi_alloc_sgtables);
1075 
1076 /**
1077  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1078  * @rq: Request associated with the SCSI command to be initialized.
1079  *
1080  * This function initializes the members of struct scsi_cmnd that must be
1081  * initialized before request processing starts and that won't be
1082  * reinitialized if a SCSI command is requeued.
1083  *
1084  * Called from inside blk_get_request() for pass-through requests and from
1085  * inside scsi_init_command() for filesystem requests.
1086  */
scsi_initialize_rq(struct request * rq)1087 static void scsi_initialize_rq(struct request *rq)
1088 {
1089 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1090 	struct scsi_request *req = &cmd->req;
1091 
1092 	memset(req->__cmd, 0, sizeof(req->__cmd));
1093 	req->cmd = req->__cmd;
1094 	req->cmd_len = BLK_MAX_CDB;
1095 	req->sense_len = 0;
1096 
1097 	init_rcu_head(&cmd->rcu);
1098 	cmd->jiffies_at_alloc = jiffies;
1099 	cmd->retries = 0;
1100 }
1101 
1102 /*
1103  * Only called when the request isn't completed by SCSI, and not freed by
1104  * SCSI
1105  */
scsi_cleanup_rq(struct request * rq)1106 static void scsi_cleanup_rq(struct request *rq)
1107 {
1108 	if (rq->rq_flags & RQF_DONTPREP) {
1109 		scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1110 		rq->rq_flags &= ~RQF_DONTPREP;
1111 	}
1112 }
1113 
1114 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1115 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1116 {
1117 	void *buf = cmd->sense_buffer;
1118 	void *prot = cmd->prot_sdb;
1119 	struct request *rq = scsi_cmd_to_rq(cmd);
1120 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1121 	unsigned long jiffies_at_alloc;
1122 	int retries, to_clear;
1123 	bool in_flight;
1124 	int budget_token = cmd->budget_token;
1125 
1126 	if (!blk_rq_is_passthrough(rq) && !(flags & SCMD_INITIALIZED)) {
1127 		flags |= SCMD_INITIALIZED;
1128 		scsi_initialize_rq(rq);
1129 	}
1130 
1131 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1132 	retries = cmd->retries;
1133 	in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1134 	/*
1135 	 * Zero out the cmd, except for the embedded scsi_request. Only clear
1136 	 * the driver-private command data if the LLD does not supply a
1137 	 * function to initialize that data.
1138 	 */
1139 	to_clear = sizeof(*cmd) - sizeof(cmd->req);
1140 	if (!dev->host->hostt->init_cmd_priv)
1141 		to_clear += dev->host->hostt->cmd_size;
1142 	memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1143 
1144 	cmd->device = dev;
1145 	cmd->sense_buffer = buf;
1146 	cmd->prot_sdb = prot;
1147 	cmd->flags = flags;
1148 	INIT_LIST_HEAD(&cmd->eh_entry);
1149 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1150 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1151 	cmd->retries = retries;
1152 	if (in_flight)
1153 		__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1154 	cmd->budget_token = budget_token;
1155 
1156 }
1157 
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1158 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1159 		struct request *req)
1160 {
1161 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1162 
1163 	/*
1164 	 * Passthrough requests may transfer data, in which case they must
1165 	 * a bio attached to them.  Or they might contain a SCSI command
1166 	 * that does not transfer data, in which case they may optionally
1167 	 * submit a request without an attached bio.
1168 	 */
1169 	if (req->bio) {
1170 		blk_status_t ret = scsi_alloc_sgtables(cmd);
1171 		if (unlikely(ret != BLK_STS_OK))
1172 			return ret;
1173 	} else {
1174 		BUG_ON(blk_rq_bytes(req));
1175 
1176 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1177 	}
1178 
1179 	cmd->cmd_len = scsi_req(req)->cmd_len;
1180 	cmd->cmnd = scsi_req(req)->cmd;
1181 	cmd->transfersize = blk_rq_bytes(req);
1182 	cmd->allowed = scsi_req(req)->retries;
1183 	return BLK_STS_OK;
1184 }
1185 
1186 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1187 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1188 {
1189 	switch (sdev->sdev_state) {
1190 	case SDEV_CREATED:
1191 		return BLK_STS_OK;
1192 	case SDEV_OFFLINE:
1193 	case SDEV_TRANSPORT_OFFLINE:
1194 		/*
1195 		 * If the device is offline we refuse to process any
1196 		 * commands.  The device must be brought online
1197 		 * before trying any recovery commands.
1198 		 */
1199 		if (!sdev->offline_already) {
1200 			sdev->offline_already = true;
1201 			sdev_printk(KERN_ERR, sdev,
1202 				    "rejecting I/O to offline device\n");
1203 		}
1204 		return BLK_STS_IOERR;
1205 	case SDEV_DEL:
1206 		/*
1207 		 * If the device is fully deleted, we refuse to
1208 		 * process any commands as well.
1209 		 */
1210 		sdev_printk(KERN_ERR, sdev,
1211 			    "rejecting I/O to dead device\n");
1212 		return BLK_STS_IOERR;
1213 	case SDEV_BLOCK:
1214 	case SDEV_CREATED_BLOCK:
1215 		return BLK_STS_RESOURCE;
1216 	case SDEV_QUIESCE:
1217 		/*
1218 		 * If the device is blocked we only accept power management
1219 		 * commands.
1220 		 */
1221 		if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1222 			return BLK_STS_RESOURCE;
1223 		return BLK_STS_OK;
1224 	default:
1225 		/*
1226 		 * For any other not fully online state we only allow
1227 		 * power management commands.
1228 		 */
1229 		if (req && !(req->rq_flags & RQF_PM))
1230 			return BLK_STS_IOERR;
1231 		return BLK_STS_OK;
1232 	}
1233 }
1234 
1235 /*
1236  * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1237  * and return the token else return -1.
1238  */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1239 static inline int scsi_dev_queue_ready(struct request_queue *q,
1240 				  struct scsi_device *sdev)
1241 {
1242 	int token;
1243 
1244 	token = sbitmap_get(&sdev->budget_map);
1245 	if (atomic_read(&sdev->device_blocked)) {
1246 		if (token < 0)
1247 			goto out;
1248 
1249 		if (scsi_device_busy(sdev) > 1)
1250 			goto out_dec;
1251 
1252 		/*
1253 		 * unblock after device_blocked iterates to zero
1254 		 */
1255 		if (atomic_dec_return(&sdev->device_blocked) > 0)
1256 			goto out_dec;
1257 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1258 				   "unblocking device at zero depth\n"));
1259 	}
1260 
1261 	return token;
1262 out_dec:
1263 	if (token >= 0)
1264 		sbitmap_put(&sdev->budget_map, token);
1265 out:
1266 	return -1;
1267 }
1268 
1269 /*
1270  * scsi_target_queue_ready: checks if there we can send commands to target
1271  * @sdev: scsi device on starget to check.
1272  */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1273 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1274 					   struct scsi_device *sdev)
1275 {
1276 	struct scsi_target *starget = scsi_target(sdev);
1277 	unsigned int busy;
1278 
1279 	if (starget->single_lun) {
1280 		spin_lock_irq(shost->host_lock);
1281 		if (starget->starget_sdev_user &&
1282 		    starget->starget_sdev_user != sdev) {
1283 			spin_unlock_irq(shost->host_lock);
1284 			return 0;
1285 		}
1286 		starget->starget_sdev_user = sdev;
1287 		spin_unlock_irq(shost->host_lock);
1288 	}
1289 
1290 	if (starget->can_queue <= 0)
1291 		return 1;
1292 
1293 	busy = atomic_inc_return(&starget->target_busy) - 1;
1294 	if (atomic_read(&starget->target_blocked) > 0) {
1295 		if (busy)
1296 			goto starved;
1297 
1298 		/*
1299 		 * unblock after target_blocked iterates to zero
1300 		 */
1301 		if (atomic_dec_return(&starget->target_blocked) > 0)
1302 			goto out_dec;
1303 
1304 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1305 				 "unblocking target at zero depth\n"));
1306 	}
1307 
1308 	if (busy >= starget->can_queue)
1309 		goto starved;
1310 
1311 	return 1;
1312 
1313 starved:
1314 	spin_lock_irq(shost->host_lock);
1315 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1316 	spin_unlock_irq(shost->host_lock);
1317 out_dec:
1318 	if (starget->can_queue > 0)
1319 		atomic_dec(&starget->target_busy);
1320 	return 0;
1321 }
1322 
1323 /*
1324  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1325  * return 0. We must end up running the queue again whenever 0 is
1326  * returned, else IO can hang.
1327  */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1328 static inline int scsi_host_queue_ready(struct request_queue *q,
1329 				   struct Scsi_Host *shost,
1330 				   struct scsi_device *sdev,
1331 				   struct scsi_cmnd *cmd)
1332 {
1333 	if (scsi_host_in_recovery(shost))
1334 		return 0;
1335 
1336 	if (atomic_read(&shost->host_blocked) > 0) {
1337 		if (scsi_host_busy(shost) > 0)
1338 			goto starved;
1339 
1340 		/*
1341 		 * unblock after host_blocked iterates to zero
1342 		 */
1343 		if (atomic_dec_return(&shost->host_blocked) > 0)
1344 			goto out_dec;
1345 
1346 		SCSI_LOG_MLQUEUE(3,
1347 			shost_printk(KERN_INFO, shost,
1348 				     "unblocking host at zero depth\n"));
1349 	}
1350 
1351 	if (shost->host_self_blocked)
1352 		goto starved;
1353 
1354 	/* We're OK to process the command, so we can't be starved */
1355 	if (!list_empty(&sdev->starved_entry)) {
1356 		spin_lock_irq(shost->host_lock);
1357 		if (!list_empty(&sdev->starved_entry))
1358 			list_del_init(&sdev->starved_entry);
1359 		spin_unlock_irq(shost->host_lock);
1360 	}
1361 
1362 	__set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1363 
1364 	return 1;
1365 
1366 starved:
1367 	spin_lock_irq(shost->host_lock);
1368 	if (list_empty(&sdev->starved_entry))
1369 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1370 	spin_unlock_irq(shost->host_lock);
1371 out_dec:
1372 	scsi_dec_host_busy(shost, cmd);
1373 	return 0;
1374 }
1375 
1376 /*
1377  * Busy state exporting function for request stacking drivers.
1378  *
1379  * For efficiency, no lock is taken to check the busy state of
1380  * shost/starget/sdev, since the returned value is not guaranteed and
1381  * may be changed after request stacking drivers call the function,
1382  * regardless of taking lock or not.
1383  *
1384  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1385  * needs to return 'not busy'. Otherwise, request stacking drivers
1386  * may hold requests forever.
1387  */
scsi_mq_lld_busy(struct request_queue * q)1388 static bool scsi_mq_lld_busy(struct request_queue *q)
1389 {
1390 	struct scsi_device *sdev = q->queuedata;
1391 	struct Scsi_Host *shost;
1392 
1393 	if (blk_queue_dying(q))
1394 		return false;
1395 
1396 	shost = sdev->host;
1397 
1398 	/*
1399 	 * Ignore host/starget busy state.
1400 	 * Since block layer does not have a concept of fairness across
1401 	 * multiple queues, congestion of host/starget needs to be handled
1402 	 * in SCSI layer.
1403 	 */
1404 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1405 		return true;
1406 
1407 	return false;
1408 }
1409 
1410 /*
1411  * Block layer request completion callback. May be called from interrupt
1412  * context.
1413  */
scsi_complete(struct request * rq)1414 static void scsi_complete(struct request *rq)
1415 {
1416 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1417 	enum scsi_disposition disposition;
1418 
1419 	INIT_LIST_HEAD(&cmd->eh_entry);
1420 
1421 	atomic_inc(&cmd->device->iodone_cnt);
1422 	if (cmd->result)
1423 		atomic_inc(&cmd->device->ioerr_cnt);
1424 
1425 	disposition = scsi_decide_disposition(cmd);
1426 	if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1427 		disposition = SUCCESS;
1428 
1429 	scsi_log_completion(cmd, disposition);
1430 
1431 	switch (disposition) {
1432 	case SUCCESS:
1433 		scsi_finish_command(cmd);
1434 		break;
1435 	case NEEDS_RETRY:
1436 		scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1437 		break;
1438 	case ADD_TO_MLQUEUE:
1439 		scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1440 		break;
1441 	default:
1442 		scsi_eh_scmd_add(cmd);
1443 		break;
1444 	}
1445 }
1446 
1447 /**
1448  * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1449  * @cmd: command block we are dispatching.
1450  *
1451  * Return: nonzero return request was rejected and device's queue needs to be
1452  * plugged.
1453  */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1454 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1455 {
1456 	struct Scsi_Host *host = cmd->device->host;
1457 	int rtn = 0;
1458 
1459 	atomic_inc(&cmd->device->iorequest_cnt);
1460 
1461 	/* check if the device is still usable */
1462 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1463 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1464 		 * returns an immediate error upwards, and signals
1465 		 * that the device is no longer present */
1466 		cmd->result = DID_NO_CONNECT << 16;
1467 		goto done;
1468 	}
1469 
1470 	/* Check to see if the scsi lld made this device blocked. */
1471 	if (unlikely(scsi_device_blocked(cmd->device))) {
1472 		/*
1473 		 * in blocked state, the command is just put back on
1474 		 * the device queue.  The suspend state has already
1475 		 * blocked the queue so future requests should not
1476 		 * occur until the device transitions out of the
1477 		 * suspend state.
1478 		 */
1479 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1480 			"queuecommand : device blocked\n"));
1481 		atomic_dec(&cmd->device->iorequest_cnt);
1482 		return SCSI_MLQUEUE_DEVICE_BUSY;
1483 	}
1484 
1485 	/* Store the LUN value in cmnd, if needed. */
1486 	if (cmd->device->lun_in_cdb)
1487 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1488 			       (cmd->device->lun << 5 & 0xe0);
1489 
1490 	scsi_log_send(cmd);
1491 
1492 	/*
1493 	 * Before we queue this command, check if the command
1494 	 * length exceeds what the host adapter can handle.
1495 	 */
1496 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1497 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1498 			       "queuecommand : command too long. "
1499 			       "cdb_size=%d host->max_cmd_len=%d\n",
1500 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1501 		cmd->result = (DID_ABORT << 16);
1502 		goto done;
1503 	}
1504 
1505 	if (unlikely(host->shost_state == SHOST_DEL)) {
1506 		cmd->result = (DID_NO_CONNECT << 16);
1507 		goto done;
1508 
1509 	}
1510 
1511 	trace_scsi_dispatch_cmd_start(cmd);
1512 	rtn = host->hostt->queuecommand(host, cmd);
1513 	if (rtn) {
1514 		atomic_dec(&cmd->device->iorequest_cnt);
1515 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1516 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1517 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1518 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1519 
1520 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1521 			"queuecommand : request rejected\n"));
1522 	}
1523 
1524 	return rtn;
1525  done:
1526 	cmd->scsi_done(cmd);
1527 	return 0;
1528 }
1529 
1530 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1531 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1532 {
1533 	return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1534 		sizeof(struct scatterlist);
1535 }
1536 
scsi_prepare_cmd(struct request * req)1537 static blk_status_t scsi_prepare_cmd(struct request *req)
1538 {
1539 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1540 	struct scsi_device *sdev = req->q->queuedata;
1541 	struct Scsi_Host *shost = sdev->host;
1542 	struct scatterlist *sg;
1543 
1544 	scsi_init_command(sdev, cmd);
1545 
1546 	cmd->prot_op = SCSI_PROT_NORMAL;
1547 	if (blk_rq_bytes(req))
1548 		cmd->sc_data_direction = rq_dma_dir(req);
1549 	else
1550 		cmd->sc_data_direction = DMA_NONE;
1551 
1552 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1553 	cmd->sdb.table.sgl = sg;
1554 
1555 	if (scsi_host_get_prot(shost)) {
1556 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1557 
1558 		cmd->prot_sdb->table.sgl =
1559 			(struct scatterlist *)(cmd->prot_sdb + 1);
1560 	}
1561 
1562 	/*
1563 	 * Special handling for passthrough commands, which don't go to the ULP
1564 	 * at all:
1565 	 */
1566 	if (blk_rq_is_passthrough(req))
1567 		return scsi_setup_scsi_cmnd(sdev, req);
1568 
1569 	if (sdev->handler && sdev->handler->prep_fn) {
1570 		blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1571 
1572 		if (ret != BLK_STS_OK)
1573 			return ret;
1574 	}
1575 
1576 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1577 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1578 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1579 }
1580 
scsi_mq_done(struct scsi_cmnd * cmd)1581 static void scsi_mq_done(struct scsi_cmnd *cmd)
1582 {
1583 	if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1584 		return;
1585 	if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1586 		return;
1587 	trace_scsi_dispatch_cmd_done(cmd);
1588 	blk_mq_complete_request(scsi_cmd_to_rq(cmd));
1589 }
1590 
scsi_mq_put_budget(struct request_queue * q,int budget_token)1591 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1592 {
1593 	struct scsi_device *sdev = q->queuedata;
1594 
1595 	sbitmap_put(&sdev->budget_map, budget_token);
1596 }
1597 
scsi_mq_get_budget(struct request_queue * q)1598 static int scsi_mq_get_budget(struct request_queue *q)
1599 {
1600 	struct scsi_device *sdev = q->queuedata;
1601 	int token = scsi_dev_queue_ready(q, sdev);
1602 
1603 	if (token >= 0)
1604 		return token;
1605 
1606 	atomic_inc(&sdev->restarts);
1607 
1608 	/*
1609 	 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1610 	 * .restarts must be incremented before .device_busy is read because the
1611 	 * code in scsi_run_queue_async() depends on the order of these operations.
1612 	 */
1613 	smp_mb__after_atomic();
1614 
1615 	/*
1616 	 * If all in-flight requests originated from this LUN are completed
1617 	 * before reading .device_busy, sdev->device_busy will be observed as
1618 	 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1619 	 * soon. Otherwise, completion of one of these requests will observe
1620 	 * the .restarts flag, and the request queue will be run for handling
1621 	 * this request, see scsi_end_request().
1622 	 */
1623 	if (unlikely(scsi_device_busy(sdev) == 0 &&
1624 				!scsi_device_blocked(sdev)))
1625 		blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1626 	return -1;
1627 }
1628 
scsi_mq_set_rq_budget_token(struct request * req,int token)1629 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1630 {
1631 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1632 
1633 	cmd->budget_token = token;
1634 }
1635 
scsi_mq_get_rq_budget_token(struct request * req)1636 static int scsi_mq_get_rq_budget_token(struct request *req)
1637 {
1638 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1639 
1640 	return cmd->budget_token;
1641 }
1642 
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1643 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1644 			 const struct blk_mq_queue_data *bd)
1645 {
1646 	struct request *req = bd->rq;
1647 	struct request_queue *q = req->q;
1648 	struct scsi_device *sdev = q->queuedata;
1649 	struct Scsi_Host *shost = sdev->host;
1650 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1651 	blk_status_t ret;
1652 	int reason;
1653 
1654 	WARN_ON_ONCE(cmd->budget_token < 0);
1655 
1656 	/*
1657 	 * If the device is not in running state we will reject some or all
1658 	 * commands.
1659 	 */
1660 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1661 		ret = scsi_device_state_check(sdev, req);
1662 		if (ret != BLK_STS_OK)
1663 			goto out_put_budget;
1664 	}
1665 
1666 	ret = BLK_STS_RESOURCE;
1667 	if (!scsi_target_queue_ready(shost, sdev))
1668 		goto out_put_budget;
1669 	if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1670 		goto out_dec_target_busy;
1671 
1672 	if (!(req->rq_flags & RQF_DONTPREP)) {
1673 		ret = scsi_prepare_cmd(req);
1674 		if (ret != BLK_STS_OK)
1675 			goto out_dec_host_busy;
1676 		req->rq_flags |= RQF_DONTPREP;
1677 	} else {
1678 		clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1679 	}
1680 
1681 	cmd->flags &= SCMD_PRESERVED_FLAGS;
1682 	if (sdev->simple_tags)
1683 		cmd->flags |= SCMD_TAGGED;
1684 	if (bd->last)
1685 		cmd->flags |= SCMD_LAST;
1686 
1687 	scsi_set_resid(cmd, 0);
1688 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1689 	cmd->scsi_done = scsi_mq_done;
1690 
1691 	blk_mq_start_request(req);
1692 	reason = scsi_dispatch_cmd(cmd);
1693 	if (reason) {
1694 		scsi_set_blocked(cmd, reason);
1695 		ret = BLK_STS_RESOURCE;
1696 		goto out_dec_host_busy;
1697 	}
1698 
1699 	return BLK_STS_OK;
1700 
1701 out_dec_host_busy:
1702 	scsi_dec_host_busy(shost, cmd);
1703 out_dec_target_busy:
1704 	if (scsi_target(sdev)->can_queue > 0)
1705 		atomic_dec(&scsi_target(sdev)->target_busy);
1706 out_put_budget:
1707 	scsi_mq_put_budget(q, cmd->budget_token);
1708 	cmd->budget_token = -1;
1709 	switch (ret) {
1710 	case BLK_STS_OK:
1711 		break;
1712 	case BLK_STS_RESOURCE:
1713 	case BLK_STS_ZONE_RESOURCE:
1714 		if (scsi_device_blocked(sdev))
1715 			ret = BLK_STS_DEV_RESOURCE;
1716 		break;
1717 	case BLK_STS_AGAIN:
1718 		scsi_req(req)->result = DID_BUS_BUSY << 16;
1719 		if (req->rq_flags & RQF_DONTPREP)
1720 			scsi_mq_uninit_cmd(cmd);
1721 		break;
1722 	default:
1723 		if (unlikely(!scsi_device_online(sdev)))
1724 			scsi_req(req)->result = DID_NO_CONNECT << 16;
1725 		else
1726 			scsi_req(req)->result = DID_ERROR << 16;
1727 		/*
1728 		 * Make sure to release all allocated resources when
1729 		 * we hit an error, as we will never see this command
1730 		 * again.
1731 		 */
1732 		if (req->rq_flags & RQF_DONTPREP)
1733 			scsi_mq_uninit_cmd(cmd);
1734 		scsi_run_queue_async(sdev);
1735 		break;
1736 	}
1737 	return ret;
1738 }
1739 
scsi_timeout(struct request * req,bool reserved)1740 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1741 		bool reserved)
1742 {
1743 	if (reserved)
1744 		return BLK_EH_RESET_TIMER;
1745 	return scsi_times_out(req);
1746 }
1747 
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1748 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1749 				unsigned int hctx_idx, unsigned int numa_node)
1750 {
1751 	struct Scsi_Host *shost = set->driver_data;
1752 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1753 	struct scatterlist *sg;
1754 	int ret = 0;
1755 
1756 	cmd->sense_buffer =
1757 		kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1758 	if (!cmd->sense_buffer)
1759 		return -ENOMEM;
1760 	cmd->req.sense = cmd->sense_buffer;
1761 
1762 	if (scsi_host_get_prot(shost)) {
1763 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1764 			shost->hostt->cmd_size;
1765 		cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1766 	}
1767 
1768 	if (shost->hostt->init_cmd_priv) {
1769 		ret = shost->hostt->init_cmd_priv(shost, cmd);
1770 		if (ret < 0)
1771 			kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1772 	}
1773 
1774 	return ret;
1775 }
1776 
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1777 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1778 				 unsigned int hctx_idx)
1779 {
1780 	struct Scsi_Host *shost = set->driver_data;
1781 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1782 
1783 	if (shost->hostt->exit_cmd_priv)
1784 		shost->hostt->exit_cmd_priv(shost, cmd);
1785 	kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1786 }
1787 
1788 
scsi_mq_poll(struct blk_mq_hw_ctx * hctx)1789 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx)
1790 {
1791 	struct Scsi_Host *shost = hctx->driver_data;
1792 
1793 	if (shost->hostt->mq_poll)
1794 		return shost->hostt->mq_poll(shost, hctx->queue_num);
1795 
1796 	return 0;
1797 }
1798 
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1799 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1800 			  unsigned int hctx_idx)
1801 {
1802 	struct Scsi_Host *shost = data;
1803 
1804 	hctx->driver_data = shost;
1805 	return 0;
1806 }
1807 
scsi_map_queues(struct blk_mq_tag_set * set)1808 static int scsi_map_queues(struct blk_mq_tag_set *set)
1809 {
1810 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1811 
1812 	if (shost->hostt->map_queues)
1813 		return shost->hostt->map_queues(shost);
1814 	return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1815 }
1816 
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1817 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1818 {
1819 	struct device *dev = shost->dma_dev;
1820 
1821 	/*
1822 	 * this limit is imposed by hardware restrictions
1823 	 */
1824 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1825 					SG_MAX_SEGMENTS));
1826 
1827 	if (scsi_host_prot_dma(shost)) {
1828 		shost->sg_prot_tablesize =
1829 			min_not_zero(shost->sg_prot_tablesize,
1830 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1831 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1832 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1833 	}
1834 
1835 	if (dev->dma_mask) {
1836 		shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1837 				dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1838 	}
1839 	blk_queue_max_hw_sectors(q, shost->max_sectors);
1840 	blk_queue_segment_boundary(q, shost->dma_boundary);
1841 	dma_set_seg_boundary(dev, shost->dma_boundary);
1842 
1843 	blk_queue_max_segment_size(q, shost->max_segment_size);
1844 	blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1845 	dma_set_max_seg_size(dev, queue_max_segment_size(q));
1846 
1847 	/*
1848 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
1849 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
1850 	 * which is set by the platform.
1851 	 *
1852 	 * Devices that require a bigger alignment can increase it later.
1853 	 */
1854 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1855 }
1856 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1857 
1858 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1859 	.get_budget	= scsi_mq_get_budget,
1860 	.put_budget	= scsi_mq_put_budget,
1861 	.queue_rq	= scsi_queue_rq,
1862 	.complete	= scsi_complete,
1863 	.timeout	= scsi_timeout,
1864 #ifdef CONFIG_BLK_DEBUG_FS
1865 	.show_rq	= scsi_show_rq,
1866 #endif
1867 	.init_request	= scsi_mq_init_request,
1868 	.exit_request	= scsi_mq_exit_request,
1869 	.initialize_rq_fn = scsi_initialize_rq,
1870 	.cleanup_rq	= scsi_cleanup_rq,
1871 	.busy		= scsi_mq_lld_busy,
1872 	.map_queues	= scsi_map_queues,
1873 	.init_hctx	= scsi_init_hctx,
1874 	.poll		= scsi_mq_poll,
1875 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1876 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1877 };
1878 
1879 
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1880 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1881 {
1882 	struct Scsi_Host *shost = hctx->driver_data;
1883 
1884 	shost->hostt->commit_rqs(shost, hctx->queue_num);
1885 }
1886 
1887 static const struct blk_mq_ops scsi_mq_ops = {
1888 	.get_budget	= scsi_mq_get_budget,
1889 	.put_budget	= scsi_mq_put_budget,
1890 	.queue_rq	= scsi_queue_rq,
1891 	.commit_rqs	= scsi_commit_rqs,
1892 	.complete	= scsi_complete,
1893 	.timeout	= scsi_timeout,
1894 #ifdef CONFIG_BLK_DEBUG_FS
1895 	.show_rq	= scsi_show_rq,
1896 #endif
1897 	.init_request	= scsi_mq_init_request,
1898 	.exit_request	= scsi_mq_exit_request,
1899 	.initialize_rq_fn = scsi_initialize_rq,
1900 	.cleanup_rq	= scsi_cleanup_rq,
1901 	.busy		= scsi_mq_lld_busy,
1902 	.map_queues	= scsi_map_queues,
1903 	.init_hctx	= scsi_init_hctx,
1904 	.poll		= scsi_mq_poll,
1905 	.set_rq_budget_token = scsi_mq_set_rq_budget_token,
1906 	.get_rq_budget_token = scsi_mq_get_rq_budget_token,
1907 };
1908 
scsi_mq_setup_tags(struct Scsi_Host * shost)1909 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1910 {
1911 	unsigned int cmd_size, sgl_size;
1912 	struct blk_mq_tag_set *tag_set = &shost->tag_set;
1913 
1914 	sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1915 				scsi_mq_inline_sgl_size(shost));
1916 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1917 	if (scsi_host_get_prot(shost))
1918 		cmd_size += sizeof(struct scsi_data_buffer) +
1919 			sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1920 
1921 	memset(tag_set, 0, sizeof(*tag_set));
1922 	if (shost->hostt->commit_rqs)
1923 		tag_set->ops = &scsi_mq_ops;
1924 	else
1925 		tag_set->ops = &scsi_mq_ops_no_commit;
1926 	tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1927 	tag_set->nr_maps = shost->nr_maps ? : 1;
1928 	tag_set->queue_depth = shost->can_queue;
1929 	tag_set->cmd_size = cmd_size;
1930 	tag_set->numa_node = NUMA_NO_NODE;
1931 	tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1932 	tag_set->flags |=
1933 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1934 	tag_set->driver_data = shost;
1935 	if (shost->host_tagset)
1936 		tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1937 
1938 	return blk_mq_alloc_tag_set(tag_set);
1939 }
1940 
scsi_mq_destroy_tags(struct Scsi_Host * shost)1941 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1942 {
1943 	blk_mq_free_tag_set(&shost->tag_set);
1944 }
1945 
1946 /**
1947  * scsi_device_from_queue - return sdev associated with a request_queue
1948  * @q: The request queue to return the sdev from
1949  *
1950  * Return the sdev associated with a request queue or NULL if the
1951  * request_queue does not reference a SCSI device.
1952  */
scsi_device_from_queue(struct request_queue * q)1953 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1954 {
1955 	struct scsi_device *sdev = NULL;
1956 
1957 	if (q->mq_ops == &scsi_mq_ops_no_commit ||
1958 	    q->mq_ops == &scsi_mq_ops)
1959 		sdev = q->queuedata;
1960 	if (!sdev || !get_device(&sdev->sdev_gendev))
1961 		sdev = NULL;
1962 
1963 	return sdev;
1964 }
1965 
1966 /**
1967  * scsi_block_requests - Utility function used by low-level drivers to prevent
1968  * further commands from being queued to the device.
1969  * @shost:  host in question
1970  *
1971  * There is no timer nor any other means by which the requests get unblocked
1972  * other than the low-level driver calling scsi_unblock_requests().
1973  */
scsi_block_requests(struct Scsi_Host * shost)1974 void scsi_block_requests(struct Scsi_Host *shost)
1975 {
1976 	shost->host_self_blocked = 1;
1977 }
1978 EXPORT_SYMBOL(scsi_block_requests);
1979 
1980 /**
1981  * scsi_unblock_requests - Utility function used by low-level drivers to allow
1982  * further commands to be queued to the device.
1983  * @shost:  host in question
1984  *
1985  * There is no timer nor any other means by which the requests get unblocked
1986  * other than the low-level driver calling scsi_unblock_requests(). This is done
1987  * as an API function so that changes to the internals of the scsi mid-layer
1988  * won't require wholesale changes to drivers that use this feature.
1989  */
scsi_unblock_requests(struct Scsi_Host * shost)1990 void scsi_unblock_requests(struct Scsi_Host *shost)
1991 {
1992 	shost->host_self_blocked = 0;
1993 	scsi_run_host_queues(shost);
1994 }
1995 EXPORT_SYMBOL(scsi_unblock_requests);
1996 
scsi_exit_queue(void)1997 void scsi_exit_queue(void)
1998 {
1999 	kmem_cache_destroy(scsi_sense_cache);
2000 }
2001 
2002 /**
2003  *	scsi_mode_select - issue a mode select
2004  *	@sdev:	SCSI device to be queried
2005  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2006  *	@sp:	Save page bit (0 == don't save, 1 == save)
2007  *	@modepage: mode page being requested
2008  *	@buffer: request buffer (may not be smaller than eight bytes)
2009  *	@len:	length of request buffer.
2010  *	@timeout: command timeout
2011  *	@retries: number of retries before failing
2012  *	@data: returns a structure abstracting the mode header data
2013  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2014  *		must be SCSI_SENSE_BUFFERSIZE big.
2015  *
2016  *	Returns zero if successful; negative error number or scsi
2017  *	status on error
2018  *
2019  */
2020 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2021 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2022 		 unsigned char *buffer, int len, int timeout, int retries,
2023 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2024 {
2025 	unsigned char cmd[10];
2026 	unsigned char *real_buffer;
2027 	int ret;
2028 
2029 	memset(cmd, 0, sizeof(cmd));
2030 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2031 
2032 	if (sdev->use_10_for_ms) {
2033 		if (len > 65535)
2034 			return -EINVAL;
2035 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2036 		if (!real_buffer)
2037 			return -ENOMEM;
2038 		memcpy(real_buffer + 8, buffer, len);
2039 		len += 8;
2040 		real_buffer[0] = 0;
2041 		real_buffer[1] = 0;
2042 		real_buffer[2] = data->medium_type;
2043 		real_buffer[3] = data->device_specific;
2044 		real_buffer[4] = data->longlba ? 0x01 : 0;
2045 		real_buffer[5] = 0;
2046 		real_buffer[6] = data->block_descriptor_length >> 8;
2047 		real_buffer[7] = data->block_descriptor_length;
2048 
2049 		cmd[0] = MODE_SELECT_10;
2050 		cmd[7] = len >> 8;
2051 		cmd[8] = len;
2052 	} else {
2053 		if (len > 255 || data->block_descriptor_length > 255 ||
2054 		    data->longlba)
2055 			return -EINVAL;
2056 
2057 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2058 		if (!real_buffer)
2059 			return -ENOMEM;
2060 		memcpy(real_buffer + 4, buffer, len);
2061 		len += 4;
2062 		real_buffer[0] = 0;
2063 		real_buffer[1] = data->medium_type;
2064 		real_buffer[2] = data->device_specific;
2065 		real_buffer[3] = data->block_descriptor_length;
2066 
2067 		cmd[0] = MODE_SELECT;
2068 		cmd[4] = len;
2069 	}
2070 
2071 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2072 			       sshdr, timeout, retries, NULL);
2073 	kfree(real_buffer);
2074 	return ret;
2075 }
2076 EXPORT_SYMBOL_GPL(scsi_mode_select);
2077 
2078 /**
2079  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2080  *	@sdev:	SCSI device to be queried
2081  *	@dbd:	set to prevent mode sense from returning block descriptors
2082  *	@modepage: mode page being requested
2083  *	@buffer: request buffer (may not be smaller than eight bytes)
2084  *	@len:	length of request buffer.
2085  *	@timeout: command timeout
2086  *	@retries: number of retries before failing
2087  *	@data: returns a structure abstracting the mode header data
2088  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2089  *		must be SCSI_SENSE_BUFFERSIZE big.
2090  *
2091  *	Returns zero if successful, or a negative error number on failure
2092  */
2093 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2094 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2095 		  unsigned char *buffer, int len, int timeout, int retries,
2096 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2097 {
2098 	unsigned char cmd[12];
2099 	int use_10_for_ms;
2100 	int header_length;
2101 	int result, retry_count = retries;
2102 	struct scsi_sense_hdr my_sshdr;
2103 
2104 	memset(data, 0, sizeof(*data));
2105 	memset(&cmd[0], 0, 12);
2106 
2107 	dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2108 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2109 	cmd[2] = modepage;
2110 
2111 	/* caller might not be interested in sense, but we need it */
2112 	if (!sshdr)
2113 		sshdr = &my_sshdr;
2114 
2115  retry:
2116 	use_10_for_ms = sdev->use_10_for_ms || len > 255;
2117 
2118 	if (use_10_for_ms) {
2119 		if (len < 8 || len > 65535)
2120 			return -EINVAL;
2121 
2122 		cmd[0] = MODE_SENSE_10;
2123 		put_unaligned_be16(len, &cmd[7]);
2124 		header_length = 8;
2125 	} else {
2126 		if (len < 4)
2127 			return -EINVAL;
2128 
2129 		cmd[0] = MODE_SENSE;
2130 		cmd[4] = len;
2131 		header_length = 4;
2132 	}
2133 
2134 	memset(buffer, 0, len);
2135 
2136 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2137 				  sshdr, timeout, retries, NULL);
2138 	if (result < 0)
2139 		return result;
2140 
2141 	/* This code looks awful: what it's doing is making sure an
2142 	 * ILLEGAL REQUEST sense return identifies the actual command
2143 	 * byte as the problem.  MODE_SENSE commands can return
2144 	 * ILLEGAL REQUEST if the code page isn't supported */
2145 
2146 	if (!scsi_status_is_good(result)) {
2147 		if (scsi_sense_valid(sshdr)) {
2148 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2149 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2150 				/*
2151 				 * Invalid command operation code: retry using
2152 				 * MODE SENSE(6) if this was a MODE SENSE(10)
2153 				 * request, except if the request mode page is
2154 				 * too large for MODE SENSE single byte
2155 				 * allocation length field.
2156 				 */
2157 				if (use_10_for_ms) {
2158 					if (len > 255)
2159 						return -EIO;
2160 					sdev->use_10_for_ms = 0;
2161 					goto retry;
2162 				}
2163 			}
2164 			if (scsi_status_is_check_condition(result) &&
2165 			    sshdr->sense_key == UNIT_ATTENTION &&
2166 			    retry_count) {
2167 				retry_count--;
2168 				goto retry;
2169 			}
2170 		}
2171 		return -EIO;
2172 	}
2173 	if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2174 		     (modepage == 6 || modepage == 8))) {
2175 		/* Initio breakage? */
2176 		header_length = 0;
2177 		data->length = 13;
2178 		data->medium_type = 0;
2179 		data->device_specific = 0;
2180 		data->longlba = 0;
2181 		data->block_descriptor_length = 0;
2182 	} else if (use_10_for_ms) {
2183 		data->length = get_unaligned_be16(&buffer[0]) + 2;
2184 		data->medium_type = buffer[2];
2185 		data->device_specific = buffer[3];
2186 		data->longlba = buffer[4] & 0x01;
2187 		data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2188 	} else {
2189 		data->length = buffer[0] + 1;
2190 		data->medium_type = buffer[1];
2191 		data->device_specific = buffer[2];
2192 		data->block_descriptor_length = buffer[3];
2193 	}
2194 	data->header_length = header_length;
2195 
2196 	return 0;
2197 }
2198 EXPORT_SYMBOL(scsi_mode_sense);
2199 
2200 /**
2201  *	scsi_test_unit_ready - test if unit is ready
2202  *	@sdev:	scsi device to change the state of.
2203  *	@timeout: command timeout
2204  *	@retries: number of retries before failing
2205  *	@sshdr: outpout pointer for decoded sense information.
2206  *
2207  *	Returns zero if unsuccessful or an error if TUR failed.  For
2208  *	removable media, UNIT_ATTENTION sets ->changed flag.
2209  **/
2210 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2211 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2212 		     struct scsi_sense_hdr *sshdr)
2213 {
2214 	char cmd[] = {
2215 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2216 	};
2217 	int result;
2218 
2219 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2220 	do {
2221 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2222 					  timeout, 1, NULL);
2223 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2224 		    sshdr->sense_key == UNIT_ATTENTION)
2225 			sdev->changed = 1;
2226 	} while (scsi_sense_valid(sshdr) &&
2227 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2228 
2229 	return result;
2230 }
2231 EXPORT_SYMBOL(scsi_test_unit_ready);
2232 
2233 /**
2234  *	scsi_device_set_state - Take the given device through the device state model.
2235  *	@sdev:	scsi device to change the state of.
2236  *	@state:	state to change to.
2237  *
2238  *	Returns zero if successful or an error if the requested
2239  *	transition is illegal.
2240  */
2241 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2242 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2243 {
2244 	enum scsi_device_state oldstate = sdev->sdev_state;
2245 
2246 	if (state == oldstate)
2247 		return 0;
2248 
2249 	switch (state) {
2250 	case SDEV_CREATED:
2251 		switch (oldstate) {
2252 		case SDEV_CREATED_BLOCK:
2253 			break;
2254 		default:
2255 			goto illegal;
2256 		}
2257 		break;
2258 
2259 	case SDEV_RUNNING:
2260 		switch (oldstate) {
2261 		case SDEV_CREATED:
2262 		case SDEV_OFFLINE:
2263 		case SDEV_TRANSPORT_OFFLINE:
2264 		case SDEV_QUIESCE:
2265 		case SDEV_BLOCK:
2266 			break;
2267 		default:
2268 			goto illegal;
2269 		}
2270 		break;
2271 
2272 	case SDEV_QUIESCE:
2273 		switch (oldstate) {
2274 		case SDEV_RUNNING:
2275 		case SDEV_OFFLINE:
2276 		case SDEV_TRANSPORT_OFFLINE:
2277 			break;
2278 		default:
2279 			goto illegal;
2280 		}
2281 		break;
2282 
2283 	case SDEV_OFFLINE:
2284 	case SDEV_TRANSPORT_OFFLINE:
2285 		switch (oldstate) {
2286 		case SDEV_CREATED:
2287 		case SDEV_RUNNING:
2288 		case SDEV_QUIESCE:
2289 		case SDEV_BLOCK:
2290 			break;
2291 		default:
2292 			goto illegal;
2293 		}
2294 		break;
2295 
2296 	case SDEV_BLOCK:
2297 		switch (oldstate) {
2298 		case SDEV_RUNNING:
2299 		case SDEV_CREATED_BLOCK:
2300 		case SDEV_QUIESCE:
2301 		case SDEV_OFFLINE:
2302 			break;
2303 		default:
2304 			goto illegal;
2305 		}
2306 		break;
2307 
2308 	case SDEV_CREATED_BLOCK:
2309 		switch (oldstate) {
2310 		case SDEV_CREATED:
2311 			break;
2312 		default:
2313 			goto illegal;
2314 		}
2315 		break;
2316 
2317 	case SDEV_CANCEL:
2318 		switch (oldstate) {
2319 		case SDEV_CREATED:
2320 		case SDEV_RUNNING:
2321 		case SDEV_QUIESCE:
2322 		case SDEV_OFFLINE:
2323 		case SDEV_TRANSPORT_OFFLINE:
2324 			break;
2325 		default:
2326 			goto illegal;
2327 		}
2328 		break;
2329 
2330 	case SDEV_DEL:
2331 		switch (oldstate) {
2332 		case SDEV_CREATED:
2333 		case SDEV_RUNNING:
2334 		case SDEV_OFFLINE:
2335 		case SDEV_TRANSPORT_OFFLINE:
2336 		case SDEV_CANCEL:
2337 		case SDEV_BLOCK:
2338 		case SDEV_CREATED_BLOCK:
2339 			break;
2340 		default:
2341 			goto illegal;
2342 		}
2343 		break;
2344 
2345 	}
2346 	sdev->offline_already = false;
2347 	sdev->sdev_state = state;
2348 	return 0;
2349 
2350  illegal:
2351 	SCSI_LOG_ERROR_RECOVERY(1,
2352 				sdev_printk(KERN_ERR, sdev,
2353 					    "Illegal state transition %s->%s",
2354 					    scsi_device_state_name(oldstate),
2355 					    scsi_device_state_name(state))
2356 				);
2357 	return -EINVAL;
2358 }
2359 EXPORT_SYMBOL(scsi_device_set_state);
2360 
2361 /**
2362  *	scsi_evt_emit - emit a single SCSI device uevent
2363  *	@sdev: associated SCSI device
2364  *	@evt: event to emit
2365  *
2366  *	Send a single uevent (scsi_event) to the associated scsi_device.
2367  */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2368 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2369 {
2370 	int idx = 0;
2371 	char *envp[3];
2372 
2373 	switch (evt->evt_type) {
2374 	case SDEV_EVT_MEDIA_CHANGE:
2375 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2376 		break;
2377 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2378 		scsi_rescan_device(&sdev->sdev_gendev);
2379 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2380 		break;
2381 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2382 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2383 		break;
2384 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2385 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2386 		break;
2387 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2388 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2389 		break;
2390 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2391 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2392 		break;
2393 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2394 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2395 		break;
2396 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2397 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2398 		break;
2399 	default:
2400 		/* do nothing */
2401 		break;
2402 	}
2403 
2404 	envp[idx++] = NULL;
2405 
2406 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2407 }
2408 
2409 /**
2410  *	scsi_evt_thread - send a uevent for each scsi event
2411  *	@work: work struct for scsi_device
2412  *
2413  *	Dispatch queued events to their associated scsi_device kobjects
2414  *	as uevents.
2415  */
scsi_evt_thread(struct work_struct * work)2416 void scsi_evt_thread(struct work_struct *work)
2417 {
2418 	struct scsi_device *sdev;
2419 	enum scsi_device_event evt_type;
2420 	LIST_HEAD(event_list);
2421 
2422 	sdev = container_of(work, struct scsi_device, event_work);
2423 
2424 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2425 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2426 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2427 
2428 	while (1) {
2429 		struct scsi_event *evt;
2430 		struct list_head *this, *tmp;
2431 		unsigned long flags;
2432 
2433 		spin_lock_irqsave(&sdev->list_lock, flags);
2434 		list_splice_init(&sdev->event_list, &event_list);
2435 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2436 
2437 		if (list_empty(&event_list))
2438 			break;
2439 
2440 		list_for_each_safe(this, tmp, &event_list) {
2441 			evt = list_entry(this, struct scsi_event, node);
2442 			list_del(&evt->node);
2443 			scsi_evt_emit(sdev, evt);
2444 			kfree(evt);
2445 		}
2446 	}
2447 }
2448 
2449 /**
2450  * 	sdev_evt_send - send asserted event to uevent thread
2451  *	@sdev: scsi_device event occurred on
2452  *	@evt: event to send
2453  *
2454  *	Assert scsi device event asynchronously.
2455  */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2456 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2457 {
2458 	unsigned long flags;
2459 
2460 #if 0
2461 	/* FIXME: currently this check eliminates all media change events
2462 	 * for polled devices.  Need to update to discriminate between AN
2463 	 * and polled events */
2464 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2465 		kfree(evt);
2466 		return;
2467 	}
2468 #endif
2469 
2470 	spin_lock_irqsave(&sdev->list_lock, flags);
2471 	list_add_tail(&evt->node, &sdev->event_list);
2472 	schedule_work(&sdev->event_work);
2473 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2474 }
2475 EXPORT_SYMBOL_GPL(sdev_evt_send);
2476 
2477 /**
2478  * 	sdev_evt_alloc - allocate a new scsi event
2479  *	@evt_type: type of event to allocate
2480  *	@gfpflags: GFP flags for allocation
2481  *
2482  *	Allocates and returns a new scsi_event.
2483  */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2484 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2485 				  gfp_t gfpflags)
2486 {
2487 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2488 	if (!evt)
2489 		return NULL;
2490 
2491 	evt->evt_type = evt_type;
2492 	INIT_LIST_HEAD(&evt->node);
2493 
2494 	/* evt_type-specific initialization, if any */
2495 	switch (evt_type) {
2496 	case SDEV_EVT_MEDIA_CHANGE:
2497 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2498 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2499 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2500 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2501 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2502 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2503 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2504 	default:
2505 		/* do nothing */
2506 		break;
2507 	}
2508 
2509 	return evt;
2510 }
2511 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2512 
2513 /**
2514  * 	sdev_evt_send_simple - send asserted event to uevent thread
2515  *	@sdev: scsi_device event occurred on
2516  *	@evt_type: type of event to send
2517  *	@gfpflags: GFP flags for allocation
2518  *
2519  *	Assert scsi device event asynchronously, given an event type.
2520  */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2521 void sdev_evt_send_simple(struct scsi_device *sdev,
2522 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2523 {
2524 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2525 	if (!evt) {
2526 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2527 			    evt_type);
2528 		return;
2529 	}
2530 
2531 	sdev_evt_send(sdev, evt);
2532 }
2533 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2534 
2535 /**
2536  *	scsi_device_quiesce - Block all commands except power management.
2537  *	@sdev:	scsi device to quiesce.
2538  *
2539  *	This works by trying to transition to the SDEV_QUIESCE state
2540  *	(which must be a legal transition).  When the device is in this
2541  *	state, only power management requests will be accepted, all others will
2542  *	be deferred.
2543  *
2544  *	Must be called with user context, may sleep.
2545  *
2546  *	Returns zero if unsuccessful or an error if not.
2547  */
2548 int
scsi_device_quiesce(struct scsi_device * sdev)2549 scsi_device_quiesce(struct scsi_device *sdev)
2550 {
2551 	struct request_queue *q = sdev->request_queue;
2552 	int err;
2553 
2554 	/*
2555 	 * It is allowed to call scsi_device_quiesce() multiple times from
2556 	 * the same context but concurrent scsi_device_quiesce() calls are
2557 	 * not allowed.
2558 	 */
2559 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2560 
2561 	if (sdev->quiesced_by == current)
2562 		return 0;
2563 
2564 	blk_set_pm_only(q);
2565 
2566 	blk_mq_freeze_queue(q);
2567 	/*
2568 	 * Ensure that the effect of blk_set_pm_only() will be visible
2569 	 * for percpu_ref_tryget() callers that occur after the queue
2570 	 * unfreeze even if the queue was already frozen before this function
2571 	 * was called. See also https://lwn.net/Articles/573497/.
2572 	 */
2573 	synchronize_rcu();
2574 	blk_mq_unfreeze_queue(q);
2575 
2576 	mutex_lock(&sdev->state_mutex);
2577 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2578 	if (err == 0)
2579 		sdev->quiesced_by = current;
2580 	else
2581 		blk_clear_pm_only(q);
2582 	mutex_unlock(&sdev->state_mutex);
2583 
2584 	return err;
2585 }
2586 EXPORT_SYMBOL(scsi_device_quiesce);
2587 
2588 /**
2589  *	scsi_device_resume - Restart user issued commands to a quiesced device.
2590  *	@sdev:	scsi device to resume.
2591  *
2592  *	Moves the device from quiesced back to running and restarts the
2593  *	queues.
2594  *
2595  *	Must be called with user context, may sleep.
2596  */
scsi_device_resume(struct scsi_device * sdev)2597 void scsi_device_resume(struct scsi_device *sdev)
2598 {
2599 	/* check if the device state was mutated prior to resume, and if
2600 	 * so assume the state is being managed elsewhere (for example
2601 	 * device deleted during suspend)
2602 	 */
2603 	mutex_lock(&sdev->state_mutex);
2604 	if (sdev->sdev_state == SDEV_QUIESCE)
2605 		scsi_device_set_state(sdev, SDEV_RUNNING);
2606 	if (sdev->quiesced_by) {
2607 		sdev->quiesced_by = NULL;
2608 		blk_clear_pm_only(sdev->request_queue);
2609 	}
2610 	mutex_unlock(&sdev->state_mutex);
2611 }
2612 EXPORT_SYMBOL(scsi_device_resume);
2613 
2614 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2615 device_quiesce_fn(struct scsi_device *sdev, void *data)
2616 {
2617 	scsi_device_quiesce(sdev);
2618 }
2619 
2620 void
scsi_target_quiesce(struct scsi_target * starget)2621 scsi_target_quiesce(struct scsi_target *starget)
2622 {
2623 	starget_for_each_device(starget, NULL, device_quiesce_fn);
2624 }
2625 EXPORT_SYMBOL(scsi_target_quiesce);
2626 
2627 static void
device_resume_fn(struct scsi_device * sdev,void * data)2628 device_resume_fn(struct scsi_device *sdev, void *data)
2629 {
2630 	scsi_device_resume(sdev);
2631 }
2632 
2633 void
scsi_target_resume(struct scsi_target * starget)2634 scsi_target_resume(struct scsi_target *starget)
2635 {
2636 	starget_for_each_device(starget, NULL, device_resume_fn);
2637 }
2638 EXPORT_SYMBOL(scsi_target_resume);
2639 
2640 /**
2641  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2642  * @sdev: device to block
2643  *
2644  * Pause SCSI command processing on the specified device. Does not sleep.
2645  *
2646  * Returns zero if successful or a negative error code upon failure.
2647  *
2648  * Notes:
2649  * This routine transitions the device to the SDEV_BLOCK state (which must be
2650  * a legal transition). When the device is in this state, command processing
2651  * is paused until the device leaves the SDEV_BLOCK state. See also
2652  * scsi_internal_device_unblock_nowait().
2653  */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2654 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2655 {
2656 	struct request_queue *q = sdev->request_queue;
2657 	int err = 0;
2658 
2659 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2660 	if (err) {
2661 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2662 
2663 		if (err)
2664 			return err;
2665 	}
2666 
2667 	/*
2668 	 * The device has transitioned to SDEV_BLOCK.  Stop the
2669 	 * block layer from calling the midlayer with this device's
2670 	 * request queue.
2671 	 */
2672 	blk_mq_quiesce_queue_nowait(q);
2673 	return 0;
2674 }
2675 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2676 
2677 /**
2678  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2679  * @sdev: device to block
2680  *
2681  * Pause SCSI command processing on the specified device and wait until all
2682  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2683  *
2684  * Returns zero if successful or a negative error code upon failure.
2685  *
2686  * Note:
2687  * This routine transitions the device to the SDEV_BLOCK state (which must be
2688  * a legal transition). When the device is in this state, command processing
2689  * is paused until the device leaves the SDEV_BLOCK state. See also
2690  * scsi_internal_device_unblock().
2691  */
scsi_internal_device_block(struct scsi_device * sdev)2692 static int scsi_internal_device_block(struct scsi_device *sdev)
2693 {
2694 	struct request_queue *q = sdev->request_queue;
2695 	int err;
2696 
2697 	mutex_lock(&sdev->state_mutex);
2698 	err = scsi_internal_device_block_nowait(sdev);
2699 	if (err == 0)
2700 		blk_mq_quiesce_queue(q);
2701 	mutex_unlock(&sdev->state_mutex);
2702 
2703 	return err;
2704 }
2705 
scsi_start_queue(struct scsi_device * sdev)2706 void scsi_start_queue(struct scsi_device *sdev)
2707 {
2708 	struct request_queue *q = sdev->request_queue;
2709 
2710 	blk_mq_unquiesce_queue(q);
2711 }
2712 
2713 /**
2714  * scsi_internal_device_unblock_nowait - resume a device after a block request
2715  * @sdev:	device to resume
2716  * @new_state:	state to set the device to after unblocking
2717  *
2718  * Restart the device queue for a previously suspended SCSI device. Does not
2719  * sleep.
2720  *
2721  * Returns zero if successful or a negative error code upon failure.
2722  *
2723  * Notes:
2724  * This routine transitions the device to the SDEV_RUNNING state or to one of
2725  * the offline states (which must be a legal transition) allowing the midlayer
2726  * to goose the queue for this device.
2727  */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2728 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2729 					enum scsi_device_state new_state)
2730 {
2731 	switch (new_state) {
2732 	case SDEV_RUNNING:
2733 	case SDEV_TRANSPORT_OFFLINE:
2734 		break;
2735 	default:
2736 		return -EINVAL;
2737 	}
2738 
2739 	/*
2740 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2741 	 * offlined states and goose the device queue if successful.
2742 	 */
2743 	switch (sdev->sdev_state) {
2744 	case SDEV_BLOCK:
2745 	case SDEV_TRANSPORT_OFFLINE:
2746 		sdev->sdev_state = new_state;
2747 		break;
2748 	case SDEV_CREATED_BLOCK:
2749 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
2750 		    new_state == SDEV_OFFLINE)
2751 			sdev->sdev_state = new_state;
2752 		else
2753 			sdev->sdev_state = SDEV_CREATED;
2754 		break;
2755 	case SDEV_CANCEL:
2756 	case SDEV_OFFLINE:
2757 		break;
2758 	default:
2759 		return -EINVAL;
2760 	}
2761 	scsi_start_queue(sdev);
2762 
2763 	return 0;
2764 }
2765 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2766 
2767 /**
2768  * scsi_internal_device_unblock - resume a device after a block request
2769  * @sdev:	device to resume
2770  * @new_state:	state to set the device to after unblocking
2771  *
2772  * Restart the device queue for a previously suspended SCSI device. May sleep.
2773  *
2774  * Returns zero if successful or a negative error code upon failure.
2775  *
2776  * Notes:
2777  * This routine transitions the device to the SDEV_RUNNING state or to one of
2778  * the offline states (which must be a legal transition) allowing the midlayer
2779  * to goose the queue for this device.
2780  */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2781 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2782 					enum scsi_device_state new_state)
2783 {
2784 	int ret;
2785 
2786 	mutex_lock(&sdev->state_mutex);
2787 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2788 	mutex_unlock(&sdev->state_mutex);
2789 
2790 	return ret;
2791 }
2792 
2793 static void
device_block(struct scsi_device * sdev,void * data)2794 device_block(struct scsi_device *sdev, void *data)
2795 {
2796 	int ret;
2797 
2798 	ret = scsi_internal_device_block(sdev);
2799 
2800 	WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2801 		  dev_name(&sdev->sdev_gendev), ret);
2802 }
2803 
2804 static int
target_block(struct device * dev,void * data)2805 target_block(struct device *dev, void *data)
2806 {
2807 	if (scsi_is_target_device(dev))
2808 		starget_for_each_device(to_scsi_target(dev), NULL,
2809 					device_block);
2810 	return 0;
2811 }
2812 
2813 void
scsi_target_block(struct device * dev)2814 scsi_target_block(struct device *dev)
2815 {
2816 	if (scsi_is_target_device(dev))
2817 		starget_for_each_device(to_scsi_target(dev), NULL,
2818 					device_block);
2819 	else
2820 		device_for_each_child(dev, NULL, target_block);
2821 }
2822 EXPORT_SYMBOL_GPL(scsi_target_block);
2823 
2824 static void
device_unblock(struct scsi_device * sdev,void * data)2825 device_unblock(struct scsi_device *sdev, void *data)
2826 {
2827 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2828 }
2829 
2830 static int
target_unblock(struct device * dev,void * data)2831 target_unblock(struct device *dev, void *data)
2832 {
2833 	if (scsi_is_target_device(dev))
2834 		starget_for_each_device(to_scsi_target(dev), data,
2835 					device_unblock);
2836 	return 0;
2837 }
2838 
2839 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2840 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2841 {
2842 	if (scsi_is_target_device(dev))
2843 		starget_for_each_device(to_scsi_target(dev), &new_state,
2844 					device_unblock);
2845 	else
2846 		device_for_each_child(dev, &new_state, target_unblock);
2847 }
2848 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2849 
2850 int
scsi_host_block(struct Scsi_Host * shost)2851 scsi_host_block(struct Scsi_Host *shost)
2852 {
2853 	struct scsi_device *sdev;
2854 	int ret = 0;
2855 
2856 	/*
2857 	 * Call scsi_internal_device_block_nowait so we can avoid
2858 	 * calling synchronize_rcu() for each LUN.
2859 	 */
2860 	shost_for_each_device(sdev, shost) {
2861 		mutex_lock(&sdev->state_mutex);
2862 		ret = scsi_internal_device_block_nowait(sdev);
2863 		mutex_unlock(&sdev->state_mutex);
2864 		if (ret) {
2865 			scsi_device_put(sdev);
2866 			break;
2867 		}
2868 	}
2869 
2870 	/*
2871 	 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2872 	 * calling synchronize_rcu() once is enough.
2873 	 */
2874 	WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2875 
2876 	if (!ret)
2877 		synchronize_rcu();
2878 
2879 	return ret;
2880 }
2881 EXPORT_SYMBOL_GPL(scsi_host_block);
2882 
2883 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2884 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2885 {
2886 	struct scsi_device *sdev;
2887 	int ret = 0;
2888 
2889 	shost_for_each_device(sdev, shost) {
2890 		ret = scsi_internal_device_unblock(sdev, new_state);
2891 		if (ret) {
2892 			scsi_device_put(sdev);
2893 			break;
2894 		}
2895 	}
2896 	return ret;
2897 }
2898 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2899 
2900 /**
2901  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2902  * @sgl:	scatter-gather list
2903  * @sg_count:	number of segments in sg
2904  * @offset:	offset in bytes into sg, on return offset into the mapped area
2905  * @len:	bytes to map, on return number of bytes mapped
2906  *
2907  * Returns virtual address of the start of the mapped page
2908  */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2909 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2910 			  size_t *offset, size_t *len)
2911 {
2912 	int i;
2913 	size_t sg_len = 0, len_complete = 0;
2914 	struct scatterlist *sg;
2915 	struct page *page;
2916 
2917 	WARN_ON(!irqs_disabled());
2918 
2919 	for_each_sg(sgl, sg, sg_count, i) {
2920 		len_complete = sg_len; /* Complete sg-entries */
2921 		sg_len += sg->length;
2922 		if (sg_len > *offset)
2923 			break;
2924 	}
2925 
2926 	if (unlikely(i == sg_count)) {
2927 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2928 			"elements %d\n",
2929 		       __func__, sg_len, *offset, sg_count);
2930 		WARN_ON(1);
2931 		return NULL;
2932 	}
2933 
2934 	/* Offset starting from the beginning of first page in this sg-entry */
2935 	*offset = *offset - len_complete + sg->offset;
2936 
2937 	/* Assumption: contiguous pages can be accessed as "page + i" */
2938 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2939 	*offset &= ~PAGE_MASK;
2940 
2941 	/* Bytes in this sg-entry from *offset to the end of the page */
2942 	sg_len = PAGE_SIZE - *offset;
2943 	if (*len > sg_len)
2944 		*len = sg_len;
2945 
2946 	return kmap_atomic(page);
2947 }
2948 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2949 
2950 /**
2951  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2952  * @virt:	virtual address to be unmapped
2953  */
scsi_kunmap_atomic_sg(void * virt)2954 void scsi_kunmap_atomic_sg(void *virt)
2955 {
2956 	kunmap_atomic(virt);
2957 }
2958 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2959 
sdev_disable_disk_events(struct scsi_device * sdev)2960 void sdev_disable_disk_events(struct scsi_device *sdev)
2961 {
2962 	atomic_inc(&sdev->disk_events_disable_depth);
2963 }
2964 EXPORT_SYMBOL(sdev_disable_disk_events);
2965 
sdev_enable_disk_events(struct scsi_device * sdev)2966 void sdev_enable_disk_events(struct scsi_device *sdev)
2967 {
2968 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2969 		return;
2970 	atomic_dec(&sdev->disk_events_disable_depth);
2971 }
2972 EXPORT_SYMBOL(sdev_enable_disk_events);
2973 
designator_prio(const unsigned char * d)2974 static unsigned char designator_prio(const unsigned char *d)
2975 {
2976 	if (d[1] & 0x30)
2977 		/* not associated with LUN */
2978 		return 0;
2979 
2980 	if (d[3] == 0)
2981 		/* invalid length */
2982 		return 0;
2983 
2984 	/*
2985 	 * Order of preference for lun descriptor:
2986 	 * - SCSI name string
2987 	 * - NAA IEEE Registered Extended
2988 	 * - EUI-64 based 16-byte
2989 	 * - EUI-64 based 12-byte
2990 	 * - NAA IEEE Registered
2991 	 * - NAA IEEE Extended
2992 	 * - EUI-64 based 8-byte
2993 	 * - SCSI name string (truncated)
2994 	 * - T10 Vendor ID
2995 	 * as longer descriptors reduce the likelyhood
2996 	 * of identification clashes.
2997 	 */
2998 
2999 	switch (d[1] & 0xf) {
3000 	case 8:
3001 		/* SCSI name string, variable-length UTF-8 */
3002 		return 9;
3003 	case 3:
3004 		switch (d[4] >> 4) {
3005 		case 6:
3006 			/* NAA registered extended */
3007 			return 8;
3008 		case 5:
3009 			/* NAA registered */
3010 			return 5;
3011 		case 4:
3012 			/* NAA extended */
3013 			return 4;
3014 		case 3:
3015 			/* NAA locally assigned */
3016 			return 1;
3017 		default:
3018 			break;
3019 		}
3020 		break;
3021 	case 2:
3022 		switch (d[3]) {
3023 		case 16:
3024 			/* EUI64-based, 16 byte */
3025 			return 7;
3026 		case 12:
3027 			/* EUI64-based, 12 byte */
3028 			return 6;
3029 		case 8:
3030 			/* EUI64-based, 8 byte */
3031 			return 3;
3032 		default:
3033 			break;
3034 		}
3035 		break;
3036 	case 1:
3037 		/* T10 vendor ID */
3038 		return 1;
3039 	default:
3040 		break;
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /**
3047  * scsi_vpd_lun_id - return a unique device identification
3048  * @sdev: SCSI device
3049  * @id:   buffer for the identification
3050  * @id_len:  length of the buffer
3051  *
3052  * Copies a unique device identification into @id based
3053  * on the information in the VPD page 0x83 of the device.
3054  * The string will be formatted as a SCSI name string.
3055  *
3056  * Returns the length of the identification or error on failure.
3057  * If the identifier is longer than the supplied buffer the actual
3058  * identifier length is returned and the buffer is not zero-padded.
3059  */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3060 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3061 {
3062 	u8 cur_id_prio = 0;
3063 	u8 cur_id_size = 0;
3064 	const unsigned char *d, *cur_id_str;
3065 	const struct scsi_vpd *vpd_pg83;
3066 	int id_size = -EINVAL;
3067 
3068 	rcu_read_lock();
3069 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3070 	if (!vpd_pg83) {
3071 		rcu_read_unlock();
3072 		return -ENXIO;
3073 	}
3074 
3075 	/* The id string must be at least 20 bytes + terminating NULL byte */
3076 	if (id_len < 21) {
3077 		rcu_read_unlock();
3078 		return -EINVAL;
3079 	}
3080 
3081 	memset(id, 0, id_len);
3082 	for (d = vpd_pg83->data + 4;
3083 	     d < vpd_pg83->data + vpd_pg83->len;
3084 	     d += d[3] + 4) {
3085 		u8 prio = designator_prio(d);
3086 
3087 		if (prio == 0 || cur_id_prio > prio)
3088 			continue;
3089 
3090 		switch (d[1] & 0xf) {
3091 		case 0x1:
3092 			/* T10 Vendor ID */
3093 			if (cur_id_size > d[3])
3094 				break;
3095 			cur_id_prio = prio;
3096 			cur_id_size = d[3];
3097 			if (cur_id_size + 4 > id_len)
3098 				cur_id_size = id_len - 4;
3099 			cur_id_str = d + 4;
3100 			id_size = snprintf(id, id_len, "t10.%*pE",
3101 					   cur_id_size, cur_id_str);
3102 			break;
3103 		case 0x2:
3104 			/* EUI-64 */
3105 			cur_id_prio = prio;
3106 			cur_id_size = d[3];
3107 			cur_id_str = d + 4;
3108 			switch (cur_id_size) {
3109 			case 8:
3110 				id_size = snprintf(id, id_len,
3111 						   "eui.%8phN",
3112 						   cur_id_str);
3113 				break;
3114 			case 12:
3115 				id_size = snprintf(id, id_len,
3116 						   "eui.%12phN",
3117 						   cur_id_str);
3118 				break;
3119 			case 16:
3120 				id_size = snprintf(id, id_len,
3121 						   "eui.%16phN",
3122 						   cur_id_str);
3123 				break;
3124 			default:
3125 				break;
3126 			}
3127 			break;
3128 		case 0x3:
3129 			/* NAA */
3130 			cur_id_prio = prio;
3131 			cur_id_size = d[3];
3132 			cur_id_str = d + 4;
3133 			switch (cur_id_size) {
3134 			case 8:
3135 				id_size = snprintf(id, id_len,
3136 						   "naa.%8phN",
3137 						   cur_id_str);
3138 				break;
3139 			case 16:
3140 				id_size = snprintf(id, id_len,
3141 						   "naa.%16phN",
3142 						   cur_id_str);
3143 				break;
3144 			default:
3145 				break;
3146 			}
3147 			break;
3148 		case 0x8:
3149 			/* SCSI name string */
3150 			if (cur_id_size > d[3])
3151 				break;
3152 			/* Prefer others for truncated descriptor */
3153 			if (d[3] > id_len) {
3154 				prio = 2;
3155 				if (cur_id_prio > prio)
3156 					break;
3157 			}
3158 			cur_id_prio = prio;
3159 			cur_id_size = id_size = d[3];
3160 			cur_id_str = d + 4;
3161 			if (cur_id_size >= id_len)
3162 				cur_id_size = id_len - 1;
3163 			memcpy(id, cur_id_str, cur_id_size);
3164 			break;
3165 		default:
3166 			break;
3167 		}
3168 	}
3169 	rcu_read_unlock();
3170 
3171 	return id_size;
3172 }
3173 EXPORT_SYMBOL(scsi_vpd_lun_id);
3174 
3175 /*
3176  * scsi_vpd_tpg_id - return a target port group identifier
3177  * @sdev: SCSI device
3178  *
3179  * Returns the Target Port Group identifier from the information
3180  * froom VPD page 0x83 of the device.
3181  *
3182  * Returns the identifier or error on failure.
3183  */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3184 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3185 {
3186 	const unsigned char *d;
3187 	const struct scsi_vpd *vpd_pg83;
3188 	int group_id = -EAGAIN, rel_port = -1;
3189 
3190 	rcu_read_lock();
3191 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3192 	if (!vpd_pg83) {
3193 		rcu_read_unlock();
3194 		return -ENXIO;
3195 	}
3196 
3197 	d = vpd_pg83->data + 4;
3198 	while (d < vpd_pg83->data + vpd_pg83->len) {
3199 		switch (d[1] & 0xf) {
3200 		case 0x4:
3201 			/* Relative target port */
3202 			rel_port = get_unaligned_be16(&d[6]);
3203 			break;
3204 		case 0x5:
3205 			/* Target port group */
3206 			group_id = get_unaligned_be16(&d[6]);
3207 			break;
3208 		default:
3209 			break;
3210 		}
3211 		d += d[3] + 4;
3212 	}
3213 	rcu_read_unlock();
3214 
3215 	if (group_id >= 0 && rel_id && rel_port != -1)
3216 		*rel_id = rel_port;
3217 
3218 	return group_id;
3219 }
3220 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3221 
3222 /**
3223  * scsi_build_sense - build sense data for a command
3224  * @scmd:	scsi command for which the sense should be formatted
3225  * @desc:	Sense format (non-zero == descriptor format,
3226  *              0 == fixed format)
3227  * @key:	Sense key
3228  * @asc:	Additional sense code
3229  * @ascq:	Additional sense code qualifier
3230  *
3231  **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3232 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3233 {
3234 	scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3235 	scmd->result = SAM_STAT_CHECK_CONDITION;
3236 }
3237 EXPORT_SYMBOL_GPL(scsi_build_sense);
3238