1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40 #include <linux/kernel.h>
41 #include <linux/slab.h>
42 #include <linux/string.h>
43 #include <linux/spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/errno.h>
46 #include <linux/in.h>
47 #include <linux/sched.h>
48 #include <linux/audit.h>
49 #include <linux/vmalloc.h>
50 #include <linux/lsm_hooks.h>
51 #include <net/netlabel.h>
52
53 #include "flask.h"
54 #include "avc.h"
55 #include "avc_ss.h"
56 #include "security.h"
57 #include "context.h"
58 #include "policydb.h"
59 #include "sidtab.h"
60 #include "services.h"
61 #include "conditional.h"
62 #include "mls.h"
63 #include "objsec.h"
64 #include "netlabel.h"
65 #include "xfrm.h"
66 #include "ebitmap.h"
67 #include "audit.h"
68 #include "policycap_names.h"
69 #include "ima.h"
70
71 #include <trace/hooks/selinux.h>
72
73 struct convert_context_args {
74 struct selinux_state *state;
75 struct policydb *oldp;
76 struct policydb *newp;
77 };
78
79 struct selinux_policy_convert_data {
80 struct convert_context_args args;
81 struct sidtab_convert_params sidtab_params;
82 };
83
84 /* Forward declaration. */
85 static int context_struct_to_string(struct policydb *policydb,
86 struct context *context,
87 char **scontext,
88 u32 *scontext_len);
89
90 static int sidtab_entry_to_string(struct policydb *policydb,
91 struct sidtab *sidtab,
92 struct sidtab_entry *entry,
93 char **scontext,
94 u32 *scontext_len);
95
96 static void context_struct_compute_av(struct policydb *policydb,
97 struct context *scontext,
98 struct context *tcontext,
99 u16 tclass,
100 struct av_decision *avd,
101 struct extended_perms *xperms);
102
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)103 static int selinux_set_mapping(struct policydb *pol,
104 struct security_class_mapping *map,
105 struct selinux_map *out_map)
106 {
107 u16 i, j;
108 unsigned k;
109 bool print_unknown_handle = false;
110
111 /* Find number of classes in the input mapping */
112 if (!map)
113 return -EINVAL;
114 i = 0;
115 while (map[i].name)
116 i++;
117
118 /* Allocate space for the class records, plus one for class zero */
119 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
120 if (!out_map->mapping)
121 return -ENOMEM;
122
123 /* Store the raw class and permission values */
124 j = 0;
125 while (map[j].name) {
126 struct security_class_mapping *p_in = map + (j++);
127 struct selinux_mapping *p_out = out_map->mapping + j;
128
129 /* An empty class string skips ahead */
130 if (!strcmp(p_in->name, "")) {
131 p_out->num_perms = 0;
132 continue;
133 }
134
135 p_out->value = string_to_security_class(pol, p_in->name);
136 if (!p_out->value) {
137 pr_info("SELinux: Class %s not defined in policy.\n",
138 p_in->name);
139 if (pol->reject_unknown)
140 goto err;
141 p_out->num_perms = 0;
142 print_unknown_handle = true;
143 continue;
144 }
145
146 k = 0;
147 while (p_in->perms[k]) {
148 /* An empty permission string skips ahead */
149 if (!*p_in->perms[k]) {
150 k++;
151 continue;
152 }
153 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
154 p_in->perms[k]);
155 if (!p_out->perms[k]) {
156 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
157 p_in->perms[k], p_in->name);
158 if (pol->reject_unknown)
159 goto err;
160 print_unknown_handle = true;
161 }
162
163 k++;
164 }
165 p_out->num_perms = k;
166 }
167
168 if (print_unknown_handle)
169 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
170 pol->allow_unknown ? "allowed" : "denied");
171
172 out_map->size = i;
173 return 0;
174 err:
175 kfree(out_map->mapping);
176 out_map->mapping = NULL;
177 return -EINVAL;
178 }
179
180 /*
181 * Get real, policy values from mapped values
182 */
183
unmap_class(struct selinux_map * map,u16 tclass)184 static u16 unmap_class(struct selinux_map *map, u16 tclass)
185 {
186 if (tclass < map->size)
187 return map->mapping[tclass].value;
188
189 return tclass;
190 }
191
192 /*
193 * Get kernel value for class from its policy value
194 */
map_class(struct selinux_map * map,u16 pol_value)195 static u16 map_class(struct selinux_map *map, u16 pol_value)
196 {
197 u16 i;
198
199 for (i = 1; i < map->size; i++) {
200 if (map->mapping[i].value == pol_value)
201 return i;
202 }
203
204 return SECCLASS_NULL;
205 }
206
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)207 static void map_decision(struct selinux_map *map,
208 u16 tclass, struct av_decision *avd,
209 int allow_unknown)
210 {
211 if (tclass < map->size) {
212 struct selinux_mapping *mapping = &map->mapping[tclass];
213 unsigned int i, n = mapping->num_perms;
214 u32 result;
215
216 for (i = 0, result = 0; i < n; i++) {
217 if (avd->allowed & mapping->perms[i])
218 result |= 1<<i;
219 if (allow_unknown && !mapping->perms[i])
220 result |= 1<<i;
221 }
222 avd->allowed = result;
223
224 for (i = 0, result = 0; i < n; i++)
225 if (avd->auditallow & mapping->perms[i])
226 result |= 1<<i;
227 avd->auditallow = result;
228
229 for (i = 0, result = 0; i < n; i++) {
230 if (avd->auditdeny & mapping->perms[i])
231 result |= 1<<i;
232 if (!allow_unknown && !mapping->perms[i])
233 result |= 1<<i;
234 }
235 /*
236 * In case the kernel has a bug and requests a permission
237 * between num_perms and the maximum permission number, we
238 * should audit that denial
239 */
240 for (; i < (sizeof(u32)*8); i++)
241 result |= 1<<i;
242 avd->auditdeny = result;
243 }
244 }
245
security_mls_enabled(struct selinux_state * state)246 int security_mls_enabled(struct selinux_state *state)
247 {
248 int mls_enabled;
249 struct selinux_policy *policy;
250
251 if (!selinux_initialized(state))
252 return 0;
253
254 rcu_read_lock();
255 policy = rcu_dereference(state->policy);
256 mls_enabled = policy->policydb.mls_enabled;
257 rcu_read_unlock();
258 return mls_enabled;
259 }
260
261 /*
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
264 * security contexts.
265 *
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
271 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)272 static int constraint_expr_eval(struct policydb *policydb,
273 struct context *scontext,
274 struct context *tcontext,
275 struct context *xcontext,
276 struct constraint_expr *cexpr)
277 {
278 u32 val1, val2;
279 struct context *c;
280 struct role_datum *r1, *r2;
281 struct mls_level *l1, *l2;
282 struct constraint_expr *e;
283 int s[CEXPR_MAXDEPTH];
284 int sp = -1;
285
286 for (e = cexpr; e; e = e->next) {
287 switch (e->expr_type) {
288 case CEXPR_NOT:
289 BUG_ON(sp < 0);
290 s[sp] = !s[sp];
291 break;
292 case CEXPR_AND:
293 BUG_ON(sp < 1);
294 sp--;
295 s[sp] &= s[sp + 1];
296 break;
297 case CEXPR_OR:
298 BUG_ON(sp < 1);
299 sp--;
300 s[sp] |= s[sp + 1];
301 break;
302 case CEXPR_ATTR:
303 if (sp == (CEXPR_MAXDEPTH - 1))
304 return 0;
305 switch (e->attr) {
306 case CEXPR_USER:
307 val1 = scontext->user;
308 val2 = tcontext->user;
309 break;
310 case CEXPR_TYPE:
311 val1 = scontext->type;
312 val2 = tcontext->type;
313 break;
314 case CEXPR_ROLE:
315 val1 = scontext->role;
316 val2 = tcontext->role;
317 r1 = policydb->role_val_to_struct[val1 - 1];
318 r2 = policydb->role_val_to_struct[val2 - 1];
319 switch (e->op) {
320 case CEXPR_DOM:
321 s[++sp] = ebitmap_get_bit(&r1->dominates,
322 val2 - 1);
323 continue;
324 case CEXPR_DOMBY:
325 s[++sp] = ebitmap_get_bit(&r2->dominates,
326 val1 - 1);
327 continue;
328 case CEXPR_INCOMP:
329 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
330 val2 - 1) &&
331 !ebitmap_get_bit(&r2->dominates,
332 val1 - 1));
333 continue;
334 default:
335 break;
336 }
337 break;
338 case CEXPR_L1L2:
339 l1 = &(scontext->range.level[0]);
340 l2 = &(tcontext->range.level[0]);
341 goto mls_ops;
342 case CEXPR_L1H2:
343 l1 = &(scontext->range.level[0]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346 case CEXPR_H1L2:
347 l1 = &(scontext->range.level[1]);
348 l2 = &(tcontext->range.level[0]);
349 goto mls_ops;
350 case CEXPR_H1H2:
351 l1 = &(scontext->range.level[1]);
352 l2 = &(tcontext->range.level[1]);
353 goto mls_ops;
354 case CEXPR_L1H1:
355 l1 = &(scontext->range.level[0]);
356 l2 = &(scontext->range.level[1]);
357 goto mls_ops;
358 case CEXPR_L2H2:
359 l1 = &(tcontext->range.level[0]);
360 l2 = &(tcontext->range.level[1]);
361 goto mls_ops;
362 mls_ops:
363 switch (e->op) {
364 case CEXPR_EQ:
365 s[++sp] = mls_level_eq(l1, l2);
366 continue;
367 case CEXPR_NEQ:
368 s[++sp] = !mls_level_eq(l1, l2);
369 continue;
370 case CEXPR_DOM:
371 s[++sp] = mls_level_dom(l1, l2);
372 continue;
373 case CEXPR_DOMBY:
374 s[++sp] = mls_level_dom(l2, l1);
375 continue;
376 case CEXPR_INCOMP:
377 s[++sp] = mls_level_incomp(l2, l1);
378 continue;
379 default:
380 BUG();
381 return 0;
382 }
383 break;
384 default:
385 BUG();
386 return 0;
387 }
388
389 switch (e->op) {
390 case CEXPR_EQ:
391 s[++sp] = (val1 == val2);
392 break;
393 case CEXPR_NEQ:
394 s[++sp] = (val1 != val2);
395 break;
396 default:
397 BUG();
398 return 0;
399 }
400 break;
401 case CEXPR_NAMES:
402 if (sp == (CEXPR_MAXDEPTH-1))
403 return 0;
404 c = scontext;
405 if (e->attr & CEXPR_TARGET)
406 c = tcontext;
407 else if (e->attr & CEXPR_XTARGET) {
408 c = xcontext;
409 if (!c) {
410 BUG();
411 return 0;
412 }
413 }
414 if (e->attr & CEXPR_USER)
415 val1 = c->user;
416 else if (e->attr & CEXPR_ROLE)
417 val1 = c->role;
418 else if (e->attr & CEXPR_TYPE)
419 val1 = c->type;
420 else {
421 BUG();
422 return 0;
423 }
424
425 switch (e->op) {
426 case CEXPR_EQ:
427 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
428 break;
429 case CEXPR_NEQ:
430 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
431 break;
432 default:
433 BUG();
434 return 0;
435 }
436 break;
437 default:
438 BUG();
439 return 0;
440 }
441 }
442
443 BUG_ON(sp != 0);
444 return s[0];
445 }
446
447 /*
448 * security_dump_masked_av - dumps masked permissions during
449 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
450 */
dump_masked_av_helper(void * k,void * d,void * args)451 static int dump_masked_av_helper(void *k, void *d, void *args)
452 {
453 struct perm_datum *pdatum = d;
454 char **permission_names = args;
455
456 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
457
458 permission_names[pdatum->value - 1] = (char *)k;
459
460 return 0;
461 }
462
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)463 static void security_dump_masked_av(struct policydb *policydb,
464 struct context *scontext,
465 struct context *tcontext,
466 u16 tclass,
467 u32 permissions,
468 const char *reason)
469 {
470 struct common_datum *common_dat;
471 struct class_datum *tclass_dat;
472 struct audit_buffer *ab;
473 char *tclass_name;
474 char *scontext_name = NULL;
475 char *tcontext_name = NULL;
476 char *permission_names[32];
477 int index;
478 u32 length;
479 bool need_comma = false;
480
481 if (!permissions)
482 return;
483
484 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
485 tclass_dat = policydb->class_val_to_struct[tclass - 1];
486 common_dat = tclass_dat->comdatum;
487
488 /* init permission_names */
489 if (common_dat &&
490 hashtab_map(&common_dat->permissions.table,
491 dump_masked_av_helper, permission_names) < 0)
492 goto out;
493
494 if (hashtab_map(&tclass_dat->permissions.table,
495 dump_masked_av_helper, permission_names) < 0)
496 goto out;
497
498 /* get scontext/tcontext in text form */
499 if (context_struct_to_string(policydb, scontext,
500 &scontext_name, &length) < 0)
501 goto out;
502
503 if (context_struct_to_string(policydb, tcontext,
504 &tcontext_name, &length) < 0)
505 goto out;
506
507 /* audit a message */
508 ab = audit_log_start(audit_context(),
509 GFP_ATOMIC, AUDIT_SELINUX_ERR);
510 if (!ab)
511 goto out;
512
513 audit_log_format(ab, "op=security_compute_av reason=%s "
514 "scontext=%s tcontext=%s tclass=%s perms=",
515 reason, scontext_name, tcontext_name, tclass_name);
516
517 for (index = 0; index < 32; index++) {
518 u32 mask = (1 << index);
519
520 if ((mask & permissions) == 0)
521 continue;
522
523 audit_log_format(ab, "%s%s",
524 need_comma ? "," : "",
525 permission_names[index]
526 ? permission_names[index] : "????");
527 need_comma = true;
528 }
529 audit_log_end(ab);
530 out:
531 /* release scontext/tcontext */
532 kfree(tcontext_name);
533 kfree(scontext_name);
534
535 return;
536 }
537
538 /*
539 * security_boundary_permission - drops violated permissions
540 * on boundary constraint.
541 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)542 static void type_attribute_bounds_av(struct policydb *policydb,
543 struct context *scontext,
544 struct context *tcontext,
545 u16 tclass,
546 struct av_decision *avd)
547 {
548 struct context lo_scontext;
549 struct context lo_tcontext, *tcontextp = tcontext;
550 struct av_decision lo_avd;
551 struct type_datum *source;
552 struct type_datum *target;
553 u32 masked = 0;
554
555 source = policydb->type_val_to_struct[scontext->type - 1];
556 BUG_ON(!source);
557
558 if (!source->bounds)
559 return;
560
561 target = policydb->type_val_to_struct[tcontext->type - 1];
562 BUG_ON(!target);
563
564 memset(&lo_avd, 0, sizeof(lo_avd));
565
566 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
567 lo_scontext.type = source->bounds;
568
569 if (target->bounds) {
570 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
571 lo_tcontext.type = target->bounds;
572 tcontextp = &lo_tcontext;
573 }
574
575 context_struct_compute_av(policydb, &lo_scontext,
576 tcontextp,
577 tclass,
578 &lo_avd,
579 NULL);
580
581 masked = ~lo_avd.allowed & avd->allowed;
582
583 if (likely(!masked))
584 return; /* no masked permission */
585
586 /* mask violated permissions */
587 avd->allowed &= ~masked;
588
589 /* audit masked permissions */
590 security_dump_masked_av(policydb, scontext, tcontext,
591 tclass, masked, "bounds");
592 }
593
594 /*
595 * flag which drivers have permissions
596 * only looking for ioctl based extended permssions
597 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)598 void services_compute_xperms_drivers(
599 struct extended_perms *xperms,
600 struct avtab_node *node)
601 {
602 unsigned int i;
603
604 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
605 /* if one or more driver has all permissions allowed */
606 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
607 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
608 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
609 /* if allowing permissions within a driver */
610 security_xperm_set(xperms->drivers.p,
611 node->datum.u.xperms->driver);
612 }
613
614 xperms->len = 1;
615 }
616
617 /*
618 * Compute access vectors and extended permissions based on a context
619 * structure pair for the permissions in a particular class.
620 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)621 static void context_struct_compute_av(struct policydb *policydb,
622 struct context *scontext,
623 struct context *tcontext,
624 u16 tclass,
625 struct av_decision *avd,
626 struct extended_perms *xperms)
627 {
628 struct constraint_node *constraint;
629 struct role_allow *ra;
630 struct avtab_key avkey;
631 struct avtab_node *node;
632 struct class_datum *tclass_datum;
633 struct ebitmap *sattr, *tattr;
634 struct ebitmap_node *snode, *tnode;
635 unsigned int i, j;
636
637 avd->allowed = 0;
638 avd->auditallow = 0;
639 avd->auditdeny = 0xffffffff;
640 if (xperms) {
641 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
642 xperms->len = 0;
643 }
644
645 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
646 if (printk_ratelimit())
647 pr_warn("SELinux: Invalid class %hu\n", tclass);
648 return;
649 }
650
651 tclass_datum = policydb->class_val_to_struct[tclass - 1];
652
653 /*
654 * If a specific type enforcement rule was defined for
655 * this permission check, then use it.
656 */
657 avkey.target_class = tclass;
658 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
659 sattr = &policydb->type_attr_map_array[scontext->type - 1];
660 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
661 ebitmap_for_each_positive_bit(sattr, snode, i) {
662 ebitmap_for_each_positive_bit(tattr, tnode, j) {
663 avkey.source_type = i + 1;
664 avkey.target_type = j + 1;
665 for (node = avtab_search_node(&policydb->te_avtab,
666 &avkey);
667 node;
668 node = avtab_search_node_next(node, avkey.specified)) {
669 if (node->key.specified == AVTAB_ALLOWED)
670 avd->allowed |= node->datum.u.data;
671 else if (node->key.specified == AVTAB_AUDITALLOW)
672 avd->auditallow |= node->datum.u.data;
673 else if (node->key.specified == AVTAB_AUDITDENY)
674 avd->auditdeny &= node->datum.u.data;
675 else if (xperms && (node->key.specified & AVTAB_XPERMS))
676 services_compute_xperms_drivers(xperms, node);
677 }
678
679 /* Check conditional av table for additional permissions */
680 cond_compute_av(&policydb->te_cond_avtab, &avkey,
681 avd, xperms);
682
683 }
684 }
685
686 /*
687 * Remove any permissions prohibited by a constraint (this includes
688 * the MLS policy).
689 */
690 constraint = tclass_datum->constraints;
691 while (constraint) {
692 if ((constraint->permissions & (avd->allowed)) &&
693 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
694 constraint->expr)) {
695 avd->allowed &= ~(constraint->permissions);
696 }
697 constraint = constraint->next;
698 }
699
700 /*
701 * If checking process transition permission and the
702 * role is changing, then check the (current_role, new_role)
703 * pair.
704 */
705 if (tclass == policydb->process_class &&
706 (avd->allowed & policydb->process_trans_perms) &&
707 scontext->role != tcontext->role) {
708 for (ra = policydb->role_allow; ra; ra = ra->next) {
709 if (scontext->role == ra->role &&
710 tcontext->role == ra->new_role)
711 break;
712 }
713 if (!ra)
714 avd->allowed &= ~policydb->process_trans_perms;
715 }
716
717 /*
718 * If the given source and target types have boundary
719 * constraint, lazy checks have to mask any violated
720 * permission and notice it to userspace via audit.
721 */
722 type_attribute_bounds_av(policydb, scontext, tcontext,
723 tclass, avd);
724 }
725
security_validtrans_handle_fail(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * oentry,struct sidtab_entry * nentry,struct sidtab_entry * tentry,u16 tclass)726 static int security_validtrans_handle_fail(struct selinux_state *state,
727 struct selinux_policy *policy,
728 struct sidtab_entry *oentry,
729 struct sidtab_entry *nentry,
730 struct sidtab_entry *tentry,
731 u16 tclass)
732 {
733 struct policydb *p = &policy->policydb;
734 struct sidtab *sidtab = policy->sidtab;
735 char *o = NULL, *n = NULL, *t = NULL;
736 u32 olen, nlen, tlen;
737
738 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
739 goto out;
740 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
741 goto out;
742 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
743 goto out;
744 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
745 "op=security_validate_transition seresult=denied"
746 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
747 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
748 out:
749 kfree(o);
750 kfree(n);
751 kfree(t);
752
753 if (!enforcing_enabled(state))
754 return 0;
755 return -EPERM;
756 }
757
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)758 static int security_compute_validatetrans(struct selinux_state *state,
759 u32 oldsid, u32 newsid, u32 tasksid,
760 u16 orig_tclass, bool user)
761 {
762 struct selinux_policy *policy;
763 struct policydb *policydb;
764 struct sidtab *sidtab;
765 struct sidtab_entry *oentry;
766 struct sidtab_entry *nentry;
767 struct sidtab_entry *tentry;
768 struct class_datum *tclass_datum;
769 struct constraint_node *constraint;
770 u16 tclass;
771 int rc = 0;
772
773
774 if (!selinux_initialized(state))
775 return 0;
776
777 rcu_read_lock();
778
779 policy = rcu_dereference(state->policy);
780 policydb = &policy->policydb;
781 sidtab = policy->sidtab;
782
783 if (!user)
784 tclass = unmap_class(&policy->map, orig_tclass);
785 else
786 tclass = orig_tclass;
787
788 if (!tclass || tclass > policydb->p_classes.nprim) {
789 rc = -EINVAL;
790 goto out;
791 }
792 tclass_datum = policydb->class_val_to_struct[tclass - 1];
793
794 oentry = sidtab_search_entry(sidtab, oldsid);
795 if (!oentry) {
796 pr_err("SELinux: %s: unrecognized SID %d\n",
797 __func__, oldsid);
798 rc = -EINVAL;
799 goto out;
800 }
801
802 nentry = sidtab_search_entry(sidtab, newsid);
803 if (!nentry) {
804 pr_err("SELinux: %s: unrecognized SID %d\n",
805 __func__, newsid);
806 rc = -EINVAL;
807 goto out;
808 }
809
810 tentry = sidtab_search_entry(sidtab, tasksid);
811 if (!tentry) {
812 pr_err("SELinux: %s: unrecognized SID %d\n",
813 __func__, tasksid);
814 rc = -EINVAL;
815 goto out;
816 }
817
818 constraint = tclass_datum->validatetrans;
819 while (constraint) {
820 if (!constraint_expr_eval(policydb, &oentry->context,
821 &nentry->context, &tentry->context,
822 constraint->expr)) {
823 if (user)
824 rc = -EPERM;
825 else
826 rc = security_validtrans_handle_fail(state,
827 policy,
828 oentry,
829 nentry,
830 tentry,
831 tclass);
832 goto out;
833 }
834 constraint = constraint->next;
835 }
836
837 out:
838 rcu_read_unlock();
839 return rc;
840 }
841
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)842 int security_validate_transition_user(struct selinux_state *state,
843 u32 oldsid, u32 newsid, u32 tasksid,
844 u16 tclass)
845 {
846 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
847 tclass, true);
848 }
849
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)850 int security_validate_transition(struct selinux_state *state,
851 u32 oldsid, u32 newsid, u32 tasksid,
852 u16 orig_tclass)
853 {
854 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
855 orig_tclass, false);
856 }
857
858 /*
859 * security_bounded_transition - check whether the given
860 * transition is directed to bounded, or not.
861 * It returns 0, if @newsid is bounded by @oldsid.
862 * Otherwise, it returns error code.
863 *
864 * @state: SELinux state
865 * @oldsid : current security identifier
866 * @newsid : destinated security identifier
867 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)868 int security_bounded_transition(struct selinux_state *state,
869 u32 old_sid, u32 new_sid)
870 {
871 struct selinux_policy *policy;
872 struct policydb *policydb;
873 struct sidtab *sidtab;
874 struct sidtab_entry *old_entry, *new_entry;
875 struct type_datum *type;
876 int index;
877 int rc;
878
879 if (!selinux_initialized(state))
880 return 0;
881
882 rcu_read_lock();
883 policy = rcu_dereference(state->policy);
884 policydb = &policy->policydb;
885 sidtab = policy->sidtab;
886
887 rc = -EINVAL;
888 old_entry = sidtab_search_entry(sidtab, old_sid);
889 if (!old_entry) {
890 pr_err("SELinux: %s: unrecognized SID %u\n",
891 __func__, old_sid);
892 goto out;
893 }
894
895 rc = -EINVAL;
896 new_entry = sidtab_search_entry(sidtab, new_sid);
897 if (!new_entry) {
898 pr_err("SELinux: %s: unrecognized SID %u\n",
899 __func__, new_sid);
900 goto out;
901 }
902
903 rc = 0;
904 /* type/domain unchanged */
905 if (old_entry->context.type == new_entry->context.type)
906 goto out;
907
908 index = new_entry->context.type;
909 while (true) {
910 type = policydb->type_val_to_struct[index - 1];
911 BUG_ON(!type);
912
913 /* not bounded anymore */
914 rc = -EPERM;
915 if (!type->bounds)
916 break;
917
918 /* @newsid is bounded by @oldsid */
919 rc = 0;
920 if (type->bounds == old_entry->context.type)
921 break;
922
923 index = type->bounds;
924 }
925
926 if (rc) {
927 char *old_name = NULL;
928 char *new_name = NULL;
929 u32 length;
930
931 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
932 &old_name, &length) &&
933 !sidtab_entry_to_string(policydb, sidtab, new_entry,
934 &new_name, &length)) {
935 audit_log(audit_context(),
936 GFP_ATOMIC, AUDIT_SELINUX_ERR,
937 "op=security_bounded_transition "
938 "seresult=denied "
939 "oldcontext=%s newcontext=%s",
940 old_name, new_name);
941 }
942 kfree(new_name);
943 kfree(old_name);
944 }
945 out:
946 rcu_read_unlock();
947
948 return rc;
949 }
950
avd_init(struct selinux_policy * policy,struct av_decision * avd)951 static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
952 {
953 avd->allowed = 0;
954 avd->auditallow = 0;
955 avd->auditdeny = 0xffffffff;
956 if (policy)
957 avd->seqno = policy->latest_granting;
958 else
959 avd->seqno = 0;
960 avd->flags = 0;
961 }
962
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)963 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
964 struct avtab_node *node)
965 {
966 unsigned int i;
967
968 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969 if (xpermd->driver != node->datum.u.xperms->driver)
970 return;
971 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
972 if (!security_xperm_test(node->datum.u.xperms->perms.p,
973 xpermd->driver))
974 return;
975 } else {
976 BUG();
977 }
978
979 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
980 xpermd->used |= XPERMS_ALLOWED;
981 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
982 memset(xpermd->allowed->p, 0xff,
983 sizeof(xpermd->allowed->p));
984 }
985 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
986 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
987 xpermd->allowed->p[i] |=
988 node->datum.u.xperms->perms.p[i];
989 }
990 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
991 xpermd->used |= XPERMS_AUDITALLOW;
992 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
993 memset(xpermd->auditallow->p, 0xff,
994 sizeof(xpermd->auditallow->p));
995 }
996 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
997 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
998 xpermd->auditallow->p[i] |=
999 node->datum.u.xperms->perms.p[i];
1000 }
1001 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1002 xpermd->used |= XPERMS_DONTAUDIT;
1003 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1004 memset(xpermd->dontaudit->p, 0xff,
1005 sizeof(xpermd->dontaudit->p));
1006 }
1007 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1008 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1009 xpermd->dontaudit->p[i] |=
1010 node->datum.u.xperms->perms.p[i];
1011 }
1012 } else {
1013 BUG();
1014 }
1015 }
1016
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1017 void security_compute_xperms_decision(struct selinux_state *state,
1018 u32 ssid,
1019 u32 tsid,
1020 u16 orig_tclass,
1021 u8 driver,
1022 struct extended_perms_decision *xpermd)
1023 {
1024 struct selinux_policy *policy;
1025 struct policydb *policydb;
1026 struct sidtab *sidtab;
1027 u16 tclass;
1028 struct context *scontext, *tcontext;
1029 struct avtab_key avkey;
1030 struct avtab_node *node;
1031 struct ebitmap *sattr, *tattr;
1032 struct ebitmap_node *snode, *tnode;
1033 unsigned int i, j;
1034
1035 xpermd->driver = driver;
1036 xpermd->used = 0;
1037 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1038 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1039 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1040
1041 rcu_read_lock();
1042 if (!selinux_initialized(state))
1043 goto allow;
1044
1045 policy = rcu_dereference(state->policy);
1046 policydb = &policy->policydb;
1047 sidtab = policy->sidtab;
1048
1049 scontext = sidtab_search(sidtab, ssid);
1050 if (!scontext) {
1051 pr_err("SELinux: %s: unrecognized SID %d\n",
1052 __func__, ssid);
1053 goto out;
1054 }
1055
1056 tcontext = sidtab_search(sidtab, tsid);
1057 if (!tcontext) {
1058 pr_err("SELinux: %s: unrecognized SID %d\n",
1059 __func__, tsid);
1060 goto out;
1061 }
1062
1063 tclass = unmap_class(&policy->map, orig_tclass);
1064 if (unlikely(orig_tclass && !tclass)) {
1065 if (policydb->allow_unknown)
1066 goto allow;
1067 goto out;
1068 }
1069
1070
1071 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1072 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1073 goto out;
1074 }
1075
1076 avkey.target_class = tclass;
1077 avkey.specified = AVTAB_XPERMS;
1078 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1079 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1080 ebitmap_for_each_positive_bit(sattr, snode, i) {
1081 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1082 avkey.source_type = i + 1;
1083 avkey.target_type = j + 1;
1084 for (node = avtab_search_node(&policydb->te_avtab,
1085 &avkey);
1086 node;
1087 node = avtab_search_node_next(node, avkey.specified))
1088 services_compute_xperms_decision(xpermd, node);
1089
1090 cond_compute_xperms(&policydb->te_cond_avtab,
1091 &avkey, xpermd);
1092 }
1093 }
1094 out:
1095 rcu_read_unlock();
1096 return;
1097 allow:
1098 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1099 goto out;
1100 }
1101
1102 /**
1103 * security_compute_av - Compute access vector decisions.
1104 * @state: SELinux state
1105 * @ssid: source security identifier
1106 * @tsid: target security identifier
1107 * @tclass: target security class
1108 * @avd: access vector decisions
1109 * @xperms: extended permissions
1110 *
1111 * Compute a set of access vector decisions based on the
1112 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1113 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1114 void security_compute_av(struct selinux_state *state,
1115 u32 ssid,
1116 u32 tsid,
1117 u16 orig_tclass,
1118 struct av_decision *avd,
1119 struct extended_perms *xperms)
1120 {
1121 struct selinux_policy *policy;
1122 struct policydb *policydb;
1123 struct sidtab *sidtab;
1124 u16 tclass;
1125 struct context *scontext = NULL, *tcontext = NULL;
1126
1127 rcu_read_lock();
1128 policy = rcu_dereference(state->policy);
1129 avd_init(policy, avd);
1130 xperms->len = 0;
1131 if (!selinux_initialized(state))
1132 goto allow;
1133
1134 policydb = &policy->policydb;
1135 sidtab = policy->sidtab;
1136
1137 scontext = sidtab_search(sidtab, ssid);
1138 if (!scontext) {
1139 pr_err("SELinux: %s: unrecognized SID %d\n",
1140 __func__, ssid);
1141 goto out;
1142 }
1143
1144 /* permissive domain? */
1145 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1146 avd->flags |= AVD_FLAGS_PERMISSIVE;
1147
1148 tcontext = sidtab_search(sidtab, tsid);
1149 if (!tcontext) {
1150 pr_err("SELinux: %s: unrecognized SID %d\n",
1151 __func__, tsid);
1152 goto out;
1153 }
1154
1155 tclass = unmap_class(&policy->map, orig_tclass);
1156 if (unlikely(orig_tclass && !tclass)) {
1157 if (policydb->allow_unknown)
1158 goto allow;
1159 goto out;
1160 }
1161 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1162 xperms);
1163 map_decision(&policy->map, orig_tclass, avd,
1164 policydb->allow_unknown);
1165 out:
1166 rcu_read_unlock();
1167 return;
1168 allow:
1169 avd->allowed = 0xffffffff;
1170 goto out;
1171 }
1172
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1173 void security_compute_av_user(struct selinux_state *state,
1174 u32 ssid,
1175 u32 tsid,
1176 u16 tclass,
1177 struct av_decision *avd)
1178 {
1179 struct selinux_policy *policy;
1180 struct policydb *policydb;
1181 struct sidtab *sidtab;
1182 struct context *scontext = NULL, *tcontext = NULL;
1183
1184 rcu_read_lock();
1185 policy = rcu_dereference(state->policy);
1186 avd_init(policy, avd);
1187 if (!selinux_initialized(state))
1188 goto allow;
1189
1190 policydb = &policy->policydb;
1191 sidtab = policy->sidtab;
1192
1193 scontext = sidtab_search(sidtab, ssid);
1194 if (!scontext) {
1195 pr_err("SELinux: %s: unrecognized SID %d\n",
1196 __func__, ssid);
1197 goto out;
1198 }
1199
1200 /* permissive domain? */
1201 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1202 avd->flags |= AVD_FLAGS_PERMISSIVE;
1203
1204 tcontext = sidtab_search(sidtab, tsid);
1205 if (!tcontext) {
1206 pr_err("SELinux: %s: unrecognized SID %d\n",
1207 __func__, tsid);
1208 goto out;
1209 }
1210
1211 if (unlikely(!tclass)) {
1212 if (policydb->allow_unknown)
1213 goto allow;
1214 goto out;
1215 }
1216
1217 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1218 NULL);
1219 out:
1220 rcu_read_unlock();
1221 return;
1222 allow:
1223 avd->allowed = 0xffffffff;
1224 goto out;
1225 }
1226
1227 /*
1228 * Write the security context string representation of
1229 * the context structure `context' into a dynamically
1230 * allocated string of the correct size. Set `*scontext'
1231 * to point to this string and set `*scontext_len' to
1232 * the length of the string.
1233 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1234 static int context_struct_to_string(struct policydb *p,
1235 struct context *context,
1236 char **scontext, u32 *scontext_len)
1237 {
1238 char *scontextp;
1239
1240 if (scontext)
1241 *scontext = NULL;
1242 *scontext_len = 0;
1243
1244 if (context->len) {
1245 *scontext_len = context->len;
1246 if (scontext) {
1247 *scontext = kstrdup(context->str, GFP_ATOMIC);
1248 if (!(*scontext))
1249 return -ENOMEM;
1250 }
1251 return 0;
1252 }
1253
1254 /* Compute the size of the context. */
1255 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1256 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1257 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1258 *scontext_len += mls_compute_context_len(p, context);
1259
1260 if (!scontext)
1261 return 0;
1262
1263 /* Allocate space for the context; caller must free this space. */
1264 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1265 if (!scontextp)
1266 return -ENOMEM;
1267 *scontext = scontextp;
1268
1269 /*
1270 * Copy the user name, role name and type name into the context.
1271 */
1272 scontextp += sprintf(scontextp, "%s:%s:%s",
1273 sym_name(p, SYM_USERS, context->user - 1),
1274 sym_name(p, SYM_ROLES, context->role - 1),
1275 sym_name(p, SYM_TYPES, context->type - 1));
1276
1277 mls_sid_to_context(p, context, &scontextp);
1278
1279 *scontextp = 0;
1280
1281 return 0;
1282 }
1283
sidtab_entry_to_string(struct policydb * p,struct sidtab * sidtab,struct sidtab_entry * entry,char ** scontext,u32 * scontext_len)1284 static int sidtab_entry_to_string(struct policydb *p,
1285 struct sidtab *sidtab,
1286 struct sidtab_entry *entry,
1287 char **scontext, u32 *scontext_len)
1288 {
1289 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1290
1291 if (rc != -ENOENT)
1292 return rc;
1293
1294 rc = context_struct_to_string(p, &entry->context, scontext,
1295 scontext_len);
1296 if (!rc && scontext)
1297 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1298 return rc;
1299 }
1300
1301 #include "initial_sid_to_string.h"
1302
security_sidtab_hash_stats(struct selinux_state * state,char * page)1303 int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1304 {
1305 struct selinux_policy *policy;
1306 int rc;
1307
1308 if (!selinux_initialized(state)) {
1309 pr_err("SELinux: %s: called before initial load_policy\n",
1310 __func__);
1311 return -EINVAL;
1312 }
1313
1314 rcu_read_lock();
1315 policy = rcu_dereference(state->policy);
1316 rc = sidtab_hash_stats(policy->sidtab, page);
1317 rcu_read_unlock();
1318
1319 return rc;
1320 }
1321
security_get_initial_sid_context(u32 sid)1322 const char *security_get_initial_sid_context(u32 sid)
1323 {
1324 if (unlikely(sid > SECINITSID_NUM))
1325 return NULL;
1326 return initial_sid_to_string[sid];
1327 }
1328
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force,int only_invalid)1329 static int security_sid_to_context_core(struct selinux_state *state,
1330 u32 sid, char **scontext,
1331 u32 *scontext_len, int force,
1332 int only_invalid)
1333 {
1334 struct selinux_policy *policy;
1335 struct policydb *policydb;
1336 struct sidtab *sidtab;
1337 struct sidtab_entry *entry;
1338 int rc = 0;
1339
1340 if (scontext)
1341 *scontext = NULL;
1342 *scontext_len = 0;
1343
1344 if (!selinux_initialized(state)) {
1345 if (sid <= SECINITSID_NUM) {
1346 char *scontextp;
1347 const char *s = initial_sid_to_string[sid];
1348
1349 if (!s)
1350 return -EINVAL;
1351 *scontext_len = strlen(s) + 1;
1352 if (!scontext)
1353 return 0;
1354 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1355 if (!scontextp)
1356 return -ENOMEM;
1357 *scontext = scontextp;
1358 return 0;
1359 }
1360 pr_err("SELinux: %s: called before initial "
1361 "load_policy on unknown SID %d\n", __func__, sid);
1362 return -EINVAL;
1363 }
1364 rcu_read_lock();
1365 policy = rcu_dereference(state->policy);
1366 policydb = &policy->policydb;
1367 sidtab = policy->sidtab;
1368
1369 if (force)
1370 entry = sidtab_search_entry_force(sidtab, sid);
1371 else
1372 entry = sidtab_search_entry(sidtab, sid);
1373 if (!entry) {
1374 pr_err("SELinux: %s: unrecognized SID %d\n",
1375 __func__, sid);
1376 rc = -EINVAL;
1377 goto out_unlock;
1378 }
1379 if (only_invalid && !entry->context.len)
1380 goto out_unlock;
1381
1382 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1383 scontext_len);
1384
1385 out_unlock:
1386 rcu_read_unlock();
1387 return rc;
1388
1389 }
1390
1391 /**
1392 * security_sid_to_context - Obtain a context for a given SID.
1393 * @state: SELinux state
1394 * @sid: security identifier, SID
1395 * @scontext: security context
1396 * @scontext_len: length in bytes
1397 *
1398 * Write the string representation of the context associated with @sid
1399 * into a dynamically allocated string of the correct size. Set @scontext
1400 * to point to this string and set @scontext_len to the length of the string.
1401 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1402 int security_sid_to_context(struct selinux_state *state,
1403 u32 sid, char **scontext, u32 *scontext_len)
1404 {
1405 return security_sid_to_context_core(state, sid, scontext,
1406 scontext_len, 0, 0);
1407 }
1408
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1409 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1410 char **scontext, u32 *scontext_len)
1411 {
1412 return security_sid_to_context_core(state, sid, scontext,
1413 scontext_len, 1, 0);
1414 }
1415
1416 /**
1417 * security_sid_to_context_inval - Obtain a context for a given SID if it
1418 * is invalid.
1419 * @state: SELinux state
1420 * @sid: security identifier, SID
1421 * @scontext: security context
1422 * @scontext_len: length in bytes
1423 *
1424 * Write the string representation of the context associated with @sid
1425 * into a dynamically allocated string of the correct size, but only if the
1426 * context is invalid in the current policy. Set @scontext to point to
1427 * this string (or NULL if the context is valid) and set @scontext_len to
1428 * the length of the string (or 0 if the context is valid).
1429 */
security_sid_to_context_inval(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1430 int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1431 char **scontext, u32 *scontext_len)
1432 {
1433 return security_sid_to_context_core(state, sid, scontext,
1434 scontext_len, 1, 1);
1435 }
1436
1437 /*
1438 * Caveat: Mutates scontext.
1439 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,struct context * ctx,u32 def_sid)1440 static int string_to_context_struct(struct policydb *pol,
1441 struct sidtab *sidtabp,
1442 char *scontext,
1443 struct context *ctx,
1444 u32 def_sid)
1445 {
1446 struct role_datum *role;
1447 struct type_datum *typdatum;
1448 struct user_datum *usrdatum;
1449 char *scontextp, *p, oldc;
1450 int rc = 0;
1451
1452 context_init(ctx);
1453
1454 /* Parse the security context. */
1455
1456 rc = -EINVAL;
1457 scontextp = (char *) scontext;
1458
1459 /* Extract the user. */
1460 p = scontextp;
1461 while (*p && *p != ':')
1462 p++;
1463
1464 if (*p == 0)
1465 goto out;
1466
1467 *p++ = 0;
1468
1469 usrdatum = symtab_search(&pol->p_users, scontextp);
1470 if (!usrdatum)
1471 goto out;
1472
1473 ctx->user = usrdatum->value;
1474
1475 /* Extract role. */
1476 scontextp = p;
1477 while (*p && *p != ':')
1478 p++;
1479
1480 if (*p == 0)
1481 goto out;
1482
1483 *p++ = 0;
1484
1485 role = symtab_search(&pol->p_roles, scontextp);
1486 if (!role)
1487 goto out;
1488 ctx->role = role->value;
1489
1490 /* Extract type. */
1491 scontextp = p;
1492 while (*p && *p != ':')
1493 p++;
1494 oldc = *p;
1495 *p++ = 0;
1496
1497 typdatum = symtab_search(&pol->p_types, scontextp);
1498 if (!typdatum || typdatum->attribute)
1499 goto out;
1500
1501 ctx->type = typdatum->value;
1502
1503 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1504 if (rc)
1505 goto out;
1506
1507 /* Check the validity of the new context. */
1508 rc = -EINVAL;
1509 if (!policydb_context_isvalid(pol, ctx))
1510 goto out;
1511 rc = 0;
1512 out:
1513 if (rc)
1514 context_destroy(ctx);
1515 return rc;
1516 }
1517
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1518 static int security_context_to_sid_core(struct selinux_state *state,
1519 const char *scontext, u32 scontext_len,
1520 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1521 int force)
1522 {
1523 struct selinux_policy *policy;
1524 struct policydb *policydb;
1525 struct sidtab *sidtab;
1526 char *scontext2, *str = NULL;
1527 struct context context;
1528 int rc = 0;
1529
1530 /* An empty security context is never valid. */
1531 if (!scontext_len)
1532 return -EINVAL;
1533
1534 /* Copy the string to allow changes and ensure a NUL terminator */
1535 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1536 if (!scontext2)
1537 return -ENOMEM;
1538
1539 if (!selinux_initialized(state)) {
1540 int i;
1541
1542 for (i = 1; i < SECINITSID_NUM; i++) {
1543 const char *s = initial_sid_to_string[i];
1544
1545 if (s && !strcmp(s, scontext2)) {
1546 *sid = i;
1547 goto out;
1548 }
1549 }
1550 *sid = SECINITSID_KERNEL;
1551 goto out;
1552 }
1553 *sid = SECSID_NULL;
1554
1555 if (force) {
1556 /* Save another copy for storing in uninterpreted form */
1557 rc = -ENOMEM;
1558 str = kstrdup(scontext2, gfp_flags);
1559 if (!str)
1560 goto out;
1561 }
1562 retry:
1563 rcu_read_lock();
1564 policy = rcu_dereference(state->policy);
1565 policydb = &policy->policydb;
1566 sidtab = policy->sidtab;
1567 rc = string_to_context_struct(policydb, sidtab, scontext2,
1568 &context, def_sid);
1569 if (rc == -EINVAL && force) {
1570 context.str = str;
1571 context.len = strlen(str) + 1;
1572 str = NULL;
1573 } else if (rc)
1574 goto out_unlock;
1575 rc = sidtab_context_to_sid(sidtab, &context, sid);
1576 if (rc == -ESTALE) {
1577 rcu_read_unlock();
1578 if (context.str) {
1579 str = context.str;
1580 context.str = NULL;
1581 }
1582 context_destroy(&context);
1583 goto retry;
1584 }
1585 context_destroy(&context);
1586 out_unlock:
1587 rcu_read_unlock();
1588 out:
1589 kfree(scontext2);
1590 kfree(str);
1591 return rc;
1592 }
1593
1594 /**
1595 * security_context_to_sid - Obtain a SID for a given security context.
1596 * @state: SELinux state
1597 * @scontext: security context
1598 * @scontext_len: length in bytes
1599 * @sid: security identifier, SID
1600 * @gfp: context for the allocation
1601 *
1602 * Obtains a SID associated with the security context that
1603 * has the string representation specified by @scontext.
1604 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1605 * memory is available, or 0 on success.
1606 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1607 int security_context_to_sid(struct selinux_state *state,
1608 const char *scontext, u32 scontext_len, u32 *sid,
1609 gfp_t gfp)
1610 {
1611 return security_context_to_sid_core(state, scontext, scontext_len,
1612 sid, SECSID_NULL, gfp, 0);
1613 }
1614
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1615 int security_context_str_to_sid(struct selinux_state *state,
1616 const char *scontext, u32 *sid, gfp_t gfp)
1617 {
1618 return security_context_to_sid(state, scontext, strlen(scontext),
1619 sid, gfp);
1620 }
1621
1622 /**
1623 * security_context_to_sid_default - Obtain a SID for a given security context,
1624 * falling back to specified default if needed.
1625 *
1626 * @state: SELinux state
1627 * @scontext: security context
1628 * @scontext_len: length in bytes
1629 * @sid: security identifier, SID
1630 * @def_sid: default SID to assign on error
1631 *
1632 * Obtains a SID associated with the security context that
1633 * has the string representation specified by @scontext.
1634 * The default SID is passed to the MLS layer to be used to allow
1635 * kernel labeling of the MLS field if the MLS field is not present
1636 * (for upgrading to MLS without full relabel).
1637 * Implicitly forces adding of the context even if it cannot be mapped yet.
1638 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1639 * memory is available, or 0 on success.
1640 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1641 int security_context_to_sid_default(struct selinux_state *state,
1642 const char *scontext, u32 scontext_len,
1643 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1644 {
1645 return security_context_to_sid_core(state, scontext, scontext_len,
1646 sid, def_sid, gfp_flags, 1);
1647 }
1648
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1649 int security_context_to_sid_force(struct selinux_state *state,
1650 const char *scontext, u32 scontext_len,
1651 u32 *sid)
1652 {
1653 return security_context_to_sid_core(state, scontext, scontext_len,
1654 sid, SECSID_NULL, GFP_KERNEL, 1);
1655 }
1656
compute_sid_handle_invalid_context(struct selinux_state * state,struct selinux_policy * policy,struct sidtab_entry * sentry,struct sidtab_entry * tentry,u16 tclass,struct context * newcontext)1657 static int compute_sid_handle_invalid_context(
1658 struct selinux_state *state,
1659 struct selinux_policy *policy,
1660 struct sidtab_entry *sentry,
1661 struct sidtab_entry *tentry,
1662 u16 tclass,
1663 struct context *newcontext)
1664 {
1665 struct policydb *policydb = &policy->policydb;
1666 struct sidtab *sidtab = policy->sidtab;
1667 char *s = NULL, *t = NULL, *n = NULL;
1668 u32 slen, tlen, nlen;
1669 struct audit_buffer *ab;
1670
1671 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1672 goto out;
1673 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1674 goto out;
1675 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1676 goto out;
1677 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1678 if (!ab)
1679 goto out;
1680 audit_log_format(ab,
1681 "op=security_compute_sid invalid_context=");
1682 /* no need to record the NUL with untrusted strings */
1683 audit_log_n_untrustedstring(ab, n, nlen - 1);
1684 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1685 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1686 audit_log_end(ab);
1687 out:
1688 kfree(s);
1689 kfree(t);
1690 kfree(n);
1691 if (!enforcing_enabled(state))
1692 return 0;
1693 return -EACCES;
1694 }
1695
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1696 static void filename_compute_type(struct policydb *policydb,
1697 struct context *newcontext,
1698 u32 stype, u32 ttype, u16 tclass,
1699 const char *objname)
1700 {
1701 struct filename_trans_key ft;
1702 struct filename_trans_datum *datum;
1703
1704 /*
1705 * Most filename trans rules are going to live in specific directories
1706 * like /dev or /var/run. This bitmap will quickly skip rule searches
1707 * if the ttype does not contain any rules.
1708 */
1709 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1710 return;
1711
1712 ft.ttype = ttype;
1713 ft.tclass = tclass;
1714 ft.name = objname;
1715
1716 datum = policydb_filenametr_search(policydb, &ft);
1717 while (datum) {
1718 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1719 newcontext->type = datum->otype;
1720 return;
1721 }
1722 datum = datum->next;
1723 }
1724 }
1725
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1726 static int security_compute_sid(struct selinux_state *state,
1727 u32 ssid,
1728 u32 tsid,
1729 u16 orig_tclass,
1730 u32 specified,
1731 const char *objname,
1732 u32 *out_sid,
1733 bool kern)
1734 {
1735 struct selinux_policy *policy;
1736 struct policydb *policydb;
1737 struct sidtab *sidtab;
1738 struct class_datum *cladatum;
1739 struct context *scontext, *tcontext, newcontext;
1740 struct sidtab_entry *sentry, *tentry;
1741 struct avtab_key avkey;
1742 struct avtab_datum *avdatum;
1743 struct avtab_node *node;
1744 u16 tclass;
1745 int rc = 0;
1746 bool sock;
1747
1748 if (!selinux_initialized(state)) {
1749 switch (orig_tclass) {
1750 case SECCLASS_PROCESS: /* kernel value */
1751 *out_sid = ssid;
1752 break;
1753 default:
1754 *out_sid = tsid;
1755 break;
1756 }
1757 goto out;
1758 }
1759
1760 retry:
1761 cladatum = NULL;
1762 context_init(&newcontext);
1763
1764 rcu_read_lock();
1765
1766 policy = rcu_dereference(state->policy);
1767
1768 if (kern) {
1769 tclass = unmap_class(&policy->map, orig_tclass);
1770 sock = security_is_socket_class(orig_tclass);
1771 } else {
1772 tclass = orig_tclass;
1773 sock = security_is_socket_class(map_class(&policy->map,
1774 tclass));
1775 }
1776
1777 policydb = &policy->policydb;
1778 sidtab = policy->sidtab;
1779
1780 sentry = sidtab_search_entry(sidtab, ssid);
1781 if (!sentry) {
1782 pr_err("SELinux: %s: unrecognized SID %d\n",
1783 __func__, ssid);
1784 rc = -EINVAL;
1785 goto out_unlock;
1786 }
1787 tentry = sidtab_search_entry(sidtab, tsid);
1788 if (!tentry) {
1789 pr_err("SELinux: %s: unrecognized SID %d\n",
1790 __func__, tsid);
1791 rc = -EINVAL;
1792 goto out_unlock;
1793 }
1794
1795 scontext = &sentry->context;
1796 tcontext = &tentry->context;
1797
1798 if (tclass && tclass <= policydb->p_classes.nprim)
1799 cladatum = policydb->class_val_to_struct[tclass - 1];
1800
1801 /* Set the user identity. */
1802 switch (specified) {
1803 case AVTAB_TRANSITION:
1804 case AVTAB_CHANGE:
1805 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1806 newcontext.user = tcontext->user;
1807 } else {
1808 /* notice this gets both DEFAULT_SOURCE and unset */
1809 /* Use the process user identity. */
1810 newcontext.user = scontext->user;
1811 }
1812 break;
1813 case AVTAB_MEMBER:
1814 /* Use the related object owner. */
1815 newcontext.user = tcontext->user;
1816 break;
1817 }
1818
1819 /* Set the role to default values. */
1820 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1821 newcontext.role = scontext->role;
1822 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1823 newcontext.role = tcontext->role;
1824 } else {
1825 if ((tclass == policydb->process_class) || sock)
1826 newcontext.role = scontext->role;
1827 else
1828 newcontext.role = OBJECT_R_VAL;
1829 }
1830
1831 /* Set the type to default values. */
1832 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1833 newcontext.type = scontext->type;
1834 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1835 newcontext.type = tcontext->type;
1836 } else {
1837 if ((tclass == policydb->process_class) || sock) {
1838 /* Use the type of process. */
1839 newcontext.type = scontext->type;
1840 } else {
1841 /* Use the type of the related object. */
1842 newcontext.type = tcontext->type;
1843 }
1844 }
1845
1846 /* Look for a type transition/member/change rule. */
1847 avkey.source_type = scontext->type;
1848 avkey.target_type = tcontext->type;
1849 avkey.target_class = tclass;
1850 avkey.specified = specified;
1851 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1852
1853 /* If no permanent rule, also check for enabled conditional rules */
1854 if (!avdatum) {
1855 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1856 for (; node; node = avtab_search_node_next(node, specified)) {
1857 if (node->key.specified & AVTAB_ENABLED) {
1858 avdatum = &node->datum;
1859 break;
1860 }
1861 }
1862 }
1863
1864 if (avdatum) {
1865 /* Use the type from the type transition/member/change rule. */
1866 newcontext.type = avdatum->u.data;
1867 }
1868
1869 /* if we have a objname this is a file trans check so check those rules */
1870 if (objname)
1871 filename_compute_type(policydb, &newcontext, scontext->type,
1872 tcontext->type, tclass, objname);
1873
1874 /* Check for class-specific changes. */
1875 if (specified & AVTAB_TRANSITION) {
1876 /* Look for a role transition rule. */
1877 struct role_trans_datum *rtd;
1878 struct role_trans_key rtk = {
1879 .role = scontext->role,
1880 .type = tcontext->type,
1881 .tclass = tclass,
1882 };
1883
1884 rtd = policydb_roletr_search(policydb, &rtk);
1885 if (rtd)
1886 newcontext.role = rtd->new_role;
1887 }
1888
1889 /* Set the MLS attributes.
1890 This is done last because it may allocate memory. */
1891 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1892 &newcontext, sock);
1893 if (rc)
1894 goto out_unlock;
1895
1896 /* Check the validity of the context. */
1897 if (!policydb_context_isvalid(policydb, &newcontext)) {
1898 rc = compute_sid_handle_invalid_context(state, policy, sentry,
1899 tentry, tclass,
1900 &newcontext);
1901 if (rc)
1902 goto out_unlock;
1903 }
1904 /* Obtain the sid for the context. */
1905 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1906 if (rc == -ESTALE) {
1907 rcu_read_unlock();
1908 context_destroy(&newcontext);
1909 goto retry;
1910 }
1911 out_unlock:
1912 rcu_read_unlock();
1913 context_destroy(&newcontext);
1914 out:
1915 return rc;
1916 }
1917
1918 /**
1919 * security_transition_sid - Compute the SID for a new subject/object.
1920 * @state: SELinux state
1921 * @ssid: source security identifier
1922 * @tsid: target security identifier
1923 * @tclass: target security class
1924 * @out_sid: security identifier for new subject/object
1925 *
1926 * Compute a SID to use for labeling a new subject or object in the
1927 * class @tclass based on a SID pair (@ssid, @tsid).
1928 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1929 * if insufficient memory is available, or %0 if the new SID was
1930 * computed successfully.
1931 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1932 int security_transition_sid(struct selinux_state *state,
1933 u32 ssid, u32 tsid, u16 tclass,
1934 const struct qstr *qstr, u32 *out_sid)
1935 {
1936 return security_compute_sid(state, ssid, tsid, tclass,
1937 AVTAB_TRANSITION,
1938 qstr ? qstr->name : NULL, out_sid, true);
1939 }
1940
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1941 int security_transition_sid_user(struct selinux_state *state,
1942 u32 ssid, u32 tsid, u16 tclass,
1943 const char *objname, u32 *out_sid)
1944 {
1945 return security_compute_sid(state, ssid, tsid, tclass,
1946 AVTAB_TRANSITION,
1947 objname, out_sid, false);
1948 }
1949
1950 /**
1951 * security_member_sid - Compute the SID for member selection.
1952 * @ssid: source security identifier
1953 * @tsid: target security identifier
1954 * @tclass: target security class
1955 * @out_sid: security identifier for selected member
1956 *
1957 * Compute a SID to use when selecting a member of a polyinstantiated
1958 * object of class @tclass based on a SID pair (@ssid, @tsid).
1959 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1960 * if insufficient memory is available, or %0 if the SID was
1961 * computed successfully.
1962 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1963 int security_member_sid(struct selinux_state *state,
1964 u32 ssid,
1965 u32 tsid,
1966 u16 tclass,
1967 u32 *out_sid)
1968 {
1969 return security_compute_sid(state, ssid, tsid, tclass,
1970 AVTAB_MEMBER, NULL,
1971 out_sid, false);
1972 }
1973
1974 /**
1975 * security_change_sid - Compute the SID for object relabeling.
1976 * @state: SELinux state
1977 * @ssid: source security identifier
1978 * @tsid: target security identifier
1979 * @tclass: target security class
1980 * @out_sid: security identifier for selected member
1981 *
1982 * Compute a SID to use for relabeling an object of class @tclass
1983 * based on a SID pair (@ssid, @tsid).
1984 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1985 * if insufficient memory is available, or %0 if the SID was
1986 * computed successfully.
1987 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1988 int security_change_sid(struct selinux_state *state,
1989 u32 ssid,
1990 u32 tsid,
1991 u16 tclass,
1992 u32 *out_sid)
1993 {
1994 return security_compute_sid(state,
1995 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1996 out_sid, false);
1997 }
1998
convert_context_handle_invalid_context(struct selinux_state * state,struct policydb * policydb,struct context * context)1999 static inline int convert_context_handle_invalid_context(
2000 struct selinux_state *state,
2001 struct policydb *policydb,
2002 struct context *context)
2003 {
2004 char *s;
2005 u32 len;
2006
2007 if (enforcing_enabled(state))
2008 return -EINVAL;
2009
2010 if (!context_struct_to_string(policydb, context, &s, &len)) {
2011 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
2012 s);
2013 kfree(s);
2014 }
2015 return 0;
2016 }
2017
2018 /*
2019 * Convert the values in the security context
2020 * structure `oldc' from the values specified
2021 * in the policy `p->oldp' to the values specified
2022 * in the policy `p->newp', storing the new context
2023 * in `newc'. Verify that the context is valid
2024 * under the new policy.
2025 */
convert_context(struct context * oldc,struct context * newc,void * p,gfp_t gfp_flags)2026 static int convert_context(struct context *oldc, struct context *newc, void *p,
2027 gfp_t gfp_flags)
2028 {
2029 struct convert_context_args *args;
2030 struct ocontext *oc;
2031 struct role_datum *role;
2032 struct type_datum *typdatum;
2033 struct user_datum *usrdatum;
2034 char *s;
2035 u32 len;
2036 int rc;
2037
2038 args = p;
2039
2040 if (oldc->str) {
2041 s = kstrdup(oldc->str, gfp_flags);
2042 if (!s)
2043 return -ENOMEM;
2044
2045 rc = string_to_context_struct(args->newp, NULL, s,
2046 newc, SECSID_NULL);
2047 if (rc == -EINVAL) {
2048 /*
2049 * Retain string representation for later mapping.
2050 *
2051 * IMPORTANT: We need to copy the contents of oldc->str
2052 * back into s again because string_to_context_struct()
2053 * may have garbled it.
2054 */
2055 memcpy(s, oldc->str, oldc->len);
2056 context_init(newc);
2057 newc->str = s;
2058 newc->len = oldc->len;
2059 return 0;
2060 }
2061 kfree(s);
2062 if (rc) {
2063 /* Other error condition, e.g. ENOMEM. */
2064 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2065 oldc->str, -rc);
2066 return rc;
2067 }
2068 pr_info("SELinux: Context %s became valid (mapped).\n",
2069 oldc->str);
2070 return 0;
2071 }
2072
2073 context_init(newc);
2074
2075 /* Convert the user. */
2076 usrdatum = symtab_search(&args->newp->p_users,
2077 sym_name(args->oldp,
2078 SYM_USERS, oldc->user - 1));
2079 if (!usrdatum)
2080 goto bad;
2081 newc->user = usrdatum->value;
2082
2083 /* Convert the role. */
2084 role = symtab_search(&args->newp->p_roles,
2085 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2086 if (!role)
2087 goto bad;
2088 newc->role = role->value;
2089
2090 /* Convert the type. */
2091 typdatum = symtab_search(&args->newp->p_types,
2092 sym_name(args->oldp,
2093 SYM_TYPES, oldc->type - 1));
2094 if (!typdatum)
2095 goto bad;
2096 newc->type = typdatum->value;
2097
2098 /* Convert the MLS fields if dealing with MLS policies */
2099 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2100 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2101 if (rc)
2102 goto bad;
2103 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2104 /*
2105 * Switching between non-MLS and MLS policy:
2106 * ensure that the MLS fields of the context for all
2107 * existing entries in the sidtab are filled in with a
2108 * suitable default value, likely taken from one of the
2109 * initial SIDs.
2110 */
2111 oc = args->newp->ocontexts[OCON_ISID];
2112 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2113 oc = oc->next;
2114 if (!oc) {
2115 pr_err("SELinux: unable to look up"
2116 " the initial SIDs list\n");
2117 goto bad;
2118 }
2119 rc = mls_range_set(newc, &oc->context[0].range);
2120 if (rc)
2121 goto bad;
2122 }
2123
2124 /* Check the validity of the new context. */
2125 if (!policydb_context_isvalid(args->newp, newc)) {
2126 rc = convert_context_handle_invalid_context(args->state,
2127 args->oldp,
2128 oldc);
2129 if (rc)
2130 goto bad;
2131 }
2132
2133 return 0;
2134 bad:
2135 /* Map old representation to string and save it. */
2136 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2137 if (rc)
2138 return rc;
2139 context_destroy(newc);
2140 newc->str = s;
2141 newc->len = len;
2142 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2143 newc->str);
2144 return 0;
2145 }
2146
security_load_policycaps(struct selinux_state * state,struct selinux_policy * policy)2147 static void security_load_policycaps(struct selinux_state *state,
2148 struct selinux_policy *policy)
2149 {
2150 struct policydb *p;
2151 unsigned int i;
2152 struct ebitmap_node *node;
2153
2154 p = &policy->policydb;
2155
2156 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2157 WRITE_ONCE(state->policycap[i],
2158 ebitmap_get_bit(&p->policycaps, i));
2159
2160 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2161 pr_info("SELinux: policy capability %s=%d\n",
2162 selinux_policycap_names[i],
2163 ebitmap_get_bit(&p->policycaps, i));
2164
2165 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2166 if (i >= ARRAY_SIZE(selinux_policycap_names))
2167 pr_info("SELinux: unknown policy capability %u\n",
2168 i);
2169 }
2170
2171 state->android_netlink_route = p->android_netlink_route;
2172 state->android_netlink_getneigh = p->android_netlink_getneigh;
2173 selinux_nlmsg_init();
2174 }
2175
2176 static int security_preserve_bools(struct selinux_policy *oldpolicy,
2177 struct selinux_policy *newpolicy);
2178
selinux_policy_free(struct selinux_policy * policy)2179 static void selinux_policy_free(struct selinux_policy *policy)
2180 {
2181 if (!policy)
2182 return;
2183
2184 sidtab_destroy(policy->sidtab);
2185 kfree(policy->map.mapping);
2186 policydb_destroy(&policy->policydb);
2187 kfree(policy->sidtab);
2188 kfree(policy);
2189 }
2190
selinux_policy_cond_free(struct selinux_policy * policy)2191 static void selinux_policy_cond_free(struct selinux_policy *policy)
2192 {
2193 cond_policydb_destroy_dup(&policy->policydb);
2194 kfree(policy);
2195 }
2196
selinux_policy_cancel(struct selinux_state * state,struct selinux_load_state * load_state)2197 void selinux_policy_cancel(struct selinux_state *state,
2198 struct selinux_load_state *load_state)
2199 {
2200 struct selinux_policy *oldpolicy;
2201
2202 oldpolicy = rcu_dereference_protected(state->policy,
2203 lockdep_is_held(&state->policy_mutex));
2204
2205 sidtab_cancel_convert(oldpolicy->sidtab);
2206 selinux_policy_free(load_state->policy);
2207 kfree(load_state->convert_data);
2208 }
2209
selinux_notify_policy_change(struct selinux_state * state,u32 seqno)2210 static void selinux_notify_policy_change(struct selinux_state *state,
2211 u32 seqno)
2212 {
2213 /* Flush external caches and notify userspace of policy load */
2214 avc_ss_reset(state->avc, seqno);
2215 selnl_notify_policyload(seqno);
2216 selinux_status_update_policyload(state, seqno);
2217 selinux_netlbl_cache_invalidate();
2218 selinux_xfrm_notify_policyload();
2219 selinux_ima_measure_state_locked(state);
2220 }
2221
selinux_policy_commit(struct selinux_state * state,struct selinux_load_state * load_state)2222 void selinux_policy_commit(struct selinux_state *state,
2223 struct selinux_load_state *load_state)
2224 {
2225 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2226 unsigned long flags;
2227 u32 seqno;
2228
2229 oldpolicy = rcu_dereference_protected(state->policy,
2230 lockdep_is_held(&state->policy_mutex));
2231
2232 /* If switching between different policy types, log MLS status */
2233 if (oldpolicy) {
2234 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2235 pr_info("SELinux: Disabling MLS support...\n");
2236 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2237 pr_info("SELinux: Enabling MLS support...\n");
2238 }
2239
2240 /* Set latest granting seqno for new policy. */
2241 if (oldpolicy)
2242 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2243 else
2244 newpolicy->latest_granting = 1;
2245 seqno = newpolicy->latest_granting;
2246
2247 /* Install the new policy. */
2248 if (oldpolicy) {
2249 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2250 rcu_assign_pointer(state->policy, newpolicy);
2251 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2252 } else {
2253 rcu_assign_pointer(state->policy, newpolicy);
2254 }
2255
2256 /* Load the policycaps from the new policy */
2257 security_load_policycaps(state, newpolicy);
2258
2259 if (!selinux_initialized(state)) {
2260 /*
2261 * After first policy load, the security server is
2262 * marked as initialized and ready to handle requests and
2263 * any objects created prior to policy load are then labeled.
2264 */
2265 selinux_mark_initialized(state);
2266 selinux_complete_init();
2267 trace_android_rvh_selinux_is_initialized(state);
2268 }
2269
2270 /* Free the old policy */
2271 synchronize_rcu();
2272 selinux_policy_free(oldpolicy);
2273 kfree(load_state->convert_data);
2274
2275 /* Notify others of the policy change */
2276 selinux_notify_policy_change(state, seqno);
2277 }
2278
2279 /**
2280 * security_load_policy - Load a security policy configuration.
2281 * @state: SELinux state
2282 * @data: binary policy data
2283 * @len: length of data in bytes
2284 *
2285 * Load a new set of security policy configuration data,
2286 * validate it and convert the SID table as necessary.
2287 * This function will flush the access vector cache after
2288 * loading the new policy.
2289 */
security_load_policy(struct selinux_state * state,void * data,size_t len,struct selinux_load_state * load_state)2290 int security_load_policy(struct selinux_state *state, void *data, size_t len,
2291 struct selinux_load_state *load_state)
2292 {
2293 struct selinux_policy *newpolicy, *oldpolicy;
2294 struct selinux_policy_convert_data *convert_data;
2295 int rc = 0;
2296 struct policy_file file = { data, len }, *fp = &file;
2297
2298 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2299 if (!newpolicy)
2300 return -ENOMEM;
2301
2302 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2303 if (!newpolicy->sidtab) {
2304 rc = -ENOMEM;
2305 goto err_policy;
2306 }
2307
2308 rc = policydb_read(&newpolicy->policydb, fp);
2309 if (rc)
2310 goto err_sidtab;
2311
2312 newpolicy->policydb.len = len;
2313 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2314 &newpolicy->map);
2315 if (rc)
2316 goto err_policydb;
2317
2318 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2319 if (rc) {
2320 pr_err("SELinux: unable to load the initial SIDs\n");
2321 goto err_mapping;
2322 }
2323
2324 if (!selinux_initialized(state)) {
2325 /* First policy load, so no need to preserve state from old policy */
2326 load_state->policy = newpolicy;
2327 load_state->convert_data = NULL;
2328 return 0;
2329 }
2330
2331 oldpolicy = rcu_dereference_protected(state->policy,
2332 lockdep_is_held(&state->policy_mutex));
2333
2334 /* Preserve active boolean values from the old policy */
2335 rc = security_preserve_bools(oldpolicy, newpolicy);
2336 if (rc) {
2337 pr_err("SELinux: unable to preserve booleans\n");
2338 goto err_free_isids;
2339 }
2340
2341 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2342 if (!convert_data) {
2343 rc = -ENOMEM;
2344 goto err_free_isids;
2345 }
2346
2347 /*
2348 * Convert the internal representations of contexts
2349 * in the new SID table.
2350 */
2351 convert_data->args.state = state;
2352 convert_data->args.oldp = &oldpolicy->policydb;
2353 convert_data->args.newp = &newpolicy->policydb;
2354
2355 convert_data->sidtab_params.func = convert_context;
2356 convert_data->sidtab_params.args = &convert_data->args;
2357 convert_data->sidtab_params.target = newpolicy->sidtab;
2358
2359 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2360 if (rc) {
2361 pr_err("SELinux: unable to convert the internal"
2362 " representation of contexts in the new SID"
2363 " table\n");
2364 goto err_free_convert_data;
2365 }
2366
2367 load_state->policy = newpolicy;
2368 load_state->convert_data = convert_data;
2369 return 0;
2370
2371 err_free_convert_data:
2372 kfree(convert_data);
2373 err_free_isids:
2374 sidtab_destroy(newpolicy->sidtab);
2375 err_mapping:
2376 kfree(newpolicy->map.mapping);
2377 err_policydb:
2378 policydb_destroy(&newpolicy->policydb);
2379 err_sidtab:
2380 kfree(newpolicy->sidtab);
2381 err_policy:
2382 kfree(newpolicy);
2383
2384 return rc;
2385 }
2386
2387 /**
2388 * ocontext_to_sid - Helper to safely get sid for an ocontext
2389 * @sidtab: SID table
2390 * @c: ocontext structure
2391 * @index: index of the context entry (0 or 1)
2392 * @out_sid: pointer to the resulting SID value
2393 *
2394 * For all ocontexts except OCON_ISID the SID fields are populated
2395 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2396 * operation, this helper must be used to do that safely.
2397 *
2398 * WARNING: This function may return -ESTALE, indicating that the caller
2399 * must retry the operation after re-acquiring the policy pointer!
2400 */
ocontext_to_sid(struct sidtab * sidtab,struct ocontext * c,size_t index,u32 * out_sid)2401 static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2402 size_t index, u32 *out_sid)
2403 {
2404 int rc;
2405 u32 sid;
2406
2407 /* Ensure the associated sidtab entry is visible to this thread. */
2408 sid = smp_load_acquire(&c->sid[index]);
2409 if (!sid) {
2410 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2411 if (rc)
2412 return rc;
2413
2414 /*
2415 * Ensure the new sidtab entry is visible to other threads
2416 * when they see the SID.
2417 */
2418 smp_store_release(&c->sid[index], sid);
2419 }
2420 *out_sid = sid;
2421 return 0;
2422 }
2423
2424 /**
2425 * security_port_sid - Obtain the SID for a port.
2426 * @state: SELinux state
2427 * @protocol: protocol number
2428 * @port: port number
2429 * @out_sid: security identifier
2430 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2431 int security_port_sid(struct selinux_state *state,
2432 u8 protocol, u16 port, u32 *out_sid)
2433 {
2434 struct selinux_policy *policy;
2435 struct policydb *policydb;
2436 struct sidtab *sidtab;
2437 struct ocontext *c;
2438 int rc;
2439
2440 if (!selinux_initialized(state)) {
2441 *out_sid = SECINITSID_PORT;
2442 return 0;
2443 }
2444
2445 retry:
2446 rc = 0;
2447 rcu_read_lock();
2448 policy = rcu_dereference(state->policy);
2449 policydb = &policy->policydb;
2450 sidtab = policy->sidtab;
2451
2452 c = policydb->ocontexts[OCON_PORT];
2453 while (c) {
2454 if (c->u.port.protocol == protocol &&
2455 c->u.port.low_port <= port &&
2456 c->u.port.high_port >= port)
2457 break;
2458 c = c->next;
2459 }
2460
2461 if (c) {
2462 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2463 if (rc == -ESTALE) {
2464 rcu_read_unlock();
2465 goto retry;
2466 }
2467 if (rc)
2468 goto out;
2469 } else {
2470 *out_sid = SECINITSID_PORT;
2471 }
2472
2473 out:
2474 rcu_read_unlock();
2475 return rc;
2476 }
2477
2478 /**
2479 * security_ib_pkey_sid - Obtain the SID for a pkey.
2480 * @state: SELinux state
2481 * @subnet_prefix: Subnet Prefix
2482 * @pkey_num: pkey number
2483 * @out_sid: security identifier
2484 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2485 int security_ib_pkey_sid(struct selinux_state *state,
2486 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2487 {
2488 struct selinux_policy *policy;
2489 struct policydb *policydb;
2490 struct sidtab *sidtab;
2491 struct ocontext *c;
2492 int rc;
2493
2494 if (!selinux_initialized(state)) {
2495 *out_sid = SECINITSID_UNLABELED;
2496 return 0;
2497 }
2498
2499 retry:
2500 rc = 0;
2501 rcu_read_lock();
2502 policy = rcu_dereference(state->policy);
2503 policydb = &policy->policydb;
2504 sidtab = policy->sidtab;
2505
2506 c = policydb->ocontexts[OCON_IBPKEY];
2507 while (c) {
2508 if (c->u.ibpkey.low_pkey <= pkey_num &&
2509 c->u.ibpkey.high_pkey >= pkey_num &&
2510 c->u.ibpkey.subnet_prefix == subnet_prefix)
2511 break;
2512
2513 c = c->next;
2514 }
2515
2516 if (c) {
2517 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2518 if (rc == -ESTALE) {
2519 rcu_read_unlock();
2520 goto retry;
2521 }
2522 if (rc)
2523 goto out;
2524 } else
2525 *out_sid = SECINITSID_UNLABELED;
2526
2527 out:
2528 rcu_read_unlock();
2529 return rc;
2530 }
2531
2532 /**
2533 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2534 * @state: SELinux state
2535 * @dev_name: device name
2536 * @port: port number
2537 * @out_sid: security identifier
2538 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2539 int security_ib_endport_sid(struct selinux_state *state,
2540 const char *dev_name, u8 port_num, u32 *out_sid)
2541 {
2542 struct selinux_policy *policy;
2543 struct policydb *policydb;
2544 struct sidtab *sidtab;
2545 struct ocontext *c;
2546 int rc;
2547
2548 if (!selinux_initialized(state)) {
2549 *out_sid = SECINITSID_UNLABELED;
2550 return 0;
2551 }
2552
2553 retry:
2554 rc = 0;
2555 rcu_read_lock();
2556 policy = rcu_dereference(state->policy);
2557 policydb = &policy->policydb;
2558 sidtab = policy->sidtab;
2559
2560 c = policydb->ocontexts[OCON_IBENDPORT];
2561 while (c) {
2562 if (c->u.ibendport.port == port_num &&
2563 !strncmp(c->u.ibendport.dev_name,
2564 dev_name,
2565 IB_DEVICE_NAME_MAX))
2566 break;
2567
2568 c = c->next;
2569 }
2570
2571 if (c) {
2572 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2573 if (rc == -ESTALE) {
2574 rcu_read_unlock();
2575 goto retry;
2576 }
2577 if (rc)
2578 goto out;
2579 } else
2580 *out_sid = SECINITSID_UNLABELED;
2581
2582 out:
2583 rcu_read_unlock();
2584 return rc;
2585 }
2586
2587 /**
2588 * security_netif_sid - Obtain the SID for a network interface.
2589 * @state: SELinux state
2590 * @name: interface name
2591 * @if_sid: interface SID
2592 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2593 int security_netif_sid(struct selinux_state *state,
2594 char *name, u32 *if_sid)
2595 {
2596 struct selinux_policy *policy;
2597 struct policydb *policydb;
2598 struct sidtab *sidtab;
2599 int rc;
2600 struct ocontext *c;
2601
2602 if (!selinux_initialized(state)) {
2603 *if_sid = SECINITSID_NETIF;
2604 return 0;
2605 }
2606
2607 retry:
2608 rc = 0;
2609 rcu_read_lock();
2610 policy = rcu_dereference(state->policy);
2611 policydb = &policy->policydb;
2612 sidtab = policy->sidtab;
2613
2614 c = policydb->ocontexts[OCON_NETIF];
2615 while (c) {
2616 if (strcmp(name, c->u.name) == 0)
2617 break;
2618 c = c->next;
2619 }
2620
2621 if (c) {
2622 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2623 if (rc == -ESTALE) {
2624 rcu_read_unlock();
2625 goto retry;
2626 }
2627 if (rc)
2628 goto out;
2629 } else
2630 *if_sid = SECINITSID_NETIF;
2631
2632 out:
2633 rcu_read_unlock();
2634 return rc;
2635 }
2636
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2637 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2638 {
2639 int i, fail = 0;
2640
2641 for (i = 0; i < 4; i++)
2642 if (addr[i] != (input[i] & mask[i])) {
2643 fail = 1;
2644 break;
2645 }
2646
2647 return !fail;
2648 }
2649
2650 /**
2651 * security_node_sid - Obtain the SID for a node (host).
2652 * @state: SELinux state
2653 * @domain: communication domain aka address family
2654 * @addrp: address
2655 * @addrlen: address length in bytes
2656 * @out_sid: security identifier
2657 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2658 int security_node_sid(struct selinux_state *state,
2659 u16 domain,
2660 void *addrp,
2661 u32 addrlen,
2662 u32 *out_sid)
2663 {
2664 struct selinux_policy *policy;
2665 struct policydb *policydb;
2666 struct sidtab *sidtab;
2667 int rc;
2668 struct ocontext *c;
2669
2670 if (!selinux_initialized(state)) {
2671 *out_sid = SECINITSID_NODE;
2672 return 0;
2673 }
2674
2675 retry:
2676 rcu_read_lock();
2677 policy = rcu_dereference(state->policy);
2678 policydb = &policy->policydb;
2679 sidtab = policy->sidtab;
2680
2681 switch (domain) {
2682 case AF_INET: {
2683 u32 addr;
2684
2685 rc = -EINVAL;
2686 if (addrlen != sizeof(u32))
2687 goto out;
2688
2689 addr = *((u32 *)addrp);
2690
2691 c = policydb->ocontexts[OCON_NODE];
2692 while (c) {
2693 if (c->u.node.addr == (addr & c->u.node.mask))
2694 break;
2695 c = c->next;
2696 }
2697 break;
2698 }
2699
2700 case AF_INET6:
2701 rc = -EINVAL;
2702 if (addrlen != sizeof(u64) * 2)
2703 goto out;
2704 c = policydb->ocontexts[OCON_NODE6];
2705 while (c) {
2706 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2707 c->u.node6.mask))
2708 break;
2709 c = c->next;
2710 }
2711 break;
2712
2713 default:
2714 rc = 0;
2715 *out_sid = SECINITSID_NODE;
2716 goto out;
2717 }
2718
2719 if (c) {
2720 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2721 if (rc == -ESTALE) {
2722 rcu_read_unlock();
2723 goto retry;
2724 }
2725 if (rc)
2726 goto out;
2727 } else {
2728 *out_sid = SECINITSID_NODE;
2729 }
2730
2731 rc = 0;
2732 out:
2733 rcu_read_unlock();
2734 return rc;
2735 }
2736
2737 #define SIDS_NEL 25
2738
2739 /**
2740 * security_get_user_sids - Obtain reachable SIDs for a user.
2741 * @state: SELinux state
2742 * @fromsid: starting SID
2743 * @username: username
2744 * @sids: array of reachable SIDs for user
2745 * @nel: number of elements in @sids
2746 *
2747 * Generate the set of SIDs for legal security contexts
2748 * for a given user that can be reached by @fromsid.
2749 * Set *@sids to point to a dynamically allocated
2750 * array containing the set of SIDs. Set *@nel to the
2751 * number of elements in the array.
2752 */
2753
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2754 int security_get_user_sids(struct selinux_state *state,
2755 u32 fromsid,
2756 char *username,
2757 u32 **sids,
2758 u32 *nel)
2759 {
2760 struct selinux_policy *policy;
2761 struct policydb *policydb;
2762 struct sidtab *sidtab;
2763 struct context *fromcon, usercon;
2764 u32 *mysids = NULL, *mysids2, sid;
2765 u32 i, j, mynel, maxnel = SIDS_NEL;
2766 struct user_datum *user;
2767 struct role_datum *role;
2768 struct ebitmap_node *rnode, *tnode;
2769 int rc;
2770
2771 *sids = NULL;
2772 *nel = 0;
2773
2774 if (!selinux_initialized(state))
2775 return 0;
2776
2777 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2778 if (!mysids)
2779 return -ENOMEM;
2780
2781 retry:
2782 mynel = 0;
2783 rcu_read_lock();
2784 policy = rcu_dereference(state->policy);
2785 policydb = &policy->policydb;
2786 sidtab = policy->sidtab;
2787
2788 context_init(&usercon);
2789
2790 rc = -EINVAL;
2791 fromcon = sidtab_search(sidtab, fromsid);
2792 if (!fromcon)
2793 goto out_unlock;
2794
2795 rc = -EINVAL;
2796 user = symtab_search(&policydb->p_users, username);
2797 if (!user)
2798 goto out_unlock;
2799
2800 usercon.user = user->value;
2801
2802 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2803 role = policydb->role_val_to_struct[i];
2804 usercon.role = i + 1;
2805 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2806 usercon.type = j + 1;
2807
2808 if (mls_setup_user_range(policydb, fromcon, user,
2809 &usercon))
2810 continue;
2811
2812 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2813 if (rc == -ESTALE) {
2814 rcu_read_unlock();
2815 goto retry;
2816 }
2817 if (rc)
2818 goto out_unlock;
2819 if (mynel < maxnel) {
2820 mysids[mynel++] = sid;
2821 } else {
2822 rc = -ENOMEM;
2823 maxnel += SIDS_NEL;
2824 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2825 if (!mysids2)
2826 goto out_unlock;
2827 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2828 kfree(mysids);
2829 mysids = mysids2;
2830 mysids[mynel++] = sid;
2831 }
2832 }
2833 }
2834 rc = 0;
2835 out_unlock:
2836 rcu_read_unlock();
2837 if (rc || !mynel) {
2838 kfree(mysids);
2839 return rc;
2840 }
2841
2842 rc = -ENOMEM;
2843 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2844 if (!mysids2) {
2845 kfree(mysids);
2846 return rc;
2847 }
2848 for (i = 0, j = 0; i < mynel; i++) {
2849 struct av_decision dummy_avd;
2850 rc = avc_has_perm_noaudit(state,
2851 fromsid, mysids[i],
2852 SECCLASS_PROCESS, /* kernel value */
2853 PROCESS__TRANSITION, AVC_STRICT,
2854 &dummy_avd);
2855 if (!rc)
2856 mysids2[j++] = mysids[i];
2857 cond_resched();
2858 }
2859 kfree(mysids);
2860 *sids = mysids2;
2861 *nel = j;
2862 return 0;
2863 }
2864
2865 /**
2866 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2867 * @fstype: filesystem type
2868 * @path: path from root of mount
2869 * @sclass: file security class
2870 * @sid: SID for path
2871 *
2872 * Obtain a SID to use for a file in a filesystem that
2873 * cannot support xattr or use a fixed labeling behavior like
2874 * transition SIDs or task SIDs.
2875 *
2876 * WARNING: This function may return -ESTALE, indicating that the caller
2877 * must retry the operation after re-acquiring the policy pointer!
2878 */
__security_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2879 static inline int __security_genfs_sid(struct selinux_policy *policy,
2880 const char *fstype,
2881 char *path,
2882 u16 orig_sclass,
2883 u32 *sid)
2884 {
2885 struct policydb *policydb = &policy->policydb;
2886 struct sidtab *sidtab = policy->sidtab;
2887 int len;
2888 u16 sclass;
2889 struct genfs *genfs;
2890 struct ocontext *c;
2891 int cmp = 0;
2892
2893 while (path[0] == '/' && path[1] == '/')
2894 path++;
2895
2896 sclass = unmap_class(&policy->map, orig_sclass);
2897 *sid = SECINITSID_UNLABELED;
2898
2899 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2900 cmp = strcmp(fstype, genfs->fstype);
2901 if (cmp <= 0)
2902 break;
2903 }
2904
2905 if (!genfs || cmp)
2906 return -ENOENT;
2907
2908 for (c = genfs->head; c; c = c->next) {
2909 len = strlen(c->u.name);
2910 if ((!c->v.sclass || sclass == c->v.sclass) &&
2911 (strncmp(c->u.name, path, len) == 0))
2912 break;
2913 }
2914
2915 if (!c)
2916 return -ENOENT;
2917
2918 return ocontext_to_sid(sidtab, c, 0, sid);
2919 }
2920
2921 /**
2922 * security_genfs_sid - Obtain a SID for a file in a filesystem
2923 * @state: SELinux state
2924 * @fstype: filesystem type
2925 * @path: path from root of mount
2926 * @sclass: file security class
2927 * @sid: SID for path
2928 *
2929 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2930 * it afterward.
2931 */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2932 int security_genfs_sid(struct selinux_state *state,
2933 const char *fstype,
2934 char *path,
2935 u16 orig_sclass,
2936 u32 *sid)
2937 {
2938 struct selinux_policy *policy;
2939 int retval;
2940
2941 if (!selinux_initialized(state)) {
2942 *sid = SECINITSID_UNLABELED;
2943 return 0;
2944 }
2945
2946 do {
2947 rcu_read_lock();
2948 policy = rcu_dereference(state->policy);
2949 retval = __security_genfs_sid(policy, fstype, path,
2950 orig_sclass, sid);
2951 rcu_read_unlock();
2952 } while (retval == -ESTALE);
2953 return retval;
2954 }
2955
selinux_policy_genfs_sid(struct selinux_policy * policy,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2956 int selinux_policy_genfs_sid(struct selinux_policy *policy,
2957 const char *fstype,
2958 char *path,
2959 u16 orig_sclass,
2960 u32 *sid)
2961 {
2962 /* no lock required, policy is not yet accessible by other threads */
2963 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2964 }
2965
2966 /**
2967 * security_fs_use - Determine how to handle labeling for a filesystem.
2968 * @state: SELinux state
2969 * @sb: superblock in question
2970 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2971 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2972 {
2973 struct selinux_policy *policy;
2974 struct policydb *policydb;
2975 struct sidtab *sidtab;
2976 int rc;
2977 struct ocontext *c;
2978 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2979 const char *fstype = sb->s_type->name;
2980
2981 if (!selinux_initialized(state)) {
2982 sbsec->behavior = SECURITY_FS_USE_NONE;
2983 sbsec->sid = SECINITSID_UNLABELED;
2984 return 0;
2985 }
2986
2987 retry:
2988 rc = 0;
2989 rcu_read_lock();
2990 policy = rcu_dereference(state->policy);
2991 policydb = &policy->policydb;
2992 sidtab = policy->sidtab;
2993
2994 c = policydb->ocontexts[OCON_FSUSE];
2995 while (c) {
2996 if (strcmp(fstype, c->u.name) == 0)
2997 break;
2998 c = c->next;
2999 }
3000
3001 if (c) {
3002 sbsec->behavior = c->v.behavior;
3003 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
3004 if (rc == -ESTALE) {
3005 rcu_read_unlock();
3006 goto retry;
3007 }
3008 if (rc)
3009 goto out;
3010 } else {
3011 rc = __security_genfs_sid(policy, fstype, "/",
3012 SECCLASS_DIR, &sbsec->sid);
3013 if (rc == -ESTALE) {
3014 rcu_read_unlock();
3015 goto retry;
3016 }
3017 if (rc) {
3018 sbsec->behavior = SECURITY_FS_USE_NONE;
3019 rc = 0;
3020 } else {
3021 sbsec->behavior = SECURITY_FS_USE_GENFS;
3022 }
3023 }
3024
3025 out:
3026 rcu_read_unlock();
3027 return rc;
3028 }
3029
security_get_bools(struct selinux_policy * policy,u32 * len,char *** names,int ** values)3030 int security_get_bools(struct selinux_policy *policy,
3031 u32 *len, char ***names, int **values)
3032 {
3033 struct policydb *policydb;
3034 u32 i;
3035 int rc;
3036
3037 policydb = &policy->policydb;
3038
3039 *names = NULL;
3040 *values = NULL;
3041
3042 rc = 0;
3043 *len = policydb->p_bools.nprim;
3044 if (!*len)
3045 goto out;
3046
3047 rc = -ENOMEM;
3048 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3049 if (!*names)
3050 goto err;
3051
3052 rc = -ENOMEM;
3053 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3054 if (!*values)
3055 goto err;
3056
3057 for (i = 0; i < *len; i++) {
3058 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3059
3060 rc = -ENOMEM;
3061 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3062 GFP_ATOMIC);
3063 if (!(*names)[i])
3064 goto err;
3065 }
3066 rc = 0;
3067 out:
3068 return rc;
3069 err:
3070 if (*names) {
3071 for (i = 0; i < *len; i++)
3072 kfree((*names)[i]);
3073 kfree(*names);
3074 }
3075 kfree(*values);
3076 *len = 0;
3077 *names = NULL;
3078 *values = NULL;
3079 goto out;
3080 }
3081
3082
security_set_bools(struct selinux_state * state,u32 len,int * values)3083 int security_set_bools(struct selinux_state *state, u32 len, int *values)
3084 {
3085 struct selinux_policy *newpolicy, *oldpolicy;
3086 int rc;
3087 u32 i, seqno = 0;
3088
3089 if (!selinux_initialized(state))
3090 return -EINVAL;
3091
3092 oldpolicy = rcu_dereference_protected(state->policy,
3093 lockdep_is_held(&state->policy_mutex));
3094
3095 /* Consistency check on number of booleans, should never fail */
3096 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3097 return -EINVAL;
3098
3099 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3100 if (!newpolicy)
3101 return -ENOMEM;
3102
3103 /*
3104 * Deep copy only the parts of the policydb that might be
3105 * modified as a result of changing booleans.
3106 */
3107 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3108 if (rc) {
3109 kfree(newpolicy);
3110 return -ENOMEM;
3111 }
3112
3113 /* Update the boolean states in the copy */
3114 for (i = 0; i < len; i++) {
3115 int new_state = !!values[i];
3116 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3117
3118 if (new_state != old_state) {
3119 audit_log(audit_context(), GFP_ATOMIC,
3120 AUDIT_MAC_CONFIG_CHANGE,
3121 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3122 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3123 new_state,
3124 old_state,
3125 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3126 audit_get_sessionid(current));
3127 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3128 }
3129 }
3130
3131 /* Re-evaluate the conditional rules in the copy */
3132 evaluate_cond_nodes(&newpolicy->policydb);
3133
3134 /* Set latest granting seqno for new policy */
3135 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3136 seqno = newpolicy->latest_granting;
3137
3138 /* Install the new policy */
3139 rcu_assign_pointer(state->policy, newpolicy);
3140
3141 /*
3142 * Free the conditional portions of the old policydb
3143 * that were copied for the new policy, and the oldpolicy
3144 * structure itself but not what it references.
3145 */
3146 synchronize_rcu();
3147 selinux_policy_cond_free(oldpolicy);
3148
3149 /* Notify others of the policy change */
3150 selinux_notify_policy_change(state, seqno);
3151 return 0;
3152 }
3153
security_get_bool_value(struct selinux_state * state,u32 index)3154 int security_get_bool_value(struct selinux_state *state,
3155 u32 index)
3156 {
3157 struct selinux_policy *policy;
3158 struct policydb *policydb;
3159 int rc;
3160 u32 len;
3161
3162 if (!selinux_initialized(state))
3163 return 0;
3164
3165 rcu_read_lock();
3166 policy = rcu_dereference(state->policy);
3167 policydb = &policy->policydb;
3168
3169 rc = -EFAULT;
3170 len = policydb->p_bools.nprim;
3171 if (index >= len)
3172 goto out;
3173
3174 rc = policydb->bool_val_to_struct[index]->state;
3175 out:
3176 rcu_read_unlock();
3177 return rc;
3178 }
3179
security_preserve_bools(struct selinux_policy * oldpolicy,struct selinux_policy * newpolicy)3180 static int security_preserve_bools(struct selinux_policy *oldpolicy,
3181 struct selinux_policy *newpolicy)
3182 {
3183 int rc, *bvalues = NULL;
3184 char **bnames = NULL;
3185 struct cond_bool_datum *booldatum;
3186 u32 i, nbools = 0;
3187
3188 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3189 if (rc)
3190 goto out;
3191 for (i = 0; i < nbools; i++) {
3192 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3193 bnames[i]);
3194 if (booldatum)
3195 booldatum->state = bvalues[i];
3196 }
3197 evaluate_cond_nodes(&newpolicy->policydb);
3198
3199 out:
3200 if (bnames) {
3201 for (i = 0; i < nbools; i++)
3202 kfree(bnames[i]);
3203 }
3204 kfree(bnames);
3205 kfree(bvalues);
3206 return rc;
3207 }
3208
3209 /*
3210 * security_sid_mls_copy() - computes a new sid based on the given
3211 * sid and the mls portion of mls_sid.
3212 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)3213 int security_sid_mls_copy(struct selinux_state *state,
3214 u32 sid, u32 mls_sid, u32 *new_sid)
3215 {
3216 struct selinux_policy *policy;
3217 struct policydb *policydb;
3218 struct sidtab *sidtab;
3219 struct context *context1;
3220 struct context *context2;
3221 struct context newcon;
3222 char *s;
3223 u32 len;
3224 int rc;
3225
3226 if (!selinux_initialized(state)) {
3227 *new_sid = sid;
3228 return 0;
3229 }
3230
3231 retry:
3232 rc = 0;
3233 context_init(&newcon);
3234
3235 rcu_read_lock();
3236 policy = rcu_dereference(state->policy);
3237 policydb = &policy->policydb;
3238 sidtab = policy->sidtab;
3239
3240 if (!policydb->mls_enabled) {
3241 *new_sid = sid;
3242 goto out_unlock;
3243 }
3244
3245 rc = -EINVAL;
3246 context1 = sidtab_search(sidtab, sid);
3247 if (!context1) {
3248 pr_err("SELinux: %s: unrecognized SID %d\n",
3249 __func__, sid);
3250 goto out_unlock;
3251 }
3252
3253 rc = -EINVAL;
3254 context2 = sidtab_search(sidtab, mls_sid);
3255 if (!context2) {
3256 pr_err("SELinux: %s: unrecognized SID %d\n",
3257 __func__, mls_sid);
3258 goto out_unlock;
3259 }
3260
3261 newcon.user = context1->user;
3262 newcon.role = context1->role;
3263 newcon.type = context1->type;
3264 rc = mls_context_cpy(&newcon, context2);
3265 if (rc)
3266 goto out_unlock;
3267
3268 /* Check the validity of the new context. */
3269 if (!policydb_context_isvalid(policydb, &newcon)) {
3270 rc = convert_context_handle_invalid_context(state, policydb,
3271 &newcon);
3272 if (rc) {
3273 if (!context_struct_to_string(policydb, &newcon, &s,
3274 &len)) {
3275 struct audit_buffer *ab;
3276
3277 ab = audit_log_start(audit_context(),
3278 GFP_ATOMIC,
3279 AUDIT_SELINUX_ERR);
3280 audit_log_format(ab,
3281 "op=security_sid_mls_copy invalid_context=");
3282 /* don't record NUL with untrusted strings */
3283 audit_log_n_untrustedstring(ab, s, len - 1);
3284 audit_log_end(ab);
3285 kfree(s);
3286 }
3287 goto out_unlock;
3288 }
3289 }
3290 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3291 if (rc == -ESTALE) {
3292 rcu_read_unlock();
3293 context_destroy(&newcon);
3294 goto retry;
3295 }
3296 out_unlock:
3297 rcu_read_unlock();
3298 context_destroy(&newcon);
3299 return rc;
3300 }
3301
3302 /**
3303 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3304 * @state: SELinux state
3305 * @nlbl_sid: NetLabel SID
3306 * @nlbl_type: NetLabel labeling protocol type
3307 * @xfrm_sid: XFRM SID
3308 *
3309 * Description:
3310 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3311 * resolved into a single SID it is returned via @peer_sid and the function
3312 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3313 * returns a negative value. A table summarizing the behavior is below:
3314 *
3315 * | function return | @sid
3316 * ------------------------------+-----------------+-----------------
3317 * no peer labels | 0 | SECSID_NULL
3318 * single peer label | 0 | <peer_label>
3319 * multiple, consistent labels | 0 | <peer_label>
3320 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3321 *
3322 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3323 int security_net_peersid_resolve(struct selinux_state *state,
3324 u32 nlbl_sid, u32 nlbl_type,
3325 u32 xfrm_sid,
3326 u32 *peer_sid)
3327 {
3328 struct selinux_policy *policy;
3329 struct policydb *policydb;
3330 struct sidtab *sidtab;
3331 int rc;
3332 struct context *nlbl_ctx;
3333 struct context *xfrm_ctx;
3334
3335 *peer_sid = SECSID_NULL;
3336
3337 /* handle the common (which also happens to be the set of easy) cases
3338 * right away, these two if statements catch everything involving a
3339 * single or absent peer SID/label */
3340 if (xfrm_sid == SECSID_NULL) {
3341 *peer_sid = nlbl_sid;
3342 return 0;
3343 }
3344 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3345 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3346 * is present */
3347 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3348 *peer_sid = xfrm_sid;
3349 return 0;
3350 }
3351
3352 if (!selinux_initialized(state))
3353 return 0;
3354
3355 rcu_read_lock();
3356 policy = rcu_dereference(state->policy);
3357 policydb = &policy->policydb;
3358 sidtab = policy->sidtab;
3359
3360 /*
3361 * We don't need to check initialized here since the only way both
3362 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3363 * security server was initialized and state->initialized was true.
3364 */
3365 if (!policydb->mls_enabled) {
3366 rc = 0;
3367 goto out;
3368 }
3369
3370 rc = -EINVAL;
3371 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3372 if (!nlbl_ctx) {
3373 pr_err("SELinux: %s: unrecognized SID %d\n",
3374 __func__, nlbl_sid);
3375 goto out;
3376 }
3377 rc = -EINVAL;
3378 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3379 if (!xfrm_ctx) {
3380 pr_err("SELinux: %s: unrecognized SID %d\n",
3381 __func__, xfrm_sid);
3382 goto out;
3383 }
3384 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3385 if (rc)
3386 goto out;
3387
3388 /* at present NetLabel SIDs/labels really only carry MLS
3389 * information so if the MLS portion of the NetLabel SID
3390 * matches the MLS portion of the labeled XFRM SID/label
3391 * then pass along the XFRM SID as it is the most
3392 * expressive */
3393 *peer_sid = xfrm_sid;
3394 out:
3395 rcu_read_unlock();
3396 return rc;
3397 }
3398
get_classes_callback(void * k,void * d,void * args)3399 static int get_classes_callback(void *k, void *d, void *args)
3400 {
3401 struct class_datum *datum = d;
3402 char *name = k, **classes = args;
3403 int value = datum->value - 1;
3404
3405 classes[value] = kstrdup(name, GFP_ATOMIC);
3406 if (!classes[value])
3407 return -ENOMEM;
3408
3409 return 0;
3410 }
3411
security_get_classes(struct selinux_policy * policy,char *** classes,int * nclasses)3412 int security_get_classes(struct selinux_policy *policy,
3413 char ***classes, int *nclasses)
3414 {
3415 struct policydb *policydb;
3416 int rc;
3417
3418 policydb = &policy->policydb;
3419
3420 rc = -ENOMEM;
3421 *nclasses = policydb->p_classes.nprim;
3422 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3423 if (!*classes)
3424 goto out;
3425
3426 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3427 *classes);
3428 if (rc) {
3429 int i;
3430 for (i = 0; i < *nclasses; i++)
3431 kfree((*classes)[i]);
3432 kfree(*classes);
3433 }
3434
3435 out:
3436 return rc;
3437 }
3438
get_permissions_callback(void * k,void * d,void * args)3439 static int get_permissions_callback(void *k, void *d, void *args)
3440 {
3441 struct perm_datum *datum = d;
3442 char *name = k, **perms = args;
3443 int value = datum->value - 1;
3444
3445 perms[value] = kstrdup(name, GFP_ATOMIC);
3446 if (!perms[value])
3447 return -ENOMEM;
3448
3449 return 0;
3450 }
3451
security_get_permissions(struct selinux_policy * policy,char * class,char *** perms,int * nperms)3452 int security_get_permissions(struct selinux_policy *policy,
3453 char *class, char ***perms, int *nperms)
3454 {
3455 struct policydb *policydb;
3456 int rc, i;
3457 struct class_datum *match;
3458
3459 policydb = &policy->policydb;
3460
3461 rc = -EINVAL;
3462 match = symtab_search(&policydb->p_classes, class);
3463 if (!match) {
3464 pr_err("SELinux: %s: unrecognized class %s\n",
3465 __func__, class);
3466 goto out;
3467 }
3468
3469 rc = -ENOMEM;
3470 *nperms = match->permissions.nprim;
3471 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3472 if (!*perms)
3473 goto out;
3474
3475 if (match->comdatum) {
3476 rc = hashtab_map(&match->comdatum->permissions.table,
3477 get_permissions_callback, *perms);
3478 if (rc)
3479 goto err;
3480 }
3481
3482 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3483 *perms);
3484 if (rc)
3485 goto err;
3486
3487 out:
3488 return rc;
3489
3490 err:
3491 for (i = 0; i < *nperms; i++)
3492 kfree((*perms)[i]);
3493 kfree(*perms);
3494 return rc;
3495 }
3496
security_get_reject_unknown(struct selinux_state * state)3497 int security_get_reject_unknown(struct selinux_state *state)
3498 {
3499 struct selinux_policy *policy;
3500 int value;
3501
3502 if (!selinux_initialized(state))
3503 return 0;
3504
3505 rcu_read_lock();
3506 policy = rcu_dereference(state->policy);
3507 value = policy->policydb.reject_unknown;
3508 rcu_read_unlock();
3509 return value;
3510 }
3511
security_get_allow_unknown(struct selinux_state * state)3512 int security_get_allow_unknown(struct selinux_state *state)
3513 {
3514 struct selinux_policy *policy;
3515 int value;
3516
3517 if (!selinux_initialized(state))
3518 return 0;
3519
3520 rcu_read_lock();
3521 policy = rcu_dereference(state->policy);
3522 value = policy->policydb.allow_unknown;
3523 rcu_read_unlock();
3524 return value;
3525 }
3526
3527 /**
3528 * security_policycap_supported - Check for a specific policy capability
3529 * @state: SELinux state
3530 * @req_cap: capability
3531 *
3532 * Description:
3533 * This function queries the currently loaded policy to see if it supports the
3534 * capability specified by @req_cap. Returns true (1) if the capability is
3535 * supported, false (0) if it isn't supported.
3536 *
3537 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3538 int security_policycap_supported(struct selinux_state *state,
3539 unsigned int req_cap)
3540 {
3541 struct selinux_policy *policy;
3542 int rc;
3543
3544 if (!selinux_initialized(state))
3545 return 0;
3546
3547 rcu_read_lock();
3548 policy = rcu_dereference(state->policy);
3549 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3550 rcu_read_unlock();
3551
3552 return rc;
3553 }
3554
3555 struct selinux_audit_rule {
3556 u32 au_seqno;
3557 struct context au_ctxt;
3558 };
3559
selinux_audit_rule_free(void * vrule)3560 void selinux_audit_rule_free(void *vrule)
3561 {
3562 struct selinux_audit_rule *rule = vrule;
3563
3564 if (rule) {
3565 context_destroy(&rule->au_ctxt);
3566 kfree(rule);
3567 }
3568 }
3569
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3570 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3571 {
3572 struct selinux_state *state = &selinux_state;
3573 struct selinux_policy *policy;
3574 struct policydb *policydb;
3575 struct selinux_audit_rule *tmprule;
3576 struct role_datum *roledatum;
3577 struct type_datum *typedatum;
3578 struct user_datum *userdatum;
3579 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3580 int rc = 0;
3581
3582 *rule = NULL;
3583
3584 if (!selinux_initialized(state))
3585 return -EOPNOTSUPP;
3586
3587 switch (field) {
3588 case AUDIT_SUBJ_USER:
3589 case AUDIT_SUBJ_ROLE:
3590 case AUDIT_SUBJ_TYPE:
3591 case AUDIT_OBJ_USER:
3592 case AUDIT_OBJ_ROLE:
3593 case AUDIT_OBJ_TYPE:
3594 /* only 'equals' and 'not equals' fit user, role, and type */
3595 if (op != Audit_equal && op != Audit_not_equal)
3596 return -EINVAL;
3597 break;
3598 case AUDIT_SUBJ_SEN:
3599 case AUDIT_SUBJ_CLR:
3600 case AUDIT_OBJ_LEV_LOW:
3601 case AUDIT_OBJ_LEV_HIGH:
3602 /* we do not allow a range, indicated by the presence of '-' */
3603 if (strchr(rulestr, '-'))
3604 return -EINVAL;
3605 break;
3606 default:
3607 /* only the above fields are valid */
3608 return -EINVAL;
3609 }
3610
3611 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3612 if (!tmprule)
3613 return -ENOMEM;
3614
3615 context_init(&tmprule->au_ctxt);
3616
3617 rcu_read_lock();
3618 policy = rcu_dereference(state->policy);
3619 policydb = &policy->policydb;
3620
3621 tmprule->au_seqno = policy->latest_granting;
3622
3623 switch (field) {
3624 case AUDIT_SUBJ_USER:
3625 case AUDIT_OBJ_USER:
3626 rc = -EINVAL;
3627 userdatum = symtab_search(&policydb->p_users, rulestr);
3628 if (!userdatum)
3629 goto out;
3630 tmprule->au_ctxt.user = userdatum->value;
3631 break;
3632 case AUDIT_SUBJ_ROLE:
3633 case AUDIT_OBJ_ROLE:
3634 rc = -EINVAL;
3635 roledatum = symtab_search(&policydb->p_roles, rulestr);
3636 if (!roledatum)
3637 goto out;
3638 tmprule->au_ctxt.role = roledatum->value;
3639 break;
3640 case AUDIT_SUBJ_TYPE:
3641 case AUDIT_OBJ_TYPE:
3642 rc = -EINVAL;
3643 typedatum = symtab_search(&policydb->p_types, rulestr);
3644 if (!typedatum)
3645 goto out;
3646 tmprule->au_ctxt.type = typedatum->value;
3647 break;
3648 case AUDIT_SUBJ_SEN:
3649 case AUDIT_SUBJ_CLR:
3650 case AUDIT_OBJ_LEV_LOW:
3651 case AUDIT_OBJ_LEV_HIGH:
3652 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3653 GFP_ATOMIC);
3654 if (rc)
3655 goto out;
3656 break;
3657 }
3658 rc = 0;
3659 out:
3660 rcu_read_unlock();
3661
3662 if (rc) {
3663 selinux_audit_rule_free(tmprule);
3664 tmprule = NULL;
3665 }
3666
3667 *rule = tmprule;
3668
3669 return rc;
3670 }
3671
3672 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3673 int selinux_audit_rule_known(struct audit_krule *rule)
3674 {
3675 int i;
3676
3677 for (i = 0; i < rule->field_count; i++) {
3678 struct audit_field *f = &rule->fields[i];
3679 switch (f->type) {
3680 case AUDIT_SUBJ_USER:
3681 case AUDIT_SUBJ_ROLE:
3682 case AUDIT_SUBJ_TYPE:
3683 case AUDIT_SUBJ_SEN:
3684 case AUDIT_SUBJ_CLR:
3685 case AUDIT_OBJ_USER:
3686 case AUDIT_OBJ_ROLE:
3687 case AUDIT_OBJ_TYPE:
3688 case AUDIT_OBJ_LEV_LOW:
3689 case AUDIT_OBJ_LEV_HIGH:
3690 return 1;
3691 }
3692 }
3693
3694 return 0;
3695 }
3696
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule)3697 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3698 {
3699 struct selinux_state *state = &selinux_state;
3700 struct selinux_policy *policy;
3701 struct context *ctxt;
3702 struct mls_level *level;
3703 struct selinux_audit_rule *rule = vrule;
3704 int match = 0;
3705
3706 if (unlikely(!rule)) {
3707 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3708 return -ENOENT;
3709 }
3710
3711 if (!selinux_initialized(state))
3712 return 0;
3713
3714 rcu_read_lock();
3715
3716 policy = rcu_dereference(state->policy);
3717
3718 if (rule->au_seqno < policy->latest_granting) {
3719 match = -ESTALE;
3720 goto out;
3721 }
3722
3723 ctxt = sidtab_search(policy->sidtab, sid);
3724 if (unlikely(!ctxt)) {
3725 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3726 sid);
3727 match = -ENOENT;
3728 goto out;
3729 }
3730
3731 /* a field/op pair that is not caught here will simply fall through
3732 without a match */
3733 switch (field) {
3734 case AUDIT_SUBJ_USER:
3735 case AUDIT_OBJ_USER:
3736 switch (op) {
3737 case Audit_equal:
3738 match = (ctxt->user == rule->au_ctxt.user);
3739 break;
3740 case Audit_not_equal:
3741 match = (ctxt->user != rule->au_ctxt.user);
3742 break;
3743 }
3744 break;
3745 case AUDIT_SUBJ_ROLE:
3746 case AUDIT_OBJ_ROLE:
3747 switch (op) {
3748 case Audit_equal:
3749 match = (ctxt->role == rule->au_ctxt.role);
3750 break;
3751 case Audit_not_equal:
3752 match = (ctxt->role != rule->au_ctxt.role);
3753 break;
3754 }
3755 break;
3756 case AUDIT_SUBJ_TYPE:
3757 case AUDIT_OBJ_TYPE:
3758 switch (op) {
3759 case Audit_equal:
3760 match = (ctxt->type == rule->au_ctxt.type);
3761 break;
3762 case Audit_not_equal:
3763 match = (ctxt->type != rule->au_ctxt.type);
3764 break;
3765 }
3766 break;
3767 case AUDIT_SUBJ_SEN:
3768 case AUDIT_SUBJ_CLR:
3769 case AUDIT_OBJ_LEV_LOW:
3770 case AUDIT_OBJ_LEV_HIGH:
3771 level = ((field == AUDIT_SUBJ_SEN ||
3772 field == AUDIT_OBJ_LEV_LOW) ?
3773 &ctxt->range.level[0] : &ctxt->range.level[1]);
3774 switch (op) {
3775 case Audit_equal:
3776 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3777 level);
3778 break;
3779 case Audit_not_equal:
3780 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3781 level);
3782 break;
3783 case Audit_lt:
3784 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3785 level) &&
3786 !mls_level_eq(&rule->au_ctxt.range.level[0],
3787 level));
3788 break;
3789 case Audit_le:
3790 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3791 level);
3792 break;
3793 case Audit_gt:
3794 match = (mls_level_dom(level,
3795 &rule->au_ctxt.range.level[0]) &&
3796 !mls_level_eq(level,
3797 &rule->au_ctxt.range.level[0]));
3798 break;
3799 case Audit_ge:
3800 match = mls_level_dom(level,
3801 &rule->au_ctxt.range.level[0]);
3802 break;
3803 }
3804 }
3805
3806 out:
3807 rcu_read_unlock();
3808 return match;
3809 }
3810
aurule_avc_callback(u32 event)3811 static int aurule_avc_callback(u32 event)
3812 {
3813 if (event == AVC_CALLBACK_RESET)
3814 return audit_update_lsm_rules();
3815 return 0;
3816 }
3817
aurule_init(void)3818 static int __init aurule_init(void)
3819 {
3820 int err;
3821
3822 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3823 if (err)
3824 panic("avc_add_callback() failed, error %d\n", err);
3825
3826 return err;
3827 }
3828 __initcall(aurule_init);
3829
3830 #ifdef CONFIG_NETLABEL
3831 /**
3832 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3833 * @secattr: the NetLabel packet security attributes
3834 * @sid: the SELinux SID
3835 *
3836 * Description:
3837 * Attempt to cache the context in @ctx, which was derived from the packet in
3838 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3839 * already been initialized.
3840 *
3841 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3842 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3843 u32 sid)
3844 {
3845 u32 *sid_cache;
3846
3847 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3848 if (sid_cache == NULL)
3849 return;
3850 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3851 if (secattr->cache == NULL) {
3852 kfree(sid_cache);
3853 return;
3854 }
3855
3856 *sid_cache = sid;
3857 secattr->cache->free = kfree;
3858 secattr->cache->data = sid_cache;
3859 secattr->flags |= NETLBL_SECATTR_CACHE;
3860 }
3861
3862 /**
3863 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3864 * @state: SELinux state
3865 * @secattr: the NetLabel packet security attributes
3866 * @sid: the SELinux SID
3867 *
3868 * Description:
3869 * Convert the given NetLabel security attributes in @secattr into a
3870 * SELinux SID. If the @secattr field does not contain a full SELinux
3871 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3872 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3873 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3874 * conversion for future lookups. Returns zero on success, negative values on
3875 * failure.
3876 *
3877 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3878 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3879 struct netlbl_lsm_secattr *secattr,
3880 u32 *sid)
3881 {
3882 struct selinux_policy *policy;
3883 struct policydb *policydb;
3884 struct sidtab *sidtab;
3885 int rc;
3886 struct context *ctx;
3887 struct context ctx_new;
3888
3889 if (!selinux_initialized(state)) {
3890 *sid = SECSID_NULL;
3891 return 0;
3892 }
3893
3894 retry:
3895 rc = 0;
3896 rcu_read_lock();
3897 policy = rcu_dereference(state->policy);
3898 policydb = &policy->policydb;
3899 sidtab = policy->sidtab;
3900
3901 if (secattr->flags & NETLBL_SECATTR_CACHE)
3902 *sid = *(u32 *)secattr->cache->data;
3903 else if (secattr->flags & NETLBL_SECATTR_SECID)
3904 *sid = secattr->attr.secid;
3905 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3906 rc = -EIDRM;
3907 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3908 if (ctx == NULL)
3909 goto out;
3910
3911 context_init(&ctx_new);
3912 ctx_new.user = ctx->user;
3913 ctx_new.role = ctx->role;
3914 ctx_new.type = ctx->type;
3915 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3916 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3917 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3918 if (rc)
3919 goto out;
3920 }
3921 rc = -EIDRM;
3922 if (!mls_context_isvalid(policydb, &ctx_new)) {
3923 ebitmap_destroy(&ctx_new.range.level[0].cat);
3924 goto out;
3925 }
3926
3927 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3928 ebitmap_destroy(&ctx_new.range.level[0].cat);
3929 if (rc == -ESTALE) {
3930 rcu_read_unlock();
3931 goto retry;
3932 }
3933 if (rc)
3934 goto out;
3935
3936 security_netlbl_cache_add(secattr, *sid);
3937 } else
3938 *sid = SECSID_NULL;
3939
3940 out:
3941 rcu_read_unlock();
3942 return rc;
3943 }
3944
3945 /**
3946 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3947 * @state: SELinux state
3948 * @sid: the SELinux SID
3949 * @secattr: the NetLabel packet security attributes
3950 *
3951 * Description:
3952 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3953 * Returns zero on success, negative values on failure.
3954 *
3955 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3956 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3957 u32 sid, struct netlbl_lsm_secattr *secattr)
3958 {
3959 struct selinux_policy *policy;
3960 struct policydb *policydb;
3961 int rc;
3962 struct context *ctx;
3963
3964 if (!selinux_initialized(state))
3965 return 0;
3966
3967 rcu_read_lock();
3968 policy = rcu_dereference(state->policy);
3969 policydb = &policy->policydb;
3970
3971 rc = -ENOENT;
3972 ctx = sidtab_search(policy->sidtab, sid);
3973 if (ctx == NULL)
3974 goto out;
3975
3976 rc = -ENOMEM;
3977 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3978 GFP_ATOMIC);
3979 if (secattr->domain == NULL)
3980 goto out;
3981
3982 secattr->attr.secid = sid;
3983 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3984 mls_export_netlbl_lvl(policydb, ctx, secattr);
3985 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3986 out:
3987 rcu_read_unlock();
3988 return rc;
3989 }
3990 #endif /* CONFIG_NETLABEL */
3991
3992 /**
3993 * __security_read_policy - read the policy.
3994 * @policy: SELinux policy
3995 * @data: binary policy data
3996 * @len: length of data in bytes
3997 *
3998 */
__security_read_policy(struct selinux_policy * policy,void * data,size_t * len)3999 static int __security_read_policy(struct selinux_policy *policy,
4000 void *data, size_t *len)
4001 {
4002 int rc;
4003 struct policy_file fp;
4004
4005 fp.data = data;
4006 fp.len = *len;
4007
4008 rc = policydb_write(&policy->policydb, &fp);
4009 if (rc)
4010 return rc;
4011
4012 *len = (unsigned long)fp.data - (unsigned long)data;
4013 return 0;
4014 }
4015
4016 /**
4017 * security_read_policy - read the policy.
4018 * @state: selinux_state
4019 * @data: binary policy data
4020 * @len: length of data in bytes
4021 *
4022 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)4023 int security_read_policy(struct selinux_state *state,
4024 void **data, size_t *len)
4025 {
4026 struct selinux_policy *policy;
4027
4028 policy = rcu_dereference_protected(
4029 state->policy, lockdep_is_held(&state->policy_mutex));
4030 if (!policy)
4031 return -EINVAL;
4032
4033 *len = policy->policydb.len;
4034 *data = vmalloc_user(*len);
4035 if (!*data)
4036 return -ENOMEM;
4037
4038 return __security_read_policy(policy, *data, len);
4039 }
4040
4041 /**
4042 * security_read_state_kernel - read the policy.
4043 * @state: selinux_state
4044 * @data: binary policy data
4045 * @len: length of data in bytes
4046 *
4047 * Allocates kernel memory for reading SELinux policy.
4048 * This function is for internal use only and should not
4049 * be used for returning data to user space.
4050 *
4051 * This function must be called with policy_mutex held.
4052 */
security_read_state_kernel(struct selinux_state * state,void ** data,size_t * len)4053 int security_read_state_kernel(struct selinux_state *state,
4054 void **data, size_t *len)
4055 {
4056 int err;
4057 struct selinux_policy *policy;
4058
4059 policy = rcu_dereference_protected(
4060 state->policy, lockdep_is_held(&state->policy_mutex));
4061 if (!policy)
4062 return -EINVAL;
4063
4064 *len = policy->policydb.len;
4065 *data = vmalloc(*len);
4066 if (!*data)
4067 return -ENOMEM;
4068
4069 err = __security_read_policy(policy, *data, len);
4070 if (err) {
4071 vfree(*data);
4072 *data = NULL;
4073 *len = 0;
4074 }
4075 return err;
4076 }
4077