• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *	Routines having to do with the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6  *			Florian La Roche <rzsfl@rz.uni-sb.de>
7  *
8  *	Fixes:
9  *		Alan Cox	:	Fixed the worst of the load
10  *					balancer bugs.
11  *		Dave Platt	:	Interrupt stacking fix.
12  *	Richard Kooijman	:	Timestamp fixes.
13  *		Alan Cox	:	Changed buffer format.
14  *		Alan Cox	:	destructor hook for AF_UNIX etc.
15  *		Linus Torvalds	:	Better skb_clone.
16  *		Alan Cox	:	Added skb_copy.
17  *		Alan Cox	:	Added all the changed routines Linus
18  *					only put in the headers
19  *		Ray VanTassle	:	Fixed --skb->lock in free
20  *		Alan Cox	:	skb_copy copy arp field
21  *		Andi Kleen	:	slabified it.
22  *		Robert Olsson	:	Removed skb_head_pool
23  *
24  *	NOTE:
25  *		The __skb_ routines should be called with interrupts
26  *	disabled, or you better be *real* sure that the operation is atomic
27  *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28  *	or via disabling bottom half handlers, etc).
29  */
30 
31 /*
32  *	The functions in this file will not compile correctly with gcc 2.4.x
33  */
34 
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36 
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63 #include <linux/kcov.h>
64 
65 #include <net/protocol.h>
66 #include <net/dst.h>
67 #include <net/sock.h>
68 #include <net/checksum.h>
69 #include <net/ip6_checksum.h>
70 #include <net/xfrm.h>
71 #include <net/mpls.h>
72 #include <net/mptcp.h>
73 #include <net/page_pool.h>
74 
75 #include <linux/uaccess.h>
76 #include <trace/events/skb.h>
77 #include <linux/highmem.h>
78 #include <linux/capability.h>
79 #include <linux/user_namespace.h>
80 #include <linux/indirect_call_wrapper.h>
81 #include <trace/hooks/net.h>
82 
83 #include "datagram.h"
84 #include "sock_destructor.h"
85 
86 struct kmem_cache *skbuff_head_cache __ro_after_init;
87 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
88 #ifdef CONFIG_SKB_EXTENSIONS
89 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
90 #endif
91 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
92 EXPORT_SYMBOL(sysctl_max_skb_frags);
93 
94 /**
95  *	skb_panic - private function for out-of-line support
96  *	@skb:	buffer
97  *	@sz:	size
98  *	@addr:	address
99  *	@msg:	skb_over_panic or skb_under_panic
100  *
101  *	Out-of-line support for skb_put() and skb_push().
102  *	Called via the wrapper skb_over_panic() or skb_under_panic().
103  *	Keep out of line to prevent kernel bloat.
104  *	__builtin_return_address is not used because it is not always reliable.
105  */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])106 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
107 		      const char msg[])
108 {
109 	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
110 		 msg, addr, skb->len, sz, skb->head, skb->data,
111 		 (unsigned long)skb->tail, (unsigned long)skb->end,
112 		 skb->dev ? skb->dev->name : "<NULL>");
113 	BUG();
114 }
115 
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)116 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
117 {
118 	skb_panic(skb, sz, addr, __func__);
119 }
120 
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)121 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
122 {
123 	skb_panic(skb, sz, addr, __func__);
124 }
125 
126 #define NAPI_SKB_CACHE_SIZE	64
127 #define NAPI_SKB_CACHE_BULK	16
128 #define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
129 
130 struct napi_alloc_cache {
131 	struct page_frag_cache page;
132 	unsigned int skb_count;
133 	void *skb_cache[NAPI_SKB_CACHE_SIZE];
134 };
135 
136 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
137 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
138 
__alloc_frag_align(unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)139 static void *__alloc_frag_align(unsigned int fragsz, gfp_t gfp_mask,
140 				unsigned int align_mask)
141 {
142 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
143 
144 	return page_frag_alloc_align(&nc->page, fragsz, gfp_mask, align_mask);
145 }
146 
__napi_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)147 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
148 {
149 	fragsz = SKB_DATA_ALIGN(fragsz);
150 
151 	return __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
152 }
153 EXPORT_SYMBOL(__napi_alloc_frag_align);
154 
__netdev_alloc_frag_align(unsigned int fragsz,unsigned int align_mask)155 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
156 {
157 	struct page_frag_cache *nc;
158 	void *data;
159 
160 	fragsz = SKB_DATA_ALIGN(fragsz);
161 	if (in_hardirq() || irqs_disabled()) {
162 		nc = this_cpu_ptr(&netdev_alloc_cache);
163 		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
164 	} else {
165 		local_bh_disable();
166 		data = __alloc_frag_align(fragsz, GFP_ATOMIC, align_mask);
167 		local_bh_enable();
168 	}
169 	return data;
170 }
171 EXPORT_SYMBOL(__netdev_alloc_frag_align);
172 
napi_skb_cache_get(void)173 static struct sk_buff *napi_skb_cache_get(void)
174 {
175 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
176 	struct sk_buff *skb;
177 
178 	if (unlikely(!nc->skb_count))
179 		nc->skb_count = kmem_cache_alloc_bulk(skbuff_head_cache,
180 						      GFP_ATOMIC,
181 						      NAPI_SKB_CACHE_BULK,
182 						      nc->skb_cache);
183 	if (unlikely(!nc->skb_count))
184 		return NULL;
185 
186 	skb = nc->skb_cache[--nc->skb_count];
187 	kasan_unpoison_object_data(skbuff_head_cache, skb);
188 
189 	return skb;
190 }
191 
192 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)193 static void __build_skb_around(struct sk_buff *skb, void *data,
194 			       unsigned int frag_size)
195 {
196 	struct skb_shared_info *shinfo;
197 	unsigned int size = frag_size ? : ksize(data);
198 
199 	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
200 
201 	/* Assumes caller memset cleared SKB */
202 	skb->truesize = SKB_TRUESIZE(size);
203 	refcount_set(&skb->users, 1);
204 	skb->head = data;
205 	skb->data = data;
206 	skb_reset_tail_pointer(skb);
207 	skb_set_end_offset(skb, size);
208 	skb->mac_header = (typeof(skb->mac_header))~0U;
209 	skb->transport_header = (typeof(skb->transport_header))~0U;
210 
211 	/* make sure we initialize shinfo sequentially */
212 	shinfo = skb_shinfo(skb);
213 	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
214 	atomic_set(&shinfo->dataref, 1);
215 
216 	skb_set_kcov_handle(skb, kcov_common_handle());
217 }
218 
219 /**
220  * __build_skb - build a network buffer
221  * @data: data buffer provided by caller
222  * @frag_size: size of data, or 0 if head was kmalloced
223  *
224  * Allocate a new &sk_buff. Caller provides space holding head and
225  * skb_shared_info. @data must have been allocated by kmalloc() only if
226  * @frag_size is 0, otherwise data should come from the page allocator
227  *  or vmalloc()
228  * The return is the new skb buffer.
229  * On a failure the return is %NULL, and @data is not freed.
230  * Notes :
231  *  Before IO, driver allocates only data buffer where NIC put incoming frame
232  *  Driver should add room at head (NET_SKB_PAD) and
233  *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
234  *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
235  *  before giving packet to stack.
236  *  RX rings only contains data buffers, not full skbs.
237  */
__build_skb(void * data,unsigned int frag_size)238 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
239 {
240 	struct sk_buff *skb;
241 
242 	skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
243 	if (unlikely(!skb))
244 		return NULL;
245 
246 	memset(skb, 0, offsetof(struct sk_buff, tail));
247 	__build_skb_around(skb, data, frag_size);
248 
249 	return skb;
250 }
251 
252 /* build_skb() is wrapper over __build_skb(), that specifically
253  * takes care of skb->head and skb->pfmemalloc
254  * This means that if @frag_size is not zero, then @data must be backed
255  * by a page fragment, not kmalloc() or vmalloc()
256  */
build_skb(void * data,unsigned int frag_size)257 struct sk_buff *build_skb(void *data, unsigned int frag_size)
258 {
259 	struct sk_buff *skb = __build_skb(data, frag_size);
260 
261 	if (skb && frag_size) {
262 		skb->head_frag = 1;
263 		if (page_is_pfmemalloc(virt_to_head_page(data)))
264 			skb->pfmemalloc = 1;
265 	}
266 	return skb;
267 }
268 EXPORT_SYMBOL(build_skb);
269 
270 /**
271  * build_skb_around - build a network buffer around provided skb
272  * @skb: sk_buff provide by caller, must be memset cleared
273  * @data: data buffer provided by caller
274  * @frag_size: size of data, or 0 if head was kmalloced
275  */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)276 struct sk_buff *build_skb_around(struct sk_buff *skb,
277 				 void *data, unsigned int frag_size)
278 {
279 	if (unlikely(!skb))
280 		return NULL;
281 
282 	__build_skb_around(skb, data, frag_size);
283 
284 	if (frag_size) {
285 		skb->head_frag = 1;
286 		if (page_is_pfmemalloc(virt_to_head_page(data)))
287 			skb->pfmemalloc = 1;
288 	}
289 	return skb;
290 }
291 EXPORT_SYMBOL(build_skb_around);
292 
293 /**
294  * __napi_build_skb - build a network buffer
295  * @data: data buffer provided by caller
296  * @frag_size: size of data, or 0 if head was kmalloced
297  *
298  * Version of __build_skb() that uses NAPI percpu caches to obtain
299  * skbuff_head instead of inplace allocation.
300  *
301  * Returns a new &sk_buff on success, %NULL on allocation failure.
302  */
__napi_build_skb(void * data,unsigned int frag_size)303 static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
304 {
305 	struct sk_buff *skb;
306 
307 	skb = napi_skb_cache_get();
308 	if (unlikely(!skb))
309 		return NULL;
310 
311 	memset(skb, 0, offsetof(struct sk_buff, tail));
312 	__build_skb_around(skb, data, frag_size);
313 
314 	return skb;
315 }
316 
317 /**
318  * napi_build_skb - build a network buffer
319  * @data: data buffer provided by caller
320  * @frag_size: size of data, or 0 if head was kmalloced
321  *
322  * Version of __napi_build_skb() that takes care of skb->head_frag
323  * and skb->pfmemalloc when the data is a page or page fragment.
324  *
325  * Returns a new &sk_buff on success, %NULL on allocation failure.
326  */
napi_build_skb(void * data,unsigned int frag_size)327 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
328 {
329 	struct sk_buff *skb = __napi_build_skb(data, frag_size);
330 
331 	if (likely(skb) && frag_size) {
332 		skb->head_frag = 1;
333 		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
334 	}
335 
336 	return skb;
337 }
338 EXPORT_SYMBOL(napi_build_skb);
339 
340 /*
341  * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
342  * the caller if emergency pfmemalloc reserves are being used. If it is and
343  * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
344  * may be used. Otherwise, the packet data may be discarded until enough
345  * memory is free
346  */
kmalloc_reserve(size_t size,gfp_t flags,int node,bool * pfmemalloc)347 static void *kmalloc_reserve(size_t size, gfp_t flags, int node,
348 			     bool *pfmemalloc)
349 {
350 	void *obj;
351 	bool ret_pfmemalloc = false;
352 
353 	/*
354 	 * Try a regular allocation, when that fails and we're not entitled
355 	 * to the reserves, fail.
356 	 */
357 	obj = kmalloc_node_track_caller(size,
358 					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
359 					node);
360 	if (obj || !(gfp_pfmemalloc_allowed(flags)))
361 		goto out;
362 
363 	/* Try again but now we are using pfmemalloc reserves */
364 	ret_pfmemalloc = true;
365 	obj = kmalloc_node_track_caller(size, flags, node);
366 
367 out:
368 	if (pfmemalloc)
369 		*pfmemalloc = ret_pfmemalloc;
370 
371 	return obj;
372 }
373 
374 /* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
375  *	'private' fields and also do memory statistics to find all the
376  *	[BEEP] leaks.
377  *
378  */
379 
380 /**
381  *	__alloc_skb	-	allocate a network buffer
382  *	@size: size to allocate
383  *	@gfp_mask: allocation mask
384  *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
385  *		instead of head cache and allocate a cloned (child) skb.
386  *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
387  *		allocations in case the data is required for writeback
388  *	@node: numa node to allocate memory on
389  *
390  *	Allocate a new &sk_buff. The returned buffer has no headroom and a
391  *	tail room of at least size bytes. The object has a reference count
392  *	of one. The return is the buffer. On a failure the return is %NULL.
393  *
394  *	Buffers may only be allocated from interrupts using a @gfp_mask of
395  *	%GFP_ATOMIC.
396  */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)397 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
398 			    int flags, int node)
399 {
400 	struct kmem_cache *cache;
401 	struct sk_buff *skb;
402 	u8 *data;
403 	bool pfmemalloc;
404 
405 	cache = (flags & SKB_ALLOC_FCLONE)
406 		? skbuff_fclone_cache : skbuff_head_cache;
407 
408 	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
409 		gfp_mask |= __GFP_MEMALLOC;
410 
411 	/* Get the HEAD */
412 	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
413 	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
414 		skb = napi_skb_cache_get();
415 	else
416 		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
417 	if (unlikely(!skb))
418 		return NULL;
419 	prefetchw(skb);
420 
421 	/* We do our best to align skb_shared_info on a separate cache
422 	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
423 	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
424 	 * Both skb->head and skb_shared_info are cache line aligned.
425 	 */
426 	size = SKB_DATA_ALIGN(size);
427 	size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
428 	data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
429 	if (unlikely(!data))
430 		goto nodata;
431 	/* kmalloc(size) might give us more room than requested.
432 	 * Put skb_shared_info exactly at the end of allocated zone,
433 	 * to allow max possible filling before reallocation.
434 	 */
435 	size = SKB_WITH_OVERHEAD(ksize(data));
436 	prefetchw(data + size);
437 
438 	/*
439 	 * Only clear those fields we need to clear, not those that we will
440 	 * actually initialise below. Hence, don't put any more fields after
441 	 * the tail pointer in struct sk_buff!
442 	 */
443 	memset(skb, 0, offsetof(struct sk_buff, tail));
444 	__build_skb_around(skb, data, 0);
445 	skb->pfmemalloc = pfmemalloc;
446 
447 	if (flags & SKB_ALLOC_FCLONE) {
448 		struct sk_buff_fclones *fclones;
449 
450 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
451 
452 		skb->fclone = SKB_FCLONE_ORIG;
453 		refcount_set(&fclones->fclone_ref, 1);
454 
455 		fclones->skb2.fclone = SKB_FCLONE_CLONE;
456 	}
457 
458 	return skb;
459 
460 nodata:
461 	kmem_cache_free(cache, skb);
462 	return NULL;
463 }
464 EXPORT_SYMBOL(__alloc_skb);
465 
466 /**
467  *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
468  *	@dev: network device to receive on
469  *	@len: length to allocate
470  *	@gfp_mask: get_free_pages mask, passed to alloc_skb
471  *
472  *	Allocate a new &sk_buff and assign it a usage count of one. The
473  *	buffer has NET_SKB_PAD headroom built in. Users should allocate
474  *	the headroom they think they need without accounting for the
475  *	built in space. The built in space is used for optimisations.
476  *
477  *	%NULL is returned if there is no free memory.
478  */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)479 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
480 				   gfp_t gfp_mask)
481 {
482 	struct page_frag_cache *nc;
483 	struct sk_buff *skb;
484 	bool pfmemalloc;
485 	void *data;
486 
487 	len += NET_SKB_PAD;
488 
489 	/* If requested length is either too small or too big,
490 	 * we use kmalloc() for skb->head allocation.
491 	 */
492 	if (len <= SKB_WITH_OVERHEAD(1024) ||
493 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
494 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
495 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
496 		if (!skb)
497 			goto skb_fail;
498 		goto skb_success;
499 	}
500 
501 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
502 	len = SKB_DATA_ALIGN(len);
503 
504 	if (sk_memalloc_socks())
505 		gfp_mask |= __GFP_MEMALLOC;
506 
507 	if (in_hardirq() || irqs_disabled()) {
508 		nc = this_cpu_ptr(&netdev_alloc_cache);
509 		data = page_frag_alloc(nc, len, gfp_mask);
510 		pfmemalloc = nc->pfmemalloc;
511 	} else {
512 		local_bh_disable();
513 		nc = this_cpu_ptr(&napi_alloc_cache.page);
514 		data = page_frag_alloc(nc, len, gfp_mask);
515 		pfmemalloc = nc->pfmemalloc;
516 		local_bh_enable();
517 	}
518 
519 	if (unlikely(!data))
520 		return NULL;
521 
522 	skb = __build_skb(data, len);
523 	if (unlikely(!skb)) {
524 		skb_free_frag(data);
525 		return NULL;
526 	}
527 
528 	if (pfmemalloc)
529 		skb->pfmemalloc = 1;
530 	skb->head_frag = 1;
531 
532 skb_success:
533 	skb_reserve(skb, NET_SKB_PAD);
534 	skb->dev = dev;
535 
536 skb_fail:
537 	return skb;
538 }
539 EXPORT_SYMBOL(__netdev_alloc_skb);
540 
541 /**
542  *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
543  *	@napi: napi instance this buffer was allocated for
544  *	@len: length to allocate
545  *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
546  *
547  *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
548  *	attempt to allocate the head from a special reserved region used
549  *	only for NAPI Rx allocation.  By doing this we can save several
550  *	CPU cycles by avoiding having to disable and re-enable IRQs.
551  *
552  *	%NULL is returned if there is no free memory.
553  */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)554 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
555 				 gfp_t gfp_mask)
556 {
557 	struct napi_alloc_cache *nc;
558 	struct sk_buff *skb;
559 	void *data;
560 
561 	len += NET_SKB_PAD + NET_IP_ALIGN;
562 
563 	/* If requested length is either too small or too big,
564 	 * we use kmalloc() for skb->head allocation.
565 	 */
566 	if (len <= SKB_WITH_OVERHEAD(1024) ||
567 	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
568 	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
569 		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
570 				  NUMA_NO_NODE);
571 		if (!skb)
572 			goto skb_fail;
573 		goto skb_success;
574 	}
575 
576 	nc = this_cpu_ptr(&napi_alloc_cache);
577 	len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
578 	len = SKB_DATA_ALIGN(len);
579 
580 	if (sk_memalloc_socks())
581 		gfp_mask |= __GFP_MEMALLOC;
582 
583 	data = page_frag_alloc(&nc->page, len, gfp_mask);
584 	if (unlikely(!data))
585 		return NULL;
586 
587 	skb = __napi_build_skb(data, len);
588 	if (unlikely(!skb)) {
589 		skb_free_frag(data);
590 		return NULL;
591 	}
592 
593 	if (nc->page.pfmemalloc)
594 		skb->pfmemalloc = 1;
595 	skb->head_frag = 1;
596 
597 skb_success:
598 	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
599 	skb->dev = napi->dev;
600 
601 skb_fail:
602 	return skb;
603 }
604 EXPORT_SYMBOL(__napi_alloc_skb);
605 
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)606 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
607 		     int size, unsigned int truesize)
608 {
609 	skb_fill_page_desc(skb, i, page, off, size);
610 	skb->len += size;
611 	skb->data_len += size;
612 	skb->truesize += truesize;
613 }
614 EXPORT_SYMBOL(skb_add_rx_frag);
615 
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)616 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
617 			  unsigned int truesize)
618 {
619 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
620 
621 	skb_frag_size_add(frag, size);
622 	skb->len += size;
623 	skb->data_len += size;
624 	skb->truesize += truesize;
625 }
626 EXPORT_SYMBOL(skb_coalesce_rx_frag);
627 
skb_drop_list(struct sk_buff ** listp)628 static void skb_drop_list(struct sk_buff **listp)
629 {
630 	kfree_skb_list(*listp);
631 	*listp = NULL;
632 }
633 
skb_drop_fraglist(struct sk_buff * skb)634 static inline void skb_drop_fraglist(struct sk_buff *skb)
635 {
636 	skb_drop_list(&skb_shinfo(skb)->frag_list);
637 }
638 
skb_clone_fraglist(struct sk_buff * skb)639 static void skb_clone_fraglist(struct sk_buff *skb)
640 {
641 	struct sk_buff *list;
642 
643 	skb_walk_frags(skb, list)
644 		skb_get(list);
645 }
646 
skb_free_head(struct sk_buff * skb)647 static void skb_free_head(struct sk_buff *skb)
648 {
649 	unsigned char *head = skb->head;
650 
651 	if (skb->head_frag) {
652 		if (skb_pp_recycle(skb, head))
653 			return;
654 		skb_free_frag(head);
655 	} else {
656 		kfree(head);
657 	}
658 }
659 
skb_release_data(struct sk_buff * skb)660 static void skb_release_data(struct sk_buff *skb)
661 {
662 	struct skb_shared_info *shinfo = skb_shinfo(skb);
663 	int i;
664 
665 	if (skb->cloned &&
666 	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
667 			      &shinfo->dataref))
668 		goto exit;
669 
670 	skb_zcopy_clear(skb, true);
671 
672 	for (i = 0; i < shinfo->nr_frags; i++)
673 		__skb_frag_unref(&shinfo->frags[i], skb->pp_recycle);
674 
675 	if (shinfo->frag_list)
676 		kfree_skb_list(shinfo->frag_list);
677 
678 	skb_free_head(skb);
679 exit:
680 	/* When we clone an SKB we copy the reycling bit. The pp_recycle
681 	 * bit is only set on the head though, so in order to avoid races
682 	 * while trying to recycle fragments on __skb_frag_unref() we need
683 	 * to make one SKB responsible for triggering the recycle path.
684 	 * So disable the recycling bit if an SKB is cloned and we have
685 	 * additional references to to the fragmented part of the SKB.
686 	 * Eventually the last SKB will have the recycling bit set and it's
687 	 * dataref set to 0, which will trigger the recycling
688 	 */
689 	skb->pp_recycle = 0;
690 }
691 
692 /*
693  *	Free an skbuff by memory without cleaning the state.
694  */
kfree_skbmem(struct sk_buff * skb)695 static void kfree_skbmem(struct sk_buff *skb)
696 {
697 	struct sk_buff_fclones *fclones;
698 
699 	switch (skb->fclone) {
700 	case SKB_FCLONE_UNAVAILABLE:
701 		kmem_cache_free(skbuff_head_cache, skb);
702 		return;
703 
704 	case SKB_FCLONE_ORIG:
705 		fclones = container_of(skb, struct sk_buff_fclones, skb1);
706 
707 		/* We usually free the clone (TX completion) before original skb
708 		 * This test would have no chance to be true for the clone,
709 		 * while here, branch prediction will be good.
710 		 */
711 		if (refcount_read(&fclones->fclone_ref) == 1)
712 			goto fastpath;
713 		break;
714 
715 	default: /* SKB_FCLONE_CLONE */
716 		fclones = container_of(skb, struct sk_buff_fclones, skb2);
717 		break;
718 	}
719 	if (!refcount_dec_and_test(&fclones->fclone_ref))
720 		return;
721 fastpath:
722 	kmem_cache_free(skbuff_fclone_cache, fclones);
723 }
724 
skb_release_head_state(struct sk_buff * skb)725 void skb_release_head_state(struct sk_buff *skb)
726 {
727 	skb_dst_drop(skb);
728 	if (skb->destructor) {
729 		WARN_ON(in_hardirq());
730 		skb->destructor(skb);
731 	}
732 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
733 	nf_conntrack_put(skb_nfct(skb));
734 #endif
735 	skb_ext_put(skb);
736 }
737 
738 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)739 static void skb_release_all(struct sk_buff *skb)
740 {
741 	skb_release_head_state(skb);
742 	if (likely(skb->head))
743 		skb_release_data(skb);
744 }
745 
746 /**
747  *	__kfree_skb - private function
748  *	@skb: buffer
749  *
750  *	Free an sk_buff. Release anything attached to the buffer.
751  *	Clean the state. This is an internal helper function. Users should
752  *	always call kfree_skb
753  */
754 
__kfree_skb(struct sk_buff * skb)755 void __kfree_skb(struct sk_buff *skb)
756 {
757 	skb_release_all(skb);
758 	kfree_skbmem(skb);
759 }
760 EXPORT_SYMBOL(__kfree_skb);
761 
762 /**
763  *	kfree_skb_reason - free an sk_buff with special reason
764  *	@skb: buffer to free
765  *	@reason: reason why this skb is dropped
766  *
767  *	Drop a reference to the buffer and free it if the usage count has
768  *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
769  *	tracepoint.
770  */
kfree_skb_reason(struct sk_buff * skb,enum skb_drop_reason reason)771 void kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
772 {
773 	if (!skb_unref(skb))
774 		return;
775 
776 	trace_android_vh_kfree_skb(skb);
777 	trace_kfree_skb(skb, __builtin_return_address(0), reason);
778 	__kfree_skb(skb);
779 }
780 EXPORT_SYMBOL(kfree_skb_reason);
781 
782 /**
783  *	kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
784  *	@skb: buffer to free
785  */
kfree_skb(struct sk_buff * skb)786 void kfree_skb(struct sk_buff *skb)
787 {
788 	/* ANDROID: only still present to preserve the ABI, this went away in
789 	 * mainline and LTS releases, to be replaced with an inline version
790 	 * instead.
791 	 */
792 	kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
793 }
794 EXPORT_SYMBOL(kfree_skb);
795 
kfree_skb_list(struct sk_buff * segs)796 void kfree_skb_list(struct sk_buff *segs)
797 {
798 	while (segs) {
799 		struct sk_buff *next = segs->next;
800 
801 		kfree_skb(segs);
802 		segs = next;
803 	}
804 }
805 EXPORT_SYMBOL(kfree_skb_list);
806 
807 /* Dump skb information and contents.
808  *
809  * Must only be called from net_ratelimit()-ed paths.
810  *
811  * Dumps whole packets if full_pkt, only headers otherwise.
812  */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)813 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
814 {
815 	struct skb_shared_info *sh = skb_shinfo(skb);
816 	struct net_device *dev = skb->dev;
817 	struct sock *sk = skb->sk;
818 	struct sk_buff *list_skb;
819 	bool has_mac, has_trans;
820 	int headroom, tailroom;
821 	int i, len, seg_len;
822 
823 	if (full_pkt)
824 		len = skb->len;
825 	else
826 		len = min_t(int, skb->len, MAX_HEADER + 128);
827 
828 	headroom = skb_headroom(skb);
829 	tailroom = skb_tailroom(skb);
830 
831 	has_mac = skb_mac_header_was_set(skb);
832 	has_trans = skb_transport_header_was_set(skb);
833 
834 	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
835 	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
836 	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
837 	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
838 	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
839 	       level, skb->len, headroom, skb_headlen(skb), tailroom,
840 	       has_mac ? skb->mac_header : -1,
841 	       has_mac ? skb_mac_header_len(skb) : -1,
842 	       skb->network_header,
843 	       has_trans ? skb_network_header_len(skb) : -1,
844 	       has_trans ? skb->transport_header : -1,
845 	       sh->tx_flags, sh->nr_frags,
846 	       sh->gso_size, sh->gso_type, sh->gso_segs,
847 	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
848 	       skb->csum_valid, skb->csum_level,
849 	       skb->hash, skb->sw_hash, skb->l4_hash,
850 	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
851 
852 	if (dev)
853 		printk("%sdev name=%s feat=%pNF\n",
854 		       level, dev->name, &dev->features);
855 	if (sk)
856 		printk("%ssk family=%hu type=%u proto=%u\n",
857 		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
858 
859 	if (full_pkt && headroom)
860 		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
861 			       16, 1, skb->head, headroom, false);
862 
863 	seg_len = min_t(int, skb_headlen(skb), len);
864 	if (seg_len)
865 		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
866 			       16, 1, skb->data, seg_len, false);
867 	len -= seg_len;
868 
869 	if (full_pkt && tailroom)
870 		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
871 			       16, 1, skb_tail_pointer(skb), tailroom, false);
872 
873 	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
874 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
875 		u32 p_off, p_len, copied;
876 		struct page *p;
877 		u8 *vaddr;
878 
879 		skb_frag_foreach_page(frag, skb_frag_off(frag),
880 				      skb_frag_size(frag), p, p_off, p_len,
881 				      copied) {
882 			seg_len = min_t(int, p_len, len);
883 			vaddr = kmap_atomic(p);
884 			print_hex_dump(level, "skb frag:     ",
885 				       DUMP_PREFIX_OFFSET,
886 				       16, 1, vaddr + p_off, seg_len, false);
887 			kunmap_atomic(vaddr);
888 			len -= seg_len;
889 			if (!len)
890 				break;
891 		}
892 	}
893 
894 	if (full_pkt && skb_has_frag_list(skb)) {
895 		printk("skb fraglist:\n");
896 		skb_walk_frags(skb, list_skb)
897 			skb_dump(level, list_skb, true);
898 	}
899 }
900 EXPORT_SYMBOL(skb_dump);
901 
902 /**
903  *	skb_tx_error - report an sk_buff xmit error
904  *	@skb: buffer that triggered an error
905  *
906  *	Report xmit error if a device callback is tracking this skb.
907  *	skb must be freed afterwards.
908  */
skb_tx_error(struct sk_buff * skb)909 void skb_tx_error(struct sk_buff *skb)
910 {
911 	skb_zcopy_clear(skb, true);
912 }
913 EXPORT_SYMBOL(skb_tx_error);
914 
915 #ifdef CONFIG_TRACEPOINTS
916 /**
917  *	consume_skb - free an skbuff
918  *	@skb: buffer to free
919  *
920  *	Drop a ref to the buffer and free it if the usage count has hit zero
921  *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
922  *	is being dropped after a failure and notes that
923  */
consume_skb(struct sk_buff * skb)924 void consume_skb(struct sk_buff *skb)
925 {
926 	if (!skb_unref(skb))
927 		return;
928 
929 	trace_consume_skb(skb);
930 	__kfree_skb(skb);
931 }
932 EXPORT_SYMBOL(consume_skb);
933 #endif
934 
935 /**
936  *	__consume_stateless_skb - free an skbuff, assuming it is stateless
937  *	@skb: buffer to free
938  *
939  *	Alike consume_skb(), but this variant assumes that this is the last
940  *	skb reference and all the head states have been already dropped
941  */
__consume_stateless_skb(struct sk_buff * skb)942 void __consume_stateless_skb(struct sk_buff *skb)
943 {
944 	trace_consume_skb(skb);
945 	skb_release_data(skb);
946 	kfree_skbmem(skb);
947 }
948 
napi_skb_cache_put(struct sk_buff * skb)949 static void napi_skb_cache_put(struct sk_buff *skb)
950 {
951 	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
952 	u32 i;
953 
954 	kasan_poison_object_data(skbuff_head_cache, skb);
955 	nc->skb_cache[nc->skb_count++] = skb;
956 
957 	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
958 		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
959 			kasan_unpoison_object_data(skbuff_head_cache,
960 						   nc->skb_cache[i]);
961 
962 		kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_HALF,
963 				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
964 		nc->skb_count = NAPI_SKB_CACHE_HALF;
965 	}
966 }
967 
__kfree_skb_defer(struct sk_buff * skb)968 void __kfree_skb_defer(struct sk_buff *skb)
969 {
970 	skb_release_all(skb);
971 	napi_skb_cache_put(skb);
972 }
973 
napi_skb_free_stolen_head(struct sk_buff * skb)974 void napi_skb_free_stolen_head(struct sk_buff *skb)
975 {
976 	if (unlikely(skb->slow_gro)) {
977 		nf_reset_ct(skb);
978 		skb_dst_drop(skb);
979 		skb_ext_put(skb);
980 		skb_orphan(skb);
981 		skb->slow_gro = 0;
982 	}
983 	napi_skb_cache_put(skb);
984 }
985 
napi_consume_skb(struct sk_buff * skb,int budget)986 void napi_consume_skb(struct sk_buff *skb, int budget)
987 {
988 	/* Zero budget indicate non-NAPI context called us, like netpoll */
989 	if (unlikely(!budget)) {
990 		dev_consume_skb_any(skb);
991 		return;
992 	}
993 
994 	lockdep_assert_in_softirq();
995 
996 	if (!skb_unref(skb))
997 		return;
998 
999 	/* if reaching here SKB is ready to free */
1000 	trace_consume_skb(skb);
1001 
1002 	/* if SKB is a clone, don't handle this case */
1003 	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1004 		__kfree_skb(skb);
1005 		return;
1006 	}
1007 
1008 	skb_release_all(skb);
1009 	napi_skb_cache_put(skb);
1010 }
1011 EXPORT_SYMBOL(napi_consume_skb);
1012 
1013 /* Make sure a field is enclosed inside headers_start/headers_end section */
1014 #define CHECK_SKB_FIELD(field) \
1015 	BUILD_BUG_ON(offsetof(struct sk_buff, field) <		\
1016 		     offsetof(struct sk_buff, headers_start));	\
1017 	BUILD_BUG_ON(offsetof(struct sk_buff, field) >		\
1018 		     offsetof(struct sk_buff, headers_end));	\
1019 
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)1020 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1021 {
1022 	new->tstamp		= old->tstamp;
1023 	/* We do not copy old->sk */
1024 	new->dev		= old->dev;
1025 	memcpy(new->cb, old->cb, sizeof(old->cb));
1026 	skb_dst_copy(new, old);
1027 	__skb_ext_copy(new, old);
1028 	__nf_copy(new, old, false);
1029 
1030 	/* Note : this field could be in headers_start/headers_end section
1031 	 * It is not yet because we do not want to have a 16 bit hole
1032 	 */
1033 	new->queue_mapping = old->queue_mapping;
1034 
1035 	memcpy(&new->headers_start, &old->headers_start,
1036 	       offsetof(struct sk_buff, headers_end) -
1037 	       offsetof(struct sk_buff, headers_start));
1038 	CHECK_SKB_FIELD(protocol);
1039 	CHECK_SKB_FIELD(csum);
1040 	CHECK_SKB_FIELD(hash);
1041 	CHECK_SKB_FIELD(priority);
1042 	CHECK_SKB_FIELD(skb_iif);
1043 	CHECK_SKB_FIELD(vlan_proto);
1044 	CHECK_SKB_FIELD(vlan_tci);
1045 	CHECK_SKB_FIELD(transport_header);
1046 	CHECK_SKB_FIELD(network_header);
1047 	CHECK_SKB_FIELD(mac_header);
1048 	CHECK_SKB_FIELD(inner_protocol);
1049 	CHECK_SKB_FIELD(inner_transport_header);
1050 	CHECK_SKB_FIELD(inner_network_header);
1051 	CHECK_SKB_FIELD(inner_mac_header);
1052 	CHECK_SKB_FIELD(mark);
1053 #ifdef CONFIG_NETWORK_SECMARK
1054 	CHECK_SKB_FIELD(secmark);
1055 #endif
1056 #ifdef CONFIG_NET_RX_BUSY_POLL
1057 	CHECK_SKB_FIELD(napi_id);
1058 #endif
1059 #ifdef CONFIG_XPS
1060 	CHECK_SKB_FIELD(sender_cpu);
1061 #endif
1062 #ifdef CONFIG_NET_SCHED
1063 	CHECK_SKB_FIELD(tc_index);
1064 #endif
1065 	/* ANDROID:
1066 	 * Due to attempts to keep the ABI stable for struct sk_buff, the new
1067 	 * fields were incorrectly added _AFTER_ the headers_end field, which
1068 	 * requires that we manually copy the fields here from the old to the
1069 	 * new one.
1070 	 * Be sure to add any new field that is added in the
1071 	 * ANDROID_KABI_REPLACE() macros below here as well.
1072 	 */
1073 	new->scm_io_uring = old->scm_io_uring;
1074 }
1075 
1076 /*
1077  * You should not add any new code to this function.  Add it to
1078  * __copy_skb_header above instead.
1079  */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)1080 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1081 {
1082 #define C(x) n->x = skb->x
1083 
1084 	n->next = n->prev = NULL;
1085 	n->sk = NULL;
1086 	__copy_skb_header(n, skb);
1087 
1088 	C(len);
1089 	C(data_len);
1090 	C(mac_len);
1091 	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1092 	n->cloned = 1;
1093 	n->nohdr = 0;
1094 	n->peeked = 0;
1095 	C(pfmemalloc);
1096 	C(pp_recycle);
1097 	n->destructor = NULL;
1098 	C(tail);
1099 	C(end);
1100 	C(head);
1101 	C(head_frag);
1102 	C(data);
1103 	C(truesize);
1104 	refcount_set(&n->users, 1);
1105 
1106 	atomic_inc(&(skb_shinfo(skb)->dataref));
1107 	skb->cloned = 1;
1108 
1109 	return n;
1110 #undef C
1111 }
1112 
1113 /**
1114  * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1115  * @first: first sk_buff of the msg
1116  */
alloc_skb_for_msg(struct sk_buff * first)1117 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1118 {
1119 	struct sk_buff *n;
1120 
1121 	n = alloc_skb(0, GFP_ATOMIC);
1122 	if (!n)
1123 		return NULL;
1124 
1125 	n->len = first->len;
1126 	n->data_len = first->len;
1127 	n->truesize = first->truesize;
1128 
1129 	skb_shinfo(n)->frag_list = first;
1130 
1131 	__copy_skb_header(n, first);
1132 	n->destructor = NULL;
1133 
1134 	return n;
1135 }
1136 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1137 
1138 /**
1139  *	skb_morph	-	morph one skb into another
1140  *	@dst: the skb to receive the contents
1141  *	@src: the skb to supply the contents
1142  *
1143  *	This is identical to skb_clone except that the target skb is
1144  *	supplied by the user.
1145  *
1146  *	The target skb is returned upon exit.
1147  */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1148 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1149 {
1150 	skb_release_all(dst);
1151 	return __skb_clone(dst, src);
1152 }
1153 EXPORT_SYMBOL_GPL(skb_morph);
1154 
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1155 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1156 {
1157 	unsigned long max_pg, num_pg, new_pg, old_pg;
1158 	struct user_struct *user;
1159 
1160 	if (capable(CAP_IPC_LOCK) || !size)
1161 		return 0;
1162 
1163 	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1164 	max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1165 	user = mmp->user ? : current_user();
1166 
1167 	do {
1168 		old_pg = atomic_long_read(&user->locked_vm);
1169 		new_pg = old_pg + num_pg;
1170 		if (new_pg > max_pg)
1171 			return -ENOBUFS;
1172 	} while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1173 		 old_pg);
1174 
1175 	if (!mmp->user) {
1176 		mmp->user = get_uid(user);
1177 		mmp->num_pg = num_pg;
1178 	} else {
1179 		mmp->num_pg += num_pg;
1180 	}
1181 
1182 	return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1185 
mm_unaccount_pinned_pages(struct mmpin * mmp)1186 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1187 {
1188 	if (mmp->user) {
1189 		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1190 		free_uid(mmp->user);
1191 	}
1192 }
1193 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1194 
msg_zerocopy_alloc(struct sock * sk,size_t size)1195 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1196 {
1197 	struct ubuf_info *uarg;
1198 	struct sk_buff *skb;
1199 
1200 	WARN_ON_ONCE(!in_task());
1201 
1202 	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1203 	if (!skb)
1204 		return NULL;
1205 
1206 	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1207 	uarg = (void *)skb->cb;
1208 	uarg->mmp.user = NULL;
1209 
1210 	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1211 		kfree_skb(skb);
1212 		return NULL;
1213 	}
1214 
1215 	uarg->callback = msg_zerocopy_callback;
1216 	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1217 	uarg->len = 1;
1218 	uarg->bytelen = size;
1219 	uarg->zerocopy = 1;
1220 	uarg->flags = SKBFL_ZEROCOPY_FRAG;
1221 	refcount_set(&uarg->refcnt, 1);
1222 	sock_hold(sk);
1223 
1224 	return uarg;
1225 }
1226 EXPORT_SYMBOL_GPL(msg_zerocopy_alloc);
1227 
skb_from_uarg(struct ubuf_info * uarg)1228 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1229 {
1230 	return container_of((void *)uarg, struct sk_buff, cb);
1231 }
1232 
msg_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1233 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1234 				       struct ubuf_info *uarg)
1235 {
1236 	if (uarg) {
1237 		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1238 		u32 bytelen, next;
1239 
1240 		/* realloc only when socket is locked (TCP, UDP cork),
1241 		 * so uarg->len and sk_zckey access is serialized
1242 		 */
1243 		if (!sock_owned_by_user(sk)) {
1244 			WARN_ON_ONCE(1);
1245 			return NULL;
1246 		}
1247 
1248 		bytelen = uarg->bytelen + size;
1249 		if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1250 			/* TCP can create new skb to attach new uarg */
1251 			if (sk->sk_type == SOCK_STREAM)
1252 				goto new_alloc;
1253 			return NULL;
1254 		}
1255 
1256 		next = (u32)atomic_read(&sk->sk_zckey);
1257 		if ((u32)(uarg->id + uarg->len) == next) {
1258 			if (mm_account_pinned_pages(&uarg->mmp, size))
1259 				return NULL;
1260 			uarg->len++;
1261 			uarg->bytelen = bytelen;
1262 			atomic_set(&sk->sk_zckey, ++next);
1263 
1264 			/* no extra ref when appending to datagram (MSG_MORE) */
1265 			if (sk->sk_type == SOCK_STREAM)
1266 				net_zcopy_get(uarg);
1267 
1268 			return uarg;
1269 		}
1270 	}
1271 
1272 new_alloc:
1273 	return msg_zerocopy_alloc(sk, size);
1274 }
1275 EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1276 
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1277 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1278 {
1279 	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1280 	u32 old_lo, old_hi;
1281 	u64 sum_len;
1282 
1283 	old_lo = serr->ee.ee_info;
1284 	old_hi = serr->ee.ee_data;
1285 	sum_len = old_hi - old_lo + 1ULL + len;
1286 
1287 	if (sum_len >= (1ULL << 32))
1288 		return false;
1289 
1290 	if (lo != old_hi + 1)
1291 		return false;
1292 
1293 	serr->ee.ee_data += len;
1294 	return true;
1295 }
1296 
__msg_zerocopy_callback(struct ubuf_info * uarg)1297 static void __msg_zerocopy_callback(struct ubuf_info *uarg)
1298 {
1299 	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1300 	struct sock_exterr_skb *serr;
1301 	struct sock *sk = skb->sk;
1302 	struct sk_buff_head *q;
1303 	unsigned long flags;
1304 	bool is_zerocopy;
1305 	u32 lo, hi;
1306 	u16 len;
1307 
1308 	mm_unaccount_pinned_pages(&uarg->mmp);
1309 
1310 	/* if !len, there was only 1 call, and it was aborted
1311 	 * so do not queue a completion notification
1312 	 */
1313 	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1314 		goto release;
1315 
1316 	len = uarg->len;
1317 	lo = uarg->id;
1318 	hi = uarg->id + len - 1;
1319 	is_zerocopy = uarg->zerocopy;
1320 
1321 	serr = SKB_EXT_ERR(skb);
1322 	memset(serr, 0, sizeof(*serr));
1323 	serr->ee.ee_errno = 0;
1324 	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1325 	serr->ee.ee_data = hi;
1326 	serr->ee.ee_info = lo;
1327 	if (!is_zerocopy)
1328 		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1329 
1330 	q = &sk->sk_error_queue;
1331 	spin_lock_irqsave(&q->lock, flags);
1332 	tail = skb_peek_tail(q);
1333 	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1334 	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1335 		__skb_queue_tail(q, skb);
1336 		skb = NULL;
1337 	}
1338 	spin_unlock_irqrestore(&q->lock, flags);
1339 
1340 	sk_error_report(sk);
1341 
1342 release:
1343 	consume_skb(skb);
1344 	sock_put(sk);
1345 }
1346 
msg_zerocopy_callback(struct sk_buff * skb,struct ubuf_info * uarg,bool success)1347 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1348 			   bool success)
1349 {
1350 	uarg->zerocopy = uarg->zerocopy & success;
1351 
1352 	if (refcount_dec_and_test(&uarg->refcnt))
1353 		__msg_zerocopy_callback(uarg);
1354 }
1355 EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1356 
msg_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1357 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1358 {
1359 	struct sock *sk = skb_from_uarg(uarg)->sk;
1360 
1361 	atomic_dec(&sk->sk_zckey);
1362 	uarg->len--;
1363 
1364 	if (have_uref)
1365 		msg_zerocopy_callback(NULL, uarg, true);
1366 }
1367 EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1368 
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1369 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1370 {
1371 	return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1372 }
1373 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1374 
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1375 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1376 			     struct msghdr *msg, int len,
1377 			     struct ubuf_info *uarg)
1378 {
1379 	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1380 	struct iov_iter orig_iter = msg->msg_iter;
1381 	int err, orig_len = skb->len;
1382 
1383 	/* An skb can only point to one uarg. This edge case happens when
1384 	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1385 	 */
1386 	if (orig_uarg && uarg != orig_uarg)
1387 		return -EEXIST;
1388 
1389 	err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1390 	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1391 		struct sock *save_sk = skb->sk;
1392 
1393 		/* Streams do not free skb on error. Reset to prev state. */
1394 		msg->msg_iter = orig_iter;
1395 		skb->sk = sk;
1396 		___pskb_trim(skb, orig_len);
1397 		skb->sk = save_sk;
1398 		return err;
1399 	}
1400 
1401 	skb_zcopy_set(skb, uarg, NULL);
1402 	return skb->len - orig_len;
1403 }
1404 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1405 
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1406 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1407 			      gfp_t gfp_mask)
1408 {
1409 	if (skb_zcopy(orig)) {
1410 		if (skb_zcopy(nskb)) {
1411 			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1412 			if (!gfp_mask) {
1413 				WARN_ON_ONCE(1);
1414 				return -ENOMEM;
1415 			}
1416 			if (skb_uarg(nskb) == skb_uarg(orig))
1417 				return 0;
1418 			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1419 				return -EIO;
1420 		}
1421 		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1422 	}
1423 	return 0;
1424 }
1425 
1426 /**
1427  *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1428  *	@skb: the skb to modify
1429  *	@gfp_mask: allocation priority
1430  *
1431  *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1432  *	It will copy all frags into kernel and drop the reference
1433  *	to userspace pages.
1434  *
1435  *	If this function is called from an interrupt gfp_mask() must be
1436  *	%GFP_ATOMIC.
1437  *
1438  *	Returns 0 on success or a negative error code on failure
1439  *	to allocate kernel memory to copy to.
1440  */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1441 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1442 {
1443 	int num_frags = skb_shinfo(skb)->nr_frags;
1444 	struct page *page, *head = NULL;
1445 	int i, new_frags;
1446 	u32 d_off;
1447 
1448 	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1449 		return -EINVAL;
1450 
1451 	if (!num_frags)
1452 		goto release;
1453 
1454 	new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1455 	for (i = 0; i < new_frags; i++) {
1456 		page = alloc_page(gfp_mask);
1457 		if (!page) {
1458 			while (head) {
1459 				struct page *next = (struct page *)page_private(head);
1460 				put_page(head);
1461 				head = next;
1462 			}
1463 			return -ENOMEM;
1464 		}
1465 		set_page_private(page, (unsigned long)head);
1466 		head = page;
1467 	}
1468 
1469 	page = head;
1470 	d_off = 0;
1471 	for (i = 0; i < num_frags; i++) {
1472 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1473 		u32 p_off, p_len, copied;
1474 		struct page *p;
1475 		u8 *vaddr;
1476 
1477 		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1478 				      p, p_off, p_len, copied) {
1479 			u32 copy, done = 0;
1480 			vaddr = kmap_atomic(p);
1481 
1482 			while (done < p_len) {
1483 				if (d_off == PAGE_SIZE) {
1484 					d_off = 0;
1485 					page = (struct page *)page_private(page);
1486 				}
1487 				copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1488 				memcpy(page_address(page) + d_off,
1489 				       vaddr + p_off + done, copy);
1490 				done += copy;
1491 				d_off += copy;
1492 			}
1493 			kunmap_atomic(vaddr);
1494 		}
1495 	}
1496 
1497 	/* skb frags release userspace buffers */
1498 	for (i = 0; i < num_frags; i++)
1499 		skb_frag_unref(skb, i);
1500 
1501 	/* skb frags point to kernel buffers */
1502 	for (i = 0; i < new_frags - 1; i++) {
1503 		__skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1504 		head = (struct page *)page_private(head);
1505 	}
1506 	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1507 	skb_shinfo(skb)->nr_frags = new_frags;
1508 
1509 release:
1510 	skb_zcopy_clear(skb, false);
1511 	return 0;
1512 }
1513 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1514 
1515 /**
1516  *	skb_clone	-	duplicate an sk_buff
1517  *	@skb: buffer to clone
1518  *	@gfp_mask: allocation priority
1519  *
1520  *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1521  *	copies share the same packet data but not structure. The new
1522  *	buffer has a reference count of 1. If the allocation fails the
1523  *	function returns %NULL otherwise the new buffer is returned.
1524  *
1525  *	If this function is called from an interrupt gfp_mask() must be
1526  *	%GFP_ATOMIC.
1527  */
1528 
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1529 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1530 {
1531 	struct sk_buff_fclones *fclones = container_of(skb,
1532 						       struct sk_buff_fclones,
1533 						       skb1);
1534 	struct sk_buff *n;
1535 
1536 	if (skb_orphan_frags(skb, gfp_mask))
1537 		return NULL;
1538 
1539 	if (skb->fclone == SKB_FCLONE_ORIG &&
1540 	    refcount_read(&fclones->fclone_ref) == 1) {
1541 		n = &fclones->skb2;
1542 		refcount_set(&fclones->fclone_ref, 2);
1543 	} else {
1544 		if (skb_pfmemalloc(skb))
1545 			gfp_mask |= __GFP_MEMALLOC;
1546 
1547 		n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1548 		if (!n)
1549 			return NULL;
1550 
1551 		n->fclone = SKB_FCLONE_UNAVAILABLE;
1552 	}
1553 
1554 	return __skb_clone(n, skb);
1555 }
1556 EXPORT_SYMBOL(skb_clone);
1557 
skb_headers_offset_update(struct sk_buff * skb,int off)1558 void skb_headers_offset_update(struct sk_buff *skb, int off)
1559 {
1560 	/* Only adjust this if it actually is csum_start rather than csum */
1561 	if (skb->ip_summed == CHECKSUM_PARTIAL)
1562 		skb->csum_start += off;
1563 	/* {transport,network,mac}_header and tail are relative to skb->head */
1564 	skb->transport_header += off;
1565 	skb->network_header   += off;
1566 	if (skb_mac_header_was_set(skb))
1567 		skb->mac_header += off;
1568 	skb->inner_transport_header += off;
1569 	skb->inner_network_header += off;
1570 	skb->inner_mac_header += off;
1571 }
1572 EXPORT_SYMBOL(skb_headers_offset_update);
1573 
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1574 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1575 {
1576 	__copy_skb_header(new, old);
1577 
1578 	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1579 	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1580 	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1581 }
1582 EXPORT_SYMBOL(skb_copy_header);
1583 
skb_alloc_rx_flag(const struct sk_buff * skb)1584 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1585 {
1586 	if (skb_pfmemalloc(skb))
1587 		return SKB_ALLOC_RX;
1588 	return 0;
1589 }
1590 
1591 /**
1592  *	skb_copy	-	create private copy of an sk_buff
1593  *	@skb: buffer to copy
1594  *	@gfp_mask: allocation priority
1595  *
1596  *	Make a copy of both an &sk_buff and its data. This is used when the
1597  *	caller wishes to modify the data and needs a private copy of the
1598  *	data to alter. Returns %NULL on failure or the pointer to the buffer
1599  *	on success. The returned buffer has a reference count of 1.
1600  *
1601  *	As by-product this function converts non-linear &sk_buff to linear
1602  *	one, so that &sk_buff becomes completely private and caller is allowed
1603  *	to modify all the data of returned buffer. This means that this
1604  *	function is not recommended for use in circumstances when only
1605  *	header is going to be modified. Use pskb_copy() instead.
1606  */
1607 
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1608 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1609 {
1610 	int headerlen = skb_headroom(skb);
1611 	unsigned int size = skb_end_offset(skb) + skb->data_len;
1612 	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1613 					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1614 
1615 	if (!n)
1616 		return NULL;
1617 
1618 	/* Set the data pointer */
1619 	skb_reserve(n, headerlen);
1620 	/* Set the tail pointer and length */
1621 	skb_put(n, skb->len);
1622 
1623 	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1624 
1625 	skb_copy_header(n, skb);
1626 	return n;
1627 }
1628 EXPORT_SYMBOL(skb_copy);
1629 
1630 /**
1631  *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1632  *	@skb: buffer to copy
1633  *	@headroom: headroom of new skb
1634  *	@gfp_mask: allocation priority
1635  *	@fclone: if true allocate the copy of the skb from the fclone
1636  *	cache instead of the head cache; it is recommended to set this
1637  *	to true for the cases where the copy will likely be cloned
1638  *
1639  *	Make a copy of both an &sk_buff and part of its data, located
1640  *	in header. Fragmented data remain shared. This is used when
1641  *	the caller wishes to modify only header of &sk_buff and needs
1642  *	private copy of the header to alter. Returns %NULL on failure
1643  *	or the pointer to the buffer on success.
1644  *	The returned buffer has a reference count of 1.
1645  */
1646 
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1647 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1648 				   gfp_t gfp_mask, bool fclone)
1649 {
1650 	unsigned int size = skb_headlen(skb) + headroom;
1651 	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1652 	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1653 
1654 	if (!n)
1655 		goto out;
1656 
1657 	/* Set the data pointer */
1658 	skb_reserve(n, headroom);
1659 	/* Set the tail pointer and length */
1660 	skb_put(n, skb_headlen(skb));
1661 	/* Copy the bytes */
1662 	skb_copy_from_linear_data(skb, n->data, n->len);
1663 
1664 	n->truesize += skb->data_len;
1665 	n->data_len  = skb->data_len;
1666 	n->len	     = skb->len;
1667 
1668 	if (skb_shinfo(skb)->nr_frags) {
1669 		int i;
1670 
1671 		if (skb_orphan_frags(skb, gfp_mask) ||
1672 		    skb_zerocopy_clone(n, skb, gfp_mask)) {
1673 			kfree_skb(n);
1674 			n = NULL;
1675 			goto out;
1676 		}
1677 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1678 			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1679 			skb_frag_ref(skb, i);
1680 		}
1681 		skb_shinfo(n)->nr_frags = i;
1682 	}
1683 
1684 	if (skb_has_frag_list(skb)) {
1685 		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1686 		skb_clone_fraglist(n);
1687 	}
1688 
1689 	skb_copy_header(n, skb);
1690 out:
1691 	return n;
1692 }
1693 EXPORT_SYMBOL(__pskb_copy_fclone);
1694 
1695 /**
1696  *	pskb_expand_head - reallocate header of &sk_buff
1697  *	@skb: buffer to reallocate
1698  *	@nhead: room to add at head
1699  *	@ntail: room to add at tail
1700  *	@gfp_mask: allocation priority
1701  *
1702  *	Expands (or creates identical copy, if @nhead and @ntail are zero)
1703  *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1704  *	reference count of 1. Returns zero in the case of success or error,
1705  *	if expansion failed. In the last case, &sk_buff is not changed.
1706  *
1707  *	All the pointers pointing into skb header may change and must be
1708  *	reloaded after call to this function.
1709  */
1710 
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1711 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1712 		     gfp_t gfp_mask)
1713 {
1714 	int i, osize = skb_end_offset(skb);
1715 	int size = osize + nhead + ntail;
1716 	long off;
1717 	u8 *data;
1718 
1719 	BUG_ON(nhead < 0);
1720 
1721 	BUG_ON(skb_shared(skb));
1722 
1723 	size = SKB_DATA_ALIGN(size);
1724 
1725 	if (skb_pfmemalloc(skb))
1726 		gfp_mask |= __GFP_MEMALLOC;
1727 	data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1728 			       gfp_mask, NUMA_NO_NODE, NULL);
1729 	if (!data)
1730 		goto nodata;
1731 	size = SKB_WITH_OVERHEAD(ksize(data));
1732 
1733 	/* Copy only real data... and, alas, header. This should be
1734 	 * optimized for the cases when header is void.
1735 	 */
1736 	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1737 
1738 	memcpy((struct skb_shared_info *)(data + size),
1739 	       skb_shinfo(skb),
1740 	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1741 
1742 	/*
1743 	 * if shinfo is shared we must drop the old head gracefully, but if it
1744 	 * is not we can just drop the old head and let the existing refcount
1745 	 * be since all we did is relocate the values
1746 	 */
1747 	if (skb_cloned(skb)) {
1748 		if (skb_orphan_frags(skb, gfp_mask))
1749 			goto nofrags;
1750 		if (skb_zcopy(skb))
1751 			refcount_inc(&skb_uarg(skb)->refcnt);
1752 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1753 			skb_frag_ref(skb, i);
1754 
1755 		if (skb_has_frag_list(skb))
1756 			skb_clone_fraglist(skb);
1757 
1758 		skb_release_data(skb);
1759 	} else {
1760 		skb_free_head(skb);
1761 	}
1762 	off = (data + nhead) - skb->head;
1763 
1764 	skb->head     = data;
1765 	skb->head_frag = 0;
1766 	skb->data    += off;
1767 
1768 	skb_set_end_offset(skb, size);
1769 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1770 	off           = nhead;
1771 #endif
1772 	skb->tail	      += off;
1773 	skb_headers_offset_update(skb, nhead);
1774 	skb->cloned   = 0;
1775 	skb->hdr_len  = 0;
1776 	skb->nohdr    = 0;
1777 	atomic_set(&skb_shinfo(skb)->dataref, 1);
1778 
1779 	skb_metadata_clear(skb);
1780 
1781 	/* It is not generally safe to change skb->truesize.
1782 	 * For the moment, we really care of rx path, or
1783 	 * when skb is orphaned (not attached to a socket).
1784 	 */
1785 	if (!skb->sk || skb->destructor == sock_edemux)
1786 		skb->truesize += size - osize;
1787 
1788 	return 0;
1789 
1790 nofrags:
1791 	kfree(data);
1792 nodata:
1793 	return -ENOMEM;
1794 }
1795 EXPORT_SYMBOL(pskb_expand_head);
1796 
1797 /* Make private copy of skb with writable head and some headroom */
1798 
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1799 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1800 {
1801 	struct sk_buff *skb2;
1802 	int delta = headroom - skb_headroom(skb);
1803 
1804 	if (delta <= 0)
1805 		skb2 = pskb_copy(skb, GFP_ATOMIC);
1806 	else {
1807 		skb2 = skb_clone(skb, GFP_ATOMIC);
1808 		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1809 					     GFP_ATOMIC)) {
1810 			kfree_skb(skb2);
1811 			skb2 = NULL;
1812 		}
1813 	}
1814 	return skb2;
1815 }
1816 EXPORT_SYMBOL(skb_realloc_headroom);
1817 
__skb_unclone_keeptruesize(struct sk_buff * skb,gfp_t pri)1818 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1819 {
1820 	unsigned int saved_end_offset, saved_truesize;
1821 	struct skb_shared_info *shinfo;
1822 	int res;
1823 
1824 	saved_end_offset = skb_end_offset(skb);
1825 	saved_truesize = skb->truesize;
1826 
1827 	res = pskb_expand_head(skb, 0, 0, pri);
1828 	if (res)
1829 		return res;
1830 
1831 	skb->truesize = saved_truesize;
1832 
1833 	if (likely(skb_end_offset(skb) == saved_end_offset))
1834 		return 0;
1835 
1836 	shinfo = skb_shinfo(skb);
1837 
1838 	/* We are about to change back skb->end,
1839 	 * we need to move skb_shinfo() to its new location.
1840 	 */
1841 	memmove(skb->head + saved_end_offset,
1842 		shinfo,
1843 		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
1844 
1845 	skb_set_end_offset(skb, saved_end_offset);
1846 
1847 	return 0;
1848 }
1849 
1850 /**
1851  *	skb_expand_head - reallocate header of &sk_buff
1852  *	@skb: buffer to reallocate
1853  *	@headroom: needed headroom
1854  *
1855  *	Unlike skb_realloc_headroom, this one does not allocate a new skb
1856  *	if possible; copies skb->sk to new skb as needed
1857  *	and frees original skb in case of failures.
1858  *
1859  *	It expect increased headroom and generates warning otherwise.
1860  */
1861 
skb_expand_head(struct sk_buff * skb,unsigned int headroom)1862 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
1863 {
1864 	int delta = headroom - skb_headroom(skb);
1865 	int osize = skb_end_offset(skb);
1866 	struct sock *sk = skb->sk;
1867 
1868 	if (WARN_ONCE(delta <= 0,
1869 		      "%s is expecting an increase in the headroom", __func__))
1870 		return skb;
1871 
1872 	delta = SKB_DATA_ALIGN(delta);
1873 	/* pskb_expand_head() might crash, if skb is shared. */
1874 	if (skb_shared(skb) || !is_skb_wmem(skb)) {
1875 		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
1876 
1877 		if (unlikely(!nskb))
1878 			goto fail;
1879 
1880 		if (sk)
1881 			skb_set_owner_w(nskb, sk);
1882 		consume_skb(skb);
1883 		skb = nskb;
1884 	}
1885 	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
1886 		goto fail;
1887 
1888 	if (sk && is_skb_wmem(skb)) {
1889 		delta = skb_end_offset(skb) - osize;
1890 		refcount_add(delta, &sk->sk_wmem_alloc);
1891 		skb->truesize += delta;
1892 	}
1893 	return skb;
1894 
1895 fail:
1896 	kfree_skb(skb);
1897 	return NULL;
1898 }
1899 EXPORT_SYMBOL(skb_expand_head);
1900 
1901 /**
1902  *	skb_copy_expand	-	copy and expand sk_buff
1903  *	@skb: buffer to copy
1904  *	@newheadroom: new free bytes at head
1905  *	@newtailroom: new free bytes at tail
1906  *	@gfp_mask: allocation priority
1907  *
1908  *	Make a copy of both an &sk_buff and its data and while doing so
1909  *	allocate additional space.
1910  *
1911  *	This is used when the caller wishes to modify the data and needs a
1912  *	private copy of the data to alter as well as more space for new fields.
1913  *	Returns %NULL on failure or the pointer to the buffer
1914  *	on success. The returned buffer has a reference count of 1.
1915  *
1916  *	You must pass %GFP_ATOMIC as the allocation priority if this function
1917  *	is called from an interrupt.
1918  */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1919 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1920 				int newheadroom, int newtailroom,
1921 				gfp_t gfp_mask)
1922 {
1923 	/*
1924 	 *	Allocate the copy buffer
1925 	 */
1926 	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1927 					gfp_mask, skb_alloc_rx_flag(skb),
1928 					NUMA_NO_NODE);
1929 	int oldheadroom = skb_headroom(skb);
1930 	int head_copy_len, head_copy_off;
1931 
1932 	if (!n)
1933 		return NULL;
1934 
1935 	skb_reserve(n, newheadroom);
1936 
1937 	/* Set the tail pointer and length */
1938 	skb_put(n, skb->len);
1939 
1940 	head_copy_len = oldheadroom;
1941 	head_copy_off = 0;
1942 	if (newheadroom <= head_copy_len)
1943 		head_copy_len = newheadroom;
1944 	else
1945 		head_copy_off = newheadroom - head_copy_len;
1946 
1947 	/* Copy the linear header and data. */
1948 	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1949 			     skb->len + head_copy_len));
1950 
1951 	skb_copy_header(n, skb);
1952 
1953 	skb_headers_offset_update(n, newheadroom - oldheadroom);
1954 
1955 	return n;
1956 }
1957 EXPORT_SYMBOL(skb_copy_expand);
1958 
1959 /**
1960  *	__skb_pad		-	zero pad the tail of an skb
1961  *	@skb: buffer to pad
1962  *	@pad: space to pad
1963  *	@free_on_error: free buffer on error
1964  *
1965  *	Ensure that a buffer is followed by a padding area that is zero
1966  *	filled. Used by network drivers which may DMA or transfer data
1967  *	beyond the buffer end onto the wire.
1968  *
1969  *	May return error in out of memory cases. The skb is freed on error
1970  *	if @free_on_error is true.
1971  */
1972 
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1973 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1974 {
1975 	int err;
1976 	int ntail;
1977 
1978 	/* If the skbuff is non linear tailroom is always zero.. */
1979 	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1980 		memset(skb->data+skb->len, 0, pad);
1981 		return 0;
1982 	}
1983 
1984 	ntail = skb->data_len + pad - (skb->end - skb->tail);
1985 	if (likely(skb_cloned(skb) || ntail > 0)) {
1986 		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1987 		if (unlikely(err))
1988 			goto free_skb;
1989 	}
1990 
1991 	/* FIXME: The use of this function with non-linear skb's really needs
1992 	 * to be audited.
1993 	 */
1994 	err = skb_linearize(skb);
1995 	if (unlikely(err))
1996 		goto free_skb;
1997 
1998 	memset(skb->data + skb->len, 0, pad);
1999 	return 0;
2000 
2001 free_skb:
2002 	if (free_on_error)
2003 		kfree_skb(skb);
2004 	return err;
2005 }
2006 EXPORT_SYMBOL(__skb_pad);
2007 
2008 /**
2009  *	pskb_put - add data to the tail of a potentially fragmented buffer
2010  *	@skb: start of the buffer to use
2011  *	@tail: tail fragment of the buffer to use
2012  *	@len: amount of data to add
2013  *
2014  *	This function extends the used data area of the potentially
2015  *	fragmented buffer. @tail must be the last fragment of @skb -- or
2016  *	@skb itself. If this would exceed the total buffer size the kernel
2017  *	will panic. A pointer to the first byte of the extra data is
2018  *	returned.
2019  */
2020 
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)2021 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2022 {
2023 	if (tail != skb) {
2024 		skb->data_len += len;
2025 		skb->len += len;
2026 	}
2027 	return skb_put(tail, len);
2028 }
2029 EXPORT_SYMBOL_GPL(pskb_put);
2030 
2031 /**
2032  *	skb_put - add data to a buffer
2033  *	@skb: buffer to use
2034  *	@len: amount of data to add
2035  *
2036  *	This function extends the used data area of the buffer. If this would
2037  *	exceed the total buffer size the kernel will panic. A pointer to the
2038  *	first byte of the extra data is returned.
2039  */
skb_put(struct sk_buff * skb,unsigned int len)2040 void *skb_put(struct sk_buff *skb, unsigned int len)
2041 {
2042 	void *tmp = skb_tail_pointer(skb);
2043 	SKB_LINEAR_ASSERT(skb);
2044 	skb->tail += len;
2045 	skb->len  += len;
2046 	if (unlikely(skb->tail > skb->end))
2047 		skb_over_panic(skb, len, __builtin_return_address(0));
2048 	return tmp;
2049 }
2050 EXPORT_SYMBOL(skb_put);
2051 
2052 /**
2053  *	skb_push - add data to the start of a buffer
2054  *	@skb: buffer to use
2055  *	@len: amount of data to add
2056  *
2057  *	This function extends the used data area of the buffer at the buffer
2058  *	start. If this would exceed the total buffer headroom the kernel will
2059  *	panic. A pointer to the first byte of the extra data is returned.
2060  */
skb_push(struct sk_buff * skb,unsigned int len)2061 void *skb_push(struct sk_buff *skb, unsigned int len)
2062 {
2063 	skb->data -= len;
2064 	skb->len  += len;
2065 	if (unlikely(skb->data < skb->head))
2066 		skb_under_panic(skb, len, __builtin_return_address(0));
2067 	return skb->data;
2068 }
2069 EXPORT_SYMBOL(skb_push);
2070 
2071 /**
2072  *	skb_pull - remove data from the start of a buffer
2073  *	@skb: buffer to use
2074  *	@len: amount of data to remove
2075  *
2076  *	This function removes data from the start of a buffer, returning
2077  *	the memory to the headroom. A pointer to the next data in the buffer
2078  *	is returned. Once the data has been pulled future pushes will overwrite
2079  *	the old data.
2080  */
skb_pull(struct sk_buff * skb,unsigned int len)2081 void *skb_pull(struct sk_buff *skb, unsigned int len)
2082 {
2083 	return skb_pull_inline(skb, len);
2084 }
2085 EXPORT_SYMBOL(skb_pull);
2086 
2087 /**
2088  *	skb_trim - remove end from a buffer
2089  *	@skb: buffer to alter
2090  *	@len: new length
2091  *
2092  *	Cut the length of a buffer down by removing data from the tail. If
2093  *	the buffer is already under the length specified it is not modified.
2094  *	The skb must be linear.
2095  */
skb_trim(struct sk_buff * skb,unsigned int len)2096 void skb_trim(struct sk_buff *skb, unsigned int len)
2097 {
2098 	if (skb->len > len)
2099 		__skb_trim(skb, len);
2100 }
2101 EXPORT_SYMBOL(skb_trim);
2102 
2103 /* Trims skb to length len. It can change skb pointers.
2104  */
2105 
___pskb_trim(struct sk_buff * skb,unsigned int len)2106 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2107 {
2108 	struct sk_buff **fragp;
2109 	struct sk_buff *frag;
2110 	int offset = skb_headlen(skb);
2111 	int nfrags = skb_shinfo(skb)->nr_frags;
2112 	int i;
2113 	int err;
2114 
2115 	if (skb_cloned(skb) &&
2116 	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2117 		return err;
2118 
2119 	i = 0;
2120 	if (offset >= len)
2121 		goto drop_pages;
2122 
2123 	for (; i < nfrags; i++) {
2124 		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2125 
2126 		if (end < len) {
2127 			offset = end;
2128 			continue;
2129 		}
2130 
2131 		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2132 
2133 drop_pages:
2134 		skb_shinfo(skb)->nr_frags = i;
2135 
2136 		for (; i < nfrags; i++)
2137 			skb_frag_unref(skb, i);
2138 
2139 		if (skb_has_frag_list(skb))
2140 			skb_drop_fraglist(skb);
2141 		goto done;
2142 	}
2143 
2144 	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2145 	     fragp = &frag->next) {
2146 		int end = offset + frag->len;
2147 
2148 		if (skb_shared(frag)) {
2149 			struct sk_buff *nfrag;
2150 
2151 			nfrag = skb_clone(frag, GFP_ATOMIC);
2152 			if (unlikely(!nfrag))
2153 				return -ENOMEM;
2154 
2155 			nfrag->next = frag->next;
2156 			consume_skb(frag);
2157 			frag = nfrag;
2158 			*fragp = frag;
2159 		}
2160 
2161 		if (end < len) {
2162 			offset = end;
2163 			continue;
2164 		}
2165 
2166 		if (end > len &&
2167 		    unlikely((err = pskb_trim(frag, len - offset))))
2168 			return err;
2169 
2170 		if (frag->next)
2171 			skb_drop_list(&frag->next);
2172 		break;
2173 	}
2174 
2175 done:
2176 	if (len > skb_headlen(skb)) {
2177 		skb->data_len -= skb->len - len;
2178 		skb->len       = len;
2179 	} else {
2180 		skb->len       = len;
2181 		skb->data_len  = 0;
2182 		skb_set_tail_pointer(skb, len);
2183 	}
2184 
2185 	if (!skb->sk || skb->destructor == sock_edemux)
2186 		skb_condense(skb);
2187 	return 0;
2188 }
2189 EXPORT_SYMBOL(___pskb_trim);
2190 
2191 /* Note : use pskb_trim_rcsum() instead of calling this directly
2192  */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2193 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2194 {
2195 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2196 		int delta = skb->len - len;
2197 
2198 		skb->csum = csum_block_sub(skb->csum,
2199 					   skb_checksum(skb, len, delta, 0),
2200 					   len);
2201 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2202 		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2203 		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2204 
2205 		if (offset + sizeof(__sum16) > hdlen)
2206 			return -EINVAL;
2207 	}
2208 	return __pskb_trim(skb, len);
2209 }
2210 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2211 
2212 /**
2213  *	__pskb_pull_tail - advance tail of skb header
2214  *	@skb: buffer to reallocate
2215  *	@delta: number of bytes to advance tail
2216  *
2217  *	The function makes a sense only on a fragmented &sk_buff,
2218  *	it expands header moving its tail forward and copying necessary
2219  *	data from fragmented part.
2220  *
2221  *	&sk_buff MUST have reference count of 1.
2222  *
2223  *	Returns %NULL (and &sk_buff does not change) if pull failed
2224  *	or value of new tail of skb in the case of success.
2225  *
2226  *	All the pointers pointing into skb header may change and must be
2227  *	reloaded after call to this function.
2228  */
2229 
2230 /* Moves tail of skb head forward, copying data from fragmented part,
2231  * when it is necessary.
2232  * 1. It may fail due to malloc failure.
2233  * 2. It may change skb pointers.
2234  *
2235  * It is pretty complicated. Luckily, it is called only in exceptional cases.
2236  */
__pskb_pull_tail(struct sk_buff * skb,int delta)2237 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2238 {
2239 	/* If skb has not enough free space at tail, get new one
2240 	 * plus 128 bytes for future expansions. If we have enough
2241 	 * room at tail, reallocate without expansion only if skb is cloned.
2242 	 */
2243 	int i, k, eat = (skb->tail + delta) - skb->end;
2244 
2245 	if (eat > 0 || skb_cloned(skb)) {
2246 		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2247 				     GFP_ATOMIC))
2248 			return NULL;
2249 	}
2250 
2251 	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2252 			     skb_tail_pointer(skb), delta));
2253 
2254 	/* Optimization: no fragments, no reasons to preestimate
2255 	 * size of pulled pages. Superb.
2256 	 */
2257 	if (!skb_has_frag_list(skb))
2258 		goto pull_pages;
2259 
2260 	/* Estimate size of pulled pages. */
2261 	eat = delta;
2262 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2263 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2264 
2265 		if (size >= eat)
2266 			goto pull_pages;
2267 		eat -= size;
2268 	}
2269 
2270 	/* If we need update frag list, we are in troubles.
2271 	 * Certainly, it is possible to add an offset to skb data,
2272 	 * but taking into account that pulling is expected to
2273 	 * be very rare operation, it is worth to fight against
2274 	 * further bloating skb head and crucify ourselves here instead.
2275 	 * Pure masohism, indeed. 8)8)
2276 	 */
2277 	if (eat) {
2278 		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2279 		struct sk_buff *clone = NULL;
2280 		struct sk_buff *insp = NULL;
2281 
2282 		do {
2283 			if (list->len <= eat) {
2284 				/* Eaten as whole. */
2285 				eat -= list->len;
2286 				list = list->next;
2287 				insp = list;
2288 			} else {
2289 				/* Eaten partially. */
2290 				if (skb_is_gso(skb) && !list->head_frag &&
2291 				    skb_headlen(list))
2292 					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2293 
2294 				if (skb_shared(list)) {
2295 					/* Sucks! We need to fork list. :-( */
2296 					clone = skb_clone(list, GFP_ATOMIC);
2297 					if (!clone)
2298 						return NULL;
2299 					insp = list->next;
2300 					list = clone;
2301 				} else {
2302 					/* This may be pulled without
2303 					 * problems. */
2304 					insp = list;
2305 				}
2306 				if (!pskb_pull(list, eat)) {
2307 					kfree_skb(clone);
2308 					return NULL;
2309 				}
2310 				break;
2311 			}
2312 		} while (eat);
2313 
2314 		/* Free pulled out fragments. */
2315 		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2316 			skb_shinfo(skb)->frag_list = list->next;
2317 			consume_skb(list);
2318 		}
2319 		/* And insert new clone at head. */
2320 		if (clone) {
2321 			clone->next = list;
2322 			skb_shinfo(skb)->frag_list = clone;
2323 		}
2324 	}
2325 	/* Success! Now we may commit changes to skb data. */
2326 
2327 pull_pages:
2328 	eat = delta;
2329 	k = 0;
2330 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2331 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2332 
2333 		if (size <= eat) {
2334 			skb_frag_unref(skb, i);
2335 			eat -= size;
2336 		} else {
2337 			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2338 
2339 			*frag = skb_shinfo(skb)->frags[i];
2340 			if (eat) {
2341 				skb_frag_off_add(frag, eat);
2342 				skb_frag_size_sub(frag, eat);
2343 				if (!i)
2344 					goto end;
2345 				eat = 0;
2346 			}
2347 			k++;
2348 		}
2349 	}
2350 	skb_shinfo(skb)->nr_frags = k;
2351 
2352 end:
2353 	skb->tail     += delta;
2354 	skb->data_len -= delta;
2355 
2356 	if (!skb->data_len)
2357 		skb_zcopy_clear(skb, false);
2358 
2359 	return skb_tail_pointer(skb);
2360 }
2361 EXPORT_SYMBOL(__pskb_pull_tail);
2362 
2363 /**
2364  *	skb_copy_bits - copy bits from skb to kernel buffer
2365  *	@skb: source skb
2366  *	@offset: offset in source
2367  *	@to: destination buffer
2368  *	@len: number of bytes to copy
2369  *
2370  *	Copy the specified number of bytes from the source skb to the
2371  *	destination buffer.
2372  *
2373  *	CAUTION ! :
2374  *		If its prototype is ever changed,
2375  *		check arch/{*}/net/{*}.S files,
2376  *		since it is called from BPF assembly code.
2377  */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2378 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2379 {
2380 	int start = skb_headlen(skb);
2381 	struct sk_buff *frag_iter;
2382 	int i, copy;
2383 
2384 	if (offset > (int)skb->len - len)
2385 		goto fault;
2386 
2387 	/* Copy header. */
2388 	if ((copy = start - offset) > 0) {
2389 		if (copy > len)
2390 			copy = len;
2391 		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2392 		if ((len -= copy) == 0)
2393 			return 0;
2394 		offset += copy;
2395 		to     += copy;
2396 	}
2397 
2398 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2399 		int end;
2400 		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2401 
2402 		WARN_ON(start > offset + len);
2403 
2404 		end = start + skb_frag_size(f);
2405 		if ((copy = end - offset) > 0) {
2406 			u32 p_off, p_len, copied;
2407 			struct page *p;
2408 			u8 *vaddr;
2409 
2410 			if (copy > len)
2411 				copy = len;
2412 
2413 			skb_frag_foreach_page(f,
2414 					      skb_frag_off(f) + offset - start,
2415 					      copy, p, p_off, p_len, copied) {
2416 				vaddr = kmap_atomic(p);
2417 				memcpy(to + copied, vaddr + p_off, p_len);
2418 				kunmap_atomic(vaddr);
2419 			}
2420 
2421 			if ((len -= copy) == 0)
2422 				return 0;
2423 			offset += copy;
2424 			to     += copy;
2425 		}
2426 		start = end;
2427 	}
2428 
2429 	skb_walk_frags(skb, frag_iter) {
2430 		int end;
2431 
2432 		WARN_ON(start > offset + len);
2433 
2434 		end = start + frag_iter->len;
2435 		if ((copy = end - offset) > 0) {
2436 			if (copy > len)
2437 				copy = len;
2438 			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2439 				goto fault;
2440 			if ((len -= copy) == 0)
2441 				return 0;
2442 			offset += copy;
2443 			to     += copy;
2444 		}
2445 		start = end;
2446 	}
2447 
2448 	if (!len)
2449 		return 0;
2450 
2451 fault:
2452 	return -EFAULT;
2453 }
2454 EXPORT_SYMBOL(skb_copy_bits);
2455 
2456 /*
2457  * Callback from splice_to_pipe(), if we need to release some pages
2458  * at the end of the spd in case we error'ed out in filling the pipe.
2459  */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2460 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2461 {
2462 	put_page(spd->pages[i]);
2463 }
2464 
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2465 static struct page *linear_to_page(struct page *page, unsigned int *len,
2466 				   unsigned int *offset,
2467 				   struct sock *sk)
2468 {
2469 	struct page_frag *pfrag = sk_page_frag(sk);
2470 
2471 	if (!sk_page_frag_refill(sk, pfrag))
2472 		return NULL;
2473 
2474 	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2475 
2476 	memcpy(page_address(pfrag->page) + pfrag->offset,
2477 	       page_address(page) + *offset, *len);
2478 	*offset = pfrag->offset;
2479 	pfrag->offset += *len;
2480 
2481 	return pfrag->page;
2482 }
2483 
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2484 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2485 			     struct page *page,
2486 			     unsigned int offset)
2487 {
2488 	return	spd->nr_pages &&
2489 		spd->pages[spd->nr_pages - 1] == page &&
2490 		(spd->partial[spd->nr_pages - 1].offset +
2491 		 spd->partial[spd->nr_pages - 1].len == offset);
2492 }
2493 
2494 /*
2495  * Fill page/offset/length into spd, if it can hold more pages.
2496  */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2497 static bool spd_fill_page(struct splice_pipe_desc *spd,
2498 			  struct pipe_inode_info *pipe, struct page *page,
2499 			  unsigned int *len, unsigned int offset,
2500 			  bool linear,
2501 			  struct sock *sk)
2502 {
2503 	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2504 		return true;
2505 
2506 	if (linear) {
2507 		page = linear_to_page(page, len, &offset, sk);
2508 		if (!page)
2509 			return true;
2510 	}
2511 	if (spd_can_coalesce(spd, page, offset)) {
2512 		spd->partial[spd->nr_pages - 1].len += *len;
2513 		return false;
2514 	}
2515 	get_page(page);
2516 	spd->pages[spd->nr_pages] = page;
2517 	spd->partial[spd->nr_pages].len = *len;
2518 	spd->partial[spd->nr_pages].offset = offset;
2519 	spd->nr_pages++;
2520 
2521 	return false;
2522 }
2523 
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2524 static bool __splice_segment(struct page *page, unsigned int poff,
2525 			     unsigned int plen, unsigned int *off,
2526 			     unsigned int *len,
2527 			     struct splice_pipe_desc *spd, bool linear,
2528 			     struct sock *sk,
2529 			     struct pipe_inode_info *pipe)
2530 {
2531 	if (!*len)
2532 		return true;
2533 
2534 	/* skip this segment if already processed */
2535 	if (*off >= plen) {
2536 		*off -= plen;
2537 		return false;
2538 	}
2539 
2540 	/* ignore any bits we already processed */
2541 	poff += *off;
2542 	plen -= *off;
2543 	*off = 0;
2544 
2545 	do {
2546 		unsigned int flen = min(*len, plen);
2547 
2548 		if (spd_fill_page(spd, pipe, page, &flen, poff,
2549 				  linear, sk))
2550 			return true;
2551 		poff += flen;
2552 		plen -= flen;
2553 		*len -= flen;
2554 	} while (*len && plen);
2555 
2556 	return false;
2557 }
2558 
2559 /*
2560  * Map linear and fragment data from the skb to spd. It reports true if the
2561  * pipe is full or if we already spliced the requested length.
2562  */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2563 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2564 			      unsigned int *offset, unsigned int *len,
2565 			      struct splice_pipe_desc *spd, struct sock *sk)
2566 {
2567 	int seg;
2568 	struct sk_buff *iter;
2569 
2570 	/* map the linear part :
2571 	 * If skb->head_frag is set, this 'linear' part is backed by a
2572 	 * fragment, and if the head is not shared with any clones then
2573 	 * we can avoid a copy since we own the head portion of this page.
2574 	 */
2575 	if (__splice_segment(virt_to_page(skb->data),
2576 			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2577 			     skb_headlen(skb),
2578 			     offset, len, spd,
2579 			     skb_head_is_locked(skb),
2580 			     sk, pipe))
2581 		return true;
2582 
2583 	/*
2584 	 * then map the fragments
2585 	 */
2586 	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2587 		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2588 
2589 		if (__splice_segment(skb_frag_page(f),
2590 				     skb_frag_off(f), skb_frag_size(f),
2591 				     offset, len, spd, false, sk, pipe))
2592 			return true;
2593 	}
2594 
2595 	skb_walk_frags(skb, iter) {
2596 		if (*offset >= iter->len) {
2597 			*offset -= iter->len;
2598 			continue;
2599 		}
2600 		/* __skb_splice_bits() only fails if the output has no room
2601 		 * left, so no point in going over the frag_list for the error
2602 		 * case.
2603 		 */
2604 		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2605 			return true;
2606 	}
2607 
2608 	return false;
2609 }
2610 
2611 /*
2612  * Map data from the skb to a pipe. Should handle both the linear part,
2613  * the fragments, and the frag list.
2614  */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2615 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2616 		    struct pipe_inode_info *pipe, unsigned int tlen,
2617 		    unsigned int flags)
2618 {
2619 	struct partial_page partial[MAX_SKB_FRAGS];
2620 	struct page *pages[MAX_SKB_FRAGS];
2621 	struct splice_pipe_desc spd = {
2622 		.pages = pages,
2623 		.partial = partial,
2624 		.nr_pages_max = MAX_SKB_FRAGS,
2625 		.ops = &nosteal_pipe_buf_ops,
2626 		.spd_release = sock_spd_release,
2627 	};
2628 	int ret = 0;
2629 
2630 	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2631 
2632 	if (spd.nr_pages)
2633 		ret = splice_to_pipe(pipe, &spd);
2634 
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL_GPL(skb_splice_bits);
2638 
sendmsg_unlocked(struct sock * sk,struct msghdr * msg,struct kvec * vec,size_t num,size_t size)2639 static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg,
2640 			    struct kvec *vec, size_t num, size_t size)
2641 {
2642 	struct socket *sock = sk->sk_socket;
2643 
2644 	if (!sock)
2645 		return -EINVAL;
2646 	return kernel_sendmsg(sock, msg, vec, num, size);
2647 }
2648 
sendpage_unlocked(struct sock * sk,struct page * page,int offset,size_t size,int flags)2649 static int sendpage_unlocked(struct sock *sk, struct page *page, int offset,
2650 			     size_t size, int flags)
2651 {
2652 	struct socket *sock = sk->sk_socket;
2653 
2654 	if (!sock)
2655 		return -EINVAL;
2656 	return kernel_sendpage(sock, page, offset, size, flags);
2657 }
2658 
2659 typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg,
2660 			    struct kvec *vec, size_t num, size_t size);
2661 typedef int (*sendpage_func)(struct sock *sk, struct page *page, int offset,
2662 			     size_t size, int flags);
__skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len,sendmsg_func sendmsg,sendpage_func sendpage)2663 static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
2664 			   int len, sendmsg_func sendmsg, sendpage_func sendpage)
2665 {
2666 	unsigned int orig_len = len;
2667 	struct sk_buff *head = skb;
2668 	unsigned short fragidx;
2669 	int slen, ret;
2670 
2671 do_frag_list:
2672 
2673 	/* Deal with head data */
2674 	while (offset < skb_headlen(skb) && len) {
2675 		struct kvec kv;
2676 		struct msghdr msg;
2677 
2678 		slen = min_t(int, len, skb_headlen(skb) - offset);
2679 		kv.iov_base = skb->data + offset;
2680 		kv.iov_len = slen;
2681 		memset(&msg, 0, sizeof(msg));
2682 		msg.msg_flags = MSG_DONTWAIT;
2683 
2684 		ret = INDIRECT_CALL_2(sendmsg, kernel_sendmsg_locked,
2685 				      sendmsg_unlocked, sk, &msg, &kv, 1, slen);
2686 		if (ret <= 0)
2687 			goto error;
2688 
2689 		offset += ret;
2690 		len -= ret;
2691 	}
2692 
2693 	/* All the data was skb head? */
2694 	if (!len)
2695 		goto out;
2696 
2697 	/* Make offset relative to start of frags */
2698 	offset -= skb_headlen(skb);
2699 
2700 	/* Find where we are in frag list */
2701 	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2702 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2703 
2704 		if (offset < skb_frag_size(frag))
2705 			break;
2706 
2707 		offset -= skb_frag_size(frag);
2708 	}
2709 
2710 	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2711 		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
2712 
2713 		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2714 
2715 		while (slen) {
2716 			ret = INDIRECT_CALL_2(sendpage, kernel_sendpage_locked,
2717 					      sendpage_unlocked, sk,
2718 					      skb_frag_page(frag),
2719 					      skb_frag_off(frag) + offset,
2720 					      slen, MSG_DONTWAIT);
2721 			if (ret <= 0)
2722 				goto error;
2723 
2724 			len -= ret;
2725 			offset += ret;
2726 			slen -= ret;
2727 		}
2728 
2729 		offset = 0;
2730 	}
2731 
2732 	if (len) {
2733 		/* Process any frag lists */
2734 
2735 		if (skb == head) {
2736 			if (skb_has_frag_list(skb)) {
2737 				skb = skb_shinfo(skb)->frag_list;
2738 				goto do_frag_list;
2739 			}
2740 		} else if (skb->next) {
2741 			skb = skb->next;
2742 			goto do_frag_list;
2743 		}
2744 	}
2745 
2746 out:
2747 	return orig_len - len;
2748 
2749 error:
2750 	return orig_len == len ? ret : orig_len - len;
2751 }
2752 
2753 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2754 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2755 			 int len)
2756 {
2757 	return __skb_send_sock(sk, skb, offset, len, kernel_sendmsg_locked,
2758 			       kernel_sendpage_locked);
2759 }
2760 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2761 
2762 /* Send skb data on a socket. Socket must be unlocked. */
skb_send_sock(struct sock * sk,struct sk_buff * skb,int offset,int len)2763 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
2764 {
2765 	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked,
2766 			       sendpage_unlocked);
2767 }
2768 
2769 /**
2770  *	skb_store_bits - store bits from kernel buffer to skb
2771  *	@skb: destination buffer
2772  *	@offset: offset in destination
2773  *	@from: source buffer
2774  *	@len: number of bytes to copy
2775  *
2776  *	Copy the specified number of bytes from the source buffer to the
2777  *	destination skb.  This function handles all the messy bits of
2778  *	traversing fragment lists and such.
2779  */
2780 
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2781 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2782 {
2783 	int start = skb_headlen(skb);
2784 	struct sk_buff *frag_iter;
2785 	int i, copy;
2786 
2787 	if (offset > (int)skb->len - len)
2788 		goto fault;
2789 
2790 	if ((copy = start - offset) > 0) {
2791 		if (copy > len)
2792 			copy = len;
2793 		skb_copy_to_linear_data_offset(skb, offset, from, copy);
2794 		if ((len -= copy) == 0)
2795 			return 0;
2796 		offset += copy;
2797 		from += copy;
2798 	}
2799 
2800 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2801 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2802 		int end;
2803 
2804 		WARN_ON(start > offset + len);
2805 
2806 		end = start + skb_frag_size(frag);
2807 		if ((copy = end - offset) > 0) {
2808 			u32 p_off, p_len, copied;
2809 			struct page *p;
2810 			u8 *vaddr;
2811 
2812 			if (copy > len)
2813 				copy = len;
2814 
2815 			skb_frag_foreach_page(frag,
2816 					      skb_frag_off(frag) + offset - start,
2817 					      copy, p, p_off, p_len, copied) {
2818 				vaddr = kmap_atomic(p);
2819 				memcpy(vaddr + p_off, from + copied, p_len);
2820 				kunmap_atomic(vaddr);
2821 			}
2822 
2823 			if ((len -= copy) == 0)
2824 				return 0;
2825 			offset += copy;
2826 			from += copy;
2827 		}
2828 		start = end;
2829 	}
2830 
2831 	skb_walk_frags(skb, frag_iter) {
2832 		int end;
2833 
2834 		WARN_ON(start > offset + len);
2835 
2836 		end = start + frag_iter->len;
2837 		if ((copy = end - offset) > 0) {
2838 			if (copy > len)
2839 				copy = len;
2840 			if (skb_store_bits(frag_iter, offset - start,
2841 					   from, copy))
2842 				goto fault;
2843 			if ((len -= copy) == 0)
2844 				return 0;
2845 			offset += copy;
2846 			from += copy;
2847 		}
2848 		start = end;
2849 	}
2850 	if (!len)
2851 		return 0;
2852 
2853 fault:
2854 	return -EFAULT;
2855 }
2856 EXPORT_SYMBOL(skb_store_bits);
2857 
2858 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2859 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2860 		      __wsum csum, const struct skb_checksum_ops *ops)
2861 {
2862 	int start = skb_headlen(skb);
2863 	int i, copy = start - offset;
2864 	struct sk_buff *frag_iter;
2865 	int pos = 0;
2866 
2867 	/* Checksum header. */
2868 	if (copy > 0) {
2869 		if (copy > len)
2870 			copy = len;
2871 		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2872 				       skb->data + offset, copy, csum);
2873 		if ((len -= copy) == 0)
2874 			return csum;
2875 		offset += copy;
2876 		pos	= copy;
2877 	}
2878 
2879 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2880 		int end;
2881 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2882 
2883 		WARN_ON(start > offset + len);
2884 
2885 		end = start + skb_frag_size(frag);
2886 		if ((copy = end - offset) > 0) {
2887 			u32 p_off, p_len, copied;
2888 			struct page *p;
2889 			__wsum csum2;
2890 			u8 *vaddr;
2891 
2892 			if (copy > len)
2893 				copy = len;
2894 
2895 			skb_frag_foreach_page(frag,
2896 					      skb_frag_off(frag) + offset - start,
2897 					      copy, p, p_off, p_len, copied) {
2898 				vaddr = kmap_atomic(p);
2899 				csum2 = INDIRECT_CALL_1(ops->update,
2900 							csum_partial_ext,
2901 							vaddr + p_off, p_len, 0);
2902 				kunmap_atomic(vaddr);
2903 				csum = INDIRECT_CALL_1(ops->combine,
2904 						       csum_block_add_ext, csum,
2905 						       csum2, pos, p_len);
2906 				pos += p_len;
2907 			}
2908 
2909 			if (!(len -= copy))
2910 				return csum;
2911 			offset += copy;
2912 		}
2913 		start = end;
2914 	}
2915 
2916 	skb_walk_frags(skb, frag_iter) {
2917 		int end;
2918 
2919 		WARN_ON(start > offset + len);
2920 
2921 		end = start + frag_iter->len;
2922 		if ((copy = end - offset) > 0) {
2923 			__wsum csum2;
2924 			if (copy > len)
2925 				copy = len;
2926 			csum2 = __skb_checksum(frag_iter, offset - start,
2927 					       copy, 0, ops);
2928 			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2929 					       csum, csum2, pos, copy);
2930 			if ((len -= copy) == 0)
2931 				return csum;
2932 			offset += copy;
2933 			pos    += copy;
2934 		}
2935 		start = end;
2936 	}
2937 	BUG_ON(len);
2938 
2939 	return csum;
2940 }
2941 EXPORT_SYMBOL(__skb_checksum);
2942 
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2943 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2944 		    int len, __wsum csum)
2945 {
2946 	const struct skb_checksum_ops ops = {
2947 		.update  = csum_partial_ext,
2948 		.combine = csum_block_add_ext,
2949 	};
2950 
2951 	return __skb_checksum(skb, offset, len, csum, &ops);
2952 }
2953 EXPORT_SYMBOL(skb_checksum);
2954 
2955 /* Both of above in one bottle. */
2956 
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2957 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2958 				    u8 *to, int len)
2959 {
2960 	int start = skb_headlen(skb);
2961 	int i, copy = start - offset;
2962 	struct sk_buff *frag_iter;
2963 	int pos = 0;
2964 	__wsum csum = 0;
2965 
2966 	/* Copy header. */
2967 	if (copy > 0) {
2968 		if (copy > len)
2969 			copy = len;
2970 		csum = csum_partial_copy_nocheck(skb->data + offset, to,
2971 						 copy);
2972 		if ((len -= copy) == 0)
2973 			return csum;
2974 		offset += copy;
2975 		to     += copy;
2976 		pos	= copy;
2977 	}
2978 
2979 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2980 		int end;
2981 
2982 		WARN_ON(start > offset + len);
2983 
2984 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2985 		if ((copy = end - offset) > 0) {
2986 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2987 			u32 p_off, p_len, copied;
2988 			struct page *p;
2989 			__wsum csum2;
2990 			u8 *vaddr;
2991 
2992 			if (copy > len)
2993 				copy = len;
2994 
2995 			skb_frag_foreach_page(frag,
2996 					      skb_frag_off(frag) + offset - start,
2997 					      copy, p, p_off, p_len, copied) {
2998 				vaddr = kmap_atomic(p);
2999 				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3000 								  to + copied,
3001 								  p_len);
3002 				kunmap_atomic(vaddr);
3003 				csum = csum_block_add(csum, csum2, pos);
3004 				pos += p_len;
3005 			}
3006 
3007 			if (!(len -= copy))
3008 				return csum;
3009 			offset += copy;
3010 			to     += copy;
3011 		}
3012 		start = end;
3013 	}
3014 
3015 	skb_walk_frags(skb, frag_iter) {
3016 		__wsum csum2;
3017 		int end;
3018 
3019 		WARN_ON(start > offset + len);
3020 
3021 		end = start + frag_iter->len;
3022 		if ((copy = end - offset) > 0) {
3023 			if (copy > len)
3024 				copy = len;
3025 			csum2 = skb_copy_and_csum_bits(frag_iter,
3026 						       offset - start,
3027 						       to, copy);
3028 			csum = csum_block_add(csum, csum2, pos);
3029 			if ((len -= copy) == 0)
3030 				return csum;
3031 			offset += copy;
3032 			to     += copy;
3033 			pos    += copy;
3034 		}
3035 		start = end;
3036 	}
3037 	BUG_ON(len);
3038 	return csum;
3039 }
3040 EXPORT_SYMBOL(skb_copy_and_csum_bits);
3041 
__skb_checksum_complete_head(struct sk_buff * skb,int len)3042 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3043 {
3044 	__sum16 sum;
3045 
3046 	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3047 	/* See comments in __skb_checksum_complete(). */
3048 	if (likely(!sum)) {
3049 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3050 		    !skb->csum_complete_sw)
3051 			netdev_rx_csum_fault(skb->dev, skb);
3052 	}
3053 	if (!skb_shared(skb))
3054 		skb->csum_valid = !sum;
3055 	return sum;
3056 }
3057 EXPORT_SYMBOL(__skb_checksum_complete_head);
3058 
3059 /* This function assumes skb->csum already holds pseudo header's checksum,
3060  * which has been changed from the hardware checksum, for example, by
3061  * __skb_checksum_validate_complete(). And, the original skb->csum must
3062  * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3063  *
3064  * It returns non-zero if the recomputed checksum is still invalid, otherwise
3065  * zero. The new checksum is stored back into skb->csum unless the skb is
3066  * shared.
3067  */
__skb_checksum_complete(struct sk_buff * skb)3068 __sum16 __skb_checksum_complete(struct sk_buff *skb)
3069 {
3070 	__wsum csum;
3071 	__sum16 sum;
3072 
3073 	csum = skb_checksum(skb, 0, skb->len, 0);
3074 
3075 	sum = csum_fold(csum_add(skb->csum, csum));
3076 	/* This check is inverted, because we already knew the hardware
3077 	 * checksum is invalid before calling this function. So, if the
3078 	 * re-computed checksum is valid instead, then we have a mismatch
3079 	 * between the original skb->csum and skb_checksum(). This means either
3080 	 * the original hardware checksum is incorrect or we screw up skb->csum
3081 	 * when moving skb->data around.
3082 	 */
3083 	if (likely(!sum)) {
3084 		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3085 		    !skb->csum_complete_sw)
3086 			netdev_rx_csum_fault(skb->dev, skb);
3087 	}
3088 
3089 	if (!skb_shared(skb)) {
3090 		/* Save full packet checksum */
3091 		skb->csum = csum;
3092 		skb->ip_summed = CHECKSUM_COMPLETE;
3093 		skb->csum_complete_sw = 1;
3094 		skb->csum_valid = !sum;
3095 	}
3096 
3097 	return sum;
3098 }
3099 EXPORT_SYMBOL(__skb_checksum_complete);
3100 
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)3101 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3102 {
3103 	net_warn_ratelimited(
3104 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3105 		__func__);
3106 	return 0;
3107 }
3108 
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)3109 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3110 				       int offset, int len)
3111 {
3112 	net_warn_ratelimited(
3113 		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3114 		__func__);
3115 	return 0;
3116 }
3117 
3118 static const struct skb_checksum_ops default_crc32c_ops = {
3119 	.update  = warn_crc32c_csum_update,
3120 	.combine = warn_crc32c_csum_combine,
3121 };
3122 
3123 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3124 	&default_crc32c_ops;
3125 EXPORT_SYMBOL(crc32c_csum_stub);
3126 
3127  /**
3128  *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3129  *	@from: source buffer
3130  *
3131  *	Calculates the amount of linear headroom needed in the 'to' skb passed
3132  *	into skb_zerocopy().
3133  */
3134 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)3135 skb_zerocopy_headlen(const struct sk_buff *from)
3136 {
3137 	unsigned int hlen = 0;
3138 
3139 	if (!from->head_frag ||
3140 	    skb_headlen(from) < L1_CACHE_BYTES ||
3141 	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3142 		hlen = skb_headlen(from);
3143 		if (!hlen)
3144 			hlen = from->len;
3145 	}
3146 
3147 	if (skb_has_frag_list(from))
3148 		hlen = from->len;
3149 
3150 	return hlen;
3151 }
3152 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3153 
3154 /**
3155  *	skb_zerocopy - Zero copy skb to skb
3156  *	@to: destination buffer
3157  *	@from: source buffer
3158  *	@len: number of bytes to copy from source buffer
3159  *	@hlen: size of linear headroom in destination buffer
3160  *
3161  *	Copies up to `len` bytes from `from` to `to` by creating references
3162  *	to the frags in the source buffer.
3163  *
3164  *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3165  *	headroom in the `to` buffer.
3166  *
3167  *	Return value:
3168  *	0: everything is OK
3169  *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3170  *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3171  */
3172 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)3173 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3174 {
3175 	int i, j = 0;
3176 	int plen = 0; /* length of skb->head fragment */
3177 	int ret;
3178 	struct page *page;
3179 	unsigned int offset;
3180 
3181 	BUG_ON(!from->head_frag && !hlen);
3182 
3183 	/* dont bother with small payloads */
3184 	if (len <= skb_tailroom(to))
3185 		return skb_copy_bits(from, 0, skb_put(to, len), len);
3186 
3187 	if (hlen) {
3188 		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3189 		if (unlikely(ret))
3190 			return ret;
3191 		len -= hlen;
3192 	} else {
3193 		plen = min_t(int, skb_headlen(from), len);
3194 		if (plen) {
3195 			page = virt_to_head_page(from->head);
3196 			offset = from->data - (unsigned char *)page_address(page);
3197 			__skb_fill_page_desc(to, 0, page, offset, plen);
3198 			get_page(page);
3199 			j = 1;
3200 			len -= plen;
3201 		}
3202 	}
3203 
3204 	to->truesize += len + plen;
3205 	to->len += len + plen;
3206 	to->data_len += len + plen;
3207 
3208 	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3209 		skb_tx_error(from);
3210 		return -ENOMEM;
3211 	}
3212 	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3213 
3214 	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3215 		int size;
3216 
3217 		if (!len)
3218 			break;
3219 		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3220 		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3221 					len);
3222 		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3223 		len -= size;
3224 		skb_frag_ref(to, j);
3225 		j++;
3226 	}
3227 	skb_shinfo(to)->nr_frags = j;
3228 
3229 	return 0;
3230 }
3231 EXPORT_SYMBOL_GPL(skb_zerocopy);
3232 
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)3233 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3234 {
3235 	__wsum csum;
3236 	long csstart;
3237 
3238 	if (skb->ip_summed == CHECKSUM_PARTIAL)
3239 		csstart = skb_checksum_start_offset(skb);
3240 	else
3241 		csstart = skb_headlen(skb);
3242 
3243 	BUG_ON(csstart > skb_headlen(skb));
3244 
3245 	skb_copy_from_linear_data(skb, to, csstart);
3246 
3247 	csum = 0;
3248 	if (csstart != skb->len)
3249 		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3250 					      skb->len - csstart);
3251 
3252 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3253 		long csstuff = csstart + skb->csum_offset;
3254 
3255 		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3256 	}
3257 }
3258 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3259 
3260 /**
3261  *	skb_dequeue - remove from the head of the queue
3262  *	@list: list to dequeue from
3263  *
3264  *	Remove the head of the list. The list lock is taken so the function
3265  *	may be used safely with other locking list functions. The head item is
3266  *	returned or %NULL if the list is empty.
3267  */
3268 
skb_dequeue(struct sk_buff_head * list)3269 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3270 {
3271 	unsigned long flags;
3272 	struct sk_buff *result;
3273 
3274 	spin_lock_irqsave(&list->lock, flags);
3275 	result = __skb_dequeue(list);
3276 	spin_unlock_irqrestore(&list->lock, flags);
3277 	return result;
3278 }
3279 EXPORT_SYMBOL(skb_dequeue);
3280 
3281 /**
3282  *	skb_dequeue_tail - remove from the tail of the queue
3283  *	@list: list to dequeue from
3284  *
3285  *	Remove the tail of the list. The list lock is taken so the function
3286  *	may be used safely with other locking list functions. The tail item is
3287  *	returned or %NULL if the list is empty.
3288  */
skb_dequeue_tail(struct sk_buff_head * list)3289 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3290 {
3291 	unsigned long flags;
3292 	struct sk_buff *result;
3293 
3294 	spin_lock_irqsave(&list->lock, flags);
3295 	result = __skb_dequeue_tail(list);
3296 	spin_unlock_irqrestore(&list->lock, flags);
3297 	return result;
3298 }
3299 EXPORT_SYMBOL(skb_dequeue_tail);
3300 
3301 /**
3302  *	skb_queue_purge - empty a list
3303  *	@list: list to empty
3304  *
3305  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3306  *	the list and one reference dropped. This function takes the list
3307  *	lock and is atomic with respect to other list locking functions.
3308  */
skb_queue_purge(struct sk_buff_head * list)3309 void skb_queue_purge(struct sk_buff_head *list)
3310 {
3311 	struct sk_buff *skb;
3312 	while ((skb = skb_dequeue(list)) != NULL)
3313 		kfree_skb(skb);
3314 }
3315 EXPORT_SYMBOL(skb_queue_purge);
3316 
3317 /**
3318  *	skb_rbtree_purge - empty a skb rbtree
3319  *	@root: root of the rbtree to empty
3320  *	Return value: the sum of truesizes of all purged skbs.
3321  *
3322  *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3323  *	the list and one reference dropped. This function does not take
3324  *	any lock. Synchronization should be handled by the caller (e.g., TCP
3325  *	out-of-order queue is protected by the socket lock).
3326  */
skb_rbtree_purge(struct rb_root * root)3327 unsigned int skb_rbtree_purge(struct rb_root *root)
3328 {
3329 	struct rb_node *p = rb_first(root);
3330 	unsigned int sum = 0;
3331 
3332 	while (p) {
3333 		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3334 
3335 		p = rb_next(p);
3336 		rb_erase(&skb->rbnode, root);
3337 		sum += skb->truesize;
3338 		kfree_skb(skb);
3339 	}
3340 	return sum;
3341 }
3342 
3343 /**
3344  *	skb_queue_head - queue a buffer at the list head
3345  *	@list: list to use
3346  *	@newsk: buffer to queue
3347  *
3348  *	Queue a buffer at the start of the list. This function takes the
3349  *	list lock and can be used safely with other locking &sk_buff functions
3350  *	safely.
3351  *
3352  *	A buffer cannot be placed on two lists at the same time.
3353  */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3354 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3355 {
3356 	unsigned long flags;
3357 
3358 	spin_lock_irqsave(&list->lock, flags);
3359 	__skb_queue_head(list, newsk);
3360 	spin_unlock_irqrestore(&list->lock, flags);
3361 }
3362 EXPORT_SYMBOL(skb_queue_head);
3363 
3364 /**
3365  *	skb_queue_tail - queue a buffer at the list tail
3366  *	@list: list to use
3367  *	@newsk: buffer to queue
3368  *
3369  *	Queue a buffer at the tail of the list. This function takes the
3370  *	list lock and can be used safely with other locking &sk_buff functions
3371  *	safely.
3372  *
3373  *	A buffer cannot be placed on two lists at the same time.
3374  */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3375 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3376 {
3377 	unsigned long flags;
3378 
3379 	spin_lock_irqsave(&list->lock, flags);
3380 	__skb_queue_tail(list, newsk);
3381 	spin_unlock_irqrestore(&list->lock, flags);
3382 }
3383 EXPORT_SYMBOL(skb_queue_tail);
3384 
3385 /**
3386  *	skb_unlink	-	remove a buffer from a list
3387  *	@skb: buffer to remove
3388  *	@list: list to use
3389  *
3390  *	Remove a packet from a list. The list locks are taken and this
3391  *	function is atomic with respect to other list locked calls
3392  *
3393  *	You must know what list the SKB is on.
3394  */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3395 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3396 {
3397 	unsigned long flags;
3398 
3399 	spin_lock_irqsave(&list->lock, flags);
3400 	__skb_unlink(skb, list);
3401 	spin_unlock_irqrestore(&list->lock, flags);
3402 }
3403 EXPORT_SYMBOL(skb_unlink);
3404 
3405 /**
3406  *	skb_append	-	append a buffer
3407  *	@old: buffer to insert after
3408  *	@newsk: buffer to insert
3409  *	@list: list to use
3410  *
3411  *	Place a packet after a given packet in a list. The list locks are taken
3412  *	and this function is atomic with respect to other list locked calls.
3413  *	A buffer cannot be placed on two lists at the same time.
3414  */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3415 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3416 {
3417 	unsigned long flags;
3418 
3419 	spin_lock_irqsave(&list->lock, flags);
3420 	__skb_queue_after(list, old, newsk);
3421 	spin_unlock_irqrestore(&list->lock, flags);
3422 }
3423 EXPORT_SYMBOL(skb_append);
3424 
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3425 static inline void skb_split_inside_header(struct sk_buff *skb,
3426 					   struct sk_buff* skb1,
3427 					   const u32 len, const int pos)
3428 {
3429 	int i;
3430 
3431 	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3432 					 pos - len);
3433 	/* And move data appendix as is. */
3434 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3435 		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3436 
3437 	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3438 	skb_shinfo(skb)->nr_frags  = 0;
3439 	skb1->data_len		   = skb->data_len;
3440 	skb1->len		   += skb1->data_len;
3441 	skb->data_len		   = 0;
3442 	skb->len		   = len;
3443 	skb_set_tail_pointer(skb, len);
3444 }
3445 
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3446 static inline void skb_split_no_header(struct sk_buff *skb,
3447 				       struct sk_buff* skb1,
3448 				       const u32 len, int pos)
3449 {
3450 	int i, k = 0;
3451 	const int nfrags = skb_shinfo(skb)->nr_frags;
3452 
3453 	skb_shinfo(skb)->nr_frags = 0;
3454 	skb1->len		  = skb1->data_len = skb->len - len;
3455 	skb->len		  = len;
3456 	skb->data_len		  = len - pos;
3457 
3458 	for (i = 0; i < nfrags; i++) {
3459 		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3460 
3461 		if (pos + size > len) {
3462 			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3463 
3464 			if (pos < len) {
3465 				/* Split frag.
3466 				 * We have two variants in this case:
3467 				 * 1. Move all the frag to the second
3468 				 *    part, if it is possible. F.e.
3469 				 *    this approach is mandatory for TUX,
3470 				 *    where splitting is expensive.
3471 				 * 2. Split is accurately. We make this.
3472 				 */
3473 				skb_frag_ref(skb, i);
3474 				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3475 				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3476 				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3477 				skb_shinfo(skb)->nr_frags++;
3478 			}
3479 			k++;
3480 		} else
3481 			skb_shinfo(skb)->nr_frags++;
3482 		pos += size;
3483 	}
3484 	skb_shinfo(skb1)->nr_frags = k;
3485 }
3486 
3487 /**
3488  * skb_split - Split fragmented skb to two parts at length len.
3489  * @skb: the buffer to split
3490  * @skb1: the buffer to receive the second part
3491  * @len: new length for skb
3492  */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3493 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3494 {
3495 	int pos = skb_headlen(skb);
3496 
3497 	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3498 	skb_zerocopy_clone(skb1, skb, 0);
3499 	if (len < pos)	/* Split line is inside header. */
3500 		skb_split_inside_header(skb, skb1, len, pos);
3501 	else		/* Second chunk has no header, nothing to copy. */
3502 		skb_split_no_header(skb, skb1, len, pos);
3503 }
3504 EXPORT_SYMBOL(skb_split);
3505 
3506 /* Shifting from/to a cloned skb is a no-go.
3507  *
3508  * Caller cannot keep skb_shinfo related pointers past calling here!
3509  */
skb_prepare_for_shift(struct sk_buff * skb)3510 static int skb_prepare_for_shift(struct sk_buff *skb)
3511 {
3512 	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3513 }
3514 
3515 /**
3516  * skb_shift - Shifts paged data partially from skb to another
3517  * @tgt: buffer into which tail data gets added
3518  * @skb: buffer from which the paged data comes from
3519  * @shiftlen: shift up to this many bytes
3520  *
3521  * Attempts to shift up to shiftlen worth of bytes, which may be less than
3522  * the length of the skb, from skb to tgt. Returns number bytes shifted.
3523  * It's up to caller to free skb if everything was shifted.
3524  *
3525  * If @tgt runs out of frags, the whole operation is aborted.
3526  *
3527  * Skb cannot include anything else but paged data while tgt is allowed
3528  * to have non-paged data as well.
3529  *
3530  * TODO: full sized shift could be optimized but that would need
3531  * specialized skb free'er to handle frags without up-to-date nr_frags.
3532  */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3533 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3534 {
3535 	int from, to, merge, todo;
3536 	skb_frag_t *fragfrom, *fragto;
3537 
3538 	BUG_ON(shiftlen > skb->len);
3539 
3540 	if (skb_headlen(skb))
3541 		return 0;
3542 	if (skb_zcopy(tgt) || skb_zcopy(skb))
3543 		return 0;
3544 
3545 	todo = shiftlen;
3546 	from = 0;
3547 	to = skb_shinfo(tgt)->nr_frags;
3548 	fragfrom = &skb_shinfo(skb)->frags[from];
3549 
3550 	/* Actual merge is delayed until the point when we know we can
3551 	 * commit all, so that we don't have to undo partial changes
3552 	 */
3553 	if (!to ||
3554 	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3555 			      skb_frag_off(fragfrom))) {
3556 		merge = -1;
3557 	} else {
3558 		merge = to - 1;
3559 
3560 		todo -= skb_frag_size(fragfrom);
3561 		if (todo < 0) {
3562 			if (skb_prepare_for_shift(skb) ||
3563 			    skb_prepare_for_shift(tgt))
3564 				return 0;
3565 
3566 			/* All previous frag pointers might be stale! */
3567 			fragfrom = &skb_shinfo(skb)->frags[from];
3568 			fragto = &skb_shinfo(tgt)->frags[merge];
3569 
3570 			skb_frag_size_add(fragto, shiftlen);
3571 			skb_frag_size_sub(fragfrom, shiftlen);
3572 			skb_frag_off_add(fragfrom, shiftlen);
3573 
3574 			goto onlymerged;
3575 		}
3576 
3577 		from++;
3578 	}
3579 
3580 	/* Skip full, not-fitting skb to avoid expensive operations */
3581 	if ((shiftlen == skb->len) &&
3582 	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3583 		return 0;
3584 
3585 	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3586 		return 0;
3587 
3588 	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3589 		if (to == MAX_SKB_FRAGS)
3590 			return 0;
3591 
3592 		fragfrom = &skb_shinfo(skb)->frags[from];
3593 		fragto = &skb_shinfo(tgt)->frags[to];
3594 
3595 		if (todo >= skb_frag_size(fragfrom)) {
3596 			*fragto = *fragfrom;
3597 			todo -= skb_frag_size(fragfrom);
3598 			from++;
3599 			to++;
3600 
3601 		} else {
3602 			__skb_frag_ref(fragfrom);
3603 			skb_frag_page_copy(fragto, fragfrom);
3604 			skb_frag_off_copy(fragto, fragfrom);
3605 			skb_frag_size_set(fragto, todo);
3606 
3607 			skb_frag_off_add(fragfrom, todo);
3608 			skb_frag_size_sub(fragfrom, todo);
3609 			todo = 0;
3610 
3611 			to++;
3612 			break;
3613 		}
3614 	}
3615 
3616 	/* Ready to "commit" this state change to tgt */
3617 	skb_shinfo(tgt)->nr_frags = to;
3618 
3619 	if (merge >= 0) {
3620 		fragfrom = &skb_shinfo(skb)->frags[0];
3621 		fragto = &skb_shinfo(tgt)->frags[merge];
3622 
3623 		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3624 		__skb_frag_unref(fragfrom, skb->pp_recycle);
3625 	}
3626 
3627 	/* Reposition in the original skb */
3628 	to = 0;
3629 	while (from < skb_shinfo(skb)->nr_frags)
3630 		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3631 	skb_shinfo(skb)->nr_frags = to;
3632 
3633 	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3634 
3635 onlymerged:
3636 	/* Most likely the tgt won't ever need its checksum anymore, skb on
3637 	 * the other hand might need it if it needs to be resent
3638 	 */
3639 	tgt->ip_summed = CHECKSUM_PARTIAL;
3640 	skb->ip_summed = CHECKSUM_PARTIAL;
3641 
3642 	/* Yak, is it really working this way? Some helper please? */
3643 	skb->len -= shiftlen;
3644 	skb->data_len -= shiftlen;
3645 	skb->truesize -= shiftlen;
3646 	tgt->len += shiftlen;
3647 	tgt->data_len += shiftlen;
3648 	tgt->truesize += shiftlen;
3649 
3650 	return shiftlen;
3651 }
3652 
3653 /**
3654  * skb_prepare_seq_read - Prepare a sequential read of skb data
3655  * @skb: the buffer to read
3656  * @from: lower offset of data to be read
3657  * @to: upper offset of data to be read
3658  * @st: state variable
3659  *
3660  * Initializes the specified state variable. Must be called before
3661  * invoking skb_seq_read() for the first time.
3662  */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3663 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3664 			  unsigned int to, struct skb_seq_state *st)
3665 {
3666 	st->lower_offset = from;
3667 	st->upper_offset = to;
3668 	st->root_skb = st->cur_skb = skb;
3669 	st->frag_idx = st->stepped_offset = 0;
3670 	st->frag_data = NULL;
3671 	st->frag_off = 0;
3672 }
3673 EXPORT_SYMBOL(skb_prepare_seq_read);
3674 
3675 /**
3676  * skb_seq_read - Sequentially read skb data
3677  * @consumed: number of bytes consumed by the caller so far
3678  * @data: destination pointer for data to be returned
3679  * @st: state variable
3680  *
3681  * Reads a block of skb data at @consumed relative to the
3682  * lower offset specified to skb_prepare_seq_read(). Assigns
3683  * the head of the data block to @data and returns the length
3684  * of the block or 0 if the end of the skb data or the upper
3685  * offset has been reached.
3686  *
3687  * The caller is not required to consume all of the data
3688  * returned, i.e. @consumed is typically set to the number
3689  * of bytes already consumed and the next call to
3690  * skb_seq_read() will return the remaining part of the block.
3691  *
3692  * Note 1: The size of each block of data returned can be arbitrary,
3693  *       this limitation is the cost for zerocopy sequential
3694  *       reads of potentially non linear data.
3695  *
3696  * Note 2: Fragment lists within fragments are not implemented
3697  *       at the moment, state->root_skb could be replaced with
3698  *       a stack for this purpose.
3699  */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3700 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3701 			  struct skb_seq_state *st)
3702 {
3703 	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3704 	skb_frag_t *frag;
3705 
3706 	if (unlikely(abs_offset >= st->upper_offset)) {
3707 		if (st->frag_data) {
3708 			kunmap_atomic(st->frag_data);
3709 			st->frag_data = NULL;
3710 		}
3711 		return 0;
3712 	}
3713 
3714 next_skb:
3715 	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3716 
3717 	if (abs_offset < block_limit && !st->frag_data) {
3718 		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3719 		return block_limit - abs_offset;
3720 	}
3721 
3722 	if (st->frag_idx == 0 && !st->frag_data)
3723 		st->stepped_offset += skb_headlen(st->cur_skb);
3724 
3725 	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3726 		unsigned int pg_idx, pg_off, pg_sz;
3727 
3728 		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3729 
3730 		pg_idx = 0;
3731 		pg_off = skb_frag_off(frag);
3732 		pg_sz = skb_frag_size(frag);
3733 
3734 		if (skb_frag_must_loop(skb_frag_page(frag))) {
3735 			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
3736 			pg_off = offset_in_page(pg_off + st->frag_off);
3737 			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
3738 						    PAGE_SIZE - pg_off);
3739 		}
3740 
3741 		block_limit = pg_sz + st->stepped_offset;
3742 		if (abs_offset < block_limit) {
3743 			if (!st->frag_data)
3744 				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
3745 
3746 			*data = (u8 *)st->frag_data + pg_off +
3747 				(abs_offset - st->stepped_offset);
3748 
3749 			return block_limit - abs_offset;
3750 		}
3751 
3752 		if (st->frag_data) {
3753 			kunmap_atomic(st->frag_data);
3754 			st->frag_data = NULL;
3755 		}
3756 
3757 		st->stepped_offset += pg_sz;
3758 		st->frag_off += pg_sz;
3759 		if (st->frag_off == skb_frag_size(frag)) {
3760 			st->frag_off = 0;
3761 			st->frag_idx++;
3762 		}
3763 	}
3764 
3765 	if (st->frag_data) {
3766 		kunmap_atomic(st->frag_data);
3767 		st->frag_data = NULL;
3768 	}
3769 
3770 	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3771 		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3772 		st->frag_idx = 0;
3773 		goto next_skb;
3774 	} else if (st->cur_skb->next) {
3775 		st->cur_skb = st->cur_skb->next;
3776 		st->frag_idx = 0;
3777 		goto next_skb;
3778 	}
3779 
3780 	return 0;
3781 }
3782 EXPORT_SYMBOL(skb_seq_read);
3783 
3784 /**
3785  * skb_abort_seq_read - Abort a sequential read of skb data
3786  * @st: state variable
3787  *
3788  * Must be called if skb_seq_read() was not called until it
3789  * returned 0.
3790  */
skb_abort_seq_read(struct skb_seq_state * st)3791 void skb_abort_seq_read(struct skb_seq_state *st)
3792 {
3793 	if (st->frag_data)
3794 		kunmap_atomic(st->frag_data);
3795 }
3796 EXPORT_SYMBOL(skb_abort_seq_read);
3797 
3798 #define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
3799 
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3800 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3801 					  struct ts_config *conf,
3802 					  struct ts_state *state)
3803 {
3804 	return skb_seq_read(offset, text, TS_SKB_CB(state));
3805 }
3806 
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3807 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3808 {
3809 	skb_abort_seq_read(TS_SKB_CB(state));
3810 }
3811 
3812 /**
3813  * skb_find_text - Find a text pattern in skb data
3814  * @skb: the buffer to look in
3815  * @from: search offset
3816  * @to: search limit
3817  * @config: textsearch configuration
3818  *
3819  * Finds a pattern in the skb data according to the specified
3820  * textsearch configuration. Use textsearch_next() to retrieve
3821  * subsequent occurrences of the pattern. Returns the offset
3822  * to the first occurrence or UINT_MAX if no match was found.
3823  */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3824 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3825 			   unsigned int to, struct ts_config *config)
3826 {
3827 	struct ts_state state;
3828 	unsigned int ret;
3829 
3830 	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
3831 
3832 	config->get_next_block = skb_ts_get_next_block;
3833 	config->finish = skb_ts_finish;
3834 
3835 	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3836 
3837 	ret = textsearch_find(config, &state);
3838 	return (ret <= to - from ? ret : UINT_MAX);
3839 }
3840 EXPORT_SYMBOL(skb_find_text);
3841 
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3842 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3843 			 int offset, size_t size)
3844 {
3845 	int i = skb_shinfo(skb)->nr_frags;
3846 
3847 	if (skb_can_coalesce(skb, i, page, offset)) {
3848 		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3849 	} else if (i < MAX_SKB_FRAGS) {
3850 		get_page(page);
3851 		skb_fill_page_desc_noacc(skb, i, page, offset, size);
3852 	} else {
3853 		return -EMSGSIZE;
3854 	}
3855 
3856 	return 0;
3857 }
3858 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3859 
3860 /**
3861  *	skb_pull_rcsum - pull skb and update receive checksum
3862  *	@skb: buffer to update
3863  *	@len: length of data pulled
3864  *
3865  *	This function performs an skb_pull on the packet and updates
3866  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3867  *	receive path processing instead of skb_pull unless you know
3868  *	that the checksum difference is zero (e.g., a valid IP header)
3869  *	or you are setting ip_summed to CHECKSUM_NONE.
3870  */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3871 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3872 {
3873 	unsigned char *data = skb->data;
3874 
3875 	BUG_ON(len > skb->len);
3876 	__skb_pull(skb, len);
3877 	skb_postpull_rcsum(skb, data, len);
3878 	return skb->data;
3879 }
3880 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3881 
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3882 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3883 {
3884 	skb_frag_t head_frag;
3885 	struct page *page;
3886 
3887 	page = virt_to_head_page(frag_skb->head);
3888 	__skb_frag_set_page(&head_frag, page);
3889 	skb_frag_off_set(&head_frag, frag_skb->data -
3890 			 (unsigned char *)page_address(page));
3891 	skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3892 	return head_frag;
3893 }
3894 
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3895 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3896 				 netdev_features_t features,
3897 				 unsigned int offset)
3898 {
3899 	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3900 	unsigned int tnl_hlen = skb_tnl_header_len(skb);
3901 	unsigned int delta_truesize = 0;
3902 	unsigned int delta_len = 0;
3903 	struct sk_buff *tail = NULL;
3904 	struct sk_buff *nskb, *tmp;
3905 	int len_diff, err;
3906 
3907 	skb_push(skb, -skb_network_offset(skb) + offset);
3908 
3909 	/* Ensure the head is writeable before touching the shared info */
3910 	err = skb_unclone(skb, GFP_ATOMIC);
3911 	if (err)
3912 		goto err_linearize;
3913 
3914 	skb_shinfo(skb)->frag_list = NULL;
3915 
3916 	while (list_skb) {
3917 		nskb = list_skb;
3918 		list_skb = list_skb->next;
3919 
3920 		err = 0;
3921 		delta_truesize += nskb->truesize;
3922 		if (skb_shared(nskb)) {
3923 			tmp = skb_clone(nskb, GFP_ATOMIC);
3924 			if (tmp) {
3925 				consume_skb(nskb);
3926 				nskb = tmp;
3927 				err = skb_unclone(nskb, GFP_ATOMIC);
3928 			} else {
3929 				err = -ENOMEM;
3930 			}
3931 		}
3932 
3933 		if (!tail)
3934 			skb->next = nskb;
3935 		else
3936 			tail->next = nskb;
3937 
3938 		if (unlikely(err)) {
3939 			nskb->next = list_skb;
3940 			goto err_linearize;
3941 		}
3942 
3943 		tail = nskb;
3944 
3945 		delta_len += nskb->len;
3946 
3947 		skb_push(nskb, -skb_network_offset(nskb) + offset);
3948 
3949 		skb_release_head_state(nskb);
3950 		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
3951 		__copy_skb_header(nskb, skb);
3952 
3953 		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3954 		nskb->transport_header += len_diff;
3955 		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3956 						 nskb->data - tnl_hlen,
3957 						 offset + tnl_hlen);
3958 
3959 		if (skb_needs_linearize(nskb, features) &&
3960 		    __skb_linearize(nskb))
3961 			goto err_linearize;
3962 	}
3963 
3964 	skb->truesize = skb->truesize - delta_truesize;
3965 	skb->data_len = skb->data_len - delta_len;
3966 	skb->len = skb->len - delta_len;
3967 
3968 	skb_gso_reset(skb);
3969 
3970 	skb->prev = tail;
3971 
3972 	if (skb_needs_linearize(skb, features) &&
3973 	    __skb_linearize(skb))
3974 		goto err_linearize;
3975 
3976 	skb_get(skb);
3977 
3978 	return skb;
3979 
3980 err_linearize:
3981 	kfree_skb_list(skb->next);
3982 	skb->next = NULL;
3983 	return ERR_PTR(-ENOMEM);
3984 }
3985 EXPORT_SYMBOL_GPL(skb_segment_list);
3986 
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3987 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3988 {
3989 	if (unlikely(p->len + skb->len >= 65536))
3990 		return -E2BIG;
3991 
3992 	if (NAPI_GRO_CB(p)->last == p)
3993 		skb_shinfo(p)->frag_list = skb;
3994 	else
3995 		NAPI_GRO_CB(p)->last->next = skb;
3996 
3997 	skb_pull(skb, skb_gro_offset(skb));
3998 
3999 	NAPI_GRO_CB(p)->last = skb;
4000 	NAPI_GRO_CB(p)->count++;
4001 	p->data_len += skb->len;
4002 
4003 	/* sk owenrship - if any - completely transferred to the aggregated packet */
4004 	skb->destructor = NULL;
4005 	p->truesize += skb->truesize;
4006 	p->len += skb->len;
4007 
4008 	NAPI_GRO_CB(skb)->same_flow = 1;
4009 
4010 	return 0;
4011 }
4012 
4013 /**
4014  *	skb_segment - Perform protocol segmentation on skb.
4015  *	@head_skb: buffer to segment
4016  *	@features: features for the output path (see dev->features)
4017  *
4018  *	This function performs segmentation on the given skb.  It returns
4019  *	a pointer to the first in a list of new skbs for the segments.
4020  *	In case of error it returns ERR_PTR(err).
4021  */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)4022 struct sk_buff *skb_segment(struct sk_buff *head_skb,
4023 			    netdev_features_t features)
4024 {
4025 	struct sk_buff *segs = NULL;
4026 	struct sk_buff *tail = NULL;
4027 	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4028 	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4029 	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4030 	unsigned int offset = doffset;
4031 	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4032 	unsigned int partial_segs = 0;
4033 	unsigned int headroom;
4034 	unsigned int len = head_skb->len;
4035 	struct sk_buff *frag_skb;
4036 	skb_frag_t *frag;
4037 	__be16 proto;
4038 	bool csum, sg;
4039 	int err = -ENOMEM;
4040 	int i = 0;
4041 	int nfrags, pos;
4042 
4043 	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4044 	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4045 		struct sk_buff *check_skb;
4046 
4047 		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4048 			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4049 				/* gso_size is untrusted, and we have a frag_list with
4050 				 * a linear non head_frag item.
4051 				 *
4052 				 * If head_skb's headlen does not fit requested gso_size,
4053 				 * it means that the frag_list members do NOT terminate
4054 				 * on exact gso_size boundaries. Hence we cannot perform
4055 				 * skb_frag_t page sharing. Therefore we must fallback to
4056 				 * copying the frag_list skbs; we do so by disabling SG.
4057 				 */
4058 				features &= ~NETIF_F_SG;
4059 				break;
4060 			}
4061 		}
4062 	}
4063 
4064 	__skb_push(head_skb, doffset);
4065 	proto = skb_network_protocol(head_skb, NULL);
4066 	if (unlikely(!proto))
4067 		return ERR_PTR(-EINVAL);
4068 
4069 	sg = !!(features & NETIF_F_SG);
4070 	csum = !!can_checksum_protocol(features, proto);
4071 
4072 	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4073 		if (!(features & NETIF_F_GSO_PARTIAL)) {
4074 			struct sk_buff *iter;
4075 			unsigned int frag_len;
4076 
4077 			if (!list_skb ||
4078 			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4079 				goto normal;
4080 
4081 			/* If we get here then all the required
4082 			 * GSO features except frag_list are supported.
4083 			 * Try to split the SKB to multiple GSO SKBs
4084 			 * with no frag_list.
4085 			 * Currently we can do that only when the buffers don't
4086 			 * have a linear part and all the buffers except
4087 			 * the last are of the same length.
4088 			 */
4089 			frag_len = list_skb->len;
4090 			skb_walk_frags(head_skb, iter) {
4091 				if (frag_len != iter->len && iter->next)
4092 					goto normal;
4093 				if (skb_headlen(iter) && !iter->head_frag)
4094 					goto normal;
4095 
4096 				len -= iter->len;
4097 			}
4098 
4099 			if (len != frag_len)
4100 				goto normal;
4101 		}
4102 
4103 		/* GSO partial only requires that we trim off any excess that
4104 		 * doesn't fit into an MSS sized block, so take care of that
4105 		 * now.
4106 		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4107 		 */
4108 		partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
4109 		if (partial_segs > 1)
4110 			mss *= partial_segs;
4111 		else
4112 			partial_segs = 0;
4113 	}
4114 
4115 normal:
4116 	headroom = skb_headroom(head_skb);
4117 	pos = skb_headlen(head_skb);
4118 
4119 	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4120 		return ERR_PTR(-ENOMEM);
4121 
4122 	nfrags = skb_shinfo(head_skb)->nr_frags;
4123 	frag = skb_shinfo(head_skb)->frags;
4124 	frag_skb = head_skb;
4125 
4126 	do {
4127 		struct sk_buff *nskb;
4128 		skb_frag_t *nskb_frag;
4129 		int hsize;
4130 		int size;
4131 
4132 		if (unlikely(mss == GSO_BY_FRAGS)) {
4133 			len = list_skb->len;
4134 		} else {
4135 			len = head_skb->len - offset;
4136 			if (len > mss)
4137 				len = mss;
4138 		}
4139 
4140 		hsize = skb_headlen(head_skb) - offset;
4141 
4142 		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4143 		    (skb_headlen(list_skb) == len || sg)) {
4144 			BUG_ON(skb_headlen(list_skb) > len);
4145 
4146 			nskb = skb_clone(list_skb, GFP_ATOMIC);
4147 			if (unlikely(!nskb))
4148 				goto err;
4149 
4150 			i = 0;
4151 			nfrags = skb_shinfo(list_skb)->nr_frags;
4152 			frag = skb_shinfo(list_skb)->frags;
4153 			frag_skb = list_skb;
4154 			pos += skb_headlen(list_skb);
4155 
4156 			while (pos < offset + len) {
4157 				BUG_ON(i >= nfrags);
4158 
4159 				size = skb_frag_size(frag);
4160 				if (pos + size > offset + len)
4161 					break;
4162 
4163 				i++;
4164 				pos += size;
4165 				frag++;
4166 			}
4167 
4168 			list_skb = list_skb->next;
4169 
4170 			if (unlikely(pskb_trim(nskb, len))) {
4171 				kfree_skb(nskb);
4172 				goto err;
4173 			}
4174 
4175 			hsize = skb_end_offset(nskb);
4176 			if (skb_cow_head(nskb, doffset + headroom)) {
4177 				kfree_skb(nskb);
4178 				goto err;
4179 			}
4180 
4181 			nskb->truesize += skb_end_offset(nskb) - hsize;
4182 			skb_release_head_state(nskb);
4183 			__skb_push(nskb, doffset);
4184 		} else {
4185 			if (hsize < 0)
4186 				hsize = 0;
4187 			if (hsize > len || !sg)
4188 				hsize = len;
4189 
4190 			nskb = __alloc_skb(hsize + doffset + headroom,
4191 					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4192 					   NUMA_NO_NODE);
4193 
4194 			if (unlikely(!nskb))
4195 				goto err;
4196 
4197 			skb_reserve(nskb, headroom);
4198 			__skb_put(nskb, doffset);
4199 		}
4200 
4201 		if (segs)
4202 			tail->next = nskb;
4203 		else
4204 			segs = nskb;
4205 		tail = nskb;
4206 
4207 		__copy_skb_header(nskb, head_skb);
4208 
4209 		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4210 		skb_reset_mac_len(nskb);
4211 
4212 		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4213 						 nskb->data - tnl_hlen,
4214 						 doffset + tnl_hlen);
4215 
4216 		if (nskb->len == len + doffset)
4217 			goto perform_csum_check;
4218 
4219 		if (!sg) {
4220 			if (!csum) {
4221 				if (!nskb->remcsum_offload)
4222 					nskb->ip_summed = CHECKSUM_NONE;
4223 				SKB_GSO_CB(nskb)->csum =
4224 					skb_copy_and_csum_bits(head_skb, offset,
4225 							       skb_put(nskb,
4226 								       len),
4227 							       len);
4228 				SKB_GSO_CB(nskb)->csum_start =
4229 					skb_headroom(nskb) + doffset;
4230 			} else {
4231 				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4232 					goto err;
4233 			}
4234 			continue;
4235 		}
4236 
4237 		nskb_frag = skb_shinfo(nskb)->frags;
4238 
4239 		skb_copy_from_linear_data_offset(head_skb, offset,
4240 						 skb_put(nskb, hsize), hsize);
4241 
4242 		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4243 					   SKBFL_SHARED_FRAG;
4244 
4245 		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4246 			goto err;
4247 
4248 		while (pos < offset + len) {
4249 			if (i >= nfrags) {
4250 				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4251 				    skb_zerocopy_clone(nskb, list_skb,
4252 						       GFP_ATOMIC))
4253 					goto err;
4254 
4255 				i = 0;
4256 				nfrags = skb_shinfo(list_skb)->nr_frags;
4257 				frag = skb_shinfo(list_skb)->frags;
4258 				frag_skb = list_skb;
4259 				if (!skb_headlen(list_skb)) {
4260 					BUG_ON(!nfrags);
4261 				} else {
4262 					BUG_ON(!list_skb->head_frag);
4263 
4264 					/* to make room for head_frag. */
4265 					i--;
4266 					frag--;
4267 				}
4268 
4269 				list_skb = list_skb->next;
4270 			}
4271 
4272 			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4273 				     MAX_SKB_FRAGS)) {
4274 				net_warn_ratelimited(
4275 					"skb_segment: too many frags: %u %u\n",
4276 					pos, mss);
4277 				err = -EINVAL;
4278 				goto err;
4279 			}
4280 
4281 			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4282 			__skb_frag_ref(nskb_frag);
4283 			size = skb_frag_size(nskb_frag);
4284 
4285 			if (pos < offset) {
4286 				skb_frag_off_add(nskb_frag, offset - pos);
4287 				skb_frag_size_sub(nskb_frag, offset - pos);
4288 			}
4289 
4290 			skb_shinfo(nskb)->nr_frags++;
4291 
4292 			if (pos + size <= offset + len) {
4293 				i++;
4294 				frag++;
4295 				pos += size;
4296 			} else {
4297 				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4298 				goto skip_fraglist;
4299 			}
4300 
4301 			nskb_frag++;
4302 		}
4303 
4304 skip_fraglist:
4305 		nskb->data_len = len - hsize;
4306 		nskb->len += nskb->data_len;
4307 		nskb->truesize += nskb->data_len;
4308 
4309 perform_csum_check:
4310 		if (!csum) {
4311 			if (skb_has_shared_frag(nskb) &&
4312 			    __skb_linearize(nskb))
4313 				goto err;
4314 
4315 			if (!nskb->remcsum_offload)
4316 				nskb->ip_summed = CHECKSUM_NONE;
4317 			SKB_GSO_CB(nskb)->csum =
4318 				skb_checksum(nskb, doffset,
4319 					     nskb->len - doffset, 0);
4320 			SKB_GSO_CB(nskb)->csum_start =
4321 				skb_headroom(nskb) + doffset;
4322 		}
4323 	} while ((offset += len) < head_skb->len);
4324 
4325 	/* Some callers want to get the end of the list.
4326 	 * Put it in segs->prev to avoid walking the list.
4327 	 * (see validate_xmit_skb_list() for example)
4328 	 */
4329 	segs->prev = tail;
4330 
4331 	if (partial_segs) {
4332 		struct sk_buff *iter;
4333 		int type = skb_shinfo(head_skb)->gso_type;
4334 		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4335 
4336 		/* Update type to add partial and then remove dodgy if set */
4337 		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4338 		type &= ~SKB_GSO_DODGY;
4339 
4340 		/* Update GSO info and prepare to start updating headers on
4341 		 * our way back down the stack of protocols.
4342 		 */
4343 		for (iter = segs; iter; iter = iter->next) {
4344 			skb_shinfo(iter)->gso_size = gso_size;
4345 			skb_shinfo(iter)->gso_segs = partial_segs;
4346 			skb_shinfo(iter)->gso_type = type;
4347 			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4348 		}
4349 
4350 		if (tail->len - doffset <= gso_size)
4351 			skb_shinfo(tail)->gso_size = 0;
4352 		else if (tail != segs)
4353 			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4354 	}
4355 
4356 	/* Following permits correct backpressure, for protocols
4357 	 * using skb_set_owner_w().
4358 	 * Idea is to tranfert ownership from head_skb to last segment.
4359 	 */
4360 	if (head_skb->destructor == sock_wfree) {
4361 		swap(tail->truesize, head_skb->truesize);
4362 		swap(tail->destructor, head_skb->destructor);
4363 		swap(tail->sk, head_skb->sk);
4364 	}
4365 	return segs;
4366 
4367 err:
4368 	kfree_skb_list(segs);
4369 	return ERR_PTR(err);
4370 }
4371 EXPORT_SYMBOL_GPL(skb_segment);
4372 
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4373 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4374 {
4375 	struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4376 	unsigned int offset = skb_gro_offset(skb);
4377 	unsigned int headlen = skb_headlen(skb);
4378 	unsigned int len = skb_gro_len(skb);
4379 	unsigned int delta_truesize;
4380 	unsigned int new_truesize;
4381 	struct sk_buff *lp;
4382 
4383 	if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4384 		return -E2BIG;
4385 
4386 	lp = NAPI_GRO_CB(p)->last;
4387 	pinfo = skb_shinfo(lp);
4388 
4389 	if (headlen <= offset) {
4390 		skb_frag_t *frag;
4391 		skb_frag_t *frag2;
4392 		int i = skbinfo->nr_frags;
4393 		int nr_frags = pinfo->nr_frags + i;
4394 
4395 		if (nr_frags > MAX_SKB_FRAGS)
4396 			goto merge;
4397 
4398 		offset -= headlen;
4399 		pinfo->nr_frags = nr_frags;
4400 		skbinfo->nr_frags = 0;
4401 
4402 		frag = pinfo->frags + nr_frags;
4403 		frag2 = skbinfo->frags + i;
4404 		do {
4405 			*--frag = *--frag2;
4406 		} while (--i);
4407 
4408 		skb_frag_off_add(frag, offset);
4409 		skb_frag_size_sub(frag, offset);
4410 
4411 		/* all fragments truesize : remove (head size + sk_buff) */
4412 		new_truesize = SKB_TRUESIZE(skb_end_offset(skb));
4413 		delta_truesize = skb->truesize - new_truesize;
4414 
4415 		skb->truesize = new_truesize;
4416 		skb->len -= skb->data_len;
4417 		skb->data_len = 0;
4418 
4419 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4420 		goto done;
4421 	} else if (skb->head_frag) {
4422 		int nr_frags = pinfo->nr_frags;
4423 		skb_frag_t *frag = pinfo->frags + nr_frags;
4424 		struct page *page = virt_to_head_page(skb->head);
4425 		unsigned int first_size = headlen - offset;
4426 		unsigned int first_offset;
4427 
4428 		if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4429 			goto merge;
4430 
4431 		first_offset = skb->data -
4432 			       (unsigned char *)page_address(page) +
4433 			       offset;
4434 
4435 		pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4436 
4437 		__skb_frag_set_page(frag, page);
4438 		skb_frag_off_set(frag, first_offset);
4439 		skb_frag_size_set(frag, first_size);
4440 
4441 		memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4442 		/* We dont need to clear skbinfo->nr_frags here */
4443 
4444 		new_truesize = SKB_DATA_ALIGN(sizeof(struct sk_buff));
4445 		delta_truesize = skb->truesize - new_truesize;
4446 		skb->truesize = new_truesize;
4447 		NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4448 		goto done;
4449 	}
4450 
4451 merge:
4452 	/* sk owenrship - if any - completely transferred to the aggregated packet */
4453 	skb->destructor = NULL;
4454 	delta_truesize = skb->truesize;
4455 	if (offset > headlen) {
4456 		unsigned int eat = offset - headlen;
4457 
4458 		skb_frag_off_add(&skbinfo->frags[0], eat);
4459 		skb_frag_size_sub(&skbinfo->frags[0], eat);
4460 		skb->data_len -= eat;
4461 		skb->len -= eat;
4462 		offset = headlen;
4463 	}
4464 
4465 	__skb_pull(skb, offset);
4466 
4467 	if (NAPI_GRO_CB(p)->last == p)
4468 		skb_shinfo(p)->frag_list = skb;
4469 	else
4470 		NAPI_GRO_CB(p)->last->next = skb;
4471 	NAPI_GRO_CB(p)->last = skb;
4472 	__skb_header_release(skb);
4473 	lp = p;
4474 
4475 done:
4476 	NAPI_GRO_CB(p)->count++;
4477 	p->data_len += len;
4478 	p->truesize += delta_truesize;
4479 	p->len += len;
4480 	if (lp != p) {
4481 		lp->data_len += len;
4482 		lp->truesize += delta_truesize;
4483 		lp->len += len;
4484 	}
4485 	NAPI_GRO_CB(skb)->same_flow = 1;
4486 	return 0;
4487 }
4488 
4489 #ifdef CONFIG_SKB_EXTENSIONS
4490 #define SKB_EXT_ALIGN_VALUE	8
4491 #define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4492 
4493 static const u8 skb_ext_type_len[] = {
4494 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4495 	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4496 #endif
4497 #ifdef CONFIG_XFRM
4498 	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4499 #endif
4500 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4501 	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4502 #endif
4503 #if IS_ENABLED(CONFIG_MPTCP)
4504 	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4505 #endif
4506 };
4507 
skb_ext_total_length(void)4508 static __always_inline unsigned int skb_ext_total_length(void)
4509 {
4510 	return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4511 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4512 		skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4513 #endif
4514 #ifdef CONFIG_XFRM
4515 		skb_ext_type_len[SKB_EXT_SEC_PATH] +
4516 #endif
4517 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4518 		skb_ext_type_len[TC_SKB_EXT] +
4519 #endif
4520 #if IS_ENABLED(CONFIG_MPTCP)
4521 		skb_ext_type_len[SKB_EXT_MPTCP] +
4522 #endif
4523 		0;
4524 }
4525 
skb_extensions_init(void)4526 static void skb_extensions_init(void)
4527 {
4528 	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4529 	BUILD_BUG_ON(skb_ext_total_length() > 255);
4530 
4531 	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4532 					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4533 					     0,
4534 					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4535 					     NULL);
4536 }
4537 #else
skb_extensions_init(void)4538 static void skb_extensions_init(void) {}
4539 #endif
4540 
skb_init(void)4541 void __init skb_init(void)
4542 {
4543 	skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4544 					      sizeof(struct sk_buff),
4545 					      0,
4546 					      SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4547 					      offsetof(struct sk_buff, cb),
4548 					      sizeof_field(struct sk_buff, cb),
4549 					      NULL);
4550 	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4551 						sizeof(struct sk_buff_fclones),
4552 						0,
4553 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4554 						NULL);
4555 	skb_extensions_init();
4556 }
4557 
4558 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4559 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4560 	       unsigned int recursion_level)
4561 {
4562 	int start = skb_headlen(skb);
4563 	int i, copy = start - offset;
4564 	struct sk_buff *frag_iter;
4565 	int elt = 0;
4566 
4567 	if (unlikely(recursion_level >= 24))
4568 		return -EMSGSIZE;
4569 
4570 	if (copy > 0) {
4571 		if (copy > len)
4572 			copy = len;
4573 		sg_set_buf(sg, skb->data + offset, copy);
4574 		elt++;
4575 		if ((len -= copy) == 0)
4576 			return elt;
4577 		offset += copy;
4578 	}
4579 
4580 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4581 		int end;
4582 
4583 		WARN_ON(start > offset + len);
4584 
4585 		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4586 		if ((copy = end - offset) > 0) {
4587 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4588 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4589 				return -EMSGSIZE;
4590 
4591 			if (copy > len)
4592 				copy = len;
4593 			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4594 				    skb_frag_off(frag) + offset - start);
4595 			elt++;
4596 			if (!(len -= copy))
4597 				return elt;
4598 			offset += copy;
4599 		}
4600 		start = end;
4601 	}
4602 
4603 	skb_walk_frags(skb, frag_iter) {
4604 		int end, ret;
4605 
4606 		WARN_ON(start > offset + len);
4607 
4608 		end = start + frag_iter->len;
4609 		if ((copy = end - offset) > 0) {
4610 			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4611 				return -EMSGSIZE;
4612 
4613 			if (copy > len)
4614 				copy = len;
4615 			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4616 					      copy, recursion_level + 1);
4617 			if (unlikely(ret < 0))
4618 				return ret;
4619 			elt += ret;
4620 			if ((len -= copy) == 0)
4621 				return elt;
4622 			offset += copy;
4623 		}
4624 		start = end;
4625 	}
4626 	BUG_ON(len);
4627 	return elt;
4628 }
4629 
4630 /**
4631  *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4632  *	@skb: Socket buffer containing the buffers to be mapped
4633  *	@sg: The scatter-gather list to map into
4634  *	@offset: The offset into the buffer's contents to start mapping
4635  *	@len: Length of buffer space to be mapped
4636  *
4637  *	Fill the specified scatter-gather list with mappings/pointers into a
4638  *	region of the buffer space attached to a socket buffer. Returns either
4639  *	the number of scatterlist items used, or -EMSGSIZE if the contents
4640  *	could not fit.
4641  */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4642 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4643 {
4644 	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4645 
4646 	if (nsg <= 0)
4647 		return nsg;
4648 
4649 	sg_mark_end(&sg[nsg - 1]);
4650 
4651 	return nsg;
4652 }
4653 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4654 
4655 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4656  * sglist without mark the sg which contain last skb data as the end.
4657  * So the caller can mannipulate sg list as will when padding new data after
4658  * the first call without calling sg_unmark_end to expend sg list.
4659  *
4660  * Scenario to use skb_to_sgvec_nomark:
4661  * 1. sg_init_table
4662  * 2. skb_to_sgvec_nomark(payload1)
4663  * 3. skb_to_sgvec_nomark(payload2)
4664  *
4665  * This is equivalent to:
4666  * 1. sg_init_table
4667  * 2. skb_to_sgvec(payload1)
4668  * 3. sg_unmark_end
4669  * 4. skb_to_sgvec(payload2)
4670  *
4671  * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4672  * is more preferable.
4673  */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4674 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4675 			int offset, int len)
4676 {
4677 	return __skb_to_sgvec(skb, sg, offset, len, 0);
4678 }
4679 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4680 
4681 
4682 
4683 /**
4684  *	skb_cow_data - Check that a socket buffer's data buffers are writable
4685  *	@skb: The socket buffer to check.
4686  *	@tailbits: Amount of trailing space to be added
4687  *	@trailer: Returned pointer to the skb where the @tailbits space begins
4688  *
4689  *	Make sure that the data buffers attached to a socket buffer are
4690  *	writable. If they are not, private copies are made of the data buffers
4691  *	and the socket buffer is set to use these instead.
4692  *
4693  *	If @tailbits is given, make sure that there is space to write @tailbits
4694  *	bytes of data beyond current end of socket buffer.  @trailer will be
4695  *	set to point to the skb in which this space begins.
4696  *
4697  *	The number of scatterlist elements required to completely map the
4698  *	COW'd and extended socket buffer will be returned.
4699  */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4700 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4701 {
4702 	int copyflag;
4703 	int elt;
4704 	struct sk_buff *skb1, **skb_p;
4705 
4706 	/* If skb is cloned or its head is paged, reallocate
4707 	 * head pulling out all the pages (pages are considered not writable
4708 	 * at the moment even if they are anonymous).
4709 	 */
4710 	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4711 	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4712 		return -ENOMEM;
4713 
4714 	/* Easy case. Most of packets will go this way. */
4715 	if (!skb_has_frag_list(skb)) {
4716 		/* A little of trouble, not enough of space for trailer.
4717 		 * This should not happen, when stack is tuned to generate
4718 		 * good frames. OK, on miss we reallocate and reserve even more
4719 		 * space, 128 bytes is fair. */
4720 
4721 		if (skb_tailroom(skb) < tailbits &&
4722 		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4723 			return -ENOMEM;
4724 
4725 		/* Voila! */
4726 		*trailer = skb;
4727 		return 1;
4728 	}
4729 
4730 	/* Misery. We are in troubles, going to mincer fragments... */
4731 
4732 	elt = 1;
4733 	skb_p = &skb_shinfo(skb)->frag_list;
4734 	copyflag = 0;
4735 
4736 	while ((skb1 = *skb_p) != NULL) {
4737 		int ntail = 0;
4738 
4739 		/* The fragment is partially pulled by someone,
4740 		 * this can happen on input. Copy it and everything
4741 		 * after it. */
4742 
4743 		if (skb_shared(skb1))
4744 			copyflag = 1;
4745 
4746 		/* If the skb is the last, worry about trailer. */
4747 
4748 		if (skb1->next == NULL && tailbits) {
4749 			if (skb_shinfo(skb1)->nr_frags ||
4750 			    skb_has_frag_list(skb1) ||
4751 			    skb_tailroom(skb1) < tailbits)
4752 				ntail = tailbits + 128;
4753 		}
4754 
4755 		if (copyflag ||
4756 		    skb_cloned(skb1) ||
4757 		    ntail ||
4758 		    skb_shinfo(skb1)->nr_frags ||
4759 		    skb_has_frag_list(skb1)) {
4760 			struct sk_buff *skb2;
4761 
4762 			/* Fuck, we are miserable poor guys... */
4763 			if (ntail == 0)
4764 				skb2 = skb_copy(skb1, GFP_ATOMIC);
4765 			else
4766 				skb2 = skb_copy_expand(skb1,
4767 						       skb_headroom(skb1),
4768 						       ntail,
4769 						       GFP_ATOMIC);
4770 			if (unlikely(skb2 == NULL))
4771 				return -ENOMEM;
4772 
4773 			if (skb1->sk)
4774 				skb_set_owner_w(skb2, skb1->sk);
4775 
4776 			/* Looking around. Are we still alive?
4777 			 * OK, link new skb, drop old one */
4778 
4779 			skb2->next = skb1->next;
4780 			*skb_p = skb2;
4781 			kfree_skb(skb1);
4782 			skb1 = skb2;
4783 		}
4784 		elt++;
4785 		*trailer = skb1;
4786 		skb_p = &skb1->next;
4787 	}
4788 
4789 	return elt;
4790 }
4791 EXPORT_SYMBOL_GPL(skb_cow_data);
4792 
sock_rmem_free(struct sk_buff * skb)4793 static void sock_rmem_free(struct sk_buff *skb)
4794 {
4795 	struct sock *sk = skb->sk;
4796 
4797 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4798 }
4799 
skb_set_err_queue(struct sk_buff * skb)4800 static void skb_set_err_queue(struct sk_buff *skb)
4801 {
4802 	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4803 	 * So, it is safe to (mis)use it to mark skbs on the error queue.
4804 	 */
4805 	skb->pkt_type = PACKET_OUTGOING;
4806 	BUILD_BUG_ON(PACKET_OUTGOING == 0);
4807 }
4808 
4809 /*
4810  * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4811  */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4812 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4813 {
4814 	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4815 	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4816 		return -ENOMEM;
4817 
4818 	skb_orphan(skb);
4819 	skb->sk = sk;
4820 	skb->destructor = sock_rmem_free;
4821 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4822 	skb_set_err_queue(skb);
4823 
4824 	/* before exiting rcu section, make sure dst is refcounted */
4825 	skb_dst_force(skb);
4826 
4827 	skb_queue_tail(&sk->sk_error_queue, skb);
4828 	if (!sock_flag(sk, SOCK_DEAD))
4829 		sk_error_report(sk);
4830 	return 0;
4831 }
4832 EXPORT_SYMBOL(sock_queue_err_skb);
4833 
is_icmp_err_skb(const struct sk_buff * skb)4834 static bool is_icmp_err_skb(const struct sk_buff *skb)
4835 {
4836 	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4837 		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4838 }
4839 
sock_dequeue_err_skb(struct sock * sk)4840 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4841 {
4842 	struct sk_buff_head *q = &sk->sk_error_queue;
4843 	struct sk_buff *skb, *skb_next = NULL;
4844 	bool icmp_next = false;
4845 	unsigned long flags;
4846 
4847 	spin_lock_irqsave(&q->lock, flags);
4848 	skb = __skb_dequeue(q);
4849 	if (skb && (skb_next = skb_peek(q))) {
4850 		icmp_next = is_icmp_err_skb(skb_next);
4851 		if (icmp_next)
4852 			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4853 	}
4854 	spin_unlock_irqrestore(&q->lock, flags);
4855 
4856 	if (is_icmp_err_skb(skb) && !icmp_next)
4857 		sk->sk_err = 0;
4858 
4859 	if (skb_next)
4860 		sk_error_report(sk);
4861 
4862 	return skb;
4863 }
4864 EXPORT_SYMBOL(sock_dequeue_err_skb);
4865 
4866 /**
4867  * skb_clone_sk - create clone of skb, and take reference to socket
4868  * @skb: the skb to clone
4869  *
4870  * This function creates a clone of a buffer that holds a reference on
4871  * sk_refcnt.  Buffers created via this function are meant to be
4872  * returned using sock_queue_err_skb, or free via kfree_skb.
4873  *
4874  * When passing buffers allocated with this function to sock_queue_err_skb
4875  * it is necessary to wrap the call with sock_hold/sock_put in order to
4876  * prevent the socket from being released prior to being enqueued on
4877  * the sk_error_queue.
4878  */
skb_clone_sk(struct sk_buff * skb)4879 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4880 {
4881 	struct sock *sk = skb->sk;
4882 	struct sk_buff *clone;
4883 
4884 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4885 		return NULL;
4886 
4887 	clone = skb_clone(skb, GFP_ATOMIC);
4888 	if (!clone) {
4889 		sock_put(sk);
4890 		return NULL;
4891 	}
4892 
4893 	clone->sk = sk;
4894 	clone->destructor = sock_efree;
4895 
4896 	return clone;
4897 }
4898 EXPORT_SYMBOL(skb_clone_sk);
4899 
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4900 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4901 					struct sock *sk,
4902 					int tstype,
4903 					bool opt_stats)
4904 {
4905 	struct sock_exterr_skb *serr;
4906 	int err;
4907 
4908 	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4909 
4910 	serr = SKB_EXT_ERR(skb);
4911 	memset(serr, 0, sizeof(*serr));
4912 	serr->ee.ee_errno = ENOMSG;
4913 	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4914 	serr->ee.ee_info = tstype;
4915 	serr->opt_stats = opt_stats;
4916 	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4917 	if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4918 		serr->ee.ee_data = skb_shinfo(skb)->tskey;
4919 		if (sk->sk_protocol == IPPROTO_TCP &&
4920 		    sk->sk_type == SOCK_STREAM)
4921 			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
4922 	}
4923 
4924 	err = sock_queue_err_skb(sk, skb);
4925 
4926 	if (err)
4927 		kfree_skb(skb);
4928 }
4929 
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4930 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4931 {
4932 	bool ret;
4933 
4934 	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
4935 		return true;
4936 
4937 	read_lock_bh(&sk->sk_callback_lock);
4938 	ret = sk->sk_socket && sk->sk_socket->file &&
4939 	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4940 	read_unlock_bh(&sk->sk_callback_lock);
4941 	return ret;
4942 }
4943 
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4944 void skb_complete_tx_timestamp(struct sk_buff *skb,
4945 			       struct skb_shared_hwtstamps *hwtstamps)
4946 {
4947 	struct sock *sk = skb->sk;
4948 
4949 	if (!skb_may_tx_timestamp(sk, false))
4950 		goto err;
4951 
4952 	/* Take a reference to prevent skb_orphan() from freeing the socket,
4953 	 * but only if the socket refcount is not zero.
4954 	 */
4955 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4956 		*skb_hwtstamps(skb) = *hwtstamps;
4957 		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4958 		sock_put(sk);
4959 		return;
4960 	}
4961 
4962 err:
4963 	kfree_skb(skb);
4964 }
4965 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4966 
__skb_tstamp_tx(struct sk_buff * orig_skb,const struct sk_buff * ack_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4967 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4968 		     const struct sk_buff *ack_skb,
4969 		     struct skb_shared_hwtstamps *hwtstamps,
4970 		     struct sock *sk, int tstype)
4971 {
4972 	struct sk_buff *skb;
4973 	bool tsonly, opt_stats = false;
4974 
4975 	if (!sk)
4976 		return;
4977 
4978 	if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4979 	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4980 		return;
4981 
4982 	tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4983 	if (!skb_may_tx_timestamp(sk, tsonly))
4984 		return;
4985 
4986 	if (tsonly) {
4987 #ifdef CONFIG_INET
4988 		if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4989 		    sk->sk_protocol == IPPROTO_TCP &&
4990 		    sk->sk_type == SOCK_STREAM) {
4991 			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
4992 							     ack_skb);
4993 			opt_stats = true;
4994 		} else
4995 #endif
4996 			skb = alloc_skb(0, GFP_ATOMIC);
4997 	} else {
4998 		skb = skb_clone(orig_skb, GFP_ATOMIC);
4999 
5000 		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5001 			kfree_skb(skb);
5002 			return;
5003 		}
5004 	}
5005 	if (!skb)
5006 		return;
5007 
5008 	if (tsonly) {
5009 		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5010 					     SKBTX_ANY_TSTAMP;
5011 		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5012 	}
5013 
5014 	if (hwtstamps)
5015 		*skb_hwtstamps(skb) = *hwtstamps;
5016 	else
5017 		skb->tstamp = ktime_get_real();
5018 
5019 	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5020 }
5021 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5022 
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)5023 void skb_tstamp_tx(struct sk_buff *orig_skb,
5024 		   struct skb_shared_hwtstamps *hwtstamps)
5025 {
5026 	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5027 			       SCM_TSTAMP_SND);
5028 }
5029 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5030 
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)5031 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5032 {
5033 	struct sock *sk = skb->sk;
5034 	struct sock_exterr_skb *serr;
5035 	int err = 1;
5036 
5037 	skb->wifi_acked_valid = 1;
5038 	skb->wifi_acked = acked;
5039 
5040 	serr = SKB_EXT_ERR(skb);
5041 	memset(serr, 0, sizeof(*serr));
5042 	serr->ee.ee_errno = ENOMSG;
5043 	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5044 
5045 	/* Take a reference to prevent skb_orphan() from freeing the socket,
5046 	 * but only if the socket refcount is not zero.
5047 	 */
5048 	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5049 		err = sock_queue_err_skb(sk, skb);
5050 		sock_put(sk);
5051 	}
5052 	if (err)
5053 		kfree_skb(skb);
5054 }
5055 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5056 
5057 /**
5058  * skb_partial_csum_set - set up and verify partial csum values for packet
5059  * @skb: the skb to set
5060  * @start: the number of bytes after skb->data to start checksumming.
5061  * @off: the offset from start to place the checksum.
5062  *
5063  * For untrusted partially-checksummed packets, we need to make sure the values
5064  * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5065  *
5066  * This function checks and sets those values and skb->ip_summed: if this
5067  * returns false you should drop the packet.
5068  */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)5069 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5070 {
5071 	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5072 	u32 csum_start = skb_headroom(skb) + (u32)start;
5073 
5074 	if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
5075 		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5076 				     start, off, skb_headroom(skb), skb_headlen(skb));
5077 		return false;
5078 	}
5079 	skb->ip_summed = CHECKSUM_PARTIAL;
5080 	skb->csum_start = csum_start;
5081 	skb->csum_offset = off;
5082 	skb_set_transport_header(skb, start);
5083 	return true;
5084 }
5085 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5086 
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)5087 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5088 			       unsigned int max)
5089 {
5090 	if (skb_headlen(skb) >= len)
5091 		return 0;
5092 
5093 	/* If we need to pullup then pullup to the max, so we
5094 	 * won't need to do it again.
5095 	 */
5096 	if (max > skb->len)
5097 		max = skb->len;
5098 
5099 	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5100 		return -ENOMEM;
5101 
5102 	if (skb_headlen(skb) < len)
5103 		return -EPROTO;
5104 
5105 	return 0;
5106 }
5107 
5108 #define MAX_TCP_HDR_LEN (15 * 4)
5109 
skb_checksum_setup_ip(struct sk_buff * skb,typeof(IPPROTO_IP) proto,unsigned int off)5110 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5111 				      typeof(IPPROTO_IP) proto,
5112 				      unsigned int off)
5113 {
5114 	int err;
5115 
5116 	switch (proto) {
5117 	case IPPROTO_TCP:
5118 		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5119 					  off + MAX_TCP_HDR_LEN);
5120 		if (!err && !skb_partial_csum_set(skb, off,
5121 						  offsetof(struct tcphdr,
5122 							   check)))
5123 			err = -EPROTO;
5124 		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5125 
5126 	case IPPROTO_UDP:
5127 		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5128 					  off + sizeof(struct udphdr));
5129 		if (!err && !skb_partial_csum_set(skb, off,
5130 						  offsetof(struct udphdr,
5131 							   check)))
5132 			err = -EPROTO;
5133 		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5134 	}
5135 
5136 	return ERR_PTR(-EPROTO);
5137 }
5138 
5139 /* This value should be large enough to cover a tagged ethernet header plus
5140  * maximally sized IP and TCP or UDP headers.
5141  */
5142 #define MAX_IP_HDR_LEN 128
5143 
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)5144 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5145 {
5146 	unsigned int off;
5147 	bool fragment;
5148 	__sum16 *csum;
5149 	int err;
5150 
5151 	fragment = false;
5152 
5153 	err = skb_maybe_pull_tail(skb,
5154 				  sizeof(struct iphdr),
5155 				  MAX_IP_HDR_LEN);
5156 	if (err < 0)
5157 		goto out;
5158 
5159 	if (ip_is_fragment(ip_hdr(skb)))
5160 		fragment = true;
5161 
5162 	off = ip_hdrlen(skb);
5163 
5164 	err = -EPROTO;
5165 
5166 	if (fragment)
5167 		goto out;
5168 
5169 	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5170 	if (IS_ERR(csum))
5171 		return PTR_ERR(csum);
5172 
5173 	if (recalculate)
5174 		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5175 					   ip_hdr(skb)->daddr,
5176 					   skb->len - off,
5177 					   ip_hdr(skb)->protocol, 0);
5178 	err = 0;
5179 
5180 out:
5181 	return err;
5182 }
5183 
5184 /* This value should be large enough to cover a tagged ethernet header plus
5185  * an IPv6 header, all options, and a maximal TCP or UDP header.
5186  */
5187 #define MAX_IPV6_HDR_LEN 256
5188 
5189 #define OPT_HDR(type, skb, off) \
5190 	(type *)(skb_network_header(skb) + (off))
5191 
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)5192 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5193 {
5194 	int err;
5195 	u8 nexthdr;
5196 	unsigned int off;
5197 	unsigned int len;
5198 	bool fragment;
5199 	bool done;
5200 	__sum16 *csum;
5201 
5202 	fragment = false;
5203 	done = false;
5204 
5205 	off = sizeof(struct ipv6hdr);
5206 
5207 	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5208 	if (err < 0)
5209 		goto out;
5210 
5211 	nexthdr = ipv6_hdr(skb)->nexthdr;
5212 
5213 	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5214 	while (off <= len && !done) {
5215 		switch (nexthdr) {
5216 		case IPPROTO_DSTOPTS:
5217 		case IPPROTO_HOPOPTS:
5218 		case IPPROTO_ROUTING: {
5219 			struct ipv6_opt_hdr *hp;
5220 
5221 			err = skb_maybe_pull_tail(skb,
5222 						  off +
5223 						  sizeof(struct ipv6_opt_hdr),
5224 						  MAX_IPV6_HDR_LEN);
5225 			if (err < 0)
5226 				goto out;
5227 
5228 			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5229 			nexthdr = hp->nexthdr;
5230 			off += ipv6_optlen(hp);
5231 			break;
5232 		}
5233 		case IPPROTO_AH: {
5234 			struct ip_auth_hdr *hp;
5235 
5236 			err = skb_maybe_pull_tail(skb,
5237 						  off +
5238 						  sizeof(struct ip_auth_hdr),
5239 						  MAX_IPV6_HDR_LEN);
5240 			if (err < 0)
5241 				goto out;
5242 
5243 			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5244 			nexthdr = hp->nexthdr;
5245 			off += ipv6_authlen(hp);
5246 			break;
5247 		}
5248 		case IPPROTO_FRAGMENT: {
5249 			struct frag_hdr *hp;
5250 
5251 			err = skb_maybe_pull_tail(skb,
5252 						  off +
5253 						  sizeof(struct frag_hdr),
5254 						  MAX_IPV6_HDR_LEN);
5255 			if (err < 0)
5256 				goto out;
5257 
5258 			hp = OPT_HDR(struct frag_hdr, skb, off);
5259 
5260 			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5261 				fragment = true;
5262 
5263 			nexthdr = hp->nexthdr;
5264 			off += sizeof(struct frag_hdr);
5265 			break;
5266 		}
5267 		default:
5268 			done = true;
5269 			break;
5270 		}
5271 	}
5272 
5273 	err = -EPROTO;
5274 
5275 	if (!done || fragment)
5276 		goto out;
5277 
5278 	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5279 	if (IS_ERR(csum))
5280 		return PTR_ERR(csum);
5281 
5282 	if (recalculate)
5283 		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5284 					 &ipv6_hdr(skb)->daddr,
5285 					 skb->len - off, nexthdr, 0);
5286 	err = 0;
5287 
5288 out:
5289 	return err;
5290 }
5291 
5292 /**
5293  * skb_checksum_setup - set up partial checksum offset
5294  * @skb: the skb to set up
5295  * @recalculate: if true the pseudo-header checksum will be recalculated
5296  */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)5297 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5298 {
5299 	int err;
5300 
5301 	switch (skb->protocol) {
5302 	case htons(ETH_P_IP):
5303 		err = skb_checksum_setup_ipv4(skb, recalculate);
5304 		break;
5305 
5306 	case htons(ETH_P_IPV6):
5307 		err = skb_checksum_setup_ipv6(skb, recalculate);
5308 		break;
5309 
5310 	default:
5311 		err = -EPROTO;
5312 		break;
5313 	}
5314 
5315 	return err;
5316 }
5317 EXPORT_SYMBOL(skb_checksum_setup);
5318 
5319 /**
5320  * skb_checksum_maybe_trim - maybe trims the given skb
5321  * @skb: the skb to check
5322  * @transport_len: the data length beyond the network header
5323  *
5324  * Checks whether the given skb has data beyond the given transport length.
5325  * If so, returns a cloned skb trimmed to this transport length.
5326  * Otherwise returns the provided skb. Returns NULL in error cases
5327  * (e.g. transport_len exceeds skb length or out-of-memory).
5328  *
5329  * Caller needs to set the skb transport header and free any returned skb if it
5330  * differs from the provided skb.
5331  */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5332 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5333 					       unsigned int transport_len)
5334 {
5335 	struct sk_buff *skb_chk;
5336 	unsigned int len = skb_transport_offset(skb) + transport_len;
5337 	int ret;
5338 
5339 	if (skb->len < len)
5340 		return NULL;
5341 	else if (skb->len == len)
5342 		return skb;
5343 
5344 	skb_chk = skb_clone(skb, GFP_ATOMIC);
5345 	if (!skb_chk)
5346 		return NULL;
5347 
5348 	ret = pskb_trim_rcsum(skb_chk, len);
5349 	if (ret) {
5350 		kfree_skb(skb_chk);
5351 		return NULL;
5352 	}
5353 
5354 	return skb_chk;
5355 }
5356 
5357 /**
5358  * skb_checksum_trimmed - validate checksum of an skb
5359  * @skb: the skb to check
5360  * @transport_len: the data length beyond the network header
5361  * @skb_chkf: checksum function to use
5362  *
5363  * Applies the given checksum function skb_chkf to the provided skb.
5364  * Returns a checked and maybe trimmed skb. Returns NULL on error.
5365  *
5366  * If the skb has data beyond the given transport length, then a
5367  * trimmed & cloned skb is checked and returned.
5368  *
5369  * Caller needs to set the skb transport header and free any returned skb if it
5370  * differs from the provided skb.
5371  */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5372 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5373 				     unsigned int transport_len,
5374 				     __sum16(*skb_chkf)(struct sk_buff *skb))
5375 {
5376 	struct sk_buff *skb_chk;
5377 	unsigned int offset = skb_transport_offset(skb);
5378 	__sum16 ret;
5379 
5380 	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5381 	if (!skb_chk)
5382 		goto err;
5383 
5384 	if (!pskb_may_pull(skb_chk, offset))
5385 		goto err;
5386 
5387 	skb_pull_rcsum(skb_chk, offset);
5388 	ret = skb_chkf(skb_chk);
5389 	skb_push_rcsum(skb_chk, offset);
5390 
5391 	if (ret)
5392 		goto err;
5393 
5394 	return skb_chk;
5395 
5396 err:
5397 	if (skb_chk && skb_chk != skb)
5398 		kfree_skb(skb_chk);
5399 
5400 	return NULL;
5401 
5402 }
5403 EXPORT_SYMBOL(skb_checksum_trimmed);
5404 
__skb_warn_lro_forwarding(const struct sk_buff * skb)5405 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5406 {
5407 	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5408 			     skb->dev->name);
5409 }
5410 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5411 
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5412 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5413 {
5414 	if (head_stolen) {
5415 		skb_release_head_state(skb);
5416 		kmem_cache_free(skbuff_head_cache, skb);
5417 	} else {
5418 		__kfree_skb(skb);
5419 	}
5420 }
5421 EXPORT_SYMBOL(kfree_skb_partial);
5422 
5423 /**
5424  * skb_try_coalesce - try to merge skb to prior one
5425  * @to: prior buffer
5426  * @from: buffer to add
5427  * @fragstolen: pointer to boolean
5428  * @delta_truesize: how much more was allocated than was requested
5429  */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5430 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5431 		      bool *fragstolen, int *delta_truesize)
5432 {
5433 	struct skb_shared_info *to_shinfo, *from_shinfo;
5434 	int i, delta, len = from->len;
5435 
5436 	*fragstolen = false;
5437 
5438 	if (skb_cloned(to))
5439 		return false;
5440 
5441 	/* In general, avoid mixing page_pool and non-page_pool allocated
5442 	 * pages within the same SKB. Additionally avoid dealing with clones
5443 	 * with page_pool pages, in case the SKB is using page_pool fragment
5444 	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5445 	 * references for cloned SKBs at the moment that would result in
5446 	 * inconsistent reference counts.
5447 	 * In theory we could take full references if @from is cloned and
5448 	 * !@to->pp_recycle but its tricky (due to potential race with
5449 	 * the clone disappearing) and rare, so not worth dealing with.
5450 	 */
5451 	if (to->pp_recycle != from->pp_recycle ||
5452 	    (from->pp_recycle && skb_cloned(from)))
5453 		return false;
5454 
5455 	if (len <= skb_tailroom(to)) {
5456 		if (len)
5457 			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5458 		*delta_truesize = 0;
5459 		return true;
5460 	}
5461 
5462 	to_shinfo = skb_shinfo(to);
5463 	from_shinfo = skb_shinfo(from);
5464 	if (to_shinfo->frag_list || from_shinfo->frag_list)
5465 		return false;
5466 	if (skb_zcopy(to) || skb_zcopy(from))
5467 		return false;
5468 
5469 	if (skb_headlen(from) != 0) {
5470 		struct page *page;
5471 		unsigned int offset;
5472 
5473 		if (to_shinfo->nr_frags +
5474 		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5475 			return false;
5476 
5477 		if (skb_head_is_locked(from))
5478 			return false;
5479 
5480 		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5481 
5482 		page = virt_to_head_page(from->head);
5483 		offset = from->data - (unsigned char *)page_address(page);
5484 
5485 		skb_fill_page_desc(to, to_shinfo->nr_frags,
5486 				   page, offset, skb_headlen(from));
5487 		*fragstolen = true;
5488 	} else {
5489 		if (to_shinfo->nr_frags +
5490 		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5491 			return false;
5492 
5493 		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5494 	}
5495 
5496 	WARN_ON_ONCE(delta < len);
5497 
5498 	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5499 	       from_shinfo->frags,
5500 	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5501 	to_shinfo->nr_frags += from_shinfo->nr_frags;
5502 
5503 	if (!skb_cloned(from))
5504 		from_shinfo->nr_frags = 0;
5505 
5506 	/* if the skb is not cloned this does nothing
5507 	 * since we set nr_frags to 0.
5508 	 */
5509 	for (i = 0; i < from_shinfo->nr_frags; i++)
5510 		__skb_frag_ref(&from_shinfo->frags[i]);
5511 
5512 	to->truesize += delta;
5513 	to->len += len;
5514 	to->data_len += len;
5515 
5516 	*delta_truesize = delta;
5517 	return true;
5518 }
5519 EXPORT_SYMBOL(skb_try_coalesce);
5520 
5521 /**
5522  * skb_scrub_packet - scrub an skb
5523  *
5524  * @skb: buffer to clean
5525  * @xnet: packet is crossing netns
5526  *
5527  * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5528  * into/from a tunnel. Some information have to be cleared during these
5529  * operations.
5530  * skb_scrub_packet can also be used to clean a skb before injecting it in
5531  * another namespace (@xnet == true). We have to clear all information in the
5532  * skb that could impact namespace isolation.
5533  */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5534 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5535 {
5536 	skb->pkt_type = PACKET_HOST;
5537 	skb->skb_iif = 0;
5538 	skb->ignore_df = 0;
5539 	skb_dst_drop(skb);
5540 	skb_ext_reset(skb);
5541 	nf_reset_ct(skb);
5542 	nf_reset_trace(skb);
5543 
5544 #ifdef CONFIG_NET_SWITCHDEV
5545 	skb->offload_fwd_mark = 0;
5546 	skb->offload_l3_fwd_mark = 0;
5547 #endif
5548 
5549 	if (!xnet)
5550 		return;
5551 
5552 	ipvs_reset(skb);
5553 	skb->mark = 0;
5554 	skb->tstamp = 0;
5555 }
5556 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5557 
5558 /**
5559  * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5560  *
5561  * @skb: GSO skb
5562  *
5563  * skb_gso_transport_seglen is used to determine the real size of the
5564  * individual segments, including Layer4 headers (TCP/UDP).
5565  *
5566  * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5567  */
skb_gso_transport_seglen(const struct sk_buff * skb)5568 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5569 {
5570 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5571 	unsigned int thlen = 0;
5572 
5573 	if (skb->encapsulation) {
5574 		thlen = skb_inner_transport_header(skb) -
5575 			skb_transport_header(skb);
5576 
5577 		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5578 			thlen += inner_tcp_hdrlen(skb);
5579 	} else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5580 		thlen = tcp_hdrlen(skb);
5581 	} else if (unlikely(skb_is_gso_sctp(skb))) {
5582 		thlen = sizeof(struct sctphdr);
5583 	} else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5584 		thlen = sizeof(struct udphdr);
5585 	}
5586 	/* UFO sets gso_size to the size of the fragmentation
5587 	 * payload, i.e. the size of the L4 (UDP) header is already
5588 	 * accounted for.
5589 	 */
5590 	return thlen + shinfo->gso_size;
5591 }
5592 
5593 /**
5594  * skb_gso_network_seglen - Return length of individual segments of a gso packet
5595  *
5596  * @skb: GSO skb
5597  *
5598  * skb_gso_network_seglen is used to determine the real size of the
5599  * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5600  *
5601  * The MAC/L2 header is not accounted for.
5602  */
skb_gso_network_seglen(const struct sk_buff * skb)5603 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5604 {
5605 	unsigned int hdr_len = skb_transport_header(skb) -
5606 			       skb_network_header(skb);
5607 
5608 	return hdr_len + skb_gso_transport_seglen(skb);
5609 }
5610 
5611 /**
5612  * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5613  *
5614  * @skb: GSO skb
5615  *
5616  * skb_gso_mac_seglen is used to determine the real size of the
5617  * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5618  * headers (TCP/UDP).
5619  */
skb_gso_mac_seglen(const struct sk_buff * skb)5620 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5621 {
5622 	unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5623 
5624 	return hdr_len + skb_gso_transport_seglen(skb);
5625 }
5626 
5627 /**
5628  * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5629  *
5630  * There are a couple of instances where we have a GSO skb, and we
5631  * want to determine what size it would be after it is segmented.
5632  *
5633  * We might want to check:
5634  * -    L3+L4+payload size (e.g. IP forwarding)
5635  * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5636  *
5637  * This is a helper to do that correctly considering GSO_BY_FRAGS.
5638  *
5639  * @skb: GSO skb
5640  *
5641  * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5642  *           GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5643  *
5644  * @max_len: The maximum permissible length.
5645  *
5646  * Returns true if the segmented length <= max length.
5647  */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5648 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5649 				      unsigned int seg_len,
5650 				      unsigned int max_len) {
5651 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
5652 	const struct sk_buff *iter;
5653 
5654 	if (shinfo->gso_size != GSO_BY_FRAGS)
5655 		return seg_len <= max_len;
5656 
5657 	/* Undo this so we can re-use header sizes */
5658 	seg_len -= GSO_BY_FRAGS;
5659 
5660 	skb_walk_frags(skb, iter) {
5661 		if (seg_len + skb_headlen(iter) > max_len)
5662 			return false;
5663 	}
5664 
5665 	return true;
5666 }
5667 
5668 /**
5669  * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5670  *
5671  * @skb: GSO skb
5672  * @mtu: MTU to validate against
5673  *
5674  * skb_gso_validate_network_len validates if a given skb will fit a
5675  * wanted MTU once split. It considers L3 headers, L4 headers, and the
5676  * payload.
5677  */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5678 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5679 {
5680 	return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5681 }
5682 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5683 
5684 /**
5685  * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5686  *
5687  * @skb: GSO skb
5688  * @len: length to validate against
5689  *
5690  * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5691  * length once split, including L2, L3 and L4 headers and the payload.
5692  */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5693 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5694 {
5695 	return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5696 }
5697 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5698 
skb_reorder_vlan_header(struct sk_buff * skb)5699 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5700 {
5701 	int mac_len, meta_len;
5702 	void *meta;
5703 
5704 	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5705 		kfree_skb(skb);
5706 		return NULL;
5707 	}
5708 
5709 	mac_len = skb->data - skb_mac_header(skb);
5710 	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5711 		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5712 			mac_len - VLAN_HLEN - ETH_TLEN);
5713 	}
5714 
5715 	meta_len = skb_metadata_len(skb);
5716 	if (meta_len) {
5717 		meta = skb_metadata_end(skb) - meta_len;
5718 		memmove(meta + VLAN_HLEN, meta, meta_len);
5719 	}
5720 
5721 	skb->mac_header += VLAN_HLEN;
5722 	return skb;
5723 }
5724 
skb_vlan_untag(struct sk_buff * skb)5725 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5726 {
5727 	struct vlan_hdr *vhdr;
5728 	u16 vlan_tci;
5729 
5730 	if (unlikely(skb_vlan_tag_present(skb))) {
5731 		/* vlan_tci is already set-up so leave this for another time */
5732 		return skb;
5733 	}
5734 
5735 	skb = skb_share_check(skb, GFP_ATOMIC);
5736 	if (unlikely(!skb))
5737 		goto err_free;
5738 	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5739 	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5740 		goto err_free;
5741 
5742 	vhdr = (struct vlan_hdr *)skb->data;
5743 	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5744 	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5745 
5746 	skb_pull_rcsum(skb, VLAN_HLEN);
5747 	vlan_set_encap_proto(skb, vhdr);
5748 
5749 	skb = skb_reorder_vlan_header(skb);
5750 	if (unlikely(!skb))
5751 		goto err_free;
5752 
5753 	skb_reset_network_header(skb);
5754 	if (!skb_transport_header_was_set(skb))
5755 		skb_reset_transport_header(skb);
5756 	skb_reset_mac_len(skb);
5757 
5758 	return skb;
5759 
5760 err_free:
5761 	kfree_skb(skb);
5762 	return NULL;
5763 }
5764 EXPORT_SYMBOL(skb_vlan_untag);
5765 
skb_ensure_writable(struct sk_buff * skb,int write_len)5766 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5767 {
5768 	if (!pskb_may_pull(skb, write_len))
5769 		return -ENOMEM;
5770 
5771 	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5772 		return 0;
5773 
5774 	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5775 }
5776 EXPORT_SYMBOL(skb_ensure_writable);
5777 
5778 /* remove VLAN header from packet and update csum accordingly.
5779  * expects a non skb_vlan_tag_present skb with a vlan tag payload
5780  */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5781 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5782 {
5783 	struct vlan_hdr *vhdr;
5784 	int offset = skb->data - skb_mac_header(skb);
5785 	int err;
5786 
5787 	if (WARN_ONCE(offset,
5788 		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5789 		      offset)) {
5790 		return -EINVAL;
5791 	}
5792 
5793 	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5794 	if (unlikely(err))
5795 		return err;
5796 
5797 	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5798 
5799 	vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5800 	*vlan_tci = ntohs(vhdr->h_vlan_TCI);
5801 
5802 	memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5803 	__skb_pull(skb, VLAN_HLEN);
5804 
5805 	vlan_set_encap_proto(skb, vhdr);
5806 	skb->mac_header += VLAN_HLEN;
5807 
5808 	if (skb_network_offset(skb) < ETH_HLEN)
5809 		skb_set_network_header(skb, ETH_HLEN);
5810 
5811 	skb_reset_mac_len(skb);
5812 
5813 	return err;
5814 }
5815 EXPORT_SYMBOL(__skb_vlan_pop);
5816 
5817 /* Pop a vlan tag either from hwaccel or from payload.
5818  * Expects skb->data at mac header.
5819  */
skb_vlan_pop(struct sk_buff * skb)5820 int skb_vlan_pop(struct sk_buff *skb)
5821 {
5822 	u16 vlan_tci;
5823 	__be16 vlan_proto;
5824 	int err;
5825 
5826 	if (likely(skb_vlan_tag_present(skb))) {
5827 		__vlan_hwaccel_clear_tag(skb);
5828 	} else {
5829 		if (unlikely(!eth_type_vlan(skb->protocol)))
5830 			return 0;
5831 
5832 		err = __skb_vlan_pop(skb, &vlan_tci);
5833 		if (err)
5834 			return err;
5835 	}
5836 	/* move next vlan tag to hw accel tag */
5837 	if (likely(!eth_type_vlan(skb->protocol)))
5838 		return 0;
5839 
5840 	vlan_proto = skb->protocol;
5841 	err = __skb_vlan_pop(skb, &vlan_tci);
5842 	if (unlikely(err))
5843 		return err;
5844 
5845 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5846 	return 0;
5847 }
5848 EXPORT_SYMBOL(skb_vlan_pop);
5849 
5850 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5851  * Expects skb->data at mac header.
5852  */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5853 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5854 {
5855 	if (skb_vlan_tag_present(skb)) {
5856 		int offset = skb->data - skb_mac_header(skb);
5857 		int err;
5858 
5859 		if (WARN_ONCE(offset,
5860 			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5861 			      offset)) {
5862 			return -EINVAL;
5863 		}
5864 
5865 		err = __vlan_insert_tag(skb, skb->vlan_proto,
5866 					skb_vlan_tag_get(skb));
5867 		if (err)
5868 			return err;
5869 
5870 		skb->protocol = skb->vlan_proto;
5871 		skb->mac_len += VLAN_HLEN;
5872 
5873 		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5874 	}
5875 	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5876 	return 0;
5877 }
5878 EXPORT_SYMBOL(skb_vlan_push);
5879 
5880 /**
5881  * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5882  *
5883  * @skb: Socket buffer to modify
5884  *
5885  * Drop the Ethernet header of @skb.
5886  *
5887  * Expects that skb->data points to the mac header and that no VLAN tags are
5888  * present.
5889  *
5890  * Returns 0 on success, -errno otherwise.
5891  */
skb_eth_pop(struct sk_buff * skb)5892 int skb_eth_pop(struct sk_buff *skb)
5893 {
5894 	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5895 	    skb_network_offset(skb) < ETH_HLEN)
5896 		return -EPROTO;
5897 
5898 	skb_pull_rcsum(skb, ETH_HLEN);
5899 	skb_reset_mac_header(skb);
5900 	skb_reset_mac_len(skb);
5901 
5902 	return 0;
5903 }
5904 EXPORT_SYMBOL(skb_eth_pop);
5905 
5906 /**
5907  * skb_eth_push() - Add a new Ethernet header at the head of a packet
5908  *
5909  * @skb: Socket buffer to modify
5910  * @dst: Destination MAC address of the new header
5911  * @src: Source MAC address of the new header
5912  *
5913  * Prepend @skb with a new Ethernet header.
5914  *
5915  * Expects that skb->data points to the mac header, which must be empty.
5916  *
5917  * Returns 0 on success, -errno otherwise.
5918  */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5919 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5920 		 const unsigned char *src)
5921 {
5922 	struct ethhdr *eth;
5923 	int err;
5924 
5925 	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5926 		return -EPROTO;
5927 
5928 	err = skb_cow_head(skb, sizeof(*eth));
5929 	if (err < 0)
5930 		return err;
5931 
5932 	skb_push(skb, sizeof(*eth));
5933 	skb_reset_mac_header(skb);
5934 	skb_reset_mac_len(skb);
5935 
5936 	eth = eth_hdr(skb);
5937 	ether_addr_copy(eth->h_dest, dst);
5938 	ether_addr_copy(eth->h_source, src);
5939 	eth->h_proto = skb->protocol;
5940 
5941 	skb_postpush_rcsum(skb, eth, sizeof(*eth));
5942 
5943 	return 0;
5944 }
5945 EXPORT_SYMBOL(skb_eth_push);
5946 
5947 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5948 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5949 			     __be16 ethertype)
5950 {
5951 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
5952 		__be16 diff[] = { ~hdr->h_proto, ethertype };
5953 
5954 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5955 	}
5956 
5957 	hdr->h_proto = ethertype;
5958 }
5959 
5960 /**
5961  * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5962  *                   the packet
5963  *
5964  * @skb: buffer
5965  * @mpls_lse: MPLS label stack entry to push
5966  * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5967  * @mac_len: length of the MAC header
5968  * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5969  *            ethernet
5970  *
5971  * Expects skb->data at mac header.
5972  *
5973  * Returns 0 on success, -errno otherwise.
5974  */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5975 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5976 		  int mac_len, bool ethernet)
5977 {
5978 	struct mpls_shim_hdr *lse;
5979 	int err;
5980 
5981 	if (unlikely(!eth_p_mpls(mpls_proto)))
5982 		return -EINVAL;
5983 
5984 	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5985 	if (skb->encapsulation)
5986 		return -EINVAL;
5987 
5988 	err = skb_cow_head(skb, MPLS_HLEN);
5989 	if (unlikely(err))
5990 		return err;
5991 
5992 	if (!skb->inner_protocol) {
5993 		skb_set_inner_network_header(skb, skb_network_offset(skb));
5994 		skb_set_inner_protocol(skb, skb->protocol);
5995 	}
5996 
5997 	skb_push(skb, MPLS_HLEN);
5998 	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5999 		mac_len);
6000 	skb_reset_mac_header(skb);
6001 	skb_set_network_header(skb, mac_len);
6002 	skb_reset_mac_len(skb);
6003 
6004 	lse = mpls_hdr(skb);
6005 	lse->label_stack_entry = mpls_lse;
6006 	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6007 
6008 	if (ethernet && mac_len >= ETH_HLEN)
6009 		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6010 	skb->protocol = mpls_proto;
6011 
6012 	return 0;
6013 }
6014 EXPORT_SYMBOL_GPL(skb_mpls_push);
6015 
6016 /**
6017  * skb_mpls_pop() - pop the outermost MPLS header
6018  *
6019  * @skb: buffer
6020  * @next_proto: ethertype of header after popped MPLS header
6021  * @mac_len: length of the MAC header
6022  * @ethernet: flag to indicate if the packet is ethernet
6023  *
6024  * Expects skb->data at mac header.
6025  *
6026  * Returns 0 on success, -errno otherwise.
6027  */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)6028 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6029 		 bool ethernet)
6030 {
6031 	int err;
6032 
6033 	if (unlikely(!eth_p_mpls(skb->protocol)))
6034 		return 0;
6035 
6036 	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6037 	if (unlikely(err))
6038 		return err;
6039 
6040 	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6041 	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6042 		mac_len);
6043 
6044 	__skb_pull(skb, MPLS_HLEN);
6045 	skb_reset_mac_header(skb);
6046 	skb_set_network_header(skb, mac_len);
6047 
6048 	if (ethernet && mac_len >= ETH_HLEN) {
6049 		struct ethhdr *hdr;
6050 
6051 		/* use mpls_hdr() to get ethertype to account for VLANs. */
6052 		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6053 		skb_mod_eth_type(skb, hdr, next_proto);
6054 	}
6055 	skb->protocol = next_proto;
6056 
6057 	return 0;
6058 }
6059 EXPORT_SYMBOL_GPL(skb_mpls_pop);
6060 
6061 /**
6062  * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6063  *
6064  * @skb: buffer
6065  * @mpls_lse: new MPLS label stack entry to update to
6066  *
6067  * Expects skb->data at mac header.
6068  *
6069  * Returns 0 on success, -errno otherwise.
6070  */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)6071 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6072 {
6073 	int err;
6074 
6075 	if (unlikely(!eth_p_mpls(skb->protocol)))
6076 		return -EINVAL;
6077 
6078 	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6079 	if (unlikely(err))
6080 		return err;
6081 
6082 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6083 		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6084 
6085 		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6086 	}
6087 
6088 	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6089 
6090 	return 0;
6091 }
6092 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6093 
6094 /**
6095  * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6096  *
6097  * @skb: buffer
6098  *
6099  * Expects skb->data at mac header.
6100  *
6101  * Returns 0 on success, -errno otherwise.
6102  */
skb_mpls_dec_ttl(struct sk_buff * skb)6103 int skb_mpls_dec_ttl(struct sk_buff *skb)
6104 {
6105 	u32 lse;
6106 	u8 ttl;
6107 
6108 	if (unlikely(!eth_p_mpls(skb->protocol)))
6109 		return -EINVAL;
6110 
6111 	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6112 		return -ENOMEM;
6113 
6114 	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6115 	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6116 	if (!--ttl)
6117 		return -EINVAL;
6118 
6119 	lse &= ~MPLS_LS_TTL_MASK;
6120 	lse |= ttl << MPLS_LS_TTL_SHIFT;
6121 
6122 	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6123 }
6124 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6125 
6126 /**
6127  * alloc_skb_with_frags - allocate skb with page frags
6128  *
6129  * @header_len: size of linear part
6130  * @data_len: needed length in frags
6131  * @max_page_order: max page order desired.
6132  * @errcode: pointer to error code if any
6133  * @gfp_mask: allocation mask
6134  *
6135  * This can be used to allocate a paged skb, given a maximal order for frags.
6136  */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)6137 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6138 				     unsigned long data_len,
6139 				     int max_page_order,
6140 				     int *errcode,
6141 				     gfp_t gfp_mask)
6142 {
6143 	int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6144 	unsigned long chunk;
6145 	struct sk_buff *skb;
6146 	struct page *page;
6147 	int i;
6148 
6149 	*errcode = -EMSGSIZE;
6150 	/* Note this test could be relaxed, if we succeed to allocate
6151 	 * high order pages...
6152 	 */
6153 	if (npages > MAX_SKB_FRAGS)
6154 		return NULL;
6155 
6156 	*errcode = -ENOBUFS;
6157 	skb = alloc_skb(header_len, gfp_mask);
6158 	if (!skb)
6159 		return NULL;
6160 
6161 	skb->truesize += npages << PAGE_SHIFT;
6162 
6163 	for (i = 0; npages > 0; i++) {
6164 		int order = max_page_order;
6165 
6166 		while (order) {
6167 			if (npages >= 1 << order) {
6168 				page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6169 						   __GFP_COMP |
6170 						   __GFP_NOWARN,
6171 						   order);
6172 				if (page)
6173 					goto fill_page;
6174 				/* Do not retry other high order allocations */
6175 				order = 1;
6176 				max_page_order = 0;
6177 			}
6178 			order--;
6179 		}
6180 		page = alloc_page(gfp_mask);
6181 		if (!page)
6182 			goto failure;
6183 fill_page:
6184 		chunk = min_t(unsigned long, data_len,
6185 			      PAGE_SIZE << order);
6186 		skb_fill_page_desc(skb, i, page, 0, chunk);
6187 		data_len -= chunk;
6188 		npages -= 1 << order;
6189 	}
6190 	return skb;
6191 
6192 failure:
6193 	kfree_skb(skb);
6194 	return NULL;
6195 }
6196 EXPORT_SYMBOL(alloc_skb_with_frags);
6197 
6198 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)6199 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6200 				    const int headlen, gfp_t gfp_mask)
6201 {
6202 	int i;
6203 	int size = skb_end_offset(skb);
6204 	int new_hlen = headlen - off;
6205 	u8 *data;
6206 
6207 	size = SKB_DATA_ALIGN(size);
6208 
6209 	if (skb_pfmemalloc(skb))
6210 		gfp_mask |= __GFP_MEMALLOC;
6211 	data = kmalloc_reserve(size +
6212 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6213 			       gfp_mask, NUMA_NO_NODE, NULL);
6214 	if (!data)
6215 		return -ENOMEM;
6216 
6217 	size = SKB_WITH_OVERHEAD(ksize(data));
6218 
6219 	/* Copy real data, and all frags */
6220 	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6221 	skb->len -= off;
6222 
6223 	memcpy((struct skb_shared_info *)(data + size),
6224 	       skb_shinfo(skb),
6225 	       offsetof(struct skb_shared_info,
6226 			frags[skb_shinfo(skb)->nr_frags]));
6227 	if (skb_cloned(skb)) {
6228 		/* drop the old head gracefully */
6229 		if (skb_orphan_frags(skb, gfp_mask)) {
6230 			kfree(data);
6231 			return -ENOMEM;
6232 		}
6233 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6234 			skb_frag_ref(skb, i);
6235 		if (skb_has_frag_list(skb))
6236 			skb_clone_fraglist(skb);
6237 		skb_release_data(skb);
6238 	} else {
6239 		/* we can reuse existing recount- all we did was
6240 		 * relocate values
6241 		 */
6242 		skb_free_head(skb);
6243 	}
6244 
6245 	skb->head = data;
6246 	skb->data = data;
6247 	skb->head_frag = 0;
6248 	skb_set_end_offset(skb, size);
6249 	skb_set_tail_pointer(skb, skb_headlen(skb));
6250 	skb_headers_offset_update(skb, 0);
6251 	skb->cloned = 0;
6252 	skb->hdr_len = 0;
6253 	skb->nohdr = 0;
6254 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6255 
6256 	return 0;
6257 }
6258 
6259 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6260 
6261 /* carve out the first eat bytes from skb's frag_list. May recurse into
6262  * pskb_carve()
6263  */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)6264 static int pskb_carve_frag_list(struct sk_buff *skb,
6265 				struct skb_shared_info *shinfo, int eat,
6266 				gfp_t gfp_mask)
6267 {
6268 	struct sk_buff *list = shinfo->frag_list;
6269 	struct sk_buff *clone = NULL;
6270 	struct sk_buff *insp = NULL;
6271 
6272 	do {
6273 		if (!list) {
6274 			pr_err("Not enough bytes to eat. Want %d\n", eat);
6275 			return -EFAULT;
6276 		}
6277 		if (list->len <= eat) {
6278 			/* Eaten as whole. */
6279 			eat -= list->len;
6280 			list = list->next;
6281 			insp = list;
6282 		} else {
6283 			/* Eaten partially. */
6284 			if (skb_shared(list)) {
6285 				clone = skb_clone(list, gfp_mask);
6286 				if (!clone)
6287 					return -ENOMEM;
6288 				insp = list->next;
6289 				list = clone;
6290 			} else {
6291 				/* This may be pulled without problems. */
6292 				insp = list;
6293 			}
6294 			if (pskb_carve(list, eat, gfp_mask) < 0) {
6295 				kfree_skb(clone);
6296 				return -ENOMEM;
6297 			}
6298 			break;
6299 		}
6300 	} while (eat);
6301 
6302 	/* Free pulled out fragments. */
6303 	while ((list = shinfo->frag_list) != insp) {
6304 		shinfo->frag_list = list->next;
6305 		consume_skb(list);
6306 	}
6307 	/* And insert new clone at head. */
6308 	if (clone) {
6309 		clone->next = list;
6310 		shinfo->frag_list = clone;
6311 	}
6312 	return 0;
6313 }
6314 
6315 /* carve off first len bytes from skb. Split line (off) is in the
6316  * non-linear part of skb
6317  */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6318 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6319 				       int pos, gfp_t gfp_mask)
6320 {
6321 	int i, k = 0;
6322 	int size = skb_end_offset(skb);
6323 	u8 *data;
6324 	const int nfrags = skb_shinfo(skb)->nr_frags;
6325 	struct skb_shared_info *shinfo;
6326 
6327 	size = SKB_DATA_ALIGN(size);
6328 
6329 	if (skb_pfmemalloc(skb))
6330 		gfp_mask |= __GFP_MEMALLOC;
6331 	data = kmalloc_reserve(size +
6332 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6333 			       gfp_mask, NUMA_NO_NODE, NULL);
6334 	if (!data)
6335 		return -ENOMEM;
6336 
6337 	size = SKB_WITH_OVERHEAD(ksize(data));
6338 
6339 	memcpy((struct skb_shared_info *)(data + size),
6340 	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6341 	if (skb_orphan_frags(skb, gfp_mask)) {
6342 		kfree(data);
6343 		return -ENOMEM;
6344 	}
6345 	shinfo = (struct skb_shared_info *)(data + size);
6346 	for (i = 0; i < nfrags; i++) {
6347 		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6348 
6349 		if (pos + fsize > off) {
6350 			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6351 
6352 			if (pos < off) {
6353 				/* Split frag.
6354 				 * We have two variants in this case:
6355 				 * 1. Move all the frag to the second
6356 				 *    part, if it is possible. F.e.
6357 				 *    this approach is mandatory for TUX,
6358 				 *    where splitting is expensive.
6359 				 * 2. Split is accurately. We make this.
6360 				 */
6361 				skb_frag_off_add(&shinfo->frags[0], off - pos);
6362 				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6363 			}
6364 			skb_frag_ref(skb, i);
6365 			k++;
6366 		}
6367 		pos += fsize;
6368 	}
6369 	shinfo->nr_frags = k;
6370 	if (skb_has_frag_list(skb))
6371 		skb_clone_fraglist(skb);
6372 
6373 	/* split line is in frag list */
6374 	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6375 		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6376 		if (skb_has_frag_list(skb))
6377 			kfree_skb_list(skb_shinfo(skb)->frag_list);
6378 		kfree(data);
6379 		return -ENOMEM;
6380 	}
6381 	skb_release_data(skb);
6382 
6383 	skb->head = data;
6384 	skb->head_frag = 0;
6385 	skb->data = data;
6386 	skb_set_end_offset(skb, size);
6387 	skb_reset_tail_pointer(skb);
6388 	skb_headers_offset_update(skb, 0);
6389 	skb->cloned   = 0;
6390 	skb->hdr_len  = 0;
6391 	skb->nohdr    = 0;
6392 	skb->len -= off;
6393 	skb->data_len = skb->len;
6394 	atomic_set(&skb_shinfo(skb)->dataref, 1);
6395 	return 0;
6396 }
6397 
6398 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6399 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6400 {
6401 	int headlen = skb_headlen(skb);
6402 
6403 	if (len < headlen)
6404 		return pskb_carve_inside_header(skb, len, headlen, gfp);
6405 	else
6406 		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6407 }
6408 
6409 /* Extract to_copy bytes starting at off from skb, and return this in
6410  * a new skb
6411  */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6412 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6413 			     int to_copy, gfp_t gfp)
6414 {
6415 	struct sk_buff  *clone = skb_clone(skb, gfp);
6416 
6417 	if (!clone)
6418 		return NULL;
6419 
6420 	if (pskb_carve(clone, off, gfp) < 0 ||
6421 	    pskb_trim(clone, to_copy)) {
6422 		kfree_skb(clone);
6423 		return NULL;
6424 	}
6425 	return clone;
6426 }
6427 EXPORT_SYMBOL(pskb_extract);
6428 
6429 /**
6430  * skb_condense - try to get rid of fragments/frag_list if possible
6431  * @skb: buffer
6432  *
6433  * Can be used to save memory before skb is added to a busy queue.
6434  * If packet has bytes in frags and enough tail room in skb->head,
6435  * pull all of them, so that we can free the frags right now and adjust
6436  * truesize.
6437  * Notes:
6438  *	We do not reallocate skb->head thus can not fail.
6439  *	Caller must re-evaluate skb->truesize if needed.
6440  */
skb_condense(struct sk_buff * skb)6441 void skb_condense(struct sk_buff *skb)
6442 {
6443 	if (skb->data_len) {
6444 		if (skb->data_len > skb->end - skb->tail ||
6445 		    skb_cloned(skb))
6446 			return;
6447 
6448 		/* Nice, we can free page frag(s) right now */
6449 		__pskb_pull_tail(skb, skb->data_len);
6450 	}
6451 	/* At this point, skb->truesize might be over estimated,
6452 	 * because skb had a fragment, and fragments do not tell
6453 	 * their truesize.
6454 	 * When we pulled its content into skb->head, fragment
6455 	 * was freed, but __pskb_pull_tail() could not possibly
6456 	 * adjust skb->truesize, not knowing the frag truesize.
6457 	 */
6458 	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6459 }
6460 
6461 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6462 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6463 {
6464 	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6465 }
6466 
6467 /**
6468  * __skb_ext_alloc - allocate a new skb extensions storage
6469  *
6470  * @flags: See kmalloc().
6471  *
6472  * Returns the newly allocated pointer. The pointer can later attached to a
6473  * skb via __skb_ext_set().
6474  * Note: caller must handle the skb_ext as an opaque data.
6475  */
__skb_ext_alloc(gfp_t flags)6476 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6477 {
6478 	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6479 
6480 	if (new) {
6481 		memset(new->offset, 0, sizeof(new->offset));
6482 		refcount_set(&new->refcnt, 1);
6483 	}
6484 
6485 	return new;
6486 }
6487 
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6488 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6489 					 unsigned int old_active)
6490 {
6491 	struct skb_ext *new;
6492 
6493 	if (refcount_read(&old->refcnt) == 1)
6494 		return old;
6495 
6496 	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6497 	if (!new)
6498 		return NULL;
6499 
6500 	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6501 	refcount_set(&new->refcnt, 1);
6502 
6503 #ifdef CONFIG_XFRM
6504 	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6505 		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6506 		unsigned int i;
6507 
6508 		for (i = 0; i < sp->len; i++)
6509 			xfrm_state_hold(sp->xvec[i]);
6510 	}
6511 #endif
6512 	__skb_ext_put(old);
6513 	return new;
6514 }
6515 
6516 /**
6517  * __skb_ext_set - attach the specified extension storage to this skb
6518  * @skb: buffer
6519  * @id: extension id
6520  * @ext: extension storage previously allocated via __skb_ext_alloc()
6521  *
6522  * Existing extensions, if any, are cleared.
6523  *
6524  * Returns the pointer to the extension.
6525  */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6526 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6527 		    struct skb_ext *ext)
6528 {
6529 	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6530 
6531 	skb_ext_put(skb);
6532 	newlen = newoff + skb_ext_type_len[id];
6533 	ext->chunks = newlen;
6534 	ext->offset[id] = newoff;
6535 	skb->extensions = ext;
6536 	skb->active_extensions = 1 << id;
6537 	return skb_ext_get_ptr(ext, id);
6538 }
6539 
6540 /**
6541  * skb_ext_add - allocate space for given extension, COW if needed
6542  * @skb: buffer
6543  * @id: extension to allocate space for
6544  *
6545  * Allocates enough space for the given extension.
6546  * If the extension is already present, a pointer to that extension
6547  * is returned.
6548  *
6549  * If the skb was cloned, COW applies and the returned memory can be
6550  * modified without changing the extension space of clones buffers.
6551  *
6552  * Returns pointer to the extension or NULL on allocation failure.
6553  */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6554 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6555 {
6556 	struct skb_ext *new, *old = NULL;
6557 	unsigned int newlen, newoff;
6558 
6559 	if (skb->active_extensions) {
6560 		old = skb->extensions;
6561 
6562 		new = skb_ext_maybe_cow(old, skb->active_extensions);
6563 		if (!new)
6564 			return NULL;
6565 
6566 		if (__skb_ext_exist(new, id))
6567 			goto set_active;
6568 
6569 		newoff = new->chunks;
6570 	} else {
6571 		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6572 
6573 		new = __skb_ext_alloc(GFP_ATOMIC);
6574 		if (!new)
6575 			return NULL;
6576 	}
6577 
6578 	newlen = newoff + skb_ext_type_len[id];
6579 	new->chunks = newlen;
6580 	new->offset[id] = newoff;
6581 set_active:
6582 	skb->slow_gro = 1;
6583 	skb->extensions = new;
6584 	skb->active_extensions |= 1 << id;
6585 	return skb_ext_get_ptr(new, id);
6586 }
6587 EXPORT_SYMBOL(skb_ext_add);
6588 
6589 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6590 static void skb_ext_put_sp(struct sec_path *sp)
6591 {
6592 	unsigned int i;
6593 
6594 	for (i = 0; i < sp->len; i++)
6595 		xfrm_state_put(sp->xvec[i]);
6596 }
6597 #endif
6598 
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6599 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6600 {
6601 	struct skb_ext *ext = skb->extensions;
6602 
6603 	skb->active_extensions &= ~(1 << id);
6604 	if (skb->active_extensions == 0) {
6605 		skb->extensions = NULL;
6606 		__skb_ext_put(ext);
6607 #ifdef CONFIG_XFRM
6608 	} else if (id == SKB_EXT_SEC_PATH &&
6609 		   refcount_read(&ext->refcnt) == 1) {
6610 		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6611 
6612 		skb_ext_put_sp(sp);
6613 		sp->len = 0;
6614 #endif
6615 	}
6616 }
6617 EXPORT_SYMBOL(__skb_ext_del);
6618 
__skb_ext_put(struct skb_ext * ext)6619 void __skb_ext_put(struct skb_ext *ext)
6620 {
6621 	/* If this is last clone, nothing can increment
6622 	 * it after check passes.  Avoids one atomic op.
6623 	 */
6624 	if (refcount_read(&ext->refcnt) == 1)
6625 		goto free_now;
6626 
6627 	if (!refcount_dec_and_test(&ext->refcnt))
6628 		return;
6629 free_now:
6630 #ifdef CONFIG_XFRM
6631 	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6632 		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6633 #endif
6634 
6635 	kmem_cache_free(skbuff_ext_cache, ext);
6636 }
6637 EXPORT_SYMBOL(__skb_ext_put);
6638 #endif /* CONFIG_SKB_EXTENSIONS */
6639