1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 *
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 *
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 *
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 *
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 *
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 *
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22 */
23 #include "sched.h"
24
25 #include <trace/hooks/sched.h>
26
27 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_stat_runtime);
28
29 /*
30 * Targeted preemption latency for CPU-bound tasks:
31 *
32 * NOTE: this latency value is not the same as the concept of
33 * 'timeslice length' - timeslices in CFS are of variable length
34 * and have no persistent notion like in traditional, time-slice
35 * based scheduling concepts.
36 *
37 * (to see the precise effective timeslice length of your workload,
38 * run vmstat and monitor the context-switches (cs) field)
39 *
40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
41 */
42 unsigned int sysctl_sched_latency = 6000000ULL;
43 EXPORT_SYMBOL_GPL(sysctl_sched_latency);
44 static unsigned int normalized_sysctl_sched_latency = 6000000ULL;
45
46 /*
47 * The initial- and re-scaling of tunables is configurable
48 *
49 * Options are:
50 *
51 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
52 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
53 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
54 *
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 */
57 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
58
59 /*
60 * Minimal preemption granularity for CPU-bound tasks:
61 *
62 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
63 */
64 unsigned int sysctl_sched_min_granularity = 750000ULL;
65 static unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
66
67 /*
68 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
69 */
70 static unsigned int sched_nr_latency = 8;
71
72 /*
73 * After fork, child runs first. If set to 0 (default) then
74 * parent will (try to) run first.
75 */
76 unsigned int sysctl_sched_child_runs_first __read_mostly;
77
78 /*
79 * SCHED_OTHER wake-up granularity.
80 *
81 * This option delays the preemption effects of decoupled workloads
82 * and reduces their over-scheduling. Synchronous workloads will still
83 * have immediate wakeup/sleep latencies.
84 *
85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 static unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)93 static int __init setup_sched_thermal_decay_shift(char *str)
94 {
95 int _shift = 0;
96
97 if (kstrtoint(str, 0, &_shift))
98 pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
99
100 sched_thermal_decay_shift = clamp(_shift, 0, 10);
101 return 1;
102 }
103 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
104
105 #ifdef CONFIG_SMP
106 /*
107 * For asym packing, by default the lower numbered CPU has higher priority.
108 */
arch_asym_cpu_priority(int cpu)109 int __weak arch_asym_cpu_priority(int cpu)
110 {
111 return -cpu;
112 }
113
114 /*
115 * The margin used when comparing utilization with CPU capacity.
116 *
117 * (default: ~20%)
118 */
119 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
120
121 /*
122 * The margin used when comparing CPU capacities.
123 * is 'cap1' noticeably greater than 'cap2'
124 *
125 * (default: ~5%)
126 */
127 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
128 #endif
129
130 #ifdef CONFIG_CFS_BANDWIDTH
131 /*
132 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
133 * each time a cfs_rq requests quota.
134 *
135 * Note: in the case that the slice exceeds the runtime remaining (either due
136 * to consumption or the quota being specified to be smaller than the slice)
137 * we will always only issue the remaining available time.
138 *
139 * (default: 5 msec, units: microseconds)
140 */
141 unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
142 #endif
143
update_load_add(struct load_weight * lw,unsigned long inc)144 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
145 {
146 lw->weight += inc;
147 lw->inv_weight = 0;
148 }
149
update_load_sub(struct load_weight * lw,unsigned long dec)150 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
151 {
152 lw->weight -= dec;
153 lw->inv_weight = 0;
154 }
155
update_load_set(struct load_weight * lw,unsigned long w)156 static inline void update_load_set(struct load_weight *lw, unsigned long w)
157 {
158 lw->weight = w;
159 lw->inv_weight = 0;
160 }
161
162 /*
163 * Increase the granularity value when there are more CPUs,
164 * because with more CPUs the 'effective latency' as visible
165 * to users decreases. But the relationship is not linear,
166 * so pick a second-best guess by going with the log2 of the
167 * number of CPUs.
168 *
169 * This idea comes from the SD scheduler of Con Kolivas:
170 */
get_update_sysctl_factor(void)171 static unsigned int get_update_sysctl_factor(void)
172 {
173 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
174 unsigned int factor;
175
176 switch (sysctl_sched_tunable_scaling) {
177 case SCHED_TUNABLESCALING_NONE:
178 factor = 1;
179 break;
180 case SCHED_TUNABLESCALING_LINEAR:
181 factor = cpus;
182 break;
183 case SCHED_TUNABLESCALING_LOG:
184 default:
185 factor = 1 + ilog2(cpus);
186 break;
187 }
188
189 return factor;
190 }
191
update_sysctl(void)192 static void update_sysctl(void)
193 {
194 unsigned int factor = get_update_sysctl_factor();
195
196 #define SET_SYSCTL(name) \
197 (sysctl_##name = (factor) * normalized_sysctl_##name)
198 SET_SYSCTL(sched_min_granularity);
199 SET_SYSCTL(sched_latency);
200 SET_SYSCTL(sched_wakeup_granularity);
201 #undef SET_SYSCTL
202 }
203
sched_init_granularity(void)204 void __init sched_init_granularity(void)
205 {
206 update_sysctl();
207 }
208
209 #define WMULT_CONST (~0U)
210 #define WMULT_SHIFT 32
211
__update_inv_weight(struct load_weight * lw)212 static void __update_inv_weight(struct load_weight *lw)
213 {
214 unsigned long w;
215
216 if (likely(lw->inv_weight))
217 return;
218
219 w = scale_load_down(lw->weight);
220
221 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
222 lw->inv_weight = 1;
223 else if (unlikely(!w))
224 lw->inv_weight = WMULT_CONST;
225 else
226 lw->inv_weight = WMULT_CONST / w;
227 }
228
229 /*
230 * delta_exec * weight / lw.weight
231 * OR
232 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
233 *
234 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
235 * we're guaranteed shift stays positive because inv_weight is guaranteed to
236 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
237 *
238 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
239 * weight/lw.weight <= 1, and therefore our shift will also be positive.
240 */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)241 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
242 {
243 u64 fact = scale_load_down(weight);
244 u32 fact_hi = (u32)(fact >> 32);
245 int shift = WMULT_SHIFT;
246 int fs;
247
248 __update_inv_weight(lw);
249
250 if (unlikely(fact_hi)) {
251 fs = fls(fact_hi);
252 shift -= fs;
253 fact >>= fs;
254 }
255
256 fact = mul_u32_u32(fact, lw->inv_weight);
257
258 fact_hi = (u32)(fact >> 32);
259 if (fact_hi) {
260 fs = fls(fact_hi);
261 shift -= fs;
262 fact >>= fs;
263 }
264
265 return mul_u64_u32_shr(delta_exec, fact, shift);
266 }
267
268
269 const struct sched_class fair_sched_class;
270
271 /**************************************************************
272 * CFS operations on generic schedulable entities:
273 */
274
275 #ifdef CONFIG_FAIR_GROUP_SCHED
276
277 /* Walk up scheduling entities hierarchy */
278 #define for_each_sched_entity(se) \
279 for (; se; se = se->parent)
280
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)281 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
282 {
283 if (!path)
284 return;
285
286 if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
287 autogroup_path(cfs_rq->tg, path, len);
288 else if (cfs_rq && cfs_rq->tg->css.cgroup)
289 cgroup_path(cfs_rq->tg->css.cgroup, path, len);
290 else
291 strlcpy(path, "(null)", len);
292 }
293
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)294 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
295 {
296 struct rq *rq = rq_of(cfs_rq);
297 int cpu = cpu_of(rq);
298
299 if (cfs_rq->on_list)
300 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
301
302 cfs_rq->on_list = 1;
303
304 /*
305 * Ensure we either appear before our parent (if already
306 * enqueued) or force our parent to appear after us when it is
307 * enqueued. The fact that we always enqueue bottom-up
308 * reduces this to two cases and a special case for the root
309 * cfs_rq. Furthermore, it also means that we will always reset
310 * tmp_alone_branch either when the branch is connected
311 * to a tree or when we reach the top of the tree
312 */
313 if (cfs_rq->tg->parent &&
314 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
315 /*
316 * If parent is already on the list, we add the child
317 * just before. Thanks to circular linked property of
318 * the list, this means to put the child at the tail
319 * of the list that starts by parent.
320 */
321 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
322 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
323 /*
324 * The branch is now connected to its tree so we can
325 * reset tmp_alone_branch to the beginning of the
326 * list.
327 */
328 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
329 return true;
330 }
331
332 if (!cfs_rq->tg->parent) {
333 /*
334 * cfs rq without parent should be put
335 * at the tail of the list.
336 */
337 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
338 &rq->leaf_cfs_rq_list);
339 /*
340 * We have reach the top of a tree so we can reset
341 * tmp_alone_branch to the beginning of the list.
342 */
343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 return true;
345 }
346
347 /*
348 * The parent has not already been added so we want to
349 * make sure that it will be put after us.
350 * tmp_alone_branch points to the begin of the branch
351 * where we will add parent.
352 */
353 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
354 /*
355 * update tmp_alone_branch to points to the new begin
356 * of the branch
357 */
358 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
359 return false;
360 }
361
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)362 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
363 {
364 if (cfs_rq->on_list) {
365 struct rq *rq = rq_of(cfs_rq);
366
367 /*
368 * With cfs_rq being unthrottled/throttled during an enqueue,
369 * it can happen the tmp_alone_branch points the a leaf that
370 * we finally want to del. In this case, tmp_alone_branch moves
371 * to the prev element but it will point to rq->leaf_cfs_rq_list
372 * at the end of the enqueue.
373 */
374 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
375 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
376
377 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
378 cfs_rq->on_list = 0;
379 }
380 }
381
assert_list_leaf_cfs_rq(struct rq * rq)382 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
383 {
384 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
385 }
386
387 /* Iterate thr' all leaf cfs_rq's on a runqueue */
388 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
389 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
390 leaf_cfs_rq_list)
391
392 /* Do the two (enqueued) entities belong to the same group ? */
393 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)394 is_same_group(struct sched_entity *se, struct sched_entity *pse)
395 {
396 if (se->cfs_rq == pse->cfs_rq)
397 return se->cfs_rq;
398
399 return NULL;
400 }
401
parent_entity(struct sched_entity * se)402 static inline struct sched_entity *parent_entity(struct sched_entity *se)
403 {
404 return se->parent;
405 }
406
407 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)408 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
409 {
410 int se_depth, pse_depth;
411
412 /*
413 * preemption test can be made between sibling entities who are in the
414 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
415 * both tasks until we find their ancestors who are siblings of common
416 * parent.
417 */
418
419 /* First walk up until both entities are at same depth */
420 se_depth = (*se)->depth;
421 pse_depth = (*pse)->depth;
422
423 while (se_depth > pse_depth) {
424 se_depth--;
425 *se = parent_entity(*se);
426 }
427
428 while (pse_depth > se_depth) {
429 pse_depth--;
430 *pse = parent_entity(*pse);
431 }
432
433 while (!is_same_group(*se, *pse)) {
434 *se = parent_entity(*se);
435 *pse = parent_entity(*pse);
436 }
437 }
438
tg_is_idle(struct task_group * tg)439 static int tg_is_idle(struct task_group *tg)
440 {
441 return tg->idle > 0;
442 }
443
cfs_rq_is_idle(struct cfs_rq * cfs_rq)444 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
445 {
446 return cfs_rq->idle > 0;
447 }
448
se_is_idle(struct sched_entity * se)449 static int se_is_idle(struct sched_entity *se)
450 {
451 if (entity_is_task(se))
452 return task_has_idle_policy(task_of(se));
453 return cfs_rq_is_idle(group_cfs_rq(se));
454 }
455
456 #else /* !CONFIG_FAIR_GROUP_SCHED */
457
458 #define for_each_sched_entity(se) \
459 for (; se; se = NULL)
460
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)461 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
462 {
463 if (path)
464 strlcpy(path, "(null)", len);
465 }
466
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)467 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
468 {
469 return true;
470 }
471
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)472 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
473 {
474 }
475
assert_list_leaf_cfs_rq(struct rq * rq)476 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
477 {
478 }
479
480 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
481 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
482
parent_entity(struct sched_entity * se)483 static inline struct sched_entity *parent_entity(struct sched_entity *se)
484 {
485 return NULL;
486 }
487
488 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)489 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
490 {
491 }
492
tg_is_idle(struct task_group * tg)493 static inline int tg_is_idle(struct task_group *tg)
494 {
495 return 0;
496 }
497
cfs_rq_is_idle(struct cfs_rq * cfs_rq)498 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
499 {
500 return 0;
501 }
502
se_is_idle(struct sched_entity * se)503 static int se_is_idle(struct sched_entity *se)
504 {
505 return 0;
506 }
507
508 #endif /* CONFIG_FAIR_GROUP_SCHED */
509
510 static __always_inline
511 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
512
513 /**************************************************************
514 * Scheduling class tree data structure manipulation methods:
515 */
516
max_vruntime(u64 max_vruntime,u64 vruntime)517 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
518 {
519 s64 delta = (s64)(vruntime - max_vruntime);
520 if (delta > 0)
521 max_vruntime = vruntime;
522
523 return max_vruntime;
524 }
525
min_vruntime(u64 min_vruntime,u64 vruntime)526 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
527 {
528 s64 delta = (s64)(vruntime - min_vruntime);
529 if (delta < 0)
530 min_vruntime = vruntime;
531
532 return min_vruntime;
533 }
534
entity_before(struct sched_entity * a,struct sched_entity * b)535 static inline bool entity_before(struct sched_entity *a,
536 struct sched_entity *b)
537 {
538 return (s64)(a->vruntime - b->vruntime) < 0;
539 }
540
541 #define __node_2_se(node) \
542 rb_entry((node), struct sched_entity, run_node)
543
update_min_vruntime(struct cfs_rq * cfs_rq)544 static void update_min_vruntime(struct cfs_rq *cfs_rq)
545 {
546 struct sched_entity *curr = cfs_rq->curr;
547 struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
548
549 u64 vruntime = cfs_rq->min_vruntime;
550
551 if (curr) {
552 if (curr->on_rq)
553 vruntime = curr->vruntime;
554 else
555 curr = NULL;
556 }
557
558 if (leftmost) { /* non-empty tree */
559 struct sched_entity *se = __node_2_se(leftmost);
560
561 if (!curr)
562 vruntime = se->vruntime;
563 else
564 vruntime = min_vruntime(vruntime, se->vruntime);
565 }
566
567 /* ensure we never gain time by being placed backwards. */
568 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
569 #ifndef CONFIG_64BIT
570 smp_wmb();
571 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
572 #endif
573 }
574
__entity_less(struct rb_node * a,const struct rb_node * b)575 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
576 {
577 return entity_before(__node_2_se(a), __node_2_se(b));
578 }
579
580 /*
581 * Enqueue an entity into the rb-tree:
582 */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)583 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
584 {
585 trace_android_rvh_enqueue_entity(cfs_rq, se);
586 rb_add_cached(&se->run_node, &cfs_rq->tasks_timeline, __entity_less);
587 }
588
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)589 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
590 {
591 trace_android_rvh_dequeue_entity(cfs_rq, se);
592 rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
593 }
594
__pick_first_entity(struct cfs_rq * cfs_rq)595 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
596 {
597 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
598
599 if (!left)
600 return NULL;
601
602 return __node_2_se(left);
603 }
604
__pick_next_entity(struct sched_entity * se)605 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
606 {
607 struct rb_node *next = rb_next(&se->run_node);
608
609 if (!next)
610 return NULL;
611
612 return __node_2_se(next);
613 }
614
615 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)616 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
617 {
618 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
619
620 if (!last)
621 return NULL;
622
623 return __node_2_se(last);
624 }
625
626 /**************************************************************
627 * Scheduling class statistics methods:
628 */
629
sched_update_scaling(void)630 int sched_update_scaling(void)
631 {
632 unsigned int factor = get_update_sysctl_factor();
633
634 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
635 sysctl_sched_min_granularity);
636
637 #define WRT_SYSCTL(name) \
638 (normalized_sysctl_##name = sysctl_##name / (factor))
639 WRT_SYSCTL(sched_min_granularity);
640 WRT_SYSCTL(sched_latency);
641 WRT_SYSCTL(sched_wakeup_granularity);
642 #undef WRT_SYSCTL
643
644 return 0;
645 }
646 #endif
647
648 /*
649 * delta /= w
650 */
calc_delta_fair(u64 delta,struct sched_entity * se)651 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
652 {
653 if (unlikely(se->load.weight != NICE_0_LOAD))
654 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
655
656 return delta;
657 }
658
659 /*
660 * The idea is to set a period in which each task runs once.
661 *
662 * When there are too many tasks (sched_nr_latency) we have to stretch
663 * this period because otherwise the slices get too small.
664 *
665 * p = (nr <= nl) ? l : l*nr/nl
666 */
__sched_period(unsigned long nr_running)667 static u64 __sched_period(unsigned long nr_running)
668 {
669 if (unlikely(nr_running > sched_nr_latency))
670 return nr_running * sysctl_sched_min_granularity;
671 else
672 return sysctl_sched_latency;
673 }
674
675 /*
676 * We calculate the wall-time slice from the period by taking a part
677 * proportional to the weight.
678 *
679 * s = p*P[w/rw]
680 */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)681 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
682 {
683 unsigned int nr_running = cfs_rq->nr_running;
684 u64 slice;
685
686 if (sched_feat(ALT_PERIOD))
687 nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
688
689 slice = __sched_period(nr_running + !se->on_rq);
690
691 for_each_sched_entity(se) {
692 struct load_weight *load;
693 struct load_weight lw;
694
695 cfs_rq = cfs_rq_of(se);
696 load = &cfs_rq->load;
697
698 if (unlikely(!se->on_rq)) {
699 lw = cfs_rq->load;
700
701 update_load_add(&lw, se->load.weight);
702 load = &lw;
703 }
704 slice = __calc_delta(slice, se->load.weight, load);
705 }
706
707 if (sched_feat(BASE_SLICE))
708 slice = max(slice, (u64)sysctl_sched_min_granularity);
709
710 return slice;
711 }
712
713 /*
714 * We calculate the vruntime slice of a to-be-inserted task.
715 *
716 * vs = s/w
717 */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)718 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
719 {
720 return calc_delta_fair(sched_slice(cfs_rq, se), se);
721 }
722
723 #include "pelt.h"
724 #ifdef CONFIG_SMP
725
726 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
727 static unsigned long task_h_load(struct task_struct *p);
728 static unsigned long capacity_of(int cpu);
729
730 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)731 void init_entity_runnable_average(struct sched_entity *se)
732 {
733 struct sched_avg *sa = &se->avg;
734
735 memset(sa, 0, sizeof(*sa));
736
737 /*
738 * Tasks are initialized with full load to be seen as heavy tasks until
739 * they get a chance to stabilize to their real load level.
740 * Group entities are initialized with zero load to reflect the fact that
741 * nothing has been attached to the task group yet.
742 */
743 if (entity_is_task(se))
744 sa->load_avg = scale_load_down(se->load.weight);
745
746 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
747 }
748
749 static void attach_entity_cfs_rq(struct sched_entity *se);
750
751 /*
752 * With new tasks being created, their initial util_avgs are extrapolated
753 * based on the cfs_rq's current util_avg:
754 *
755 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
756 *
757 * However, in many cases, the above util_avg does not give a desired
758 * value. Moreover, the sum of the util_avgs may be divergent, such
759 * as when the series is a harmonic series.
760 *
761 * To solve this problem, we also cap the util_avg of successive tasks to
762 * only 1/2 of the left utilization budget:
763 *
764 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
765 *
766 * where n denotes the nth task and cpu_scale the CPU capacity.
767 *
768 * For example, for a CPU with 1024 of capacity, a simplest series from
769 * the beginning would be like:
770 *
771 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
772 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
773 *
774 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
775 * if util_avg > util_avg_cap.
776 */
post_init_entity_util_avg(struct task_struct * p)777 void post_init_entity_util_avg(struct task_struct *p)
778 {
779 struct sched_entity *se = &p->se;
780 struct cfs_rq *cfs_rq = cfs_rq_of(se);
781 struct sched_avg *sa = &se->avg;
782 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
783 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
784
785 if (cap > 0) {
786 if (cfs_rq->avg.util_avg != 0) {
787 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
788 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
789
790 if (sa->util_avg > cap)
791 sa->util_avg = cap;
792 } else {
793 sa->util_avg = cap;
794 }
795 }
796
797 sa->runnable_avg = sa->util_avg;
798
799 if (p->sched_class != &fair_sched_class) {
800 /*
801 * For !fair tasks do:
802 *
803 update_cfs_rq_load_avg(now, cfs_rq);
804 attach_entity_load_avg(cfs_rq, se);
805 switched_from_fair(rq, p);
806 *
807 * such that the next switched_to_fair() has the
808 * expected state.
809 */
810 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
811 return;
812 }
813
814 /* Hook before this se's util is attached to cfs_rq's util */
815 trace_android_rvh_post_init_entity_util_avg(se);
816 attach_entity_cfs_rq(se);
817 }
818
819 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)820 void init_entity_runnable_average(struct sched_entity *se)
821 {
822 }
post_init_entity_util_avg(struct task_struct * p)823 void post_init_entity_util_avg(struct task_struct *p)
824 {
825 }
update_tg_load_avg(struct cfs_rq * cfs_rq)826 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
827 {
828 }
829 #endif /* CONFIG_SMP */
830
831 /*
832 * Update the current task's runtime statistics.
833 */
update_curr(struct cfs_rq * cfs_rq)834 static void update_curr(struct cfs_rq *cfs_rq)
835 {
836 struct sched_entity *curr = cfs_rq->curr;
837 u64 now = rq_clock_task(rq_of(cfs_rq));
838 u64 delta_exec;
839
840 if (unlikely(!curr))
841 return;
842
843 delta_exec = now - curr->exec_start;
844 if (unlikely((s64)delta_exec <= 0))
845 return;
846
847 curr->exec_start = now;
848
849 schedstat_set(curr->statistics.exec_max,
850 max(delta_exec, curr->statistics.exec_max));
851
852 curr->sum_exec_runtime += delta_exec;
853 schedstat_add(cfs_rq->exec_clock, delta_exec);
854
855 curr->vruntime += calc_delta_fair(delta_exec, curr);
856 update_min_vruntime(cfs_rq);
857
858 if (entity_is_task(curr)) {
859 struct task_struct *curtask = task_of(curr);
860
861 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
862 cgroup_account_cputime(curtask, delta_exec);
863 account_group_exec_runtime(curtask, delta_exec);
864 }
865
866 account_cfs_rq_runtime(cfs_rq, delta_exec);
867 }
868
update_curr_fair(struct rq * rq)869 static void update_curr_fair(struct rq *rq)
870 {
871 update_curr(cfs_rq_of(&rq->curr->se));
872 }
873
874 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)875 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
876 {
877 u64 wait_start, prev_wait_start;
878
879 if (!schedstat_enabled())
880 return;
881
882 wait_start = rq_clock(rq_of(cfs_rq));
883 prev_wait_start = schedstat_val(se->statistics.wait_start);
884
885 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
886 likely(wait_start > prev_wait_start))
887 wait_start -= prev_wait_start;
888
889 __schedstat_set(se->statistics.wait_start, wait_start);
890 }
891
892 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)893 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
894 {
895 struct task_struct *p;
896 u64 delta;
897
898 if (!schedstat_enabled())
899 return;
900
901 /*
902 * When the sched_schedstat changes from 0 to 1, some sched se
903 * maybe already in the runqueue, the se->statistics.wait_start
904 * will be 0.So it will let the delta wrong. We need to avoid this
905 * scenario.
906 */
907 if (unlikely(!schedstat_val(se->statistics.wait_start)))
908 return;
909
910 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
911
912 if (entity_is_task(se)) {
913 p = task_of(se);
914 if (task_on_rq_migrating(p)) {
915 /*
916 * Preserve migrating task's wait time so wait_start
917 * time stamp can be adjusted to accumulate wait time
918 * prior to migration.
919 */
920 __schedstat_set(se->statistics.wait_start, delta);
921 return;
922 }
923 trace_sched_stat_wait(p, delta);
924 }
925
926 __schedstat_set(se->statistics.wait_max,
927 max(schedstat_val(se->statistics.wait_max), delta));
928 __schedstat_inc(se->statistics.wait_count);
929 __schedstat_add(se->statistics.wait_sum, delta);
930 __schedstat_set(se->statistics.wait_start, 0);
931 }
932
933 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)934 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
935 {
936 struct task_struct *tsk = NULL;
937 u64 sleep_start, block_start;
938
939 if (!schedstat_enabled())
940 return;
941
942 sleep_start = schedstat_val(se->statistics.sleep_start);
943 block_start = schedstat_val(se->statistics.block_start);
944
945 if (entity_is_task(se))
946 tsk = task_of(se);
947
948 if (sleep_start) {
949 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
950
951 if ((s64)delta < 0)
952 delta = 0;
953
954 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
955 __schedstat_set(se->statistics.sleep_max, delta);
956
957 __schedstat_set(se->statistics.sleep_start, 0);
958 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
959
960 if (tsk) {
961 account_scheduler_latency(tsk, delta >> 10, 1);
962 trace_sched_stat_sleep(tsk, delta);
963 }
964 }
965 if (block_start) {
966 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
967
968 if ((s64)delta < 0)
969 delta = 0;
970
971 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
972 __schedstat_set(se->statistics.block_max, delta);
973
974 __schedstat_set(se->statistics.block_start, 0);
975 __schedstat_add(se->statistics.sum_sleep_runtime, delta);
976
977 if (tsk) {
978 if (tsk->in_iowait) {
979 __schedstat_add(se->statistics.iowait_sum, delta);
980 __schedstat_inc(se->statistics.iowait_count);
981 trace_sched_stat_iowait(tsk, delta);
982 }
983
984 trace_sched_stat_blocked(tsk, delta);
985
986 /*
987 * Blocking time is in units of nanosecs, so shift by
988 * 20 to get a milliseconds-range estimation of the
989 * amount of time that the task spent sleeping:
990 */
991 if (unlikely(prof_on == SLEEP_PROFILING)) {
992 profile_hits(SLEEP_PROFILING,
993 (void *)get_wchan(tsk),
994 delta >> 20);
995 }
996 account_scheduler_latency(tsk, delta >> 10, 0);
997 }
998 }
999 }
1000
1001 /*
1002 * Task is being enqueued - update stats:
1003 */
1004 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1005 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1006 {
1007 if (!schedstat_enabled())
1008 return;
1009
1010 /*
1011 * Are we enqueueing a waiting task? (for current tasks
1012 * a dequeue/enqueue event is a NOP)
1013 */
1014 if (se != cfs_rq->curr)
1015 update_stats_wait_start(cfs_rq, se);
1016
1017 if (flags & ENQUEUE_WAKEUP)
1018 update_stats_enqueue_sleeper(cfs_rq, se);
1019 }
1020
1021 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1022 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1023 {
1024
1025 if (!schedstat_enabled())
1026 return;
1027
1028 /*
1029 * Mark the end of the wait period if dequeueing a
1030 * waiting task:
1031 */
1032 if (se != cfs_rq->curr)
1033 update_stats_wait_end(cfs_rq, se);
1034
1035 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1036 struct task_struct *tsk = task_of(se);
1037 unsigned int state;
1038
1039 /* XXX racy against TTWU */
1040 state = READ_ONCE(tsk->__state);
1041 if (state & TASK_INTERRUPTIBLE)
1042 __schedstat_set(se->statistics.sleep_start,
1043 rq_clock(rq_of(cfs_rq)));
1044 if (state & TASK_UNINTERRUPTIBLE)
1045 __schedstat_set(se->statistics.block_start,
1046 rq_clock(rq_of(cfs_rq)));
1047 }
1048 }
1049
1050 /*
1051 * We are picking a new current task - update its stats:
1052 */
1053 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1054 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1055 {
1056 /*
1057 * We are starting a new run period:
1058 */
1059 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1060 }
1061
1062 /**************************************************
1063 * Scheduling class queueing methods:
1064 */
1065
1066 #ifdef CONFIG_NUMA_BALANCING
1067 /*
1068 * Approximate time to scan a full NUMA task in ms. The task scan period is
1069 * calculated based on the tasks virtual memory size and
1070 * numa_balancing_scan_size.
1071 */
1072 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1073 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1074
1075 /* Portion of address space to scan in MB */
1076 unsigned int sysctl_numa_balancing_scan_size = 256;
1077
1078 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1079 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1080
1081 struct numa_group {
1082 refcount_t refcount;
1083
1084 spinlock_t lock; /* nr_tasks, tasks */
1085 int nr_tasks;
1086 pid_t gid;
1087 int active_nodes;
1088
1089 struct rcu_head rcu;
1090 unsigned long total_faults;
1091 unsigned long max_faults_cpu;
1092 /*
1093 * Faults_cpu is used to decide whether memory should move
1094 * towards the CPU. As a consequence, these stats are weighted
1095 * more by CPU use than by memory faults.
1096 */
1097 unsigned long *faults_cpu;
1098 unsigned long faults[];
1099 };
1100
1101 /*
1102 * For functions that can be called in multiple contexts that permit reading
1103 * ->numa_group (see struct task_struct for locking rules).
1104 */
deref_task_numa_group(struct task_struct * p)1105 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1106 {
1107 return rcu_dereference_check(p->numa_group, p == current ||
1108 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1109 }
1110
deref_curr_numa_group(struct task_struct * p)1111 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1112 {
1113 return rcu_dereference_protected(p->numa_group, p == current);
1114 }
1115
1116 static inline unsigned long group_faults_priv(struct numa_group *ng);
1117 static inline unsigned long group_faults_shared(struct numa_group *ng);
1118
task_nr_scan_windows(struct task_struct * p)1119 static unsigned int task_nr_scan_windows(struct task_struct *p)
1120 {
1121 unsigned long rss = 0;
1122 unsigned long nr_scan_pages;
1123
1124 /*
1125 * Calculations based on RSS as non-present and empty pages are skipped
1126 * by the PTE scanner and NUMA hinting faults should be trapped based
1127 * on resident pages
1128 */
1129 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1130 rss = get_mm_rss(p->mm);
1131 if (!rss)
1132 rss = nr_scan_pages;
1133
1134 rss = round_up(rss, nr_scan_pages);
1135 return rss / nr_scan_pages;
1136 }
1137
1138 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1139 #define MAX_SCAN_WINDOW 2560
1140
task_scan_min(struct task_struct * p)1141 static unsigned int task_scan_min(struct task_struct *p)
1142 {
1143 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1144 unsigned int scan, floor;
1145 unsigned int windows = 1;
1146
1147 if (scan_size < MAX_SCAN_WINDOW)
1148 windows = MAX_SCAN_WINDOW / scan_size;
1149 floor = 1000 / windows;
1150
1151 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1152 return max_t(unsigned int, floor, scan);
1153 }
1154
task_scan_start(struct task_struct * p)1155 static unsigned int task_scan_start(struct task_struct *p)
1156 {
1157 unsigned long smin = task_scan_min(p);
1158 unsigned long period = smin;
1159 struct numa_group *ng;
1160
1161 /* Scale the maximum scan period with the amount of shared memory. */
1162 rcu_read_lock();
1163 ng = rcu_dereference(p->numa_group);
1164 if (ng) {
1165 unsigned long shared = group_faults_shared(ng);
1166 unsigned long private = group_faults_priv(ng);
1167
1168 period *= refcount_read(&ng->refcount);
1169 period *= shared + 1;
1170 period /= private + shared + 1;
1171 }
1172 rcu_read_unlock();
1173
1174 return max(smin, period);
1175 }
1176
task_scan_max(struct task_struct * p)1177 static unsigned int task_scan_max(struct task_struct *p)
1178 {
1179 unsigned long smin = task_scan_min(p);
1180 unsigned long smax;
1181 struct numa_group *ng;
1182
1183 /* Watch for min being lower than max due to floor calculations */
1184 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1185
1186 /* Scale the maximum scan period with the amount of shared memory. */
1187 ng = deref_curr_numa_group(p);
1188 if (ng) {
1189 unsigned long shared = group_faults_shared(ng);
1190 unsigned long private = group_faults_priv(ng);
1191 unsigned long period = smax;
1192
1193 period *= refcount_read(&ng->refcount);
1194 period *= shared + 1;
1195 period /= private + shared + 1;
1196
1197 smax = max(smax, period);
1198 }
1199
1200 return max(smin, smax);
1201 }
1202
account_numa_enqueue(struct rq * rq,struct task_struct * p)1203 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1204 {
1205 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1206 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1207 }
1208
account_numa_dequeue(struct rq * rq,struct task_struct * p)1209 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1210 {
1211 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1212 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1213 }
1214
1215 /* Shared or private faults. */
1216 #define NR_NUMA_HINT_FAULT_TYPES 2
1217
1218 /* Memory and CPU locality */
1219 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1220
1221 /* Averaged statistics, and temporary buffers. */
1222 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1223
task_numa_group_id(struct task_struct * p)1224 pid_t task_numa_group_id(struct task_struct *p)
1225 {
1226 struct numa_group *ng;
1227 pid_t gid = 0;
1228
1229 rcu_read_lock();
1230 ng = rcu_dereference(p->numa_group);
1231 if (ng)
1232 gid = ng->gid;
1233 rcu_read_unlock();
1234
1235 return gid;
1236 }
1237
1238 /*
1239 * The averaged statistics, shared & private, memory & CPU,
1240 * occupy the first half of the array. The second half of the
1241 * array is for current counters, which are averaged into the
1242 * first set by task_numa_placement.
1243 */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1244 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1245 {
1246 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1247 }
1248
task_faults(struct task_struct * p,int nid)1249 static inline unsigned long task_faults(struct task_struct *p, int nid)
1250 {
1251 if (!p->numa_faults)
1252 return 0;
1253
1254 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1255 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1256 }
1257
group_faults(struct task_struct * p,int nid)1258 static inline unsigned long group_faults(struct task_struct *p, int nid)
1259 {
1260 struct numa_group *ng = deref_task_numa_group(p);
1261
1262 if (!ng)
1263 return 0;
1264
1265 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1266 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1267 }
1268
group_faults_cpu(struct numa_group * group,int nid)1269 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1270 {
1271 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1272 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1273 }
1274
group_faults_priv(struct numa_group * ng)1275 static inline unsigned long group_faults_priv(struct numa_group *ng)
1276 {
1277 unsigned long faults = 0;
1278 int node;
1279
1280 for_each_online_node(node) {
1281 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1282 }
1283
1284 return faults;
1285 }
1286
group_faults_shared(struct numa_group * ng)1287 static inline unsigned long group_faults_shared(struct numa_group *ng)
1288 {
1289 unsigned long faults = 0;
1290 int node;
1291
1292 for_each_online_node(node) {
1293 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1294 }
1295
1296 return faults;
1297 }
1298
1299 /*
1300 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1301 * considered part of a numa group's pseudo-interleaving set. Migrations
1302 * between these nodes are slowed down, to allow things to settle down.
1303 */
1304 #define ACTIVE_NODE_FRACTION 3
1305
numa_is_active_node(int nid,struct numa_group * ng)1306 static bool numa_is_active_node(int nid, struct numa_group *ng)
1307 {
1308 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1309 }
1310
1311 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1312 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1313 int maxdist, bool task)
1314 {
1315 unsigned long score = 0;
1316 int node;
1317
1318 /*
1319 * All nodes are directly connected, and the same distance
1320 * from each other. No need for fancy placement algorithms.
1321 */
1322 if (sched_numa_topology_type == NUMA_DIRECT)
1323 return 0;
1324
1325 /*
1326 * This code is called for each node, introducing N^2 complexity,
1327 * which should be ok given the number of nodes rarely exceeds 8.
1328 */
1329 for_each_online_node(node) {
1330 unsigned long faults;
1331 int dist = node_distance(nid, node);
1332
1333 /*
1334 * The furthest away nodes in the system are not interesting
1335 * for placement; nid was already counted.
1336 */
1337 if (dist == sched_max_numa_distance || node == nid)
1338 continue;
1339
1340 /*
1341 * On systems with a backplane NUMA topology, compare groups
1342 * of nodes, and move tasks towards the group with the most
1343 * memory accesses. When comparing two nodes at distance
1344 * "hoplimit", only nodes closer by than "hoplimit" are part
1345 * of each group. Skip other nodes.
1346 */
1347 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1348 dist >= maxdist)
1349 continue;
1350
1351 /* Add up the faults from nearby nodes. */
1352 if (task)
1353 faults = task_faults(p, node);
1354 else
1355 faults = group_faults(p, node);
1356
1357 /*
1358 * On systems with a glueless mesh NUMA topology, there are
1359 * no fixed "groups of nodes". Instead, nodes that are not
1360 * directly connected bounce traffic through intermediate
1361 * nodes; a numa_group can occupy any set of nodes.
1362 * The further away a node is, the less the faults count.
1363 * This seems to result in good task placement.
1364 */
1365 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1366 faults *= (sched_max_numa_distance - dist);
1367 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1368 }
1369
1370 score += faults;
1371 }
1372
1373 return score;
1374 }
1375
1376 /*
1377 * These return the fraction of accesses done by a particular task, or
1378 * task group, on a particular numa node. The group weight is given a
1379 * larger multiplier, in order to group tasks together that are almost
1380 * evenly spread out between numa nodes.
1381 */
task_weight(struct task_struct * p,int nid,int dist)1382 static inline unsigned long task_weight(struct task_struct *p, int nid,
1383 int dist)
1384 {
1385 unsigned long faults, total_faults;
1386
1387 if (!p->numa_faults)
1388 return 0;
1389
1390 total_faults = p->total_numa_faults;
1391
1392 if (!total_faults)
1393 return 0;
1394
1395 faults = task_faults(p, nid);
1396 faults += score_nearby_nodes(p, nid, dist, true);
1397
1398 return 1000 * faults / total_faults;
1399 }
1400
group_weight(struct task_struct * p,int nid,int dist)1401 static inline unsigned long group_weight(struct task_struct *p, int nid,
1402 int dist)
1403 {
1404 struct numa_group *ng = deref_task_numa_group(p);
1405 unsigned long faults, total_faults;
1406
1407 if (!ng)
1408 return 0;
1409
1410 total_faults = ng->total_faults;
1411
1412 if (!total_faults)
1413 return 0;
1414
1415 faults = group_faults(p, nid);
1416 faults += score_nearby_nodes(p, nid, dist, false);
1417
1418 return 1000 * faults / total_faults;
1419 }
1420
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1421 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1422 int src_nid, int dst_cpu)
1423 {
1424 struct numa_group *ng = deref_curr_numa_group(p);
1425 int dst_nid = cpu_to_node(dst_cpu);
1426 int last_cpupid, this_cpupid;
1427
1428 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1429 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1430
1431 /*
1432 * Allow first faults or private faults to migrate immediately early in
1433 * the lifetime of a task. The magic number 4 is based on waiting for
1434 * two full passes of the "multi-stage node selection" test that is
1435 * executed below.
1436 */
1437 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1438 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1439 return true;
1440
1441 /*
1442 * Multi-stage node selection is used in conjunction with a periodic
1443 * migration fault to build a temporal task<->page relation. By using
1444 * a two-stage filter we remove short/unlikely relations.
1445 *
1446 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1447 * a task's usage of a particular page (n_p) per total usage of this
1448 * page (n_t) (in a given time-span) to a probability.
1449 *
1450 * Our periodic faults will sample this probability and getting the
1451 * same result twice in a row, given these samples are fully
1452 * independent, is then given by P(n)^2, provided our sample period
1453 * is sufficiently short compared to the usage pattern.
1454 *
1455 * This quadric squishes small probabilities, making it less likely we
1456 * act on an unlikely task<->page relation.
1457 */
1458 if (!cpupid_pid_unset(last_cpupid) &&
1459 cpupid_to_nid(last_cpupid) != dst_nid)
1460 return false;
1461
1462 /* Always allow migrate on private faults */
1463 if (cpupid_match_pid(p, last_cpupid))
1464 return true;
1465
1466 /* A shared fault, but p->numa_group has not been set up yet. */
1467 if (!ng)
1468 return true;
1469
1470 /*
1471 * Destination node is much more heavily used than the source
1472 * node? Allow migration.
1473 */
1474 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1475 ACTIVE_NODE_FRACTION)
1476 return true;
1477
1478 /*
1479 * Distribute memory according to CPU & memory use on each node,
1480 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1481 *
1482 * faults_cpu(dst) 3 faults_cpu(src)
1483 * --------------- * - > ---------------
1484 * faults_mem(dst) 4 faults_mem(src)
1485 */
1486 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1487 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1488 }
1489
1490 /*
1491 * 'numa_type' describes the node at the moment of load balancing.
1492 */
1493 enum numa_type {
1494 /* The node has spare capacity that can be used to run more tasks. */
1495 node_has_spare = 0,
1496 /*
1497 * The node is fully used and the tasks don't compete for more CPU
1498 * cycles. Nevertheless, some tasks might wait before running.
1499 */
1500 node_fully_busy,
1501 /*
1502 * The node is overloaded and can't provide expected CPU cycles to all
1503 * tasks.
1504 */
1505 node_overloaded
1506 };
1507
1508 /* Cached statistics for all CPUs within a node */
1509 struct numa_stats {
1510 unsigned long load;
1511 unsigned long runnable;
1512 unsigned long util;
1513 /* Total compute capacity of CPUs on a node */
1514 unsigned long compute_capacity;
1515 unsigned int nr_running;
1516 unsigned int weight;
1517 enum numa_type node_type;
1518 int idle_cpu;
1519 };
1520
is_core_idle(int cpu)1521 static inline bool is_core_idle(int cpu)
1522 {
1523 #ifdef CONFIG_SCHED_SMT
1524 int sibling;
1525
1526 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1527 if (cpu == sibling)
1528 continue;
1529
1530 if (!idle_cpu(sibling))
1531 return false;
1532 }
1533 #endif
1534
1535 return true;
1536 }
1537
1538 struct task_numa_env {
1539 struct task_struct *p;
1540
1541 int src_cpu, src_nid;
1542 int dst_cpu, dst_nid;
1543
1544 struct numa_stats src_stats, dst_stats;
1545
1546 int imbalance_pct;
1547 int dist;
1548
1549 struct task_struct *best_task;
1550 long best_imp;
1551 int best_cpu;
1552 };
1553
1554 static unsigned long cpu_load(struct rq *rq);
1555 static unsigned long cpu_runnable(struct rq *rq);
1556 static unsigned long cpu_util(int cpu);
1557 static inline long adjust_numa_imbalance(int imbalance,
1558 int dst_running, int dst_weight);
1559
1560 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1561 numa_type numa_classify(unsigned int imbalance_pct,
1562 struct numa_stats *ns)
1563 {
1564 if ((ns->nr_running > ns->weight) &&
1565 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1566 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1567 return node_overloaded;
1568
1569 if ((ns->nr_running < ns->weight) ||
1570 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1571 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1572 return node_has_spare;
1573
1574 return node_fully_busy;
1575 }
1576
1577 #ifdef CONFIG_SCHED_SMT
1578 /* Forward declarations of select_idle_sibling helpers */
1579 static inline bool test_idle_cores(int cpu, bool def);
numa_idle_core(int idle_core,int cpu)1580 static inline int numa_idle_core(int idle_core, int cpu)
1581 {
1582 if (!static_branch_likely(&sched_smt_present) ||
1583 idle_core >= 0 || !test_idle_cores(cpu, false))
1584 return idle_core;
1585
1586 /*
1587 * Prefer cores instead of packing HT siblings
1588 * and triggering future load balancing.
1589 */
1590 if (is_core_idle(cpu))
1591 idle_core = cpu;
1592
1593 return idle_core;
1594 }
1595 #else
numa_idle_core(int idle_core,int cpu)1596 static inline int numa_idle_core(int idle_core, int cpu)
1597 {
1598 return idle_core;
1599 }
1600 #endif
1601
1602 /*
1603 * Gather all necessary information to make NUMA balancing placement
1604 * decisions that are compatible with standard load balancer. This
1605 * borrows code and logic from update_sg_lb_stats but sharing a
1606 * common implementation is impractical.
1607 */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1608 static void update_numa_stats(struct task_numa_env *env,
1609 struct numa_stats *ns, int nid,
1610 bool find_idle)
1611 {
1612 int cpu, idle_core = -1;
1613
1614 memset(ns, 0, sizeof(*ns));
1615 ns->idle_cpu = -1;
1616
1617 rcu_read_lock();
1618 for_each_cpu(cpu, cpumask_of_node(nid)) {
1619 struct rq *rq = cpu_rq(cpu);
1620
1621 ns->load += cpu_load(rq);
1622 ns->runnable += cpu_runnable(rq);
1623 ns->util += cpu_util(cpu);
1624 ns->nr_running += rq->cfs.h_nr_running;
1625 ns->compute_capacity += capacity_of(cpu);
1626
1627 if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1628 if (READ_ONCE(rq->numa_migrate_on) ||
1629 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1630 continue;
1631
1632 if (ns->idle_cpu == -1)
1633 ns->idle_cpu = cpu;
1634
1635 idle_core = numa_idle_core(idle_core, cpu);
1636 }
1637 }
1638 rcu_read_unlock();
1639
1640 ns->weight = cpumask_weight(cpumask_of_node(nid));
1641
1642 ns->node_type = numa_classify(env->imbalance_pct, ns);
1643
1644 if (idle_core >= 0)
1645 ns->idle_cpu = idle_core;
1646 }
1647
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1648 static void task_numa_assign(struct task_numa_env *env,
1649 struct task_struct *p, long imp)
1650 {
1651 struct rq *rq = cpu_rq(env->dst_cpu);
1652
1653 /* Check if run-queue part of active NUMA balance. */
1654 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1655 int cpu;
1656 int start = env->dst_cpu;
1657
1658 /* Find alternative idle CPU. */
1659 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1660 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1661 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1662 continue;
1663 }
1664
1665 env->dst_cpu = cpu;
1666 rq = cpu_rq(env->dst_cpu);
1667 if (!xchg(&rq->numa_migrate_on, 1))
1668 goto assign;
1669 }
1670
1671 /* Failed to find an alternative idle CPU */
1672 return;
1673 }
1674
1675 assign:
1676 /*
1677 * Clear previous best_cpu/rq numa-migrate flag, since task now
1678 * found a better CPU to move/swap.
1679 */
1680 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1681 rq = cpu_rq(env->best_cpu);
1682 WRITE_ONCE(rq->numa_migrate_on, 0);
1683 }
1684
1685 if (env->best_task)
1686 put_task_struct(env->best_task);
1687 if (p)
1688 get_task_struct(p);
1689
1690 env->best_task = p;
1691 env->best_imp = imp;
1692 env->best_cpu = env->dst_cpu;
1693 }
1694
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1695 static bool load_too_imbalanced(long src_load, long dst_load,
1696 struct task_numa_env *env)
1697 {
1698 long imb, old_imb;
1699 long orig_src_load, orig_dst_load;
1700 long src_capacity, dst_capacity;
1701
1702 /*
1703 * The load is corrected for the CPU capacity available on each node.
1704 *
1705 * src_load dst_load
1706 * ------------ vs ---------
1707 * src_capacity dst_capacity
1708 */
1709 src_capacity = env->src_stats.compute_capacity;
1710 dst_capacity = env->dst_stats.compute_capacity;
1711
1712 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1713
1714 orig_src_load = env->src_stats.load;
1715 orig_dst_load = env->dst_stats.load;
1716
1717 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1718
1719 /* Would this change make things worse? */
1720 return (imb > old_imb);
1721 }
1722
1723 /*
1724 * Maximum NUMA importance can be 1998 (2*999);
1725 * SMALLIMP @ 30 would be close to 1998/64.
1726 * Used to deter task migration.
1727 */
1728 #define SMALLIMP 30
1729
1730 /*
1731 * This checks if the overall compute and NUMA accesses of the system would
1732 * be improved if the source tasks was migrated to the target dst_cpu taking
1733 * into account that it might be best if task running on the dst_cpu should
1734 * be exchanged with the source task
1735 */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1736 static bool task_numa_compare(struct task_numa_env *env,
1737 long taskimp, long groupimp, bool maymove)
1738 {
1739 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1740 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1741 long imp = p_ng ? groupimp : taskimp;
1742 struct task_struct *cur;
1743 long src_load, dst_load;
1744 int dist = env->dist;
1745 long moveimp = imp;
1746 long load;
1747 bool stopsearch = false;
1748
1749 if (READ_ONCE(dst_rq->numa_migrate_on))
1750 return false;
1751
1752 rcu_read_lock();
1753 cur = rcu_dereference(dst_rq->curr);
1754 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1755 cur = NULL;
1756
1757 /*
1758 * Because we have preemption enabled we can get migrated around and
1759 * end try selecting ourselves (current == env->p) as a swap candidate.
1760 */
1761 if (cur == env->p) {
1762 stopsearch = true;
1763 goto unlock;
1764 }
1765
1766 if (!cur) {
1767 if (maymove && moveimp >= env->best_imp)
1768 goto assign;
1769 else
1770 goto unlock;
1771 }
1772
1773 /* Skip this swap candidate if cannot move to the source cpu. */
1774 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1775 goto unlock;
1776
1777 /*
1778 * Skip this swap candidate if it is not moving to its preferred
1779 * node and the best task is.
1780 */
1781 if (env->best_task &&
1782 env->best_task->numa_preferred_nid == env->src_nid &&
1783 cur->numa_preferred_nid != env->src_nid) {
1784 goto unlock;
1785 }
1786
1787 /*
1788 * "imp" is the fault differential for the source task between the
1789 * source and destination node. Calculate the total differential for
1790 * the source task and potential destination task. The more negative
1791 * the value is, the more remote accesses that would be expected to
1792 * be incurred if the tasks were swapped.
1793 *
1794 * If dst and source tasks are in the same NUMA group, or not
1795 * in any group then look only at task weights.
1796 */
1797 cur_ng = rcu_dereference(cur->numa_group);
1798 if (cur_ng == p_ng) {
1799 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1800 task_weight(cur, env->dst_nid, dist);
1801 /*
1802 * Add some hysteresis to prevent swapping the
1803 * tasks within a group over tiny differences.
1804 */
1805 if (cur_ng)
1806 imp -= imp / 16;
1807 } else {
1808 /*
1809 * Compare the group weights. If a task is all by itself
1810 * (not part of a group), use the task weight instead.
1811 */
1812 if (cur_ng && p_ng)
1813 imp += group_weight(cur, env->src_nid, dist) -
1814 group_weight(cur, env->dst_nid, dist);
1815 else
1816 imp += task_weight(cur, env->src_nid, dist) -
1817 task_weight(cur, env->dst_nid, dist);
1818 }
1819
1820 /* Discourage picking a task already on its preferred node */
1821 if (cur->numa_preferred_nid == env->dst_nid)
1822 imp -= imp / 16;
1823
1824 /*
1825 * Encourage picking a task that moves to its preferred node.
1826 * This potentially makes imp larger than it's maximum of
1827 * 1998 (see SMALLIMP and task_weight for why) but in this
1828 * case, it does not matter.
1829 */
1830 if (cur->numa_preferred_nid == env->src_nid)
1831 imp += imp / 8;
1832
1833 if (maymove && moveimp > imp && moveimp > env->best_imp) {
1834 imp = moveimp;
1835 cur = NULL;
1836 goto assign;
1837 }
1838
1839 /*
1840 * Prefer swapping with a task moving to its preferred node over a
1841 * task that is not.
1842 */
1843 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1844 env->best_task->numa_preferred_nid != env->src_nid) {
1845 goto assign;
1846 }
1847
1848 /*
1849 * If the NUMA importance is less than SMALLIMP,
1850 * task migration might only result in ping pong
1851 * of tasks and also hurt performance due to cache
1852 * misses.
1853 */
1854 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1855 goto unlock;
1856
1857 /*
1858 * In the overloaded case, try and keep the load balanced.
1859 */
1860 load = task_h_load(env->p) - task_h_load(cur);
1861 if (!load)
1862 goto assign;
1863
1864 dst_load = env->dst_stats.load + load;
1865 src_load = env->src_stats.load - load;
1866
1867 if (load_too_imbalanced(src_load, dst_load, env))
1868 goto unlock;
1869
1870 assign:
1871 /* Evaluate an idle CPU for a task numa move. */
1872 if (!cur) {
1873 int cpu = env->dst_stats.idle_cpu;
1874
1875 /* Nothing cached so current CPU went idle since the search. */
1876 if (cpu < 0)
1877 cpu = env->dst_cpu;
1878
1879 /*
1880 * If the CPU is no longer truly idle and the previous best CPU
1881 * is, keep using it.
1882 */
1883 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1884 idle_cpu(env->best_cpu)) {
1885 cpu = env->best_cpu;
1886 }
1887
1888 env->dst_cpu = cpu;
1889 }
1890
1891 task_numa_assign(env, cur, imp);
1892
1893 /*
1894 * If a move to idle is allowed because there is capacity or load
1895 * balance improves then stop the search. While a better swap
1896 * candidate may exist, a search is not free.
1897 */
1898 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1899 stopsearch = true;
1900
1901 /*
1902 * If a swap candidate must be identified and the current best task
1903 * moves its preferred node then stop the search.
1904 */
1905 if (!maymove && env->best_task &&
1906 env->best_task->numa_preferred_nid == env->src_nid) {
1907 stopsearch = true;
1908 }
1909 unlock:
1910 rcu_read_unlock();
1911
1912 return stopsearch;
1913 }
1914
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1915 static void task_numa_find_cpu(struct task_numa_env *env,
1916 long taskimp, long groupimp)
1917 {
1918 bool maymove = false;
1919 int cpu;
1920
1921 /*
1922 * If dst node has spare capacity, then check if there is an
1923 * imbalance that would be overruled by the load balancer.
1924 */
1925 if (env->dst_stats.node_type == node_has_spare) {
1926 unsigned int imbalance;
1927 int src_running, dst_running;
1928
1929 /*
1930 * Would movement cause an imbalance? Note that if src has
1931 * more running tasks that the imbalance is ignored as the
1932 * move improves the imbalance from the perspective of the
1933 * CPU load balancer.
1934 * */
1935 src_running = env->src_stats.nr_running - 1;
1936 dst_running = env->dst_stats.nr_running + 1;
1937 imbalance = max(0, dst_running - src_running);
1938 imbalance = adjust_numa_imbalance(imbalance, dst_running,
1939 env->dst_stats.weight);
1940
1941 /* Use idle CPU if there is no imbalance */
1942 if (!imbalance) {
1943 maymove = true;
1944 if (env->dst_stats.idle_cpu >= 0) {
1945 env->dst_cpu = env->dst_stats.idle_cpu;
1946 task_numa_assign(env, NULL, 0);
1947 return;
1948 }
1949 }
1950 } else {
1951 long src_load, dst_load, load;
1952 /*
1953 * If the improvement from just moving env->p direction is better
1954 * than swapping tasks around, check if a move is possible.
1955 */
1956 load = task_h_load(env->p);
1957 dst_load = env->dst_stats.load + load;
1958 src_load = env->src_stats.load - load;
1959 maymove = !load_too_imbalanced(src_load, dst_load, env);
1960 }
1961
1962 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1963 /* Skip this CPU if the source task cannot migrate */
1964 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1965 continue;
1966
1967 env->dst_cpu = cpu;
1968 if (task_numa_compare(env, taskimp, groupimp, maymove))
1969 break;
1970 }
1971 }
1972
task_numa_migrate(struct task_struct * p)1973 static int task_numa_migrate(struct task_struct *p)
1974 {
1975 struct task_numa_env env = {
1976 .p = p,
1977
1978 .src_cpu = task_cpu(p),
1979 .src_nid = task_node(p),
1980
1981 .imbalance_pct = 112,
1982
1983 .best_task = NULL,
1984 .best_imp = 0,
1985 .best_cpu = -1,
1986 };
1987 unsigned long taskweight, groupweight;
1988 struct sched_domain *sd;
1989 long taskimp, groupimp;
1990 struct numa_group *ng;
1991 struct rq *best_rq;
1992 int nid, ret, dist;
1993
1994 /*
1995 * Pick the lowest SD_NUMA domain, as that would have the smallest
1996 * imbalance and would be the first to start moving tasks about.
1997 *
1998 * And we want to avoid any moving of tasks about, as that would create
1999 * random movement of tasks -- counter the numa conditions we're trying
2000 * to satisfy here.
2001 */
2002 rcu_read_lock();
2003 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2004 if (sd)
2005 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2006 rcu_read_unlock();
2007
2008 /*
2009 * Cpusets can break the scheduler domain tree into smaller
2010 * balance domains, some of which do not cross NUMA boundaries.
2011 * Tasks that are "trapped" in such domains cannot be migrated
2012 * elsewhere, so there is no point in (re)trying.
2013 */
2014 if (unlikely(!sd)) {
2015 sched_setnuma(p, task_node(p));
2016 return -EINVAL;
2017 }
2018
2019 env.dst_nid = p->numa_preferred_nid;
2020 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2021 taskweight = task_weight(p, env.src_nid, dist);
2022 groupweight = group_weight(p, env.src_nid, dist);
2023 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2024 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2025 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2026 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2027
2028 /* Try to find a spot on the preferred nid. */
2029 task_numa_find_cpu(&env, taskimp, groupimp);
2030
2031 /*
2032 * Look at other nodes in these cases:
2033 * - there is no space available on the preferred_nid
2034 * - the task is part of a numa_group that is interleaved across
2035 * multiple NUMA nodes; in order to better consolidate the group,
2036 * we need to check other locations.
2037 */
2038 ng = deref_curr_numa_group(p);
2039 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2040 for_each_online_node(nid) {
2041 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2042 continue;
2043
2044 dist = node_distance(env.src_nid, env.dst_nid);
2045 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2046 dist != env.dist) {
2047 taskweight = task_weight(p, env.src_nid, dist);
2048 groupweight = group_weight(p, env.src_nid, dist);
2049 }
2050
2051 /* Only consider nodes where both task and groups benefit */
2052 taskimp = task_weight(p, nid, dist) - taskweight;
2053 groupimp = group_weight(p, nid, dist) - groupweight;
2054 if (taskimp < 0 && groupimp < 0)
2055 continue;
2056
2057 env.dist = dist;
2058 env.dst_nid = nid;
2059 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2060 task_numa_find_cpu(&env, taskimp, groupimp);
2061 }
2062 }
2063
2064 /*
2065 * If the task is part of a workload that spans multiple NUMA nodes,
2066 * and is migrating into one of the workload's active nodes, remember
2067 * this node as the task's preferred numa node, so the workload can
2068 * settle down.
2069 * A task that migrated to a second choice node will be better off
2070 * trying for a better one later. Do not set the preferred node here.
2071 */
2072 if (ng) {
2073 if (env.best_cpu == -1)
2074 nid = env.src_nid;
2075 else
2076 nid = cpu_to_node(env.best_cpu);
2077
2078 if (nid != p->numa_preferred_nid)
2079 sched_setnuma(p, nid);
2080 }
2081
2082 /* No better CPU than the current one was found. */
2083 if (env.best_cpu == -1) {
2084 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2085 return -EAGAIN;
2086 }
2087
2088 best_rq = cpu_rq(env.best_cpu);
2089 if (env.best_task == NULL) {
2090 ret = migrate_task_to(p, env.best_cpu);
2091 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2092 if (ret != 0)
2093 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2094 return ret;
2095 }
2096
2097 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2098 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2099
2100 if (ret != 0)
2101 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2102 put_task_struct(env.best_task);
2103 return ret;
2104 }
2105
2106 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2107 static void numa_migrate_preferred(struct task_struct *p)
2108 {
2109 unsigned long interval = HZ;
2110
2111 /* This task has no NUMA fault statistics yet */
2112 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2113 return;
2114
2115 /* Periodically retry migrating the task to the preferred node */
2116 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2117 p->numa_migrate_retry = jiffies + interval;
2118
2119 /* Success if task is already running on preferred CPU */
2120 if (task_node(p) == p->numa_preferred_nid)
2121 return;
2122
2123 /* Otherwise, try migrate to a CPU on the preferred node */
2124 task_numa_migrate(p);
2125 }
2126
2127 /*
2128 * Find out how many nodes on the workload is actively running on. Do this by
2129 * tracking the nodes from which NUMA hinting faults are triggered. This can
2130 * be different from the set of nodes where the workload's memory is currently
2131 * located.
2132 */
numa_group_count_active_nodes(struct numa_group * numa_group)2133 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2134 {
2135 unsigned long faults, max_faults = 0;
2136 int nid, active_nodes = 0;
2137
2138 for_each_online_node(nid) {
2139 faults = group_faults_cpu(numa_group, nid);
2140 if (faults > max_faults)
2141 max_faults = faults;
2142 }
2143
2144 for_each_online_node(nid) {
2145 faults = group_faults_cpu(numa_group, nid);
2146 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2147 active_nodes++;
2148 }
2149
2150 numa_group->max_faults_cpu = max_faults;
2151 numa_group->active_nodes = active_nodes;
2152 }
2153
2154 /*
2155 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2156 * increments. The more local the fault statistics are, the higher the scan
2157 * period will be for the next scan window. If local/(local+remote) ratio is
2158 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2159 * the scan period will decrease. Aim for 70% local accesses.
2160 */
2161 #define NUMA_PERIOD_SLOTS 10
2162 #define NUMA_PERIOD_THRESHOLD 7
2163
2164 /*
2165 * Increase the scan period (slow down scanning) if the majority of
2166 * our memory is already on our local node, or if the majority of
2167 * the page accesses are shared with other processes.
2168 * Otherwise, decrease the scan period.
2169 */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2170 static void update_task_scan_period(struct task_struct *p,
2171 unsigned long shared, unsigned long private)
2172 {
2173 unsigned int period_slot;
2174 int lr_ratio, ps_ratio;
2175 int diff;
2176
2177 unsigned long remote = p->numa_faults_locality[0];
2178 unsigned long local = p->numa_faults_locality[1];
2179
2180 /*
2181 * If there were no record hinting faults then either the task is
2182 * completely idle or all activity is areas that are not of interest
2183 * to automatic numa balancing. Related to that, if there were failed
2184 * migration then it implies we are migrating too quickly or the local
2185 * node is overloaded. In either case, scan slower
2186 */
2187 if (local + shared == 0 || p->numa_faults_locality[2]) {
2188 p->numa_scan_period = min(p->numa_scan_period_max,
2189 p->numa_scan_period << 1);
2190
2191 p->mm->numa_next_scan = jiffies +
2192 msecs_to_jiffies(p->numa_scan_period);
2193
2194 return;
2195 }
2196
2197 /*
2198 * Prepare to scale scan period relative to the current period.
2199 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2200 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2201 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2202 */
2203 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2204 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2205 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2206
2207 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2208 /*
2209 * Most memory accesses are local. There is no need to
2210 * do fast NUMA scanning, since memory is already local.
2211 */
2212 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2213 if (!slot)
2214 slot = 1;
2215 diff = slot * period_slot;
2216 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2217 /*
2218 * Most memory accesses are shared with other tasks.
2219 * There is no point in continuing fast NUMA scanning,
2220 * since other tasks may just move the memory elsewhere.
2221 */
2222 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2223 if (!slot)
2224 slot = 1;
2225 diff = slot * period_slot;
2226 } else {
2227 /*
2228 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2229 * yet they are not on the local NUMA node. Speed up
2230 * NUMA scanning to get the memory moved over.
2231 */
2232 int ratio = max(lr_ratio, ps_ratio);
2233 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2234 }
2235
2236 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2237 task_scan_min(p), task_scan_max(p));
2238 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2239 }
2240
2241 /*
2242 * Get the fraction of time the task has been running since the last
2243 * NUMA placement cycle. The scheduler keeps similar statistics, but
2244 * decays those on a 32ms period, which is orders of magnitude off
2245 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2246 * stats only if the task is so new there are no NUMA statistics yet.
2247 */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2248 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2249 {
2250 u64 runtime, delta, now;
2251 /* Use the start of this time slice to avoid calculations. */
2252 now = p->se.exec_start;
2253 runtime = p->se.sum_exec_runtime;
2254
2255 if (p->last_task_numa_placement) {
2256 delta = runtime - p->last_sum_exec_runtime;
2257 *period = now - p->last_task_numa_placement;
2258
2259 /* Avoid time going backwards, prevent potential divide error: */
2260 if (unlikely((s64)*period < 0))
2261 *period = 0;
2262 } else {
2263 delta = p->se.avg.load_sum;
2264 *period = LOAD_AVG_MAX;
2265 }
2266
2267 p->last_sum_exec_runtime = runtime;
2268 p->last_task_numa_placement = now;
2269
2270 return delta;
2271 }
2272
2273 /*
2274 * Determine the preferred nid for a task in a numa_group. This needs to
2275 * be done in a way that produces consistent results with group_weight,
2276 * otherwise workloads might not converge.
2277 */
preferred_group_nid(struct task_struct * p,int nid)2278 static int preferred_group_nid(struct task_struct *p, int nid)
2279 {
2280 nodemask_t nodes;
2281 int dist;
2282
2283 /* Direct connections between all NUMA nodes. */
2284 if (sched_numa_topology_type == NUMA_DIRECT)
2285 return nid;
2286
2287 /*
2288 * On a system with glueless mesh NUMA topology, group_weight
2289 * scores nodes according to the number of NUMA hinting faults on
2290 * both the node itself, and on nearby nodes.
2291 */
2292 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2293 unsigned long score, max_score = 0;
2294 int node, max_node = nid;
2295
2296 dist = sched_max_numa_distance;
2297
2298 for_each_online_node(node) {
2299 score = group_weight(p, node, dist);
2300 if (score > max_score) {
2301 max_score = score;
2302 max_node = node;
2303 }
2304 }
2305 return max_node;
2306 }
2307
2308 /*
2309 * Finding the preferred nid in a system with NUMA backplane
2310 * interconnect topology is more involved. The goal is to locate
2311 * tasks from numa_groups near each other in the system, and
2312 * untangle workloads from different sides of the system. This requires
2313 * searching down the hierarchy of node groups, recursively searching
2314 * inside the highest scoring group of nodes. The nodemask tricks
2315 * keep the complexity of the search down.
2316 */
2317 nodes = node_online_map;
2318 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2319 unsigned long max_faults = 0;
2320 nodemask_t max_group = NODE_MASK_NONE;
2321 int a, b;
2322
2323 /* Are there nodes at this distance from each other? */
2324 if (!find_numa_distance(dist))
2325 continue;
2326
2327 for_each_node_mask(a, nodes) {
2328 unsigned long faults = 0;
2329 nodemask_t this_group;
2330 nodes_clear(this_group);
2331
2332 /* Sum group's NUMA faults; includes a==b case. */
2333 for_each_node_mask(b, nodes) {
2334 if (node_distance(a, b) < dist) {
2335 faults += group_faults(p, b);
2336 node_set(b, this_group);
2337 node_clear(b, nodes);
2338 }
2339 }
2340
2341 /* Remember the top group. */
2342 if (faults > max_faults) {
2343 max_faults = faults;
2344 max_group = this_group;
2345 /*
2346 * subtle: at the smallest distance there is
2347 * just one node left in each "group", the
2348 * winner is the preferred nid.
2349 */
2350 nid = a;
2351 }
2352 }
2353 /* Next round, evaluate the nodes within max_group. */
2354 if (!max_faults)
2355 break;
2356 nodes = max_group;
2357 }
2358 return nid;
2359 }
2360
task_numa_placement(struct task_struct * p)2361 static void task_numa_placement(struct task_struct *p)
2362 {
2363 int seq, nid, max_nid = NUMA_NO_NODE;
2364 unsigned long max_faults = 0;
2365 unsigned long fault_types[2] = { 0, 0 };
2366 unsigned long total_faults;
2367 u64 runtime, period;
2368 spinlock_t *group_lock = NULL;
2369 struct numa_group *ng;
2370
2371 /*
2372 * The p->mm->numa_scan_seq field gets updated without
2373 * exclusive access. Use READ_ONCE() here to ensure
2374 * that the field is read in a single access:
2375 */
2376 seq = READ_ONCE(p->mm->numa_scan_seq);
2377 if (p->numa_scan_seq == seq)
2378 return;
2379 p->numa_scan_seq = seq;
2380 p->numa_scan_period_max = task_scan_max(p);
2381
2382 total_faults = p->numa_faults_locality[0] +
2383 p->numa_faults_locality[1];
2384 runtime = numa_get_avg_runtime(p, &period);
2385
2386 /* If the task is part of a group prevent parallel updates to group stats */
2387 ng = deref_curr_numa_group(p);
2388 if (ng) {
2389 group_lock = &ng->lock;
2390 spin_lock_irq(group_lock);
2391 }
2392
2393 /* Find the node with the highest number of faults */
2394 for_each_online_node(nid) {
2395 /* Keep track of the offsets in numa_faults array */
2396 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2397 unsigned long faults = 0, group_faults = 0;
2398 int priv;
2399
2400 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2401 long diff, f_diff, f_weight;
2402
2403 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2404 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2405 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2406 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2407
2408 /* Decay existing window, copy faults since last scan */
2409 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2410 fault_types[priv] += p->numa_faults[membuf_idx];
2411 p->numa_faults[membuf_idx] = 0;
2412
2413 /*
2414 * Normalize the faults_from, so all tasks in a group
2415 * count according to CPU use, instead of by the raw
2416 * number of faults. Tasks with little runtime have
2417 * little over-all impact on throughput, and thus their
2418 * faults are less important.
2419 */
2420 f_weight = div64_u64(runtime << 16, period + 1);
2421 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2422 (total_faults + 1);
2423 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2424 p->numa_faults[cpubuf_idx] = 0;
2425
2426 p->numa_faults[mem_idx] += diff;
2427 p->numa_faults[cpu_idx] += f_diff;
2428 faults += p->numa_faults[mem_idx];
2429 p->total_numa_faults += diff;
2430 if (ng) {
2431 /*
2432 * safe because we can only change our own group
2433 *
2434 * mem_idx represents the offset for a given
2435 * nid and priv in a specific region because it
2436 * is at the beginning of the numa_faults array.
2437 */
2438 ng->faults[mem_idx] += diff;
2439 ng->faults_cpu[mem_idx] += f_diff;
2440 ng->total_faults += diff;
2441 group_faults += ng->faults[mem_idx];
2442 }
2443 }
2444
2445 if (!ng) {
2446 if (faults > max_faults) {
2447 max_faults = faults;
2448 max_nid = nid;
2449 }
2450 } else if (group_faults > max_faults) {
2451 max_faults = group_faults;
2452 max_nid = nid;
2453 }
2454 }
2455
2456 if (ng) {
2457 numa_group_count_active_nodes(ng);
2458 spin_unlock_irq(group_lock);
2459 max_nid = preferred_group_nid(p, max_nid);
2460 }
2461
2462 if (max_faults) {
2463 /* Set the new preferred node */
2464 if (max_nid != p->numa_preferred_nid)
2465 sched_setnuma(p, max_nid);
2466 }
2467
2468 update_task_scan_period(p, fault_types[0], fault_types[1]);
2469 }
2470
get_numa_group(struct numa_group * grp)2471 static inline int get_numa_group(struct numa_group *grp)
2472 {
2473 return refcount_inc_not_zero(&grp->refcount);
2474 }
2475
put_numa_group(struct numa_group * grp)2476 static inline void put_numa_group(struct numa_group *grp)
2477 {
2478 if (refcount_dec_and_test(&grp->refcount))
2479 kfree_rcu(grp, rcu);
2480 }
2481
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2482 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2483 int *priv)
2484 {
2485 struct numa_group *grp, *my_grp;
2486 struct task_struct *tsk;
2487 bool join = false;
2488 int cpu = cpupid_to_cpu(cpupid);
2489 int i;
2490
2491 if (unlikely(!deref_curr_numa_group(p))) {
2492 unsigned int size = sizeof(struct numa_group) +
2493 4*nr_node_ids*sizeof(unsigned long);
2494
2495 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2496 if (!grp)
2497 return;
2498
2499 refcount_set(&grp->refcount, 1);
2500 grp->active_nodes = 1;
2501 grp->max_faults_cpu = 0;
2502 spin_lock_init(&grp->lock);
2503 grp->gid = p->pid;
2504 /* Second half of the array tracks nids where faults happen */
2505 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2506 nr_node_ids;
2507
2508 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2509 grp->faults[i] = p->numa_faults[i];
2510
2511 grp->total_faults = p->total_numa_faults;
2512
2513 grp->nr_tasks++;
2514 rcu_assign_pointer(p->numa_group, grp);
2515 }
2516
2517 rcu_read_lock();
2518 tsk = READ_ONCE(cpu_rq(cpu)->curr);
2519
2520 if (!cpupid_match_pid(tsk, cpupid))
2521 goto no_join;
2522
2523 grp = rcu_dereference(tsk->numa_group);
2524 if (!grp)
2525 goto no_join;
2526
2527 my_grp = deref_curr_numa_group(p);
2528 if (grp == my_grp)
2529 goto no_join;
2530
2531 /*
2532 * Only join the other group if its bigger; if we're the bigger group,
2533 * the other task will join us.
2534 */
2535 if (my_grp->nr_tasks > grp->nr_tasks)
2536 goto no_join;
2537
2538 /*
2539 * Tie-break on the grp address.
2540 */
2541 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2542 goto no_join;
2543
2544 /* Always join threads in the same process. */
2545 if (tsk->mm == current->mm)
2546 join = true;
2547
2548 /* Simple filter to avoid false positives due to PID collisions */
2549 if (flags & TNF_SHARED)
2550 join = true;
2551
2552 /* Update priv based on whether false sharing was detected */
2553 *priv = !join;
2554
2555 if (join && !get_numa_group(grp))
2556 goto no_join;
2557
2558 rcu_read_unlock();
2559
2560 if (!join)
2561 return;
2562
2563 BUG_ON(irqs_disabled());
2564 double_lock_irq(&my_grp->lock, &grp->lock);
2565
2566 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2567 my_grp->faults[i] -= p->numa_faults[i];
2568 grp->faults[i] += p->numa_faults[i];
2569 }
2570 my_grp->total_faults -= p->total_numa_faults;
2571 grp->total_faults += p->total_numa_faults;
2572
2573 my_grp->nr_tasks--;
2574 grp->nr_tasks++;
2575
2576 spin_unlock(&my_grp->lock);
2577 spin_unlock_irq(&grp->lock);
2578
2579 rcu_assign_pointer(p->numa_group, grp);
2580
2581 put_numa_group(my_grp);
2582 return;
2583
2584 no_join:
2585 rcu_read_unlock();
2586 return;
2587 }
2588
2589 /*
2590 * Get rid of NUMA statistics associated with a task (either current or dead).
2591 * If @final is set, the task is dead and has reached refcount zero, so we can
2592 * safely free all relevant data structures. Otherwise, there might be
2593 * concurrent reads from places like load balancing and procfs, and we should
2594 * reset the data back to default state without freeing ->numa_faults.
2595 */
task_numa_free(struct task_struct * p,bool final)2596 void task_numa_free(struct task_struct *p, bool final)
2597 {
2598 /* safe: p either is current or is being freed by current */
2599 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2600 unsigned long *numa_faults = p->numa_faults;
2601 unsigned long flags;
2602 int i;
2603
2604 if (!numa_faults)
2605 return;
2606
2607 if (grp) {
2608 spin_lock_irqsave(&grp->lock, flags);
2609 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2610 grp->faults[i] -= p->numa_faults[i];
2611 grp->total_faults -= p->total_numa_faults;
2612
2613 grp->nr_tasks--;
2614 spin_unlock_irqrestore(&grp->lock, flags);
2615 RCU_INIT_POINTER(p->numa_group, NULL);
2616 put_numa_group(grp);
2617 }
2618
2619 if (final) {
2620 p->numa_faults = NULL;
2621 kfree(numa_faults);
2622 } else {
2623 p->total_numa_faults = 0;
2624 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2625 numa_faults[i] = 0;
2626 }
2627 }
2628
2629 /*
2630 * Got a PROT_NONE fault for a page on @node.
2631 */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2632 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2633 {
2634 struct task_struct *p = current;
2635 bool migrated = flags & TNF_MIGRATED;
2636 int cpu_node = task_node(current);
2637 int local = !!(flags & TNF_FAULT_LOCAL);
2638 struct numa_group *ng;
2639 int priv;
2640
2641 if (!static_branch_likely(&sched_numa_balancing))
2642 return;
2643
2644 /* for example, ksmd faulting in a user's mm */
2645 if (!p->mm)
2646 return;
2647
2648 /* Allocate buffer to track faults on a per-node basis */
2649 if (unlikely(!p->numa_faults)) {
2650 int size = sizeof(*p->numa_faults) *
2651 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2652
2653 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2654 if (!p->numa_faults)
2655 return;
2656
2657 p->total_numa_faults = 0;
2658 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2659 }
2660
2661 /*
2662 * First accesses are treated as private, otherwise consider accesses
2663 * to be private if the accessing pid has not changed
2664 */
2665 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2666 priv = 1;
2667 } else {
2668 priv = cpupid_match_pid(p, last_cpupid);
2669 if (!priv && !(flags & TNF_NO_GROUP))
2670 task_numa_group(p, last_cpupid, flags, &priv);
2671 }
2672
2673 /*
2674 * If a workload spans multiple NUMA nodes, a shared fault that
2675 * occurs wholly within the set of nodes that the workload is
2676 * actively using should be counted as local. This allows the
2677 * scan rate to slow down when a workload has settled down.
2678 */
2679 ng = deref_curr_numa_group(p);
2680 if (!priv && !local && ng && ng->active_nodes > 1 &&
2681 numa_is_active_node(cpu_node, ng) &&
2682 numa_is_active_node(mem_node, ng))
2683 local = 1;
2684
2685 /*
2686 * Retry to migrate task to preferred node periodically, in case it
2687 * previously failed, or the scheduler moved us.
2688 */
2689 if (time_after(jiffies, p->numa_migrate_retry)) {
2690 task_numa_placement(p);
2691 numa_migrate_preferred(p);
2692 }
2693
2694 if (migrated)
2695 p->numa_pages_migrated += pages;
2696 if (flags & TNF_MIGRATE_FAIL)
2697 p->numa_faults_locality[2] += pages;
2698
2699 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2700 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2701 p->numa_faults_locality[local] += pages;
2702 }
2703
reset_ptenuma_scan(struct task_struct * p)2704 static void reset_ptenuma_scan(struct task_struct *p)
2705 {
2706 /*
2707 * We only did a read acquisition of the mmap sem, so
2708 * p->mm->numa_scan_seq is written to without exclusive access
2709 * and the update is not guaranteed to be atomic. That's not
2710 * much of an issue though, since this is just used for
2711 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2712 * expensive, to avoid any form of compiler optimizations:
2713 */
2714 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2715 p->mm->numa_scan_offset = 0;
2716 }
2717
2718 /*
2719 * The expensive part of numa migration is done from task_work context.
2720 * Triggered from task_tick_numa().
2721 */
task_numa_work(struct callback_head * work)2722 static void task_numa_work(struct callback_head *work)
2723 {
2724 unsigned long migrate, next_scan, now = jiffies;
2725 struct task_struct *p = current;
2726 struct mm_struct *mm = p->mm;
2727 u64 runtime = p->se.sum_exec_runtime;
2728 struct vm_area_struct *vma;
2729 unsigned long start, end;
2730 unsigned long nr_pte_updates = 0;
2731 long pages, virtpages;
2732
2733 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2734
2735 work->next = work;
2736 /*
2737 * Who cares about NUMA placement when they're dying.
2738 *
2739 * NOTE: make sure not to dereference p->mm before this check,
2740 * exit_task_work() happens _after_ exit_mm() so we could be called
2741 * without p->mm even though we still had it when we enqueued this
2742 * work.
2743 */
2744 if (p->flags & PF_EXITING)
2745 return;
2746
2747 if (!mm->numa_next_scan) {
2748 mm->numa_next_scan = now +
2749 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2750 }
2751
2752 /*
2753 * Enforce maximal scan/migration frequency..
2754 */
2755 migrate = mm->numa_next_scan;
2756 if (time_before(now, migrate))
2757 return;
2758
2759 if (p->numa_scan_period == 0) {
2760 p->numa_scan_period_max = task_scan_max(p);
2761 p->numa_scan_period = task_scan_start(p);
2762 }
2763
2764 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2765 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2766 return;
2767
2768 /*
2769 * Delay this task enough that another task of this mm will likely win
2770 * the next time around.
2771 */
2772 p->node_stamp += 2 * TICK_NSEC;
2773
2774 start = mm->numa_scan_offset;
2775 pages = sysctl_numa_balancing_scan_size;
2776 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2777 virtpages = pages * 8; /* Scan up to this much virtual space */
2778 if (!pages)
2779 return;
2780
2781
2782 if (!mmap_read_trylock(mm))
2783 return;
2784 vma = find_vma(mm, start);
2785 if (!vma) {
2786 reset_ptenuma_scan(p);
2787 start = 0;
2788 vma = mm->mmap;
2789 }
2790 for (; vma; vma = vma->vm_next) {
2791 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2792 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2793 continue;
2794 }
2795
2796 /*
2797 * Shared library pages mapped by multiple processes are not
2798 * migrated as it is expected they are cache replicated. Avoid
2799 * hinting faults in read-only file-backed mappings or the vdso
2800 * as migrating the pages will be of marginal benefit.
2801 */
2802 if (!vma->vm_mm ||
2803 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2804 continue;
2805
2806 /*
2807 * Skip inaccessible VMAs to avoid any confusion between
2808 * PROT_NONE and NUMA hinting ptes
2809 */
2810 if (!vma_is_accessible(vma))
2811 continue;
2812
2813 do {
2814 start = max(start, vma->vm_start);
2815 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2816 end = min(end, vma->vm_end);
2817 nr_pte_updates = change_prot_numa(vma, start, end);
2818
2819 /*
2820 * Try to scan sysctl_numa_balancing_size worth of
2821 * hpages that have at least one present PTE that
2822 * is not already pte-numa. If the VMA contains
2823 * areas that are unused or already full of prot_numa
2824 * PTEs, scan up to virtpages, to skip through those
2825 * areas faster.
2826 */
2827 if (nr_pte_updates)
2828 pages -= (end - start) >> PAGE_SHIFT;
2829 virtpages -= (end - start) >> PAGE_SHIFT;
2830
2831 start = end;
2832 if (pages <= 0 || virtpages <= 0)
2833 goto out;
2834
2835 cond_resched();
2836 } while (end != vma->vm_end);
2837 }
2838
2839 out:
2840 /*
2841 * It is possible to reach the end of the VMA list but the last few
2842 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2843 * would find the !migratable VMA on the next scan but not reset the
2844 * scanner to the start so check it now.
2845 */
2846 if (vma)
2847 mm->numa_scan_offset = start;
2848 else
2849 reset_ptenuma_scan(p);
2850 mmap_read_unlock(mm);
2851
2852 /*
2853 * Make sure tasks use at least 32x as much time to run other code
2854 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2855 * Usually update_task_scan_period slows down scanning enough; on an
2856 * overloaded system we need to limit overhead on a per task basis.
2857 */
2858 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2859 u64 diff = p->se.sum_exec_runtime - runtime;
2860 p->node_stamp += 32 * diff;
2861 }
2862 }
2863
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2864 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2865 {
2866 int mm_users = 0;
2867 struct mm_struct *mm = p->mm;
2868
2869 if (mm) {
2870 mm_users = atomic_read(&mm->mm_users);
2871 if (mm_users == 1) {
2872 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2873 mm->numa_scan_seq = 0;
2874 }
2875 }
2876 p->node_stamp = 0;
2877 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
2878 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
2879 /* Protect against double add, see task_tick_numa and task_numa_work */
2880 p->numa_work.next = &p->numa_work;
2881 p->numa_faults = NULL;
2882 RCU_INIT_POINTER(p->numa_group, NULL);
2883 p->last_task_numa_placement = 0;
2884 p->last_sum_exec_runtime = 0;
2885
2886 init_task_work(&p->numa_work, task_numa_work);
2887
2888 /* New address space, reset the preferred nid */
2889 if (!(clone_flags & CLONE_VM)) {
2890 p->numa_preferred_nid = NUMA_NO_NODE;
2891 return;
2892 }
2893
2894 /*
2895 * New thread, keep existing numa_preferred_nid which should be copied
2896 * already by arch_dup_task_struct but stagger when scans start.
2897 */
2898 if (mm) {
2899 unsigned int delay;
2900
2901 delay = min_t(unsigned int, task_scan_max(current),
2902 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2903 delay += 2 * TICK_NSEC;
2904 p->node_stamp = delay;
2905 }
2906 }
2907
2908 /*
2909 * Drive the periodic memory faults..
2910 */
task_tick_numa(struct rq * rq,struct task_struct * curr)2911 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2912 {
2913 struct callback_head *work = &curr->numa_work;
2914 u64 period, now;
2915
2916 /*
2917 * We don't care about NUMA placement if we don't have memory.
2918 */
2919 if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2920 return;
2921
2922 /*
2923 * Using runtime rather than walltime has the dual advantage that
2924 * we (mostly) drive the selection from busy threads and that the
2925 * task needs to have done some actual work before we bother with
2926 * NUMA placement.
2927 */
2928 now = curr->se.sum_exec_runtime;
2929 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2930
2931 if (now > curr->node_stamp + period) {
2932 if (!curr->node_stamp)
2933 curr->numa_scan_period = task_scan_start(curr);
2934 curr->node_stamp += period;
2935
2936 if (!time_before(jiffies, curr->mm->numa_next_scan))
2937 task_work_add(curr, work, TWA_RESUME);
2938 }
2939 }
2940
update_scan_period(struct task_struct * p,int new_cpu)2941 static void update_scan_period(struct task_struct *p, int new_cpu)
2942 {
2943 int src_nid = cpu_to_node(task_cpu(p));
2944 int dst_nid = cpu_to_node(new_cpu);
2945
2946 if (!static_branch_likely(&sched_numa_balancing))
2947 return;
2948
2949 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2950 return;
2951
2952 if (src_nid == dst_nid)
2953 return;
2954
2955 /*
2956 * Allow resets if faults have been trapped before one scan
2957 * has completed. This is most likely due to a new task that
2958 * is pulled cross-node due to wakeups or load balancing.
2959 */
2960 if (p->numa_scan_seq) {
2961 /*
2962 * Avoid scan adjustments if moving to the preferred
2963 * node or if the task was not previously running on
2964 * the preferred node.
2965 */
2966 if (dst_nid == p->numa_preferred_nid ||
2967 (p->numa_preferred_nid != NUMA_NO_NODE &&
2968 src_nid != p->numa_preferred_nid))
2969 return;
2970 }
2971
2972 p->numa_scan_period = task_scan_start(p);
2973 }
2974
2975 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)2976 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2977 {
2978 }
2979
account_numa_enqueue(struct rq * rq,struct task_struct * p)2980 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2981 {
2982 }
2983
account_numa_dequeue(struct rq * rq,struct task_struct * p)2984 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2985 {
2986 }
2987
update_scan_period(struct task_struct * p,int new_cpu)2988 static inline void update_scan_period(struct task_struct *p, int new_cpu)
2989 {
2990 }
2991
2992 #endif /* CONFIG_NUMA_BALANCING */
2993
2994 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)2995 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2996 {
2997 update_load_add(&cfs_rq->load, se->load.weight);
2998 #ifdef CONFIG_SMP
2999 if (entity_is_task(se)) {
3000 struct rq *rq = rq_of(cfs_rq);
3001
3002 account_numa_enqueue(rq, task_of(se));
3003 list_add(&se->group_node, &rq->cfs_tasks);
3004 }
3005 #endif
3006 cfs_rq->nr_running++;
3007 }
3008
3009 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3010 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3011 {
3012 update_load_sub(&cfs_rq->load, se->load.weight);
3013 #ifdef CONFIG_SMP
3014 if (entity_is_task(se)) {
3015 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3016 list_del_init(&se->group_node);
3017 }
3018 #endif
3019 cfs_rq->nr_running--;
3020 }
3021
3022 /*
3023 * Signed add and clamp on underflow.
3024 *
3025 * Explicitly do a load-store to ensure the intermediate value never hits
3026 * memory. This allows lockless observations without ever seeing the negative
3027 * values.
3028 */
3029 #define add_positive(_ptr, _val) do { \
3030 typeof(_ptr) ptr = (_ptr); \
3031 typeof(_val) val = (_val); \
3032 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3033 \
3034 res = var + val; \
3035 \
3036 if (val < 0 && res > var) \
3037 res = 0; \
3038 \
3039 WRITE_ONCE(*ptr, res); \
3040 } while (0)
3041
3042 /*
3043 * Unsigned subtract and clamp on underflow.
3044 *
3045 * Explicitly do a load-store to ensure the intermediate value never hits
3046 * memory. This allows lockless observations without ever seeing the negative
3047 * values.
3048 */
3049 #define sub_positive(_ptr, _val) do { \
3050 typeof(_ptr) ptr = (_ptr); \
3051 typeof(*ptr) val = (_val); \
3052 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3053 res = var - val; \
3054 if (res > var) \
3055 res = 0; \
3056 WRITE_ONCE(*ptr, res); \
3057 } while (0)
3058
3059 /*
3060 * Remove and clamp on negative, from a local variable.
3061 *
3062 * A variant of sub_positive(), which does not use explicit load-store
3063 * and is thus optimized for local variable updates.
3064 */
3065 #define lsub_positive(_ptr, _val) do { \
3066 typeof(_ptr) ptr = (_ptr); \
3067 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3068 } while (0)
3069
3070 #ifdef CONFIG_SMP
3071 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3072 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3073 {
3074 cfs_rq->avg.load_avg += se->avg.load_avg;
3075 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3076 }
3077
3078 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3079 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3080 {
3081 u32 divider = get_pelt_divider(&se->avg);
3082 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3083 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3084 }
3085 #else
3086 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3087 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3088 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3089 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3090 #endif
3091
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3092 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3093 unsigned long weight)
3094 {
3095 if (se->on_rq) {
3096 /* commit outstanding execution time */
3097 if (cfs_rq->curr == se)
3098 update_curr(cfs_rq);
3099 update_load_sub(&cfs_rq->load, se->load.weight);
3100 }
3101 dequeue_load_avg(cfs_rq, se);
3102
3103 update_load_set(&se->load, weight);
3104
3105 #ifdef CONFIG_SMP
3106 do {
3107 u32 divider = get_pelt_divider(&se->avg);
3108
3109 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3110 } while (0);
3111 #endif
3112
3113 enqueue_load_avg(cfs_rq, se);
3114 if (se->on_rq)
3115 update_load_add(&cfs_rq->load, se->load.weight);
3116
3117 }
3118
reweight_task(struct task_struct * p,int prio)3119 void reweight_task(struct task_struct *p, int prio)
3120 {
3121 struct sched_entity *se = &p->se;
3122 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3123 struct load_weight *load = &se->load;
3124 unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3125
3126 reweight_entity(cfs_rq, se, weight);
3127 load->inv_weight = sched_prio_to_wmult[prio];
3128 }
3129
3130 #ifdef CONFIG_FAIR_GROUP_SCHED
3131 #ifdef CONFIG_SMP
3132 /*
3133 * All this does is approximate the hierarchical proportion which includes that
3134 * global sum we all love to hate.
3135 *
3136 * That is, the weight of a group entity, is the proportional share of the
3137 * group weight based on the group runqueue weights. That is:
3138 *
3139 * tg->weight * grq->load.weight
3140 * ge->load.weight = ----------------------------- (1)
3141 * \Sum grq->load.weight
3142 *
3143 * Now, because computing that sum is prohibitively expensive to compute (been
3144 * there, done that) we approximate it with this average stuff. The average
3145 * moves slower and therefore the approximation is cheaper and more stable.
3146 *
3147 * So instead of the above, we substitute:
3148 *
3149 * grq->load.weight -> grq->avg.load_avg (2)
3150 *
3151 * which yields the following:
3152 *
3153 * tg->weight * grq->avg.load_avg
3154 * ge->load.weight = ------------------------------ (3)
3155 * tg->load_avg
3156 *
3157 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3158 *
3159 * That is shares_avg, and it is right (given the approximation (2)).
3160 *
3161 * The problem with it is that because the average is slow -- it was designed
3162 * to be exactly that of course -- this leads to transients in boundary
3163 * conditions. In specific, the case where the group was idle and we start the
3164 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3165 * yielding bad latency etc..
3166 *
3167 * Now, in that special case (1) reduces to:
3168 *
3169 * tg->weight * grq->load.weight
3170 * ge->load.weight = ----------------------------- = tg->weight (4)
3171 * grp->load.weight
3172 *
3173 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3174 *
3175 * So what we do is modify our approximation (3) to approach (4) in the (near)
3176 * UP case, like:
3177 *
3178 * ge->load.weight =
3179 *
3180 * tg->weight * grq->load.weight
3181 * --------------------------------------------------- (5)
3182 * tg->load_avg - grq->avg.load_avg + grq->load.weight
3183 *
3184 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3185 * we need to use grq->avg.load_avg as its lower bound, which then gives:
3186 *
3187 *
3188 * tg->weight * grq->load.weight
3189 * ge->load.weight = ----------------------------- (6)
3190 * tg_load_avg'
3191 *
3192 * Where:
3193 *
3194 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3195 * max(grq->load.weight, grq->avg.load_avg)
3196 *
3197 * And that is shares_weight and is icky. In the (near) UP case it approaches
3198 * (4) while in the normal case it approaches (3). It consistently
3199 * overestimates the ge->load.weight and therefore:
3200 *
3201 * \Sum ge->load.weight >= tg->weight
3202 *
3203 * hence icky!
3204 */
calc_group_shares(struct cfs_rq * cfs_rq)3205 static long calc_group_shares(struct cfs_rq *cfs_rq)
3206 {
3207 long tg_weight, tg_shares, load, shares;
3208 struct task_group *tg = cfs_rq->tg;
3209
3210 tg_shares = READ_ONCE(tg->shares);
3211
3212 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3213
3214 tg_weight = atomic_long_read(&tg->load_avg);
3215
3216 /* Ensure tg_weight >= load */
3217 tg_weight -= cfs_rq->tg_load_avg_contrib;
3218 tg_weight += load;
3219
3220 shares = (tg_shares * load);
3221 if (tg_weight)
3222 shares /= tg_weight;
3223
3224 /*
3225 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3226 * of a group with small tg->shares value. It is a floor value which is
3227 * assigned as a minimum load.weight to the sched_entity representing
3228 * the group on a CPU.
3229 *
3230 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3231 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3232 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3233 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3234 * instead of 0.
3235 */
3236 return clamp_t(long, shares, MIN_SHARES, tg_shares);
3237 }
3238 #endif /* CONFIG_SMP */
3239
3240 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3241
3242 /*
3243 * Recomputes the group entity based on the current state of its group
3244 * runqueue.
3245 */
update_cfs_group(struct sched_entity * se)3246 static void update_cfs_group(struct sched_entity *se)
3247 {
3248 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3249 long shares;
3250
3251 if (!gcfs_rq)
3252 return;
3253
3254 if (throttled_hierarchy(gcfs_rq))
3255 return;
3256
3257 #ifndef CONFIG_SMP
3258 shares = READ_ONCE(gcfs_rq->tg->shares);
3259
3260 if (likely(se->load.weight == shares))
3261 return;
3262 #else
3263 shares = calc_group_shares(gcfs_rq);
3264 #endif
3265
3266 reweight_entity(cfs_rq_of(se), se, shares);
3267 }
3268
3269 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3270 static inline void update_cfs_group(struct sched_entity *se)
3271 {
3272 }
3273 #endif /* CONFIG_FAIR_GROUP_SCHED */
3274
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3275 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3276 {
3277 struct rq *rq = rq_of(cfs_rq);
3278
3279 if (&rq->cfs == cfs_rq) {
3280 /*
3281 * There are a few boundary cases this might miss but it should
3282 * get called often enough that that should (hopefully) not be
3283 * a real problem.
3284 *
3285 * It will not get called when we go idle, because the idle
3286 * thread is a different class (!fair), nor will the utilization
3287 * number include things like RT tasks.
3288 *
3289 * As is, the util number is not freq-invariant (we'd have to
3290 * implement arch_scale_freq_capacity() for that).
3291 *
3292 * See cpu_util().
3293 */
3294 cpufreq_update_util(rq, flags);
3295 }
3296 }
3297
3298 #ifdef CONFIG_SMP
3299 #ifdef CONFIG_FAIR_GROUP_SCHED
3300 /*
3301 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
3302 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
3303 * bottom-up, we only have to test whether the cfs_rq before us on the list
3304 * is our child.
3305 * If cfs_rq is not on the list, test whether a child needs its to be added to
3306 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
3307 */
child_cfs_rq_on_list(struct cfs_rq * cfs_rq)3308 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
3309 {
3310 struct cfs_rq *prev_cfs_rq;
3311 struct list_head *prev;
3312
3313 if (cfs_rq->on_list) {
3314 prev = cfs_rq->leaf_cfs_rq_list.prev;
3315 } else {
3316 struct rq *rq = rq_of(cfs_rq);
3317
3318 prev = rq->tmp_alone_branch;
3319 }
3320
3321 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
3322
3323 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
3324 }
3325
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)3326 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
3327 {
3328 if (cfs_rq->load.weight)
3329 return false;
3330
3331 if (cfs_rq->avg.load_sum)
3332 return false;
3333
3334 if (cfs_rq->avg.util_sum)
3335 return false;
3336
3337 if (cfs_rq->avg.runnable_sum)
3338 return false;
3339
3340 if (child_cfs_rq_on_list(cfs_rq))
3341 return false;
3342
3343 /*
3344 * _avg must be null when _sum are null because _avg = _sum / divider
3345 * Make sure that rounding and/or propagation of PELT values never
3346 * break this.
3347 */
3348 SCHED_WARN_ON(cfs_rq->avg.load_avg ||
3349 cfs_rq->avg.util_avg ||
3350 cfs_rq->avg.runnable_avg);
3351
3352 return true;
3353 }
3354
3355 /**
3356 * update_tg_load_avg - update the tg's load avg
3357 * @cfs_rq: the cfs_rq whose avg changed
3358 *
3359 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3360 * However, because tg->load_avg is a global value there are performance
3361 * considerations.
3362 *
3363 * In order to avoid having to look at the other cfs_rq's, we use a
3364 * differential update where we store the last value we propagated. This in
3365 * turn allows skipping updates if the differential is 'small'.
3366 *
3367 * Updating tg's load_avg is necessary before update_cfs_share().
3368 */
update_tg_load_avg(struct cfs_rq * cfs_rq)3369 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3370 {
3371 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3372
3373 /*
3374 * No need to update load_avg for root_task_group as it is not used.
3375 */
3376 if (cfs_rq->tg == &root_task_group)
3377 return;
3378
3379 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3380 atomic_long_add(delta, &cfs_rq->tg->load_avg);
3381 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3382 }
3383 }
3384
3385 /*
3386 * Called within set_task_rq() right before setting a task's CPU. The
3387 * caller only guarantees p->pi_lock is held; no other assumptions,
3388 * including the state of rq->lock, should be made.
3389 */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3390 void set_task_rq_fair(struct sched_entity *se,
3391 struct cfs_rq *prev, struct cfs_rq *next)
3392 {
3393 u64 p_last_update_time;
3394 u64 n_last_update_time;
3395
3396 if (!sched_feat(ATTACH_AGE_LOAD))
3397 return;
3398
3399 /*
3400 * We are supposed to update the task to "current" time, then its up to
3401 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3402 * getting what current time is, so simply throw away the out-of-date
3403 * time. This will result in the wakee task is less decayed, but giving
3404 * the wakee more load sounds not bad.
3405 */
3406 if (!(se->avg.last_update_time && prev))
3407 return;
3408
3409 #ifndef CONFIG_64BIT
3410 {
3411 u64 p_last_update_time_copy;
3412 u64 n_last_update_time_copy;
3413
3414 do {
3415 p_last_update_time_copy = prev->load_last_update_time_copy;
3416 n_last_update_time_copy = next->load_last_update_time_copy;
3417
3418 smp_rmb();
3419
3420 p_last_update_time = prev->avg.last_update_time;
3421 n_last_update_time = next->avg.last_update_time;
3422
3423 } while (p_last_update_time != p_last_update_time_copy ||
3424 n_last_update_time != n_last_update_time_copy);
3425 }
3426 #else
3427 p_last_update_time = prev->avg.last_update_time;
3428 n_last_update_time = next->avg.last_update_time;
3429 #endif
3430 __update_load_avg_blocked_se(p_last_update_time, se);
3431 se->avg.last_update_time = n_last_update_time;
3432 }
3433
3434 /*
3435 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3436 * propagate its contribution. The key to this propagation is the invariant
3437 * that for each group:
3438 *
3439 * ge->avg == grq->avg (1)
3440 *
3441 * _IFF_ we look at the pure running and runnable sums. Because they
3442 * represent the very same entity, just at different points in the hierarchy.
3443 *
3444 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3445 * and simply copies the running/runnable sum over (but still wrong, because
3446 * the group entity and group rq do not have their PELT windows aligned).
3447 *
3448 * However, update_tg_cfs_load() is more complex. So we have:
3449 *
3450 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
3451 *
3452 * And since, like util, the runnable part should be directly transferable,
3453 * the following would _appear_ to be the straight forward approach:
3454 *
3455 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
3456 *
3457 * And per (1) we have:
3458 *
3459 * ge->avg.runnable_avg == grq->avg.runnable_avg
3460 *
3461 * Which gives:
3462 *
3463 * ge->load.weight * grq->avg.load_avg
3464 * ge->avg.load_avg = ----------------------------------- (4)
3465 * grq->load.weight
3466 *
3467 * Except that is wrong!
3468 *
3469 * Because while for entities historical weight is not important and we
3470 * really only care about our future and therefore can consider a pure
3471 * runnable sum, runqueues can NOT do this.
3472 *
3473 * We specifically want runqueues to have a load_avg that includes
3474 * historical weights. Those represent the blocked load, the load we expect
3475 * to (shortly) return to us. This only works by keeping the weights as
3476 * integral part of the sum. We therefore cannot decompose as per (3).
3477 *
3478 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3479 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3480 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3481 * runnable section of these tasks overlap (or not). If they were to perfectly
3482 * align the rq as a whole would be runnable 2/3 of the time. If however we
3483 * always have at least 1 runnable task, the rq as a whole is always runnable.
3484 *
3485 * So we'll have to approximate.. :/
3486 *
3487 * Given the constraint:
3488 *
3489 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3490 *
3491 * We can construct a rule that adds runnable to a rq by assuming minimal
3492 * overlap.
3493 *
3494 * On removal, we'll assume each task is equally runnable; which yields:
3495 *
3496 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3497 *
3498 * XXX: only do this for the part of runnable > running ?
3499 *
3500 */
3501 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3502 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3503 {
3504 long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3505 u32 divider;
3506
3507 /* Nothing to update */
3508 if (!delta)
3509 return;
3510
3511 /*
3512 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3513 * See ___update_load_avg() for details.
3514 */
3515 divider = get_pelt_divider(&cfs_rq->avg);
3516
3517 /* Set new sched_entity's utilization */
3518 se->avg.util_avg = gcfs_rq->avg.util_avg;
3519 se->avg.util_sum = se->avg.util_avg * divider;
3520
3521 /* Update parent cfs_rq utilization */
3522 add_positive(&cfs_rq->avg.util_avg, delta);
3523 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3524 }
3525
3526 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3527 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3528 {
3529 long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3530 u32 divider;
3531
3532 /* Nothing to update */
3533 if (!delta)
3534 return;
3535
3536 /*
3537 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3538 * See ___update_load_avg() for details.
3539 */
3540 divider = get_pelt_divider(&cfs_rq->avg);
3541
3542 /* Set new sched_entity's runnable */
3543 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3544 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3545
3546 /* Update parent cfs_rq runnable */
3547 add_positive(&cfs_rq->avg.runnable_avg, delta);
3548 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3549 }
3550
3551 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3552 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3553 {
3554 long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3555 unsigned long load_avg;
3556 u64 load_sum = 0;
3557 u32 divider;
3558
3559 if (!runnable_sum)
3560 return;
3561
3562 gcfs_rq->prop_runnable_sum = 0;
3563
3564 /*
3565 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3566 * See ___update_load_avg() for details.
3567 */
3568 divider = get_pelt_divider(&cfs_rq->avg);
3569
3570 if (runnable_sum >= 0) {
3571 /*
3572 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3573 * the CPU is saturated running == runnable.
3574 */
3575 runnable_sum += se->avg.load_sum;
3576 runnable_sum = min_t(long, runnable_sum, divider);
3577 } else {
3578 /*
3579 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3580 * assuming all tasks are equally runnable.
3581 */
3582 if (scale_load_down(gcfs_rq->load.weight)) {
3583 load_sum = div_s64(gcfs_rq->avg.load_sum,
3584 scale_load_down(gcfs_rq->load.weight));
3585 }
3586
3587 /* But make sure to not inflate se's runnable */
3588 runnable_sum = min(se->avg.load_sum, load_sum);
3589 }
3590
3591 /*
3592 * runnable_sum can't be lower than running_sum
3593 * Rescale running sum to be in the same range as runnable sum
3594 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
3595 * runnable_sum is in [0 : LOAD_AVG_MAX]
3596 */
3597 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3598 runnable_sum = max(runnable_sum, running_sum);
3599
3600 load_sum = (s64)se_weight(se) * runnable_sum;
3601 load_avg = div_s64(load_sum, divider);
3602
3603 se->avg.load_sum = runnable_sum;
3604
3605 delta = load_avg - se->avg.load_avg;
3606 if (!delta)
3607 return;
3608
3609 se->avg.load_avg = load_avg;
3610
3611 add_positive(&cfs_rq->avg.load_avg, delta);
3612 cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3613 }
3614
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3615 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3616 {
3617 cfs_rq->propagate = 1;
3618 cfs_rq->prop_runnable_sum += runnable_sum;
3619 }
3620
3621 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3622 static inline int propagate_entity_load_avg(struct sched_entity *se)
3623 {
3624 struct cfs_rq *cfs_rq, *gcfs_rq;
3625
3626 if (entity_is_task(se))
3627 return 0;
3628
3629 gcfs_rq = group_cfs_rq(se);
3630 if (!gcfs_rq->propagate)
3631 return 0;
3632
3633 gcfs_rq->propagate = 0;
3634
3635 cfs_rq = cfs_rq_of(se);
3636
3637 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3638
3639 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3640 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3641 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3642
3643 trace_pelt_cfs_tp(cfs_rq);
3644 trace_pelt_se_tp(se);
3645
3646 return 1;
3647 }
3648
3649 /*
3650 * Check if we need to update the load and the utilization of a blocked
3651 * group_entity:
3652 */
skip_blocked_update(struct sched_entity * se)3653 static inline bool skip_blocked_update(struct sched_entity *se)
3654 {
3655 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3656
3657 /*
3658 * If sched_entity still have not zero load or utilization, we have to
3659 * decay it:
3660 */
3661 if (se->avg.load_avg || se->avg.util_avg)
3662 return false;
3663
3664 /*
3665 * If there is a pending propagation, we have to update the load and
3666 * the utilization of the sched_entity:
3667 */
3668 if (gcfs_rq->propagate)
3669 return false;
3670
3671 /*
3672 * Otherwise, the load and the utilization of the sched_entity is
3673 * already zero and there is no pending propagation, so it will be a
3674 * waste of time to try to decay it:
3675 */
3676 return true;
3677 }
3678
3679 #else /* CONFIG_FAIR_GROUP_SCHED */
3680
update_tg_load_avg(struct cfs_rq * cfs_rq)3681 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3682
propagate_entity_load_avg(struct sched_entity * se)3683 static inline int propagate_entity_load_avg(struct sched_entity *se)
3684 {
3685 return 0;
3686 }
3687
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3688 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3689
3690 #endif /* CONFIG_FAIR_GROUP_SCHED */
3691
3692 /**
3693 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3694 * @now: current time, as per cfs_rq_clock_pelt()
3695 * @cfs_rq: cfs_rq to update
3696 *
3697 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3698 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3699 * post_init_entity_util_avg().
3700 *
3701 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3702 *
3703 * Returns true if the load decayed or we removed load.
3704 *
3705 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3706 * call update_tg_load_avg() when this function returns true.
3707 */
3708 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3709 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3710 {
3711 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3712 struct sched_avg *sa = &cfs_rq->avg;
3713 int decayed = 0;
3714
3715 if (cfs_rq->removed.nr) {
3716 unsigned long r;
3717 u32 divider = get_pelt_divider(&cfs_rq->avg);
3718
3719 raw_spin_lock(&cfs_rq->removed.lock);
3720 swap(cfs_rq->removed.util_avg, removed_util);
3721 swap(cfs_rq->removed.load_avg, removed_load);
3722 swap(cfs_rq->removed.runnable_avg, removed_runnable);
3723 cfs_rq->removed.nr = 0;
3724 raw_spin_unlock(&cfs_rq->removed.lock);
3725
3726 r = removed_load;
3727 sub_positive(&sa->load_avg, r);
3728 sa->load_sum = sa->load_avg * divider;
3729
3730 r = removed_util;
3731 sub_positive(&sa->util_avg, r);
3732 sub_positive(&sa->util_sum, r * divider);
3733 /*
3734 * Because of rounding, se->util_sum might ends up being +1 more than
3735 * cfs->util_sum. Although this is not a problem by itself, detaching
3736 * a lot of tasks with the rounding problem between 2 updates of
3737 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3738 * cfs_util_avg is not.
3739 * Check that util_sum is still above its lower bound for the new
3740 * util_avg. Given that period_contrib might have moved since the last
3741 * sync, we are only sure that util_sum must be above or equal to
3742 * util_avg * minimum possible divider
3743 */
3744 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3745
3746 r = removed_runnable;
3747 sub_positive(&sa->runnable_avg, r);
3748 sa->runnable_sum = sa->runnable_avg * divider;
3749
3750 /*
3751 * removed_runnable is the unweighted version of removed_load so we
3752 * can use it to estimate removed_load_sum.
3753 */
3754 add_tg_cfs_propagate(cfs_rq,
3755 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3756
3757 decayed = 1;
3758 }
3759
3760 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3761
3762 #ifndef CONFIG_64BIT
3763 smp_wmb();
3764 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3765 #endif
3766
3767 return decayed;
3768 }
3769
3770 /**
3771 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3772 * @cfs_rq: cfs_rq to attach to
3773 * @se: sched_entity to attach
3774 *
3775 * Must call update_cfs_rq_load_avg() before this, since we rely on
3776 * cfs_rq->avg.last_update_time being current.
3777 */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3778 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3779 {
3780 /*
3781 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3782 * See ___update_load_avg() for details.
3783 */
3784 u32 divider = get_pelt_divider(&cfs_rq->avg);
3785
3786 /*
3787 * When we attach the @se to the @cfs_rq, we must align the decay
3788 * window because without that, really weird and wonderful things can
3789 * happen.
3790 *
3791 * XXX illustrate
3792 */
3793 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3794 se->avg.period_contrib = cfs_rq->avg.period_contrib;
3795
3796 /*
3797 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3798 * period_contrib. This isn't strictly correct, but since we're
3799 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3800 * _sum a little.
3801 */
3802 se->avg.util_sum = se->avg.util_avg * divider;
3803
3804 se->avg.runnable_sum = se->avg.runnable_avg * divider;
3805
3806 se->avg.load_sum = se->avg.load_avg * divider;
3807 if (se_weight(se) < se->avg.load_sum)
3808 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3809 else
3810 se->avg.load_sum = 1;
3811
3812 enqueue_load_avg(cfs_rq, se);
3813 cfs_rq->avg.util_avg += se->avg.util_avg;
3814 cfs_rq->avg.util_sum += se->avg.util_sum;
3815 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3816 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3817
3818 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3819
3820 cfs_rq_util_change(cfs_rq, 0);
3821
3822 trace_pelt_cfs_tp(cfs_rq);
3823 }
3824
3825 /**
3826 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3827 * @cfs_rq: cfs_rq to detach from
3828 * @se: sched_entity to detach
3829 *
3830 * Must call update_cfs_rq_load_avg() before this, since we rely on
3831 * cfs_rq->avg.last_update_time being current.
3832 */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3833 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3834 {
3835 /*
3836 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3837 * See ___update_load_avg() for details.
3838 */
3839 u32 divider = get_pelt_divider(&cfs_rq->avg);
3840
3841 dequeue_load_avg(cfs_rq, se);
3842 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3843 cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3844 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3845 cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3846
3847 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3848
3849 cfs_rq_util_change(cfs_rq, 0);
3850
3851 trace_pelt_cfs_tp(cfs_rq);
3852 }
3853
3854 /*
3855 * Optional action to be done while updating the load average
3856 */
3857 #define UPDATE_TG 0x1
3858 #define SKIP_AGE_LOAD 0x2
3859 #define DO_ATTACH 0x4
3860
3861 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3862 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3863 {
3864 u64 now = cfs_rq_clock_pelt(cfs_rq);
3865 int decayed;
3866
3867 /*
3868 * Track task load average for carrying it to new CPU after migrated, and
3869 * track group sched_entity load average for task_h_load calc in migration
3870 */
3871 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3872 __update_load_avg_se(now, cfs_rq, se);
3873
3874 decayed = update_cfs_rq_load_avg(now, cfs_rq);
3875 decayed |= propagate_entity_load_avg(se);
3876
3877 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3878
3879 /*
3880 * DO_ATTACH means we're here from enqueue_entity().
3881 * !last_update_time means we've passed through
3882 * migrate_task_rq_fair() indicating we migrated.
3883 *
3884 * IOW we're enqueueing a task on a new CPU.
3885 */
3886 attach_entity_load_avg(cfs_rq, se);
3887 update_tg_load_avg(cfs_rq);
3888
3889 } else if (decayed) {
3890 cfs_rq_util_change(cfs_rq, 0);
3891
3892 if (flags & UPDATE_TG)
3893 update_tg_load_avg(cfs_rq);
3894 }
3895 }
3896
3897 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3898 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3899 {
3900 u64 last_update_time_copy;
3901 u64 last_update_time;
3902
3903 do {
3904 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3905 smp_rmb();
3906 last_update_time = cfs_rq->avg.last_update_time;
3907 } while (last_update_time != last_update_time_copy);
3908
3909 return last_update_time;
3910 }
3911 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3912 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3913 {
3914 return cfs_rq->avg.last_update_time;
3915 }
3916 #endif
3917
3918 /*
3919 * Synchronize entity load avg of dequeued entity without locking
3920 * the previous rq.
3921 */
sync_entity_load_avg(struct sched_entity * se)3922 static void sync_entity_load_avg(struct sched_entity *se)
3923 {
3924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3925 u64 last_update_time;
3926
3927 last_update_time = cfs_rq_last_update_time(cfs_rq);
3928 __update_load_avg_blocked_se(last_update_time, se);
3929 }
3930
3931 /*
3932 * Task first catches up with cfs_rq, and then subtract
3933 * itself from the cfs_rq (task must be off the queue now).
3934 */
remove_entity_load_avg(struct sched_entity * se)3935 static void remove_entity_load_avg(struct sched_entity *se)
3936 {
3937 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3938 unsigned long flags;
3939
3940 /*
3941 * tasks cannot exit without having gone through wake_up_new_task() ->
3942 * post_init_entity_util_avg() which will have added things to the
3943 * cfs_rq, so we can remove unconditionally.
3944 */
3945
3946 sync_entity_load_avg(se);
3947
3948 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3949 ++cfs_rq->removed.nr;
3950 cfs_rq->removed.util_avg += se->avg.util_avg;
3951 cfs_rq->removed.load_avg += se->avg.load_avg;
3952 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
3953 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3954 }
3955
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)3956 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3957 {
3958 return cfs_rq->avg.runnable_avg;
3959 }
3960
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3961 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3962 {
3963 return cfs_rq->avg.load_avg;
3964 }
3965
3966 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3967
task_util(struct task_struct * p)3968 static inline unsigned long task_util(struct task_struct *p)
3969 {
3970 return READ_ONCE(p->se.avg.util_avg);
3971 }
3972
_task_util_est(struct task_struct * p)3973 static inline unsigned long _task_util_est(struct task_struct *p)
3974 {
3975 struct util_est ue = READ_ONCE(p->se.avg.util_est);
3976
3977 return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3978 }
3979
task_util_est(struct task_struct * p)3980 static inline unsigned long task_util_est(struct task_struct *p)
3981 {
3982 return max(task_util(p), _task_util_est(p));
3983 }
3984
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3985 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3986 struct task_struct *p)
3987 {
3988 unsigned int enqueued;
3989
3990 if (!sched_feat(UTIL_EST))
3991 return;
3992
3993 /* Update root cfs_rq's estimated utilization */
3994 enqueued = cfs_rq->avg.util_est.enqueued;
3995 enqueued += _task_util_est(p);
3996 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3997
3998 trace_sched_util_est_cfs_tp(cfs_rq);
3999 }
4000
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4001 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4002 struct task_struct *p)
4003 {
4004 unsigned int enqueued;
4005
4006 if (!sched_feat(UTIL_EST))
4007 return;
4008
4009 /* Update root cfs_rq's estimated utilization */
4010 enqueued = cfs_rq->avg.util_est.enqueued;
4011 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4012 WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4013
4014 trace_sched_util_est_cfs_tp(cfs_rq);
4015 }
4016
4017 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4018
4019 /*
4020 * Check if a (signed) value is within a specified (unsigned) margin,
4021 * based on the observation that:
4022 *
4023 * abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4024 *
4025 * NOTE: this only works when value + margin < INT_MAX.
4026 */
within_margin(int value,int margin)4027 static inline bool within_margin(int value, int margin)
4028 {
4029 return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4030 }
4031
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4032 static inline void util_est_update(struct cfs_rq *cfs_rq,
4033 struct task_struct *p,
4034 bool task_sleep)
4035 {
4036 long last_ewma_diff, last_enqueued_diff;
4037 struct util_est ue;
4038 int ret = 0;
4039
4040 trace_android_rvh_util_est_update(cfs_rq, p, task_sleep, &ret);
4041 if (ret)
4042 return;
4043
4044 if (!sched_feat(UTIL_EST))
4045 return;
4046
4047 /*
4048 * Skip update of task's estimated utilization when the task has not
4049 * yet completed an activation, e.g. being migrated.
4050 */
4051 if (!task_sleep)
4052 return;
4053
4054 /*
4055 * If the PELT values haven't changed since enqueue time,
4056 * skip the util_est update.
4057 */
4058 ue = p->se.avg.util_est;
4059 if (ue.enqueued & UTIL_AVG_UNCHANGED)
4060 return;
4061
4062 last_enqueued_diff = ue.enqueued;
4063
4064 /*
4065 * Reset EWMA on utilization increases, the moving average is used only
4066 * to smooth utilization decreases.
4067 */
4068 ue.enqueued = task_util(p);
4069 if (sched_feat(UTIL_EST_FASTUP)) {
4070 if (ue.ewma < ue.enqueued) {
4071 ue.ewma = ue.enqueued;
4072 goto done;
4073 }
4074 }
4075
4076 /*
4077 * Skip update of task's estimated utilization when its members are
4078 * already ~1% close to its last activation value.
4079 */
4080 last_ewma_diff = ue.enqueued - ue.ewma;
4081 last_enqueued_diff -= ue.enqueued;
4082 if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4083 if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4084 goto done;
4085
4086 return;
4087 }
4088
4089 /*
4090 * To avoid overestimation of actual task utilization, skip updates if
4091 * we cannot grant there is idle time in this CPU.
4092 */
4093 if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4094 return;
4095
4096 /*
4097 * Update Task's estimated utilization
4098 *
4099 * When *p completes an activation we can consolidate another sample
4100 * of the task size. This is done by storing the current PELT value
4101 * as ue.enqueued and by using this value to update the Exponential
4102 * Weighted Moving Average (EWMA):
4103 *
4104 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
4105 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
4106 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
4107 * = w * ( last_ewma_diff ) + ewma(t-1)
4108 * = w * (last_ewma_diff + ewma(t-1) / w)
4109 *
4110 * Where 'w' is the weight of new samples, which is configured to be
4111 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4112 */
4113 ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4114 ue.ewma += last_ewma_diff;
4115 ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4116 done:
4117 ue.enqueued |= UTIL_AVG_UNCHANGED;
4118 WRITE_ONCE(p->se.avg.util_est, ue);
4119
4120 trace_sched_util_est_se_tp(&p->se);
4121 }
4122
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4123 static inline int util_fits_cpu(unsigned long util,
4124 unsigned long uclamp_min,
4125 unsigned long uclamp_max,
4126 int cpu)
4127 {
4128 unsigned long capacity_orig, capacity_orig_thermal;
4129 unsigned long capacity = capacity_of(cpu);
4130 bool fits, uclamp_max_fits;
4131
4132 /*
4133 * Check if the real util fits without any uclamp boost/cap applied.
4134 */
4135 fits = fits_capacity(util, capacity);
4136
4137 if (!uclamp_is_used())
4138 return fits;
4139
4140 /*
4141 * We must use capacity_orig_of() for comparing against uclamp_min and
4142 * uclamp_max. We only care about capacity pressure (by using
4143 * capacity_of()) for comparing against the real util.
4144 *
4145 * If a task is boosted to 1024 for example, we don't want a tiny
4146 * pressure to skew the check whether it fits a CPU or not.
4147 *
4148 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4149 * should fit a little cpu even if there's some pressure.
4150 *
4151 * Only exception is for thermal pressure since it has a direct impact
4152 * on available OPP of the system.
4153 *
4154 * We honour it for uclamp_min only as a drop in performance level
4155 * could result in not getting the requested minimum performance level.
4156 *
4157 * For uclamp_max, we can tolerate a drop in performance level as the
4158 * goal is to cap the task. So it's okay if it's getting less.
4159 *
4160 * In case of capacity inversion, which is not handled yet, we should
4161 * honour the inverted capacity for both uclamp_min and uclamp_max all
4162 * the time.
4163 */
4164 capacity_orig = capacity_orig_of(cpu);
4165 capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4166
4167 /*
4168 * We want to force a task to fit a cpu as implied by uclamp_max.
4169 * But we do have some corner cases to cater for..
4170 *
4171 *
4172 * C=z
4173 * | ___
4174 * | C=y | |
4175 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4176 * | C=x | | | |
4177 * | ___ | | | |
4178 * | | | | | | | (util somewhere in this region)
4179 * | | | | | | |
4180 * | | | | | | |
4181 * +----------------------------------------
4182 * cpu0 cpu1 cpu2
4183 *
4184 * In the above example if a task is capped to a specific performance
4185 * point, y, then when:
4186 *
4187 * * util = 80% of x then it does not fit on cpu0 and should migrate
4188 * to cpu1
4189 * * util = 80% of y then it is forced to fit on cpu1 to honour
4190 * uclamp_max request.
4191 *
4192 * which is what we're enforcing here. A task always fits if
4193 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4194 * the normal upmigration rules should withhold still.
4195 *
4196 * Only exception is when we are on max capacity, then we need to be
4197 * careful not to block overutilized state. This is so because:
4198 *
4199 * 1. There's no concept of capping at max_capacity! We can't go
4200 * beyond this performance level anyway.
4201 * 2. The system is being saturated when we're operating near
4202 * max capacity, it doesn't make sense to block overutilized.
4203 */
4204 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4205 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4206 fits = fits || uclamp_max_fits;
4207
4208 /*
4209 *
4210 * C=z
4211 * | ___ (region a, capped, util >= uclamp_max)
4212 * | C=y | |
4213 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4214 * | C=x | | | |
4215 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
4216 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4217 * | | | | | | |
4218 * | | | | | | | (region c, boosted, util < uclamp_min)
4219 * +----------------------------------------
4220 * cpu0 cpu1 cpu2
4221 *
4222 * a) If util > uclamp_max, then we're capped, we don't care about
4223 * actual fitness value here. We only care if uclamp_max fits
4224 * capacity without taking margin/pressure into account.
4225 * See comment above.
4226 *
4227 * b) If uclamp_min <= util <= uclamp_max, then the normal
4228 * fits_capacity() rules apply. Except we need to ensure that we
4229 * enforce we remain within uclamp_max, see comment above.
4230 *
4231 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4232 * need to take into account the boosted value fits the CPU without
4233 * taking margin/pressure into account.
4234 *
4235 * Cases (a) and (b) are handled in the 'fits' variable already. We
4236 * just need to consider an extra check for case (c) after ensuring we
4237 * handle the case uclamp_min > uclamp_max.
4238 */
4239 uclamp_min = min(uclamp_min, uclamp_max);
4240 if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
4241 fits = fits && (uclamp_min <= capacity_orig_thermal);
4242
4243 return fits;
4244 }
4245
task_fits_cpu(struct task_struct * p,int cpu)4246 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4247 {
4248 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4249 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4250 unsigned long util = task_util_est(p);
4251 return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
4252 }
4253
update_misfit_status(struct task_struct * p,struct rq * rq)4254 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4255 {
4256 bool need_update = true;
4257
4258 trace_android_rvh_update_misfit_status(p, rq, &need_update);
4259 if (!sched_asym_cpucap_active() || !need_update)
4260 return;
4261
4262 if (!p || p->nr_cpus_allowed == 1) {
4263 rq->misfit_task_load = 0;
4264 return;
4265 }
4266
4267 if (task_fits_cpu(p, cpu_of(rq))) {
4268 rq->misfit_task_load = 0;
4269 return;
4270 }
4271
4272 /*
4273 * Make sure that misfit_task_load will not be null even if
4274 * task_h_load() returns 0.
4275 */
4276 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4277 }
4278
4279 #else /* CONFIG_SMP */
4280
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)4281 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4282 {
4283 return true;
4284 }
4285
4286 #define UPDATE_TG 0x0
4287 #define SKIP_AGE_LOAD 0x0
4288 #define DO_ATTACH 0x0
4289
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4290 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4291 {
4292 cfs_rq_util_change(cfs_rq, 0);
4293 }
4294
remove_entity_load_avg(struct sched_entity * se)4295 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4296
4297 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4298 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4299 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4300 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4301
newidle_balance(struct rq * rq,struct rq_flags * rf)4302 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4303 {
4304 return 0;
4305 }
4306
4307 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4308 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4309
4310 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4311 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4312
4313 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4314 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4315 bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4316 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4317
4318 #endif /* CONFIG_SMP */
4319
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4320 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4321 {
4322 #ifdef CONFIG_SCHED_DEBUG
4323 s64 d = se->vruntime - cfs_rq->min_vruntime;
4324
4325 if (d < 0)
4326 d = -d;
4327
4328 if (d > 3*sysctl_sched_latency)
4329 schedstat_inc(cfs_rq->nr_spread_over);
4330 #endif
4331 }
4332
entity_is_long_sleeper(struct sched_entity * se)4333 static inline bool entity_is_long_sleeper(struct sched_entity *se)
4334 {
4335 struct cfs_rq *cfs_rq;
4336 u64 sleep_time;
4337
4338 if (se->exec_start == 0)
4339 return false;
4340
4341 cfs_rq = cfs_rq_of(se);
4342
4343 sleep_time = rq_clock_task(rq_of(cfs_rq));
4344
4345 /* Happen while migrating because of clock task divergence */
4346 if (sleep_time <= se->exec_start)
4347 return false;
4348
4349 sleep_time -= se->exec_start;
4350 if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
4351 return true;
4352
4353 return false;
4354 }
4355
4356 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4357 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4358 {
4359 u64 vruntime = cfs_rq->min_vruntime;
4360
4361 /*
4362 * The 'current' period is already promised to the current tasks,
4363 * however the extra weight of the new task will slow them down a
4364 * little, place the new task so that it fits in the slot that
4365 * stays open at the end.
4366 */
4367 if (initial && sched_feat(START_DEBIT))
4368 vruntime += sched_vslice(cfs_rq, se);
4369
4370 /* sleeps up to a single latency don't count. */
4371 if (!initial) {
4372 unsigned long thresh = sysctl_sched_latency;
4373
4374 /*
4375 * Halve their sleep time's effect, to allow
4376 * for a gentler effect of sleepers:
4377 */
4378 if (sched_feat(GENTLE_FAIR_SLEEPERS))
4379 thresh >>= 1;
4380
4381 vruntime -= thresh;
4382 }
4383
4384 /*
4385 * Pull vruntime of the entity being placed to the base level of
4386 * cfs_rq, to prevent boosting it if placed backwards.
4387 * However, min_vruntime can advance much faster than real time, with
4388 * the extreme being when an entity with the minimal weight always runs
4389 * on the cfs_rq. If the waking entity slept for a long time, its
4390 * vruntime difference from min_vruntime may overflow s64 and their
4391 * comparison may get inversed, so ignore the entity's original
4392 * vruntime in that case.
4393 * The maximal vruntime speedup is given by the ratio of normal to
4394 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
4395 * When placing a migrated waking entity, its exec_start has been set
4396 * from a different rq. In order to take into account a possible
4397 * divergence between new and prev rq's clocks task because of irq and
4398 * stolen time, we take an additional margin.
4399 * So, cutting off on the sleep time of
4400 * 2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
4401 * should be safe.
4402 */
4403 if (entity_is_long_sleeper(se))
4404 se->vruntime = vruntime;
4405 else
4406 se->vruntime = max_vruntime(se->vruntime, vruntime);
4407 trace_android_rvh_place_entity(cfs_rq, se, initial, &vruntime);
4408 }
4409
4410 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4411
check_schedstat_required(void)4412 static inline void check_schedstat_required(void)
4413 {
4414 #ifdef CONFIG_SCHEDSTATS
4415 if (schedstat_enabled())
4416 return;
4417
4418 /* Force schedstat enabled if a dependent tracepoint is active */
4419 if (trace_sched_stat_wait_enabled() ||
4420 trace_sched_stat_sleep_enabled() ||
4421 trace_sched_stat_iowait_enabled() ||
4422 trace_sched_stat_blocked_enabled() ||
4423 trace_sched_stat_runtime_enabled()) {
4424 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4425 "stat_blocked and stat_runtime require the "
4426 "kernel parameter schedstats=enable or "
4427 "kernel.sched_schedstats=1\n");
4428 }
4429 #endif
4430 }
4431
4432 static inline bool cfs_bandwidth_used(void);
4433
4434 /*
4435 * MIGRATION
4436 *
4437 * dequeue
4438 * update_curr()
4439 * update_min_vruntime()
4440 * vruntime -= min_vruntime
4441 *
4442 * enqueue
4443 * update_curr()
4444 * update_min_vruntime()
4445 * vruntime += min_vruntime
4446 *
4447 * this way the vruntime transition between RQs is done when both
4448 * min_vruntime are up-to-date.
4449 *
4450 * WAKEUP (remote)
4451 *
4452 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
4453 * vruntime -= min_vruntime
4454 *
4455 * enqueue
4456 * update_curr()
4457 * update_min_vruntime()
4458 * vruntime += min_vruntime
4459 *
4460 * this way we don't have the most up-to-date min_vruntime on the originating
4461 * CPU and an up-to-date min_vruntime on the destination CPU.
4462 */
4463
4464 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4465 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4466 {
4467 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4468 bool curr = cfs_rq->curr == se;
4469
4470 /*
4471 * If we're the current task, we must renormalise before calling
4472 * update_curr().
4473 */
4474 if (renorm && curr)
4475 se->vruntime += cfs_rq->min_vruntime;
4476
4477 update_curr(cfs_rq);
4478
4479 /*
4480 * Otherwise, renormalise after, such that we're placed at the current
4481 * moment in time, instead of some random moment in the past. Being
4482 * placed in the past could significantly boost this task to the
4483 * fairness detriment of existing tasks.
4484 */
4485 if (renorm && !curr)
4486 se->vruntime += cfs_rq->min_vruntime;
4487
4488 /*
4489 * When enqueuing a sched_entity, we must:
4490 * - Update loads to have both entity and cfs_rq synced with now.
4491 * - Add its load to cfs_rq->runnable_avg
4492 * - For group_entity, update its weight to reflect the new share of
4493 * its group cfs_rq
4494 * - Add its new weight to cfs_rq->load.weight
4495 */
4496 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4497 se_update_runnable(se);
4498 update_cfs_group(se);
4499 account_entity_enqueue(cfs_rq, se);
4500
4501 if (flags & ENQUEUE_WAKEUP)
4502 place_entity(cfs_rq, se, 0);
4503 /* Entity has migrated, no longer consider this task hot */
4504 if (flags & ENQUEUE_MIGRATED)
4505 se->exec_start = 0;
4506
4507 check_schedstat_required();
4508 update_stats_enqueue(cfs_rq, se, flags);
4509 check_spread(cfs_rq, se);
4510 if (!curr)
4511 __enqueue_entity(cfs_rq, se);
4512 se->on_rq = 1;
4513
4514 /*
4515 * When bandwidth control is enabled, cfs might have been removed
4516 * because of a parent been throttled but cfs->nr_running > 1. Try to
4517 * add it unconditionally.
4518 */
4519 if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4520 list_add_leaf_cfs_rq(cfs_rq);
4521
4522 if (cfs_rq->nr_running == 1)
4523 check_enqueue_throttle(cfs_rq);
4524 }
4525
__clear_buddies_last(struct sched_entity * se)4526 static void __clear_buddies_last(struct sched_entity *se)
4527 {
4528 for_each_sched_entity(se) {
4529 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4530 if (cfs_rq->last != se)
4531 break;
4532
4533 cfs_rq->last = NULL;
4534 }
4535 }
4536
__clear_buddies_next(struct sched_entity * se)4537 static void __clear_buddies_next(struct sched_entity *se)
4538 {
4539 for_each_sched_entity(se) {
4540 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4541 if (cfs_rq->next != se)
4542 break;
4543
4544 cfs_rq->next = NULL;
4545 }
4546 }
4547
__clear_buddies_skip(struct sched_entity * se)4548 static void __clear_buddies_skip(struct sched_entity *se)
4549 {
4550 for_each_sched_entity(se) {
4551 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4552 if (cfs_rq->skip != se)
4553 break;
4554
4555 cfs_rq->skip = NULL;
4556 }
4557 }
4558
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4559 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4560 {
4561 if (cfs_rq->last == se)
4562 __clear_buddies_last(se);
4563
4564 if (cfs_rq->next == se)
4565 __clear_buddies_next(se);
4566
4567 if (cfs_rq->skip == se)
4568 __clear_buddies_skip(se);
4569 }
4570
4571 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4572
4573 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4574 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4575 {
4576 /*
4577 * Update run-time statistics of the 'current'.
4578 */
4579 update_curr(cfs_rq);
4580
4581 /*
4582 * When dequeuing a sched_entity, we must:
4583 * - Update loads to have both entity and cfs_rq synced with now.
4584 * - Subtract its load from the cfs_rq->runnable_avg.
4585 * - Subtract its previous weight from cfs_rq->load.weight.
4586 * - For group entity, update its weight to reflect the new share
4587 * of its group cfs_rq.
4588 */
4589 update_load_avg(cfs_rq, se, UPDATE_TG);
4590 se_update_runnable(se);
4591
4592 update_stats_dequeue(cfs_rq, se, flags);
4593
4594 clear_buddies(cfs_rq, se);
4595
4596 if (se != cfs_rq->curr)
4597 __dequeue_entity(cfs_rq, se);
4598 se->on_rq = 0;
4599 account_entity_dequeue(cfs_rq, se);
4600
4601 /*
4602 * Normalize after update_curr(); which will also have moved
4603 * min_vruntime if @se is the one holding it back. But before doing
4604 * update_min_vruntime() again, which will discount @se's position and
4605 * can move min_vruntime forward still more.
4606 */
4607 if (!(flags & DEQUEUE_SLEEP))
4608 se->vruntime -= cfs_rq->min_vruntime;
4609
4610 /* return excess runtime on last dequeue */
4611 return_cfs_rq_runtime(cfs_rq);
4612
4613 update_cfs_group(se);
4614
4615 /*
4616 * Now advance min_vruntime if @se was the entity holding it back,
4617 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4618 * put back on, and if we advance min_vruntime, we'll be placed back
4619 * further than we started -- ie. we'll be penalized.
4620 */
4621 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4622 update_min_vruntime(cfs_rq);
4623 }
4624
4625 /*
4626 * Preempt the current task with a newly woken task if needed:
4627 */
4628 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4629 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4630 {
4631 unsigned long ideal_runtime, delta_exec;
4632 struct sched_entity *se;
4633 s64 delta;
4634 bool skip_preempt = false;
4635
4636 ideal_runtime = sched_slice(cfs_rq, curr);
4637 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4638 trace_android_rvh_check_preempt_tick(current, &ideal_runtime, &skip_preempt,
4639 delta_exec, cfs_rq, curr, sysctl_sched_min_granularity);
4640 if (skip_preempt)
4641 return;
4642 if (delta_exec > ideal_runtime) {
4643 resched_curr(rq_of(cfs_rq));
4644 /*
4645 * The current task ran long enough, ensure it doesn't get
4646 * re-elected due to buddy favours.
4647 */
4648 clear_buddies(cfs_rq, curr);
4649 return;
4650 }
4651
4652 /*
4653 * Ensure that a task that missed wakeup preemption by a
4654 * narrow margin doesn't have to wait for a full slice.
4655 * This also mitigates buddy induced latencies under load.
4656 */
4657 if (delta_exec < sysctl_sched_min_granularity)
4658 return;
4659
4660 se = __pick_first_entity(cfs_rq);
4661 delta = curr->vruntime - se->vruntime;
4662
4663 if (delta < 0)
4664 return;
4665
4666 if (delta > ideal_runtime)
4667 resched_curr(rq_of(cfs_rq));
4668 }
4669
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4670 void set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4671 {
4672 clear_buddies(cfs_rq, se);
4673
4674 /* 'current' is not kept within the tree. */
4675 if (se->on_rq) {
4676 /*
4677 * Any task has to be enqueued before it get to execute on
4678 * a CPU. So account for the time it spent waiting on the
4679 * runqueue.
4680 */
4681 update_stats_wait_end(cfs_rq, se);
4682 __dequeue_entity(cfs_rq, se);
4683 update_load_avg(cfs_rq, se, UPDATE_TG);
4684 }
4685
4686 update_stats_curr_start(cfs_rq, se);
4687 cfs_rq->curr = se;
4688
4689 /*
4690 * Track our maximum slice length, if the CPU's load is at
4691 * least twice that of our own weight (i.e. dont track it
4692 * when there are only lesser-weight tasks around):
4693 */
4694 if (schedstat_enabled() &&
4695 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4696 __schedstat_set(se->statistics.slice_max,
4697 max((u64)se->statistics.slice_max,
4698 se->sum_exec_runtime - se->prev_sum_exec_runtime));
4699 }
4700
4701 se->prev_sum_exec_runtime = se->sum_exec_runtime;
4702 }
4703 EXPORT_SYMBOL_GPL(set_next_entity);
4704
4705 static int
4706 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4707
4708 /*
4709 * Pick the next process, keeping these things in mind, in this order:
4710 * 1) keep things fair between processes/task groups
4711 * 2) pick the "next" process, since someone really wants that to run
4712 * 3) pick the "last" process, for cache locality
4713 * 4) do not run the "skip" process, if something else is available
4714 */
4715 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4716 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4717 {
4718 struct sched_entity *left = __pick_first_entity(cfs_rq);
4719 struct sched_entity *se = NULL;
4720
4721 trace_android_rvh_pick_next_entity(cfs_rq, curr, &se);
4722 if (se)
4723 goto done;
4724
4725 /*
4726 * If curr is set we have to see if its left of the leftmost entity
4727 * still in the tree, provided there was anything in the tree at all.
4728 */
4729 if (!left || (curr && entity_before(curr, left)))
4730 left = curr;
4731
4732 se = left; /* ideally we run the leftmost entity */
4733
4734 /*
4735 * Avoid running the skip buddy, if running something else can
4736 * be done without getting too unfair.
4737 */
4738 if (cfs_rq->skip && cfs_rq->skip == se) {
4739 struct sched_entity *second;
4740
4741 if (se == curr) {
4742 second = __pick_first_entity(cfs_rq);
4743 } else {
4744 second = __pick_next_entity(se);
4745 if (!second || (curr && entity_before(curr, second)))
4746 second = curr;
4747 }
4748
4749 if (second && wakeup_preempt_entity(second, left) < 1)
4750 se = second;
4751 }
4752
4753 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4754 /*
4755 * Someone really wants this to run. If it's not unfair, run it.
4756 */
4757 se = cfs_rq->next;
4758 } else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4759 /*
4760 * Prefer last buddy, try to return the CPU to a preempted task.
4761 */
4762 se = cfs_rq->last;
4763 }
4764
4765 done:
4766 return se;
4767 }
4768
4769 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4770
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4771 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4772 {
4773 /*
4774 * If still on the runqueue then deactivate_task()
4775 * was not called and update_curr() has to be done:
4776 */
4777 if (prev->on_rq)
4778 update_curr(cfs_rq);
4779
4780 /* throttle cfs_rqs exceeding runtime */
4781 check_cfs_rq_runtime(cfs_rq);
4782
4783 check_spread(cfs_rq, prev);
4784
4785 if (prev->on_rq) {
4786 update_stats_wait_start(cfs_rq, prev);
4787 /* Put 'current' back into the tree. */
4788 __enqueue_entity(cfs_rq, prev);
4789 /* in !on_rq case, update occurred at dequeue */
4790 update_load_avg(cfs_rq, prev, 0);
4791 }
4792 cfs_rq->curr = NULL;
4793 }
4794
4795 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4796 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4797 {
4798 /*
4799 * Update run-time statistics of the 'current'.
4800 */
4801 update_curr(cfs_rq);
4802
4803 /*
4804 * Ensure that runnable average is periodically updated.
4805 */
4806 update_load_avg(cfs_rq, curr, UPDATE_TG);
4807 update_cfs_group(curr);
4808
4809 #ifdef CONFIG_SCHED_HRTICK
4810 /*
4811 * queued ticks are scheduled to match the slice, so don't bother
4812 * validating it and just reschedule.
4813 */
4814 if (queued) {
4815 resched_curr(rq_of(cfs_rq));
4816 return;
4817 }
4818 /*
4819 * don't let the period tick interfere with the hrtick preemption
4820 */
4821 if (!sched_feat(DOUBLE_TICK) &&
4822 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4823 return;
4824 #endif
4825
4826 if (cfs_rq->nr_running > 1)
4827 check_preempt_tick(cfs_rq, curr);
4828 trace_android_rvh_entity_tick(cfs_rq, curr);
4829 }
4830
4831
4832 /**************************************************
4833 * CFS bandwidth control machinery
4834 */
4835
4836 #ifdef CONFIG_CFS_BANDWIDTH
4837
4838 #ifdef CONFIG_JUMP_LABEL
4839 static struct static_key __cfs_bandwidth_used;
4840
cfs_bandwidth_used(void)4841 static inline bool cfs_bandwidth_used(void)
4842 {
4843 return static_key_false(&__cfs_bandwidth_used);
4844 }
4845
cfs_bandwidth_usage_inc(void)4846 void cfs_bandwidth_usage_inc(void)
4847 {
4848 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4849 }
4850
cfs_bandwidth_usage_dec(void)4851 void cfs_bandwidth_usage_dec(void)
4852 {
4853 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4854 }
4855 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4856 static bool cfs_bandwidth_used(void)
4857 {
4858 return true;
4859 }
4860
cfs_bandwidth_usage_inc(void)4861 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4862 void cfs_bandwidth_usage_dec(void) {}
4863 #endif /* CONFIG_JUMP_LABEL */
4864
4865 /*
4866 * default period for cfs group bandwidth.
4867 * default: 0.1s, units: nanoseconds
4868 */
default_cfs_period(void)4869 static inline u64 default_cfs_period(void)
4870 {
4871 return 100000000ULL;
4872 }
4873
sched_cfs_bandwidth_slice(void)4874 static inline u64 sched_cfs_bandwidth_slice(void)
4875 {
4876 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4877 }
4878
4879 /*
4880 * Replenish runtime according to assigned quota. We use sched_clock_cpu
4881 * directly instead of rq->clock to avoid adding additional synchronization
4882 * around rq->lock.
4883 *
4884 * requires cfs_b->lock
4885 */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4886 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4887 {
4888 if (unlikely(cfs_b->quota == RUNTIME_INF))
4889 return;
4890
4891 cfs_b->runtime += cfs_b->quota;
4892 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
4893 }
4894
tg_cfs_bandwidth(struct task_group * tg)4895 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4896 {
4897 return &tg->cfs_bandwidth;
4898 }
4899
4900 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4901 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4902 struct cfs_rq *cfs_rq, u64 target_runtime)
4903 {
4904 u64 min_amount, amount = 0;
4905
4906 lockdep_assert_held(&cfs_b->lock);
4907
4908 /* note: this is a positive sum as runtime_remaining <= 0 */
4909 min_amount = target_runtime - cfs_rq->runtime_remaining;
4910
4911 if (cfs_b->quota == RUNTIME_INF)
4912 amount = min_amount;
4913 else {
4914 start_cfs_bandwidth(cfs_b);
4915
4916 if (cfs_b->runtime > 0) {
4917 amount = min(cfs_b->runtime, min_amount);
4918 cfs_b->runtime -= amount;
4919 cfs_b->idle = 0;
4920 }
4921 }
4922
4923 cfs_rq->runtime_remaining += amount;
4924
4925 return cfs_rq->runtime_remaining > 0;
4926 }
4927
4928 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4929 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4930 {
4931 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4932 int ret;
4933
4934 raw_spin_lock(&cfs_b->lock);
4935 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4936 raw_spin_unlock(&cfs_b->lock);
4937
4938 return ret;
4939 }
4940
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4941 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4942 {
4943 /* dock delta_exec before expiring quota (as it could span periods) */
4944 cfs_rq->runtime_remaining -= delta_exec;
4945
4946 if (likely(cfs_rq->runtime_remaining > 0))
4947 return;
4948
4949 if (cfs_rq->throttled)
4950 return;
4951 /*
4952 * if we're unable to extend our runtime we resched so that the active
4953 * hierarchy can be throttled
4954 */
4955 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4956 resched_curr(rq_of(cfs_rq));
4957 }
4958
4959 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4960 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4961 {
4962 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4963 return;
4964
4965 __account_cfs_rq_runtime(cfs_rq, delta_exec);
4966 }
4967
cfs_rq_throttled(struct cfs_rq * cfs_rq)4968 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4969 {
4970 return cfs_bandwidth_used() && cfs_rq->throttled;
4971 }
4972
4973 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4974 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4975 {
4976 return cfs_bandwidth_used() && cfs_rq->throttle_count;
4977 }
4978
4979 /*
4980 * Ensure that neither of the group entities corresponding to src_cpu or
4981 * dest_cpu are members of a throttled hierarchy when performing group
4982 * load-balance operations.
4983 */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4984 static inline int throttled_lb_pair(struct task_group *tg,
4985 int src_cpu, int dest_cpu)
4986 {
4987 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4988
4989 src_cfs_rq = tg->cfs_rq[src_cpu];
4990 dest_cfs_rq = tg->cfs_rq[dest_cpu];
4991
4992 return throttled_hierarchy(src_cfs_rq) ||
4993 throttled_hierarchy(dest_cfs_rq);
4994 }
4995
tg_unthrottle_up(struct task_group * tg,void * data)4996 static int tg_unthrottle_up(struct task_group *tg, void *data)
4997 {
4998 struct rq *rq = data;
4999 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5000
5001 cfs_rq->throttle_count--;
5002 if (!cfs_rq->throttle_count) {
5003 cfs_rq->throttled_clock_pelt_time += rq_clock_task_mult(rq) -
5004 cfs_rq->throttled_clock_pelt;
5005
5006 /* Add cfs_rq with load or one or more already running entities to the list */
5007 if (!cfs_rq_is_decayed(cfs_rq) || cfs_rq->nr_running)
5008 list_add_leaf_cfs_rq(cfs_rq);
5009 }
5010
5011 return 0;
5012 }
5013
tg_throttle_down(struct task_group * tg,void * data)5014 static int tg_throttle_down(struct task_group *tg, void *data)
5015 {
5016 struct rq *rq = data;
5017 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5018
5019 /* group is entering throttled state, stop time */
5020 if (!cfs_rq->throttle_count) {
5021 cfs_rq->throttled_clock_pelt = rq_clock_task_mult(rq);
5022 list_del_leaf_cfs_rq(cfs_rq);
5023 }
5024 cfs_rq->throttle_count++;
5025
5026 return 0;
5027 }
5028
throttle_cfs_rq(struct cfs_rq * cfs_rq)5029 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5030 {
5031 struct rq *rq = rq_of(cfs_rq);
5032 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5033 struct sched_entity *se;
5034 long task_delta, idle_task_delta, dequeue = 1;
5035
5036 raw_spin_lock(&cfs_b->lock);
5037 /* This will start the period timer if necessary */
5038 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5039 /*
5040 * We have raced with bandwidth becoming available, and if we
5041 * actually throttled the timer might not unthrottle us for an
5042 * entire period. We additionally needed to make sure that any
5043 * subsequent check_cfs_rq_runtime calls agree not to throttle
5044 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5045 * for 1ns of runtime rather than just check cfs_b.
5046 */
5047 dequeue = 0;
5048 } else {
5049 list_add_tail_rcu(&cfs_rq->throttled_list,
5050 &cfs_b->throttled_cfs_rq);
5051 }
5052 raw_spin_unlock(&cfs_b->lock);
5053
5054 if (!dequeue)
5055 return false; /* Throttle no longer required. */
5056
5057 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5058
5059 /* freeze hierarchy runnable averages while throttled */
5060 rcu_read_lock();
5061 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5062 rcu_read_unlock();
5063
5064 task_delta = cfs_rq->h_nr_running;
5065 idle_task_delta = cfs_rq->idle_h_nr_running;
5066 for_each_sched_entity(se) {
5067 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5068 /* throttled entity or throttle-on-deactivate */
5069 if (!se->on_rq)
5070 goto done;
5071
5072 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5073
5074 if (cfs_rq_is_idle(group_cfs_rq(se)))
5075 idle_task_delta = cfs_rq->h_nr_running;
5076
5077 qcfs_rq->h_nr_running -= task_delta;
5078 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5079
5080 if (qcfs_rq->load.weight) {
5081 /* Avoid re-evaluating load for this entity: */
5082 se = parent_entity(se);
5083 break;
5084 }
5085 }
5086
5087 for_each_sched_entity(se) {
5088 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5089 /* throttled entity or throttle-on-deactivate */
5090 if (!se->on_rq)
5091 goto done;
5092
5093 update_load_avg(qcfs_rq, se, 0);
5094 se_update_runnable(se);
5095
5096 if (cfs_rq_is_idle(group_cfs_rq(se)))
5097 idle_task_delta = cfs_rq->h_nr_running;
5098
5099 qcfs_rq->h_nr_running -= task_delta;
5100 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5101 }
5102
5103 /* At this point se is NULL and we are at root level*/
5104 sub_nr_running(rq, task_delta);
5105
5106 done:
5107 /*
5108 * Note: distribution will already see us throttled via the
5109 * throttled-list. rq->lock protects completion.
5110 */
5111 cfs_rq->throttled = 1;
5112 cfs_rq->throttled_clock = rq_clock(rq);
5113 return true;
5114 }
5115
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5116 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5117 {
5118 struct rq *rq = rq_of(cfs_rq);
5119 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5120 struct sched_entity *se;
5121 long task_delta, idle_task_delta;
5122
5123 se = cfs_rq->tg->se[cpu_of(rq)];
5124
5125 cfs_rq->throttled = 0;
5126
5127 update_rq_clock(rq);
5128
5129 raw_spin_lock(&cfs_b->lock);
5130 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5131 list_del_rcu(&cfs_rq->throttled_list);
5132 raw_spin_unlock(&cfs_b->lock);
5133
5134 /* update hierarchical throttle state */
5135 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5136
5137 /* Nothing to run but something to decay (on_list)? Complete the branch */
5138 if (!cfs_rq->load.weight) {
5139 if (cfs_rq->on_list)
5140 goto unthrottle_throttle;
5141 return;
5142 }
5143
5144 task_delta = cfs_rq->h_nr_running;
5145 idle_task_delta = cfs_rq->idle_h_nr_running;
5146 for_each_sched_entity(se) {
5147 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5148
5149 if (se->on_rq)
5150 break;
5151 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
5152
5153 if (cfs_rq_is_idle(group_cfs_rq(se)))
5154 idle_task_delta = cfs_rq->h_nr_running;
5155
5156 qcfs_rq->h_nr_running += task_delta;
5157 qcfs_rq->idle_h_nr_running += idle_task_delta;
5158
5159 /* end evaluation on encountering a throttled cfs_rq */
5160 if (cfs_rq_throttled(qcfs_rq))
5161 goto unthrottle_throttle;
5162 }
5163
5164 for_each_sched_entity(se) {
5165 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5166
5167 update_load_avg(qcfs_rq, se, UPDATE_TG);
5168 se_update_runnable(se);
5169
5170 if (cfs_rq_is_idle(group_cfs_rq(se)))
5171 idle_task_delta = cfs_rq->h_nr_running;
5172
5173 qcfs_rq->h_nr_running += task_delta;
5174 qcfs_rq->idle_h_nr_running += idle_task_delta;
5175
5176 /* end evaluation on encountering a throttled cfs_rq */
5177 if (cfs_rq_throttled(qcfs_rq))
5178 goto unthrottle_throttle;
5179
5180 /*
5181 * One parent has been throttled and cfs_rq removed from the
5182 * list. Add it back to not break the leaf list.
5183 */
5184 if (throttled_hierarchy(qcfs_rq))
5185 list_add_leaf_cfs_rq(qcfs_rq);
5186 }
5187
5188 /* At this point se is NULL and we are at root level*/
5189 add_nr_running(rq, task_delta);
5190
5191 unthrottle_throttle:
5192 /*
5193 * The cfs_rq_throttled() breaks in the above iteration can result in
5194 * incomplete leaf list maintenance, resulting in triggering the
5195 * assertion below.
5196 */
5197 for_each_sched_entity(se) {
5198 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5199
5200 if (list_add_leaf_cfs_rq(qcfs_rq))
5201 break;
5202 }
5203
5204 assert_list_leaf_cfs_rq(rq);
5205
5206 /* Determine whether we need to wake up potentially idle CPU: */
5207 if (rq->curr == rq->idle && rq->cfs.nr_running)
5208 resched_curr(rq);
5209 }
5210
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5211 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5212 {
5213 struct cfs_rq *cfs_rq;
5214 u64 runtime, remaining = 1;
5215
5216 rcu_read_lock();
5217 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5218 throttled_list) {
5219 struct rq *rq = rq_of(cfs_rq);
5220 struct rq_flags rf;
5221
5222 rq_lock_irqsave(rq, &rf);
5223 if (!cfs_rq_throttled(cfs_rq))
5224 goto next;
5225
5226 /* By the above check, this should never be true */
5227 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5228
5229 raw_spin_lock(&cfs_b->lock);
5230 runtime = -cfs_rq->runtime_remaining + 1;
5231 if (runtime > cfs_b->runtime)
5232 runtime = cfs_b->runtime;
5233 cfs_b->runtime -= runtime;
5234 remaining = cfs_b->runtime;
5235 raw_spin_unlock(&cfs_b->lock);
5236
5237 cfs_rq->runtime_remaining += runtime;
5238
5239 /* we check whether we're throttled above */
5240 if (cfs_rq->runtime_remaining > 0)
5241 unthrottle_cfs_rq(cfs_rq);
5242
5243 next:
5244 rq_unlock_irqrestore(rq, &rf);
5245
5246 if (!remaining)
5247 break;
5248 }
5249 rcu_read_unlock();
5250 }
5251
5252 /*
5253 * Responsible for refilling a task_group's bandwidth and unthrottling its
5254 * cfs_rqs as appropriate. If there has been no activity within the last
5255 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5256 * used to track this state.
5257 */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5258 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5259 {
5260 int throttled;
5261
5262 /* no need to continue the timer with no bandwidth constraint */
5263 if (cfs_b->quota == RUNTIME_INF)
5264 goto out_deactivate;
5265
5266 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5267 cfs_b->nr_periods += overrun;
5268
5269 /* Refill extra burst quota even if cfs_b->idle */
5270 __refill_cfs_bandwidth_runtime(cfs_b);
5271
5272 /*
5273 * idle depends on !throttled (for the case of a large deficit), and if
5274 * we're going inactive then everything else can be deferred
5275 */
5276 if (cfs_b->idle && !throttled)
5277 goto out_deactivate;
5278
5279 if (!throttled) {
5280 /* mark as potentially idle for the upcoming period */
5281 cfs_b->idle = 1;
5282 return 0;
5283 }
5284
5285 /* account preceding periods in which throttling occurred */
5286 cfs_b->nr_throttled += overrun;
5287
5288 /*
5289 * This check is repeated as we release cfs_b->lock while we unthrottle.
5290 */
5291 while (throttled && cfs_b->runtime > 0) {
5292 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5293 /* we can't nest cfs_b->lock while distributing bandwidth */
5294 distribute_cfs_runtime(cfs_b);
5295 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5296
5297 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5298 }
5299
5300 /*
5301 * While we are ensured activity in the period following an
5302 * unthrottle, this also covers the case in which the new bandwidth is
5303 * insufficient to cover the existing bandwidth deficit. (Forcing the
5304 * timer to remain active while there are any throttled entities.)
5305 */
5306 cfs_b->idle = 0;
5307
5308 return 0;
5309
5310 out_deactivate:
5311 return 1;
5312 }
5313
5314 /* a cfs_rq won't donate quota below this amount */
5315 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5316 /* minimum remaining period time to redistribute slack quota */
5317 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5318 /* how long we wait to gather additional slack before distributing */
5319 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5320
5321 /*
5322 * Are we near the end of the current quota period?
5323 *
5324 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5325 * hrtimer base being cleared by hrtimer_start. In the case of
5326 * migrate_hrtimers, base is never cleared, so we are fine.
5327 */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5328 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5329 {
5330 struct hrtimer *refresh_timer = &cfs_b->period_timer;
5331 s64 remaining;
5332
5333 /* if the call-back is running a quota refresh is already occurring */
5334 if (hrtimer_callback_running(refresh_timer))
5335 return 1;
5336
5337 /* is a quota refresh about to occur? */
5338 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5339 if (remaining < (s64)min_expire)
5340 return 1;
5341
5342 return 0;
5343 }
5344
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5345 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5346 {
5347 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5348
5349 /* if there's a quota refresh soon don't bother with slack */
5350 if (runtime_refresh_within(cfs_b, min_left))
5351 return;
5352
5353 /* don't push forwards an existing deferred unthrottle */
5354 if (cfs_b->slack_started)
5355 return;
5356 cfs_b->slack_started = true;
5357
5358 hrtimer_start(&cfs_b->slack_timer,
5359 ns_to_ktime(cfs_bandwidth_slack_period),
5360 HRTIMER_MODE_REL);
5361 }
5362
5363 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5364 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5365 {
5366 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5367 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5368
5369 if (slack_runtime <= 0)
5370 return;
5371
5372 raw_spin_lock(&cfs_b->lock);
5373 if (cfs_b->quota != RUNTIME_INF) {
5374 cfs_b->runtime += slack_runtime;
5375
5376 /* we are under rq->lock, defer unthrottling using a timer */
5377 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5378 !list_empty(&cfs_b->throttled_cfs_rq))
5379 start_cfs_slack_bandwidth(cfs_b);
5380 }
5381 raw_spin_unlock(&cfs_b->lock);
5382
5383 /* even if it's not valid for return we don't want to try again */
5384 cfs_rq->runtime_remaining -= slack_runtime;
5385 }
5386
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5387 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5388 {
5389 if (!cfs_bandwidth_used())
5390 return;
5391
5392 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5393 return;
5394
5395 __return_cfs_rq_runtime(cfs_rq);
5396 }
5397
5398 /*
5399 * This is done with a timer (instead of inline with bandwidth return) since
5400 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5401 */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5402 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5403 {
5404 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5405 unsigned long flags;
5406
5407 /* confirm we're still not at a refresh boundary */
5408 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5409 cfs_b->slack_started = false;
5410
5411 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5412 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5413 return;
5414 }
5415
5416 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5417 runtime = cfs_b->runtime;
5418
5419 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5420
5421 if (!runtime)
5422 return;
5423
5424 distribute_cfs_runtime(cfs_b);
5425 }
5426
5427 /*
5428 * When a group wakes up we want to make sure that its quota is not already
5429 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5430 * runtime as update_curr() throttling can not trigger until it's on-rq.
5431 */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5432 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5433 {
5434 if (!cfs_bandwidth_used())
5435 return;
5436
5437 /* an active group must be handled by the update_curr()->put() path */
5438 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5439 return;
5440
5441 /* ensure the group is not already throttled */
5442 if (cfs_rq_throttled(cfs_rq))
5443 return;
5444
5445 /* update runtime allocation */
5446 account_cfs_rq_runtime(cfs_rq, 0);
5447 if (cfs_rq->runtime_remaining <= 0)
5448 throttle_cfs_rq(cfs_rq);
5449 }
5450
sync_throttle(struct task_group * tg,int cpu)5451 static void sync_throttle(struct task_group *tg, int cpu)
5452 {
5453 struct cfs_rq *pcfs_rq, *cfs_rq;
5454
5455 if (!cfs_bandwidth_used())
5456 return;
5457
5458 if (!tg->parent)
5459 return;
5460
5461 cfs_rq = tg->cfs_rq[cpu];
5462 pcfs_rq = tg->parent->cfs_rq[cpu];
5463
5464 cfs_rq->throttle_count = pcfs_rq->throttle_count;
5465 cfs_rq->throttled_clock_pelt = rq_clock_task_mult(cpu_rq(cpu));
5466 }
5467
5468 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5469 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5470 {
5471 if (!cfs_bandwidth_used())
5472 return false;
5473
5474 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5475 return false;
5476
5477 /*
5478 * it's possible for a throttled entity to be forced into a running
5479 * state (e.g. set_curr_task), in this case we're finished.
5480 */
5481 if (cfs_rq_throttled(cfs_rq))
5482 return true;
5483
5484 return throttle_cfs_rq(cfs_rq);
5485 }
5486
sched_cfs_slack_timer(struct hrtimer * timer)5487 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5488 {
5489 struct cfs_bandwidth *cfs_b =
5490 container_of(timer, struct cfs_bandwidth, slack_timer);
5491
5492 do_sched_cfs_slack_timer(cfs_b);
5493
5494 return HRTIMER_NORESTART;
5495 }
5496
5497 extern const u64 max_cfs_quota_period;
5498
sched_cfs_period_timer(struct hrtimer * timer)5499 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5500 {
5501 struct cfs_bandwidth *cfs_b =
5502 container_of(timer, struct cfs_bandwidth, period_timer);
5503 unsigned long flags;
5504 int overrun;
5505 int idle = 0;
5506 int count = 0;
5507
5508 raw_spin_lock_irqsave(&cfs_b->lock, flags);
5509 for (;;) {
5510 overrun = hrtimer_forward_now(timer, cfs_b->period);
5511 if (!overrun)
5512 break;
5513
5514 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5515
5516 if (++count > 3) {
5517 u64 new, old = ktime_to_ns(cfs_b->period);
5518
5519 /*
5520 * Grow period by a factor of 2 to avoid losing precision.
5521 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5522 * to fail.
5523 */
5524 new = old * 2;
5525 if (new < max_cfs_quota_period) {
5526 cfs_b->period = ns_to_ktime(new);
5527 cfs_b->quota *= 2;
5528 cfs_b->burst *= 2;
5529
5530 pr_warn_ratelimited(
5531 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5532 smp_processor_id(),
5533 div_u64(new, NSEC_PER_USEC),
5534 div_u64(cfs_b->quota, NSEC_PER_USEC));
5535 } else {
5536 pr_warn_ratelimited(
5537 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5538 smp_processor_id(),
5539 div_u64(old, NSEC_PER_USEC),
5540 div_u64(cfs_b->quota, NSEC_PER_USEC));
5541 }
5542
5543 /* reset count so we don't come right back in here */
5544 count = 0;
5545 }
5546 }
5547 if (idle)
5548 cfs_b->period_active = 0;
5549 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5550
5551 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5552 }
5553
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5554 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5555 {
5556 raw_spin_lock_init(&cfs_b->lock);
5557 cfs_b->runtime = 0;
5558 cfs_b->quota = RUNTIME_INF;
5559 cfs_b->period = ns_to_ktime(default_cfs_period());
5560 cfs_b->burst = 0;
5561
5562 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5563 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5564 cfs_b->period_timer.function = sched_cfs_period_timer;
5565 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5566 cfs_b->slack_timer.function = sched_cfs_slack_timer;
5567 cfs_b->slack_started = false;
5568 }
5569
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5570 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5571 {
5572 cfs_rq->runtime_enabled = 0;
5573 INIT_LIST_HEAD(&cfs_rq->throttled_list);
5574 }
5575
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5576 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5577 {
5578 lockdep_assert_held(&cfs_b->lock);
5579
5580 if (cfs_b->period_active)
5581 return;
5582
5583 cfs_b->period_active = 1;
5584 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5585 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5586 }
5587
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5588 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5589 {
5590 /* init_cfs_bandwidth() was not called */
5591 if (!cfs_b->throttled_cfs_rq.next)
5592 return;
5593
5594 hrtimer_cancel(&cfs_b->period_timer);
5595 hrtimer_cancel(&cfs_b->slack_timer);
5596 }
5597
5598 /*
5599 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5600 *
5601 * The race is harmless, since modifying bandwidth settings of unhooked group
5602 * bits doesn't do much.
5603 */
5604
5605 /* cpu online callback */
update_runtime_enabled(struct rq * rq)5606 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5607 {
5608 struct task_group *tg;
5609
5610 lockdep_assert_rq_held(rq);
5611
5612 rcu_read_lock();
5613 list_for_each_entry_rcu(tg, &task_groups, list) {
5614 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5615 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5616
5617 raw_spin_lock(&cfs_b->lock);
5618 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5619 raw_spin_unlock(&cfs_b->lock);
5620 }
5621 rcu_read_unlock();
5622 }
5623
5624 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5625 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5626 {
5627 struct task_group *tg;
5628
5629 lockdep_assert_rq_held(rq);
5630
5631 rcu_read_lock();
5632 list_for_each_entry_rcu(tg, &task_groups, list) {
5633 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5634
5635 if (!cfs_rq->runtime_enabled)
5636 continue;
5637
5638 /*
5639 * clock_task is not advancing so we just need to make sure
5640 * there's some valid quota amount
5641 */
5642 cfs_rq->runtime_remaining = 1;
5643 /*
5644 * Offline rq is schedulable till CPU is completely disabled
5645 * in take_cpu_down(), so we prevent new cfs throttling here.
5646 */
5647 cfs_rq->runtime_enabled = 0;
5648
5649 if (cfs_rq_throttled(cfs_rq))
5650 unthrottle_cfs_rq(cfs_rq);
5651 }
5652 rcu_read_unlock();
5653 }
5654
5655 #else /* CONFIG_CFS_BANDWIDTH */
5656
cfs_bandwidth_used(void)5657 static inline bool cfs_bandwidth_used(void)
5658 {
5659 return false;
5660 }
5661
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5662 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5663 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5664 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5665 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5666 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5667
cfs_rq_throttled(struct cfs_rq * cfs_rq)5668 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5669 {
5670 return 0;
5671 }
5672
throttled_hierarchy(struct cfs_rq * cfs_rq)5673 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5674 {
5675 return 0;
5676 }
5677
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5678 static inline int throttled_lb_pair(struct task_group *tg,
5679 int src_cpu, int dest_cpu)
5680 {
5681 return 0;
5682 }
5683
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5684 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5685
5686 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5687 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5688 #endif
5689
tg_cfs_bandwidth(struct task_group * tg)5690 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5691 {
5692 return NULL;
5693 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5694 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5695 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5696 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5697
5698 #endif /* CONFIG_CFS_BANDWIDTH */
5699
5700 /**************************************************
5701 * CFS operations on tasks:
5702 */
5703
5704 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5705 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5706 {
5707 struct sched_entity *se = &p->se;
5708 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5709
5710 SCHED_WARN_ON(task_rq(p) != rq);
5711
5712 if (rq->cfs.h_nr_running > 1) {
5713 u64 slice = sched_slice(cfs_rq, se);
5714 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5715 s64 delta = slice - ran;
5716
5717 if (delta < 0) {
5718 if (task_current(rq, p))
5719 resched_curr(rq);
5720 return;
5721 }
5722 hrtick_start(rq, delta);
5723 }
5724 }
5725
5726 /*
5727 * called from enqueue/dequeue and updates the hrtick when the
5728 * current task is from our class and nr_running is low enough
5729 * to matter.
5730 */
hrtick_update(struct rq * rq)5731 static void hrtick_update(struct rq *rq)
5732 {
5733 struct task_struct *curr = rq->curr;
5734
5735 if (!hrtick_enabled_fair(rq) || curr->sched_class != &fair_sched_class)
5736 return;
5737
5738 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5739 hrtick_start_fair(rq, curr);
5740 }
5741 #else /* !CONFIG_SCHED_HRTICK */
5742 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5743 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5744 {
5745 }
5746
hrtick_update(struct rq * rq)5747 static inline void hrtick_update(struct rq *rq)
5748 {
5749 }
5750 #endif
5751
5752 #ifdef CONFIG_SMP
5753 static inline unsigned long cpu_util(int cpu);
5754
cpu_overutilized(int cpu)5755 static inline bool cpu_overutilized(int cpu)
5756 {
5757 unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
5758 unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
5759 int overutilized = -1;
5760
5761 trace_android_rvh_cpu_overutilized(cpu, &overutilized);
5762 if (overutilized != -1)
5763 return overutilized;
5764
5765 return !util_fits_cpu(cpu_util(cpu), rq_util_min, rq_util_max, cpu);
5766 }
5767
update_overutilized_status(struct rq * rq)5768 static inline void update_overutilized_status(struct rq *rq)
5769 {
5770 if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5771 WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5772 trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5773 }
5774 }
5775 #else
update_overutilized_status(struct rq * rq)5776 static inline void update_overutilized_status(struct rq *rq) { }
5777 #endif
5778
5779 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)5780 static int sched_idle_rq(struct rq *rq)
5781 {
5782 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5783 rq->nr_running);
5784 }
5785
5786 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)5787 static int sched_idle_cpu(int cpu)
5788 {
5789 return sched_idle_rq(cpu_rq(cpu));
5790 }
5791 #endif
5792
5793 /*
5794 * The enqueue_task method is called before nr_running is
5795 * increased. Here we update the fair scheduling stats and
5796 * then put the task into the rbtree:
5797 */
5798 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5799 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5800 {
5801 struct cfs_rq *cfs_rq;
5802 struct sched_entity *se = &p->se;
5803 int idle_h_nr_running = task_has_idle_policy(p);
5804 int task_new = !(flags & ENQUEUE_WAKEUP);
5805 int should_iowait_boost;
5806
5807 /*
5808 * The code below (indirectly) updates schedutil which looks at
5809 * the cfs_rq utilization to select a frequency.
5810 * Let's add the task's estimated utilization to the cfs_rq's
5811 * estimated utilization, before we update schedutil.
5812 */
5813 util_est_enqueue(&rq->cfs, p);
5814
5815 /*
5816 * If in_iowait is set, the code below may not trigger any cpufreq
5817 * utilization updates, so do it here explicitly with the IOWAIT flag
5818 * passed.
5819 */
5820 should_iowait_boost = p->in_iowait;
5821 trace_android_rvh_set_iowait(p, rq, &should_iowait_boost);
5822 if (should_iowait_boost)
5823 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5824
5825 for_each_sched_entity(se) {
5826 if (se->on_rq)
5827 break;
5828 cfs_rq = cfs_rq_of(se);
5829 enqueue_entity(cfs_rq, se, flags);
5830
5831 cfs_rq->h_nr_running++;
5832 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5833
5834 if (cfs_rq_is_idle(cfs_rq))
5835 idle_h_nr_running = 1;
5836
5837 /* end evaluation on encountering a throttled cfs_rq */
5838 if (cfs_rq_throttled(cfs_rq))
5839 goto enqueue_throttle;
5840
5841 flags = ENQUEUE_WAKEUP;
5842 }
5843
5844 trace_android_rvh_enqueue_task_fair(rq, p, flags);
5845 for_each_sched_entity(se) {
5846 cfs_rq = cfs_rq_of(se);
5847
5848 update_load_avg(cfs_rq, se, UPDATE_TG);
5849 se_update_runnable(se);
5850 update_cfs_group(se);
5851
5852 cfs_rq->h_nr_running++;
5853 cfs_rq->idle_h_nr_running += idle_h_nr_running;
5854
5855 if (cfs_rq_is_idle(cfs_rq))
5856 idle_h_nr_running = 1;
5857
5858 /* end evaluation on encountering a throttled cfs_rq */
5859 if (cfs_rq_throttled(cfs_rq))
5860 goto enqueue_throttle;
5861
5862 /*
5863 * One parent has been throttled and cfs_rq removed from the
5864 * list. Add it back to not break the leaf list.
5865 */
5866 if (throttled_hierarchy(cfs_rq))
5867 list_add_leaf_cfs_rq(cfs_rq);
5868 }
5869
5870 /* At this point se is NULL and we are at root level*/
5871 add_nr_running(rq, 1);
5872
5873 /*
5874 * Since new tasks are assigned an initial util_avg equal to
5875 * half of the spare capacity of their CPU, tiny tasks have the
5876 * ability to cross the overutilized threshold, which will
5877 * result in the load balancer ruining all the task placement
5878 * done by EAS. As a way to mitigate that effect, do not account
5879 * for the first enqueue operation of new tasks during the
5880 * overutilized flag detection.
5881 *
5882 * A better way of solving this problem would be to wait for
5883 * the PELT signals of tasks to converge before taking them
5884 * into account, but that is not straightforward to implement,
5885 * and the following generally works well enough in practice.
5886 */
5887 if (!task_new)
5888 update_overutilized_status(rq);
5889
5890 enqueue_throttle:
5891 if (cfs_bandwidth_used()) {
5892 /*
5893 * When bandwidth control is enabled; the cfs_rq_throttled()
5894 * breaks in the above iteration can result in incomplete
5895 * leaf list maintenance, resulting in triggering the assertion
5896 * below.
5897 */
5898 for_each_sched_entity(se) {
5899 cfs_rq = cfs_rq_of(se);
5900
5901 if (list_add_leaf_cfs_rq(cfs_rq))
5902 break;
5903 }
5904 }
5905
5906 assert_list_leaf_cfs_rq(rq);
5907
5908 hrtick_update(rq);
5909 }
5910
5911 static void set_next_buddy(struct sched_entity *se);
5912
5913 /*
5914 * The dequeue_task method is called before nr_running is
5915 * decreased. We remove the task from the rbtree and
5916 * update the fair scheduling stats:
5917 */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5918 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5919 {
5920 struct cfs_rq *cfs_rq;
5921 struct sched_entity *se = &p->se;
5922 int task_sleep = flags & DEQUEUE_SLEEP;
5923 int idle_h_nr_running = task_has_idle_policy(p);
5924 bool was_sched_idle = sched_idle_rq(rq);
5925
5926 util_est_dequeue(&rq->cfs, p);
5927
5928 for_each_sched_entity(se) {
5929 cfs_rq = cfs_rq_of(se);
5930 dequeue_entity(cfs_rq, se, flags);
5931
5932 cfs_rq->h_nr_running--;
5933 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5934
5935 if (cfs_rq_is_idle(cfs_rq))
5936 idle_h_nr_running = 1;
5937
5938 /* end evaluation on encountering a throttled cfs_rq */
5939 if (cfs_rq_throttled(cfs_rq))
5940 goto dequeue_throttle;
5941
5942 /* Don't dequeue parent if it has other entities besides us */
5943 if (cfs_rq->load.weight) {
5944 /* Avoid re-evaluating load for this entity: */
5945 se = parent_entity(se);
5946 /*
5947 * Bias pick_next to pick a task from this cfs_rq, as
5948 * p is sleeping when it is within its sched_slice.
5949 */
5950 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5951 set_next_buddy(se);
5952 break;
5953 }
5954 flags |= DEQUEUE_SLEEP;
5955 }
5956
5957 trace_android_rvh_dequeue_task_fair(rq, p, flags);
5958 for_each_sched_entity(se) {
5959 cfs_rq = cfs_rq_of(se);
5960
5961 update_load_avg(cfs_rq, se, UPDATE_TG);
5962 se_update_runnable(se);
5963 update_cfs_group(se);
5964
5965 cfs_rq->h_nr_running--;
5966 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5967
5968 if (cfs_rq_is_idle(cfs_rq))
5969 idle_h_nr_running = 1;
5970
5971 /* end evaluation on encountering a throttled cfs_rq */
5972 if (cfs_rq_throttled(cfs_rq))
5973 goto dequeue_throttle;
5974
5975 }
5976
5977 /* At this point se is NULL and we are at root level*/
5978 sub_nr_running(rq, 1);
5979
5980 /* balance early to pull high priority tasks */
5981 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5982 rq->next_balance = jiffies;
5983
5984 dequeue_throttle:
5985 util_est_update(&rq->cfs, p, task_sleep);
5986 hrtick_update(rq);
5987 }
5988
5989 #ifdef CONFIG_SMP
5990
5991 /* Working cpumask for: load_balance, load_balance_newidle. */
5992 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5993 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5994
5995 #ifdef CONFIG_NO_HZ_COMMON
5996
5997 static struct {
5998 cpumask_var_t idle_cpus_mask;
5999 atomic_t nr_cpus;
6000 int has_blocked; /* Idle CPUS has blocked load */
6001 unsigned long next_balance; /* in jiffy units */
6002 unsigned long next_blocked; /* Next update of blocked load in jiffies */
6003 } nohz ____cacheline_aligned;
6004
6005 #endif /* CONFIG_NO_HZ_COMMON */
6006
cpu_load(struct rq * rq)6007 static unsigned long cpu_load(struct rq *rq)
6008 {
6009 return cfs_rq_load_avg(&rq->cfs);
6010 }
6011
6012 /*
6013 * cpu_load_without - compute CPU load without any contributions from *p
6014 * @cpu: the CPU which load is requested
6015 * @p: the task which load should be discounted
6016 *
6017 * The load of a CPU is defined by the load of tasks currently enqueued on that
6018 * CPU as well as tasks which are currently sleeping after an execution on that
6019 * CPU.
6020 *
6021 * This method returns the load of the specified CPU by discounting the load of
6022 * the specified task, whenever the task is currently contributing to the CPU
6023 * load.
6024 */
cpu_load_without(struct rq * rq,struct task_struct * p)6025 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6026 {
6027 struct cfs_rq *cfs_rq;
6028 unsigned int load;
6029
6030 /* Task has no contribution or is new */
6031 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6032 return cpu_load(rq);
6033
6034 cfs_rq = &rq->cfs;
6035 load = READ_ONCE(cfs_rq->avg.load_avg);
6036
6037 /* Discount task's util from CPU's util */
6038 lsub_positive(&load, task_h_load(p));
6039
6040 return load;
6041 }
6042
cpu_runnable(struct rq * rq)6043 static unsigned long cpu_runnable(struct rq *rq)
6044 {
6045 return cfs_rq_runnable_avg(&rq->cfs);
6046 }
6047
cpu_runnable_without(struct rq * rq,struct task_struct * p)6048 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6049 {
6050 struct cfs_rq *cfs_rq;
6051 unsigned int runnable;
6052
6053 /* Task has no contribution or is new */
6054 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6055 return cpu_runnable(rq);
6056
6057 cfs_rq = &rq->cfs;
6058 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6059
6060 /* Discount task's runnable from CPU's runnable */
6061 lsub_positive(&runnable, p->se.avg.runnable_avg);
6062
6063 return runnable;
6064 }
6065
capacity_of(int cpu)6066 static unsigned long capacity_of(int cpu)
6067 {
6068 return cpu_rq(cpu)->cpu_capacity;
6069 }
6070
record_wakee(struct task_struct * p)6071 static void record_wakee(struct task_struct *p)
6072 {
6073 /*
6074 * Only decay a single time; tasks that have less then 1 wakeup per
6075 * jiffy will not have built up many flips.
6076 */
6077 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6078 current->wakee_flips >>= 1;
6079 current->wakee_flip_decay_ts = jiffies;
6080 }
6081
6082 if (current->last_wakee != p) {
6083 current->last_wakee = p;
6084 current->wakee_flips++;
6085 }
6086 }
6087
6088 /*
6089 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6090 *
6091 * A waker of many should wake a different task than the one last awakened
6092 * at a frequency roughly N times higher than one of its wakees.
6093 *
6094 * In order to determine whether we should let the load spread vs consolidating
6095 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6096 * partner, and a factor of lls_size higher frequency in the other.
6097 *
6098 * With both conditions met, we can be relatively sure that the relationship is
6099 * non-monogamous, with partner count exceeding socket size.
6100 *
6101 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6102 * whatever is irrelevant, spread criteria is apparent partner count exceeds
6103 * socket size.
6104 */
wake_wide(struct task_struct * p)6105 static int wake_wide(struct task_struct *p)
6106 {
6107 unsigned int master = current->wakee_flips;
6108 unsigned int slave = p->wakee_flips;
6109 int factor = __this_cpu_read(sd_llc_size);
6110
6111 if (master < slave)
6112 swap(master, slave);
6113 if (slave < factor || master < slave * factor)
6114 return 0;
6115 return 1;
6116 }
6117
6118 /*
6119 * The purpose of wake_affine() is to quickly determine on which CPU we can run
6120 * soonest. For the purpose of speed we only consider the waking and previous
6121 * CPU.
6122 *
6123 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6124 * cache-affine and is (or will be) idle.
6125 *
6126 * wake_affine_weight() - considers the weight to reflect the average
6127 * scheduling latency of the CPUs. This seems to work
6128 * for the overloaded case.
6129 */
6130 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6131 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6132 {
6133 /*
6134 * If this_cpu is idle, it implies the wakeup is from interrupt
6135 * context. Only allow the move if cache is shared. Otherwise an
6136 * interrupt intensive workload could force all tasks onto one
6137 * node depending on the IO topology or IRQ affinity settings.
6138 *
6139 * If the prev_cpu is idle and cache affine then avoid a migration.
6140 * There is no guarantee that the cache hot data from an interrupt
6141 * is more important than cache hot data on the prev_cpu and from
6142 * a cpufreq perspective, it's better to have higher utilisation
6143 * on one CPU.
6144 */
6145 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6146 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6147
6148 if (sync && cpu_rq(this_cpu)->nr_running == 1)
6149 return this_cpu;
6150
6151 if (available_idle_cpu(prev_cpu))
6152 return prev_cpu;
6153
6154 return nr_cpumask_bits;
6155 }
6156
6157 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6158 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6159 int this_cpu, int prev_cpu, int sync)
6160 {
6161 s64 this_eff_load, prev_eff_load;
6162 unsigned long task_load;
6163
6164 this_eff_load = cpu_load(cpu_rq(this_cpu));
6165
6166 if (sync) {
6167 unsigned long current_load = task_h_load(current);
6168
6169 if (current_load > this_eff_load)
6170 return this_cpu;
6171
6172 this_eff_load -= current_load;
6173 }
6174
6175 task_load = task_h_load(p);
6176
6177 this_eff_load += task_load;
6178 if (sched_feat(WA_BIAS))
6179 this_eff_load *= 100;
6180 this_eff_load *= capacity_of(prev_cpu);
6181
6182 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6183 prev_eff_load -= task_load;
6184 if (sched_feat(WA_BIAS))
6185 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6186 prev_eff_load *= capacity_of(this_cpu);
6187
6188 /*
6189 * If sync, adjust the weight of prev_eff_load such that if
6190 * prev_eff == this_eff that select_idle_sibling() will consider
6191 * stacking the wakee on top of the waker if no other CPU is
6192 * idle.
6193 */
6194 if (sync)
6195 prev_eff_load += 1;
6196
6197 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6198 }
6199
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6200 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6201 int this_cpu, int prev_cpu, int sync)
6202 {
6203 int target = nr_cpumask_bits;
6204
6205 if (sched_feat(WA_IDLE))
6206 target = wake_affine_idle(this_cpu, prev_cpu, sync);
6207
6208 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6209 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6210
6211 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6212 if (target == nr_cpumask_bits)
6213 return prev_cpu;
6214
6215 schedstat_inc(sd->ttwu_move_affine);
6216 schedstat_inc(p->se.statistics.nr_wakeups_affine);
6217 return target;
6218 }
6219
6220 static struct sched_group *
6221 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6222
6223 /*
6224 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6225 */
6226 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6227 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6228 {
6229 unsigned long load, min_load = ULONG_MAX;
6230 unsigned int min_exit_latency = UINT_MAX;
6231 u64 latest_idle_timestamp = 0;
6232 int least_loaded_cpu = this_cpu;
6233 int shallowest_idle_cpu = -1;
6234 int i;
6235
6236 /* Check if we have any choice: */
6237 if (group->group_weight == 1)
6238 return cpumask_first(sched_group_span(group));
6239
6240 /* Traverse only the allowed CPUs */
6241 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6242 struct rq *rq = cpu_rq(i);
6243
6244 if (!sched_core_cookie_match(rq, p))
6245 continue;
6246
6247 if (sched_idle_cpu(i))
6248 return i;
6249
6250 if (available_idle_cpu(i)) {
6251 struct cpuidle_state *idle = idle_get_state(rq);
6252 if (idle && idle->exit_latency < min_exit_latency) {
6253 /*
6254 * We give priority to a CPU whose idle state
6255 * has the smallest exit latency irrespective
6256 * of any idle timestamp.
6257 */
6258 min_exit_latency = idle->exit_latency;
6259 latest_idle_timestamp = rq->idle_stamp;
6260 shallowest_idle_cpu = i;
6261 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
6262 rq->idle_stamp > latest_idle_timestamp) {
6263 /*
6264 * If equal or no active idle state, then
6265 * the most recently idled CPU might have
6266 * a warmer cache.
6267 */
6268 latest_idle_timestamp = rq->idle_stamp;
6269 shallowest_idle_cpu = i;
6270 }
6271 } else if (shallowest_idle_cpu == -1) {
6272 load = cpu_load(cpu_rq(i));
6273 if (load < min_load) {
6274 min_load = load;
6275 least_loaded_cpu = i;
6276 }
6277 }
6278 }
6279
6280 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6281 }
6282
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6283 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6284 int cpu, int prev_cpu, int sd_flag)
6285 {
6286 int new_cpu = cpu;
6287
6288 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6289 return prev_cpu;
6290
6291 /*
6292 * We need task's util for cpu_util_without, sync it up to
6293 * prev_cpu's last_update_time.
6294 */
6295 if (!(sd_flag & SD_BALANCE_FORK))
6296 sync_entity_load_avg(&p->se);
6297
6298 while (sd) {
6299 struct sched_group *group;
6300 struct sched_domain *tmp;
6301 int weight;
6302
6303 if (!(sd->flags & sd_flag)) {
6304 sd = sd->child;
6305 continue;
6306 }
6307
6308 group = find_idlest_group(sd, p, cpu);
6309 if (!group) {
6310 sd = sd->child;
6311 continue;
6312 }
6313
6314 new_cpu = find_idlest_group_cpu(group, p, cpu);
6315 if (new_cpu == cpu) {
6316 /* Now try balancing at a lower domain level of 'cpu': */
6317 sd = sd->child;
6318 continue;
6319 }
6320
6321 /* Now try balancing at a lower domain level of 'new_cpu': */
6322 cpu = new_cpu;
6323 weight = sd->span_weight;
6324 sd = NULL;
6325 for_each_domain(cpu, tmp) {
6326 if (weight <= tmp->span_weight)
6327 break;
6328 if (tmp->flags & sd_flag)
6329 sd = tmp;
6330 }
6331 }
6332
6333 return new_cpu;
6334 }
6335
__select_idle_cpu(int cpu,struct task_struct * p)6336 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
6337 {
6338 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
6339 sched_cpu_cookie_match(cpu_rq(cpu), p))
6340 return cpu;
6341
6342 return -1;
6343 }
6344
6345 #ifdef CONFIG_SCHED_SMT
6346 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6347 EXPORT_SYMBOL_GPL(sched_smt_present);
6348
set_idle_cores(int cpu,int val)6349 static inline void set_idle_cores(int cpu, int val)
6350 {
6351 struct sched_domain_shared *sds;
6352
6353 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6354 if (sds)
6355 WRITE_ONCE(sds->has_idle_cores, val);
6356 }
6357
test_idle_cores(int cpu,bool def)6358 static inline bool test_idle_cores(int cpu, bool def)
6359 {
6360 struct sched_domain_shared *sds;
6361
6362 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6363 if (sds)
6364 return READ_ONCE(sds->has_idle_cores);
6365
6366 return def;
6367 }
6368
6369 /*
6370 * Scans the local SMT mask to see if the entire core is idle, and records this
6371 * information in sd_llc_shared->has_idle_cores.
6372 *
6373 * Since SMT siblings share all cache levels, inspecting this limited remote
6374 * state should be fairly cheap.
6375 */
__update_idle_core(struct rq * rq)6376 void __update_idle_core(struct rq *rq)
6377 {
6378 int core = cpu_of(rq);
6379 int cpu;
6380
6381 rcu_read_lock();
6382 if (test_idle_cores(core, true))
6383 goto unlock;
6384
6385 for_each_cpu(cpu, cpu_smt_mask(core)) {
6386 if (cpu == core)
6387 continue;
6388
6389 if (!available_idle_cpu(cpu))
6390 goto unlock;
6391 }
6392
6393 set_idle_cores(core, 1);
6394 unlock:
6395 rcu_read_unlock();
6396 }
6397
6398 /*
6399 * Scan the entire LLC domain for idle cores; this dynamically switches off if
6400 * there are no idle cores left in the system; tracked through
6401 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6402 */
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6403 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6404 {
6405 bool idle = true;
6406 int cpu;
6407
6408 if (!static_branch_likely(&sched_smt_present))
6409 return __select_idle_cpu(core, p);
6410
6411 for_each_cpu(cpu, cpu_smt_mask(core)) {
6412 if (!available_idle_cpu(cpu)) {
6413 idle = false;
6414 if (*idle_cpu == -1) {
6415 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, p->cpus_ptr)) {
6416 *idle_cpu = cpu;
6417 break;
6418 }
6419 continue;
6420 }
6421 break;
6422 }
6423 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, p->cpus_ptr))
6424 *idle_cpu = cpu;
6425 }
6426
6427 if (idle)
6428 return core;
6429
6430 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6431 return -1;
6432 }
6433
6434 /*
6435 * Scan the local SMT mask for idle CPUs.
6436 */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6437 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6438 {
6439 int cpu;
6440
6441 for_each_cpu(cpu, cpu_smt_mask(target)) {
6442 if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6443 !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6444 continue;
6445 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6446 return cpu;
6447 }
6448
6449 return -1;
6450 }
6451
6452 #else /* CONFIG_SCHED_SMT */
6453
set_idle_cores(int cpu,int val)6454 static inline void set_idle_cores(int cpu, int val)
6455 {
6456 }
6457
test_idle_cores(int cpu,bool def)6458 static inline bool test_idle_cores(int cpu, bool def)
6459 {
6460 return def;
6461 }
6462
select_idle_core(struct task_struct * p,int core,struct cpumask * cpus,int * idle_cpu)6463 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
6464 {
6465 return __select_idle_cpu(core, p);
6466 }
6467
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6468 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6469 {
6470 return -1;
6471 }
6472
6473 #endif /* CONFIG_SCHED_SMT */
6474
6475 /*
6476 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6477 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6478 * average idle time for this rq (as found in rq->avg_idle).
6479 */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,bool has_idle_core,int target)6480 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
6481 {
6482 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6483 int i, cpu, idle_cpu = -1, nr = INT_MAX;
6484 struct rq *this_rq = this_rq();
6485 int this = smp_processor_id();
6486 struct sched_domain *this_sd;
6487 u64 time = 0;
6488
6489 this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6490 if (!this_sd)
6491 return -1;
6492
6493 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6494
6495 if (sched_feat(SIS_PROP) && !has_idle_core) {
6496 u64 avg_cost, avg_idle, span_avg;
6497 unsigned long now = jiffies;
6498
6499 /*
6500 * If we're busy, the assumption that the last idle period
6501 * predicts the future is flawed; age away the remaining
6502 * predicted idle time.
6503 */
6504 if (unlikely(this_rq->wake_stamp < now)) {
6505 while (this_rq->wake_stamp < now && this_rq->wake_avg_idle) {
6506 this_rq->wake_stamp++;
6507 this_rq->wake_avg_idle >>= 1;
6508 }
6509 }
6510
6511 avg_idle = this_rq->wake_avg_idle;
6512 avg_cost = this_sd->avg_scan_cost + 1;
6513
6514 span_avg = sd->span_weight * avg_idle;
6515 if (span_avg > 4*avg_cost)
6516 nr = div_u64(span_avg, avg_cost);
6517 else
6518 nr = 4;
6519
6520 time = cpu_clock(this);
6521 }
6522
6523 for_each_cpu_wrap(cpu, cpus, target + 1) {
6524 if (has_idle_core) {
6525 i = select_idle_core(p, cpu, cpus, &idle_cpu);
6526 if ((unsigned int)i < nr_cpumask_bits)
6527 return i;
6528
6529 } else {
6530 if (!--nr)
6531 return -1;
6532 idle_cpu = __select_idle_cpu(cpu, p);
6533 if ((unsigned int)idle_cpu < nr_cpumask_bits)
6534 break;
6535 }
6536 }
6537
6538 if (has_idle_core)
6539 set_idle_cores(target, false);
6540
6541 if (sched_feat(SIS_PROP) && !has_idle_core) {
6542 time = cpu_clock(this) - time;
6543
6544 /*
6545 * Account for the scan cost of wakeups against the average
6546 * idle time.
6547 */
6548 this_rq->wake_avg_idle -= min(this_rq->wake_avg_idle, time);
6549
6550 update_avg(&this_sd->avg_scan_cost, time);
6551 }
6552
6553 return idle_cpu;
6554 }
6555
6556 /*
6557 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6558 * the task fits. If no CPU is big enough, but there are idle ones, try to
6559 * maximize capacity.
6560 */
6561 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6562 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6563 {
6564 unsigned long task_util, util_min, util_max, best_cap = 0;
6565 int cpu, best_cpu = -1;
6566 struct cpumask *cpus;
6567
6568 cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6569 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6570
6571 task_util = task_util_est(p);
6572 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6573 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6574
6575 for_each_cpu_wrap(cpu, cpus, target) {
6576 unsigned long cpu_cap = capacity_of(cpu);
6577
6578 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6579 continue;
6580 if (util_fits_cpu(task_util, util_min, util_max, cpu))
6581 return cpu;
6582
6583 if (cpu_cap > best_cap) {
6584 best_cap = cpu_cap;
6585 best_cpu = cpu;
6586 }
6587 }
6588
6589 return best_cpu;
6590 }
6591
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)6592 static inline bool asym_fits_cpu(unsigned long util,
6593 unsigned long util_min,
6594 unsigned long util_max,
6595 int cpu)
6596 {
6597 if (sched_asym_cpucap_active())
6598 return util_fits_cpu(util, util_min, util_max, cpu);
6599
6600 return true;
6601 }
6602
6603 /*
6604 * Try and locate an idle core/thread in the LLC cache domain.
6605 */
select_idle_sibling(struct task_struct * p,int prev,int target)6606 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6607 {
6608 bool has_idle_core = false;
6609 struct sched_domain *sd;
6610 unsigned long task_util, util_min, util_max;
6611 int i, recent_used_cpu;
6612
6613 /*
6614 * On asymmetric system, update task utilization because we will check
6615 * that the task fits with cpu's capacity.
6616 */
6617 if (sched_asym_cpucap_active()) {
6618 sync_entity_load_avg(&p->se);
6619 task_util = task_util_est(p);
6620 util_min = uclamp_eff_value(p, UCLAMP_MIN);
6621 util_max = uclamp_eff_value(p, UCLAMP_MAX);
6622 }
6623
6624 /*
6625 * per-cpu select_idle_mask usage
6626 */
6627 lockdep_assert_irqs_disabled();
6628
6629 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6630 asym_fits_cpu(task_util, util_min, util_max, target))
6631 return target;
6632
6633 /*
6634 * If the previous CPU is cache affine and idle, don't be stupid:
6635 */
6636 if (prev != target && cpus_share_cache(prev, target) &&
6637 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6638 asym_fits_cpu(task_util, util_min, util_max, prev))
6639 return prev;
6640
6641 /*
6642 * Allow a per-cpu kthread to stack with the wakee if the
6643 * kworker thread and the tasks previous CPUs are the same.
6644 * The assumption is that the wakee queued work for the
6645 * per-cpu kthread that is now complete and the wakeup is
6646 * essentially a sync wakeup. An obvious example of this
6647 * pattern is IO completions.
6648 */
6649 if (is_per_cpu_kthread(current) &&
6650 in_task() &&
6651 prev == smp_processor_id() &&
6652 this_rq()->nr_running <= 1 &&
6653 asym_fits_cpu(task_util, util_min, util_max, prev)) {
6654 return prev;
6655 }
6656
6657 /* Check a recently used CPU as a potential idle candidate: */
6658 recent_used_cpu = p->recent_used_cpu;
6659 p->recent_used_cpu = prev;
6660 if (recent_used_cpu != prev &&
6661 recent_used_cpu != target &&
6662 cpus_share_cache(recent_used_cpu, target) &&
6663 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6664 cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6665 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
6666 return recent_used_cpu;
6667 }
6668
6669 /*
6670 * For asymmetric CPU capacity systems, our domain of interest is
6671 * sd_asym_cpucapacity rather than sd_llc.
6672 */
6673 if (sched_asym_cpucap_active()) {
6674 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6675 /*
6676 * On an asymmetric CPU capacity system where an exclusive
6677 * cpuset defines a symmetric island (i.e. one unique
6678 * capacity_orig value through the cpuset), the key will be set
6679 * but the CPUs within that cpuset will not have a domain with
6680 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6681 * capacity path.
6682 */
6683 if (sd) {
6684 i = select_idle_capacity(p, sd, target);
6685 return ((unsigned)i < nr_cpumask_bits) ? i : target;
6686 }
6687 }
6688
6689 sd = rcu_dereference(per_cpu(sd_llc, target));
6690 if (!sd)
6691 return target;
6692
6693 if (sched_smt_active()) {
6694 has_idle_core = test_idle_cores(target, false);
6695
6696 if (!has_idle_core && cpus_share_cache(prev, target)) {
6697 i = select_idle_smt(p, sd, prev);
6698 if ((unsigned int)i < nr_cpumask_bits)
6699 return i;
6700 }
6701 }
6702
6703 i = select_idle_cpu(p, sd, has_idle_core, target);
6704 if ((unsigned)i < nr_cpumask_bits)
6705 return i;
6706
6707 return target;
6708 }
6709
6710 /**
6711 * cpu_util - Estimates the amount of capacity of a CPU used by CFS tasks.
6712 * @cpu: the CPU to get the utilization of
6713 *
6714 * The unit of the return value must be the one of capacity so we can compare
6715 * the utilization with the capacity of the CPU that is available for CFS task
6716 * (ie cpu_capacity).
6717 *
6718 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6719 * recent utilization of currently non-runnable tasks on a CPU. It represents
6720 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6721 * capacity_orig is the cpu_capacity available at the highest frequency
6722 * (arch_scale_freq_capacity()).
6723 * The utilization of a CPU converges towards a sum equal to or less than the
6724 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6725 * the running time on this CPU scaled by capacity_curr.
6726 *
6727 * The estimated utilization of a CPU is defined to be the maximum between its
6728 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6729 * currently RUNNABLE on that CPU.
6730 * This allows to properly represent the expected utilization of a CPU which
6731 * has just got a big task running since a long sleep period. At the same time
6732 * however it preserves the benefits of the "blocked utilization" in
6733 * describing the potential for other tasks waking up on the same CPU.
6734 *
6735 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6736 * higher than capacity_orig because of unfortunate rounding in
6737 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6738 * the average stabilizes with the new running time. We need to check that the
6739 * utilization stays within the range of [0..capacity_orig] and cap it if
6740 * necessary. Without utilization capping, a group could be seen as overloaded
6741 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6742 * available capacity. We allow utilization to overshoot capacity_curr (but not
6743 * capacity_orig) as it useful for predicting the capacity required after task
6744 * migrations (scheduler-driven DVFS).
6745 *
6746 * Return: the (estimated) utilization for the specified CPU
6747 */
cpu_util(int cpu)6748 static inline unsigned long cpu_util(int cpu)
6749 {
6750 struct cfs_rq *cfs_rq;
6751 unsigned int util;
6752
6753 cfs_rq = &cpu_rq(cpu)->cfs;
6754 util = READ_ONCE(cfs_rq->avg.util_avg);
6755
6756 if (sched_feat(UTIL_EST))
6757 util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6758
6759 return min_t(unsigned long, util, capacity_orig_of(cpu));
6760 }
6761
6762 /*
6763 * cpu_util_without: compute cpu utilization without any contributions from *p
6764 * @cpu: the CPU which utilization is requested
6765 * @p: the task which utilization should be discounted
6766 *
6767 * The utilization of a CPU is defined by the utilization of tasks currently
6768 * enqueued on that CPU as well as tasks which are currently sleeping after an
6769 * execution on that CPU.
6770 *
6771 * This method returns the utilization of the specified CPU by discounting the
6772 * utilization of the specified task, whenever the task is currently
6773 * contributing to the CPU utilization.
6774 */
cpu_util_without(int cpu,struct task_struct * p)6775 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6776 {
6777 struct cfs_rq *cfs_rq;
6778 unsigned int util;
6779
6780 /* Task has no contribution or is new */
6781 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6782 return cpu_util(cpu);
6783
6784 cfs_rq = &cpu_rq(cpu)->cfs;
6785 util = READ_ONCE(cfs_rq->avg.util_avg);
6786
6787 /* Discount task's util from CPU's util */
6788 lsub_positive(&util, task_util(p));
6789
6790 /*
6791 * Covered cases:
6792 *
6793 * a) if *p is the only task sleeping on this CPU, then:
6794 * cpu_util (== task_util) > util_est (== 0)
6795 * and thus we return:
6796 * cpu_util_without = (cpu_util - task_util) = 0
6797 *
6798 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6799 * IDLE, then:
6800 * cpu_util >= task_util
6801 * cpu_util > util_est (== 0)
6802 * and thus we discount *p's blocked utilization to return:
6803 * cpu_util_without = (cpu_util - task_util) >= 0
6804 *
6805 * c) if other tasks are RUNNABLE on that CPU and
6806 * util_est > cpu_util
6807 * then we use util_est since it returns a more restrictive
6808 * estimation of the spare capacity on that CPU, by just
6809 * considering the expected utilization of tasks already
6810 * runnable on that CPU.
6811 *
6812 * Cases a) and b) are covered by the above code, while case c) is
6813 * covered by the following code when estimated utilization is
6814 * enabled.
6815 */
6816 if (sched_feat(UTIL_EST)) {
6817 unsigned int estimated =
6818 READ_ONCE(cfs_rq->avg.util_est.enqueued);
6819
6820 /*
6821 * Despite the following checks we still have a small window
6822 * for a possible race, when an execl's select_task_rq_fair()
6823 * races with LB's detach_task():
6824 *
6825 * detach_task()
6826 * p->on_rq = TASK_ON_RQ_MIGRATING;
6827 * ---------------------------------- A
6828 * deactivate_task() \
6829 * dequeue_task() + RaceTime
6830 * util_est_dequeue() /
6831 * ---------------------------------- B
6832 *
6833 * The additional check on "current == p" it's required to
6834 * properly fix the execl regression and it helps in further
6835 * reducing the chances for the above race.
6836 */
6837 if (unlikely(task_on_rq_queued(p) || current == p))
6838 lsub_positive(&estimated, _task_util_est(p));
6839
6840 util = max(util, estimated);
6841 }
6842
6843 /*
6844 * Utilization (estimated) can exceed the CPU capacity, thus let's
6845 * clamp to the maximum CPU capacity to ensure consistency with
6846 * the cpu_util call.
6847 */
6848 return min_t(unsigned long, util, capacity_orig_of(cpu));
6849 }
6850
6851 /*
6852 * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6853 * to @dst_cpu.
6854 */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6855 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6856 {
6857 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6858 unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6859
6860 /*
6861 * If @p migrates from @cpu to another, remove its contribution. Or,
6862 * if @p migrates from another CPU to @cpu, add its contribution. In
6863 * the other cases, @cpu is not impacted by the migration, so the
6864 * util_avg should already be correct.
6865 */
6866 if (task_cpu(p) == cpu && dst_cpu != cpu)
6867 lsub_positive(&util, task_util(p));
6868 else if (task_cpu(p) != cpu && dst_cpu == cpu)
6869 util += task_util(p);
6870
6871 if (sched_feat(UTIL_EST)) {
6872 util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6873
6874 /*
6875 * During wake-up, the task isn't enqueued yet and doesn't
6876 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6877 * so just add it (if needed) to "simulate" what will be
6878 * cpu_util() after the task has been enqueued.
6879 */
6880 if (dst_cpu == cpu)
6881 util_est += _task_util_est(p);
6882
6883 util = max(util, util_est);
6884 }
6885
6886 return min(util, capacity_orig_of(cpu));
6887 }
6888
6889 /*
6890 * compute_energy(): Estimates the energy that @pd would consume if @p was
6891 * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6892 * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6893 * to compute what would be the energy if we decided to actually migrate that
6894 * task.
6895 */
6896 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6897 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6898 {
6899 struct cpumask *pd_mask = perf_domain_span(pd);
6900 unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6901 unsigned long max_util = 0, sum_util = 0;
6902 unsigned long _cpu_cap = cpu_cap;
6903 unsigned long energy = 0;
6904 int cpu;
6905
6906 _cpu_cap -= arch_scale_thermal_pressure(cpumask_first(pd_mask));
6907
6908 /*
6909 * The capacity state of CPUs of the current rd can be driven by CPUs
6910 * of another rd if they belong to the same pd. So, account for the
6911 * utilization of these CPUs too by masking pd with cpu_online_mask
6912 * instead of the rd span.
6913 *
6914 * If an entire pd is outside of the current rd, it will not appear in
6915 * its pd list and will not be accounted by compute_energy().
6916 */
6917 for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6918 unsigned long util_freq = cpu_util_next(cpu, p, dst_cpu);
6919 unsigned long cpu_util, util_running = util_freq;
6920 struct task_struct *tsk = NULL;
6921
6922 /*
6923 * When @p is placed on @cpu:
6924 *
6925 * util_running = max(cpu_util, cpu_util_est) +
6926 * max(task_util, _task_util_est)
6927 *
6928 * while cpu_util_next is: max(cpu_util + task_util,
6929 * cpu_util_est + _task_util_est)
6930 */
6931 if (cpu == dst_cpu) {
6932 tsk = p;
6933 util_running =
6934 cpu_util_next(cpu, p, -1) + task_util_est(p);
6935 }
6936
6937 /*
6938 * Busy time computation: utilization clamping is not
6939 * required since the ratio (sum_util / cpu_capacity)
6940 * is already enough to scale the EM reported power
6941 * consumption at the (eventually clamped) cpu_capacity.
6942 */
6943 cpu_util = effective_cpu_util(cpu, util_running, cpu_cap,
6944 ENERGY_UTIL, NULL);
6945
6946 sum_util += min(cpu_util, _cpu_cap);
6947
6948 /*
6949 * Performance domain frequency: utilization clamping
6950 * must be considered since it affects the selection
6951 * of the performance domain frequency.
6952 * NOTE: in case RT tasks are running, by default the
6953 * FREQUENCY_UTIL's utilization can be max OPP.
6954 */
6955 cpu_util = effective_cpu_util(cpu, util_freq, cpu_cap,
6956 FREQUENCY_UTIL, tsk);
6957 max_util = max(max_util, min(cpu_util, _cpu_cap));
6958 }
6959
6960 trace_android_vh_em_cpu_energy(pd->em_pd, max_util, sum_util, &energy);
6961 if (!energy)
6962 energy = em_cpu_energy(pd->em_pd, max_util, sum_util, _cpu_cap);
6963
6964 return energy;
6965 }
6966
6967 /*
6968 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6969 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6970 * spare capacity in each performance domain and uses it as a potential
6971 * candidate to execute the task. Then, it uses the Energy Model to figure
6972 * out which of the CPU candidates is the most energy-efficient.
6973 *
6974 * The rationale for this heuristic is as follows. In a performance domain,
6975 * all the most energy efficient CPU candidates (according to the Energy
6976 * Model) are those for which we'll request a low frequency. When there are
6977 * several CPUs for which the frequency request will be the same, we don't
6978 * have enough data to break the tie between them, because the Energy Model
6979 * only includes active power costs. With this model, if we assume that
6980 * frequency requests follow utilization (e.g. using schedutil), the CPU with
6981 * the maximum spare capacity in a performance domain is guaranteed to be among
6982 * the best candidates of the performance domain.
6983 *
6984 * In practice, it could be preferable from an energy standpoint to pack
6985 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6986 * but that could also hurt our chances to go cluster idle, and we have no
6987 * ways to tell with the current Energy Model if this is actually a good
6988 * idea or not. So, find_energy_efficient_cpu() basically favors
6989 * cluster-packing, and spreading inside a cluster. That should at least be
6990 * a good thing for latency, and this is consistent with the idea that most
6991 * of the energy savings of EAS come from the asymmetry of the system, and
6992 * not so much from breaking the tie between identical CPUs. That's also the
6993 * reason why EAS is enabled in the topology code only for systems where
6994 * SD_ASYM_CPUCAPACITY is set.
6995 *
6996 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6997 * they don't have any useful utilization data yet and it's not possible to
6998 * forecast their impact on energy consumption. Consequently, they will be
6999 * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
7000 * to be energy-inefficient in some use-cases. The alternative would be to
7001 * bias new tasks towards specific types of CPUs first, or to try to infer
7002 * their util_avg from the parent task, but those heuristics could hurt
7003 * other use-cases too. So, until someone finds a better way to solve this,
7004 * let's keep things simple by re-using the existing slow path.
7005 */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu,int sync)7006 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu, int sync)
7007 {
7008 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
7009 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
7010 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
7011 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
7012 int max_spare_cap_cpu_ls = prev_cpu, best_idle_cpu = -1;
7013 int cpu, best_energy_cpu = prev_cpu, target = -1;
7014 unsigned long max_spare_cap_ls = 0, target_cap;
7015 unsigned long cpu_cap, util, base_energy = 0;
7016 bool boosted, latency_sensitive = false;
7017 unsigned int min_exit_lat = UINT_MAX;
7018 struct cpuidle_state *idle;
7019 struct sched_domain *sd;
7020 struct perf_domain *pd;
7021 int new_cpu = INT_MAX;
7022
7023 sync_entity_load_avg(&p->se);
7024 trace_android_rvh_find_energy_efficient_cpu(p, prev_cpu, sync, &new_cpu);
7025 if (new_cpu != INT_MAX)
7026 return new_cpu;
7027
7028 rcu_read_lock();
7029 pd = rcu_dereference(rd->pd);
7030 if (!pd || READ_ONCE(rd->overutilized))
7031 goto unlock;
7032
7033 cpu = smp_processor_id();
7034 if (sync && cpu_rq(cpu)->nr_running == 1 &&
7035 cpumask_test_cpu(cpu, p->cpus_ptr) &&
7036 task_fits_cpu(p, cpu)) {
7037 rcu_read_unlock();
7038 return cpu;
7039 }
7040
7041 /*
7042 * Energy-aware wake-up happens on the lowest sched_domain starting
7043 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7044 */
7045 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7046 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7047 sd = sd->parent;
7048 if (!sd)
7049 goto unlock;
7050
7051 target = prev_cpu;
7052
7053 if (!task_util_est(p) && p_util_min == 0)
7054 goto unlock;
7055
7056 latency_sensitive = uclamp_latency_sensitive(p);
7057 boosted = uclamp_boosted(p);
7058 target_cap = boosted ? 0 : ULONG_MAX;
7059
7060 for (; pd; pd = pd->next) {
7061 unsigned long cur_delta, spare_cap, max_spare_cap = 0;
7062 unsigned long rq_util_min, rq_util_max;
7063 unsigned long util_min, util_max;
7064 bool compute_prev_delta = false;
7065 unsigned long base_energy_pd;
7066 int max_spare_cap_cpu = -1;
7067
7068 for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
7069 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7070 continue;
7071
7072 util = cpu_util_next(cpu, p, cpu);
7073 cpu_cap = capacity_of(cpu);
7074 spare_cap = cpu_cap;
7075 lsub_positive(&spare_cap, util);
7076
7077 /*
7078 * Skip CPUs that cannot satisfy the capacity request.
7079 * IOW, placing the task there would make the CPU
7080 * overutilized. Take uclamp into account to see how
7081 * much capacity we can get out of the CPU; this is
7082 * aligned with sched_cpu_util().
7083 */
7084 if (uclamp_is_used()) {
7085 if (uclamp_rq_is_idle(cpu_rq(cpu))) {
7086 util_min = p_util_min;
7087 util_max = p_util_max;
7088 } else {
7089 /*
7090 * Open code uclamp_rq_util_with() except for
7091 * the clamp() part. Ie: apply max aggregation
7092 * only. util_fits_cpu() logic requires to
7093 * operate on non clamped util but must use the
7094 * max-aggregated uclamp_{min, max}.
7095 */
7096 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
7097 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
7098
7099 util_min = max(rq_util_min, p_util_min);
7100 util_max = max(rq_util_max, p_util_max);
7101 }
7102 }
7103 if (!util_fits_cpu(util, util_min, util_max, cpu))
7104 continue;
7105
7106 if (!latency_sensitive && cpu == prev_cpu) {
7107 /* Always use prev_cpu as a candidate. */
7108 compute_prev_delta = true;
7109 } else if (spare_cap > max_spare_cap) {
7110 /*
7111 * Find the CPU with the maximum spare capacity
7112 * in the performance domain.
7113 */
7114 max_spare_cap = spare_cap;
7115 max_spare_cap_cpu = cpu;
7116 }
7117
7118 if (!latency_sensitive)
7119 continue;
7120
7121 if (idle_cpu(cpu)) {
7122 cpu_cap = capacity_orig_of(cpu);
7123 if (boosted && cpu_cap < target_cap)
7124 continue;
7125 if (!boosted && cpu_cap > target_cap)
7126 continue;
7127 idle = idle_get_state(cpu_rq(cpu));
7128 if (idle && idle->exit_latency > min_exit_lat &&
7129 cpu_cap == target_cap)
7130 continue;
7131
7132 if (idle)
7133 min_exit_lat = idle->exit_latency;
7134 target_cap = cpu_cap;
7135 best_idle_cpu = cpu;
7136 } else if (spare_cap > max_spare_cap_ls) {
7137 max_spare_cap_ls = spare_cap;
7138 max_spare_cap_cpu_ls = cpu;
7139 }
7140 }
7141
7142 if (!latency_sensitive && max_spare_cap_cpu < 0 && !compute_prev_delta)
7143 continue;
7144
7145 /* Compute the 'base' energy of the pd, without @p */
7146 base_energy_pd = compute_energy(p, -1, pd);
7147 base_energy += base_energy_pd;
7148
7149 /* Evaluate the energy impact of using prev_cpu. */
7150 if (compute_prev_delta) {
7151 prev_delta = compute_energy(p, prev_cpu, pd);
7152 if (prev_delta < base_energy_pd)
7153 goto unlock;
7154 prev_delta -= base_energy_pd;
7155 best_delta = min(best_delta, prev_delta);
7156 }
7157
7158 /* Evaluate the energy impact of using max_spare_cap_cpu. */
7159 if (max_spare_cap_cpu >= 0) {
7160 cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
7161 if (cur_delta < base_energy_pd)
7162 goto unlock;
7163 cur_delta -= base_energy_pd;
7164 if (cur_delta < best_delta) {
7165 best_delta = cur_delta;
7166 best_energy_cpu = max_spare_cap_cpu;
7167 }
7168 }
7169 }
7170 rcu_read_unlock();
7171
7172 if (latency_sensitive)
7173 return best_idle_cpu >= 0 ? best_idle_cpu : max_spare_cap_cpu_ls;
7174
7175 /*
7176 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
7177 * least 6% of the energy used by prev_cpu.
7178 */
7179 if ((prev_delta == ULONG_MAX) ||
7180 (prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
7181 target = best_energy_cpu;
7182
7183 return target;
7184
7185 unlock:
7186 rcu_read_unlock();
7187
7188 return target;
7189 }
7190
7191 /*
7192 * select_task_rq_fair: Select target runqueue for the waking task in domains
7193 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
7194 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7195 *
7196 * Balances load by selecting the idlest CPU in the idlest group, or under
7197 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7198 *
7199 * Returns the target CPU number.
7200 */
7201 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int wake_flags)7202 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
7203 {
7204 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7205 struct sched_domain *tmp, *sd = NULL;
7206 int cpu = smp_processor_id();
7207 int new_cpu = prev_cpu;
7208 int want_affine = 0;
7209 int target_cpu = -1;
7210 /* SD_flags and WF_flags share the first nibble */
7211 int sd_flag = wake_flags & 0xF;
7212
7213 if (trace_android_rvh_select_task_rq_fair_enabled() &&
7214 !(sd_flag & SD_BALANCE_FORK))
7215 sync_entity_load_avg(&p->se);
7216 trace_android_rvh_select_task_rq_fair(p, prev_cpu, sd_flag,
7217 wake_flags, &target_cpu);
7218 if (target_cpu >= 0)
7219 return target_cpu;
7220
7221 /*
7222 * required for stable ->cpus_allowed
7223 */
7224 lockdep_assert_held(&p->pi_lock);
7225 if (wake_flags & WF_TTWU) {
7226 record_wakee(p);
7227
7228 if (sched_energy_enabled()) {
7229 new_cpu = find_energy_efficient_cpu(p, prev_cpu, sync);
7230 if (new_cpu >= 0)
7231 return new_cpu;
7232 new_cpu = prev_cpu;
7233 }
7234
7235 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7236 }
7237
7238 rcu_read_lock();
7239 for_each_domain(cpu, tmp) {
7240 /*
7241 * If both 'cpu' and 'prev_cpu' are part of this domain,
7242 * cpu is a valid SD_WAKE_AFFINE target.
7243 */
7244 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7245 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7246 if (cpu != prev_cpu)
7247 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7248
7249 sd = NULL; /* Prefer wake_affine over balance flags */
7250 break;
7251 }
7252
7253 if (tmp->flags & sd_flag)
7254 sd = tmp;
7255 else if (!want_affine)
7256 break;
7257 }
7258
7259 if (unlikely(sd)) {
7260 /* Slow path */
7261 new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7262 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
7263 /* Fast path */
7264 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7265 }
7266 rcu_read_unlock();
7267
7268 return new_cpu;
7269 }
7270
7271 static void detach_entity_cfs_rq(struct sched_entity *se);
7272
7273 /*
7274 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7275 * cfs_rq_of(p) references at time of call are still valid and identify the
7276 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7277 */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)7278 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7279 {
7280 /*
7281 * As blocked tasks retain absolute vruntime the migration needs to
7282 * deal with this by subtracting the old and adding the new
7283 * min_vruntime -- the latter is done by enqueue_entity() when placing
7284 * the task on the new runqueue.
7285 */
7286 if (READ_ONCE(p->__state) == TASK_WAKING) {
7287 struct sched_entity *se = &p->se;
7288 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7289 u64 min_vruntime;
7290
7291 #ifndef CONFIG_64BIT
7292 u64 min_vruntime_copy;
7293
7294 do {
7295 min_vruntime_copy = cfs_rq->min_vruntime_copy;
7296 smp_rmb();
7297 min_vruntime = cfs_rq->min_vruntime;
7298 } while (min_vruntime != min_vruntime_copy);
7299 #else
7300 min_vruntime = cfs_rq->min_vruntime;
7301 #endif
7302
7303 se->vruntime -= min_vruntime;
7304 }
7305
7306 if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7307 /*
7308 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7309 * rq->lock and can modify state directly.
7310 */
7311 lockdep_assert_rq_held(task_rq(p));
7312 detach_entity_cfs_rq(&p->se);
7313
7314 } else {
7315 /*
7316 * We are supposed to update the task to "current" time, then
7317 * its up to date and ready to go to new CPU/cfs_rq. But we
7318 * have difficulty in getting what current time is, so simply
7319 * throw away the out-of-date time. This will result in the
7320 * wakee task is less decayed, but giving the wakee more load
7321 * sounds not bad.
7322 */
7323 remove_entity_load_avg(&p->se);
7324 }
7325
7326 /* Tell new CPU we are migrated */
7327 p->se.avg.last_update_time = 0;
7328
7329 update_scan_period(p, new_cpu);
7330 }
7331
task_dead_fair(struct task_struct * p)7332 static void task_dead_fair(struct task_struct *p)
7333 {
7334 remove_entity_load_avg(&p->se);
7335 }
7336
7337 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7338 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7339 {
7340 if (rq->nr_running)
7341 return 1;
7342
7343 return newidle_balance(rq, rf) != 0;
7344 }
7345 #endif /* CONFIG_SMP */
7346
wakeup_gran(struct sched_entity * se)7347 static unsigned long wakeup_gran(struct sched_entity *se)
7348 {
7349 unsigned long gran = sysctl_sched_wakeup_granularity;
7350
7351 /*
7352 * Since its curr running now, convert the gran from real-time
7353 * to virtual-time in his units.
7354 *
7355 * By using 'se' instead of 'curr' we penalize light tasks, so
7356 * they get preempted easier. That is, if 'se' < 'curr' then
7357 * the resulting gran will be larger, therefore penalizing the
7358 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7359 * be smaller, again penalizing the lighter task.
7360 *
7361 * This is especially important for buddies when the leftmost
7362 * task is higher priority than the buddy.
7363 */
7364 return calc_delta_fair(gran, se);
7365 }
7366
7367 /*
7368 * Should 'se' preempt 'curr'.
7369 *
7370 * |s1
7371 * |s2
7372 * |s3
7373 * g
7374 * |<--->|c
7375 *
7376 * w(c, s1) = -1
7377 * w(c, s2) = 0
7378 * w(c, s3) = 1
7379 *
7380 */
7381 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7382 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7383 {
7384 s64 gran, vdiff = curr->vruntime - se->vruntime;
7385
7386 if (vdiff <= 0)
7387 return -1;
7388
7389 gran = wakeup_gran(se);
7390 if (vdiff > gran)
7391 return 1;
7392
7393 return 0;
7394 }
7395
set_last_buddy(struct sched_entity * se)7396 static void set_last_buddy(struct sched_entity *se)
7397 {
7398 for_each_sched_entity(se) {
7399 if (SCHED_WARN_ON(!se->on_rq))
7400 return;
7401 if (se_is_idle(se))
7402 return;
7403 cfs_rq_of(se)->last = se;
7404 }
7405 }
7406
set_next_buddy(struct sched_entity * se)7407 static void set_next_buddy(struct sched_entity *se)
7408 {
7409 for_each_sched_entity(se) {
7410 if (SCHED_WARN_ON(!se->on_rq))
7411 return;
7412 if (se_is_idle(se))
7413 return;
7414 cfs_rq_of(se)->next = se;
7415 }
7416 }
7417
set_skip_buddy(struct sched_entity * se)7418 static void set_skip_buddy(struct sched_entity *se)
7419 {
7420 for_each_sched_entity(se)
7421 cfs_rq_of(se)->skip = se;
7422 }
7423
7424 /*
7425 * Preempt the current task with a newly woken task if needed:
7426 */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7427 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7428 {
7429 struct task_struct *curr = rq->curr;
7430 struct sched_entity *se = &curr->se, *pse = &p->se;
7431 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7432 int scale = cfs_rq->nr_running >= sched_nr_latency;
7433 int next_buddy_marked = 0;
7434 int cse_is_idle, pse_is_idle;
7435 bool ignore = false;
7436 bool preempt = false;
7437
7438 if (unlikely(se == pse))
7439 return;
7440 trace_android_rvh_check_preempt_wakeup_ignore(curr, &ignore);
7441 if (ignore)
7442 return;
7443
7444 /*
7445 * This is possible from callers such as attach_tasks(), in which we
7446 * unconditionally check_preempt_curr() after an enqueue (which may have
7447 * lead to a throttle). This both saves work and prevents false
7448 * next-buddy nomination below.
7449 */
7450 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7451 return;
7452
7453 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7454 set_next_buddy(pse);
7455 next_buddy_marked = 1;
7456 }
7457
7458 /*
7459 * We can come here with TIF_NEED_RESCHED already set from new task
7460 * wake up path.
7461 *
7462 * Note: this also catches the edge-case of curr being in a throttled
7463 * group (e.g. via set_curr_task), since update_curr() (in the
7464 * enqueue of curr) will have resulted in resched being set. This
7465 * prevents us from potentially nominating it as a false LAST_BUDDY
7466 * below.
7467 */
7468 if (test_tsk_need_resched(curr))
7469 return;
7470
7471 /* Idle tasks are by definition preempted by non-idle tasks. */
7472 if (unlikely(task_has_idle_policy(curr)) &&
7473 likely(!task_has_idle_policy(p)))
7474 goto preempt;
7475
7476 /*
7477 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7478 * is driven by the tick):
7479 */
7480 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7481 return;
7482
7483 find_matching_se(&se, &pse);
7484 BUG_ON(!pse);
7485
7486 cse_is_idle = se_is_idle(se);
7487 pse_is_idle = se_is_idle(pse);
7488
7489 /*
7490 * Preempt an idle group in favor of a non-idle group (and don't preempt
7491 * in the inverse case).
7492 */
7493 if (cse_is_idle && !pse_is_idle)
7494 goto preempt;
7495 if (cse_is_idle != pse_is_idle)
7496 return;
7497
7498 update_curr(cfs_rq_of(se));
7499 trace_android_rvh_check_preempt_wakeup(rq, p, &preempt, &ignore,
7500 wake_flags, se, pse, next_buddy_marked, sysctl_sched_wakeup_granularity);
7501 if (preempt)
7502 goto preempt;
7503 if (ignore)
7504 return;
7505
7506 if (wakeup_preempt_entity(se, pse) == 1) {
7507 /*
7508 * Bias pick_next to pick the sched entity that is
7509 * triggering this preemption.
7510 */
7511 if (!next_buddy_marked)
7512 set_next_buddy(pse);
7513 goto preempt;
7514 }
7515
7516 return;
7517
7518 preempt:
7519 resched_curr(rq);
7520 /*
7521 * Only set the backward buddy when the current task is still
7522 * on the rq. This can happen when a wakeup gets interleaved
7523 * with schedule on the ->pre_schedule() or idle_balance()
7524 * point, either of which can * drop the rq lock.
7525 *
7526 * Also, during early boot the idle thread is in the fair class,
7527 * for obvious reasons its a bad idea to schedule back to it.
7528 */
7529 if (unlikely(!se->on_rq || curr == rq->idle))
7530 return;
7531
7532 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7533 set_last_buddy(se);
7534 }
7535
7536 #ifdef CONFIG_SMP
pick_task_fair(struct rq * rq)7537 static struct task_struct *pick_task_fair(struct rq *rq)
7538 {
7539 struct sched_entity *se;
7540 struct cfs_rq *cfs_rq;
7541
7542 again:
7543 cfs_rq = &rq->cfs;
7544 if (!cfs_rq->nr_running)
7545 return NULL;
7546
7547 do {
7548 struct sched_entity *curr = cfs_rq->curr;
7549
7550 /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
7551 if (curr) {
7552 if (curr->on_rq)
7553 update_curr(cfs_rq);
7554 else
7555 curr = NULL;
7556
7557 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
7558 goto again;
7559 }
7560
7561 se = pick_next_entity(cfs_rq, curr);
7562 cfs_rq = group_cfs_rq(se);
7563 } while (cfs_rq);
7564
7565 return task_of(se);
7566 }
7567 #endif
7568
7569 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7570 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7571 {
7572 struct cfs_rq *cfs_rq = &rq->cfs;
7573 struct sched_entity *se = NULL;
7574 struct task_struct *p = NULL;
7575 int new_tasks;
7576 bool repick = false;
7577
7578 again:
7579 if (!sched_fair_runnable(rq))
7580 goto idle;
7581
7582 #ifdef CONFIG_FAIR_GROUP_SCHED
7583 if (!prev || prev->sched_class != &fair_sched_class)
7584 goto simple;
7585
7586 /*
7587 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7588 * likely that a next task is from the same cgroup as the current.
7589 *
7590 * Therefore attempt to avoid putting and setting the entire cgroup
7591 * hierarchy, only change the part that actually changes.
7592 */
7593
7594 do {
7595 struct sched_entity *curr = cfs_rq->curr;
7596
7597 /*
7598 * Since we got here without doing put_prev_entity() we also
7599 * have to consider cfs_rq->curr. If it is still a runnable
7600 * entity, update_curr() will update its vruntime, otherwise
7601 * forget we've ever seen it.
7602 */
7603 if (curr) {
7604 if (curr->on_rq)
7605 update_curr(cfs_rq);
7606 else
7607 curr = NULL;
7608
7609 /*
7610 * This call to check_cfs_rq_runtime() will do the
7611 * throttle and dequeue its entity in the parent(s).
7612 * Therefore the nr_running test will indeed
7613 * be correct.
7614 */
7615 if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7616 cfs_rq = &rq->cfs;
7617
7618 if (!cfs_rq->nr_running)
7619 goto idle;
7620
7621 goto simple;
7622 }
7623 }
7624
7625 se = pick_next_entity(cfs_rq, curr);
7626 cfs_rq = group_cfs_rq(se);
7627 } while (cfs_rq);
7628
7629 p = task_of(se);
7630 trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, false, prev);
7631 /*
7632 * Since we haven't yet done put_prev_entity and if the selected task
7633 * is a different task than we started out with, try and touch the
7634 * least amount of cfs_rqs.
7635 */
7636 if (prev != p) {
7637 struct sched_entity *pse = &prev->se;
7638
7639 while (!(cfs_rq = is_same_group(se, pse))) {
7640 int se_depth = se->depth;
7641 int pse_depth = pse->depth;
7642
7643 if (se_depth <= pse_depth) {
7644 put_prev_entity(cfs_rq_of(pse), pse);
7645 pse = parent_entity(pse);
7646 }
7647 if (se_depth >= pse_depth) {
7648 set_next_entity(cfs_rq_of(se), se);
7649 se = parent_entity(se);
7650 }
7651 }
7652
7653 put_prev_entity(cfs_rq, pse);
7654 set_next_entity(cfs_rq, se);
7655 }
7656
7657 goto done;
7658 simple:
7659 #endif
7660 if (prev)
7661 put_prev_task(rq, prev);
7662
7663 trace_android_rvh_replace_next_task_fair(rq, &p, &se, &repick, true, prev);
7664 if (repick)
7665 goto done;
7666
7667 do {
7668 se = pick_next_entity(cfs_rq, NULL);
7669 set_next_entity(cfs_rq, se);
7670 cfs_rq = group_cfs_rq(se);
7671 } while (cfs_rq);
7672
7673 p = task_of(se);
7674
7675 done: __maybe_unused;
7676 #ifdef CONFIG_SMP
7677 /*
7678 * Move the next running task to the front of
7679 * the list, so our cfs_tasks list becomes MRU
7680 * one.
7681 */
7682 list_move(&p->se.group_node, &rq->cfs_tasks);
7683 #endif
7684
7685 if (hrtick_enabled_fair(rq))
7686 hrtick_start_fair(rq, p);
7687
7688 update_misfit_status(p, rq);
7689
7690 return p;
7691
7692 idle:
7693 if (!rf)
7694 return NULL;
7695
7696 new_tasks = newidle_balance(rq, rf);
7697
7698 /*
7699 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7700 * possible for any higher priority task to appear. In that case we
7701 * must re-start the pick_next_entity() loop.
7702 */
7703 if (new_tasks < 0)
7704 return RETRY_TASK;
7705
7706 if (new_tasks > 0)
7707 goto again;
7708
7709 /*
7710 * rq is about to be idle, check if we need to update the
7711 * lost_idle_time of clock_pelt
7712 */
7713 update_idle_rq_clock_pelt(rq);
7714
7715 return NULL;
7716 }
7717
__pick_next_task_fair(struct rq * rq)7718 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7719 {
7720 return pick_next_task_fair(rq, NULL, NULL);
7721 }
7722
7723 /*
7724 * Account for a descheduled task:
7725 */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7726 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7727 {
7728 struct sched_entity *se = &prev->se;
7729 struct cfs_rq *cfs_rq;
7730
7731 for_each_sched_entity(se) {
7732 cfs_rq = cfs_rq_of(se);
7733 put_prev_entity(cfs_rq, se);
7734 }
7735 }
7736
7737 /*
7738 * sched_yield() is very simple
7739 *
7740 * The magic of dealing with the ->skip buddy is in pick_next_entity.
7741 */
yield_task_fair(struct rq * rq)7742 static void yield_task_fair(struct rq *rq)
7743 {
7744 struct task_struct *curr = rq->curr;
7745 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7746 struct sched_entity *se = &curr->se;
7747
7748 /*
7749 * Are we the only task in the tree?
7750 */
7751 if (unlikely(rq->nr_running == 1))
7752 return;
7753
7754 clear_buddies(cfs_rq, se);
7755
7756 if (curr->policy != SCHED_BATCH) {
7757 update_rq_clock(rq);
7758 /*
7759 * Update run-time statistics of the 'current'.
7760 */
7761 update_curr(cfs_rq);
7762 /*
7763 * Tell update_rq_clock() that we've just updated,
7764 * so we don't do microscopic update in schedule()
7765 * and double the fastpath cost.
7766 */
7767 rq_clock_skip_update(rq);
7768 }
7769
7770 set_skip_buddy(se);
7771 }
7772
yield_to_task_fair(struct rq * rq,struct task_struct * p)7773 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7774 {
7775 struct sched_entity *se = &p->se;
7776
7777 /* throttled hierarchies are not runnable */
7778 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7779 return false;
7780
7781 /* Tell the scheduler that we'd really like pse to run next. */
7782 set_next_buddy(se);
7783
7784 yield_task_fair(rq);
7785
7786 return true;
7787 }
7788
7789 #ifdef CONFIG_SMP
7790 /**************************************************
7791 * Fair scheduling class load-balancing methods.
7792 *
7793 * BASICS
7794 *
7795 * The purpose of load-balancing is to achieve the same basic fairness the
7796 * per-CPU scheduler provides, namely provide a proportional amount of compute
7797 * time to each task. This is expressed in the following equation:
7798 *
7799 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
7800 *
7801 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7802 * W_i,0 is defined as:
7803 *
7804 * W_i,0 = \Sum_j w_i,j (2)
7805 *
7806 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7807 * is derived from the nice value as per sched_prio_to_weight[].
7808 *
7809 * The weight average is an exponential decay average of the instantaneous
7810 * weight:
7811 *
7812 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
7813 *
7814 * C_i is the compute capacity of CPU i, typically it is the
7815 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7816 * can also include other factors [XXX].
7817 *
7818 * To achieve this balance we define a measure of imbalance which follows
7819 * directly from (1):
7820 *
7821 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
7822 *
7823 * We them move tasks around to minimize the imbalance. In the continuous
7824 * function space it is obvious this converges, in the discrete case we get
7825 * a few fun cases generally called infeasible weight scenarios.
7826 *
7827 * [XXX expand on:
7828 * - infeasible weights;
7829 * - local vs global optima in the discrete case. ]
7830 *
7831 *
7832 * SCHED DOMAINS
7833 *
7834 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7835 * for all i,j solution, we create a tree of CPUs that follows the hardware
7836 * topology where each level pairs two lower groups (or better). This results
7837 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7838 * tree to only the first of the previous level and we decrease the frequency
7839 * of load-balance at each level inv. proportional to the number of CPUs in
7840 * the groups.
7841 *
7842 * This yields:
7843 *
7844 * log_2 n 1 n
7845 * \Sum { --- * --- * 2^i } = O(n) (5)
7846 * i = 0 2^i 2^i
7847 * `- size of each group
7848 * | | `- number of CPUs doing load-balance
7849 * | `- freq
7850 * `- sum over all levels
7851 *
7852 * Coupled with a limit on how many tasks we can migrate every balance pass,
7853 * this makes (5) the runtime complexity of the balancer.
7854 *
7855 * An important property here is that each CPU is still (indirectly) connected
7856 * to every other CPU in at most O(log n) steps:
7857 *
7858 * The adjacency matrix of the resulting graph is given by:
7859 *
7860 * log_2 n
7861 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
7862 * k = 0
7863 *
7864 * And you'll find that:
7865 *
7866 * A^(log_2 n)_i,j != 0 for all i,j (7)
7867 *
7868 * Showing there's indeed a path between every CPU in at most O(log n) steps.
7869 * The task movement gives a factor of O(m), giving a convergence complexity
7870 * of:
7871 *
7872 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
7873 *
7874 *
7875 * WORK CONSERVING
7876 *
7877 * In order to avoid CPUs going idle while there's still work to do, new idle
7878 * balancing is more aggressive and has the newly idle CPU iterate up the domain
7879 * tree itself instead of relying on other CPUs to bring it work.
7880 *
7881 * This adds some complexity to both (5) and (8) but it reduces the total idle
7882 * time.
7883 *
7884 * [XXX more?]
7885 *
7886 *
7887 * CGROUPS
7888 *
7889 * Cgroups make a horror show out of (2), instead of a simple sum we get:
7890 *
7891 * s_k,i
7892 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
7893 * S_k
7894 *
7895 * Where
7896 *
7897 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
7898 *
7899 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7900 *
7901 * The big problem is S_k, its a global sum needed to compute a local (W_i)
7902 * property.
7903 *
7904 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7905 * rewrite all of this once again.]
7906 */
7907
7908 unsigned long __read_mostly max_load_balance_interval = HZ/10;
7909 EXPORT_SYMBOL_GPL(max_load_balance_interval);
7910
7911 enum fbq_type { regular, remote, all };
7912
7913 /*
7914 * 'group_type' describes the group of CPUs at the moment of load balancing.
7915 *
7916 * The enum is ordered by pulling priority, with the group with lowest priority
7917 * first so the group_type can simply be compared when selecting the busiest
7918 * group. See update_sd_pick_busiest().
7919 */
7920 enum group_type {
7921 /* The group has spare capacity that can be used to run more tasks. */
7922 group_has_spare = 0,
7923 /*
7924 * The group is fully used and the tasks don't compete for more CPU
7925 * cycles. Nevertheless, some tasks might wait before running.
7926 */
7927 group_fully_busy,
7928 /*
7929 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7930 * and must be migrated to a more powerful CPU.
7931 */
7932 group_misfit_task,
7933 /*
7934 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7935 * and the task should be migrated to it instead of running on the
7936 * current CPU.
7937 */
7938 group_asym_packing,
7939 /*
7940 * The tasks' affinity constraints previously prevented the scheduler
7941 * from balancing the load across the system.
7942 */
7943 group_imbalanced,
7944 /*
7945 * The CPU is overloaded and can't provide expected CPU cycles to all
7946 * tasks.
7947 */
7948 group_overloaded
7949 };
7950
7951 enum migration_type {
7952 migrate_load = 0,
7953 migrate_util,
7954 migrate_task,
7955 migrate_misfit
7956 };
7957
7958 #define LBF_ALL_PINNED 0x01
7959 #define LBF_NEED_BREAK 0x02
7960 #define LBF_DST_PINNED 0x04
7961 #define LBF_SOME_PINNED 0x08
7962 #define LBF_ACTIVE_LB 0x10
7963
7964 struct lb_env {
7965 struct sched_domain *sd;
7966
7967 struct rq *src_rq;
7968 int src_cpu;
7969
7970 int dst_cpu;
7971 struct rq *dst_rq;
7972
7973 struct cpumask *dst_grpmask;
7974 int new_dst_cpu;
7975 enum cpu_idle_type idle;
7976 long imbalance;
7977 /* The set of CPUs under consideration for load-balancing */
7978 struct cpumask *cpus;
7979
7980 unsigned int flags;
7981
7982 unsigned int loop;
7983 unsigned int loop_break;
7984 unsigned int loop_max;
7985
7986 enum fbq_type fbq_type;
7987 enum migration_type migration_type;
7988 struct list_head tasks;
7989 struct rq_flags *src_rq_rf;
7990 };
7991
7992 /*
7993 * Is this task likely cache-hot:
7994 */
task_hot(struct task_struct * p,struct lb_env * env)7995 static int task_hot(struct task_struct *p, struct lb_env *env)
7996 {
7997 s64 delta;
7998
7999 lockdep_assert_rq_held(env->src_rq);
8000
8001 if (p->sched_class != &fair_sched_class)
8002 return 0;
8003
8004 if (unlikely(task_has_idle_policy(p)))
8005 return 0;
8006
8007 /* SMT siblings share cache */
8008 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
8009 return 0;
8010
8011 /*
8012 * Buddy candidates are cache hot:
8013 */
8014 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
8015 (&p->se == cfs_rq_of(&p->se)->next ||
8016 &p->se == cfs_rq_of(&p->se)->last))
8017 return 1;
8018
8019 if (sysctl_sched_migration_cost == -1)
8020 return 1;
8021
8022 /*
8023 * Don't migrate task if the task's cookie does not match
8024 * with the destination CPU's core cookie.
8025 */
8026 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
8027 return 1;
8028
8029 if (sysctl_sched_migration_cost == 0)
8030 return 0;
8031
8032 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
8033
8034 return delta < (s64)sysctl_sched_migration_cost;
8035 }
8036
8037 #ifdef CONFIG_NUMA_BALANCING
8038 /*
8039 * Returns 1, if task migration degrades locality
8040 * Returns 0, if task migration improves locality i.e migration preferred.
8041 * Returns -1, if task migration is not affected by locality.
8042 */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8043 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
8044 {
8045 struct numa_group *numa_group = rcu_dereference(p->numa_group);
8046 unsigned long src_weight, dst_weight;
8047 int src_nid, dst_nid, dist;
8048
8049 if (!static_branch_likely(&sched_numa_balancing))
8050 return -1;
8051
8052 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
8053 return -1;
8054
8055 src_nid = cpu_to_node(env->src_cpu);
8056 dst_nid = cpu_to_node(env->dst_cpu);
8057
8058 if (src_nid == dst_nid)
8059 return -1;
8060
8061 /* Migrating away from the preferred node is always bad. */
8062 if (src_nid == p->numa_preferred_nid) {
8063 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
8064 return 1;
8065 else
8066 return -1;
8067 }
8068
8069 /* Encourage migration to the preferred node. */
8070 if (dst_nid == p->numa_preferred_nid)
8071 return 0;
8072
8073 /* Leaving a core idle is often worse than degrading locality. */
8074 if (env->idle == CPU_IDLE)
8075 return -1;
8076
8077 dist = node_distance(src_nid, dst_nid);
8078 if (numa_group) {
8079 src_weight = group_weight(p, src_nid, dist);
8080 dst_weight = group_weight(p, dst_nid, dist);
8081 } else {
8082 src_weight = task_weight(p, src_nid, dist);
8083 dst_weight = task_weight(p, dst_nid, dist);
8084 }
8085
8086 return dst_weight < src_weight;
8087 }
8088
8089 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)8090 static inline int migrate_degrades_locality(struct task_struct *p,
8091 struct lb_env *env)
8092 {
8093 return -1;
8094 }
8095 #endif
8096
8097 /*
8098 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
8099 */
8100 static
can_migrate_task(struct task_struct * p,struct lb_env * env)8101 int can_migrate_task(struct task_struct *p, struct lb_env *env)
8102 {
8103 int tsk_cache_hot;
8104 int can_migrate = 1;
8105
8106 lockdep_assert_rq_held(env->src_rq);
8107
8108 trace_android_rvh_can_migrate_task(p, env->dst_cpu, &can_migrate);
8109 if (!can_migrate)
8110 return 0;
8111
8112 /*
8113 * We do not migrate tasks that are:
8114 * 1) throttled_lb_pair, or
8115 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8116 * 3) running (obviously), or
8117 * 4) are cache-hot on their current CPU.
8118 */
8119 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8120 return 0;
8121
8122 /* Disregard pcpu kthreads; they are where they need to be. */
8123 if (kthread_is_per_cpu(p))
8124 return 0;
8125
8126 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8127 int cpu;
8128
8129 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
8130
8131 env->flags |= LBF_SOME_PINNED;
8132
8133 /*
8134 * Remember if this task can be migrated to any other CPU in
8135 * our sched_group. We may want to revisit it if we couldn't
8136 * meet load balance goals by pulling other tasks on src_cpu.
8137 *
8138 * Avoid computing new_dst_cpu
8139 * - for NEWLY_IDLE
8140 * - if we have already computed one in current iteration
8141 * - if it's an active balance
8142 */
8143 if (env->idle == CPU_NEWLY_IDLE ||
8144 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
8145 return 0;
8146
8147 /* Prevent to re-select dst_cpu via env's CPUs: */
8148 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8149 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8150 env->flags |= LBF_DST_PINNED;
8151 env->new_dst_cpu = cpu;
8152 break;
8153 }
8154 }
8155
8156 return 0;
8157 }
8158
8159 /* Record that we found at least one task that could run on dst_cpu */
8160 env->flags &= ~LBF_ALL_PINNED;
8161
8162 if (task_running(env->src_rq, p)) {
8163 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
8164 return 0;
8165 }
8166
8167 /*
8168 * Aggressive migration if:
8169 * 1) active balance
8170 * 2) destination numa is preferred
8171 * 3) task is cache cold, or
8172 * 4) too many balance attempts have failed.
8173 */
8174 if (env->flags & LBF_ACTIVE_LB)
8175 return 1;
8176
8177 tsk_cache_hot = migrate_degrades_locality(p, env);
8178 if (tsk_cache_hot == -1)
8179 tsk_cache_hot = task_hot(p, env);
8180
8181 if (tsk_cache_hot <= 0 ||
8182 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8183 if (tsk_cache_hot == 1) {
8184 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8185 schedstat_inc(p->se.statistics.nr_forced_migrations);
8186 }
8187 return 1;
8188 }
8189
8190 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
8191 return 0;
8192 }
8193
8194 /*
8195 * detach_task() -- detach the task for the migration specified in env
8196 */
detach_task(struct task_struct * p,struct lb_env * env)8197 static void detach_task(struct task_struct *p, struct lb_env *env)
8198 {
8199 int detached = 0;
8200
8201 lockdep_assert_rq_held(env->src_rq);
8202
8203 /*
8204 * The vendor hook may drop the lock temporarily, so
8205 * pass the rq flags to unpin lock. We expect the
8206 * rq lock to be held after return.
8207 */
8208 trace_android_rvh_migrate_queued_task(env->src_rq, env->src_rq_rf, p,
8209 env->dst_cpu, &detached);
8210 if (detached)
8211 return;
8212
8213 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8214 set_task_cpu(p, env->dst_cpu);
8215 }
8216
8217 /*
8218 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8219 * part of active balancing operations within "domain".
8220 *
8221 * Returns a task if successful and NULL otherwise.
8222 */
detach_one_task(struct lb_env * env)8223 static struct task_struct *detach_one_task(struct lb_env *env)
8224 {
8225 struct task_struct *p;
8226
8227 lockdep_assert_rq_held(env->src_rq);
8228
8229 list_for_each_entry_reverse(p,
8230 &env->src_rq->cfs_tasks, se.group_node) {
8231 if (!can_migrate_task(p, env))
8232 continue;
8233
8234 detach_task(p, env);
8235
8236 /*
8237 * Right now, this is only the second place where
8238 * lb_gained[env->idle] is updated (other is detach_tasks)
8239 * so we can safely collect stats here rather than
8240 * inside detach_tasks().
8241 */
8242 schedstat_inc(env->sd->lb_gained[env->idle]);
8243 return p;
8244 }
8245 return NULL;
8246 }
8247
8248 static const unsigned int sched_nr_migrate_break = 32;
8249
8250 /*
8251 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8252 * busiest_rq, as part of a balancing operation within domain "sd".
8253 *
8254 * Returns number of detached tasks if successful and 0 otherwise.
8255 */
detach_tasks(struct lb_env * env)8256 static int detach_tasks(struct lb_env *env)
8257 {
8258 struct list_head *tasks = &env->src_rq->cfs_tasks;
8259 unsigned long util, load;
8260 struct task_struct *p;
8261 int detached = 0;
8262
8263 lockdep_assert_rq_held(env->src_rq);
8264
8265 /*
8266 * Source run queue has been emptied by another CPU, clear
8267 * LBF_ALL_PINNED flag as we will not test any task.
8268 */
8269 if (env->src_rq->nr_running <= 1) {
8270 env->flags &= ~LBF_ALL_PINNED;
8271 return 0;
8272 }
8273
8274 if (env->imbalance <= 0)
8275 return 0;
8276
8277 while (!list_empty(tasks)) {
8278 /*
8279 * We don't want to steal all, otherwise we may be treated likewise,
8280 * which could at worst lead to a livelock crash.
8281 */
8282 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8283 break;
8284
8285 p = list_last_entry(tasks, struct task_struct, se.group_node);
8286
8287 env->loop++;
8288 /* We've more or less seen every task there is, call it quits */
8289 if (env->loop > env->loop_max)
8290 break;
8291
8292 /* take a breather every nr_migrate tasks */
8293 if (env->loop > env->loop_break) {
8294 env->loop_break += sched_nr_migrate_break;
8295 env->flags |= LBF_NEED_BREAK;
8296 break;
8297 }
8298
8299 if (!can_migrate_task(p, env))
8300 goto next;
8301
8302 switch (env->migration_type) {
8303 case migrate_load:
8304 /*
8305 * Depending of the number of CPUs and tasks and the
8306 * cgroup hierarchy, task_h_load() can return a null
8307 * value. Make sure that env->imbalance decreases
8308 * otherwise detach_tasks() will stop only after
8309 * detaching up to loop_max tasks.
8310 */
8311 load = max_t(unsigned long, task_h_load(p), 1);
8312
8313 if (sched_feat(LB_MIN) &&
8314 load < 16 && !env->sd->nr_balance_failed)
8315 goto next;
8316
8317 /*
8318 * Make sure that we don't migrate too much load.
8319 * Nevertheless, let relax the constraint if
8320 * scheduler fails to find a good waiting task to
8321 * migrate.
8322 */
8323 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8324 goto next;
8325
8326 env->imbalance -= load;
8327 break;
8328
8329 case migrate_util:
8330 util = task_util_est(p);
8331
8332 if (util > env->imbalance)
8333 goto next;
8334
8335 env->imbalance -= util;
8336 break;
8337
8338 case migrate_task:
8339 env->imbalance--;
8340 break;
8341
8342 case migrate_misfit:
8343 /* This is not a misfit task */
8344 if (task_fits_cpu(p, env->src_cpu))
8345 goto next;
8346
8347 env->imbalance = 0;
8348 break;
8349 }
8350
8351 detach_task(p, env);
8352 list_add(&p->se.group_node, &env->tasks);
8353
8354 detached++;
8355
8356 #ifdef CONFIG_PREEMPTION
8357 /*
8358 * NEWIDLE balancing is a source of latency, so preemptible
8359 * kernels will stop after the first task is detached to minimize
8360 * the critical section.
8361 */
8362 if (env->idle == CPU_NEWLY_IDLE)
8363 break;
8364 #endif
8365
8366 /*
8367 * We only want to steal up to the prescribed amount of
8368 * load/util/tasks.
8369 */
8370 if (env->imbalance <= 0)
8371 break;
8372
8373 continue;
8374 next:
8375 list_move(&p->se.group_node, tasks);
8376 }
8377
8378 /*
8379 * Right now, this is one of only two places we collect this stat
8380 * so we can safely collect detach_one_task() stats here rather
8381 * than inside detach_one_task().
8382 */
8383 schedstat_add(env->sd->lb_gained[env->idle], detached);
8384
8385 return detached;
8386 }
8387
8388 /*
8389 * attach_task() -- attach the task detached by detach_task() to its new rq.
8390 */
attach_task(struct rq * rq,struct task_struct * p)8391 static void attach_task(struct rq *rq, struct task_struct *p)
8392 {
8393 lockdep_assert_rq_held(rq);
8394
8395 BUG_ON(task_rq(p) != rq);
8396 activate_task(rq, p, ENQUEUE_NOCLOCK);
8397 check_preempt_curr(rq, p, 0);
8398 }
8399
8400 /*
8401 * attach_one_task() -- attaches the task returned from detach_one_task() to
8402 * its new rq.
8403 */
attach_one_task(struct rq * rq,struct task_struct * p)8404 static void attach_one_task(struct rq *rq, struct task_struct *p)
8405 {
8406 struct rq_flags rf;
8407
8408 rq_lock(rq, &rf);
8409 update_rq_clock(rq);
8410 attach_task(rq, p);
8411 rq_unlock(rq, &rf);
8412 }
8413
8414 /*
8415 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8416 * new rq.
8417 */
attach_tasks(struct lb_env * env)8418 static void attach_tasks(struct lb_env *env)
8419 {
8420 struct list_head *tasks = &env->tasks;
8421 struct task_struct *p;
8422 struct rq_flags rf;
8423
8424 rq_lock(env->dst_rq, &rf);
8425 update_rq_clock(env->dst_rq);
8426
8427 while (!list_empty(tasks)) {
8428 p = list_first_entry(tasks, struct task_struct, se.group_node);
8429 list_del_init(&p->se.group_node);
8430
8431 attach_task(env->dst_rq, p);
8432 }
8433
8434 rq_unlock(env->dst_rq, &rf);
8435 }
8436
8437 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8438 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8439 {
8440 if (cfs_rq->avg.load_avg)
8441 return true;
8442
8443 if (cfs_rq->avg.util_avg)
8444 return true;
8445
8446 return false;
8447 }
8448
others_have_blocked(struct rq * rq)8449 static inline bool others_have_blocked(struct rq *rq)
8450 {
8451 if (READ_ONCE(rq->avg_rt.util_avg))
8452 return true;
8453
8454 if (READ_ONCE(rq->avg_dl.util_avg))
8455 return true;
8456
8457 if (thermal_load_avg(rq))
8458 return true;
8459
8460 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8461 if (READ_ONCE(rq->avg_irq.util_avg))
8462 return true;
8463 #endif
8464
8465 return false;
8466 }
8467
update_blocked_load_tick(struct rq * rq)8468 static inline void update_blocked_load_tick(struct rq *rq)
8469 {
8470 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
8471 }
8472
update_blocked_load_status(struct rq * rq,bool has_blocked)8473 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8474 {
8475 if (!has_blocked)
8476 rq->has_blocked_load = 0;
8477 }
8478 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8479 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8480 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_tick(struct rq * rq)8481 static inline void update_blocked_load_tick(struct rq *rq) {}
update_blocked_load_status(struct rq * rq,bool has_blocked)8482 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8483 #endif
8484
__update_blocked_others(struct rq * rq,bool * done)8485 static bool __update_blocked_others(struct rq *rq, bool *done)
8486 {
8487 const struct sched_class *curr_class;
8488 u64 now = rq_clock_pelt(rq);
8489 unsigned long thermal_pressure;
8490 bool decayed;
8491
8492 /*
8493 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8494 * DL and IRQ signals have been updated before updating CFS.
8495 */
8496 curr_class = rq->curr->sched_class;
8497
8498 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8499
8500 decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8501 update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8502 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8503 update_irq_load_avg(rq, 0);
8504
8505 if (others_have_blocked(rq))
8506 *done = false;
8507
8508 return decayed;
8509 }
8510
8511 #ifdef CONFIG_FAIR_GROUP_SCHED
8512
__update_blocked_fair(struct rq * rq,bool * done)8513 static bool __update_blocked_fair(struct rq *rq, bool *done)
8514 {
8515 struct cfs_rq *cfs_rq, *pos;
8516 bool decayed = false;
8517 int cpu = cpu_of(rq);
8518
8519 /*
8520 * Iterates the task_group tree in a bottom up fashion, see
8521 * list_add_leaf_cfs_rq() for details.
8522 */
8523 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8524 struct sched_entity *se;
8525
8526 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8527 update_tg_load_avg(cfs_rq);
8528
8529 if (cfs_rq == &rq->cfs)
8530 decayed = true;
8531 }
8532
8533 /* Propagate pending load changes to the parent, if any: */
8534 se = cfs_rq->tg->se[cpu];
8535 if (se && !skip_blocked_update(se))
8536 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8537
8538 /*
8539 * There can be a lot of idle CPU cgroups. Don't let fully
8540 * decayed cfs_rqs linger on the list.
8541 */
8542 if (cfs_rq_is_decayed(cfs_rq))
8543 list_del_leaf_cfs_rq(cfs_rq);
8544
8545 /* Don't need periodic decay once load/util_avg are null */
8546 if (cfs_rq_has_blocked(cfs_rq))
8547 *done = false;
8548 }
8549
8550 return decayed;
8551 }
8552
8553 /*
8554 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8555 * This needs to be done in a top-down fashion because the load of a child
8556 * group is a fraction of its parents load.
8557 */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8558 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8559 {
8560 struct rq *rq = rq_of(cfs_rq);
8561 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8562 unsigned long now = jiffies;
8563 unsigned long load;
8564
8565 if (cfs_rq->last_h_load_update == now)
8566 return;
8567
8568 WRITE_ONCE(cfs_rq->h_load_next, NULL);
8569 for_each_sched_entity(se) {
8570 cfs_rq = cfs_rq_of(se);
8571 WRITE_ONCE(cfs_rq->h_load_next, se);
8572 if (cfs_rq->last_h_load_update == now)
8573 break;
8574 }
8575
8576 if (!se) {
8577 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8578 cfs_rq->last_h_load_update = now;
8579 }
8580
8581 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8582 load = cfs_rq->h_load;
8583 load = div64_ul(load * se->avg.load_avg,
8584 cfs_rq_load_avg(cfs_rq) + 1);
8585 cfs_rq = group_cfs_rq(se);
8586 cfs_rq->h_load = load;
8587 cfs_rq->last_h_load_update = now;
8588 }
8589 }
8590
task_h_load(struct task_struct * p)8591 static unsigned long task_h_load(struct task_struct *p)
8592 {
8593 struct cfs_rq *cfs_rq = task_cfs_rq(p);
8594
8595 update_cfs_rq_h_load(cfs_rq);
8596 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8597 cfs_rq_load_avg(cfs_rq) + 1);
8598 }
8599 #else
__update_blocked_fair(struct rq * rq,bool * done)8600 static bool __update_blocked_fair(struct rq *rq, bool *done)
8601 {
8602 struct cfs_rq *cfs_rq = &rq->cfs;
8603 bool decayed;
8604
8605 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8606 if (cfs_rq_has_blocked(cfs_rq))
8607 *done = false;
8608
8609 return decayed;
8610 }
8611
task_h_load(struct task_struct * p)8612 static unsigned long task_h_load(struct task_struct *p)
8613 {
8614 return p->se.avg.load_avg;
8615 }
8616 #endif
8617
update_blocked_averages(int cpu)8618 static void update_blocked_averages(int cpu)
8619 {
8620 bool decayed = false, done = true;
8621 struct rq *rq = cpu_rq(cpu);
8622 struct rq_flags rf;
8623
8624 rq_lock_irqsave(rq, &rf);
8625 update_blocked_load_tick(rq);
8626 update_rq_clock(rq);
8627
8628 decayed |= __update_blocked_others(rq, &done);
8629 decayed |= __update_blocked_fair(rq, &done);
8630
8631 update_blocked_load_status(rq, !done);
8632 if (decayed)
8633 cpufreq_update_util(rq, 0);
8634 rq_unlock_irqrestore(rq, &rf);
8635 }
8636
8637 /********** Helpers for find_busiest_group ************************/
8638
8639 /*
8640 * sg_lb_stats - stats of a sched_group required for load_balancing
8641 */
8642 struct sg_lb_stats {
8643 unsigned long avg_load; /*Avg load across the CPUs of the group */
8644 unsigned long group_load; /* Total load over the CPUs of the group */
8645 unsigned long group_capacity;
8646 unsigned long group_util; /* Total utilization over the CPUs of the group */
8647 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8648 unsigned int sum_nr_running; /* Nr of tasks running in the group */
8649 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8650 unsigned int idle_cpus;
8651 unsigned int group_weight;
8652 enum group_type group_type;
8653 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8654 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8655 #ifdef CONFIG_NUMA_BALANCING
8656 unsigned int nr_numa_running;
8657 unsigned int nr_preferred_running;
8658 #endif
8659 };
8660
8661 /*
8662 * sd_lb_stats - Structure to store the statistics of a sched_domain
8663 * during load balancing.
8664 */
8665 struct sd_lb_stats {
8666 struct sched_group *busiest; /* Busiest group in this sd */
8667 struct sched_group *local; /* Local group in this sd */
8668 unsigned long total_load; /* Total load of all groups in sd */
8669 unsigned long total_capacity; /* Total capacity of all groups in sd */
8670 unsigned long avg_load; /* Average load across all groups in sd */
8671 unsigned int prefer_sibling; /* tasks should go to sibling first */
8672
8673 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8674 struct sg_lb_stats local_stat; /* Statistics of the local group */
8675 };
8676
init_sd_lb_stats(struct sd_lb_stats * sds)8677 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8678 {
8679 /*
8680 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8681 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8682 * We must however set busiest_stat::group_type and
8683 * busiest_stat::idle_cpus to the worst busiest group because
8684 * update_sd_pick_busiest() reads these before assignment.
8685 */
8686 *sds = (struct sd_lb_stats){
8687 .busiest = NULL,
8688 .local = NULL,
8689 .total_load = 0UL,
8690 .total_capacity = 0UL,
8691 .busiest_stat = {
8692 .idle_cpus = UINT_MAX,
8693 .group_type = group_has_spare,
8694 },
8695 };
8696 }
8697
scale_rt_capacity(int cpu)8698 static unsigned long scale_rt_capacity(int cpu)
8699 {
8700 struct rq *rq = cpu_rq(cpu);
8701 unsigned long max = arch_scale_cpu_capacity(cpu);
8702 unsigned long used, free;
8703 unsigned long irq;
8704
8705 irq = cpu_util_irq(rq);
8706
8707 if (unlikely(irq >= max))
8708 return 1;
8709
8710 /*
8711 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8712 * (running and not running) with weights 0 and 1024 respectively.
8713 * avg_thermal.load_avg tracks thermal pressure and the weighted
8714 * average uses the actual delta max capacity(load).
8715 */
8716 used = READ_ONCE(rq->avg_rt.util_avg);
8717 used += READ_ONCE(rq->avg_dl.util_avg);
8718 used += thermal_load_avg(rq);
8719
8720 if (unlikely(used >= max))
8721 return 1;
8722
8723 free = max - used;
8724
8725 return scale_irq_capacity(free, irq, max);
8726 }
8727
update_cpu_capacity(struct sched_domain * sd,int cpu)8728 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8729 {
8730 unsigned long capacity = scale_rt_capacity(cpu);
8731 struct sched_group *sdg = sd->groups;
8732
8733 cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(cpu);
8734
8735 if (!capacity)
8736 capacity = 1;
8737
8738 trace_android_rvh_update_cpu_capacity(cpu, &capacity);
8739 cpu_rq(cpu)->cpu_capacity = capacity;
8740 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
8741
8742 sdg->sgc->capacity = capacity;
8743 sdg->sgc->min_capacity = capacity;
8744 sdg->sgc->max_capacity = capacity;
8745 }
8746
update_group_capacity(struct sched_domain * sd,int cpu)8747 void update_group_capacity(struct sched_domain *sd, int cpu)
8748 {
8749 struct sched_domain *child = sd->child;
8750 struct sched_group *group, *sdg = sd->groups;
8751 unsigned long capacity, min_capacity, max_capacity;
8752 unsigned long interval;
8753
8754 interval = msecs_to_jiffies(sd->balance_interval);
8755 interval = clamp(interval, 1UL, max_load_balance_interval);
8756 sdg->sgc->next_update = jiffies + interval;
8757
8758 if (!child) {
8759 update_cpu_capacity(sd, cpu);
8760 return;
8761 }
8762
8763 capacity = 0;
8764 min_capacity = ULONG_MAX;
8765 max_capacity = 0;
8766
8767 if (child->flags & SD_OVERLAP) {
8768 /*
8769 * SD_OVERLAP domains cannot assume that child groups
8770 * span the current group.
8771 */
8772
8773 for_each_cpu(cpu, sched_group_span(sdg)) {
8774 unsigned long cpu_cap = capacity_of(cpu);
8775
8776 capacity += cpu_cap;
8777 min_capacity = min(cpu_cap, min_capacity);
8778 max_capacity = max(cpu_cap, max_capacity);
8779 }
8780 } else {
8781 /*
8782 * !SD_OVERLAP domains can assume that child groups
8783 * span the current group.
8784 */
8785
8786 group = child->groups;
8787 do {
8788 struct sched_group_capacity *sgc = group->sgc;
8789
8790 capacity += sgc->capacity;
8791 min_capacity = min(sgc->min_capacity, min_capacity);
8792 max_capacity = max(sgc->max_capacity, max_capacity);
8793 group = group->next;
8794 } while (group != child->groups);
8795 }
8796
8797 sdg->sgc->capacity = capacity;
8798 sdg->sgc->min_capacity = min_capacity;
8799 sdg->sgc->max_capacity = max_capacity;
8800 }
8801
8802 /*
8803 * Check whether the capacity of the rq has been noticeably reduced by side
8804 * activity. The imbalance_pct is used for the threshold.
8805 * Return true is the capacity is reduced
8806 */
8807 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8808 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8809 {
8810 return ((rq->cpu_capacity * sd->imbalance_pct) <
8811 (rq->cpu_capacity_orig * 100));
8812 }
8813
8814 /*
8815 * Check whether a rq has a misfit task and if it looks like we can actually
8816 * help that task: we can migrate the task to a CPU of higher capacity, or
8817 * the task's current CPU is heavily pressured.
8818 */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8819 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8820 {
8821 return rq->misfit_task_load &&
8822 (rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8823 check_cpu_capacity(rq, sd));
8824 }
8825
8826 /*
8827 * Group imbalance indicates (and tries to solve) the problem where balancing
8828 * groups is inadequate due to ->cpus_ptr constraints.
8829 *
8830 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8831 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8832 * Something like:
8833 *
8834 * { 0 1 2 3 } { 4 5 6 7 }
8835 * * * * *
8836 *
8837 * If we were to balance group-wise we'd place two tasks in the first group and
8838 * two tasks in the second group. Clearly this is undesired as it will overload
8839 * cpu 3 and leave one of the CPUs in the second group unused.
8840 *
8841 * The current solution to this issue is detecting the skew in the first group
8842 * by noticing the lower domain failed to reach balance and had difficulty
8843 * moving tasks due to affinity constraints.
8844 *
8845 * When this is so detected; this group becomes a candidate for busiest; see
8846 * update_sd_pick_busiest(). And calculate_imbalance() and
8847 * find_busiest_group() avoid some of the usual balance conditions to allow it
8848 * to create an effective group imbalance.
8849 *
8850 * This is a somewhat tricky proposition since the next run might not find the
8851 * group imbalance and decide the groups need to be balanced again. A most
8852 * subtle and fragile situation.
8853 */
8854
sg_imbalanced(struct sched_group * group)8855 static inline int sg_imbalanced(struct sched_group *group)
8856 {
8857 return group->sgc->imbalance;
8858 }
8859
8860 /*
8861 * group_has_capacity returns true if the group has spare capacity that could
8862 * be used by some tasks.
8863 * We consider that a group has spare capacity if the * number of task is
8864 * smaller than the number of CPUs or if the utilization is lower than the
8865 * available capacity for CFS tasks.
8866 * For the latter, we use a threshold to stabilize the state, to take into
8867 * account the variance of the tasks' load and to return true if the available
8868 * capacity in meaningful for the load balancer.
8869 * As an example, an available capacity of 1% can appear but it doesn't make
8870 * any benefit for the load balance.
8871 */
8872 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8873 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8874 {
8875 if (sgs->sum_nr_running < sgs->group_weight)
8876 return true;
8877
8878 if ((sgs->group_capacity * imbalance_pct) <
8879 (sgs->group_runnable * 100))
8880 return false;
8881
8882 if ((sgs->group_capacity * 100) >
8883 (sgs->group_util * imbalance_pct))
8884 return true;
8885
8886 return false;
8887 }
8888
8889 /*
8890 * group_is_overloaded returns true if the group has more tasks than it can
8891 * handle.
8892 * group_is_overloaded is not equals to !group_has_capacity because a group
8893 * with the exact right number of tasks, has no more spare capacity but is not
8894 * overloaded so both group_has_capacity and group_is_overloaded return
8895 * false.
8896 */
8897 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8898 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8899 {
8900 if (sgs->sum_nr_running <= sgs->group_weight)
8901 return false;
8902
8903 if ((sgs->group_capacity * 100) <
8904 (sgs->group_util * imbalance_pct))
8905 return true;
8906
8907 if ((sgs->group_capacity * imbalance_pct) <
8908 (sgs->group_runnable * 100))
8909 return true;
8910
8911 return false;
8912 }
8913
8914 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)8915 group_type group_classify(unsigned int imbalance_pct,
8916 struct sched_group *group,
8917 struct sg_lb_stats *sgs)
8918 {
8919 if (group_is_overloaded(imbalance_pct, sgs))
8920 return group_overloaded;
8921
8922 if (sg_imbalanced(group))
8923 return group_imbalanced;
8924
8925 if (sgs->group_asym_packing)
8926 return group_asym_packing;
8927
8928 if (sgs->group_misfit_task_load)
8929 return group_misfit_task;
8930
8931 if (!group_has_capacity(imbalance_pct, sgs))
8932 return group_fully_busy;
8933
8934 return group_has_spare;
8935 }
8936
8937 /**
8938 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8939 * @env: The load balancing environment.
8940 * @group: sched_group whose statistics are to be updated.
8941 * @sgs: variable to hold the statistics for this group.
8942 * @sg_status: Holds flag indicating the status of the sched_group
8943 */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8944 static inline void update_sg_lb_stats(struct lb_env *env,
8945 struct sched_group *group,
8946 struct sg_lb_stats *sgs,
8947 int *sg_status)
8948 {
8949 int i, nr_running, local_group;
8950
8951 memset(sgs, 0, sizeof(*sgs));
8952
8953 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8954
8955 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8956 struct rq *rq = cpu_rq(i);
8957
8958 sgs->group_load += cpu_load(rq);
8959 sgs->group_util += cpu_util(i);
8960 sgs->group_runnable += cpu_runnable(rq);
8961 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8962
8963 nr_running = rq->nr_running;
8964 sgs->sum_nr_running += nr_running;
8965
8966 if (nr_running > 1)
8967 *sg_status |= SG_OVERLOAD;
8968
8969 if (cpu_overutilized(i))
8970 *sg_status |= SG_OVERUTILIZED;
8971
8972 #ifdef CONFIG_NUMA_BALANCING
8973 sgs->nr_numa_running += rq->nr_numa_running;
8974 sgs->nr_preferred_running += rq->nr_preferred_running;
8975 #endif
8976 /*
8977 * No need to call idle_cpu() if nr_running is not 0
8978 */
8979 if (!nr_running && idle_cpu(i)) {
8980 sgs->idle_cpus++;
8981 /* Idle cpu can't have misfit task */
8982 continue;
8983 }
8984
8985 if (local_group)
8986 continue;
8987
8988 /* Check for a misfit task on the cpu */
8989 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
8990 sgs->group_misfit_task_load < rq->misfit_task_load) {
8991 sgs->group_misfit_task_load = rq->misfit_task_load;
8992 *sg_status |= SG_OVERLOAD;
8993 }
8994 }
8995
8996 /* Check if dst CPU is idle and preferred to this group */
8997 if (env->sd->flags & SD_ASYM_PACKING &&
8998 env->idle != CPU_NOT_IDLE &&
8999 sgs->sum_h_nr_running &&
9000 sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
9001 sgs->group_asym_packing = 1;
9002 }
9003
9004 sgs->group_capacity = group->sgc->capacity;
9005
9006 sgs->group_weight = group->group_weight;
9007
9008 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9009
9010 /* Computing avg_load makes sense only when group is overloaded */
9011 if (sgs->group_type == group_overloaded)
9012 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9013 sgs->group_capacity;
9014 }
9015
9016 /**
9017 * update_sd_pick_busiest - return 1 on busiest group
9018 * @env: The load balancing environment.
9019 * @sds: sched_domain statistics
9020 * @sg: sched_group candidate to be checked for being the busiest
9021 * @sgs: sched_group statistics
9022 *
9023 * Determine if @sg is a busier group than the previously selected
9024 * busiest group.
9025 *
9026 * Return: %true if @sg is a busier group than the previously selected
9027 * busiest group. %false otherwise.
9028 */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9029 static bool update_sd_pick_busiest(struct lb_env *env,
9030 struct sd_lb_stats *sds,
9031 struct sched_group *sg,
9032 struct sg_lb_stats *sgs)
9033 {
9034 struct sg_lb_stats *busiest = &sds->busiest_stat;
9035
9036 /* Make sure that there is at least one task to pull */
9037 if (!sgs->sum_h_nr_running)
9038 return false;
9039
9040 /*
9041 * Don't try to pull misfit tasks we can't help.
9042 * We can use max_capacity here as reduction in capacity on some
9043 * CPUs in the group should either be possible to resolve
9044 * internally or be covered by avg_load imbalance (eventually).
9045 */
9046 if (sgs->group_type == group_misfit_task &&
9047 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
9048 sds->local_stat.group_type != group_has_spare))
9049 return false;
9050
9051 if (sgs->group_type > busiest->group_type)
9052 return true;
9053
9054 if (sgs->group_type < busiest->group_type)
9055 return false;
9056
9057 /*
9058 * The candidate and the current busiest group are the same type of
9059 * group. Let check which one is the busiest according to the type.
9060 */
9061
9062 switch (sgs->group_type) {
9063 case group_overloaded:
9064 /* Select the overloaded group with highest avg_load. */
9065 if (sgs->avg_load <= busiest->avg_load)
9066 return false;
9067 break;
9068
9069 case group_imbalanced:
9070 /*
9071 * Select the 1st imbalanced group as we don't have any way to
9072 * choose one more than another.
9073 */
9074 return false;
9075
9076 case group_asym_packing:
9077 /* Prefer to move from lowest priority CPU's work */
9078 if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9079 return false;
9080 break;
9081
9082 case group_misfit_task:
9083 /*
9084 * If we have more than one misfit sg go with the biggest
9085 * misfit.
9086 */
9087 if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9088 return false;
9089 break;
9090
9091 case group_fully_busy:
9092 /*
9093 * Select the fully busy group with highest avg_load. In
9094 * theory, there is no need to pull task from such kind of
9095 * group because tasks have all compute capacity that they need
9096 * but we can still improve the overall throughput by reducing
9097 * contention when accessing shared HW resources.
9098 *
9099 * XXX for now avg_load is not computed and always 0 so we
9100 * select the 1st one.
9101 */
9102 if (sgs->avg_load <= busiest->avg_load)
9103 return false;
9104 break;
9105
9106 case group_has_spare:
9107 /*
9108 * Select not overloaded group with lowest number of idle cpus
9109 * and highest number of running tasks. We could also compare
9110 * the spare capacity which is more stable but it can end up
9111 * that the group has less spare capacity but finally more idle
9112 * CPUs which means less opportunity to pull tasks.
9113 */
9114 if (sgs->idle_cpus > busiest->idle_cpus)
9115 return false;
9116 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9117 (sgs->sum_nr_running <= busiest->sum_nr_running))
9118 return false;
9119
9120 break;
9121 }
9122
9123 /*
9124 * Candidate sg has no more than one task per CPU and has higher
9125 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9126 * throughput. Maximize throughput, power/energy consequences are not
9127 * considered.
9128 */
9129 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9130 (sgs->group_type <= group_fully_busy) &&
9131 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
9132 return false;
9133
9134 return true;
9135 }
9136
9137 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9138 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9139 {
9140 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9141 return regular;
9142 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9143 return remote;
9144 return all;
9145 }
9146
fbq_classify_rq(struct rq * rq)9147 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9148 {
9149 if (rq->nr_running > rq->nr_numa_running)
9150 return regular;
9151 if (rq->nr_running > rq->nr_preferred_running)
9152 return remote;
9153 return all;
9154 }
9155 #else
fbq_classify_group(struct sg_lb_stats * sgs)9156 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9157 {
9158 return all;
9159 }
9160
fbq_classify_rq(struct rq * rq)9161 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9162 {
9163 return regular;
9164 }
9165 #endif /* CONFIG_NUMA_BALANCING */
9166
9167
9168 struct sg_lb_stats;
9169
9170 /*
9171 * task_running_on_cpu - return 1 if @p is running on @cpu.
9172 */
9173
task_running_on_cpu(int cpu,struct task_struct * p)9174 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9175 {
9176 /* Task has no contribution or is new */
9177 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9178 return 0;
9179
9180 if (task_on_rq_queued(p))
9181 return 1;
9182
9183 return 0;
9184 }
9185
9186 /**
9187 * idle_cpu_without - would a given CPU be idle without p ?
9188 * @cpu: the processor on which idleness is tested.
9189 * @p: task which should be ignored.
9190 *
9191 * Return: 1 if the CPU would be idle. 0 otherwise.
9192 */
idle_cpu_without(int cpu,struct task_struct * p)9193 static int idle_cpu_without(int cpu, struct task_struct *p)
9194 {
9195 struct rq *rq = cpu_rq(cpu);
9196
9197 if (rq->curr != rq->idle && rq->curr != p)
9198 return 0;
9199
9200 /*
9201 * rq->nr_running can't be used but an updated version without the
9202 * impact of p on cpu must be used instead. The updated nr_running
9203 * be computed and tested before calling idle_cpu_without().
9204 */
9205
9206 #ifdef CONFIG_SMP
9207 if (rq->ttwu_pending)
9208 return 0;
9209 #endif
9210
9211 return 1;
9212 }
9213
9214 /*
9215 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9216 * @sd: The sched_domain level to look for idlest group.
9217 * @group: sched_group whose statistics are to be updated.
9218 * @sgs: variable to hold the statistics for this group.
9219 * @p: The task for which we look for the idlest group/CPU.
9220 */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)9221 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9222 struct sched_group *group,
9223 struct sg_lb_stats *sgs,
9224 struct task_struct *p)
9225 {
9226 int i, nr_running;
9227
9228 memset(sgs, 0, sizeof(*sgs));
9229
9230 /* Assume that task can't fit any CPU of the group */
9231 if (sd->flags & SD_ASYM_CPUCAPACITY)
9232 sgs->group_misfit_task_load = 1;
9233
9234 for_each_cpu(i, sched_group_span(group)) {
9235 struct rq *rq = cpu_rq(i);
9236 unsigned int local;
9237
9238 sgs->group_load += cpu_load_without(rq, p);
9239 sgs->group_util += cpu_util_without(i, p);
9240 sgs->group_runnable += cpu_runnable_without(rq, p);
9241 local = task_running_on_cpu(i, p);
9242 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9243
9244 nr_running = rq->nr_running - local;
9245 sgs->sum_nr_running += nr_running;
9246
9247 /*
9248 * No need to call idle_cpu_without() if nr_running is not 0
9249 */
9250 if (!nr_running && idle_cpu_without(i, p))
9251 sgs->idle_cpus++;
9252
9253 /* Check if task fits in the CPU */
9254 if (sd->flags & SD_ASYM_CPUCAPACITY &&
9255 sgs->group_misfit_task_load &&
9256 task_fits_cpu(p, i))
9257 sgs->group_misfit_task_load = 0;
9258
9259 }
9260
9261 sgs->group_capacity = group->sgc->capacity;
9262
9263 sgs->group_weight = group->group_weight;
9264
9265 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9266
9267 /*
9268 * Computing avg_load makes sense only when group is fully busy or
9269 * overloaded
9270 */
9271 if (sgs->group_type == group_fully_busy ||
9272 sgs->group_type == group_overloaded)
9273 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9274 sgs->group_capacity;
9275 }
9276
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9277 static bool update_pick_idlest(struct sched_group *idlest,
9278 struct sg_lb_stats *idlest_sgs,
9279 struct sched_group *group,
9280 struct sg_lb_stats *sgs)
9281 {
9282 if (sgs->group_type < idlest_sgs->group_type)
9283 return true;
9284
9285 if (sgs->group_type > idlest_sgs->group_type)
9286 return false;
9287
9288 /*
9289 * The candidate and the current idlest group are the same type of
9290 * group. Let check which one is the idlest according to the type.
9291 */
9292
9293 switch (sgs->group_type) {
9294 case group_overloaded:
9295 case group_fully_busy:
9296 /* Select the group with lowest avg_load. */
9297 if (idlest_sgs->avg_load <= sgs->avg_load)
9298 return false;
9299 break;
9300
9301 case group_imbalanced:
9302 case group_asym_packing:
9303 /* Those types are not used in the slow wakeup path */
9304 return false;
9305
9306 case group_misfit_task:
9307 /* Select group with the highest max capacity */
9308 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9309 return false;
9310 break;
9311
9312 case group_has_spare:
9313 /* Select group with most idle CPUs */
9314 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9315 return false;
9316
9317 /* Select group with lowest group_util */
9318 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9319 idlest_sgs->group_util <= sgs->group_util)
9320 return false;
9321
9322 break;
9323 }
9324
9325 return true;
9326 }
9327
9328 /*
9329 * Allow a NUMA imbalance if busy CPUs is less than 25% of the domain.
9330 * This is an approximation as the number of running tasks may not be
9331 * related to the number of busy CPUs due to sched_setaffinity.
9332 */
9333 static inline bool
allow_numa_imbalance(unsigned int running,unsigned int weight)9334 allow_numa_imbalance(unsigned int running, unsigned int weight)
9335 {
9336 return (running < (weight >> 2));
9337 }
9338
9339 /*
9340 * find_idlest_group() finds and returns the least busy CPU group within the
9341 * domain.
9342 *
9343 * Assumes p is allowed on at least one CPU in sd.
9344 */
9345 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9346 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9347 {
9348 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9349 struct sg_lb_stats local_sgs, tmp_sgs;
9350 struct sg_lb_stats *sgs;
9351 unsigned long imbalance;
9352 struct sg_lb_stats idlest_sgs = {
9353 .avg_load = UINT_MAX,
9354 .group_type = group_overloaded,
9355 };
9356
9357 do {
9358 int local_group;
9359
9360 /* Skip over this group if it has no CPUs allowed */
9361 if (!cpumask_intersects(sched_group_span(group),
9362 p->cpus_ptr))
9363 continue;
9364
9365 /* Skip over this group if no cookie matched */
9366 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
9367 continue;
9368
9369 local_group = cpumask_test_cpu(this_cpu,
9370 sched_group_span(group));
9371
9372 if (local_group) {
9373 sgs = &local_sgs;
9374 local = group;
9375 } else {
9376 sgs = &tmp_sgs;
9377 }
9378
9379 update_sg_wakeup_stats(sd, group, sgs, p);
9380
9381 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9382 idlest = group;
9383 idlest_sgs = *sgs;
9384 }
9385
9386 } while (group = group->next, group != sd->groups);
9387
9388
9389 /* There is no idlest group to push tasks to */
9390 if (!idlest)
9391 return NULL;
9392
9393 /* The local group has been skipped because of CPU affinity */
9394 if (!local)
9395 return idlest;
9396
9397 /*
9398 * If the local group is idler than the selected idlest group
9399 * don't try and push the task.
9400 */
9401 if (local_sgs.group_type < idlest_sgs.group_type)
9402 return NULL;
9403
9404 /*
9405 * If the local group is busier than the selected idlest group
9406 * try and push the task.
9407 */
9408 if (local_sgs.group_type > idlest_sgs.group_type)
9409 return idlest;
9410
9411 switch (local_sgs.group_type) {
9412 case group_overloaded:
9413 case group_fully_busy:
9414
9415 /* Calculate allowed imbalance based on load */
9416 imbalance = scale_load_down(NICE_0_LOAD) *
9417 (sd->imbalance_pct-100) / 100;
9418
9419 /*
9420 * When comparing groups across NUMA domains, it's possible for
9421 * the local domain to be very lightly loaded relative to the
9422 * remote domains but "imbalance" skews the comparison making
9423 * remote CPUs look much more favourable. When considering
9424 * cross-domain, add imbalance to the load on the remote node
9425 * and consider staying local.
9426 */
9427
9428 if ((sd->flags & SD_NUMA) &&
9429 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9430 return NULL;
9431
9432 /*
9433 * If the local group is less loaded than the selected
9434 * idlest group don't try and push any tasks.
9435 */
9436 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9437 return NULL;
9438
9439 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9440 return NULL;
9441 break;
9442
9443 case group_imbalanced:
9444 case group_asym_packing:
9445 /* Those type are not used in the slow wakeup path */
9446 return NULL;
9447
9448 case group_misfit_task:
9449 /* Select group with the highest max capacity */
9450 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9451 return NULL;
9452 break;
9453
9454 case group_has_spare:
9455 if (sd->flags & SD_NUMA) {
9456 #ifdef CONFIG_NUMA_BALANCING
9457 int idlest_cpu;
9458 /*
9459 * If there is spare capacity at NUMA, try to select
9460 * the preferred node
9461 */
9462 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9463 return NULL;
9464
9465 idlest_cpu = cpumask_first(sched_group_span(idlest));
9466 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9467 return idlest;
9468 #endif
9469 /*
9470 * Otherwise, keep the task close to the wakeup source
9471 * and improve locality if the number of running tasks
9472 * would remain below threshold where an imbalance is
9473 * allowed. If there is a real need of migration,
9474 * periodic load balance will take care of it.
9475 */
9476 if (allow_numa_imbalance(local_sgs.sum_nr_running + 1, local_sgs.group_weight))
9477 return NULL;
9478 }
9479
9480 /*
9481 * Select group with highest number of idle CPUs. We could also
9482 * compare the utilization which is more stable but it can end
9483 * up that the group has less spare capacity but finally more
9484 * idle CPUs which means more opportunity to run task.
9485 */
9486 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9487 return NULL;
9488 break;
9489 }
9490
9491 return idlest;
9492 }
9493
9494 /**
9495 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9496 * @env: The load balancing environment.
9497 * @sds: variable to hold the statistics for this sched_domain.
9498 */
9499
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9500 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9501 {
9502 struct sched_domain *child = env->sd->child;
9503 struct sched_group *sg = env->sd->groups;
9504 struct sg_lb_stats *local = &sds->local_stat;
9505 struct sg_lb_stats tmp_sgs;
9506 int sg_status = 0;
9507
9508 do {
9509 struct sg_lb_stats *sgs = &tmp_sgs;
9510 int local_group;
9511
9512 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9513 if (local_group) {
9514 sds->local = sg;
9515 sgs = local;
9516
9517 if (env->idle != CPU_NEWLY_IDLE ||
9518 time_after_eq(jiffies, sg->sgc->next_update))
9519 update_group_capacity(env->sd, env->dst_cpu);
9520 }
9521
9522 update_sg_lb_stats(env, sg, sgs, &sg_status);
9523
9524 if (local_group)
9525 goto next_group;
9526
9527
9528 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9529 sds->busiest = sg;
9530 sds->busiest_stat = *sgs;
9531 }
9532
9533 next_group:
9534 /* Now, start updating sd_lb_stats */
9535 sds->total_load += sgs->group_load;
9536 sds->total_capacity += sgs->group_capacity;
9537
9538 sg = sg->next;
9539 } while (sg != env->sd->groups);
9540
9541 /* Tag domain that child domain prefers tasks go to siblings first */
9542 sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9543
9544
9545 if (env->sd->flags & SD_NUMA)
9546 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9547
9548 if (!env->sd->parent) {
9549 struct root_domain *rd = env->dst_rq->rd;
9550
9551 /* update overload indicator if we are at root domain */
9552 WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9553
9554 /* Update over-utilization (tipping point, U >= 0) indicator */
9555 WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9556 trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9557 } else if (sg_status & SG_OVERUTILIZED) {
9558 struct root_domain *rd = env->dst_rq->rd;
9559
9560 WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9561 trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9562 }
9563 }
9564
9565 #define NUMA_IMBALANCE_MIN 2
9566
adjust_numa_imbalance(int imbalance,int dst_running,int dst_weight)9567 static inline long adjust_numa_imbalance(int imbalance,
9568 int dst_running, int dst_weight)
9569 {
9570 if (!allow_numa_imbalance(dst_running, dst_weight))
9571 return imbalance;
9572
9573 /*
9574 * Allow a small imbalance based on a simple pair of communicating
9575 * tasks that remain local when the destination is lightly loaded.
9576 */
9577 if (imbalance <= NUMA_IMBALANCE_MIN)
9578 return 0;
9579
9580 return imbalance;
9581 }
9582
9583 /**
9584 * calculate_imbalance - Calculate the amount of imbalance present within the
9585 * groups of a given sched_domain during load balance.
9586 * @env: load balance environment
9587 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9588 */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9589 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9590 {
9591 struct sg_lb_stats *local, *busiest;
9592
9593 local = &sds->local_stat;
9594 busiest = &sds->busiest_stat;
9595
9596 if (busiest->group_type == group_misfit_task) {
9597 /* Set imbalance to allow misfit tasks to be balanced. */
9598 env->migration_type = migrate_misfit;
9599 env->imbalance = 1;
9600 return;
9601 }
9602
9603 if (busiest->group_type == group_asym_packing) {
9604 /*
9605 * In case of asym capacity, we will try to migrate all load to
9606 * the preferred CPU.
9607 */
9608 env->migration_type = migrate_task;
9609 env->imbalance = busiest->sum_h_nr_running;
9610 return;
9611 }
9612
9613 if (busiest->group_type == group_imbalanced) {
9614 /*
9615 * In the group_imb case we cannot rely on group-wide averages
9616 * to ensure CPU-load equilibrium, try to move any task to fix
9617 * the imbalance. The next load balance will take care of
9618 * balancing back the system.
9619 */
9620 env->migration_type = migrate_task;
9621 env->imbalance = 1;
9622 return;
9623 }
9624
9625 /*
9626 * Try to use spare capacity of local group without overloading it or
9627 * emptying busiest.
9628 */
9629 if (local->group_type == group_has_spare) {
9630 if ((busiest->group_type > group_fully_busy) &&
9631 !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9632 /*
9633 * If busiest is overloaded, try to fill spare
9634 * capacity. This might end up creating spare capacity
9635 * in busiest or busiest still being overloaded but
9636 * there is no simple way to directly compute the
9637 * amount of load to migrate in order to balance the
9638 * system.
9639 */
9640 env->migration_type = migrate_util;
9641 env->imbalance = max(local->group_capacity, local->group_util) -
9642 local->group_util;
9643
9644 /*
9645 * In some cases, the group's utilization is max or even
9646 * higher than capacity because of migrations but the
9647 * local CPU is (newly) idle. There is at least one
9648 * waiting task in this overloaded busiest group. Let's
9649 * try to pull it.
9650 */
9651 if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9652 env->migration_type = migrate_task;
9653 env->imbalance = 1;
9654 }
9655
9656 return;
9657 }
9658
9659 if (busiest->group_weight == 1 || sds->prefer_sibling) {
9660 unsigned int nr_diff = busiest->sum_nr_running;
9661 /*
9662 * When prefer sibling, evenly spread running tasks on
9663 * groups.
9664 */
9665 env->migration_type = migrate_task;
9666 lsub_positive(&nr_diff, local->sum_nr_running);
9667 env->imbalance = nr_diff >> 1;
9668 } else {
9669
9670 /*
9671 * If there is no overload, we just want to even the number of
9672 * idle cpus.
9673 */
9674 env->migration_type = migrate_task;
9675 env->imbalance = max_t(long, 0, (local->idle_cpus -
9676 busiest->idle_cpus) >> 1);
9677 }
9678
9679 /* Consider allowing a small imbalance between NUMA groups */
9680 if (env->sd->flags & SD_NUMA) {
9681 env->imbalance = adjust_numa_imbalance(env->imbalance,
9682 local->sum_nr_running + 1, local->group_weight);
9683 }
9684
9685 return;
9686 }
9687
9688 /*
9689 * Local is fully busy but has to take more load to relieve the
9690 * busiest group
9691 */
9692 if (local->group_type < group_overloaded) {
9693 /*
9694 * Local will become overloaded so the avg_load metrics are
9695 * finally needed.
9696 */
9697
9698 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9699 local->group_capacity;
9700
9701 /*
9702 * If the local group is more loaded than the selected
9703 * busiest group don't try to pull any tasks.
9704 */
9705 if (local->avg_load >= busiest->avg_load) {
9706 env->imbalance = 0;
9707 return;
9708 }
9709
9710 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9711 sds->total_capacity;
9712
9713 /*
9714 * If the local group is more loaded than the average system
9715 * load, don't try to pull any tasks.
9716 */
9717 if (local->avg_load >= sds->avg_load) {
9718 env->imbalance = 0;
9719 return;
9720 }
9721
9722 }
9723
9724 /*
9725 * Both group are or will become overloaded and we're trying to get all
9726 * the CPUs to the average_load, so we don't want to push ourselves
9727 * above the average load, nor do we wish to reduce the max loaded CPU
9728 * below the average load. At the same time, we also don't want to
9729 * reduce the group load below the group capacity. Thus we look for
9730 * the minimum possible imbalance.
9731 */
9732 env->migration_type = migrate_load;
9733 env->imbalance = min(
9734 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9735 (sds->avg_load - local->avg_load) * local->group_capacity
9736 ) / SCHED_CAPACITY_SCALE;
9737 }
9738
9739 /******* find_busiest_group() helpers end here *********************/
9740
9741 /*
9742 * Decision matrix according to the local and busiest group type:
9743 *
9744 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9745 * has_spare nr_idle balanced N/A N/A balanced balanced
9746 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
9747 * misfit_task force N/A N/A N/A force force
9748 * asym_packing force force N/A N/A force force
9749 * imbalanced force force N/A N/A force force
9750 * overloaded force force N/A N/A force avg_load
9751 *
9752 * N/A : Not Applicable because already filtered while updating
9753 * statistics.
9754 * balanced : The system is balanced for these 2 groups.
9755 * force : Calculate the imbalance as load migration is probably needed.
9756 * avg_load : Only if imbalance is significant enough.
9757 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
9758 * different in groups.
9759 */
9760
9761 /**
9762 * find_busiest_group - Returns the busiest group within the sched_domain
9763 * if there is an imbalance.
9764 *
9765 * Also calculates the amount of runnable load which should be moved
9766 * to restore balance.
9767 *
9768 * @env: The load balancing environment.
9769 *
9770 * Return: - The busiest group if imbalance exists.
9771 */
find_busiest_group(struct lb_env * env)9772 static struct sched_group *find_busiest_group(struct lb_env *env)
9773 {
9774 struct sg_lb_stats *local, *busiest;
9775 struct sd_lb_stats sds;
9776
9777 init_sd_lb_stats(&sds);
9778
9779 /*
9780 * Compute the various statistics relevant for load balancing at
9781 * this level.
9782 */
9783 update_sd_lb_stats(env, &sds);
9784
9785 if (sched_energy_enabled()) {
9786 struct root_domain *rd = env->dst_rq->rd;
9787 int out_balance = 1;
9788
9789 trace_android_rvh_find_busiest_group(sds.busiest, env->dst_rq,
9790 &out_balance);
9791 if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized)
9792 && out_balance)
9793 goto out_balanced;
9794 }
9795
9796 local = &sds.local_stat;
9797 busiest = &sds.busiest_stat;
9798
9799 /* There is no busy sibling group to pull tasks from */
9800 if (!sds.busiest)
9801 goto out_balanced;
9802
9803 /* Misfit tasks should be dealt with regardless of the avg load */
9804 if (busiest->group_type == group_misfit_task)
9805 goto force_balance;
9806
9807 /* ASYM feature bypasses nice load balance check */
9808 if (busiest->group_type == group_asym_packing)
9809 goto force_balance;
9810
9811 /*
9812 * If the busiest group is imbalanced the below checks don't
9813 * work because they assume all things are equal, which typically
9814 * isn't true due to cpus_ptr constraints and the like.
9815 */
9816 if (busiest->group_type == group_imbalanced)
9817 goto force_balance;
9818
9819 /*
9820 * If the local group is busier than the selected busiest group
9821 * don't try and pull any tasks.
9822 */
9823 if (local->group_type > busiest->group_type)
9824 goto out_balanced;
9825
9826 /*
9827 * When groups are overloaded, use the avg_load to ensure fairness
9828 * between tasks.
9829 */
9830 if (local->group_type == group_overloaded) {
9831 /*
9832 * If the local group is more loaded than the selected
9833 * busiest group don't try to pull any tasks.
9834 */
9835 if (local->avg_load >= busiest->avg_load)
9836 goto out_balanced;
9837
9838 /* XXX broken for overlapping NUMA groups */
9839 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9840 sds.total_capacity;
9841
9842 /*
9843 * Don't pull any tasks if this group is already above the
9844 * domain average load.
9845 */
9846 if (local->avg_load >= sds.avg_load)
9847 goto out_balanced;
9848
9849 /*
9850 * If the busiest group is more loaded, use imbalance_pct to be
9851 * conservative.
9852 */
9853 if (100 * busiest->avg_load <=
9854 env->sd->imbalance_pct * local->avg_load)
9855 goto out_balanced;
9856 }
9857
9858 /* Try to move all excess tasks to child's sibling domain */
9859 if (sds.prefer_sibling && local->group_type == group_has_spare &&
9860 busiest->sum_nr_running > local->sum_nr_running + 1)
9861 goto force_balance;
9862
9863 if (busiest->group_type != group_overloaded) {
9864 if (env->idle == CPU_NOT_IDLE)
9865 /*
9866 * If the busiest group is not overloaded (and as a
9867 * result the local one too) but this CPU is already
9868 * busy, let another idle CPU try to pull task.
9869 */
9870 goto out_balanced;
9871
9872 if (busiest->group_weight > 1 &&
9873 local->idle_cpus <= (busiest->idle_cpus + 1))
9874 /*
9875 * If the busiest group is not overloaded
9876 * and there is no imbalance between this and busiest
9877 * group wrt idle CPUs, it is balanced. The imbalance
9878 * becomes significant if the diff is greater than 1
9879 * otherwise we might end up to just move the imbalance
9880 * on another group. Of course this applies only if
9881 * there is more than 1 CPU per group.
9882 */
9883 goto out_balanced;
9884
9885 if (busiest->sum_h_nr_running == 1)
9886 /*
9887 * busiest doesn't have any tasks waiting to run
9888 */
9889 goto out_balanced;
9890 }
9891
9892 force_balance:
9893 /* Looks like there is an imbalance. Compute it */
9894 calculate_imbalance(env, &sds);
9895 return env->imbalance ? sds.busiest : NULL;
9896
9897 out_balanced:
9898 env->imbalance = 0;
9899 return NULL;
9900 }
9901
9902 /*
9903 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9904 */
find_busiest_queue(struct lb_env * env,struct sched_group * group)9905 static struct rq *find_busiest_queue(struct lb_env *env,
9906 struct sched_group *group)
9907 {
9908 struct rq *busiest = NULL, *rq;
9909 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9910 unsigned int busiest_nr = 0;
9911 int i, done = 0;
9912
9913 trace_android_rvh_find_busiest_queue(env->dst_cpu, group, env->cpus,
9914 &busiest, &done);
9915 if (done)
9916 return busiest;
9917
9918 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9919 unsigned long capacity, load, util;
9920 unsigned int nr_running;
9921 enum fbq_type rt;
9922
9923 rq = cpu_rq(i);
9924 rt = fbq_classify_rq(rq);
9925
9926 /*
9927 * We classify groups/runqueues into three groups:
9928 * - regular: there are !numa tasks
9929 * - remote: there are numa tasks that run on the 'wrong' node
9930 * - all: there is no distinction
9931 *
9932 * In order to avoid migrating ideally placed numa tasks,
9933 * ignore those when there's better options.
9934 *
9935 * If we ignore the actual busiest queue to migrate another
9936 * task, the next balance pass can still reduce the busiest
9937 * queue by moving tasks around inside the node.
9938 *
9939 * If we cannot move enough load due to this classification
9940 * the next pass will adjust the group classification and
9941 * allow migration of more tasks.
9942 *
9943 * Both cases only affect the total convergence complexity.
9944 */
9945 if (rt > env->fbq_type)
9946 continue;
9947
9948 nr_running = rq->cfs.h_nr_running;
9949 if (!nr_running)
9950 continue;
9951
9952 capacity = capacity_of(i);
9953
9954 /*
9955 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9956 * eventually lead to active_balancing high->low capacity.
9957 * Higher per-CPU capacity is considered better than balancing
9958 * average load.
9959 */
9960 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9961 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
9962 nr_running == 1)
9963 continue;
9964
9965 switch (env->migration_type) {
9966 case migrate_load:
9967 /*
9968 * When comparing with load imbalance, use cpu_load()
9969 * which is not scaled with the CPU capacity.
9970 */
9971 load = cpu_load(rq);
9972
9973 if (nr_running == 1 && load > env->imbalance &&
9974 !check_cpu_capacity(rq, env->sd))
9975 break;
9976
9977 /*
9978 * For the load comparisons with the other CPUs,
9979 * consider the cpu_load() scaled with the CPU
9980 * capacity, so that the load can be moved away
9981 * from the CPU that is potentially running at a
9982 * lower capacity.
9983 *
9984 * Thus we're looking for max(load_i / capacity_i),
9985 * crosswise multiplication to rid ourselves of the
9986 * division works out to:
9987 * load_i * capacity_j > load_j * capacity_i;
9988 * where j is our previous maximum.
9989 */
9990 if (load * busiest_capacity > busiest_load * capacity) {
9991 busiest_load = load;
9992 busiest_capacity = capacity;
9993 busiest = rq;
9994 }
9995 break;
9996
9997 case migrate_util:
9998 util = cpu_util(cpu_of(rq));
9999
10000 /*
10001 * Don't try to pull utilization from a CPU with one
10002 * running task. Whatever its utilization, we will fail
10003 * detach the task.
10004 */
10005 if (nr_running <= 1)
10006 continue;
10007
10008 if (busiest_util < util) {
10009 busiest_util = util;
10010 busiest = rq;
10011 }
10012 break;
10013
10014 case migrate_task:
10015 if (busiest_nr < nr_running) {
10016 busiest_nr = nr_running;
10017 busiest = rq;
10018 }
10019 break;
10020
10021 case migrate_misfit:
10022 /*
10023 * For ASYM_CPUCAPACITY domains with misfit tasks we
10024 * simply seek the "biggest" misfit task.
10025 */
10026 if (rq->misfit_task_load > busiest_load) {
10027 busiest_load = rq->misfit_task_load;
10028 busiest = rq;
10029 }
10030
10031 break;
10032
10033 }
10034 }
10035
10036 return busiest;
10037 }
10038
10039 /*
10040 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10041 * so long as it is large enough.
10042 */
10043 #define MAX_PINNED_INTERVAL 512
10044
10045 static inline bool
asym_active_balance(struct lb_env * env)10046 asym_active_balance(struct lb_env *env)
10047 {
10048 /*
10049 * ASYM_PACKING needs to force migrate tasks from busy but
10050 * lower priority CPUs in order to pack all tasks in the
10051 * highest priority CPUs.
10052 */
10053 return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10054 sched_asym_prefer(env->dst_cpu, env->src_cpu);
10055 }
10056
10057 static inline bool
imbalanced_active_balance(struct lb_env * env)10058 imbalanced_active_balance(struct lb_env *env)
10059 {
10060 struct sched_domain *sd = env->sd;
10061
10062 /*
10063 * The imbalanced case includes the case of pinned tasks preventing a fair
10064 * distribution of the load on the system but also the even distribution of the
10065 * threads on a system with spare capacity
10066 */
10067 if ((env->migration_type == migrate_task) &&
10068 (sd->nr_balance_failed > sd->cache_nice_tries+2))
10069 return 1;
10070
10071 return 0;
10072 }
10073
need_active_balance(struct lb_env * env)10074 static int need_active_balance(struct lb_env *env)
10075 {
10076 struct sched_domain *sd = env->sd;
10077
10078 if (asym_active_balance(env))
10079 return 1;
10080
10081 if (imbalanced_active_balance(env))
10082 return 1;
10083
10084 /*
10085 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10086 * It's worth migrating the task if the src_cpu's capacity is reduced
10087 * because of other sched_class or IRQs if more capacity stays
10088 * available on dst_cpu.
10089 */
10090 if ((env->idle != CPU_NOT_IDLE) &&
10091 (env->src_rq->cfs.h_nr_running == 1)) {
10092 if ((check_cpu_capacity(env->src_rq, sd)) &&
10093 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10094 return 1;
10095 }
10096
10097 if (env->migration_type == migrate_misfit)
10098 return 1;
10099
10100 return 0;
10101 }
10102
10103 static int active_load_balance_cpu_stop(void *data);
10104
should_we_balance(struct lb_env * env)10105 static int should_we_balance(struct lb_env *env)
10106 {
10107 struct sched_group *sg = env->sd->groups;
10108 int cpu;
10109
10110 /*
10111 * Ensure the balancing environment is consistent; can happen
10112 * when the softirq triggers 'during' hotplug.
10113 */
10114 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10115 return 0;
10116
10117 /*
10118 * In the newly idle case, we will allow all the CPUs
10119 * to do the newly idle load balance.
10120 */
10121 if (env->idle == CPU_NEWLY_IDLE)
10122 return 1;
10123
10124 /* Try to find first idle CPU */
10125 for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10126 if (!idle_cpu(cpu))
10127 continue;
10128
10129 /* Are we the first idle CPU? */
10130 return cpu == env->dst_cpu;
10131 }
10132
10133 /* Are we the first CPU of this group ? */
10134 return group_balance_cpu(sg) == env->dst_cpu;
10135 }
10136
10137 /*
10138 * Check this_cpu to ensure it is balanced within domain. Attempt to move
10139 * tasks if there is an imbalance.
10140 */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10141 static int load_balance(int this_cpu, struct rq *this_rq,
10142 struct sched_domain *sd, enum cpu_idle_type idle,
10143 int *continue_balancing)
10144 {
10145 int ld_moved, cur_ld_moved, active_balance = 0;
10146 struct sched_domain *sd_parent = sd->parent;
10147 struct sched_group *group;
10148 struct rq *busiest;
10149 struct rq_flags rf;
10150 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10151
10152 struct lb_env env = {
10153 .sd = sd,
10154 .dst_cpu = this_cpu,
10155 .dst_rq = this_rq,
10156 .dst_grpmask = sched_group_span(sd->groups),
10157 .idle = idle,
10158 .loop_break = sched_nr_migrate_break,
10159 .cpus = cpus,
10160 .fbq_type = all,
10161 .tasks = LIST_HEAD_INIT(env.tasks),
10162 };
10163
10164 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10165
10166 schedstat_inc(sd->lb_count[idle]);
10167
10168 redo:
10169 if (!should_we_balance(&env)) {
10170 *continue_balancing = 0;
10171 goto out_balanced;
10172 }
10173
10174 group = find_busiest_group(&env);
10175 if (!group) {
10176 schedstat_inc(sd->lb_nobusyg[idle]);
10177 goto out_balanced;
10178 }
10179
10180 busiest = find_busiest_queue(&env, group);
10181 if (!busiest) {
10182 schedstat_inc(sd->lb_nobusyq[idle]);
10183 goto out_balanced;
10184 }
10185
10186 BUG_ON(busiest == env.dst_rq);
10187
10188 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10189
10190 env.src_cpu = busiest->cpu;
10191 env.src_rq = busiest;
10192
10193 ld_moved = 0;
10194 /* Clear this flag as soon as we find a pullable task */
10195 env.flags |= LBF_ALL_PINNED;
10196 if (busiest->nr_running > 1) {
10197 /*
10198 * Attempt to move tasks. If find_busiest_group has found
10199 * an imbalance but busiest->nr_running <= 1, the group is
10200 * still unbalanced. ld_moved simply stays zero, so it is
10201 * correctly treated as an imbalance.
10202 */
10203 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
10204
10205 more_balance:
10206 rq_lock_irqsave(busiest, &rf);
10207 env.src_rq_rf = &rf;
10208 update_rq_clock(busiest);
10209
10210 /*
10211 * cur_ld_moved - load moved in current iteration
10212 * ld_moved - cumulative load moved across iterations
10213 */
10214 cur_ld_moved = detach_tasks(&env);
10215
10216 /*
10217 * We've detached some tasks from busiest_rq. Every
10218 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10219 * unlock busiest->lock, and we are able to be sure
10220 * that nobody can manipulate the tasks in parallel.
10221 * See task_rq_lock() family for the details.
10222 */
10223
10224 rq_unlock(busiest, &rf);
10225
10226 if (cur_ld_moved) {
10227 attach_tasks(&env);
10228 ld_moved += cur_ld_moved;
10229 }
10230
10231 local_irq_restore(rf.flags);
10232
10233 if (env.flags & LBF_NEED_BREAK) {
10234 env.flags &= ~LBF_NEED_BREAK;
10235 goto more_balance;
10236 }
10237
10238 /*
10239 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10240 * us and move them to an alternate dst_cpu in our sched_group
10241 * where they can run. The upper limit on how many times we
10242 * iterate on same src_cpu is dependent on number of CPUs in our
10243 * sched_group.
10244 *
10245 * This changes load balance semantics a bit on who can move
10246 * load to a given_cpu. In addition to the given_cpu itself
10247 * (or a ilb_cpu acting on its behalf where given_cpu is
10248 * nohz-idle), we now have balance_cpu in a position to move
10249 * load to given_cpu. In rare situations, this may cause
10250 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10251 * _independently_ and at _same_ time to move some load to
10252 * given_cpu) causing excess load to be moved to given_cpu.
10253 * This however should not happen so much in practice and
10254 * moreover subsequent load balance cycles should correct the
10255 * excess load moved.
10256 */
10257 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10258
10259 /* Prevent to re-select dst_cpu via env's CPUs */
10260 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
10261
10262 env.dst_rq = cpu_rq(env.new_dst_cpu);
10263 env.dst_cpu = env.new_dst_cpu;
10264 env.flags &= ~LBF_DST_PINNED;
10265 env.loop = 0;
10266 env.loop_break = sched_nr_migrate_break;
10267
10268 /*
10269 * Go back to "more_balance" rather than "redo" since we
10270 * need to continue with same src_cpu.
10271 */
10272 goto more_balance;
10273 }
10274
10275 /*
10276 * We failed to reach balance because of affinity.
10277 */
10278 if (sd_parent) {
10279 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10280
10281 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10282 *group_imbalance = 1;
10283 }
10284
10285 /* All tasks on this runqueue were pinned by CPU affinity */
10286 if (unlikely(env.flags & LBF_ALL_PINNED)) {
10287 __cpumask_clear_cpu(cpu_of(busiest), cpus);
10288 /*
10289 * Attempting to continue load balancing at the current
10290 * sched_domain level only makes sense if there are
10291 * active CPUs remaining as possible busiest CPUs to
10292 * pull load from which are not contained within the
10293 * destination group that is receiving any migrated
10294 * load.
10295 */
10296 if (!cpumask_subset(cpus, env.dst_grpmask)) {
10297 env.loop = 0;
10298 env.loop_break = sched_nr_migrate_break;
10299 goto redo;
10300 }
10301 goto out_all_pinned;
10302 }
10303 }
10304
10305 if (!ld_moved) {
10306 schedstat_inc(sd->lb_failed[idle]);
10307 /*
10308 * Increment the failure counter only on periodic balance.
10309 * We do not want newidle balance, which can be very
10310 * frequent, pollute the failure counter causing
10311 * excessive cache_hot migrations and active balances.
10312 */
10313 if (idle != CPU_NEWLY_IDLE)
10314 sd->nr_balance_failed++;
10315
10316 if (need_active_balance(&env)) {
10317 unsigned long flags;
10318
10319 raw_spin_rq_lock_irqsave(busiest, flags);
10320
10321 /*
10322 * Don't kick the active_load_balance_cpu_stop,
10323 * if the curr task on busiest CPU can't be
10324 * moved to this_cpu:
10325 */
10326 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10327 raw_spin_rq_unlock_irqrestore(busiest, flags);
10328 goto out_one_pinned;
10329 }
10330
10331 /* Record that we found at least one task that could run on this_cpu */
10332 env.flags &= ~LBF_ALL_PINNED;
10333
10334 /*
10335 * ->active_balance synchronizes accesses to
10336 * ->active_balance_work. Once set, it's cleared
10337 * only after active load balance is finished.
10338 */
10339 if (!busiest->active_balance) {
10340 busiest->active_balance = 1;
10341 busiest->push_cpu = this_cpu;
10342 active_balance = 1;
10343 }
10344
10345 preempt_disable();
10346 raw_spin_rq_unlock_irqrestore(busiest, flags);
10347 if (active_balance) {
10348 stop_one_cpu_nowait(cpu_of(busiest),
10349 active_load_balance_cpu_stop, busiest,
10350 &busiest->active_balance_work);
10351 }
10352 preempt_enable();
10353 }
10354 } else {
10355 sd->nr_balance_failed = 0;
10356 }
10357
10358 if (likely(!active_balance) || need_active_balance(&env)) {
10359 /* We were unbalanced, so reset the balancing interval */
10360 sd->balance_interval = sd->min_interval;
10361 }
10362
10363 goto out;
10364
10365 out_balanced:
10366 /*
10367 * We reach balance although we may have faced some affinity
10368 * constraints. Clear the imbalance flag only if other tasks got
10369 * a chance to move and fix the imbalance.
10370 */
10371 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10372 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10373
10374 if (*group_imbalance)
10375 *group_imbalance = 0;
10376 }
10377
10378 out_all_pinned:
10379 /*
10380 * We reach balance because all tasks are pinned at this level so
10381 * we can't migrate them. Let the imbalance flag set so parent level
10382 * can try to migrate them.
10383 */
10384 schedstat_inc(sd->lb_balanced[idle]);
10385
10386 sd->nr_balance_failed = 0;
10387
10388 out_one_pinned:
10389 ld_moved = 0;
10390
10391 /*
10392 * newidle_balance() disregards balance intervals, so we could
10393 * repeatedly reach this code, which would lead to balance_interval
10394 * skyrocketing in a short amount of time. Skip the balance_interval
10395 * increase logic to avoid that.
10396 */
10397 if (env.idle == CPU_NEWLY_IDLE)
10398 goto out;
10399
10400 /* tune up the balancing interval */
10401 if ((env.flags & LBF_ALL_PINNED &&
10402 sd->balance_interval < MAX_PINNED_INTERVAL) ||
10403 sd->balance_interval < sd->max_interval)
10404 sd->balance_interval *= 2;
10405 out:
10406 return ld_moved;
10407 }
10408
10409 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10410 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10411 {
10412 unsigned long interval = sd->balance_interval;
10413
10414 if (cpu_busy)
10415 interval *= sd->busy_factor;
10416
10417 /* scale ms to jiffies */
10418 interval = msecs_to_jiffies(interval);
10419
10420 /*
10421 * Reduce likelihood of busy balancing at higher domains racing with
10422 * balancing at lower domains by preventing their balancing periods
10423 * from being multiples of each other.
10424 */
10425 if (cpu_busy)
10426 interval -= 1;
10427
10428 interval = clamp(interval, 1UL, max_load_balance_interval);
10429
10430 return interval;
10431 }
10432
10433 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10434 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10435 {
10436 unsigned long interval, next;
10437
10438 /* used by idle balance, so cpu_busy = 0 */
10439 interval = get_sd_balance_interval(sd, 0);
10440 next = sd->last_balance + interval;
10441
10442 if (time_after(*next_balance, next))
10443 *next_balance = next;
10444 }
10445
10446 /*
10447 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10448 * running tasks off the busiest CPU onto idle CPUs. It requires at
10449 * least 1 task to be running on each physical CPU where possible, and
10450 * avoids physical / logical imbalances.
10451 */
active_load_balance_cpu_stop(void * data)10452 static int active_load_balance_cpu_stop(void *data)
10453 {
10454 struct rq *busiest_rq = data;
10455 int busiest_cpu = cpu_of(busiest_rq);
10456 int target_cpu = busiest_rq->push_cpu;
10457 struct rq *target_rq = cpu_rq(target_cpu);
10458 struct sched_domain *sd;
10459 struct task_struct *p = NULL;
10460 struct rq_flags rf;
10461
10462 rq_lock_irq(busiest_rq, &rf);
10463 /*
10464 * Between queueing the stop-work and running it is a hole in which
10465 * CPUs can become inactive. We should not move tasks from or to
10466 * inactive CPUs.
10467 */
10468 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10469 goto out_unlock;
10470
10471 /* Make sure the requested CPU hasn't gone down in the meantime: */
10472 if (unlikely(busiest_cpu != smp_processor_id() ||
10473 !busiest_rq->active_balance))
10474 goto out_unlock;
10475
10476 /* Is there any task to move? */
10477 if (busiest_rq->nr_running <= 1)
10478 goto out_unlock;
10479
10480 /*
10481 * This condition is "impossible", if it occurs
10482 * we need to fix it. Originally reported by
10483 * Bjorn Helgaas on a 128-CPU setup.
10484 */
10485 BUG_ON(busiest_rq == target_rq);
10486
10487 /* Search for an sd spanning us and the target CPU. */
10488 rcu_read_lock();
10489 for_each_domain(target_cpu, sd) {
10490 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10491 break;
10492 }
10493
10494 if (likely(sd)) {
10495 struct lb_env env = {
10496 .sd = sd,
10497 .dst_cpu = target_cpu,
10498 .dst_rq = target_rq,
10499 .src_cpu = busiest_rq->cpu,
10500 .src_rq = busiest_rq,
10501 .idle = CPU_IDLE,
10502 .flags = LBF_ACTIVE_LB,
10503 .src_rq_rf = &rf,
10504 };
10505
10506 schedstat_inc(sd->alb_count);
10507 update_rq_clock(busiest_rq);
10508
10509 p = detach_one_task(&env);
10510 if (p) {
10511 schedstat_inc(sd->alb_pushed);
10512 /* Active balancing done, reset the failure counter. */
10513 sd->nr_balance_failed = 0;
10514 } else {
10515 schedstat_inc(sd->alb_failed);
10516 }
10517 }
10518 rcu_read_unlock();
10519 out_unlock:
10520 busiest_rq->active_balance = 0;
10521 rq_unlock(busiest_rq, &rf);
10522
10523 if (p)
10524 attach_one_task(target_rq, p);
10525
10526 local_irq_enable();
10527
10528 return 0;
10529 }
10530
10531 static DEFINE_SPINLOCK(balancing);
10532
10533 /*
10534 * Scale the max load_balance interval with the number of CPUs in the system.
10535 * This trades load-balance latency on larger machines for less cross talk.
10536 */
update_max_interval(void)10537 void update_max_interval(void)
10538 {
10539 max_load_balance_interval = HZ*num_online_cpus()/10;
10540 }
10541
10542 /*
10543 * It checks each scheduling domain to see if it is due to be balanced,
10544 * and initiates a balancing operation if so.
10545 *
10546 * Balancing parameters are set up in init_sched_domains.
10547 */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10548 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10549 {
10550 int continue_balancing = 1;
10551 int cpu = rq->cpu;
10552 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10553 unsigned long interval;
10554 struct sched_domain *sd;
10555 /* Earliest time when we have to do rebalance again */
10556 unsigned long next_balance = jiffies + 60*HZ;
10557 int update_next_balance = 0;
10558 int need_serialize, need_decay = 0;
10559 u64 max_cost = 0;
10560
10561 trace_android_rvh_sched_rebalance_domains(rq, &continue_balancing);
10562 if (!continue_balancing)
10563 return;
10564
10565 rcu_read_lock();
10566 for_each_domain(cpu, sd) {
10567 /*
10568 * Decay the newidle max times here because this is a regular
10569 * visit to all the domains. Decay ~1% per second.
10570 */
10571 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10572 sd->max_newidle_lb_cost =
10573 (sd->max_newidle_lb_cost * 253) / 256;
10574 sd->next_decay_max_lb_cost = jiffies + HZ;
10575 need_decay = 1;
10576 }
10577 max_cost += sd->max_newidle_lb_cost;
10578
10579 /*
10580 * Stop the load balance at this level. There is another
10581 * CPU in our sched group which is doing load balancing more
10582 * actively.
10583 */
10584 if (!continue_balancing) {
10585 if (need_decay)
10586 continue;
10587 break;
10588 }
10589
10590 interval = get_sd_balance_interval(sd, busy);
10591
10592 need_serialize = sd->flags & SD_SERIALIZE;
10593 if (need_serialize) {
10594 if (!spin_trylock(&balancing))
10595 goto out;
10596 }
10597
10598 if (time_after_eq(jiffies, sd->last_balance + interval)) {
10599 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10600 /*
10601 * The LBF_DST_PINNED logic could have changed
10602 * env->dst_cpu, so we can't know our idle
10603 * state even if we migrated tasks. Update it.
10604 */
10605 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10606 busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10607 }
10608 sd->last_balance = jiffies;
10609 interval = get_sd_balance_interval(sd, busy);
10610 }
10611 if (need_serialize)
10612 spin_unlock(&balancing);
10613 out:
10614 if (time_after(next_balance, sd->last_balance + interval)) {
10615 next_balance = sd->last_balance + interval;
10616 update_next_balance = 1;
10617 }
10618 }
10619 if (need_decay) {
10620 /*
10621 * Ensure the rq-wide value also decays but keep it at a
10622 * reasonable floor to avoid funnies with rq->avg_idle.
10623 */
10624 rq->max_idle_balance_cost =
10625 max((u64)sysctl_sched_migration_cost, max_cost);
10626 }
10627 rcu_read_unlock();
10628
10629 /*
10630 * next_balance will be updated only when there is a need.
10631 * When the cpu is attached to null domain for ex, it will not be
10632 * updated.
10633 */
10634 if (likely(update_next_balance))
10635 rq->next_balance = next_balance;
10636
10637 }
10638
on_null_domain(struct rq * rq)10639 static inline int on_null_domain(struct rq *rq)
10640 {
10641 return unlikely(!rcu_dereference_sched(rq->sd));
10642 }
10643
10644 #ifdef CONFIG_NO_HZ_COMMON
10645 /*
10646 * idle load balancing details
10647 * - When one of the busy CPUs notice that there may be an idle rebalancing
10648 * needed, they will kick the idle load balancer, which then does idle
10649 * load balancing for all the idle CPUs.
10650 * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10651 * anywhere yet.
10652 */
10653
find_new_ilb(void)10654 static inline int find_new_ilb(void)
10655 {
10656 int ilb = -1;
10657 const struct cpumask *hk_mask;
10658
10659 trace_android_rvh_find_new_ilb(nohz.idle_cpus_mask, &ilb);
10660 if (ilb >= 0)
10661 return ilb;
10662
10663 hk_mask = housekeeping_cpumask(HK_FLAG_MISC);
10664
10665 for_each_cpu_and(ilb, nohz.idle_cpus_mask, hk_mask) {
10666
10667 if (ilb == smp_processor_id())
10668 continue;
10669
10670 if (idle_cpu(ilb))
10671 return ilb;
10672 }
10673
10674 return nr_cpu_ids;
10675 }
10676
10677 /*
10678 * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10679 * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10680 */
kick_ilb(unsigned int flags)10681 static void kick_ilb(unsigned int flags)
10682 {
10683 int ilb_cpu;
10684
10685 /*
10686 * Increase nohz.next_balance only when if full ilb is triggered but
10687 * not if we only update stats.
10688 */
10689 if (flags & NOHZ_BALANCE_KICK)
10690 nohz.next_balance = jiffies+1;
10691
10692 ilb_cpu = find_new_ilb();
10693
10694 if (ilb_cpu >= nr_cpu_ids)
10695 return;
10696
10697 /*
10698 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10699 * the first flag owns it; cleared by nohz_csd_func().
10700 */
10701 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10702 if (flags & NOHZ_KICK_MASK)
10703 return;
10704
10705 /*
10706 * This way we generate an IPI on the target CPU which
10707 * is idle. And the softirq performing nohz idle load balance
10708 * will be run before returning from the IPI.
10709 */
10710 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10711 }
10712
10713 /*
10714 * Current decision point for kicking the idle load balancer in the presence
10715 * of idle CPUs in the system.
10716 */
nohz_balancer_kick(struct rq * rq)10717 static void nohz_balancer_kick(struct rq *rq)
10718 {
10719 unsigned long now = jiffies;
10720 struct sched_domain_shared *sds;
10721 struct sched_domain *sd;
10722 int nr_busy, i, cpu = rq->cpu;
10723 unsigned int flags = 0;
10724 int done = 0;
10725
10726 if (unlikely(rq->idle_balance))
10727 return;
10728
10729 /*
10730 * We may be recently in ticked or tickless idle mode. At the first
10731 * busy tick after returning from idle, we will update the busy stats.
10732 */
10733 nohz_balance_exit_idle(rq);
10734
10735 /*
10736 * None are in tickless mode and hence no need for NOHZ idle load
10737 * balancing.
10738 */
10739 if (likely(!atomic_read(&nohz.nr_cpus)))
10740 return;
10741
10742 if (READ_ONCE(nohz.has_blocked) &&
10743 time_after(now, READ_ONCE(nohz.next_blocked)))
10744 flags = NOHZ_STATS_KICK;
10745
10746 if (time_before(now, nohz.next_balance))
10747 goto out;
10748
10749 trace_android_rvh_sched_nohz_balancer_kick(rq, &flags, &done);
10750 if (done)
10751 goto out;
10752
10753 if (rq->nr_running >= 2) {
10754 flags = NOHZ_KICK_MASK;
10755 goto out;
10756 }
10757
10758 rcu_read_lock();
10759
10760 sd = rcu_dereference(rq->sd);
10761 if (sd) {
10762 /*
10763 * If there's a CFS task and the current CPU has reduced
10764 * capacity; kick the ILB to see if there's a better CPU to run
10765 * on.
10766 */
10767 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10768 flags = NOHZ_KICK_MASK;
10769 goto unlock;
10770 }
10771 }
10772
10773 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10774 if (sd) {
10775 /*
10776 * When ASYM_PACKING; see if there's a more preferred CPU
10777 * currently idle; in which case, kick the ILB to move tasks
10778 * around.
10779 */
10780 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
10781 if (sched_asym_prefer(i, cpu)) {
10782 flags = NOHZ_KICK_MASK;
10783 goto unlock;
10784 }
10785 }
10786 }
10787
10788 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10789 if (sd) {
10790 /*
10791 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10792 * to run the misfit task on.
10793 */
10794 if (check_misfit_status(rq, sd)) {
10795 flags = NOHZ_KICK_MASK;
10796 goto unlock;
10797 }
10798
10799 /*
10800 * For asymmetric systems, we do not want to nicely balance
10801 * cache use, instead we want to embrace asymmetry and only
10802 * ensure tasks have enough CPU capacity.
10803 *
10804 * Skip the LLC logic because it's not relevant in that case.
10805 */
10806 goto unlock;
10807 }
10808
10809 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10810 if (sds) {
10811 /*
10812 * If there is an imbalance between LLC domains (IOW we could
10813 * increase the overall cache use), we need some less-loaded LLC
10814 * domain to pull some load. Likewise, we may need to spread
10815 * load within the current LLC domain (e.g. packed SMT cores but
10816 * other CPUs are idle). We can't really know from here how busy
10817 * the others are - so just get a nohz balance going if it looks
10818 * like this LLC domain has tasks we could move.
10819 */
10820 nr_busy = atomic_read(&sds->nr_busy_cpus);
10821 if (nr_busy > 1) {
10822 flags = NOHZ_KICK_MASK;
10823 goto unlock;
10824 }
10825 }
10826 unlock:
10827 rcu_read_unlock();
10828 out:
10829 if (flags)
10830 kick_ilb(flags);
10831 }
10832
set_cpu_sd_state_busy(int cpu)10833 static void set_cpu_sd_state_busy(int cpu)
10834 {
10835 struct sched_domain *sd;
10836
10837 rcu_read_lock();
10838 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10839
10840 if (!sd || !sd->nohz_idle)
10841 goto unlock;
10842 sd->nohz_idle = 0;
10843
10844 atomic_inc(&sd->shared->nr_busy_cpus);
10845 unlock:
10846 rcu_read_unlock();
10847 }
10848
nohz_balance_exit_idle(struct rq * rq)10849 void nohz_balance_exit_idle(struct rq *rq)
10850 {
10851 SCHED_WARN_ON(rq != this_rq());
10852
10853 if (likely(!rq->nohz_tick_stopped))
10854 return;
10855
10856 rq->nohz_tick_stopped = 0;
10857 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10858 atomic_dec(&nohz.nr_cpus);
10859
10860 set_cpu_sd_state_busy(rq->cpu);
10861 }
10862
set_cpu_sd_state_idle(int cpu)10863 static void set_cpu_sd_state_idle(int cpu)
10864 {
10865 struct sched_domain *sd;
10866
10867 rcu_read_lock();
10868 sd = rcu_dereference(per_cpu(sd_llc, cpu));
10869
10870 if (!sd || sd->nohz_idle)
10871 goto unlock;
10872 sd->nohz_idle = 1;
10873
10874 atomic_dec(&sd->shared->nr_busy_cpus);
10875 unlock:
10876 rcu_read_unlock();
10877 }
10878
10879 /*
10880 * This routine will record that the CPU is going idle with tick stopped.
10881 * This info will be used in performing idle load balancing in the future.
10882 */
nohz_balance_enter_idle(int cpu)10883 void nohz_balance_enter_idle(int cpu)
10884 {
10885 struct rq *rq = cpu_rq(cpu);
10886
10887 SCHED_WARN_ON(cpu != smp_processor_id());
10888
10889 /* If this CPU is going down, then nothing needs to be done: */
10890 if (!cpu_active(cpu))
10891 return;
10892
10893 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
10894 if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10895 return;
10896
10897 /*
10898 * Can be set safely without rq->lock held
10899 * If a clear happens, it will have evaluated last additions because
10900 * rq->lock is held during the check and the clear
10901 */
10902 rq->has_blocked_load = 1;
10903
10904 /*
10905 * The tick is still stopped but load could have been added in the
10906 * meantime. We set the nohz.has_blocked flag to trig a check of the
10907 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
10908 * of nohz.has_blocked can only happen after checking the new load
10909 */
10910 if (rq->nohz_tick_stopped)
10911 goto out;
10912
10913 /* If we're a completely isolated CPU, we don't play: */
10914 if (on_null_domain(rq))
10915 return;
10916
10917 rq->nohz_tick_stopped = 1;
10918
10919 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
10920 atomic_inc(&nohz.nr_cpus);
10921
10922 /*
10923 * Ensures that if nohz_idle_balance() fails to observe our
10924 * @idle_cpus_mask store, it must observe the @has_blocked
10925 * store.
10926 */
10927 smp_mb__after_atomic();
10928
10929 set_cpu_sd_state_idle(cpu);
10930
10931 out:
10932 /*
10933 * Each time a cpu enter idle, we assume that it has blocked load and
10934 * enable the periodic update of the load of idle cpus
10935 */
10936 WRITE_ONCE(nohz.has_blocked, 1);
10937 }
10938
update_nohz_stats(struct rq * rq)10939 static bool update_nohz_stats(struct rq *rq)
10940 {
10941 unsigned int cpu = rq->cpu;
10942
10943 if (!rq->has_blocked_load)
10944 return false;
10945
10946 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
10947 return false;
10948
10949 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
10950 return true;
10951
10952 update_blocked_averages(cpu);
10953
10954 return rq->has_blocked_load;
10955 }
10956
10957 /*
10958 * Internal function that runs load balance for all idle cpus. The load balance
10959 * can be a simple update of blocked load or a complete load balance with
10960 * tasks movement depending of flags.
10961 */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)10962 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
10963 enum cpu_idle_type idle)
10964 {
10965 /* Earliest time when we have to do rebalance again */
10966 unsigned long now = jiffies;
10967 unsigned long next_balance = now + 60*HZ;
10968 bool has_blocked_load = false;
10969 int update_next_balance = 0;
10970 int this_cpu = this_rq->cpu;
10971 int balance_cpu;
10972 struct rq *rq;
10973
10974 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
10975
10976 /*
10977 * We assume there will be no idle load after this update and clear
10978 * the has_blocked flag. If a cpu enters idle in the mean time, it will
10979 * set the has_blocked flag and trig another update of idle load.
10980 * Because a cpu that becomes idle, is added to idle_cpus_mask before
10981 * setting the flag, we are sure to not clear the state and not
10982 * check the load of an idle cpu.
10983 */
10984 WRITE_ONCE(nohz.has_blocked, 0);
10985
10986 /*
10987 * Ensures that if we miss the CPU, we must see the has_blocked
10988 * store from nohz_balance_enter_idle().
10989 */
10990 smp_mb();
10991
10992 /*
10993 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
10994 * chance for other idle cpu to pull load.
10995 */
10996 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
10997 if (!idle_cpu(balance_cpu))
10998 continue;
10999
11000 /*
11001 * If this CPU gets work to do, stop the load balancing
11002 * work being done for other CPUs. Next load
11003 * balancing owner will pick it up.
11004 */
11005 if (need_resched()) {
11006 has_blocked_load = true;
11007 goto abort;
11008 }
11009
11010 rq = cpu_rq(balance_cpu);
11011
11012 has_blocked_load |= update_nohz_stats(rq);
11013
11014 /*
11015 * If time for next balance is due,
11016 * do the balance.
11017 */
11018 if (time_after_eq(jiffies, rq->next_balance)) {
11019 struct rq_flags rf;
11020
11021 rq_lock_irqsave(rq, &rf);
11022 update_rq_clock(rq);
11023 rq_unlock_irqrestore(rq, &rf);
11024
11025 if (flags & NOHZ_BALANCE_KICK)
11026 rebalance_domains(rq, CPU_IDLE);
11027 }
11028
11029 if (time_after(next_balance, rq->next_balance)) {
11030 next_balance = rq->next_balance;
11031 update_next_balance = 1;
11032 }
11033 }
11034
11035 /*
11036 * next_balance will be updated only when there is a need.
11037 * When the CPU is attached to null domain for ex, it will not be
11038 * updated.
11039 */
11040 if (likely(update_next_balance))
11041 nohz.next_balance = next_balance;
11042
11043 WRITE_ONCE(nohz.next_blocked,
11044 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11045
11046 abort:
11047 /* There is still blocked load, enable periodic update */
11048 if (has_blocked_load)
11049 WRITE_ONCE(nohz.has_blocked, 1);
11050 }
11051
11052 /*
11053 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11054 * rebalancing for all the cpus for whom scheduler ticks are stopped.
11055 */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11056 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11057 {
11058 unsigned int flags = this_rq->nohz_idle_balance;
11059
11060 if (!flags)
11061 return false;
11062
11063 this_rq->nohz_idle_balance = 0;
11064
11065 if (idle != CPU_IDLE)
11066 return false;
11067
11068 _nohz_idle_balance(this_rq, flags, idle);
11069
11070 return true;
11071 }
11072
11073 /*
11074 * Check if we need to run the ILB for updating blocked load before entering
11075 * idle state.
11076 */
nohz_run_idle_balance(int cpu)11077 void nohz_run_idle_balance(int cpu)
11078 {
11079 unsigned int flags;
11080
11081 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
11082
11083 /*
11084 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
11085 * (ie NOHZ_STATS_KICK set) and will do the same.
11086 */
11087 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
11088 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK, CPU_IDLE);
11089 }
11090
nohz_newidle_balance(struct rq * this_rq)11091 static void nohz_newidle_balance(struct rq *this_rq)
11092 {
11093 int this_cpu = this_rq->cpu;
11094
11095 /*
11096 * This CPU doesn't want to be disturbed by scheduler
11097 * housekeeping
11098 */
11099 if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
11100 return;
11101
11102 /* Will wake up very soon. No time for doing anything else*/
11103 if (this_rq->avg_idle < sysctl_sched_migration_cost)
11104 return;
11105
11106 /* Don't need to update blocked load of idle CPUs*/
11107 if (!READ_ONCE(nohz.has_blocked) ||
11108 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11109 return;
11110
11111 /*
11112 * Set the need to trigger ILB in order to update blocked load
11113 * before entering idle state.
11114 */
11115 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
11116 }
11117
11118 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)11119 static inline void nohz_balancer_kick(struct rq *rq) { }
11120
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11121 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11122 {
11123 return false;
11124 }
11125
nohz_newidle_balance(struct rq * this_rq)11126 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11127 #endif /* CONFIG_NO_HZ_COMMON */
11128
11129 /*
11130 * newidle_balance is called by schedule() if this_cpu is about to become
11131 * idle. Attempts to pull tasks from other CPUs.
11132 *
11133 * Returns:
11134 * < 0 - we released the lock and there are !fair tasks present
11135 * 0 - failed, no new tasks
11136 * > 0 - success, new (fair) tasks present
11137 */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)11138 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11139 {
11140 unsigned long next_balance = jiffies + HZ;
11141 int this_cpu = this_rq->cpu;
11142 struct sched_domain *sd;
11143 int pulled_task = 0;
11144 u64 curr_cost = 0;
11145 int done = 0;
11146
11147 trace_android_rvh_sched_newidle_balance(this_rq, rf, &pulled_task, &done);
11148 if (done)
11149 return pulled_task;
11150
11151 update_misfit_status(NULL, this_rq);
11152
11153 /*
11154 * There is a task waiting to run. No need to search for one.
11155 * Return 0; the task will be enqueued when switching to idle.
11156 */
11157 if (this_rq->ttwu_pending)
11158 return 0;
11159
11160 /*
11161 * We must set idle_stamp _before_ calling idle_balance(), such that we
11162 * measure the duration of idle_balance() as idle time.
11163 */
11164 this_rq->idle_stamp = rq_clock(this_rq);
11165
11166 /*
11167 * Do not pull tasks towards !active CPUs...
11168 */
11169 if (!cpu_active(this_cpu))
11170 return 0;
11171
11172 /*
11173 * This is OK, because current is on_cpu, which avoids it being picked
11174 * for load-balance and preemption/IRQs are still disabled avoiding
11175 * further scheduler activity on it and we're being very careful to
11176 * re-start the picking loop.
11177 */
11178 rq_unpin_lock(this_rq, rf);
11179
11180 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
11181 !READ_ONCE(this_rq->rd->overload)) {
11182
11183 rcu_read_lock();
11184 sd = rcu_dereference_check_sched_domain(this_rq->sd);
11185 if (sd)
11186 update_next_balance(sd, &next_balance);
11187 rcu_read_unlock();
11188
11189 goto out;
11190 }
11191
11192 raw_spin_rq_unlock(this_rq);
11193
11194 update_blocked_averages(this_cpu);
11195 rcu_read_lock();
11196 for_each_domain(this_cpu, sd) {
11197 int continue_balancing = 1;
11198 u64 t0, domain_cost;
11199
11200 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
11201 update_next_balance(sd, &next_balance);
11202 break;
11203 }
11204
11205 if (sd->flags & SD_BALANCE_NEWIDLE) {
11206 t0 = sched_clock_cpu(this_cpu);
11207
11208 pulled_task = load_balance(this_cpu, this_rq,
11209 sd, CPU_NEWLY_IDLE,
11210 &continue_balancing);
11211
11212 domain_cost = sched_clock_cpu(this_cpu) - t0;
11213 if (domain_cost > sd->max_newidle_lb_cost)
11214 sd->max_newidle_lb_cost = domain_cost;
11215
11216 curr_cost += domain_cost;
11217 }
11218
11219 update_next_balance(sd, &next_balance);
11220
11221 /*
11222 * Stop searching for tasks to pull if there are
11223 * now runnable tasks on this rq.
11224 */
11225 if (pulled_task || this_rq->nr_running > 0 ||
11226 this_rq->ttwu_pending)
11227 break;
11228 }
11229 rcu_read_unlock();
11230
11231 raw_spin_rq_lock(this_rq);
11232
11233 if (curr_cost > this_rq->max_idle_balance_cost)
11234 this_rq->max_idle_balance_cost = curr_cost;
11235
11236 /*
11237 * While browsing the domains, we released the rq lock, a task could
11238 * have been enqueued in the meantime. Since we're not going idle,
11239 * pretend we pulled a task.
11240 */
11241 if (this_rq->cfs.h_nr_running && !pulled_task)
11242 pulled_task = 1;
11243
11244 /* Is there a task of a high priority class? */
11245 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11246 pulled_task = -1;
11247
11248 out:
11249 /* Move the next balance forward */
11250 if (time_after(this_rq->next_balance, next_balance))
11251 this_rq->next_balance = next_balance;
11252
11253 if (pulled_task)
11254 this_rq->idle_stamp = 0;
11255 else
11256 nohz_newidle_balance(this_rq);
11257
11258 rq_repin_lock(this_rq, rf);
11259
11260 return pulled_task;
11261 }
11262
11263 /*
11264 * run_rebalance_domains is triggered when needed from the scheduler tick.
11265 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11266 */
run_rebalance_domains(struct softirq_action * h)11267 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11268 {
11269 struct rq *this_rq = this_rq();
11270 enum cpu_idle_type idle = this_rq->idle_balance ?
11271 CPU_IDLE : CPU_NOT_IDLE;
11272
11273 /*
11274 * If this CPU has a pending nohz_balance_kick, then do the
11275 * balancing on behalf of the other idle CPUs whose ticks are
11276 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11277 * give the idle CPUs a chance to load balance. Else we may
11278 * load balance only within the local sched_domain hierarchy
11279 * and abort nohz_idle_balance altogether if we pull some load.
11280 */
11281 if (nohz_idle_balance(this_rq, idle))
11282 return;
11283
11284 /* normal load balance */
11285 update_blocked_averages(this_rq->cpu);
11286 rebalance_domains(this_rq, idle);
11287 }
11288
11289 /*
11290 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11291 */
trigger_load_balance(struct rq * rq)11292 void trigger_load_balance(struct rq *rq)
11293 {
11294 /*
11295 * Don't need to rebalance while attached to NULL domain or
11296 * runqueue CPU is not active
11297 */
11298 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
11299 return;
11300
11301 if (time_after_eq(jiffies, rq->next_balance))
11302 raise_softirq(SCHED_SOFTIRQ);
11303
11304 nohz_balancer_kick(rq);
11305 }
11306
rq_online_fair(struct rq * rq)11307 static void rq_online_fair(struct rq *rq)
11308 {
11309 update_sysctl();
11310
11311 update_runtime_enabled(rq);
11312 }
11313
rq_offline_fair(struct rq * rq)11314 static void rq_offline_fair(struct rq *rq)
11315 {
11316 update_sysctl();
11317
11318 /* Ensure any throttled groups are reachable by pick_next_task */
11319 unthrottle_offline_cfs_rqs(rq);
11320 }
11321
11322 #endif /* CONFIG_SMP */
11323
11324 #ifdef CONFIG_SCHED_CORE
11325 static inline bool
__entity_slice_used(struct sched_entity * se,int min_nr_tasks)11326 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
11327 {
11328 u64 slice = sched_slice(cfs_rq_of(se), se);
11329 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
11330
11331 return (rtime * min_nr_tasks > slice);
11332 }
11333
11334 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
task_tick_core(struct rq * rq,struct task_struct * curr)11335 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
11336 {
11337 if (!sched_core_enabled(rq))
11338 return;
11339
11340 /*
11341 * If runqueue has only one task which used up its slice and
11342 * if the sibling is forced idle, then trigger schedule to
11343 * give forced idle task a chance.
11344 *
11345 * sched_slice() considers only this active rq and it gets the
11346 * whole slice. But during force idle, we have siblings acting
11347 * like a single runqueue and hence we need to consider runnable
11348 * tasks on this CPU and the forced idle CPU. Ideally, we should
11349 * go through the forced idle rq, but that would be a perf hit.
11350 * We can assume that the forced idle CPU has at least
11351 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
11352 * if we need to give up the CPU.
11353 */
11354 if (rq->core->core_forceidle && rq->cfs.nr_running == 1 &&
11355 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
11356 resched_curr(rq);
11357 }
11358
11359 /*
11360 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
11361 */
se_fi_update(struct sched_entity * se,unsigned int fi_seq,bool forceidle)11362 static void se_fi_update(struct sched_entity *se, unsigned int fi_seq, bool forceidle)
11363 {
11364 for_each_sched_entity(se) {
11365 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11366
11367 if (forceidle) {
11368 if (cfs_rq->forceidle_seq == fi_seq)
11369 break;
11370 cfs_rq->forceidle_seq = fi_seq;
11371 }
11372
11373 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
11374 }
11375 }
11376
task_vruntime_update(struct rq * rq,struct task_struct * p,bool in_fi)11377 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
11378 {
11379 struct sched_entity *se = &p->se;
11380
11381 if (p->sched_class != &fair_sched_class)
11382 return;
11383
11384 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
11385 }
11386
cfs_prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)11387 bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
11388 {
11389 struct rq *rq = task_rq(a);
11390 struct sched_entity *sea = &a->se;
11391 struct sched_entity *seb = &b->se;
11392 struct cfs_rq *cfs_rqa;
11393 struct cfs_rq *cfs_rqb;
11394 s64 delta;
11395
11396 SCHED_WARN_ON(task_rq(b)->core != rq->core);
11397
11398 #ifdef CONFIG_FAIR_GROUP_SCHED
11399 /*
11400 * Find an se in the hierarchy for tasks a and b, such that the se's
11401 * are immediate siblings.
11402 */
11403 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
11404 int sea_depth = sea->depth;
11405 int seb_depth = seb->depth;
11406
11407 if (sea_depth >= seb_depth)
11408 sea = parent_entity(sea);
11409 if (sea_depth <= seb_depth)
11410 seb = parent_entity(seb);
11411 }
11412
11413 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
11414 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
11415
11416 cfs_rqa = sea->cfs_rq;
11417 cfs_rqb = seb->cfs_rq;
11418 #else
11419 cfs_rqa = &task_rq(a)->cfs;
11420 cfs_rqb = &task_rq(b)->cfs;
11421 #endif
11422
11423 /*
11424 * Find delta after normalizing se's vruntime with its cfs_rq's
11425 * min_vruntime_fi, which would have been updated in prior calls
11426 * to se_fi_update().
11427 */
11428 delta = (s64)(sea->vruntime - seb->vruntime) +
11429 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
11430
11431 return delta > 0;
11432 }
11433 #else
task_tick_core(struct rq * rq,struct task_struct * curr)11434 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
11435 #endif
11436
11437 /*
11438 * scheduler tick hitting a task of our scheduling class.
11439 *
11440 * NOTE: This function can be called remotely by the tick offload that
11441 * goes along full dynticks. Therefore no local assumption can be made
11442 * and everything must be accessed through the @rq and @curr passed in
11443 * parameters.
11444 */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11445 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11446 {
11447 struct cfs_rq *cfs_rq;
11448 struct sched_entity *se = &curr->se;
11449
11450 for_each_sched_entity(se) {
11451 cfs_rq = cfs_rq_of(se);
11452 entity_tick(cfs_rq, se, queued);
11453 }
11454
11455 if (static_branch_unlikely(&sched_numa_balancing))
11456 task_tick_numa(rq, curr);
11457
11458 update_misfit_status(curr, rq);
11459 update_overutilized_status(task_rq(curr));
11460
11461 task_tick_core(rq, curr);
11462 }
11463
11464 /*
11465 * called on fork with the child task as argument from the parent's context
11466 * - child not yet on the tasklist
11467 * - preemption disabled
11468 */
task_fork_fair(struct task_struct * p)11469 static void task_fork_fair(struct task_struct *p)
11470 {
11471 struct cfs_rq *cfs_rq;
11472 struct sched_entity *se = &p->se, *curr;
11473 struct rq *rq = this_rq();
11474 struct rq_flags rf;
11475
11476 rq_lock(rq, &rf);
11477 update_rq_clock(rq);
11478
11479 cfs_rq = task_cfs_rq(current);
11480 curr = cfs_rq->curr;
11481 if (curr) {
11482 update_curr(cfs_rq);
11483 se->vruntime = curr->vruntime;
11484 }
11485 place_entity(cfs_rq, se, 1);
11486
11487 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11488 /*
11489 * Upon rescheduling, sched_class::put_prev_task() will place
11490 * 'current' within the tree based on its new key value.
11491 */
11492 swap(curr->vruntime, se->vruntime);
11493 resched_curr(rq);
11494 }
11495
11496 se->vruntime -= cfs_rq->min_vruntime;
11497 rq_unlock(rq, &rf);
11498 }
11499
11500 /*
11501 * Priority of the task has changed. Check to see if we preempt
11502 * the current task.
11503 */
11504 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11505 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11506 {
11507 if (!task_on_rq_queued(p))
11508 return;
11509
11510 if (rq->cfs.nr_running == 1)
11511 return;
11512
11513 /*
11514 * Reschedule if we are currently running on this runqueue and
11515 * our priority decreased, or if we are not currently running on
11516 * this runqueue and our priority is higher than the current's
11517 */
11518 if (task_current(rq, p)) {
11519 if (p->prio > oldprio)
11520 resched_curr(rq);
11521 } else
11522 check_preempt_curr(rq, p, 0);
11523 }
11524
vruntime_normalized(struct task_struct * p)11525 static inline bool vruntime_normalized(struct task_struct *p)
11526 {
11527 struct sched_entity *se = &p->se;
11528
11529 /*
11530 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11531 * the dequeue_entity(.flags=0) will already have normalized the
11532 * vruntime.
11533 */
11534 if (p->on_rq)
11535 return true;
11536
11537 /*
11538 * When !on_rq, vruntime of the task has usually NOT been normalized.
11539 * But there are some cases where it has already been normalized:
11540 *
11541 * - A forked child which is waiting for being woken up by
11542 * wake_up_new_task().
11543 * - A task which has been woken up by try_to_wake_up() and
11544 * waiting for actually being woken up by sched_ttwu_pending().
11545 */
11546 if (!se->sum_exec_runtime ||
11547 (READ_ONCE(p->__state) == TASK_WAKING && p->sched_remote_wakeup))
11548 return true;
11549
11550 return false;
11551 }
11552
11553 #ifdef CONFIG_FAIR_GROUP_SCHED
11554 /*
11555 * Propagate the changes of the sched_entity across the tg tree to make it
11556 * visible to the root
11557 */
propagate_entity_cfs_rq(struct sched_entity * se)11558 static void propagate_entity_cfs_rq(struct sched_entity *se)
11559 {
11560 struct cfs_rq *cfs_rq;
11561
11562 list_add_leaf_cfs_rq(cfs_rq_of(se));
11563
11564 /* Start to propagate at parent */
11565 se = se->parent;
11566
11567 for_each_sched_entity(se) {
11568 cfs_rq = cfs_rq_of(se);
11569
11570 if (!cfs_rq_throttled(cfs_rq)){
11571 update_load_avg(cfs_rq, se, UPDATE_TG);
11572 list_add_leaf_cfs_rq(cfs_rq);
11573 continue;
11574 }
11575
11576 if (list_add_leaf_cfs_rq(cfs_rq))
11577 break;
11578 }
11579 }
11580 #else
propagate_entity_cfs_rq(struct sched_entity * se)11581 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11582 #endif
11583
detach_entity_cfs_rq(struct sched_entity * se)11584 static void detach_entity_cfs_rq(struct sched_entity *se)
11585 {
11586 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11587
11588 /* Catch up with the cfs_rq and remove our load when we leave */
11589 update_load_avg(cfs_rq, se, 0);
11590 detach_entity_load_avg(cfs_rq, se);
11591 update_tg_load_avg(cfs_rq);
11592 propagate_entity_cfs_rq(se);
11593 }
11594
attach_entity_cfs_rq(struct sched_entity * se)11595 static void attach_entity_cfs_rq(struct sched_entity *se)
11596 {
11597 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11598
11599 #ifdef CONFIG_FAIR_GROUP_SCHED
11600 /*
11601 * Since the real-depth could have been changed (only FAIR
11602 * class maintain depth value), reset depth properly.
11603 */
11604 se->depth = se->parent ? se->parent->depth + 1 : 0;
11605 #endif
11606
11607 /* Synchronize entity with its cfs_rq */
11608 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11609 attach_entity_load_avg(cfs_rq, se);
11610 update_tg_load_avg(cfs_rq);
11611 propagate_entity_cfs_rq(se);
11612 }
11613
detach_task_cfs_rq(struct task_struct * p)11614 static void detach_task_cfs_rq(struct task_struct *p)
11615 {
11616 struct sched_entity *se = &p->se;
11617 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11618
11619 if (!vruntime_normalized(p)) {
11620 /*
11621 * Fix up our vruntime so that the current sleep doesn't
11622 * cause 'unlimited' sleep bonus.
11623 */
11624 place_entity(cfs_rq, se, 0);
11625 se->vruntime -= cfs_rq->min_vruntime;
11626 }
11627
11628 detach_entity_cfs_rq(se);
11629 }
11630
attach_task_cfs_rq(struct task_struct * p)11631 static void attach_task_cfs_rq(struct task_struct *p)
11632 {
11633 struct sched_entity *se = &p->se;
11634 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11635
11636 attach_entity_cfs_rq(se);
11637
11638 if (!vruntime_normalized(p))
11639 se->vruntime += cfs_rq->min_vruntime;
11640 }
11641
switched_from_fair(struct rq * rq,struct task_struct * p)11642 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11643 {
11644 detach_task_cfs_rq(p);
11645 }
11646
switched_to_fair(struct rq * rq,struct task_struct * p)11647 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11648 {
11649 attach_task_cfs_rq(p);
11650
11651 if (task_on_rq_queued(p)) {
11652 /*
11653 * We were most likely switched from sched_rt, so
11654 * kick off the schedule if running, otherwise just see
11655 * if we can still preempt the current task.
11656 */
11657 if (task_current(rq, p))
11658 resched_curr(rq);
11659 else
11660 check_preempt_curr(rq, p, 0);
11661 }
11662 }
11663
11664 /* Account for a task changing its policy or group.
11665 *
11666 * This routine is mostly called to set cfs_rq->curr field when a task
11667 * migrates between groups/classes.
11668 */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11669 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11670 {
11671 struct sched_entity *se = &p->se;
11672
11673 #ifdef CONFIG_SMP
11674 if (task_on_rq_queued(p)) {
11675 /*
11676 * Move the next running task to the front of the list, so our
11677 * cfs_tasks list becomes MRU one.
11678 */
11679 list_move(&se->group_node, &rq->cfs_tasks);
11680 }
11681 #endif
11682
11683 for_each_sched_entity(se) {
11684 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11685
11686 set_next_entity(cfs_rq, se);
11687 /* ensure bandwidth has been allocated on our new cfs_rq */
11688 account_cfs_rq_runtime(cfs_rq, 0);
11689 }
11690 }
11691
init_cfs_rq(struct cfs_rq * cfs_rq)11692 void init_cfs_rq(struct cfs_rq *cfs_rq)
11693 {
11694 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11695 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11696 #ifndef CONFIG_64BIT
11697 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11698 #endif
11699 #ifdef CONFIG_SMP
11700 raw_spin_lock_init(&cfs_rq->removed.lock);
11701 #endif
11702 }
11703
11704 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11705 static void task_set_group_fair(struct task_struct *p)
11706 {
11707 struct sched_entity *se = &p->se;
11708
11709 set_task_rq(p, task_cpu(p));
11710 se->depth = se->parent ? se->parent->depth + 1 : 0;
11711 }
11712
task_move_group_fair(struct task_struct * p)11713 static void task_move_group_fair(struct task_struct *p)
11714 {
11715 detach_task_cfs_rq(p);
11716 set_task_rq(p, task_cpu(p));
11717
11718 #ifdef CONFIG_SMP
11719 /* Tell se's cfs_rq has been changed -- migrated */
11720 p->se.avg.last_update_time = 0;
11721 #endif
11722 attach_task_cfs_rq(p);
11723 }
11724
task_change_group_fair(struct task_struct * p,int type)11725 static void task_change_group_fair(struct task_struct *p, int type)
11726 {
11727 switch (type) {
11728 case TASK_SET_GROUP:
11729 task_set_group_fair(p);
11730 break;
11731
11732 case TASK_MOVE_GROUP:
11733 task_move_group_fair(p);
11734 break;
11735 }
11736 }
11737
free_fair_sched_group(struct task_group * tg)11738 void free_fair_sched_group(struct task_group *tg)
11739 {
11740 int i;
11741
11742 for_each_possible_cpu(i) {
11743 if (tg->cfs_rq)
11744 kfree(tg->cfs_rq[i]);
11745 if (tg->se)
11746 kfree(tg->se[i]);
11747 }
11748
11749 kfree(tg->cfs_rq);
11750 kfree(tg->se);
11751 }
11752
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11753 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11754 {
11755 struct sched_entity *se;
11756 struct cfs_rq *cfs_rq;
11757 int i;
11758
11759 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11760 if (!tg->cfs_rq)
11761 goto err;
11762 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11763 if (!tg->se)
11764 goto err;
11765
11766 tg->shares = NICE_0_LOAD;
11767
11768 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11769
11770 for_each_possible_cpu(i) {
11771 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11772 GFP_KERNEL, cpu_to_node(i));
11773 if (!cfs_rq)
11774 goto err;
11775
11776 se = kzalloc_node(sizeof(struct sched_entity),
11777 GFP_KERNEL, cpu_to_node(i));
11778 if (!se)
11779 goto err_free_rq;
11780
11781 init_cfs_rq(cfs_rq);
11782 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11783 init_entity_runnable_average(se);
11784 }
11785
11786 return 1;
11787
11788 err_free_rq:
11789 kfree(cfs_rq);
11790 err:
11791 return 0;
11792 }
11793
online_fair_sched_group(struct task_group * tg)11794 void online_fair_sched_group(struct task_group *tg)
11795 {
11796 struct sched_entity *se;
11797 struct rq_flags rf;
11798 struct rq *rq;
11799 int i;
11800
11801 for_each_possible_cpu(i) {
11802 rq = cpu_rq(i);
11803 se = tg->se[i];
11804 rq_lock_irq(rq, &rf);
11805 update_rq_clock(rq);
11806 attach_entity_cfs_rq(se);
11807 sync_throttle(tg, i);
11808 rq_unlock_irq(rq, &rf);
11809 }
11810 }
11811
unregister_fair_sched_group(struct task_group * tg)11812 void unregister_fair_sched_group(struct task_group *tg)
11813 {
11814 unsigned long flags;
11815 struct rq *rq;
11816 int cpu;
11817
11818 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11819
11820 for_each_possible_cpu(cpu) {
11821 if (tg->se[cpu])
11822 remove_entity_load_avg(tg->se[cpu]);
11823
11824 /*
11825 * Only empty task groups can be destroyed; so we can speculatively
11826 * check on_list without danger of it being re-added.
11827 */
11828 if (!tg->cfs_rq[cpu]->on_list)
11829 continue;
11830
11831 rq = cpu_rq(cpu);
11832
11833 raw_spin_rq_lock_irqsave(rq, flags);
11834 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11835 raw_spin_rq_unlock_irqrestore(rq, flags);
11836 }
11837 }
11838
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)11839 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11840 struct sched_entity *se, int cpu,
11841 struct sched_entity *parent)
11842 {
11843 struct rq *rq = cpu_rq(cpu);
11844
11845 cfs_rq->tg = tg;
11846 cfs_rq->rq = rq;
11847 init_cfs_rq_runtime(cfs_rq);
11848
11849 tg->cfs_rq[cpu] = cfs_rq;
11850 tg->se[cpu] = se;
11851
11852 /* se could be NULL for root_task_group */
11853 if (!se)
11854 return;
11855
11856 if (!parent) {
11857 se->cfs_rq = &rq->cfs;
11858 se->depth = 0;
11859 } else {
11860 se->cfs_rq = parent->my_q;
11861 se->depth = parent->depth + 1;
11862 }
11863
11864 se->my_q = cfs_rq;
11865 /* guarantee group entities always have weight */
11866 update_load_set(&se->load, NICE_0_LOAD);
11867 se->parent = parent;
11868 }
11869
11870 static DEFINE_MUTEX(shares_mutex);
11871
__sched_group_set_shares(struct task_group * tg,unsigned long shares)11872 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
11873 {
11874 int i;
11875
11876 lockdep_assert_held(&shares_mutex);
11877
11878 /*
11879 * We can't change the weight of the root cgroup.
11880 */
11881 if (!tg->se[0])
11882 return -EINVAL;
11883
11884 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11885
11886 if (tg->shares == shares)
11887 return 0;
11888
11889 tg->shares = shares;
11890 for_each_possible_cpu(i) {
11891 struct rq *rq = cpu_rq(i);
11892 struct sched_entity *se = tg->se[i];
11893 struct rq_flags rf;
11894
11895 /* Propagate contribution to hierarchy */
11896 rq_lock_irqsave(rq, &rf);
11897 update_rq_clock(rq);
11898 for_each_sched_entity(se) {
11899 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11900 update_cfs_group(se);
11901 }
11902 rq_unlock_irqrestore(rq, &rf);
11903 }
11904
11905 return 0;
11906 }
11907
sched_group_set_shares(struct task_group * tg,unsigned long shares)11908 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11909 {
11910 int ret;
11911
11912 mutex_lock(&shares_mutex);
11913 if (tg_is_idle(tg))
11914 ret = -EINVAL;
11915 else
11916 ret = __sched_group_set_shares(tg, shares);
11917 mutex_unlock(&shares_mutex);
11918
11919 return ret;
11920 }
11921
sched_group_set_idle(struct task_group * tg,long idle)11922 int sched_group_set_idle(struct task_group *tg, long idle)
11923 {
11924 int i;
11925
11926 if (tg == &root_task_group)
11927 return -EINVAL;
11928
11929 if (idle < 0 || idle > 1)
11930 return -EINVAL;
11931
11932 mutex_lock(&shares_mutex);
11933
11934 if (tg->idle == idle) {
11935 mutex_unlock(&shares_mutex);
11936 return 0;
11937 }
11938
11939 tg->idle = idle;
11940
11941 for_each_possible_cpu(i) {
11942 struct rq *rq = cpu_rq(i);
11943 struct sched_entity *se = tg->se[i];
11944 struct cfs_rq *grp_cfs_rq = tg->cfs_rq[i];
11945 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
11946 long idle_task_delta;
11947 struct rq_flags rf;
11948
11949 rq_lock_irqsave(rq, &rf);
11950
11951 grp_cfs_rq->idle = idle;
11952 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
11953 goto next_cpu;
11954
11955 idle_task_delta = grp_cfs_rq->h_nr_running -
11956 grp_cfs_rq->idle_h_nr_running;
11957 if (!cfs_rq_is_idle(grp_cfs_rq))
11958 idle_task_delta *= -1;
11959
11960 for_each_sched_entity(se) {
11961 struct cfs_rq *cfs_rq = cfs_rq_of(se);
11962
11963 if (!se->on_rq)
11964 break;
11965
11966 cfs_rq->idle_h_nr_running += idle_task_delta;
11967
11968 /* Already accounted at parent level and above. */
11969 if (cfs_rq_is_idle(cfs_rq))
11970 break;
11971 }
11972
11973 next_cpu:
11974 rq_unlock_irqrestore(rq, &rf);
11975 }
11976
11977 /* Idle groups have minimum weight. */
11978 if (tg_is_idle(tg))
11979 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
11980 else
11981 __sched_group_set_shares(tg, NICE_0_LOAD);
11982
11983 mutex_unlock(&shares_mutex);
11984 return 0;
11985 }
11986
11987 #else /* CONFIG_FAIR_GROUP_SCHED */
11988
free_fair_sched_group(struct task_group * tg)11989 void free_fair_sched_group(struct task_group *tg) { }
11990
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11991 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11992 {
11993 return 1;
11994 }
11995
online_fair_sched_group(struct task_group * tg)11996 void online_fair_sched_group(struct task_group *tg) { }
11997
unregister_fair_sched_group(struct task_group * tg)11998 void unregister_fair_sched_group(struct task_group *tg) { }
11999
12000 #endif /* CONFIG_FAIR_GROUP_SCHED */
12001
12002
get_rr_interval_fair(struct rq * rq,struct task_struct * task)12003 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
12004 {
12005 struct sched_entity *se = &task->se;
12006 unsigned int rr_interval = 0;
12007
12008 /*
12009 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
12010 * idle runqueue:
12011 */
12012 if (rq->cfs.load.weight)
12013 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
12014
12015 return rr_interval;
12016 }
12017
12018 /*
12019 * All the scheduling class methods:
12020 */
12021 DEFINE_SCHED_CLASS(fair) = {
12022
12023 .enqueue_task = enqueue_task_fair,
12024 .dequeue_task = dequeue_task_fair,
12025 .yield_task = yield_task_fair,
12026 .yield_to_task = yield_to_task_fair,
12027
12028 .check_preempt_curr = check_preempt_wakeup,
12029
12030 .pick_next_task = __pick_next_task_fair,
12031 .put_prev_task = put_prev_task_fair,
12032 .set_next_task = set_next_task_fair,
12033
12034 #ifdef CONFIG_SMP
12035 .balance = balance_fair,
12036 .pick_task = pick_task_fair,
12037 .select_task_rq = select_task_rq_fair,
12038 .migrate_task_rq = migrate_task_rq_fair,
12039
12040 .rq_online = rq_online_fair,
12041 .rq_offline = rq_offline_fair,
12042
12043 .task_dead = task_dead_fair,
12044 .set_cpus_allowed = set_cpus_allowed_common,
12045 #endif
12046
12047 .task_tick = task_tick_fair,
12048 .task_fork = task_fork_fair,
12049
12050 .prio_changed = prio_changed_fair,
12051 .switched_from = switched_from_fair,
12052 .switched_to = switched_to_fair,
12053
12054 .get_rr_interval = get_rr_interval_fair,
12055
12056 .update_curr = update_curr_fair,
12057
12058 #ifdef CONFIG_FAIR_GROUP_SCHED
12059 .task_change_group = task_change_group_fair,
12060 #endif
12061
12062 #ifdef CONFIG_UCLAMP_TASK
12063 .uclamp_enabled = 1,
12064 #endif
12065 };
12066
12067 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)12068 void print_cfs_stats(struct seq_file *m, int cpu)
12069 {
12070 struct cfs_rq *cfs_rq, *pos;
12071
12072 rcu_read_lock();
12073 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12074 print_cfs_rq(m, cpu, cfs_rq);
12075 rcu_read_unlock();
12076 }
12077
12078 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)12079 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12080 {
12081 int node;
12082 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12083 struct numa_group *ng;
12084
12085 rcu_read_lock();
12086 ng = rcu_dereference(p->numa_group);
12087 for_each_online_node(node) {
12088 if (p->numa_faults) {
12089 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12090 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12091 }
12092 if (ng) {
12093 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12094 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12095 }
12096 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12097 }
12098 rcu_read_unlock();
12099 }
12100 #endif /* CONFIG_NUMA_BALANCING */
12101 #endif /* CONFIG_SCHED_DEBUG */
12102
init_sched_fair_class(void)12103 __init void init_sched_fair_class(void)
12104 {
12105 #ifdef CONFIG_SMP
12106 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12107
12108 #ifdef CONFIG_NO_HZ_COMMON
12109 nohz.next_balance = jiffies;
12110 nohz.next_blocked = jiffies;
12111 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12112 #endif
12113 #endif /* SMP */
12114
12115 }
12116
12117 /*
12118 * Helper functions to facilitate extracting info from tracepoints.
12119 */
12120
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)12121 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
12122 {
12123 #ifdef CONFIG_SMP
12124 return cfs_rq ? &cfs_rq->avg : NULL;
12125 #else
12126 return NULL;
12127 #endif
12128 }
12129 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
12130
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)12131 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
12132 {
12133 if (!cfs_rq) {
12134 if (str)
12135 strlcpy(str, "(null)", len);
12136 else
12137 return NULL;
12138 }
12139
12140 cfs_rq_tg_path(cfs_rq, str, len);
12141 return str;
12142 }
12143 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
12144
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)12145 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
12146 {
12147 return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
12148 }
12149 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
12150
sched_trace_rq_avg_rt(struct rq * rq)12151 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
12152 {
12153 #ifdef CONFIG_SMP
12154 return rq ? &rq->avg_rt : NULL;
12155 #else
12156 return NULL;
12157 #endif
12158 }
12159 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
12160
sched_trace_rq_avg_dl(struct rq * rq)12161 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
12162 {
12163 #ifdef CONFIG_SMP
12164 return rq ? &rq->avg_dl : NULL;
12165 #else
12166 return NULL;
12167 #endif
12168 }
12169 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
12170
sched_trace_rq_avg_irq(struct rq * rq)12171 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
12172 {
12173 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
12174 return rq ? &rq->avg_irq : NULL;
12175 #else
12176 return NULL;
12177 #endif
12178 }
12179 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
12180
sched_trace_rq_cpu(struct rq * rq)12181 int sched_trace_rq_cpu(struct rq *rq)
12182 {
12183 return rq ? cpu_of(rq) : -1;
12184 }
12185 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
12186
sched_trace_rq_cpu_capacity(struct rq * rq)12187 int sched_trace_rq_cpu_capacity(struct rq *rq)
12188 {
12189 return rq ?
12190 #ifdef CONFIG_SMP
12191 rq->cpu_capacity
12192 #else
12193 SCHED_CAPACITY_SCALE
12194 #endif
12195 : -1;
12196 }
12197 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
12198
sched_trace_rd_span(struct root_domain * rd)12199 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
12200 {
12201 #ifdef CONFIG_SMP
12202 return rd ? rd->span : NULL;
12203 #else
12204 return NULL;
12205 #endif
12206 }
12207 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
12208
sched_trace_rq_nr_running(struct rq * rq)12209 int sched_trace_rq_nr_running(struct rq *rq)
12210 {
12211 return rq ? rq->nr_running : -1;
12212 }
12213 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
12214