1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 */
6
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
31
32 #include <asm/head.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
39 #include <asm/io.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
42
43 #include <asm/irq.h>
44 #include <asm/irq_regs.h>
45 #include <asm/page.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/pgalloc.h>
51 #include <asm/sections.h>
52 #include <asm/prom.h>
53 #include <asm/mdesc.h>
54 #include <asm/ldc.h>
55 #include <asm/hypervisor.h>
56 #include <asm/pcr.h>
57
58 #include "cpumap.h"
59 #include "kernel.h"
60
61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64
65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_SYMBOL(cpu_core_map);
73 EXPORT_SYMBOL(cpu_core_sib_map);
74 EXPORT_SYMBOL(cpu_core_sib_cache_map);
75
76 static cpumask_t smp_commenced_mask;
77
78 static DEFINE_PER_CPU(bool, poke);
79 static bool cpu_poke;
80
smp_info(struct seq_file * m)81 void smp_info(struct seq_file *m)
82 {
83 int i;
84
85 seq_printf(m, "State:\n");
86 for_each_online_cpu(i)
87 seq_printf(m, "CPU%d:\t\tonline\n", i);
88 }
89
smp_bogo(struct seq_file * m)90 void smp_bogo(struct seq_file *m)
91 {
92 int i;
93
94 for_each_online_cpu(i)
95 seq_printf(m,
96 "Cpu%dClkTck\t: %016lx\n",
97 i, cpu_data(i).clock_tick);
98 }
99
100 extern void setup_sparc64_timer(void);
101
102 static volatile unsigned long callin_flag = 0;
103
smp_callin(void)104 void smp_callin(void)
105 {
106 int cpuid = hard_smp_processor_id();
107
108 __local_per_cpu_offset = __per_cpu_offset(cpuid);
109
110 if (tlb_type == hypervisor)
111 sun4v_ktsb_register();
112
113 __flush_tlb_all();
114
115 setup_sparc64_timer();
116
117 if (cheetah_pcache_forced_on)
118 cheetah_enable_pcache();
119
120 callin_flag = 1;
121 __asm__ __volatile__("membar #Sync\n\t"
122 "flush %%g6" : : : "memory");
123
124 /* Clear this or we will die instantly when we
125 * schedule back to this idler...
126 */
127 current_thread_info()->new_child = 0;
128
129 /* Attach to the address space of init_task. */
130 mmgrab(&init_mm);
131 current->active_mm = &init_mm;
132
133 /* inform the notifiers about the new cpu */
134 notify_cpu_starting(cpuid);
135
136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137 rmb();
138
139 set_cpu_online(cpuid, true);
140
141 local_irq_enable();
142
143 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
144 }
145
cpu_panic(void)146 void cpu_panic(void)
147 {
148 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149 panic("SMP bolixed\n");
150 }
151
152 /* This tick register synchronization scheme is taken entirely from
153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154 *
155 * The only change I've made is to rework it so that the master
156 * initiates the synchonization instead of the slave. -DaveM
157 */
158
159 #define MASTER 0
160 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162 #define NUM_ROUNDS 64 /* magic value */
163 #define NUM_ITERS 5 /* likewise */
164
165 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166 static unsigned long go[SLAVE + 1];
167
168 #define DEBUG_TICK_SYNC 0
169
get_delta(long * rt,long * master)170 static inline long get_delta (long *rt, long *master)
171 {
172 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173 unsigned long tcenter, t0, t1, tm;
174 unsigned long i;
175
176 for (i = 0; i < NUM_ITERS; i++) {
177 t0 = tick_ops->get_tick();
178 go[MASTER] = 1;
179 membar_safe("#StoreLoad");
180 while (!(tm = go[SLAVE]))
181 rmb();
182 go[SLAVE] = 0;
183 wmb();
184 t1 = tick_ops->get_tick();
185
186 if (t1 - t0 < best_t1 - best_t0)
187 best_t0 = t0, best_t1 = t1, best_tm = tm;
188 }
189
190 *rt = best_t1 - best_t0;
191 *master = best_tm - best_t0;
192
193 /* average best_t0 and best_t1 without overflow: */
194 tcenter = (best_t0/2 + best_t1/2);
195 if (best_t0 % 2 + best_t1 % 2 == 2)
196 tcenter++;
197 return tcenter - best_tm;
198 }
199
smp_synchronize_tick_client(void)200 void smp_synchronize_tick_client(void)
201 {
202 long i, delta, adj, adjust_latency = 0, done = 0;
203 unsigned long flags, rt, master_time_stamp;
204 #if DEBUG_TICK_SYNC
205 struct {
206 long rt; /* roundtrip time */
207 long master; /* master's timestamp */
208 long diff; /* difference between midpoint and master's timestamp */
209 long lat; /* estimate of itc adjustment latency */
210 } t[NUM_ROUNDS];
211 #endif
212
213 go[MASTER] = 1;
214
215 while (go[MASTER])
216 rmb();
217
218 local_irq_save(flags);
219 {
220 for (i = 0; i < NUM_ROUNDS; i++) {
221 delta = get_delta(&rt, &master_time_stamp);
222 if (delta == 0)
223 done = 1; /* let's lock on to this... */
224
225 if (!done) {
226 if (i > 0) {
227 adjust_latency += -delta;
228 adj = -delta + adjust_latency/4;
229 } else
230 adj = -delta;
231
232 tick_ops->add_tick(adj);
233 }
234 #if DEBUG_TICK_SYNC
235 t[i].rt = rt;
236 t[i].master = master_time_stamp;
237 t[i].diff = delta;
238 t[i].lat = adjust_latency/4;
239 #endif
240 }
241 }
242 local_irq_restore(flags);
243
244 #if DEBUG_TICK_SYNC
245 for (i = 0; i < NUM_ROUNDS; i++)
246 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247 t[i].rt, t[i].master, t[i].diff, t[i].lat);
248 #endif
249
250 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251 "(last diff %ld cycles, maxerr %lu cycles)\n",
252 smp_processor_id(), delta, rt);
253 }
254
255 static void smp_start_sync_tick_client(int cpu);
256
smp_synchronize_one_tick(int cpu)257 static void smp_synchronize_one_tick(int cpu)
258 {
259 unsigned long flags, i;
260
261 go[MASTER] = 0;
262
263 smp_start_sync_tick_client(cpu);
264
265 /* wait for client to be ready */
266 while (!go[MASTER])
267 rmb();
268
269 /* now let the client proceed into his loop */
270 go[MASTER] = 0;
271 membar_safe("#StoreLoad");
272
273 raw_spin_lock_irqsave(&itc_sync_lock, flags);
274 {
275 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276 while (!go[MASTER])
277 rmb();
278 go[MASTER] = 0;
279 wmb();
280 go[SLAVE] = tick_ops->get_tick();
281 membar_safe("#StoreLoad");
282 }
283 }
284 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285 }
286
287 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
ldom_startcpu_cpuid(unsigned int cpu,unsigned long thread_reg,void ** descrp)288 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289 void **descrp)
290 {
291 extern unsigned long sparc64_ttable_tl0;
292 extern unsigned long kern_locked_tte_data;
293 struct hvtramp_descr *hdesc;
294 unsigned long trampoline_ra;
295 struct trap_per_cpu *tb;
296 u64 tte_vaddr, tte_data;
297 unsigned long hv_err;
298 int i;
299
300 hdesc = kzalloc(sizeof(*hdesc) +
301 (sizeof(struct hvtramp_mapping) *
302 num_kernel_image_mappings - 1),
303 GFP_KERNEL);
304 if (!hdesc) {
305 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
306 "hvtramp_descr.\n");
307 return;
308 }
309 *descrp = hdesc;
310
311 hdesc->cpu = cpu;
312 hdesc->num_mappings = num_kernel_image_mappings;
313
314 tb = &trap_block[cpu];
315
316 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
317 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
318
319 hdesc->thread_reg = thread_reg;
320
321 tte_vaddr = (unsigned long) KERNBASE;
322 tte_data = kern_locked_tte_data;
323
324 for (i = 0; i < hdesc->num_mappings; i++) {
325 hdesc->maps[i].vaddr = tte_vaddr;
326 hdesc->maps[i].tte = tte_data;
327 tte_vaddr += 0x400000;
328 tte_data += 0x400000;
329 }
330
331 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
332
333 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
334 kimage_addr_to_ra(&sparc64_ttable_tl0),
335 __pa(hdesc));
336 if (hv_err)
337 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
338 "gives error %lu\n", hv_err);
339 }
340 #endif
341
342 extern unsigned long sparc64_cpu_startup;
343
344 /* The OBP cpu startup callback truncates the 3rd arg cookie to
345 * 32-bits (I think) so to be safe we have it read the pointer
346 * contained here so we work on >4GB machines. -DaveM
347 */
348 static struct thread_info *cpu_new_thread = NULL;
349
smp_boot_one_cpu(unsigned int cpu,struct task_struct * idle)350 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
351 {
352 unsigned long entry =
353 (unsigned long)(&sparc64_cpu_startup);
354 unsigned long cookie =
355 (unsigned long)(&cpu_new_thread);
356 void *descr = NULL;
357 int timeout, ret;
358
359 callin_flag = 0;
360 cpu_new_thread = task_thread_info(idle);
361
362 if (tlb_type == hypervisor) {
363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
366 (unsigned long) cpu_new_thread,
367 &descr);
368 else
369 #endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
371 } else {
372 struct device_node *dp = of_find_node_by_cpuid(cpu);
373
374 prom_startcpu(dp->phandle, entry, cookie);
375 }
376
377 for (timeout = 0; timeout < 50000; timeout++) {
378 if (callin_flag)
379 break;
380 udelay(100);
381 }
382
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
387 ret = -ENODEV;
388 }
389 cpu_new_thread = NULL;
390
391 kfree(descr);
392
393 return ret;
394 }
395
spitfire_xcall_helper(u64 data0,u64 data1,u64 data2,u64 pstate,unsigned long cpu)396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397 {
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409 again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460 }
461
spitfire_xcall_deliver(struct trap_per_cpu * tb,int cnt)462 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463 {
464 u64 *mondo, data0, data1, data2;
465 u16 *cpu_list;
466 u64 pstate;
467 int i;
468
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
472 data0 = mondo[0];
473 data1 = mondo[1];
474 data2 = mondo[2];
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477 }
478
479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 */
cheetah_xcall_deliver(struct trap_per_cpu * tb,int cnt)483 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484 {
485 int nack_busy_id, is_jbus, need_more;
486 u64 *mondo, pstate, ver, busy_mask;
487 u16 *cpu_list;
488
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
491
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
495 */
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
499
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502 retry:
503 need_more = 0;
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
506
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
511 "membar #Sync\n\t"
512 : /* no outputs */
513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514 "r" (0x40), "r" (0x50), "r" (0x60),
515 "i" (ASI_INTR_W));
516
517 nack_busy_id = 0;
518 busy_mask = 0;
519 {
520 int i;
521
522 for (i = 0; i < cnt; i++) {
523 u64 target, nr;
524
525 nr = cpu_list[i];
526 if (nr == 0xffff)
527 continue;
528
529 target = (nr << 14) | 0x70;
530 if (is_jbus) {
531 busy_mask |= (0x1UL << (nr * 2));
532 } else {
533 target |= (nack_busy_id << 24);
534 busy_mask |= (0x1UL <<
535 (nack_busy_id * 2));
536 }
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
539 "membar #Sync\n\t"
540 : /* no outputs */
541 : "r" (target), "i" (ASI_INTR_W));
542 nack_busy_id++;
543 if (nack_busy_id == 32) {
544 need_more = 1;
545 break;
546 }
547 }
548 }
549
550 /* Now, poll for completion. */
551 {
552 u64 dispatch_stat, nack_mask;
553 long stuck;
554
555 stuck = 100000 * nack_busy_id;
556 nack_mask = busy_mask << 1;
557 do {
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 : : "r" (pstate));
564 if (unlikely(need_more)) {
565 int i, this_cnt = 0;
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
568 continue;
569 cpu_list[i] = 0xffff;
570 this_cnt++;
571 if (this_cnt == 32)
572 break;
573 }
574 goto retry;
575 }
576 return;
577 }
578 if (!--stuck)
579 break;
580 } while (dispatch_stat & busy_mask);
581
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 : : "r" (pstate));
584
585 if (dispatch_stat & busy_mask) {
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
588 */
589 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590 smp_processor_id(), dispatch_stat);
591 } else {
592 int i, this_busy_nack = 0;
593
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
596 */
597 udelay(2 * nack_busy_id);
598
599 /* Clear out the mask bits for cpus which did not
600 * NACK us.
601 */
602 for (i = 0; i < cnt; i++) {
603 u64 check_mask, nr;
604
605 nr = cpu_list[i];
606 if (nr == 0xffff)
607 continue;
608
609 if (is_jbus)
610 check_mask = (0x2UL << (2*nr));
611 else
612 check_mask = (0x2UL <<
613 this_busy_nack);
614 if ((dispatch_stat & check_mask) == 0)
615 cpu_list[i] = 0xffff;
616 this_busy_nack += 2;
617 if (this_busy_nack == 64)
618 break;
619 }
620
621 goto retry;
622 }
623 }
624 }
625
626 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
627 #define MONDO_USEC_WAIT_MIN 2
628 #define MONDO_USEC_WAIT_MAX 100
629 #define MONDO_RETRY_LIMIT 500000
630
631 /* Multi-cpu list version.
632 *
633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
634 * Sometimes not all cpus receive the mondo, requiring us to re-send
635 * the mondo until all cpus have received, or cpus are truly stuck
636 * unable to receive mondo, and we timeout.
637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
638 * perform guest service, such as PCIe error handling. Consider the
639 * service time, 1 second overall wait is reasonable for 1 cpu.
640 * Here two in-between mondo check wait time are defined: 2 usec for
641 * single cpu quick turn around and up to 100usec for large cpu count.
642 * Deliver mondo to large number of cpus could take longer, we adjusts
643 * the retry count as long as target cpus are making forward progress.
644 */
hypervisor_xcall_deliver(struct trap_per_cpu * tb,int cnt)645 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
646 {
647 int this_cpu, tot_cpus, prev_sent, i, rem;
648 int usec_wait, retries, tot_retries;
649 u16 first_cpu = 0xffff;
650 unsigned long xc_rcvd = 0;
651 unsigned long status;
652 int ecpuerror_id = 0;
653 int enocpu_id = 0;
654 u16 *cpu_list;
655 u16 cpu;
656
657 this_cpu = smp_processor_id();
658 cpu_list = __va(tb->cpu_list_pa);
659 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
660 if (usec_wait > MONDO_USEC_WAIT_MAX)
661 usec_wait = MONDO_USEC_WAIT_MAX;
662 retries = tot_retries = 0;
663 tot_cpus = cnt;
664 prev_sent = 0;
665
666 do {
667 int n_sent, mondo_delivered, target_cpu_busy;
668
669 status = sun4v_cpu_mondo_send(cnt,
670 tb->cpu_list_pa,
671 tb->cpu_mondo_block_pa);
672
673 /* HV_EOK means all cpus received the xcall, we're done. */
674 if (likely(status == HV_EOK))
675 goto xcall_done;
676
677 /* If not these non-fatal errors, panic */
678 if (unlikely((status != HV_EWOULDBLOCK) &&
679 (status != HV_ECPUERROR) &&
680 (status != HV_ENOCPU)))
681 goto fatal_errors;
682
683 /* First, see if we made any forward progress.
684 *
685 * Go through the cpu_list, count the target cpus that have
686 * received our mondo (n_sent), and those that did not (rem).
687 * Re-pack cpu_list with the cpus remain to be retried in the
688 * front - this simplifies tracking the truly stalled cpus.
689 *
690 * The hypervisor indicates successful sends by setting
691 * cpu list entries to the value 0xffff.
692 *
693 * EWOULDBLOCK means some target cpus did not receive the
694 * mondo and retry usually helps.
695 *
696 * ECPUERROR means at least one target cpu is in error state,
697 * it's usually safe to skip the faulty cpu and retry.
698 *
699 * ENOCPU means one of the target cpu doesn't belong to the
700 * domain, perhaps offlined which is unexpected, but not
701 * fatal and it's okay to skip the offlined cpu.
702 */
703 rem = 0;
704 n_sent = 0;
705 for (i = 0; i < cnt; i++) {
706 cpu = cpu_list[i];
707 if (likely(cpu == 0xffff)) {
708 n_sent++;
709 } else if ((status == HV_ECPUERROR) &&
710 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
711 ecpuerror_id = cpu + 1;
712 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
713 enocpu_id = cpu + 1;
714 } else {
715 cpu_list[rem++] = cpu;
716 }
717 }
718
719 /* No cpu remained, we're done. */
720 if (rem == 0)
721 break;
722
723 /* Otherwise, update the cpu count for retry. */
724 cnt = rem;
725
726 /* Record the overall number of mondos received by the
727 * first of the remaining cpus.
728 */
729 if (first_cpu != cpu_list[0]) {
730 first_cpu = cpu_list[0];
731 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
732 }
733
734 /* Was any mondo delivered successfully? */
735 mondo_delivered = (n_sent > prev_sent);
736 prev_sent = n_sent;
737
738 /* or, was any target cpu busy processing other mondos? */
739 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
740 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
741
742 /* Retry count is for no progress. If we're making progress,
743 * reset the retry count.
744 */
745 if (likely(mondo_delivered || target_cpu_busy)) {
746 tot_retries += retries;
747 retries = 0;
748 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
749 goto fatal_mondo_timeout;
750 }
751
752 /* Delay a little bit to let other cpus catch up on
753 * their cpu mondo queue work.
754 */
755 if (!mondo_delivered)
756 udelay(usec_wait);
757
758 retries++;
759 } while (1);
760
761 xcall_done:
762 if (unlikely(ecpuerror_id > 0)) {
763 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
764 this_cpu, ecpuerror_id - 1);
765 } else if (unlikely(enocpu_id > 0)) {
766 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
767 this_cpu, enocpu_id - 1);
768 }
769 return;
770
771 fatal_errors:
772 /* fatal errors include bad alignment, etc */
773 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
774 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
775 panic("Unexpected SUN4V mondo error %lu\n", status);
776
777 fatal_mondo_timeout:
778 /* some cpus being non-responsive to the cpu mondo */
779 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
780 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
781 panic("SUN4V mondo timeout panic\n");
782 }
783
784 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
785
xcall_deliver(u64 data0,u64 data1,u64 data2,const cpumask_t * mask)786 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
787 {
788 struct trap_per_cpu *tb;
789 int this_cpu, i, cnt;
790 unsigned long flags;
791 u16 *cpu_list;
792 u64 *mondo;
793
794 /* We have to do this whole thing with interrupts fully disabled.
795 * Otherwise if we send an xcall from interrupt context it will
796 * corrupt both our mondo block and cpu list state.
797 *
798 * One consequence of this is that we cannot use timeout mechanisms
799 * that depend upon interrupts being delivered locally. So, for
800 * example, we cannot sample jiffies and expect it to advance.
801 *
802 * Fortunately, udelay() uses %stick/%tick so we can use that.
803 */
804 local_irq_save(flags);
805
806 this_cpu = smp_processor_id();
807 tb = &trap_block[this_cpu];
808
809 mondo = __va(tb->cpu_mondo_block_pa);
810 mondo[0] = data0;
811 mondo[1] = data1;
812 mondo[2] = data2;
813 wmb();
814
815 cpu_list = __va(tb->cpu_list_pa);
816
817 /* Setup the initial cpu list. */
818 cnt = 0;
819 for_each_cpu(i, mask) {
820 if (i == this_cpu || !cpu_online(i))
821 continue;
822 cpu_list[cnt++] = i;
823 }
824
825 if (cnt)
826 xcall_deliver_impl(tb, cnt);
827
828 local_irq_restore(flags);
829 }
830
831 /* Send cross call to all processors mentioned in MASK_P
832 * except self. Really, there are only two cases currently,
833 * "cpu_online_mask" and "mm_cpumask(mm)".
834 */
smp_cross_call_masked(unsigned long * func,u32 ctx,u64 data1,u64 data2,const cpumask_t * mask)835 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
836 {
837 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
838
839 xcall_deliver(data0, data1, data2, mask);
840 }
841
842 /* Send cross call to all processors except self. */
smp_cross_call(unsigned long * func,u32 ctx,u64 data1,u64 data2)843 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
844 {
845 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
846 }
847
848 extern unsigned long xcall_sync_tick;
849
smp_start_sync_tick_client(int cpu)850 static void smp_start_sync_tick_client(int cpu)
851 {
852 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
853 cpumask_of(cpu));
854 }
855
856 extern unsigned long xcall_call_function;
857
arch_send_call_function_ipi_mask(const struct cpumask * mask)858 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
859 {
860 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
861 }
862
863 extern unsigned long xcall_call_function_single;
864
arch_send_call_function_single_ipi(int cpu)865 void arch_send_call_function_single_ipi(int cpu)
866 {
867 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
868 cpumask_of(cpu));
869 }
870
smp_call_function_client(int irq,struct pt_regs * regs)871 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
872 {
873 clear_softint(1 << irq);
874 irq_enter();
875 generic_smp_call_function_interrupt();
876 irq_exit();
877 }
878
smp_call_function_single_client(int irq,struct pt_regs * regs)879 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
880 {
881 clear_softint(1 << irq);
882 irq_enter();
883 generic_smp_call_function_single_interrupt();
884 irq_exit();
885 }
886
tsb_sync(void * info)887 static void tsb_sync(void *info)
888 {
889 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
890 struct mm_struct *mm = info;
891
892 /* It is not valid to test "current->active_mm == mm" here.
893 *
894 * The value of "current" is not changed atomically with
895 * switch_mm(). But that's OK, we just need to check the
896 * current cpu's trap block PGD physical address.
897 */
898 if (tp->pgd_paddr == __pa(mm->pgd))
899 tsb_context_switch(mm);
900 }
901
smp_tsb_sync(struct mm_struct * mm)902 void smp_tsb_sync(struct mm_struct *mm)
903 {
904 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
905 }
906
907 extern unsigned long xcall_flush_tlb_mm;
908 extern unsigned long xcall_flush_tlb_page;
909 extern unsigned long xcall_flush_tlb_kernel_range;
910 extern unsigned long xcall_fetch_glob_regs;
911 extern unsigned long xcall_fetch_glob_pmu;
912 extern unsigned long xcall_fetch_glob_pmu_n4;
913 extern unsigned long xcall_receive_signal;
914 extern unsigned long xcall_new_mmu_context_version;
915 #ifdef CONFIG_KGDB
916 extern unsigned long xcall_kgdb_capture;
917 #endif
918
919 #ifdef DCACHE_ALIASING_POSSIBLE
920 extern unsigned long xcall_flush_dcache_page_cheetah;
921 #endif
922 extern unsigned long xcall_flush_dcache_page_spitfire;
923
__local_flush_dcache_page(struct page * page)924 static inline void __local_flush_dcache_page(struct page *page)
925 {
926 #ifdef DCACHE_ALIASING_POSSIBLE
927 __flush_dcache_page(page_address(page),
928 ((tlb_type == spitfire) &&
929 page_mapping_file(page) != NULL));
930 #else
931 if (page_mapping_file(page) != NULL &&
932 tlb_type == spitfire)
933 __flush_icache_page(__pa(page_address(page)));
934 #endif
935 }
936
smp_flush_dcache_page_impl(struct page * page,int cpu)937 void smp_flush_dcache_page_impl(struct page *page, int cpu)
938 {
939 int this_cpu;
940
941 if (tlb_type == hypervisor)
942 return;
943
944 #ifdef CONFIG_DEBUG_DCFLUSH
945 atomic_inc(&dcpage_flushes);
946 #endif
947
948 this_cpu = get_cpu();
949
950 if (cpu == this_cpu) {
951 __local_flush_dcache_page(page);
952 } else if (cpu_online(cpu)) {
953 void *pg_addr = page_address(page);
954 u64 data0 = 0;
955
956 if (tlb_type == spitfire) {
957 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
958 if (page_mapping_file(page) != NULL)
959 data0 |= ((u64)1 << 32);
960 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
961 #ifdef DCACHE_ALIASING_POSSIBLE
962 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
963 #endif
964 }
965 if (data0) {
966 xcall_deliver(data0, __pa(pg_addr),
967 (u64) pg_addr, cpumask_of(cpu));
968 #ifdef CONFIG_DEBUG_DCFLUSH
969 atomic_inc(&dcpage_flushes_xcall);
970 #endif
971 }
972 }
973
974 put_cpu();
975 }
976
flush_dcache_page_all(struct mm_struct * mm,struct page * page)977 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
978 {
979 void *pg_addr;
980 u64 data0;
981
982 if (tlb_type == hypervisor)
983 return;
984
985 preempt_disable();
986
987 #ifdef CONFIG_DEBUG_DCFLUSH
988 atomic_inc(&dcpage_flushes);
989 #endif
990 data0 = 0;
991 pg_addr = page_address(page);
992 if (tlb_type == spitfire) {
993 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
994 if (page_mapping_file(page) != NULL)
995 data0 |= ((u64)1 << 32);
996 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
997 #ifdef DCACHE_ALIASING_POSSIBLE
998 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
999 #endif
1000 }
1001 if (data0) {
1002 xcall_deliver(data0, __pa(pg_addr),
1003 (u64) pg_addr, cpu_online_mask);
1004 #ifdef CONFIG_DEBUG_DCFLUSH
1005 atomic_inc(&dcpage_flushes_xcall);
1006 #endif
1007 }
1008 __local_flush_dcache_page(page);
1009
1010 preempt_enable();
1011 }
1012
1013 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(void)1014 void kgdb_roundup_cpus(void)
1015 {
1016 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1017 }
1018 #endif
1019
smp_fetch_global_regs(void)1020 void smp_fetch_global_regs(void)
1021 {
1022 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1023 }
1024
smp_fetch_global_pmu(void)1025 void smp_fetch_global_pmu(void)
1026 {
1027 if (tlb_type == hypervisor &&
1028 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1029 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1030 else
1031 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1032 }
1033
1034 /* We know that the window frames of the user have been flushed
1035 * to the stack before we get here because all callers of us
1036 * are flush_tlb_*() routines, and these run after flush_cache_*()
1037 * which performs the flushw.
1038 *
1039 * mm->cpu_vm_mask is a bit mask of which cpus an address
1040 * space has (potentially) executed on, this is the heuristic
1041 * we use to limit cross calls.
1042 */
1043
1044 /* This currently is only used by the hugetlb arch pre-fault
1045 * hook on UltraSPARC-III+ and later when changing the pagesize
1046 * bits of the context register for an address space.
1047 */
smp_flush_tlb_mm(struct mm_struct * mm)1048 void smp_flush_tlb_mm(struct mm_struct *mm)
1049 {
1050 u32 ctx = CTX_HWBITS(mm->context);
1051
1052 get_cpu();
1053
1054 smp_cross_call_masked(&xcall_flush_tlb_mm,
1055 ctx, 0, 0,
1056 mm_cpumask(mm));
1057
1058 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1059
1060 put_cpu();
1061 }
1062
1063 struct tlb_pending_info {
1064 unsigned long ctx;
1065 unsigned long nr;
1066 unsigned long *vaddrs;
1067 };
1068
tlb_pending_func(void * info)1069 static void tlb_pending_func(void *info)
1070 {
1071 struct tlb_pending_info *t = info;
1072
1073 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1074 }
1075
smp_flush_tlb_pending(struct mm_struct * mm,unsigned long nr,unsigned long * vaddrs)1076 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1077 {
1078 u32 ctx = CTX_HWBITS(mm->context);
1079 struct tlb_pending_info info;
1080
1081 get_cpu();
1082
1083 info.ctx = ctx;
1084 info.nr = nr;
1085 info.vaddrs = vaddrs;
1086
1087 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1088 &info, 1);
1089
1090 __flush_tlb_pending(ctx, nr, vaddrs);
1091
1092 put_cpu();
1093 }
1094
smp_flush_tlb_page(struct mm_struct * mm,unsigned long vaddr)1095 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1096 {
1097 unsigned long context = CTX_HWBITS(mm->context);
1098
1099 get_cpu();
1100
1101 smp_cross_call_masked(&xcall_flush_tlb_page,
1102 context, vaddr, 0,
1103 mm_cpumask(mm));
1104
1105 __flush_tlb_page(context, vaddr);
1106
1107 put_cpu();
1108 }
1109
smp_flush_tlb_kernel_range(unsigned long start,unsigned long end)1110 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1111 {
1112 start &= PAGE_MASK;
1113 end = PAGE_ALIGN(end);
1114 if (start != end) {
1115 smp_cross_call(&xcall_flush_tlb_kernel_range,
1116 0, start, end);
1117
1118 __flush_tlb_kernel_range(start, end);
1119 }
1120 }
1121
1122 /* CPU capture. */
1123 /* #define CAPTURE_DEBUG */
1124 extern unsigned long xcall_capture;
1125
1126 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1127 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1128 static unsigned long penguins_are_doing_time;
1129
smp_capture(void)1130 void smp_capture(void)
1131 {
1132 int result = atomic_add_return(1, &smp_capture_depth);
1133
1134 if (result == 1) {
1135 int ncpus = num_online_cpus();
1136
1137 #ifdef CAPTURE_DEBUG
1138 printk("CPU[%d]: Sending penguins to jail...",
1139 smp_processor_id());
1140 #endif
1141 penguins_are_doing_time = 1;
1142 atomic_inc(&smp_capture_registry);
1143 smp_cross_call(&xcall_capture, 0, 0, 0);
1144 while (atomic_read(&smp_capture_registry) != ncpus)
1145 rmb();
1146 #ifdef CAPTURE_DEBUG
1147 printk("done\n");
1148 #endif
1149 }
1150 }
1151
smp_release(void)1152 void smp_release(void)
1153 {
1154 if (atomic_dec_and_test(&smp_capture_depth)) {
1155 #ifdef CAPTURE_DEBUG
1156 printk("CPU[%d]: Giving pardon to "
1157 "imprisoned penguins\n",
1158 smp_processor_id());
1159 #endif
1160 penguins_are_doing_time = 0;
1161 membar_safe("#StoreLoad");
1162 atomic_dec(&smp_capture_registry);
1163 }
1164 }
1165
1166 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1167 * set, so they can service tlb flush xcalls...
1168 */
1169 extern void prom_world(int);
1170
smp_penguin_jailcell(int irq,struct pt_regs * regs)1171 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1172 {
1173 clear_softint(1 << irq);
1174
1175 preempt_disable();
1176
1177 __asm__ __volatile__("flushw");
1178 prom_world(1);
1179 atomic_inc(&smp_capture_registry);
1180 membar_safe("#StoreLoad");
1181 while (penguins_are_doing_time)
1182 rmb();
1183 atomic_dec(&smp_capture_registry);
1184 prom_world(0);
1185
1186 preempt_enable();
1187 }
1188
1189 /* /proc/profile writes can call this, don't __init it please. */
setup_profiling_timer(unsigned int multiplier)1190 int setup_profiling_timer(unsigned int multiplier)
1191 {
1192 return -EINVAL;
1193 }
1194
smp_prepare_cpus(unsigned int max_cpus)1195 void __init smp_prepare_cpus(unsigned int max_cpus)
1196 {
1197 }
1198
smp_prepare_boot_cpu(void)1199 void smp_prepare_boot_cpu(void)
1200 {
1201 }
1202
smp_setup_processor_id(void)1203 void __init smp_setup_processor_id(void)
1204 {
1205 if (tlb_type == spitfire)
1206 xcall_deliver_impl = spitfire_xcall_deliver;
1207 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1208 xcall_deliver_impl = cheetah_xcall_deliver;
1209 else
1210 xcall_deliver_impl = hypervisor_xcall_deliver;
1211 }
1212
smp_fill_in_cpu_possible_map(void)1213 void __init smp_fill_in_cpu_possible_map(void)
1214 {
1215 int possible_cpus = num_possible_cpus();
1216 int i;
1217
1218 if (possible_cpus > nr_cpu_ids)
1219 possible_cpus = nr_cpu_ids;
1220
1221 for (i = 0; i < possible_cpus; i++)
1222 set_cpu_possible(i, true);
1223 for (; i < NR_CPUS; i++)
1224 set_cpu_possible(i, false);
1225 }
1226
smp_fill_in_sib_core_maps(void)1227 void smp_fill_in_sib_core_maps(void)
1228 {
1229 unsigned int i;
1230
1231 for_each_present_cpu(i) {
1232 unsigned int j;
1233
1234 cpumask_clear(&cpu_core_map[i]);
1235 if (cpu_data(i).core_id == 0) {
1236 cpumask_set_cpu(i, &cpu_core_map[i]);
1237 continue;
1238 }
1239
1240 for_each_present_cpu(j) {
1241 if (cpu_data(i).core_id ==
1242 cpu_data(j).core_id)
1243 cpumask_set_cpu(j, &cpu_core_map[i]);
1244 }
1245 }
1246
1247 for_each_present_cpu(i) {
1248 unsigned int j;
1249
1250 for_each_present_cpu(j) {
1251 if (cpu_data(i).max_cache_id ==
1252 cpu_data(j).max_cache_id)
1253 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1254
1255 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1256 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1257 }
1258 }
1259
1260 for_each_present_cpu(i) {
1261 unsigned int j;
1262
1263 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1264 if (cpu_data(i).proc_id == -1) {
1265 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1266 continue;
1267 }
1268
1269 for_each_present_cpu(j) {
1270 if (cpu_data(i).proc_id ==
1271 cpu_data(j).proc_id)
1272 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1273 }
1274 }
1275 }
1276
__cpu_up(unsigned int cpu,struct task_struct * tidle)1277 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1278 {
1279 int ret = smp_boot_one_cpu(cpu, tidle);
1280
1281 if (!ret) {
1282 cpumask_set_cpu(cpu, &smp_commenced_mask);
1283 while (!cpu_online(cpu))
1284 mb();
1285 if (!cpu_online(cpu)) {
1286 ret = -ENODEV;
1287 } else {
1288 /* On SUN4V, writes to %tick and %stick are
1289 * not allowed.
1290 */
1291 if (tlb_type != hypervisor)
1292 smp_synchronize_one_tick(cpu);
1293 }
1294 }
1295 return ret;
1296 }
1297
1298 #ifdef CONFIG_HOTPLUG_CPU
cpu_play_dead(void)1299 void cpu_play_dead(void)
1300 {
1301 int cpu = smp_processor_id();
1302 unsigned long pstate;
1303
1304 idle_task_exit();
1305
1306 if (tlb_type == hypervisor) {
1307 struct trap_per_cpu *tb = &trap_block[cpu];
1308
1309 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1310 tb->cpu_mondo_pa, 0);
1311 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1312 tb->dev_mondo_pa, 0);
1313 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1314 tb->resum_mondo_pa, 0);
1315 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1316 tb->nonresum_mondo_pa, 0);
1317 }
1318
1319 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1320 membar_safe("#Sync");
1321
1322 local_irq_disable();
1323
1324 __asm__ __volatile__(
1325 "rdpr %%pstate, %0\n\t"
1326 "wrpr %0, %1, %%pstate"
1327 : "=r" (pstate)
1328 : "i" (PSTATE_IE));
1329
1330 while (1)
1331 barrier();
1332 }
1333
__cpu_disable(void)1334 int __cpu_disable(void)
1335 {
1336 int cpu = smp_processor_id();
1337 cpuinfo_sparc *c;
1338 int i;
1339
1340 for_each_cpu(i, &cpu_core_map[cpu])
1341 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1342 cpumask_clear(&cpu_core_map[cpu]);
1343
1344 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1345 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1346 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1347
1348 c = &cpu_data(cpu);
1349
1350 c->core_id = 0;
1351 c->proc_id = -1;
1352
1353 smp_wmb();
1354
1355 /* Make sure no interrupts point to this cpu. */
1356 fixup_irqs();
1357
1358 local_irq_enable();
1359 mdelay(1);
1360 local_irq_disable();
1361
1362 set_cpu_online(cpu, false);
1363
1364 cpu_map_rebuild();
1365
1366 return 0;
1367 }
1368
__cpu_die(unsigned int cpu)1369 void __cpu_die(unsigned int cpu)
1370 {
1371 int i;
1372
1373 for (i = 0; i < 100; i++) {
1374 smp_rmb();
1375 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1376 break;
1377 msleep(100);
1378 }
1379 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1380 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1381 } else {
1382 #if defined(CONFIG_SUN_LDOMS)
1383 unsigned long hv_err;
1384 int limit = 100;
1385
1386 do {
1387 hv_err = sun4v_cpu_stop(cpu);
1388 if (hv_err == HV_EOK) {
1389 set_cpu_present(cpu, false);
1390 break;
1391 }
1392 } while (--limit > 0);
1393 if (limit <= 0) {
1394 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1395 hv_err);
1396 }
1397 #endif
1398 }
1399 }
1400 #endif
1401
smp_cpus_done(unsigned int max_cpus)1402 void __init smp_cpus_done(unsigned int max_cpus)
1403 {
1404 }
1405
send_cpu_ipi(int cpu)1406 static void send_cpu_ipi(int cpu)
1407 {
1408 xcall_deliver((u64) &xcall_receive_signal,
1409 0, 0, cpumask_of(cpu));
1410 }
1411
scheduler_poke(void)1412 void scheduler_poke(void)
1413 {
1414 if (!cpu_poke)
1415 return;
1416
1417 if (!__this_cpu_read(poke))
1418 return;
1419
1420 __this_cpu_write(poke, false);
1421 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1422 }
1423
send_cpu_poke(int cpu)1424 static unsigned long send_cpu_poke(int cpu)
1425 {
1426 unsigned long hv_err;
1427
1428 per_cpu(poke, cpu) = true;
1429 hv_err = sun4v_cpu_poke(cpu);
1430 if (hv_err != HV_EOK) {
1431 per_cpu(poke, cpu) = false;
1432 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1433 __func__, hv_err);
1434 }
1435
1436 return hv_err;
1437 }
1438
smp_send_reschedule(int cpu)1439 void smp_send_reschedule(int cpu)
1440 {
1441 if (cpu == smp_processor_id()) {
1442 WARN_ON_ONCE(preemptible());
1443 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1444 return;
1445 }
1446
1447 /* Use cpu poke to resume idle cpu if supported. */
1448 if (cpu_poke && idle_cpu(cpu)) {
1449 unsigned long ret;
1450
1451 ret = send_cpu_poke(cpu);
1452 if (ret == HV_EOK)
1453 return;
1454 }
1455
1456 /* Use IPI in following cases:
1457 * - cpu poke not supported
1458 * - cpu not idle
1459 * - send_cpu_poke() returns with error
1460 */
1461 send_cpu_ipi(cpu);
1462 }
1463
smp_init_cpu_poke(void)1464 void smp_init_cpu_poke(void)
1465 {
1466 unsigned long major;
1467 unsigned long minor;
1468 int ret;
1469
1470 if (tlb_type != hypervisor)
1471 return;
1472
1473 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1474 if (ret) {
1475 pr_debug("HV_GRP_CORE is not registered\n");
1476 return;
1477 }
1478
1479 if (major == 1 && minor >= 6) {
1480 /* CPU POKE is registered. */
1481 cpu_poke = true;
1482 return;
1483 }
1484
1485 pr_debug("CPU_POKE not supported\n");
1486 }
1487
smp_receive_signal_client(int irq,struct pt_regs * regs)1488 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1489 {
1490 clear_softint(1 << irq);
1491 scheduler_ipi();
1492 }
1493
stop_this_cpu(void * dummy)1494 static void stop_this_cpu(void *dummy)
1495 {
1496 set_cpu_online(smp_processor_id(), false);
1497 prom_stopself();
1498 }
1499
smp_send_stop(void)1500 void smp_send_stop(void)
1501 {
1502 int cpu;
1503
1504 if (tlb_type == hypervisor) {
1505 int this_cpu = smp_processor_id();
1506 #ifdef CONFIG_SERIAL_SUNHV
1507 sunhv_migrate_hvcons_irq(this_cpu);
1508 #endif
1509 for_each_online_cpu(cpu) {
1510 if (cpu == this_cpu)
1511 continue;
1512
1513 set_cpu_online(cpu, false);
1514 #ifdef CONFIG_SUN_LDOMS
1515 if (ldom_domaining_enabled) {
1516 unsigned long hv_err;
1517 hv_err = sun4v_cpu_stop(cpu);
1518 if (hv_err)
1519 printk(KERN_ERR "sun4v_cpu_stop() "
1520 "failed err=%lu\n", hv_err);
1521 } else
1522 #endif
1523 prom_stopcpu_cpuid(cpu);
1524 }
1525 } else
1526 smp_call_function(stop_this_cpu, NULL, 0);
1527 }
1528
1529 /**
1530 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1531 * @cpu: cpu to allocate for
1532 * @size: size allocation in bytes
1533 * @align: alignment
1534 *
1535 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1536 * does the right thing for NUMA regardless of the current
1537 * configuration.
1538 *
1539 * RETURNS:
1540 * Pointer to the allocated area on success, NULL on failure.
1541 */
pcpu_alloc_bootmem(unsigned int cpu,size_t size,size_t align)1542 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1543 size_t align)
1544 {
1545 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1546 #ifdef CONFIG_NUMA
1547 int node = cpu_to_node(cpu);
1548 void *ptr;
1549
1550 if (!node_online(node) || !NODE_DATA(node)) {
1551 ptr = memblock_alloc_from(size, align, goal);
1552 pr_info("cpu %d has no node %d or node-local memory\n",
1553 cpu, node);
1554 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1555 cpu, size, __pa(ptr));
1556 } else {
1557 ptr = memblock_alloc_try_nid(size, align, goal,
1558 MEMBLOCK_ALLOC_ACCESSIBLE, node);
1559 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1560 "%016lx\n", cpu, size, node, __pa(ptr));
1561 }
1562 return ptr;
1563 #else
1564 return memblock_alloc_from(size, align, goal);
1565 #endif
1566 }
1567
pcpu_free_bootmem(void * ptr,size_t size)1568 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1569 {
1570 memblock_free(__pa(ptr), size);
1571 }
1572
pcpu_cpu_distance(unsigned int from,unsigned int to)1573 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1574 {
1575 if (cpu_to_node(from) == cpu_to_node(to))
1576 return LOCAL_DISTANCE;
1577 else
1578 return REMOTE_DISTANCE;
1579 }
1580
pcpu_populate_pte(unsigned long addr)1581 static void __init pcpu_populate_pte(unsigned long addr)
1582 {
1583 pgd_t *pgd = pgd_offset_k(addr);
1584 p4d_t *p4d;
1585 pud_t *pud;
1586 pmd_t *pmd;
1587
1588 if (pgd_none(*pgd)) {
1589 pud_t *new;
1590
1591 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1592 if (!new)
1593 goto err_alloc;
1594 pgd_populate(&init_mm, pgd, new);
1595 }
1596
1597 p4d = p4d_offset(pgd, addr);
1598 if (p4d_none(*p4d)) {
1599 pud_t *new;
1600
1601 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1602 if (!new)
1603 goto err_alloc;
1604 p4d_populate(&init_mm, p4d, new);
1605 }
1606
1607 pud = pud_offset(p4d, addr);
1608 if (pud_none(*pud)) {
1609 pmd_t *new;
1610
1611 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1612 if (!new)
1613 goto err_alloc;
1614 pud_populate(&init_mm, pud, new);
1615 }
1616
1617 pmd = pmd_offset(pud, addr);
1618 if (!pmd_present(*pmd)) {
1619 pte_t *new;
1620
1621 new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1622 if (!new)
1623 goto err_alloc;
1624 pmd_populate_kernel(&init_mm, pmd, new);
1625 }
1626
1627 return;
1628
1629 err_alloc:
1630 panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1631 __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1632 }
1633
setup_per_cpu_areas(void)1634 void __init setup_per_cpu_areas(void)
1635 {
1636 unsigned long delta;
1637 unsigned int cpu;
1638 int rc = -EINVAL;
1639
1640 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1641 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1642 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1643 pcpu_cpu_distance,
1644 pcpu_alloc_bootmem,
1645 pcpu_free_bootmem);
1646 if (rc)
1647 pr_warn("PERCPU: %s allocator failed (%d), "
1648 "falling back to page size\n",
1649 pcpu_fc_names[pcpu_chosen_fc], rc);
1650 }
1651 if (rc < 0)
1652 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1653 pcpu_alloc_bootmem,
1654 pcpu_free_bootmem,
1655 pcpu_populate_pte);
1656 if (rc < 0)
1657 panic("cannot initialize percpu area (err=%d)", rc);
1658
1659 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1660 for_each_possible_cpu(cpu)
1661 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1662
1663 /* Setup %g5 for the boot cpu. */
1664 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1665
1666 of_fill_in_cpu_data();
1667 if (tlb_type == hypervisor)
1668 mdesc_fill_in_cpu_data(cpu_all_mask);
1669 }
1670