• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *	- Rafael R. Reilova (moved everything from head.S),
7  *        <rreilova@ececs.uc.edu>
8  *	- Channing Corn (tests & fixes),
9  *	- Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/cpu.h>
13 #include <linux/module.h>
14 #include <linux/nospec.h>
15 #include <linux/prctl.h>
16 #include <linux/sched/smt.h>
17 #include <linux/pgtable.h>
18 #include <linux/bpf.h>
19 
20 #include <asm/spec-ctrl.h>
21 #include <asm/cmdline.h>
22 #include <asm/bugs.h>
23 #include <asm/processor.h>
24 #include <asm/processor-flags.h>
25 #include <asm/fpu/internal.h>
26 #include <asm/msr.h>
27 #include <asm/vmx.h>
28 #include <asm/paravirt.h>
29 #include <asm/intel-family.h>
30 #include <asm/e820/api.h>
31 #include <asm/hypervisor.h>
32 #include <asm/tlbflush.h>
33 
34 #include "cpu.h"
35 
36 static void __init spectre_v1_select_mitigation(void);
37 static void __init spectre_v2_select_mitigation(void);
38 static void __init retbleed_select_mitigation(void);
39 static void __init spectre_v2_user_select_mitigation(void);
40 static void __init ssb_select_mitigation(void);
41 static void __init l1tf_select_mitigation(void);
42 static void __init mds_select_mitigation(void);
43 static void __init md_clear_update_mitigation(void);
44 static void __init md_clear_select_mitigation(void);
45 static void __init taa_select_mitigation(void);
46 static void __init mmio_select_mitigation(void);
47 static void __init srbds_select_mitigation(void);
48 static void __init l1d_flush_select_mitigation(void);
49 static void __init gds_select_mitigation(void);
50 static void __init srso_select_mitigation(void);
51 
52 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
53 u64 x86_spec_ctrl_base;
54 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
55 
56 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
57 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
58 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
59 
60 u64 x86_pred_cmd __ro_after_init = PRED_CMD_IBPB;
61 EXPORT_SYMBOL_GPL(x86_pred_cmd);
62 
63 static DEFINE_MUTEX(spec_ctrl_mutex);
64 
65 void (*x86_return_thunk)(void) __ro_after_init = &__x86_return_thunk;
66 
67 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
update_spec_ctrl(u64 val)68 static void update_spec_ctrl(u64 val)
69 {
70 	this_cpu_write(x86_spec_ctrl_current, val);
71 	wrmsrl(MSR_IA32_SPEC_CTRL, val);
72 }
73 
74 /*
75  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
76  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
77  */
update_spec_ctrl_cond(u64 val)78 void update_spec_ctrl_cond(u64 val)
79 {
80 	if (this_cpu_read(x86_spec_ctrl_current) == val)
81 		return;
82 
83 	this_cpu_write(x86_spec_ctrl_current, val);
84 
85 	/*
86 	 * When KERNEL_IBRS this MSR is written on return-to-user, unless
87 	 * forced the update can be delayed until that time.
88 	 */
89 	if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
90 		wrmsrl(MSR_IA32_SPEC_CTRL, val);
91 }
92 
spec_ctrl_current(void)93 u64 spec_ctrl_current(void)
94 {
95 	return this_cpu_read(x86_spec_ctrl_current);
96 }
97 EXPORT_SYMBOL_GPL(spec_ctrl_current);
98 
99 /*
100  * AMD specific MSR info for Speculative Store Bypass control.
101  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
102  */
103 u64 __ro_after_init x86_amd_ls_cfg_base;
104 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
105 
106 /* Control conditional STIBP in switch_to() */
107 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
108 /* Control conditional IBPB in switch_mm() */
109 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
110 /* Control unconditional IBPB in switch_mm() */
111 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
112 
113 /* Control MDS CPU buffer clear before returning to user space */
114 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
115 EXPORT_SYMBOL_GPL(mds_user_clear);
116 /* Control MDS CPU buffer clear before idling (halt, mwait) */
117 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
118 EXPORT_SYMBOL_GPL(mds_idle_clear);
119 
120 /*
121  * Controls whether l1d flush based mitigations are enabled,
122  * based on hw features and admin setting via boot parameter
123  * defaults to false
124  */
125 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
126 
127 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
128 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
129 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
130 
cpu_select_mitigations(void)131 void __init cpu_select_mitigations(void)
132 {
133 	/*
134 	 * Read the SPEC_CTRL MSR to account for reserved bits which may
135 	 * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
136 	 * init code as it is not enumerated and depends on the family.
137 	 */
138 	if (cpu_feature_enabled(X86_FEATURE_MSR_SPEC_CTRL)) {
139 		rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
140 
141 		/*
142 		 * Previously running kernel (kexec), may have some controls
143 		 * turned ON. Clear them and let the mitigations setup below
144 		 * rediscover them based on configuration.
145 		 */
146 		x86_spec_ctrl_base &= ~SPEC_CTRL_MITIGATIONS_MASK;
147 	}
148 
149 	/* Select the proper CPU mitigations before patching alternatives: */
150 	spectre_v1_select_mitigation();
151 	spectre_v2_select_mitigation();
152 	/*
153 	 * retbleed_select_mitigation() relies on the state set by
154 	 * spectre_v2_select_mitigation(); specifically it wants to know about
155 	 * spectre_v2=ibrs.
156 	 */
157 	retbleed_select_mitigation();
158 	/*
159 	 * spectre_v2_user_select_mitigation() relies on the state set by
160 	 * retbleed_select_mitigation(); specifically the STIBP selection is
161 	 * forced for UNRET or IBPB.
162 	 */
163 	spectre_v2_user_select_mitigation();
164 	ssb_select_mitigation();
165 	l1tf_select_mitigation();
166 	md_clear_select_mitigation();
167 	srbds_select_mitigation();
168 	l1d_flush_select_mitigation();
169 
170 	/*
171 	 * srso_select_mitigation() depends and must run after
172 	 * retbleed_select_mitigation().
173 	 */
174 	srso_select_mitigation();
175 	gds_select_mitigation();
176 }
177 
178 /*
179  * NOTE: For VMX, this function is not called in the vmexit path.
180  * It uses vmx_spec_ctrl_restore_host() instead.
181  */
182 void
x86_virt_spec_ctrl(u64 guest_spec_ctrl,u64 guest_virt_spec_ctrl,bool setguest)183 x86_virt_spec_ctrl(u64 guest_spec_ctrl, u64 guest_virt_spec_ctrl, bool setguest)
184 {
185 	u64 msrval, guestval = guest_spec_ctrl, hostval = spec_ctrl_current();
186 	struct thread_info *ti = current_thread_info();
187 
188 	if (static_cpu_has(X86_FEATURE_MSR_SPEC_CTRL)) {
189 		if (hostval != guestval) {
190 			msrval = setguest ? guestval : hostval;
191 			wrmsrl(MSR_IA32_SPEC_CTRL, msrval);
192 		}
193 	}
194 
195 	/*
196 	 * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
197 	 * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
198 	 */
199 	if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
200 	    !static_cpu_has(X86_FEATURE_VIRT_SSBD))
201 		return;
202 
203 	/*
204 	 * If the host has SSBD mitigation enabled, force it in the host's
205 	 * virtual MSR value. If its not permanently enabled, evaluate
206 	 * current's TIF_SSBD thread flag.
207 	 */
208 	if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
209 		hostval = SPEC_CTRL_SSBD;
210 	else
211 		hostval = ssbd_tif_to_spec_ctrl(ti->flags);
212 
213 	/* Sanitize the guest value */
214 	guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
215 
216 	if (hostval != guestval) {
217 		unsigned long tif;
218 
219 		tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
220 				 ssbd_spec_ctrl_to_tif(hostval);
221 
222 		speculation_ctrl_update(tif);
223 	}
224 }
225 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
226 
x86_amd_ssb_disable(void)227 static void x86_amd_ssb_disable(void)
228 {
229 	u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
230 
231 	if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
232 		wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
233 	else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
234 		wrmsrl(MSR_AMD64_LS_CFG, msrval);
235 }
236 
237 #undef pr_fmt
238 #define pr_fmt(fmt)	"MDS: " fmt
239 
240 /* Default mitigation for MDS-affected CPUs */
241 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
242 static bool mds_nosmt __ro_after_init = false;
243 
244 static const char * const mds_strings[] = {
245 	[MDS_MITIGATION_OFF]	= "Vulnerable",
246 	[MDS_MITIGATION_FULL]	= "Mitigation: Clear CPU buffers",
247 	[MDS_MITIGATION_VMWERV]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
248 };
249 
mds_select_mitigation(void)250 static void __init mds_select_mitigation(void)
251 {
252 	if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
253 		mds_mitigation = MDS_MITIGATION_OFF;
254 		return;
255 	}
256 
257 	if (mds_mitigation == MDS_MITIGATION_FULL) {
258 		if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
259 			mds_mitigation = MDS_MITIGATION_VMWERV;
260 
261 		static_branch_enable(&mds_user_clear);
262 
263 		if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
264 		    (mds_nosmt || cpu_mitigations_auto_nosmt()))
265 			cpu_smt_disable(false);
266 	}
267 }
268 
mds_cmdline(char * str)269 static int __init mds_cmdline(char *str)
270 {
271 	if (!boot_cpu_has_bug(X86_BUG_MDS))
272 		return 0;
273 
274 	if (!str)
275 		return -EINVAL;
276 
277 	if (!strcmp(str, "off"))
278 		mds_mitigation = MDS_MITIGATION_OFF;
279 	else if (!strcmp(str, "full"))
280 		mds_mitigation = MDS_MITIGATION_FULL;
281 	else if (!strcmp(str, "full,nosmt")) {
282 		mds_mitigation = MDS_MITIGATION_FULL;
283 		mds_nosmt = true;
284 	}
285 
286 	return 0;
287 }
288 early_param("mds", mds_cmdline);
289 
290 #undef pr_fmt
291 #define pr_fmt(fmt)	"TAA: " fmt
292 
293 enum taa_mitigations {
294 	TAA_MITIGATION_OFF,
295 	TAA_MITIGATION_UCODE_NEEDED,
296 	TAA_MITIGATION_VERW,
297 	TAA_MITIGATION_TSX_DISABLED,
298 };
299 
300 /* Default mitigation for TAA-affected CPUs */
301 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
302 static bool taa_nosmt __ro_after_init;
303 
304 static const char * const taa_strings[] = {
305 	[TAA_MITIGATION_OFF]		= "Vulnerable",
306 	[TAA_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
307 	[TAA_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
308 	[TAA_MITIGATION_TSX_DISABLED]	= "Mitigation: TSX disabled",
309 };
310 
taa_select_mitigation(void)311 static void __init taa_select_mitigation(void)
312 {
313 	u64 ia32_cap;
314 
315 	if (!boot_cpu_has_bug(X86_BUG_TAA)) {
316 		taa_mitigation = TAA_MITIGATION_OFF;
317 		return;
318 	}
319 
320 	/* TSX previously disabled by tsx=off */
321 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
322 		taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
323 		return;
324 	}
325 
326 	if (cpu_mitigations_off()) {
327 		taa_mitigation = TAA_MITIGATION_OFF;
328 		return;
329 	}
330 
331 	/*
332 	 * TAA mitigation via VERW is turned off if both
333 	 * tsx_async_abort=off and mds=off are specified.
334 	 */
335 	if (taa_mitigation == TAA_MITIGATION_OFF &&
336 	    mds_mitigation == MDS_MITIGATION_OFF)
337 		return;
338 
339 	if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
340 		taa_mitigation = TAA_MITIGATION_VERW;
341 	else
342 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
343 
344 	/*
345 	 * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
346 	 * A microcode update fixes this behavior to clear CPU buffers. It also
347 	 * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
348 	 * ARCH_CAP_TSX_CTRL_MSR bit.
349 	 *
350 	 * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
351 	 * update is required.
352 	 */
353 	ia32_cap = x86_read_arch_cap_msr();
354 	if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
355 	    !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
356 		taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
357 
358 	/*
359 	 * TSX is enabled, select alternate mitigation for TAA which is
360 	 * the same as MDS. Enable MDS static branch to clear CPU buffers.
361 	 *
362 	 * For guests that can't determine whether the correct microcode is
363 	 * present on host, enable the mitigation for UCODE_NEEDED as well.
364 	 */
365 	static_branch_enable(&mds_user_clear);
366 
367 	if (taa_nosmt || cpu_mitigations_auto_nosmt())
368 		cpu_smt_disable(false);
369 }
370 
tsx_async_abort_parse_cmdline(char * str)371 static int __init tsx_async_abort_parse_cmdline(char *str)
372 {
373 	if (!boot_cpu_has_bug(X86_BUG_TAA))
374 		return 0;
375 
376 	if (!str)
377 		return -EINVAL;
378 
379 	if (!strcmp(str, "off")) {
380 		taa_mitigation = TAA_MITIGATION_OFF;
381 	} else if (!strcmp(str, "full")) {
382 		taa_mitigation = TAA_MITIGATION_VERW;
383 	} else if (!strcmp(str, "full,nosmt")) {
384 		taa_mitigation = TAA_MITIGATION_VERW;
385 		taa_nosmt = true;
386 	}
387 
388 	return 0;
389 }
390 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
391 
392 #undef pr_fmt
393 #define pr_fmt(fmt)	"MMIO Stale Data: " fmt
394 
395 enum mmio_mitigations {
396 	MMIO_MITIGATION_OFF,
397 	MMIO_MITIGATION_UCODE_NEEDED,
398 	MMIO_MITIGATION_VERW,
399 };
400 
401 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
402 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
403 static bool mmio_nosmt __ro_after_init = false;
404 
405 static const char * const mmio_strings[] = {
406 	[MMIO_MITIGATION_OFF]		= "Vulnerable",
407 	[MMIO_MITIGATION_UCODE_NEEDED]	= "Vulnerable: Clear CPU buffers attempted, no microcode",
408 	[MMIO_MITIGATION_VERW]		= "Mitigation: Clear CPU buffers",
409 };
410 
mmio_select_mitigation(void)411 static void __init mmio_select_mitigation(void)
412 {
413 	u64 ia32_cap;
414 
415 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
416 	     boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
417 	     cpu_mitigations_off()) {
418 		mmio_mitigation = MMIO_MITIGATION_OFF;
419 		return;
420 	}
421 
422 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
423 		return;
424 
425 	ia32_cap = x86_read_arch_cap_msr();
426 
427 	/*
428 	 * Enable CPU buffer clear mitigation for host and VMM, if also affected
429 	 * by MDS or TAA. Otherwise, enable mitigation for VMM only.
430 	 */
431 	if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
432 					      boot_cpu_has(X86_FEATURE_RTM)))
433 		static_branch_enable(&mds_user_clear);
434 	else
435 		static_branch_enable(&mmio_stale_data_clear);
436 
437 	/*
438 	 * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
439 	 * be propagated to uncore buffers, clearing the Fill buffers on idle
440 	 * is required irrespective of SMT state.
441 	 */
442 	if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
443 		static_branch_enable(&mds_idle_clear);
444 
445 	/*
446 	 * Check if the system has the right microcode.
447 	 *
448 	 * CPU Fill buffer clear mitigation is enumerated by either an explicit
449 	 * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
450 	 * affected systems.
451 	 */
452 	if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
453 	    (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
454 	     boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
455 	     !(ia32_cap & ARCH_CAP_MDS_NO)))
456 		mmio_mitigation = MMIO_MITIGATION_VERW;
457 	else
458 		mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
459 
460 	if (mmio_nosmt || cpu_mitigations_auto_nosmt())
461 		cpu_smt_disable(false);
462 }
463 
mmio_stale_data_parse_cmdline(char * str)464 static int __init mmio_stale_data_parse_cmdline(char *str)
465 {
466 	if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
467 		return 0;
468 
469 	if (!str)
470 		return -EINVAL;
471 
472 	if (!strcmp(str, "off")) {
473 		mmio_mitigation = MMIO_MITIGATION_OFF;
474 	} else if (!strcmp(str, "full")) {
475 		mmio_mitigation = MMIO_MITIGATION_VERW;
476 	} else if (!strcmp(str, "full,nosmt")) {
477 		mmio_mitigation = MMIO_MITIGATION_VERW;
478 		mmio_nosmt = true;
479 	}
480 
481 	return 0;
482 }
483 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
484 
485 #undef pr_fmt
486 #define pr_fmt(fmt)     "" fmt
487 
md_clear_update_mitigation(void)488 static void __init md_clear_update_mitigation(void)
489 {
490 	if (cpu_mitigations_off())
491 		return;
492 
493 	if (!static_key_enabled(&mds_user_clear))
494 		goto out;
495 
496 	/*
497 	 * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
498 	 * mitigation, if necessary.
499 	 */
500 	if (mds_mitigation == MDS_MITIGATION_OFF &&
501 	    boot_cpu_has_bug(X86_BUG_MDS)) {
502 		mds_mitigation = MDS_MITIGATION_FULL;
503 		mds_select_mitigation();
504 	}
505 	if (taa_mitigation == TAA_MITIGATION_OFF &&
506 	    boot_cpu_has_bug(X86_BUG_TAA)) {
507 		taa_mitigation = TAA_MITIGATION_VERW;
508 		taa_select_mitigation();
509 	}
510 	if (mmio_mitigation == MMIO_MITIGATION_OFF &&
511 	    boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
512 		mmio_mitigation = MMIO_MITIGATION_VERW;
513 		mmio_select_mitigation();
514 	}
515 out:
516 	if (boot_cpu_has_bug(X86_BUG_MDS))
517 		pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
518 	if (boot_cpu_has_bug(X86_BUG_TAA))
519 		pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
520 	if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
521 		pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
522 	else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
523 		pr_info("MMIO Stale Data: Unknown: No mitigations\n");
524 }
525 
md_clear_select_mitigation(void)526 static void __init md_clear_select_mitigation(void)
527 {
528 	mds_select_mitigation();
529 	taa_select_mitigation();
530 	mmio_select_mitigation();
531 
532 	/*
533 	 * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
534 	 * and print their mitigation after MDS, TAA and MMIO Stale Data
535 	 * mitigation selection is done.
536 	 */
537 	md_clear_update_mitigation();
538 }
539 
540 #undef pr_fmt
541 #define pr_fmt(fmt)	"SRBDS: " fmt
542 
543 enum srbds_mitigations {
544 	SRBDS_MITIGATION_OFF,
545 	SRBDS_MITIGATION_UCODE_NEEDED,
546 	SRBDS_MITIGATION_FULL,
547 	SRBDS_MITIGATION_TSX_OFF,
548 	SRBDS_MITIGATION_HYPERVISOR,
549 };
550 
551 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
552 
553 static const char * const srbds_strings[] = {
554 	[SRBDS_MITIGATION_OFF]		= "Vulnerable",
555 	[SRBDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
556 	[SRBDS_MITIGATION_FULL]		= "Mitigation: Microcode",
557 	[SRBDS_MITIGATION_TSX_OFF]	= "Mitigation: TSX disabled",
558 	[SRBDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
559 };
560 
561 static bool srbds_off;
562 
update_srbds_msr(void)563 void update_srbds_msr(void)
564 {
565 	u64 mcu_ctrl;
566 
567 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
568 		return;
569 
570 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
571 		return;
572 
573 	if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
574 		return;
575 
576 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
577 
578 	switch (srbds_mitigation) {
579 	case SRBDS_MITIGATION_OFF:
580 	case SRBDS_MITIGATION_TSX_OFF:
581 		mcu_ctrl |= RNGDS_MITG_DIS;
582 		break;
583 	case SRBDS_MITIGATION_FULL:
584 		mcu_ctrl &= ~RNGDS_MITG_DIS;
585 		break;
586 	default:
587 		break;
588 	}
589 
590 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
591 }
592 
srbds_select_mitigation(void)593 static void __init srbds_select_mitigation(void)
594 {
595 	u64 ia32_cap;
596 
597 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
598 		return;
599 
600 	/*
601 	 * Check to see if this is one of the MDS_NO systems supporting TSX that
602 	 * are only exposed to SRBDS when TSX is enabled or when CPU is affected
603 	 * by Processor MMIO Stale Data vulnerability.
604 	 */
605 	ia32_cap = x86_read_arch_cap_msr();
606 	if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
607 	    !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
608 		srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
609 	else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
610 		srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
611 	else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
612 		srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
613 	else if (cpu_mitigations_off() || srbds_off)
614 		srbds_mitigation = SRBDS_MITIGATION_OFF;
615 
616 	update_srbds_msr();
617 	pr_info("%s\n", srbds_strings[srbds_mitigation]);
618 }
619 
srbds_parse_cmdline(char * str)620 static int __init srbds_parse_cmdline(char *str)
621 {
622 	if (!str)
623 		return -EINVAL;
624 
625 	if (!boot_cpu_has_bug(X86_BUG_SRBDS))
626 		return 0;
627 
628 	srbds_off = !strcmp(str, "off");
629 	return 0;
630 }
631 early_param("srbds", srbds_parse_cmdline);
632 
633 #undef pr_fmt
634 #define pr_fmt(fmt)     "L1D Flush : " fmt
635 
636 enum l1d_flush_mitigations {
637 	L1D_FLUSH_OFF = 0,
638 	L1D_FLUSH_ON,
639 };
640 
641 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
642 
l1d_flush_select_mitigation(void)643 static void __init l1d_flush_select_mitigation(void)
644 {
645 	if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
646 		return;
647 
648 	static_branch_enable(&switch_mm_cond_l1d_flush);
649 	pr_info("Conditional flush on switch_mm() enabled\n");
650 }
651 
l1d_flush_parse_cmdline(char * str)652 static int __init l1d_flush_parse_cmdline(char *str)
653 {
654 	if (!strcmp(str, "on"))
655 		l1d_flush_mitigation = L1D_FLUSH_ON;
656 
657 	return 0;
658 }
659 early_param("l1d_flush", l1d_flush_parse_cmdline);
660 
661 #undef pr_fmt
662 #define pr_fmt(fmt)	"GDS: " fmt
663 
664 enum gds_mitigations {
665 	GDS_MITIGATION_OFF,
666 	GDS_MITIGATION_UCODE_NEEDED,
667 	GDS_MITIGATION_FORCE,
668 	GDS_MITIGATION_FULL,
669 	GDS_MITIGATION_FULL_LOCKED,
670 	GDS_MITIGATION_HYPERVISOR,
671 };
672 
673 #if IS_ENABLED(CONFIG_GDS_FORCE_MITIGATION)
674 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FORCE;
675 #else
676 static enum gds_mitigations gds_mitigation __ro_after_init = GDS_MITIGATION_FULL;
677 #endif
678 
679 static const char * const gds_strings[] = {
680 	[GDS_MITIGATION_OFF]		= "Vulnerable",
681 	[GDS_MITIGATION_UCODE_NEEDED]	= "Vulnerable: No microcode",
682 	[GDS_MITIGATION_FORCE]		= "Mitigation: AVX disabled, no microcode",
683 	[GDS_MITIGATION_FULL]		= "Mitigation: Microcode",
684 	[GDS_MITIGATION_FULL_LOCKED]	= "Mitigation: Microcode (locked)",
685 	[GDS_MITIGATION_HYPERVISOR]	= "Unknown: Dependent on hypervisor status",
686 };
687 
gds_ucode_mitigated(void)688 bool gds_ucode_mitigated(void)
689 {
690 	return (gds_mitigation == GDS_MITIGATION_FULL ||
691 		gds_mitigation == GDS_MITIGATION_FULL_LOCKED);
692 }
693 EXPORT_SYMBOL_GPL(gds_ucode_mitigated);
694 
update_gds_msr(void)695 void update_gds_msr(void)
696 {
697 	u64 mcu_ctrl_after;
698 	u64 mcu_ctrl;
699 
700 	switch (gds_mitigation) {
701 	case GDS_MITIGATION_OFF:
702 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
703 		mcu_ctrl |= GDS_MITG_DIS;
704 		break;
705 	case GDS_MITIGATION_FULL_LOCKED:
706 		/*
707 		 * The LOCKED state comes from the boot CPU. APs might not have
708 		 * the same state. Make sure the mitigation is enabled on all
709 		 * CPUs.
710 		 */
711 	case GDS_MITIGATION_FULL:
712 		rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
713 		mcu_ctrl &= ~GDS_MITG_DIS;
714 		break;
715 	case GDS_MITIGATION_FORCE:
716 	case GDS_MITIGATION_UCODE_NEEDED:
717 	case GDS_MITIGATION_HYPERVISOR:
718 		return;
719 	};
720 
721 	wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
722 
723 	/*
724 	 * Check to make sure that the WRMSR value was not ignored. Writes to
725 	 * GDS_MITG_DIS will be ignored if this processor is locked but the boot
726 	 * processor was not.
727 	 */
728 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl_after);
729 	WARN_ON_ONCE(mcu_ctrl != mcu_ctrl_after);
730 }
731 
gds_select_mitigation(void)732 static void __init gds_select_mitigation(void)
733 {
734 	u64 mcu_ctrl;
735 
736 	if (!boot_cpu_has_bug(X86_BUG_GDS))
737 		return;
738 
739 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
740 		gds_mitigation = GDS_MITIGATION_HYPERVISOR;
741 		goto out;
742 	}
743 
744 	if (cpu_mitigations_off())
745 		gds_mitigation = GDS_MITIGATION_OFF;
746 	/* Will verify below that mitigation _can_ be disabled */
747 
748 	/* No microcode */
749 	if (!(x86_read_arch_cap_msr() & ARCH_CAP_GDS_CTRL)) {
750 		if (gds_mitigation == GDS_MITIGATION_FORCE) {
751 			/*
752 			 * This only needs to be done on the boot CPU so do it
753 			 * here rather than in update_gds_msr()
754 			 */
755 			setup_clear_cpu_cap(X86_FEATURE_AVX);
756 			pr_warn("Microcode update needed! Disabling AVX as mitigation.\n");
757 		} else {
758 			gds_mitigation = GDS_MITIGATION_UCODE_NEEDED;
759 		}
760 		goto out;
761 	}
762 
763 	/* Microcode has mitigation, use it */
764 	if (gds_mitigation == GDS_MITIGATION_FORCE)
765 		gds_mitigation = GDS_MITIGATION_FULL;
766 
767 	rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
768 	if (mcu_ctrl & GDS_MITG_LOCKED) {
769 		if (gds_mitigation == GDS_MITIGATION_OFF)
770 			pr_warn("Mitigation locked. Disable failed.\n");
771 
772 		/*
773 		 * The mitigation is selected from the boot CPU. All other CPUs
774 		 * _should_ have the same state. If the boot CPU isn't locked
775 		 * but others are then update_gds_msr() will WARN() of the state
776 		 * mismatch. If the boot CPU is locked update_gds_msr() will
777 		 * ensure the other CPUs have the mitigation enabled.
778 		 */
779 		gds_mitigation = GDS_MITIGATION_FULL_LOCKED;
780 	}
781 
782 	update_gds_msr();
783 out:
784 	pr_info("%s\n", gds_strings[gds_mitigation]);
785 }
786 
gds_parse_cmdline(char * str)787 static int __init gds_parse_cmdline(char *str)
788 {
789 	if (!str)
790 		return -EINVAL;
791 
792 	if (!boot_cpu_has_bug(X86_BUG_GDS))
793 		return 0;
794 
795 	if (!strcmp(str, "off"))
796 		gds_mitigation = GDS_MITIGATION_OFF;
797 	else if (!strcmp(str, "force"))
798 		gds_mitigation = GDS_MITIGATION_FORCE;
799 
800 	return 0;
801 }
802 early_param("gather_data_sampling", gds_parse_cmdline);
803 
804 #undef pr_fmt
805 #define pr_fmt(fmt)     "Spectre V1 : " fmt
806 
807 enum spectre_v1_mitigation {
808 	SPECTRE_V1_MITIGATION_NONE,
809 	SPECTRE_V1_MITIGATION_AUTO,
810 };
811 
812 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
813 	SPECTRE_V1_MITIGATION_AUTO;
814 
815 static const char * const spectre_v1_strings[] = {
816 	[SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
817 	[SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
818 };
819 
820 /*
821  * Does SMAP provide full mitigation against speculative kernel access to
822  * userspace?
823  */
smap_works_speculatively(void)824 static bool smap_works_speculatively(void)
825 {
826 	if (!boot_cpu_has(X86_FEATURE_SMAP))
827 		return false;
828 
829 	/*
830 	 * On CPUs which are vulnerable to Meltdown, SMAP does not
831 	 * prevent speculative access to user data in the L1 cache.
832 	 * Consider SMAP to be non-functional as a mitigation on these
833 	 * CPUs.
834 	 */
835 	if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
836 		return false;
837 
838 	return true;
839 }
840 
spectre_v1_select_mitigation(void)841 static void __init spectre_v1_select_mitigation(void)
842 {
843 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
844 		spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
845 		return;
846 	}
847 
848 	if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
849 		/*
850 		 * With Spectre v1, a user can speculatively control either
851 		 * path of a conditional swapgs with a user-controlled GS
852 		 * value.  The mitigation is to add lfences to both code paths.
853 		 *
854 		 * If FSGSBASE is enabled, the user can put a kernel address in
855 		 * GS, in which case SMAP provides no protection.
856 		 *
857 		 * If FSGSBASE is disabled, the user can only put a user space
858 		 * address in GS.  That makes an attack harder, but still
859 		 * possible if there's no SMAP protection.
860 		 */
861 		if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
862 		    !smap_works_speculatively()) {
863 			/*
864 			 * Mitigation can be provided from SWAPGS itself or
865 			 * PTI as the CR3 write in the Meltdown mitigation
866 			 * is serializing.
867 			 *
868 			 * If neither is there, mitigate with an LFENCE to
869 			 * stop speculation through swapgs.
870 			 */
871 			if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
872 			    !boot_cpu_has(X86_FEATURE_PTI))
873 				setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
874 
875 			/*
876 			 * Enable lfences in the kernel entry (non-swapgs)
877 			 * paths, to prevent user entry from speculatively
878 			 * skipping swapgs.
879 			 */
880 			setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
881 		}
882 	}
883 
884 	pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
885 }
886 
nospectre_v1_cmdline(char * str)887 static int __init nospectre_v1_cmdline(char *str)
888 {
889 	spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
890 	return 0;
891 }
892 early_param("nospectre_v1", nospectre_v1_cmdline);
893 
894 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
895 	SPECTRE_V2_NONE;
896 
897 #undef pr_fmt
898 #define pr_fmt(fmt)     "RETBleed: " fmt
899 
900 enum retbleed_mitigation {
901 	RETBLEED_MITIGATION_NONE,
902 	RETBLEED_MITIGATION_UNRET,
903 	RETBLEED_MITIGATION_IBPB,
904 	RETBLEED_MITIGATION_IBRS,
905 	RETBLEED_MITIGATION_EIBRS,
906 };
907 
908 enum retbleed_mitigation_cmd {
909 	RETBLEED_CMD_OFF,
910 	RETBLEED_CMD_AUTO,
911 	RETBLEED_CMD_UNRET,
912 	RETBLEED_CMD_IBPB,
913 };
914 
915 const char * const retbleed_strings[] = {
916 	[RETBLEED_MITIGATION_NONE]	= "Vulnerable",
917 	[RETBLEED_MITIGATION_UNRET]	= "Mitigation: untrained return thunk",
918 	[RETBLEED_MITIGATION_IBPB]	= "Mitigation: IBPB",
919 	[RETBLEED_MITIGATION_IBRS]	= "Mitigation: IBRS",
920 	[RETBLEED_MITIGATION_EIBRS]	= "Mitigation: Enhanced IBRS",
921 };
922 
923 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
924 	RETBLEED_MITIGATION_NONE;
925 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
926 	RETBLEED_CMD_AUTO;
927 
928 static int __ro_after_init retbleed_nosmt = false;
929 
retbleed_parse_cmdline(char * str)930 static int __init retbleed_parse_cmdline(char *str)
931 {
932 	if (!str)
933 		return -EINVAL;
934 
935 	while (str) {
936 		char *next = strchr(str, ',');
937 		if (next) {
938 			*next = 0;
939 			next++;
940 		}
941 
942 		if (!strcmp(str, "off")) {
943 			retbleed_cmd = RETBLEED_CMD_OFF;
944 		} else if (!strcmp(str, "auto")) {
945 			retbleed_cmd = RETBLEED_CMD_AUTO;
946 		} else if (!strcmp(str, "unret")) {
947 			retbleed_cmd = RETBLEED_CMD_UNRET;
948 		} else if (!strcmp(str, "ibpb")) {
949 			retbleed_cmd = RETBLEED_CMD_IBPB;
950 		} else if (!strcmp(str, "nosmt")) {
951 			retbleed_nosmt = true;
952 		} else {
953 			pr_err("Ignoring unknown retbleed option (%s).", str);
954 		}
955 
956 		str = next;
957 	}
958 
959 	return 0;
960 }
961 early_param("retbleed", retbleed_parse_cmdline);
962 
963 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
964 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
965 
retbleed_select_mitigation(void)966 static void __init retbleed_select_mitigation(void)
967 {
968 	bool mitigate_smt = false;
969 
970 	if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
971 		return;
972 
973 	switch (retbleed_cmd) {
974 	case RETBLEED_CMD_OFF:
975 		return;
976 
977 	case RETBLEED_CMD_UNRET:
978 		if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
979 			retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
980 		} else {
981 			pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
982 			goto do_cmd_auto;
983 		}
984 		break;
985 
986 	case RETBLEED_CMD_IBPB:
987 		if (!boot_cpu_has(X86_FEATURE_IBPB)) {
988 			pr_err("WARNING: CPU does not support IBPB.\n");
989 			goto do_cmd_auto;
990 		} else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
991 			retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
992 		} else {
993 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
994 			goto do_cmd_auto;
995 		}
996 		break;
997 
998 do_cmd_auto:
999 	case RETBLEED_CMD_AUTO:
1000 	default:
1001 		if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1002 		    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
1003 			if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
1004 				retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
1005 			else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
1006 				retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
1007 		}
1008 
1009 		/*
1010 		 * The Intel mitigation (IBRS or eIBRS) was already selected in
1011 		 * spectre_v2_select_mitigation().  'retbleed_mitigation' will
1012 		 * be set accordingly below.
1013 		 */
1014 
1015 		break;
1016 	}
1017 
1018 	switch (retbleed_mitigation) {
1019 	case RETBLEED_MITIGATION_UNRET:
1020 		setup_force_cpu_cap(X86_FEATURE_RETHUNK);
1021 		setup_force_cpu_cap(X86_FEATURE_UNRET);
1022 
1023 		if (IS_ENABLED(CONFIG_RETHUNK))
1024 			x86_return_thunk = retbleed_return_thunk;
1025 
1026 		if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
1027 		    boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
1028 			pr_err(RETBLEED_UNTRAIN_MSG);
1029 
1030 		mitigate_smt = true;
1031 		break;
1032 
1033 	case RETBLEED_MITIGATION_IBPB:
1034 		setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
1035 		mitigate_smt = true;
1036 		break;
1037 
1038 	default:
1039 		break;
1040 	}
1041 
1042 	if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
1043 	    (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
1044 		cpu_smt_disable(false);
1045 
1046 	/*
1047 	 * Let IBRS trump all on Intel without affecting the effects of the
1048 	 * retbleed= cmdline option.
1049 	 */
1050 	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1051 		switch (spectre_v2_enabled) {
1052 		case SPECTRE_V2_IBRS:
1053 			retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
1054 			break;
1055 		case SPECTRE_V2_EIBRS:
1056 		case SPECTRE_V2_EIBRS_RETPOLINE:
1057 		case SPECTRE_V2_EIBRS_LFENCE:
1058 			retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
1059 			break;
1060 		default:
1061 			pr_err(RETBLEED_INTEL_MSG);
1062 		}
1063 	}
1064 
1065 	pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
1066 }
1067 
1068 #undef pr_fmt
1069 #define pr_fmt(fmt)     "Spectre V2 : " fmt
1070 
1071 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
1072 	SPECTRE_V2_USER_NONE;
1073 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
1074 	SPECTRE_V2_USER_NONE;
1075 
1076 #ifdef CONFIG_RETPOLINE
1077 static bool spectre_v2_bad_module;
1078 
retpoline_module_ok(bool has_retpoline)1079 bool retpoline_module_ok(bool has_retpoline)
1080 {
1081 	if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
1082 		return true;
1083 
1084 	pr_err("System may be vulnerable to spectre v2\n");
1085 	spectre_v2_bad_module = true;
1086 	return false;
1087 }
1088 
spectre_v2_module_string(void)1089 static inline const char *spectre_v2_module_string(void)
1090 {
1091 	return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1092 }
1093 #else
spectre_v2_module_string(void)1094 static inline const char *spectre_v2_module_string(void) { return ""; }
1095 #endif
1096 
1097 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1098 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1099 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1100 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1101 
1102 #ifdef CONFIG_BPF_SYSCALL
unpriv_ebpf_notify(int new_state)1103 void unpriv_ebpf_notify(int new_state)
1104 {
1105 	if (new_state)
1106 		return;
1107 
1108 	/* Unprivileged eBPF is enabled */
1109 
1110 	switch (spectre_v2_enabled) {
1111 	case SPECTRE_V2_EIBRS:
1112 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1113 		break;
1114 	case SPECTRE_V2_EIBRS_LFENCE:
1115 		if (sched_smt_active())
1116 			pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1117 		break;
1118 	default:
1119 		break;
1120 	}
1121 }
1122 #endif
1123 
match_option(const char * arg,int arglen,const char * opt)1124 static inline bool match_option(const char *arg, int arglen, const char *opt)
1125 {
1126 	int len = strlen(opt);
1127 
1128 	return len == arglen && !strncmp(arg, opt, len);
1129 }
1130 
1131 /* The kernel command line selection for spectre v2 */
1132 enum spectre_v2_mitigation_cmd {
1133 	SPECTRE_V2_CMD_NONE,
1134 	SPECTRE_V2_CMD_AUTO,
1135 	SPECTRE_V2_CMD_FORCE,
1136 	SPECTRE_V2_CMD_RETPOLINE,
1137 	SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1138 	SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1139 	SPECTRE_V2_CMD_EIBRS,
1140 	SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1141 	SPECTRE_V2_CMD_EIBRS_LFENCE,
1142 	SPECTRE_V2_CMD_IBRS,
1143 };
1144 
1145 enum spectre_v2_user_cmd {
1146 	SPECTRE_V2_USER_CMD_NONE,
1147 	SPECTRE_V2_USER_CMD_AUTO,
1148 	SPECTRE_V2_USER_CMD_FORCE,
1149 	SPECTRE_V2_USER_CMD_PRCTL,
1150 	SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1151 	SPECTRE_V2_USER_CMD_SECCOMP,
1152 	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1153 };
1154 
1155 static const char * const spectre_v2_user_strings[] = {
1156 	[SPECTRE_V2_USER_NONE]			= "User space: Vulnerable",
1157 	[SPECTRE_V2_USER_STRICT]		= "User space: Mitigation: STIBP protection",
1158 	[SPECTRE_V2_USER_STRICT_PREFERRED]	= "User space: Mitigation: STIBP always-on protection",
1159 	[SPECTRE_V2_USER_PRCTL]			= "User space: Mitigation: STIBP via prctl",
1160 	[SPECTRE_V2_USER_SECCOMP]		= "User space: Mitigation: STIBP via seccomp and prctl",
1161 };
1162 
1163 static const struct {
1164 	const char			*option;
1165 	enum spectre_v2_user_cmd	cmd;
1166 	bool				secure;
1167 } v2_user_options[] __initconst = {
1168 	{ "auto",		SPECTRE_V2_USER_CMD_AUTO,		false },
1169 	{ "off",		SPECTRE_V2_USER_CMD_NONE,		false },
1170 	{ "on",			SPECTRE_V2_USER_CMD_FORCE,		true  },
1171 	{ "prctl",		SPECTRE_V2_USER_CMD_PRCTL,		false },
1172 	{ "prctl,ibpb",		SPECTRE_V2_USER_CMD_PRCTL_IBPB,		false },
1173 	{ "seccomp",		SPECTRE_V2_USER_CMD_SECCOMP,		false },
1174 	{ "seccomp,ibpb",	SPECTRE_V2_USER_CMD_SECCOMP_IBPB,	false },
1175 };
1176 
spec_v2_user_print_cond(const char * reason,bool secure)1177 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1178 {
1179 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1180 		pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1181 }
1182 
1183 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1184 
1185 static enum spectre_v2_user_cmd __init
spectre_v2_parse_user_cmdline(void)1186 spectre_v2_parse_user_cmdline(void)
1187 {
1188 	char arg[20];
1189 	int ret, i;
1190 
1191 	switch (spectre_v2_cmd) {
1192 	case SPECTRE_V2_CMD_NONE:
1193 		return SPECTRE_V2_USER_CMD_NONE;
1194 	case SPECTRE_V2_CMD_FORCE:
1195 		return SPECTRE_V2_USER_CMD_FORCE;
1196 	default:
1197 		break;
1198 	}
1199 
1200 	ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1201 				  arg, sizeof(arg));
1202 	if (ret < 0)
1203 		return SPECTRE_V2_USER_CMD_AUTO;
1204 
1205 	for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1206 		if (match_option(arg, ret, v2_user_options[i].option)) {
1207 			spec_v2_user_print_cond(v2_user_options[i].option,
1208 						v2_user_options[i].secure);
1209 			return v2_user_options[i].cmd;
1210 		}
1211 	}
1212 
1213 	pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1214 	return SPECTRE_V2_USER_CMD_AUTO;
1215 }
1216 
spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)1217 static inline bool spectre_v2_in_eibrs_mode(enum spectre_v2_mitigation mode)
1218 {
1219 	return mode == SPECTRE_V2_EIBRS ||
1220 	       mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1221 	       mode == SPECTRE_V2_EIBRS_LFENCE;
1222 }
1223 
spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)1224 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1225 {
1226 	return spectre_v2_in_eibrs_mode(mode) || mode == SPECTRE_V2_IBRS;
1227 }
1228 
1229 static void __init
spectre_v2_user_select_mitigation(void)1230 spectre_v2_user_select_mitigation(void)
1231 {
1232 	enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1233 	bool smt_possible = IS_ENABLED(CONFIG_SMP);
1234 	enum spectre_v2_user_cmd cmd;
1235 
1236 	if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1237 		return;
1238 
1239 	if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1240 	    cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1241 		smt_possible = false;
1242 
1243 	cmd = spectre_v2_parse_user_cmdline();
1244 	switch (cmd) {
1245 	case SPECTRE_V2_USER_CMD_NONE:
1246 		goto set_mode;
1247 	case SPECTRE_V2_USER_CMD_FORCE:
1248 		mode = SPECTRE_V2_USER_STRICT;
1249 		break;
1250 	case SPECTRE_V2_USER_CMD_PRCTL:
1251 	case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1252 		mode = SPECTRE_V2_USER_PRCTL;
1253 		break;
1254 	case SPECTRE_V2_USER_CMD_AUTO:
1255 	case SPECTRE_V2_USER_CMD_SECCOMP:
1256 	case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1257 		if (IS_ENABLED(CONFIG_SECCOMP))
1258 			mode = SPECTRE_V2_USER_SECCOMP;
1259 		else
1260 			mode = SPECTRE_V2_USER_PRCTL;
1261 		break;
1262 	}
1263 
1264 	/* Initialize Indirect Branch Prediction Barrier */
1265 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
1266 		setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1267 
1268 		spectre_v2_user_ibpb = mode;
1269 		switch (cmd) {
1270 		case SPECTRE_V2_USER_CMD_FORCE:
1271 		case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1272 		case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1273 			static_branch_enable(&switch_mm_always_ibpb);
1274 			spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1275 			break;
1276 		case SPECTRE_V2_USER_CMD_PRCTL:
1277 		case SPECTRE_V2_USER_CMD_AUTO:
1278 		case SPECTRE_V2_USER_CMD_SECCOMP:
1279 			static_branch_enable(&switch_mm_cond_ibpb);
1280 			break;
1281 		default:
1282 			break;
1283 		}
1284 
1285 		pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1286 			static_key_enabled(&switch_mm_always_ibpb) ?
1287 			"always-on" : "conditional");
1288 	}
1289 
1290 	/*
1291 	 * If no STIBP, enhanced IBRS is enabled, or SMT impossible, STIBP
1292 	 * is not required.
1293 	 *
1294 	 * Enhanced IBRS also protects against cross-thread branch target
1295 	 * injection in user-mode as the IBRS bit remains always set which
1296 	 * implicitly enables cross-thread protections.  However, in legacy IBRS
1297 	 * mode, the IBRS bit is set only on kernel entry and cleared on return
1298 	 * to userspace. This disables the implicit cross-thread protection,
1299 	 * so allow for STIBP to be selected in that case.
1300 	 */
1301 	if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1302 	    !smt_possible ||
1303 	    spectre_v2_in_eibrs_mode(spectre_v2_enabled))
1304 		return;
1305 
1306 	/*
1307 	 * At this point, an STIBP mode other than "off" has been set.
1308 	 * If STIBP support is not being forced, check if STIBP always-on
1309 	 * is preferred.
1310 	 */
1311 	if (mode != SPECTRE_V2_USER_STRICT &&
1312 	    boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1313 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1314 
1315 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1316 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1317 		if (mode != SPECTRE_V2_USER_STRICT &&
1318 		    mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1319 			pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1320 		mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1321 	}
1322 
1323 	spectre_v2_user_stibp = mode;
1324 
1325 set_mode:
1326 	pr_info("%s\n", spectre_v2_user_strings[mode]);
1327 }
1328 
1329 static const char * const spectre_v2_strings[] = {
1330 	[SPECTRE_V2_NONE]			= "Vulnerable",
1331 	[SPECTRE_V2_RETPOLINE]			= "Mitigation: Retpolines",
1332 	[SPECTRE_V2_LFENCE]			= "Mitigation: LFENCE",
1333 	[SPECTRE_V2_EIBRS]			= "Mitigation: Enhanced IBRS",
1334 	[SPECTRE_V2_EIBRS_LFENCE]		= "Mitigation: Enhanced IBRS + LFENCE",
1335 	[SPECTRE_V2_EIBRS_RETPOLINE]		= "Mitigation: Enhanced IBRS + Retpolines",
1336 	[SPECTRE_V2_IBRS]			= "Mitigation: IBRS",
1337 };
1338 
1339 static const struct {
1340 	const char *option;
1341 	enum spectre_v2_mitigation_cmd cmd;
1342 	bool secure;
1343 } mitigation_options[] __initconst = {
1344 	{ "off",		SPECTRE_V2_CMD_NONE,		  false },
1345 	{ "on",			SPECTRE_V2_CMD_FORCE,		  true  },
1346 	{ "retpoline",		SPECTRE_V2_CMD_RETPOLINE,	  false },
1347 	{ "retpoline,amd",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1348 	{ "retpoline,lfence",	SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1349 	{ "retpoline,generic",	SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1350 	{ "eibrs",		SPECTRE_V2_CMD_EIBRS,		  false },
1351 	{ "eibrs,lfence",	SPECTRE_V2_CMD_EIBRS_LFENCE,	  false },
1352 	{ "eibrs,retpoline",	SPECTRE_V2_CMD_EIBRS_RETPOLINE,	  false },
1353 	{ "auto",		SPECTRE_V2_CMD_AUTO,		  false },
1354 	{ "ibrs",		SPECTRE_V2_CMD_IBRS,              false },
1355 };
1356 
spec_v2_print_cond(const char * reason,bool secure)1357 static void __init spec_v2_print_cond(const char *reason, bool secure)
1358 {
1359 	if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1360 		pr_info("%s selected on command line.\n", reason);
1361 }
1362 
spectre_v2_parse_cmdline(void)1363 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1364 {
1365 	enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1366 	char arg[20];
1367 	int ret, i;
1368 
1369 	if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1370 	    cpu_mitigations_off())
1371 		return SPECTRE_V2_CMD_NONE;
1372 
1373 	ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1374 	if (ret < 0)
1375 		return SPECTRE_V2_CMD_AUTO;
1376 
1377 	for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1378 		if (!match_option(arg, ret, mitigation_options[i].option))
1379 			continue;
1380 		cmd = mitigation_options[i].cmd;
1381 		break;
1382 	}
1383 
1384 	if (i >= ARRAY_SIZE(mitigation_options)) {
1385 		pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1386 		return SPECTRE_V2_CMD_AUTO;
1387 	}
1388 
1389 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1390 	     cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1391 	     cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1392 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1393 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1394 	    !IS_ENABLED(CONFIG_RETPOLINE)) {
1395 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1396 		       mitigation_options[i].option);
1397 		return SPECTRE_V2_CMD_AUTO;
1398 	}
1399 
1400 	if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1401 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1402 	     cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1403 	    !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1404 		pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1405 		       mitigation_options[i].option);
1406 		return SPECTRE_V2_CMD_AUTO;
1407 	}
1408 
1409 	if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1410 	     cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1411 	    !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1412 		pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1413 		       mitigation_options[i].option);
1414 		return SPECTRE_V2_CMD_AUTO;
1415 	}
1416 
1417 	if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1418 		pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1419 		       mitigation_options[i].option);
1420 		return SPECTRE_V2_CMD_AUTO;
1421 	}
1422 
1423 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1424 		pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1425 		       mitigation_options[i].option);
1426 		return SPECTRE_V2_CMD_AUTO;
1427 	}
1428 
1429 	if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1430 		pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1431 		       mitigation_options[i].option);
1432 		return SPECTRE_V2_CMD_AUTO;
1433 	}
1434 
1435 	if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_has(X86_FEATURE_XENPV)) {
1436 		pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1437 		       mitigation_options[i].option);
1438 		return SPECTRE_V2_CMD_AUTO;
1439 	}
1440 
1441 	spec_v2_print_cond(mitigation_options[i].option,
1442 			   mitigation_options[i].secure);
1443 	return cmd;
1444 }
1445 
spectre_v2_select_retpoline(void)1446 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1447 {
1448 	if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1449 		pr_err("Kernel not compiled with retpoline; no mitigation available!");
1450 		return SPECTRE_V2_NONE;
1451 	}
1452 
1453 	return SPECTRE_V2_RETPOLINE;
1454 }
1455 
1456 /* Disable in-kernel use of non-RSB RET predictors */
spec_ctrl_disable_kernel_rrsba(void)1457 static void __init spec_ctrl_disable_kernel_rrsba(void)
1458 {
1459 	u64 ia32_cap;
1460 
1461 	if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1462 		return;
1463 
1464 	ia32_cap = x86_read_arch_cap_msr();
1465 
1466 	if (ia32_cap & ARCH_CAP_RRSBA) {
1467 		x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1468 		update_spec_ctrl(x86_spec_ctrl_base);
1469 	}
1470 }
1471 
spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)1472 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1473 {
1474 	/*
1475 	 * Similar to context switches, there are two types of RSB attacks
1476 	 * after VM exit:
1477 	 *
1478 	 * 1) RSB underflow
1479 	 *
1480 	 * 2) Poisoned RSB entry
1481 	 *
1482 	 * When retpoline is enabled, both are mitigated by filling/clearing
1483 	 * the RSB.
1484 	 *
1485 	 * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1486 	 * prediction isolation protections, RSB still needs to be cleared
1487 	 * because of #2.  Note that SMEP provides no protection here, unlike
1488 	 * user-space-poisoned RSB entries.
1489 	 *
1490 	 * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1491 	 * bug is present then a LITE version of RSB protection is required,
1492 	 * just a single call needs to retire before a RET is executed.
1493 	 */
1494 	switch (mode) {
1495 	case SPECTRE_V2_NONE:
1496 		return;
1497 
1498 	case SPECTRE_V2_EIBRS_LFENCE:
1499 	case SPECTRE_V2_EIBRS:
1500 		if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1501 			setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1502 			pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1503 		}
1504 		return;
1505 
1506 	case SPECTRE_V2_EIBRS_RETPOLINE:
1507 	case SPECTRE_V2_RETPOLINE:
1508 	case SPECTRE_V2_LFENCE:
1509 	case SPECTRE_V2_IBRS:
1510 		setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1511 		pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1512 		return;
1513 	}
1514 
1515 	pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1516 	dump_stack();
1517 }
1518 
spectre_v2_select_mitigation(void)1519 static void __init spectre_v2_select_mitigation(void)
1520 {
1521 	enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1522 	enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1523 
1524 	/*
1525 	 * If the CPU is not affected and the command line mode is NONE or AUTO
1526 	 * then nothing to do.
1527 	 */
1528 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1529 	    (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1530 		return;
1531 
1532 	switch (cmd) {
1533 	case SPECTRE_V2_CMD_NONE:
1534 		return;
1535 
1536 	case SPECTRE_V2_CMD_FORCE:
1537 	case SPECTRE_V2_CMD_AUTO:
1538 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1539 			mode = SPECTRE_V2_EIBRS;
1540 			break;
1541 		}
1542 
1543 		if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1544 		    boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1545 		    retbleed_cmd != RETBLEED_CMD_OFF &&
1546 		    boot_cpu_has(X86_FEATURE_IBRS) &&
1547 		    boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1548 			mode = SPECTRE_V2_IBRS;
1549 			break;
1550 		}
1551 
1552 		mode = spectre_v2_select_retpoline();
1553 		break;
1554 
1555 	case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1556 		pr_err(SPECTRE_V2_LFENCE_MSG);
1557 		mode = SPECTRE_V2_LFENCE;
1558 		break;
1559 
1560 	case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1561 		mode = SPECTRE_V2_RETPOLINE;
1562 		break;
1563 
1564 	case SPECTRE_V2_CMD_RETPOLINE:
1565 		mode = spectre_v2_select_retpoline();
1566 		break;
1567 
1568 	case SPECTRE_V2_CMD_IBRS:
1569 		mode = SPECTRE_V2_IBRS;
1570 		break;
1571 
1572 	case SPECTRE_V2_CMD_EIBRS:
1573 		mode = SPECTRE_V2_EIBRS;
1574 		break;
1575 
1576 	case SPECTRE_V2_CMD_EIBRS_LFENCE:
1577 		mode = SPECTRE_V2_EIBRS_LFENCE;
1578 		break;
1579 
1580 	case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1581 		mode = SPECTRE_V2_EIBRS_RETPOLINE;
1582 		break;
1583 	}
1584 
1585 	if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1586 		pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1587 
1588 	if (spectre_v2_in_ibrs_mode(mode)) {
1589 		x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1590 		update_spec_ctrl(x86_spec_ctrl_base);
1591 	}
1592 
1593 	switch (mode) {
1594 	case SPECTRE_V2_NONE:
1595 	case SPECTRE_V2_EIBRS:
1596 		break;
1597 
1598 	case SPECTRE_V2_IBRS:
1599 		setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1600 		if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1601 			pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1602 		break;
1603 
1604 	case SPECTRE_V2_LFENCE:
1605 	case SPECTRE_V2_EIBRS_LFENCE:
1606 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1607 		fallthrough;
1608 
1609 	case SPECTRE_V2_RETPOLINE:
1610 	case SPECTRE_V2_EIBRS_RETPOLINE:
1611 		setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1612 		break;
1613 	}
1614 
1615 	/*
1616 	 * Disable alternate RSB predictions in kernel when indirect CALLs and
1617 	 * JMPs gets protection against BHI and Intramode-BTI, but RET
1618 	 * prediction from a non-RSB predictor is still a risk.
1619 	 */
1620 	if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1621 	    mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1622 	    mode == SPECTRE_V2_RETPOLINE)
1623 		spec_ctrl_disable_kernel_rrsba();
1624 
1625 	spectre_v2_enabled = mode;
1626 	pr_info("%s\n", spectre_v2_strings[mode]);
1627 
1628 	/*
1629 	 * If Spectre v2 protection has been enabled, fill the RSB during a
1630 	 * context switch.  In general there are two types of RSB attacks
1631 	 * across context switches, for which the CALLs/RETs may be unbalanced.
1632 	 *
1633 	 * 1) RSB underflow
1634 	 *
1635 	 *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1636 	 *    speculated return targets may come from the branch predictor,
1637 	 *    which could have a user-poisoned BTB or BHB entry.
1638 	 *
1639 	 *    AMD has it even worse: *all* returns are speculated from the BTB,
1640 	 *    regardless of the state of the RSB.
1641 	 *
1642 	 *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1643 	 *    scenario is mitigated by the IBRS branch prediction isolation
1644 	 *    properties, so the RSB buffer filling wouldn't be necessary to
1645 	 *    protect against this type of attack.
1646 	 *
1647 	 *    The "user -> user" attack scenario is mitigated by RSB filling.
1648 	 *
1649 	 * 2) Poisoned RSB entry
1650 	 *
1651 	 *    If the 'next' in-kernel return stack is shorter than 'prev',
1652 	 *    'next' could be tricked into speculating with a user-poisoned RSB
1653 	 *    entry.
1654 	 *
1655 	 *    The "user -> kernel" attack scenario is mitigated by SMEP and
1656 	 *    eIBRS.
1657 	 *
1658 	 *    The "user -> user" scenario, also known as SpectreBHB, requires
1659 	 *    RSB clearing.
1660 	 *
1661 	 * So to mitigate all cases, unconditionally fill RSB on context
1662 	 * switches.
1663 	 *
1664 	 * FIXME: Is this pointless for retbleed-affected AMD?
1665 	 */
1666 	setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1667 	pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1668 
1669 	spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1670 
1671 	/*
1672 	 * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1673 	 * and Enhanced IBRS protect firmware too, so enable IBRS around
1674 	 * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1675 	 * enabled.
1676 	 *
1677 	 * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1678 	 * the user might select retpoline on the kernel command line and if
1679 	 * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1680 	 * enable IBRS around firmware calls.
1681 	 */
1682 	if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1683 	    boot_cpu_has(X86_FEATURE_IBPB) &&
1684 	    (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1685 	     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1686 
1687 		if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1688 			setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1689 			pr_info("Enabling Speculation Barrier for firmware calls\n");
1690 		}
1691 
1692 	} else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1693 		setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1694 		pr_info("Enabling Restricted Speculation for firmware calls\n");
1695 	}
1696 
1697 	/* Set up IBPB and STIBP depending on the general spectre V2 command */
1698 	spectre_v2_cmd = cmd;
1699 }
1700 
update_stibp_msr(void * __unused)1701 static void update_stibp_msr(void * __unused)
1702 {
1703 	u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1704 	update_spec_ctrl(val);
1705 }
1706 
1707 /* Update x86_spec_ctrl_base in case SMT state changed. */
update_stibp_strict(void)1708 static void update_stibp_strict(void)
1709 {
1710 	u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1711 
1712 	if (sched_smt_active())
1713 		mask |= SPEC_CTRL_STIBP;
1714 
1715 	if (mask == x86_spec_ctrl_base)
1716 		return;
1717 
1718 	pr_info("Update user space SMT mitigation: STIBP %s\n",
1719 		mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1720 	x86_spec_ctrl_base = mask;
1721 	on_each_cpu(update_stibp_msr, NULL, 1);
1722 }
1723 
1724 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
update_indir_branch_cond(void)1725 static void update_indir_branch_cond(void)
1726 {
1727 	if (sched_smt_active())
1728 		static_branch_enable(&switch_to_cond_stibp);
1729 	else
1730 		static_branch_disable(&switch_to_cond_stibp);
1731 }
1732 
1733 #undef pr_fmt
1734 #define pr_fmt(fmt) fmt
1735 
1736 /* Update the static key controlling the MDS CPU buffer clear in idle */
update_mds_branch_idle(void)1737 static void update_mds_branch_idle(void)
1738 {
1739 	u64 ia32_cap = x86_read_arch_cap_msr();
1740 
1741 	/*
1742 	 * Enable the idle clearing if SMT is active on CPUs which are
1743 	 * affected only by MSBDS and not any other MDS variant.
1744 	 *
1745 	 * The other variants cannot be mitigated when SMT is enabled, so
1746 	 * clearing the buffers on idle just to prevent the Store Buffer
1747 	 * repartitioning leak would be a window dressing exercise.
1748 	 */
1749 	if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1750 		return;
1751 
1752 	if (sched_smt_active()) {
1753 		static_branch_enable(&mds_idle_clear);
1754 	} else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1755 		   (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1756 		static_branch_disable(&mds_idle_clear);
1757 	}
1758 }
1759 
1760 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1761 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1762 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1763 
cpu_bugs_smt_update(void)1764 void cpu_bugs_smt_update(void)
1765 {
1766 	mutex_lock(&spec_ctrl_mutex);
1767 
1768 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1769 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1770 		pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1771 
1772 	switch (spectre_v2_user_stibp) {
1773 	case SPECTRE_V2_USER_NONE:
1774 		break;
1775 	case SPECTRE_V2_USER_STRICT:
1776 	case SPECTRE_V2_USER_STRICT_PREFERRED:
1777 		update_stibp_strict();
1778 		break;
1779 	case SPECTRE_V2_USER_PRCTL:
1780 	case SPECTRE_V2_USER_SECCOMP:
1781 		update_indir_branch_cond();
1782 		break;
1783 	}
1784 
1785 	switch (mds_mitigation) {
1786 	case MDS_MITIGATION_FULL:
1787 	case MDS_MITIGATION_VMWERV:
1788 		if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1789 			pr_warn_once(MDS_MSG_SMT);
1790 		update_mds_branch_idle();
1791 		break;
1792 	case MDS_MITIGATION_OFF:
1793 		break;
1794 	}
1795 
1796 	switch (taa_mitigation) {
1797 	case TAA_MITIGATION_VERW:
1798 	case TAA_MITIGATION_UCODE_NEEDED:
1799 		if (sched_smt_active())
1800 			pr_warn_once(TAA_MSG_SMT);
1801 		break;
1802 	case TAA_MITIGATION_TSX_DISABLED:
1803 	case TAA_MITIGATION_OFF:
1804 		break;
1805 	}
1806 
1807 	switch (mmio_mitigation) {
1808 	case MMIO_MITIGATION_VERW:
1809 	case MMIO_MITIGATION_UCODE_NEEDED:
1810 		if (sched_smt_active())
1811 			pr_warn_once(MMIO_MSG_SMT);
1812 		break;
1813 	case MMIO_MITIGATION_OFF:
1814 		break;
1815 	}
1816 
1817 	mutex_unlock(&spec_ctrl_mutex);
1818 }
1819 
1820 #undef pr_fmt
1821 #define pr_fmt(fmt)	"Speculative Store Bypass: " fmt
1822 
1823 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1824 
1825 /* The kernel command line selection */
1826 enum ssb_mitigation_cmd {
1827 	SPEC_STORE_BYPASS_CMD_NONE,
1828 	SPEC_STORE_BYPASS_CMD_AUTO,
1829 	SPEC_STORE_BYPASS_CMD_ON,
1830 	SPEC_STORE_BYPASS_CMD_PRCTL,
1831 	SPEC_STORE_BYPASS_CMD_SECCOMP,
1832 };
1833 
1834 static const char * const ssb_strings[] = {
1835 	[SPEC_STORE_BYPASS_NONE]	= "Vulnerable",
1836 	[SPEC_STORE_BYPASS_DISABLE]	= "Mitigation: Speculative Store Bypass disabled",
1837 	[SPEC_STORE_BYPASS_PRCTL]	= "Mitigation: Speculative Store Bypass disabled via prctl",
1838 	[SPEC_STORE_BYPASS_SECCOMP]	= "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1839 };
1840 
1841 static const struct {
1842 	const char *option;
1843 	enum ssb_mitigation_cmd cmd;
1844 } ssb_mitigation_options[]  __initconst = {
1845 	{ "auto",	SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1846 	{ "on",		SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1847 	{ "off",	SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1848 	{ "prctl",	SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1849 	{ "seccomp",	SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1850 };
1851 
ssb_parse_cmdline(void)1852 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1853 {
1854 	enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1855 	char arg[20];
1856 	int ret, i;
1857 
1858 	if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1859 	    cpu_mitigations_off()) {
1860 		return SPEC_STORE_BYPASS_CMD_NONE;
1861 	} else {
1862 		ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1863 					  arg, sizeof(arg));
1864 		if (ret < 0)
1865 			return SPEC_STORE_BYPASS_CMD_AUTO;
1866 
1867 		for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1868 			if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1869 				continue;
1870 
1871 			cmd = ssb_mitigation_options[i].cmd;
1872 			break;
1873 		}
1874 
1875 		if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1876 			pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1877 			return SPEC_STORE_BYPASS_CMD_AUTO;
1878 		}
1879 	}
1880 
1881 	return cmd;
1882 }
1883 
__ssb_select_mitigation(void)1884 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1885 {
1886 	enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1887 	enum ssb_mitigation_cmd cmd;
1888 
1889 	if (!boot_cpu_has(X86_FEATURE_SSBD))
1890 		return mode;
1891 
1892 	cmd = ssb_parse_cmdline();
1893 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1894 	    (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1895 	     cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1896 		return mode;
1897 
1898 	switch (cmd) {
1899 	case SPEC_STORE_BYPASS_CMD_AUTO:
1900 	case SPEC_STORE_BYPASS_CMD_SECCOMP:
1901 		/*
1902 		 * Choose prctl+seccomp as the default mode if seccomp is
1903 		 * enabled.
1904 		 */
1905 		if (IS_ENABLED(CONFIG_SECCOMP))
1906 			mode = SPEC_STORE_BYPASS_SECCOMP;
1907 		else
1908 			mode = SPEC_STORE_BYPASS_PRCTL;
1909 		break;
1910 	case SPEC_STORE_BYPASS_CMD_ON:
1911 		mode = SPEC_STORE_BYPASS_DISABLE;
1912 		break;
1913 	case SPEC_STORE_BYPASS_CMD_PRCTL:
1914 		mode = SPEC_STORE_BYPASS_PRCTL;
1915 		break;
1916 	case SPEC_STORE_BYPASS_CMD_NONE:
1917 		break;
1918 	}
1919 
1920 	/*
1921 	 * We have three CPU feature flags that are in play here:
1922 	 *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1923 	 *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1924 	 *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1925 	 */
1926 	if (mode == SPEC_STORE_BYPASS_DISABLE) {
1927 		setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1928 		/*
1929 		 * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1930 		 * use a completely different MSR and bit dependent on family.
1931 		 */
1932 		if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1933 		    !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1934 			x86_amd_ssb_disable();
1935 		} else {
1936 			x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1937 			update_spec_ctrl(x86_spec_ctrl_base);
1938 		}
1939 	}
1940 
1941 	return mode;
1942 }
1943 
ssb_select_mitigation(void)1944 static void ssb_select_mitigation(void)
1945 {
1946 	ssb_mode = __ssb_select_mitigation();
1947 
1948 	if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1949 		pr_info("%s\n", ssb_strings[ssb_mode]);
1950 }
1951 
1952 #undef pr_fmt
1953 #define pr_fmt(fmt)     "Speculation prctl: " fmt
1954 
task_update_spec_tif(struct task_struct * tsk)1955 static void task_update_spec_tif(struct task_struct *tsk)
1956 {
1957 	/* Force the update of the real TIF bits */
1958 	set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1959 
1960 	/*
1961 	 * Immediately update the speculation control MSRs for the current
1962 	 * task, but for a non-current task delay setting the CPU
1963 	 * mitigation until it is scheduled next.
1964 	 *
1965 	 * This can only happen for SECCOMP mitigation. For PRCTL it's
1966 	 * always the current task.
1967 	 */
1968 	if (tsk == current)
1969 		speculation_ctrl_update_current();
1970 }
1971 
l1d_flush_prctl_set(struct task_struct * task,unsigned long ctrl)1972 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1973 {
1974 
1975 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1976 		return -EPERM;
1977 
1978 	switch (ctrl) {
1979 	case PR_SPEC_ENABLE:
1980 		set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1981 		return 0;
1982 	case PR_SPEC_DISABLE:
1983 		clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1984 		return 0;
1985 	default:
1986 		return -ERANGE;
1987 	}
1988 }
1989 
ssb_prctl_set(struct task_struct * task,unsigned long ctrl)1990 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1991 {
1992 	if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1993 	    ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1994 		return -ENXIO;
1995 
1996 	switch (ctrl) {
1997 	case PR_SPEC_ENABLE:
1998 		/* If speculation is force disabled, enable is not allowed */
1999 		if (task_spec_ssb_force_disable(task))
2000 			return -EPERM;
2001 		task_clear_spec_ssb_disable(task);
2002 		task_clear_spec_ssb_noexec(task);
2003 		task_update_spec_tif(task);
2004 		break;
2005 	case PR_SPEC_DISABLE:
2006 		task_set_spec_ssb_disable(task);
2007 		task_clear_spec_ssb_noexec(task);
2008 		task_update_spec_tif(task);
2009 		break;
2010 	case PR_SPEC_FORCE_DISABLE:
2011 		task_set_spec_ssb_disable(task);
2012 		task_set_spec_ssb_force_disable(task);
2013 		task_clear_spec_ssb_noexec(task);
2014 		task_update_spec_tif(task);
2015 		break;
2016 	case PR_SPEC_DISABLE_NOEXEC:
2017 		if (task_spec_ssb_force_disable(task))
2018 			return -EPERM;
2019 		task_set_spec_ssb_disable(task);
2020 		task_set_spec_ssb_noexec(task);
2021 		task_update_spec_tif(task);
2022 		break;
2023 	default:
2024 		return -ERANGE;
2025 	}
2026 	return 0;
2027 }
2028 
is_spec_ib_user_controlled(void)2029 static bool is_spec_ib_user_controlled(void)
2030 {
2031 	return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
2032 		spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2033 		spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
2034 		spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
2035 }
2036 
ib_prctl_set(struct task_struct * task,unsigned long ctrl)2037 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
2038 {
2039 	switch (ctrl) {
2040 	case PR_SPEC_ENABLE:
2041 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2042 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2043 			return 0;
2044 
2045 		/*
2046 		 * With strict mode for both IBPB and STIBP, the instruction
2047 		 * code paths avoid checking this task flag and instead,
2048 		 * unconditionally run the instruction. However, STIBP and IBPB
2049 		 * are independent and either can be set to conditionally
2050 		 * enabled regardless of the mode of the other.
2051 		 *
2052 		 * If either is set to conditional, allow the task flag to be
2053 		 * updated, unless it was force-disabled by a previous prctl
2054 		 * call. Currently, this is possible on an AMD CPU which has the
2055 		 * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
2056 		 * kernel is booted with 'spectre_v2_user=seccomp', then
2057 		 * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
2058 		 * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
2059 		 */
2060 		if (!is_spec_ib_user_controlled() ||
2061 		    task_spec_ib_force_disable(task))
2062 			return -EPERM;
2063 
2064 		task_clear_spec_ib_disable(task);
2065 		task_update_spec_tif(task);
2066 		break;
2067 	case PR_SPEC_DISABLE:
2068 	case PR_SPEC_FORCE_DISABLE:
2069 		/*
2070 		 * Indirect branch speculation is always allowed when
2071 		 * mitigation is force disabled.
2072 		 */
2073 		if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2074 		    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2075 			return -EPERM;
2076 
2077 		if (!is_spec_ib_user_controlled())
2078 			return 0;
2079 
2080 		task_set_spec_ib_disable(task);
2081 		if (ctrl == PR_SPEC_FORCE_DISABLE)
2082 			task_set_spec_ib_force_disable(task);
2083 		task_update_spec_tif(task);
2084 		if (task == current)
2085 			indirect_branch_prediction_barrier();
2086 		break;
2087 	default:
2088 		return -ERANGE;
2089 	}
2090 	return 0;
2091 }
2092 
arch_prctl_spec_ctrl_set(struct task_struct * task,unsigned long which,unsigned long ctrl)2093 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
2094 			     unsigned long ctrl)
2095 {
2096 	switch (which) {
2097 	case PR_SPEC_STORE_BYPASS:
2098 		return ssb_prctl_set(task, ctrl);
2099 	case PR_SPEC_INDIRECT_BRANCH:
2100 		return ib_prctl_set(task, ctrl);
2101 	case PR_SPEC_L1D_FLUSH:
2102 		return l1d_flush_prctl_set(task, ctrl);
2103 	default:
2104 		return -ENODEV;
2105 	}
2106 }
2107 
2108 #ifdef CONFIG_SECCOMP
arch_seccomp_spec_mitigate(struct task_struct * task)2109 void arch_seccomp_spec_mitigate(struct task_struct *task)
2110 {
2111 	if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2112 		ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2113 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2114 	    spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2115 		ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2116 }
2117 #endif
2118 
l1d_flush_prctl_get(struct task_struct * task)2119 static int l1d_flush_prctl_get(struct task_struct *task)
2120 {
2121 	if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2122 		return PR_SPEC_FORCE_DISABLE;
2123 
2124 	if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2125 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2126 	else
2127 		return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2128 }
2129 
ssb_prctl_get(struct task_struct * task)2130 static int ssb_prctl_get(struct task_struct *task)
2131 {
2132 	switch (ssb_mode) {
2133 	case SPEC_STORE_BYPASS_DISABLE:
2134 		return PR_SPEC_DISABLE;
2135 	case SPEC_STORE_BYPASS_SECCOMP:
2136 	case SPEC_STORE_BYPASS_PRCTL:
2137 		if (task_spec_ssb_force_disable(task))
2138 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2139 		if (task_spec_ssb_noexec(task))
2140 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2141 		if (task_spec_ssb_disable(task))
2142 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2143 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2144 	default:
2145 		if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2146 			return PR_SPEC_ENABLE;
2147 		return PR_SPEC_NOT_AFFECTED;
2148 	}
2149 }
2150 
ib_prctl_get(struct task_struct * task)2151 static int ib_prctl_get(struct task_struct *task)
2152 {
2153 	if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2154 		return PR_SPEC_NOT_AFFECTED;
2155 
2156 	if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2157 	    spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2158 		return PR_SPEC_ENABLE;
2159 	else if (is_spec_ib_user_controlled()) {
2160 		if (task_spec_ib_force_disable(task))
2161 			return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2162 		if (task_spec_ib_disable(task))
2163 			return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2164 		return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2165 	} else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2166 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2167 	    spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2168 		return PR_SPEC_DISABLE;
2169 	else
2170 		return PR_SPEC_NOT_AFFECTED;
2171 }
2172 
arch_prctl_spec_ctrl_get(struct task_struct * task,unsigned long which)2173 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2174 {
2175 	switch (which) {
2176 	case PR_SPEC_STORE_BYPASS:
2177 		return ssb_prctl_get(task);
2178 	case PR_SPEC_INDIRECT_BRANCH:
2179 		return ib_prctl_get(task);
2180 	case PR_SPEC_L1D_FLUSH:
2181 		return l1d_flush_prctl_get(task);
2182 	default:
2183 		return -ENODEV;
2184 	}
2185 }
2186 
x86_spec_ctrl_setup_ap(void)2187 void x86_spec_ctrl_setup_ap(void)
2188 {
2189 	if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2190 		update_spec_ctrl(x86_spec_ctrl_base);
2191 
2192 	if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2193 		x86_amd_ssb_disable();
2194 }
2195 
2196 bool itlb_multihit_kvm_mitigation;
2197 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2198 
2199 #undef pr_fmt
2200 #define pr_fmt(fmt)	"L1TF: " fmt
2201 
2202 /* Default mitigation for L1TF-affected CPUs */
2203 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2204 #if IS_ENABLED(CONFIG_KVM_INTEL)
2205 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2206 #endif
2207 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2208 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2209 
2210 /*
2211  * These CPUs all support 44bits physical address space internally in the
2212  * cache but CPUID can report a smaller number of physical address bits.
2213  *
2214  * The L1TF mitigation uses the top most address bit for the inversion of
2215  * non present PTEs. When the installed memory reaches into the top most
2216  * address bit due to memory holes, which has been observed on machines
2217  * which report 36bits physical address bits and have 32G RAM installed,
2218  * then the mitigation range check in l1tf_select_mitigation() triggers.
2219  * This is a false positive because the mitigation is still possible due to
2220  * the fact that the cache uses 44bit internally. Use the cache bits
2221  * instead of the reported physical bits and adjust them on the affected
2222  * machines to 44bit if the reported bits are less than 44.
2223  */
override_cache_bits(struct cpuinfo_x86 * c)2224 static void override_cache_bits(struct cpuinfo_x86 *c)
2225 {
2226 	if (c->x86 != 6)
2227 		return;
2228 
2229 	switch (c->x86_model) {
2230 	case INTEL_FAM6_NEHALEM:
2231 	case INTEL_FAM6_WESTMERE:
2232 	case INTEL_FAM6_SANDYBRIDGE:
2233 	case INTEL_FAM6_IVYBRIDGE:
2234 	case INTEL_FAM6_HASWELL:
2235 	case INTEL_FAM6_HASWELL_L:
2236 	case INTEL_FAM6_HASWELL_G:
2237 	case INTEL_FAM6_BROADWELL:
2238 	case INTEL_FAM6_BROADWELL_G:
2239 	case INTEL_FAM6_SKYLAKE_L:
2240 	case INTEL_FAM6_SKYLAKE:
2241 	case INTEL_FAM6_KABYLAKE_L:
2242 	case INTEL_FAM6_KABYLAKE:
2243 		if (c->x86_cache_bits < 44)
2244 			c->x86_cache_bits = 44;
2245 		break;
2246 	}
2247 }
2248 
l1tf_select_mitigation(void)2249 static void __init l1tf_select_mitigation(void)
2250 {
2251 	u64 half_pa;
2252 
2253 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2254 		return;
2255 
2256 	if (cpu_mitigations_off())
2257 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2258 	else if (cpu_mitigations_auto_nosmt())
2259 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2260 
2261 	override_cache_bits(&boot_cpu_data);
2262 
2263 	switch (l1tf_mitigation) {
2264 	case L1TF_MITIGATION_OFF:
2265 	case L1TF_MITIGATION_FLUSH_NOWARN:
2266 	case L1TF_MITIGATION_FLUSH:
2267 		break;
2268 	case L1TF_MITIGATION_FLUSH_NOSMT:
2269 	case L1TF_MITIGATION_FULL:
2270 		cpu_smt_disable(false);
2271 		break;
2272 	case L1TF_MITIGATION_FULL_FORCE:
2273 		cpu_smt_disable(true);
2274 		break;
2275 	}
2276 
2277 #if CONFIG_PGTABLE_LEVELS == 2
2278 	pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2279 	return;
2280 #endif
2281 
2282 	half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2283 	if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2284 			e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2285 		pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2286 		pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2287 				half_pa);
2288 		pr_info("However, doing so will make a part of your RAM unusable.\n");
2289 		pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2290 		return;
2291 	}
2292 
2293 	setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2294 }
2295 
l1tf_cmdline(char * str)2296 static int __init l1tf_cmdline(char *str)
2297 {
2298 	if (!boot_cpu_has_bug(X86_BUG_L1TF))
2299 		return 0;
2300 
2301 	if (!str)
2302 		return -EINVAL;
2303 
2304 	if (!strcmp(str, "off"))
2305 		l1tf_mitigation = L1TF_MITIGATION_OFF;
2306 	else if (!strcmp(str, "flush,nowarn"))
2307 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2308 	else if (!strcmp(str, "flush"))
2309 		l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2310 	else if (!strcmp(str, "flush,nosmt"))
2311 		l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2312 	else if (!strcmp(str, "full"))
2313 		l1tf_mitigation = L1TF_MITIGATION_FULL;
2314 	else if (!strcmp(str, "full,force"))
2315 		l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2316 
2317 	return 0;
2318 }
2319 early_param("l1tf", l1tf_cmdline);
2320 
2321 #undef pr_fmt
2322 #define pr_fmt(fmt)	"Speculative Return Stack Overflow: " fmt
2323 
2324 enum srso_mitigation {
2325 	SRSO_MITIGATION_NONE,
2326 	SRSO_MITIGATION_MICROCODE,
2327 	SRSO_MITIGATION_SAFE_RET,
2328 	SRSO_MITIGATION_IBPB,
2329 	SRSO_MITIGATION_IBPB_ON_VMEXIT,
2330 };
2331 
2332 enum srso_mitigation_cmd {
2333 	SRSO_CMD_OFF,
2334 	SRSO_CMD_MICROCODE,
2335 	SRSO_CMD_SAFE_RET,
2336 	SRSO_CMD_IBPB,
2337 	SRSO_CMD_IBPB_ON_VMEXIT,
2338 };
2339 
2340 static const char * const srso_strings[] = {
2341 	[SRSO_MITIGATION_NONE]           = "Vulnerable",
2342 	[SRSO_MITIGATION_MICROCODE]      = "Mitigation: microcode",
2343 	[SRSO_MITIGATION_SAFE_RET]	 = "Mitigation: safe RET",
2344 	[SRSO_MITIGATION_IBPB]		 = "Mitigation: IBPB",
2345 	[SRSO_MITIGATION_IBPB_ON_VMEXIT] = "Mitigation: IBPB on VMEXIT only"
2346 };
2347 
2348 static enum srso_mitigation srso_mitigation __ro_after_init = SRSO_MITIGATION_NONE;
2349 static enum srso_mitigation_cmd srso_cmd __ro_after_init = SRSO_CMD_SAFE_RET;
2350 
srso_parse_cmdline(char * str)2351 static int __init srso_parse_cmdline(char *str)
2352 {
2353 	if (!str)
2354 		return -EINVAL;
2355 
2356 	if (!strcmp(str, "off"))
2357 		srso_cmd = SRSO_CMD_OFF;
2358 	else if (!strcmp(str, "microcode"))
2359 		srso_cmd = SRSO_CMD_MICROCODE;
2360 	else if (!strcmp(str, "safe-ret"))
2361 		srso_cmd = SRSO_CMD_SAFE_RET;
2362 	else if (!strcmp(str, "ibpb"))
2363 		srso_cmd = SRSO_CMD_IBPB;
2364 	else if (!strcmp(str, "ibpb-vmexit"))
2365 		srso_cmd = SRSO_CMD_IBPB_ON_VMEXIT;
2366 	else
2367 		pr_err("Ignoring unknown SRSO option (%s).", str);
2368 
2369 	return 0;
2370 }
2371 early_param("spec_rstack_overflow", srso_parse_cmdline);
2372 
2373 #define SRSO_NOTICE "WARNING: See https://kernel.org/doc/html/latest/admin-guide/hw-vuln/srso.html for mitigation options."
2374 
srso_select_mitigation(void)2375 static void __init srso_select_mitigation(void)
2376 {
2377 	bool has_microcode;
2378 
2379 	if (!boot_cpu_has_bug(X86_BUG_SRSO) || cpu_mitigations_off())
2380 		goto pred_cmd;
2381 
2382 	/*
2383 	 * The first check is for the kernel running as a guest in order
2384 	 * for guests to verify whether IBPB is a viable mitigation.
2385 	 */
2386 	has_microcode = boot_cpu_has(X86_FEATURE_IBPB_BRTYPE) || cpu_has_ibpb_brtype_microcode();
2387 	if (!has_microcode) {
2388 		pr_warn("IBPB-extending microcode not applied!\n");
2389 		pr_warn(SRSO_NOTICE);
2390 	} else {
2391 		/*
2392 		 * Enable the synthetic (even if in a real CPUID leaf)
2393 		 * flags for guests.
2394 		 */
2395 		setup_force_cpu_cap(X86_FEATURE_IBPB_BRTYPE);
2396 
2397 		/*
2398 		 * Zen1/2 with SMT off aren't vulnerable after the right
2399 		 * IBPB microcode has been applied.
2400 		 */
2401 		if (boot_cpu_data.x86 < 0x19 && !cpu_smt_possible()) {
2402 			setup_force_cpu_cap(X86_FEATURE_SRSO_NO);
2403 			return;
2404 		}
2405 	}
2406 
2407 	if (retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2408 		if (has_microcode) {
2409 			pr_err("Retbleed IBPB mitigation enabled, using same for SRSO\n");
2410 			srso_mitigation = SRSO_MITIGATION_IBPB;
2411 			goto pred_cmd;
2412 		}
2413 	}
2414 
2415 	switch (srso_cmd) {
2416 	case SRSO_CMD_OFF:
2417 		goto pred_cmd;
2418 
2419 	case SRSO_CMD_MICROCODE:
2420 		if (has_microcode) {
2421 			srso_mitigation = SRSO_MITIGATION_MICROCODE;
2422 			pr_warn(SRSO_NOTICE);
2423 		}
2424 		break;
2425 
2426 	case SRSO_CMD_SAFE_RET:
2427 		if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2428 			/*
2429 			 * Enable the return thunk for generated code
2430 			 * like ftrace, static_call, etc.
2431 			 */
2432 			setup_force_cpu_cap(X86_FEATURE_RETHUNK);
2433 			setup_force_cpu_cap(X86_FEATURE_UNRET);
2434 
2435 			if (boot_cpu_data.x86 == 0x19) {
2436 				setup_force_cpu_cap(X86_FEATURE_SRSO_ALIAS);
2437 				x86_return_thunk = srso_alias_return_thunk;
2438 			} else {
2439 				setup_force_cpu_cap(X86_FEATURE_SRSO);
2440 				x86_return_thunk = srso_return_thunk;
2441 			}
2442 			srso_mitigation = SRSO_MITIGATION_SAFE_RET;
2443 		} else {
2444 			pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2445 			goto pred_cmd;
2446 		}
2447 		break;
2448 
2449 	case SRSO_CMD_IBPB:
2450 		if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
2451 			if (has_microcode) {
2452 				setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
2453 				srso_mitigation = SRSO_MITIGATION_IBPB;
2454 			}
2455 		} else {
2456 			pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
2457 			goto pred_cmd;
2458 		}
2459 		break;
2460 
2461 	case SRSO_CMD_IBPB_ON_VMEXIT:
2462 		if (IS_ENABLED(CONFIG_CPU_SRSO)) {
2463 			if (!boot_cpu_has(X86_FEATURE_ENTRY_IBPB) && has_microcode) {
2464 				setup_force_cpu_cap(X86_FEATURE_IBPB_ON_VMEXIT);
2465 				srso_mitigation = SRSO_MITIGATION_IBPB_ON_VMEXIT;
2466 			}
2467 		} else {
2468 			pr_err("WARNING: kernel not compiled with CPU_SRSO.\n");
2469 			goto pred_cmd;
2470                 }
2471 		break;
2472 
2473 	default:
2474 		break;
2475 	}
2476 
2477 	pr_info("%s%s\n", srso_strings[srso_mitigation], (has_microcode ? "" : ", no microcode"));
2478 
2479 pred_cmd:
2480 	if ((!boot_cpu_has_bug(X86_BUG_SRSO) || srso_cmd == SRSO_CMD_OFF) &&
2481 	     boot_cpu_has(X86_FEATURE_SBPB))
2482 		x86_pred_cmd = PRED_CMD_SBPB;
2483 }
2484 
2485 #undef pr_fmt
2486 #define pr_fmt(fmt) fmt
2487 
2488 #ifdef CONFIG_SYSFS
2489 
2490 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2491 
2492 #if IS_ENABLED(CONFIG_KVM_INTEL)
2493 static const char * const l1tf_vmx_states[] = {
2494 	[VMENTER_L1D_FLUSH_AUTO]		= "auto",
2495 	[VMENTER_L1D_FLUSH_NEVER]		= "vulnerable",
2496 	[VMENTER_L1D_FLUSH_COND]		= "conditional cache flushes",
2497 	[VMENTER_L1D_FLUSH_ALWAYS]		= "cache flushes",
2498 	[VMENTER_L1D_FLUSH_EPT_DISABLED]	= "EPT disabled",
2499 	[VMENTER_L1D_FLUSH_NOT_REQUIRED]	= "flush not necessary"
2500 };
2501 
l1tf_show_state(char * buf)2502 static ssize_t l1tf_show_state(char *buf)
2503 {
2504 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2505 		return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2506 
2507 	if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2508 	    (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2509 	     sched_smt_active())) {
2510 		return sprintf(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2511 			       l1tf_vmx_states[l1tf_vmx_mitigation]);
2512 	}
2513 
2514 	return sprintf(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2515 		       l1tf_vmx_states[l1tf_vmx_mitigation],
2516 		       sched_smt_active() ? "vulnerable" : "disabled");
2517 }
2518 
itlb_multihit_show_state(char * buf)2519 static ssize_t itlb_multihit_show_state(char *buf)
2520 {
2521 	if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2522 	    !boot_cpu_has(X86_FEATURE_VMX))
2523 		return sprintf(buf, "KVM: Mitigation: VMX unsupported\n");
2524 	else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2525 		return sprintf(buf, "KVM: Mitigation: VMX disabled\n");
2526 	else if (itlb_multihit_kvm_mitigation)
2527 		return sprintf(buf, "KVM: Mitigation: Split huge pages\n");
2528 	else
2529 		return sprintf(buf, "KVM: Vulnerable\n");
2530 }
2531 #else
l1tf_show_state(char * buf)2532 static ssize_t l1tf_show_state(char *buf)
2533 {
2534 	return sprintf(buf, "%s\n", L1TF_DEFAULT_MSG);
2535 }
2536 
itlb_multihit_show_state(char * buf)2537 static ssize_t itlb_multihit_show_state(char *buf)
2538 {
2539 	return sprintf(buf, "Processor vulnerable\n");
2540 }
2541 #endif
2542 
mds_show_state(char * buf)2543 static ssize_t mds_show_state(char *buf)
2544 {
2545 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2546 		return sprintf(buf, "%s; SMT Host state unknown\n",
2547 			       mds_strings[mds_mitigation]);
2548 	}
2549 
2550 	if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2551 		return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2552 			       (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2553 			        sched_smt_active() ? "mitigated" : "disabled"));
2554 	}
2555 
2556 	return sprintf(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2557 		       sched_smt_active() ? "vulnerable" : "disabled");
2558 }
2559 
tsx_async_abort_show_state(char * buf)2560 static ssize_t tsx_async_abort_show_state(char *buf)
2561 {
2562 	if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2563 	    (taa_mitigation == TAA_MITIGATION_OFF))
2564 		return sprintf(buf, "%s\n", taa_strings[taa_mitigation]);
2565 
2566 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2567 		return sprintf(buf, "%s; SMT Host state unknown\n",
2568 			       taa_strings[taa_mitigation]);
2569 	}
2570 
2571 	return sprintf(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2572 		       sched_smt_active() ? "vulnerable" : "disabled");
2573 }
2574 
mmio_stale_data_show_state(char * buf)2575 static ssize_t mmio_stale_data_show_state(char *buf)
2576 {
2577 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2578 		return sysfs_emit(buf, "Unknown: No mitigations\n");
2579 
2580 	if (mmio_mitigation == MMIO_MITIGATION_OFF)
2581 		return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2582 
2583 	if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2584 		return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2585 				  mmio_strings[mmio_mitigation]);
2586 	}
2587 
2588 	return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2589 			  sched_smt_active() ? "vulnerable" : "disabled");
2590 }
2591 
stibp_state(void)2592 static char *stibp_state(void)
2593 {
2594 	if (spectre_v2_in_eibrs_mode(spectre_v2_enabled))
2595 		return "";
2596 
2597 	switch (spectre_v2_user_stibp) {
2598 	case SPECTRE_V2_USER_NONE:
2599 		return ", STIBP: disabled";
2600 	case SPECTRE_V2_USER_STRICT:
2601 		return ", STIBP: forced";
2602 	case SPECTRE_V2_USER_STRICT_PREFERRED:
2603 		return ", STIBP: always-on";
2604 	case SPECTRE_V2_USER_PRCTL:
2605 	case SPECTRE_V2_USER_SECCOMP:
2606 		if (static_key_enabled(&switch_to_cond_stibp))
2607 			return ", STIBP: conditional";
2608 	}
2609 	return "";
2610 }
2611 
ibpb_state(void)2612 static char *ibpb_state(void)
2613 {
2614 	if (boot_cpu_has(X86_FEATURE_IBPB)) {
2615 		if (static_key_enabled(&switch_mm_always_ibpb))
2616 			return ", IBPB: always-on";
2617 		if (static_key_enabled(&switch_mm_cond_ibpb))
2618 			return ", IBPB: conditional";
2619 		return ", IBPB: disabled";
2620 	}
2621 	return "";
2622 }
2623 
pbrsb_eibrs_state(void)2624 static char *pbrsb_eibrs_state(void)
2625 {
2626 	if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2627 		if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2628 		    boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2629 			return ", PBRSB-eIBRS: SW sequence";
2630 		else
2631 			return ", PBRSB-eIBRS: Vulnerable";
2632 	} else {
2633 		return ", PBRSB-eIBRS: Not affected";
2634 	}
2635 }
2636 
spectre_v2_show_state(char * buf)2637 static ssize_t spectre_v2_show_state(char *buf)
2638 {
2639 	if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2640 		return sprintf(buf, "Vulnerable: LFENCE\n");
2641 
2642 	if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2643 		return sprintf(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2644 
2645 	if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2646 	    spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2647 		return sprintf(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2648 
2649 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
2650 		       spectre_v2_strings[spectre_v2_enabled],
2651 		       ibpb_state(),
2652 		       boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2653 		       stibp_state(),
2654 		       boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2655 		       pbrsb_eibrs_state(),
2656 		       spectre_v2_module_string());
2657 }
2658 
srbds_show_state(char * buf)2659 static ssize_t srbds_show_state(char *buf)
2660 {
2661 	return sprintf(buf, "%s\n", srbds_strings[srbds_mitigation]);
2662 }
2663 
retbleed_show_state(char * buf)2664 static ssize_t retbleed_show_state(char *buf)
2665 {
2666 	if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2667 	    retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2668 	    if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2669 		boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2670 		    return sprintf(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2671 
2672 	    return sprintf(buf, "%s; SMT %s\n",
2673 			   retbleed_strings[retbleed_mitigation],
2674 			   !sched_smt_active() ? "disabled" :
2675 			   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2676 			   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2677 			   "enabled with STIBP protection" : "vulnerable");
2678 	}
2679 
2680 	return sprintf(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2681 }
2682 
gds_show_state(char * buf)2683 static ssize_t gds_show_state(char *buf)
2684 {
2685 	return sysfs_emit(buf, "%s\n", gds_strings[gds_mitigation]);
2686 }
2687 
srso_show_state(char * buf)2688 static ssize_t srso_show_state(char *buf)
2689 {
2690 	if (boot_cpu_has(X86_FEATURE_SRSO_NO))
2691 		return sysfs_emit(buf, "Mitigation: SMT disabled\n");
2692 
2693 	return sysfs_emit(buf, "%s%s\n",
2694 			  srso_strings[srso_mitigation],
2695 			  boot_cpu_has(X86_FEATURE_IBPB_BRTYPE) ? "" : ", no microcode");
2696 }
2697 
cpu_show_common(struct device * dev,struct device_attribute * attr,char * buf,unsigned int bug)2698 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2699 			       char *buf, unsigned int bug)
2700 {
2701 	if (!boot_cpu_has_bug(bug))
2702 		return sprintf(buf, "Not affected\n");
2703 
2704 	switch (bug) {
2705 	case X86_BUG_CPU_MELTDOWN:
2706 		if (boot_cpu_has(X86_FEATURE_PTI))
2707 			return sprintf(buf, "Mitigation: PTI\n");
2708 
2709 		if (hypervisor_is_type(X86_HYPER_XEN_PV))
2710 			return sprintf(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2711 
2712 		break;
2713 
2714 	case X86_BUG_SPECTRE_V1:
2715 		return sprintf(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2716 
2717 	case X86_BUG_SPECTRE_V2:
2718 		return spectre_v2_show_state(buf);
2719 
2720 	case X86_BUG_SPEC_STORE_BYPASS:
2721 		return sprintf(buf, "%s\n", ssb_strings[ssb_mode]);
2722 
2723 	case X86_BUG_L1TF:
2724 		if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2725 			return l1tf_show_state(buf);
2726 		break;
2727 
2728 	case X86_BUG_MDS:
2729 		return mds_show_state(buf);
2730 
2731 	case X86_BUG_TAA:
2732 		return tsx_async_abort_show_state(buf);
2733 
2734 	case X86_BUG_ITLB_MULTIHIT:
2735 		return itlb_multihit_show_state(buf);
2736 
2737 	case X86_BUG_SRBDS:
2738 		return srbds_show_state(buf);
2739 
2740 	case X86_BUG_MMIO_STALE_DATA:
2741 	case X86_BUG_MMIO_UNKNOWN:
2742 		return mmio_stale_data_show_state(buf);
2743 
2744 	case X86_BUG_RETBLEED:
2745 		return retbleed_show_state(buf);
2746 
2747 	case X86_BUG_GDS:
2748 		return gds_show_state(buf);
2749 
2750 	case X86_BUG_SRSO:
2751 		return srso_show_state(buf);
2752 
2753 	default:
2754 		break;
2755 	}
2756 
2757 	return sprintf(buf, "Vulnerable\n");
2758 }
2759 
cpu_show_meltdown(struct device * dev,struct device_attribute * attr,char * buf)2760 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2761 {
2762 	return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2763 }
2764 
cpu_show_spectre_v1(struct device * dev,struct device_attribute * attr,char * buf)2765 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2766 {
2767 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2768 }
2769 
cpu_show_spectre_v2(struct device * dev,struct device_attribute * attr,char * buf)2770 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2771 {
2772 	return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2773 }
2774 
cpu_show_spec_store_bypass(struct device * dev,struct device_attribute * attr,char * buf)2775 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2776 {
2777 	return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2778 }
2779 
cpu_show_l1tf(struct device * dev,struct device_attribute * attr,char * buf)2780 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2781 {
2782 	return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2783 }
2784 
cpu_show_mds(struct device * dev,struct device_attribute * attr,char * buf)2785 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2786 {
2787 	return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2788 }
2789 
cpu_show_tsx_async_abort(struct device * dev,struct device_attribute * attr,char * buf)2790 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2791 {
2792 	return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2793 }
2794 
cpu_show_itlb_multihit(struct device * dev,struct device_attribute * attr,char * buf)2795 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2796 {
2797 	return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2798 }
2799 
cpu_show_srbds(struct device * dev,struct device_attribute * attr,char * buf)2800 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2801 {
2802 	return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2803 }
2804 
cpu_show_mmio_stale_data(struct device * dev,struct device_attribute * attr,char * buf)2805 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2806 {
2807 	if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2808 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2809 	else
2810 		return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2811 }
2812 
cpu_show_retbleed(struct device * dev,struct device_attribute * attr,char * buf)2813 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2814 {
2815 	return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2816 }
2817 
cpu_show_gds(struct device * dev,struct device_attribute * attr,char * buf)2818 ssize_t cpu_show_gds(struct device *dev, struct device_attribute *attr, char *buf)
2819 {
2820 	return cpu_show_common(dev, attr, buf, X86_BUG_GDS);
2821 }
2822 
cpu_show_spec_rstack_overflow(struct device * dev,struct device_attribute * attr,char * buf)2823 ssize_t cpu_show_spec_rstack_overflow(struct device *dev, struct device_attribute *attr, char *buf)
2824 {
2825 	return cpu_show_common(dev, attr, buf, X86_BUG_SRSO);
2826 }
2827 #endif
2828