• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 #include <asm/frame.h>
46 
47 #include "process.h"
48 
49 /*
50  * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51  * no more per-task TSS's. The TSS size is kept cacheline-aligned
52  * so they are allowed to end up in the .data..cacheline_aligned
53  * section. Since TSS's are completely CPU-local, we want them
54  * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55  */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 	.x86_tss = {
58 		/*
59 		 * .sp0 is only used when entering ring 0 from a lower
60 		 * privilege level.  Since the init task never runs anything
61 		 * but ring 0 code, there is no need for a valid value here.
62 		 * Poison it.
63 		 */
64 		.sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65 
66 #ifdef CONFIG_X86_32
67 		.sp1 = TOP_OF_INIT_STACK,
68 
69 		.ss0 = __KERNEL_DS,
70 		.ss1 = __KERNEL_CS,
71 #endif
72 		.io_bitmap_base	= IO_BITMAP_OFFSET_INVALID,
73 	 },
74 };
75 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
76 
77 DEFINE_PER_CPU(bool, __tss_limit_invalid);
78 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
79 
80 /*
81  * this gets called so that we can store lazy state into memory and copy the
82  * current task into the new thread.
83  */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86 	memcpy(dst, src, arch_task_struct_size);
87 #ifdef CONFIG_VM86
88 	dst->thread.vm86 = NULL;
89 #endif
90 	return fpu_clone(dst);
91 }
92 
93 /*
94  * Free thread data structures etc..
95  */
exit_thread(struct task_struct * tsk)96 void exit_thread(struct task_struct *tsk)
97 {
98 	struct thread_struct *t = &tsk->thread;
99 	struct fpu *fpu = &t->fpu;
100 
101 	if (test_thread_flag(TIF_IO_BITMAP))
102 		io_bitmap_exit(tsk);
103 
104 	free_vm86(t);
105 
106 	fpu__drop(fpu);
107 }
108 
set_new_tls(struct task_struct * p,unsigned long tls)109 static int set_new_tls(struct task_struct *p, unsigned long tls)
110 {
111 	struct user_desc __user *utls = (struct user_desc __user *)tls;
112 
113 	if (in_ia32_syscall())
114 		return do_set_thread_area(p, -1, utls, 0);
115 	else
116 		return do_set_thread_area_64(p, ARCH_SET_FS, tls);
117 }
118 
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)119 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
120 		struct task_struct *p, unsigned long tls)
121 {
122 	struct inactive_task_frame *frame;
123 	struct fork_frame *fork_frame;
124 	struct pt_regs *childregs;
125 	int ret = 0;
126 
127 	childregs = task_pt_regs(p);
128 	fork_frame = container_of(childregs, struct fork_frame, regs);
129 	frame = &fork_frame->frame;
130 
131 	frame->bp = encode_frame_pointer(childregs);
132 	frame->ret_addr = (unsigned long) ret_from_fork;
133 	p->thread.sp = (unsigned long) fork_frame;
134 	p->thread.io_bitmap = NULL;
135 	p->thread.iopl_warn = 0;
136 	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
137 
138 #ifdef CONFIG_X86_64
139 	current_save_fsgs();
140 	p->thread.fsindex = current->thread.fsindex;
141 	p->thread.fsbase = current->thread.fsbase;
142 	p->thread.gsindex = current->thread.gsindex;
143 	p->thread.gsbase = current->thread.gsbase;
144 
145 	savesegment(es, p->thread.es);
146 	savesegment(ds, p->thread.ds);
147 #else
148 	p->thread.sp0 = (unsigned long) (childregs + 1);
149 	/*
150 	 * Clear all status flags including IF and set fixed bit. 64bit
151 	 * does not have this initialization as the frame does not contain
152 	 * flags. The flags consistency (especially vs. AC) is there
153 	 * ensured via objtool, which lacks 32bit support.
154 	 */
155 	frame->flags = X86_EFLAGS_FIXED;
156 #endif
157 
158 	/* Kernel thread ? */
159 	if (unlikely(p->flags & PF_KTHREAD)) {
160 		p->thread.pkru = pkru_get_init_value();
161 		memset(childregs, 0, sizeof(struct pt_regs));
162 		kthread_frame_init(frame, sp, arg);
163 		return 0;
164 	}
165 
166 	/*
167 	 * Clone current's PKRU value from hardware. tsk->thread.pkru
168 	 * is only valid when scheduled out.
169 	 */
170 	p->thread.pkru = read_pkru();
171 
172 	frame->bx = 0;
173 	*childregs = *current_pt_regs();
174 	childregs->ax = 0;
175 	if (sp)
176 		childregs->sp = sp;
177 
178 #ifdef CONFIG_X86_32
179 	task_user_gs(p) = get_user_gs(current_pt_regs());
180 #endif
181 
182 	if (unlikely(p->flags & PF_IO_WORKER)) {
183 		/*
184 		 * An IO thread is a user space thread, but it doesn't
185 		 * return to ret_after_fork().
186 		 *
187 		 * In order to indicate that to tools like gdb,
188 		 * we reset the stack and instruction pointers.
189 		 *
190 		 * It does the same kernel frame setup to return to a kernel
191 		 * function that a kernel thread does.
192 		 */
193 		childregs->sp = 0;
194 		childregs->ip = 0;
195 		kthread_frame_init(frame, sp, arg);
196 		return 0;
197 	}
198 
199 	/* Set a new TLS for the child thread? */
200 	if (clone_flags & CLONE_SETTLS)
201 		ret = set_new_tls(p, tls);
202 
203 	if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
204 		io_bitmap_share(p);
205 
206 	return ret;
207 }
208 
pkru_flush_thread(void)209 static void pkru_flush_thread(void)
210 {
211 	/*
212 	 * If PKRU is enabled the default PKRU value has to be loaded into
213 	 * the hardware right here (similar to context switch).
214 	 */
215 	pkru_write_default();
216 }
217 
flush_thread(void)218 void flush_thread(void)
219 {
220 	struct task_struct *tsk = current;
221 
222 	flush_ptrace_hw_breakpoint(tsk);
223 	memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
224 
225 	fpu_flush_thread();
226 	pkru_flush_thread();
227 }
228 
disable_TSC(void)229 void disable_TSC(void)
230 {
231 	preempt_disable();
232 	if (!test_and_set_thread_flag(TIF_NOTSC))
233 		/*
234 		 * Must flip the CPU state synchronously with
235 		 * TIF_NOTSC in the current running context.
236 		 */
237 		cr4_set_bits(X86_CR4_TSD);
238 	preempt_enable();
239 }
240 
enable_TSC(void)241 static void enable_TSC(void)
242 {
243 	preempt_disable();
244 	if (test_and_clear_thread_flag(TIF_NOTSC))
245 		/*
246 		 * Must flip the CPU state synchronously with
247 		 * TIF_NOTSC in the current running context.
248 		 */
249 		cr4_clear_bits(X86_CR4_TSD);
250 	preempt_enable();
251 }
252 
get_tsc_mode(unsigned long adr)253 int get_tsc_mode(unsigned long adr)
254 {
255 	unsigned int val;
256 
257 	if (test_thread_flag(TIF_NOTSC))
258 		val = PR_TSC_SIGSEGV;
259 	else
260 		val = PR_TSC_ENABLE;
261 
262 	return put_user(val, (unsigned int __user *)adr);
263 }
264 
set_tsc_mode(unsigned int val)265 int set_tsc_mode(unsigned int val)
266 {
267 	if (val == PR_TSC_SIGSEGV)
268 		disable_TSC();
269 	else if (val == PR_TSC_ENABLE)
270 		enable_TSC();
271 	else
272 		return -EINVAL;
273 
274 	return 0;
275 }
276 
277 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
278 
set_cpuid_faulting(bool on)279 static void set_cpuid_faulting(bool on)
280 {
281 	u64 msrval;
282 
283 	msrval = this_cpu_read(msr_misc_features_shadow);
284 	msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
285 	msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
286 	this_cpu_write(msr_misc_features_shadow, msrval);
287 	wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
288 }
289 
disable_cpuid(void)290 static void disable_cpuid(void)
291 {
292 	preempt_disable();
293 	if (!test_and_set_thread_flag(TIF_NOCPUID)) {
294 		/*
295 		 * Must flip the CPU state synchronously with
296 		 * TIF_NOCPUID in the current running context.
297 		 */
298 		set_cpuid_faulting(true);
299 	}
300 	preempt_enable();
301 }
302 
enable_cpuid(void)303 static void enable_cpuid(void)
304 {
305 	preempt_disable();
306 	if (test_and_clear_thread_flag(TIF_NOCPUID)) {
307 		/*
308 		 * Must flip the CPU state synchronously with
309 		 * TIF_NOCPUID in the current running context.
310 		 */
311 		set_cpuid_faulting(false);
312 	}
313 	preempt_enable();
314 }
315 
get_cpuid_mode(void)316 static int get_cpuid_mode(void)
317 {
318 	return !test_thread_flag(TIF_NOCPUID);
319 }
320 
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)321 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
322 {
323 	if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
324 		return -ENODEV;
325 
326 	if (cpuid_enabled)
327 		enable_cpuid();
328 	else
329 		disable_cpuid();
330 
331 	return 0;
332 }
333 
334 /*
335  * Called immediately after a successful exec.
336  */
arch_setup_new_exec(void)337 void arch_setup_new_exec(void)
338 {
339 	/* If cpuid was previously disabled for this task, re-enable it. */
340 	if (test_thread_flag(TIF_NOCPUID))
341 		enable_cpuid();
342 
343 	/*
344 	 * Don't inherit TIF_SSBD across exec boundary when
345 	 * PR_SPEC_DISABLE_NOEXEC is used.
346 	 */
347 	if (test_thread_flag(TIF_SSBD) &&
348 	    task_spec_ssb_noexec(current)) {
349 		clear_thread_flag(TIF_SSBD);
350 		task_clear_spec_ssb_disable(current);
351 		task_clear_spec_ssb_noexec(current);
352 		speculation_ctrl_update(task_thread_info(current)->flags);
353 	}
354 }
355 
356 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)357 static inline void switch_to_bitmap(unsigned long tifp)
358 {
359 	/*
360 	 * Invalidate I/O bitmap if the previous task used it. This prevents
361 	 * any possible leakage of an active I/O bitmap.
362 	 *
363 	 * If the next task has an I/O bitmap it will handle it on exit to
364 	 * user mode.
365 	 */
366 	if (tifp & _TIF_IO_BITMAP)
367 		tss_invalidate_io_bitmap();
368 }
369 
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)370 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
371 {
372 	/*
373 	 * Copy at least the byte range of the incoming tasks bitmap which
374 	 * covers the permitted I/O ports.
375 	 *
376 	 * If the previous task which used an I/O bitmap had more bits
377 	 * permitted, then the copy needs to cover those as well so they
378 	 * get turned off.
379 	 */
380 	memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
381 	       max(tss->io_bitmap.prev_max, iobm->max));
382 
383 	/*
384 	 * Store the new max and the sequence number of this bitmap
385 	 * and a pointer to the bitmap itself.
386 	 */
387 	tss->io_bitmap.prev_max = iobm->max;
388 	tss->io_bitmap.prev_sequence = iobm->sequence;
389 }
390 
391 /**
392  * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
393  */
native_tss_update_io_bitmap(void)394 void native_tss_update_io_bitmap(void)
395 {
396 	struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
397 	struct thread_struct *t = &current->thread;
398 	u16 *base = &tss->x86_tss.io_bitmap_base;
399 
400 	if (!test_thread_flag(TIF_IO_BITMAP)) {
401 		native_tss_invalidate_io_bitmap();
402 		return;
403 	}
404 
405 	if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
406 		*base = IO_BITMAP_OFFSET_VALID_ALL;
407 	} else {
408 		struct io_bitmap *iobm = t->io_bitmap;
409 
410 		/*
411 		 * Only copy bitmap data when the sequence number differs. The
412 		 * update time is accounted to the incoming task.
413 		 */
414 		if (tss->io_bitmap.prev_sequence != iobm->sequence)
415 			tss_copy_io_bitmap(tss, iobm);
416 
417 		/* Enable the bitmap */
418 		*base = IO_BITMAP_OFFSET_VALID_MAP;
419 	}
420 
421 	/*
422 	 * Make sure that the TSS limit is covering the IO bitmap. It might have
423 	 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
424 	 * access from user space to trigger a #GP because tbe bitmap is outside
425 	 * the TSS limit.
426 	 */
427 	refresh_tss_limit();
428 }
429 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)430 static inline void switch_to_bitmap(unsigned long tifp) { }
431 #endif
432 
433 #ifdef CONFIG_SMP
434 
435 struct ssb_state {
436 	struct ssb_state	*shared_state;
437 	raw_spinlock_t		lock;
438 	unsigned int		disable_state;
439 	unsigned long		local_state;
440 };
441 
442 #define LSTATE_SSB	0
443 
444 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
445 
speculative_store_bypass_ht_init(void)446 void speculative_store_bypass_ht_init(void)
447 {
448 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
449 	unsigned int this_cpu = smp_processor_id();
450 	unsigned int cpu;
451 
452 	st->local_state = 0;
453 
454 	/*
455 	 * Shared state setup happens once on the first bringup
456 	 * of the CPU. It's not destroyed on CPU hotunplug.
457 	 */
458 	if (st->shared_state)
459 		return;
460 
461 	raw_spin_lock_init(&st->lock);
462 
463 	/*
464 	 * Go over HT siblings and check whether one of them has set up the
465 	 * shared state pointer already.
466 	 */
467 	for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
468 		if (cpu == this_cpu)
469 			continue;
470 
471 		if (!per_cpu(ssb_state, cpu).shared_state)
472 			continue;
473 
474 		/* Link it to the state of the sibling: */
475 		st->shared_state = per_cpu(ssb_state, cpu).shared_state;
476 		return;
477 	}
478 
479 	/*
480 	 * First HT sibling to come up on the core.  Link shared state of
481 	 * the first HT sibling to itself. The siblings on the same core
482 	 * which come up later will see the shared state pointer and link
483 	 * themselves to the state of this CPU.
484 	 */
485 	st->shared_state = st;
486 }
487 
488 /*
489  * Logic is: First HT sibling enables SSBD for both siblings in the core
490  * and last sibling to disable it, disables it for the whole core. This how
491  * MSR_SPEC_CTRL works in "hardware":
492  *
493  *  CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
494  */
amd_set_core_ssb_state(unsigned long tifn)495 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
496 {
497 	struct ssb_state *st = this_cpu_ptr(&ssb_state);
498 	u64 msr = x86_amd_ls_cfg_base;
499 
500 	if (!static_cpu_has(X86_FEATURE_ZEN)) {
501 		msr |= ssbd_tif_to_amd_ls_cfg(tifn);
502 		wrmsrl(MSR_AMD64_LS_CFG, msr);
503 		return;
504 	}
505 
506 	if (tifn & _TIF_SSBD) {
507 		/*
508 		 * Since this can race with prctl(), block reentry on the
509 		 * same CPU.
510 		 */
511 		if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
512 			return;
513 
514 		msr |= x86_amd_ls_cfg_ssbd_mask;
515 
516 		raw_spin_lock(&st->shared_state->lock);
517 		/* First sibling enables SSBD: */
518 		if (!st->shared_state->disable_state)
519 			wrmsrl(MSR_AMD64_LS_CFG, msr);
520 		st->shared_state->disable_state++;
521 		raw_spin_unlock(&st->shared_state->lock);
522 	} else {
523 		if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
524 			return;
525 
526 		raw_spin_lock(&st->shared_state->lock);
527 		st->shared_state->disable_state--;
528 		if (!st->shared_state->disable_state)
529 			wrmsrl(MSR_AMD64_LS_CFG, msr);
530 		raw_spin_unlock(&st->shared_state->lock);
531 	}
532 }
533 #else
amd_set_core_ssb_state(unsigned long tifn)534 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
535 {
536 	u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
537 
538 	wrmsrl(MSR_AMD64_LS_CFG, msr);
539 }
540 #endif
541 
amd_set_ssb_virt_state(unsigned long tifn)542 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
543 {
544 	/*
545 	 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
546 	 * so ssbd_tif_to_spec_ctrl() just works.
547 	 */
548 	wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
549 }
550 
551 /*
552  * Update the MSRs managing speculation control, during context switch.
553  *
554  * tifp: Previous task's thread flags
555  * tifn: Next task's thread flags
556  */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)557 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
558 						      unsigned long tifn)
559 {
560 	unsigned long tif_diff = tifp ^ tifn;
561 	u64 msr = x86_spec_ctrl_base;
562 	bool updmsr = false;
563 
564 	lockdep_assert_irqs_disabled();
565 
566 	/* Handle change of TIF_SSBD depending on the mitigation method. */
567 	if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
568 		if (tif_diff & _TIF_SSBD)
569 			amd_set_ssb_virt_state(tifn);
570 	} else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
571 		if (tif_diff & _TIF_SSBD)
572 			amd_set_core_ssb_state(tifn);
573 	} else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
574 		   static_cpu_has(X86_FEATURE_AMD_SSBD)) {
575 		updmsr |= !!(tif_diff & _TIF_SSBD);
576 		msr |= ssbd_tif_to_spec_ctrl(tifn);
577 	}
578 
579 	/* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
580 	if (IS_ENABLED(CONFIG_SMP) &&
581 	    static_branch_unlikely(&switch_to_cond_stibp)) {
582 		updmsr |= !!(tif_diff & _TIF_SPEC_IB);
583 		msr |= stibp_tif_to_spec_ctrl(tifn);
584 	}
585 
586 	if (updmsr)
587 		update_spec_ctrl_cond(msr);
588 }
589 
speculation_ctrl_update_tif(struct task_struct * tsk)590 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
591 {
592 	if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
593 		if (task_spec_ssb_disable(tsk))
594 			set_tsk_thread_flag(tsk, TIF_SSBD);
595 		else
596 			clear_tsk_thread_flag(tsk, TIF_SSBD);
597 
598 		if (task_spec_ib_disable(tsk))
599 			set_tsk_thread_flag(tsk, TIF_SPEC_IB);
600 		else
601 			clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
602 	}
603 	/* Return the updated threadinfo flags*/
604 	return task_thread_info(tsk)->flags;
605 }
606 
speculation_ctrl_update(unsigned long tif)607 void speculation_ctrl_update(unsigned long tif)
608 {
609 	unsigned long flags;
610 
611 	/* Forced update. Make sure all relevant TIF flags are different */
612 	local_irq_save(flags);
613 	__speculation_ctrl_update(~tif, tif);
614 	local_irq_restore(flags);
615 }
616 
617 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)618 void speculation_ctrl_update_current(void)
619 {
620 	preempt_disable();
621 	speculation_ctrl_update(speculation_ctrl_update_tif(current));
622 	preempt_enable();
623 }
624 
cr4_toggle_bits_irqsoff(unsigned long mask)625 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
626 {
627 	unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
628 
629 	newval = cr4 ^ mask;
630 	if (newval != cr4) {
631 		this_cpu_write(cpu_tlbstate.cr4, newval);
632 		__write_cr4(newval);
633 	}
634 }
635 
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)636 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
637 {
638 	unsigned long tifp, tifn;
639 
640 	tifn = READ_ONCE(task_thread_info(next_p)->flags);
641 	tifp = READ_ONCE(task_thread_info(prev_p)->flags);
642 
643 	switch_to_bitmap(tifp);
644 
645 	propagate_user_return_notify(prev_p, next_p);
646 
647 	if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
648 	    arch_has_block_step()) {
649 		unsigned long debugctl, msk;
650 
651 		rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
652 		debugctl &= ~DEBUGCTLMSR_BTF;
653 		msk = tifn & _TIF_BLOCKSTEP;
654 		debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
655 		wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
656 	}
657 
658 	if ((tifp ^ tifn) & _TIF_NOTSC)
659 		cr4_toggle_bits_irqsoff(X86_CR4_TSD);
660 
661 	if ((tifp ^ tifn) & _TIF_NOCPUID)
662 		set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
663 
664 	if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
665 		__speculation_ctrl_update(tifp, tifn);
666 	} else {
667 		speculation_ctrl_update_tif(prev_p);
668 		tifn = speculation_ctrl_update_tif(next_p);
669 
670 		/* Enforce MSR update to ensure consistent state */
671 		__speculation_ctrl_update(~tifn, tifn);
672 	}
673 
674 	if ((tifp ^ tifn) & _TIF_SLD)
675 		switch_to_sld(tifn);
676 }
677 
678 /*
679  * Idle related variables and functions
680  */
681 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
682 EXPORT_SYMBOL(boot_option_idle_override);
683 
684 static void (*x86_idle)(void);
685 
686 #ifndef CONFIG_SMP
play_dead(void)687 static inline void play_dead(void)
688 {
689 	BUG();
690 }
691 #endif
692 
arch_cpu_idle_enter(void)693 void arch_cpu_idle_enter(void)
694 {
695 	tsc_verify_tsc_adjust(false);
696 	local_touch_nmi();
697 }
698 
arch_cpu_idle_dead(void)699 void arch_cpu_idle_dead(void)
700 {
701 	play_dead();
702 }
703 
704 /*
705  * Called from the generic idle code.
706  */
arch_cpu_idle(void)707 void arch_cpu_idle(void)
708 {
709 	x86_idle();
710 }
711 
712 /*
713  * We use this if we don't have any better idle routine..
714  */
default_idle(void)715 void __cpuidle default_idle(void)
716 {
717 	raw_safe_halt();
718 }
719 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
720 EXPORT_SYMBOL(default_idle);
721 #endif
722 
723 #ifdef CONFIG_XEN
xen_set_default_idle(void)724 bool xen_set_default_idle(void)
725 {
726 	bool ret = !!x86_idle;
727 
728 	x86_idle = default_idle;
729 
730 	return ret;
731 }
732 #endif
733 
stop_this_cpu(void * dummy)734 void __noreturn stop_this_cpu(void *dummy)
735 {
736 	local_irq_disable();
737 	/*
738 	 * Remove this CPU:
739 	 */
740 	set_cpu_online(smp_processor_id(), false);
741 	disable_local_APIC();
742 	mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
743 
744 	/*
745 	 * Use wbinvd on processors that support SME. This provides support
746 	 * for performing a successful kexec when going from SME inactive
747 	 * to SME active (or vice-versa). The cache must be cleared so that
748 	 * if there are entries with the same physical address, both with and
749 	 * without the encryption bit, they don't race each other when flushed
750 	 * and potentially end up with the wrong entry being committed to
751 	 * memory.
752 	 */
753 	if (boot_cpu_has(X86_FEATURE_SME))
754 		native_wbinvd();
755 	for (;;) {
756 		/*
757 		 * Use native_halt() so that memory contents don't change
758 		 * (stack usage and variables) after possibly issuing the
759 		 * native_wbinvd() above.
760 		 */
761 		native_halt();
762 	}
763 }
764 
765 /*
766  * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
767  * states (local apic timer and TSC stop).
768  *
769  * XXX this function is completely buggered vs RCU and tracing.
770  */
amd_e400_idle(void)771 static void amd_e400_idle(void)
772 {
773 	/*
774 	 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
775 	 * gets set after static_cpu_has() places have been converted via
776 	 * alternatives.
777 	 */
778 	if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
779 		default_idle();
780 		return;
781 	}
782 
783 	tick_broadcast_enter();
784 
785 	default_idle();
786 
787 	/*
788 	 * The switch back from broadcast mode needs to be called with
789 	 * interrupts disabled.
790 	 */
791 	raw_local_irq_disable();
792 	tick_broadcast_exit();
793 	raw_local_irq_enable();
794 }
795 
796 /*
797  * Intel Core2 and older machines prefer MWAIT over HALT for C1.
798  * We can't rely on cpuidle installing MWAIT, because it will not load
799  * on systems that support only C1 -- so the boot default must be MWAIT.
800  *
801  * Some AMD machines are the opposite, they depend on using HALT.
802  *
803  * So for default C1, which is used during boot until cpuidle loads,
804  * use MWAIT-C1 on Intel HW that has it, else use HALT.
805  */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)806 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
807 {
808 	/* User has disallowed the use of MWAIT. Fallback to HALT */
809 	if (boot_option_idle_override == IDLE_NOMWAIT)
810 		return 0;
811 
812 	if (c->x86_vendor != X86_VENDOR_INTEL)
813 		return 0;
814 
815 	if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
816 		return 0;
817 
818 	return 1;
819 }
820 
821 /*
822  * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
823  * with interrupts enabled and no flags, which is backwards compatible with the
824  * original MWAIT implementation.
825  */
mwait_idle(void)826 static __cpuidle void mwait_idle(void)
827 {
828 	if (!current_set_polling_and_test()) {
829 		if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
830 			mb(); /* quirk */
831 			clflush((void *)&current_thread_info()->flags);
832 			mb(); /* quirk */
833 		}
834 
835 		__monitor((void *)&current_thread_info()->flags, 0, 0);
836 		if (!need_resched())
837 			__sti_mwait(0, 0);
838 		else
839 			raw_local_irq_enable();
840 	} else {
841 		raw_local_irq_enable();
842 	}
843 	__current_clr_polling();
844 }
845 
select_idle_routine(const struct cpuinfo_x86 * c)846 void select_idle_routine(const struct cpuinfo_x86 *c)
847 {
848 #ifdef CONFIG_SMP
849 	if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
850 		pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
851 #endif
852 	if (x86_idle || boot_option_idle_override == IDLE_POLL)
853 		return;
854 
855 	if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
856 		pr_info("using AMD E400 aware idle routine\n");
857 		x86_idle = amd_e400_idle;
858 	} else if (prefer_mwait_c1_over_halt(c)) {
859 		pr_info("using mwait in idle threads\n");
860 		x86_idle = mwait_idle;
861 	} else
862 		x86_idle = default_idle;
863 }
864 
amd_e400_c1e_apic_setup(void)865 void amd_e400_c1e_apic_setup(void)
866 {
867 	if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
868 		pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
869 		local_irq_disable();
870 		tick_broadcast_force();
871 		local_irq_enable();
872 	}
873 }
874 
arch_post_acpi_subsys_init(void)875 void __init arch_post_acpi_subsys_init(void)
876 {
877 	u32 lo, hi;
878 
879 	if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
880 		return;
881 
882 	/*
883 	 * AMD E400 detection needs to happen after ACPI has been enabled. If
884 	 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
885 	 * MSR_K8_INT_PENDING_MSG.
886 	 */
887 	rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
888 	if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
889 		return;
890 
891 	boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
892 
893 	if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
894 		mark_tsc_unstable("TSC halt in AMD C1E");
895 	pr_info("System has AMD C1E enabled\n");
896 }
897 
idle_setup(char * str)898 static int __init idle_setup(char *str)
899 {
900 	if (!str)
901 		return -EINVAL;
902 
903 	if (!strcmp(str, "poll")) {
904 		pr_info("using polling idle threads\n");
905 		boot_option_idle_override = IDLE_POLL;
906 		cpu_idle_poll_ctrl(true);
907 	} else if (!strcmp(str, "halt")) {
908 		/*
909 		 * When the boot option of idle=halt is added, halt is
910 		 * forced to be used for CPU idle. In such case CPU C2/C3
911 		 * won't be used again.
912 		 * To continue to load the CPU idle driver, don't touch
913 		 * the boot_option_idle_override.
914 		 */
915 		x86_idle = default_idle;
916 		boot_option_idle_override = IDLE_HALT;
917 	} else if (!strcmp(str, "nomwait")) {
918 		/*
919 		 * If the boot option of "idle=nomwait" is added,
920 		 * it means that mwait will be disabled for CPU C1/C2/C3
921 		 * states.
922 		 */
923 		boot_option_idle_override = IDLE_NOMWAIT;
924 	} else
925 		return -1;
926 
927 	return 0;
928 }
929 early_param("idle", idle_setup);
930 
arch_align_stack(unsigned long sp)931 unsigned long arch_align_stack(unsigned long sp)
932 {
933 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
934 		sp -= get_random_int() % 8192;
935 	return sp & ~0xf;
936 }
937 
arch_randomize_brk(struct mm_struct * mm)938 unsigned long arch_randomize_brk(struct mm_struct *mm)
939 {
940 	return randomize_page(mm->brk, 0x02000000);
941 }
942 
943 /*
944  * Called from fs/proc with a reference on @p to find the function
945  * which called into schedule(). This needs to be done carefully
946  * because the task might wake up and we might look at a stack
947  * changing under us.
948  */
get_wchan(struct task_struct * p)949 unsigned long get_wchan(struct task_struct *p)
950 {
951 	unsigned long start, bottom, top, sp, fp, ip, ret = 0;
952 	int count = 0;
953 
954 	if (p == current || task_is_running(p))
955 		return 0;
956 
957 	if (!try_get_task_stack(p))
958 		return 0;
959 
960 	start = (unsigned long)task_stack_page(p);
961 	if (!start)
962 		goto out;
963 
964 	/*
965 	 * Layout of the stack page:
966 	 *
967 	 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
968 	 * PADDING
969 	 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
970 	 * stack
971 	 * ----------- bottom = start
972 	 *
973 	 * The tasks stack pointer points at the location where the
974 	 * framepointer is stored. The data on the stack is:
975 	 * ... IP FP ... IP FP
976 	 *
977 	 * We need to read FP and IP, so we need to adjust the upper
978 	 * bound by another unsigned long.
979 	 */
980 	top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
981 	top -= 2 * sizeof(unsigned long);
982 	bottom = start;
983 
984 	sp = READ_ONCE(p->thread.sp);
985 	if (sp < bottom || sp > top)
986 		goto out;
987 
988 	fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
989 	do {
990 		if (fp < bottom || fp > top)
991 			goto out;
992 		ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
993 		if (!in_sched_functions(ip)) {
994 			ret = ip;
995 			goto out;
996 		}
997 		fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
998 	} while (count++ < 16 && !task_is_running(p));
999 
1000 out:
1001 	put_task_stack(p);
1002 	return ret;
1003 }
1004 
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)1005 long do_arch_prctl_common(struct task_struct *task, int option,
1006 			  unsigned long cpuid_enabled)
1007 {
1008 	switch (option) {
1009 	case ARCH_GET_CPUID:
1010 		return get_cpuid_mode();
1011 	case ARCH_SET_CPUID:
1012 		return set_cpuid_mode(task, cpuid_enabled);
1013 	}
1014 
1015 	return -EINVAL;
1016 }
1017