1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/errno.h>
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/smp.h>
8 #include <linux/prctl.h>
9 #include <linux/slab.h>
10 #include <linux/sched.h>
11 #include <linux/sched/idle.h>
12 #include <linux/sched/debug.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/init.h>
16 #include <linux/export.h>
17 #include <linux/pm.h>
18 #include <linux/tick.h>
19 #include <linux/random.h>
20 #include <linux/user-return-notifier.h>
21 #include <linux/dmi.h>
22 #include <linux/utsname.h>
23 #include <linux/stackprotector.h>
24 #include <linux/cpuidle.h>
25 #include <linux/acpi.h>
26 #include <linux/elf-randomize.h>
27 #include <trace/events/power.h>
28 #include <linux/hw_breakpoint.h>
29 #include <asm/cpu.h>
30 #include <asm/apic.h>
31 #include <linux/uaccess.h>
32 #include <asm/mwait.h>
33 #include <asm/fpu/internal.h>
34 #include <asm/debugreg.h>
35 #include <asm/nmi.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mce.h>
38 #include <asm/vm86.h>
39 #include <asm/switch_to.h>
40 #include <asm/desc.h>
41 #include <asm/prctl.h>
42 #include <asm/spec-ctrl.h>
43 #include <asm/io_bitmap.h>
44 #include <asm/proto.h>
45 #include <asm/frame.h>
46
47 #include "process.h"
48
49 /*
50 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
51 * no more per-task TSS's. The TSS size is kept cacheline-aligned
52 * so they are allowed to end up in the .data..cacheline_aligned
53 * section. Since TSS's are completely CPU-local, we want them
54 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
55 */
56 __visible DEFINE_PER_CPU_PAGE_ALIGNED(struct tss_struct, cpu_tss_rw) = {
57 .x86_tss = {
58 /*
59 * .sp0 is only used when entering ring 0 from a lower
60 * privilege level. Since the init task never runs anything
61 * but ring 0 code, there is no need for a valid value here.
62 * Poison it.
63 */
64 .sp0 = (1UL << (BITS_PER_LONG-1)) + 1,
65
66 #ifdef CONFIG_X86_32
67 .sp1 = TOP_OF_INIT_STACK,
68
69 .ss0 = __KERNEL_DS,
70 .ss1 = __KERNEL_CS,
71 #endif
72 .io_bitmap_base = IO_BITMAP_OFFSET_INVALID,
73 },
74 };
75 EXPORT_PER_CPU_SYMBOL(cpu_tss_rw);
76
77 DEFINE_PER_CPU(bool, __tss_limit_invalid);
78 EXPORT_PER_CPU_SYMBOL_GPL(__tss_limit_invalid);
79
80 /*
81 * this gets called so that we can store lazy state into memory and copy the
82 * current task into the new thread.
83 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)84 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
85 {
86 memcpy(dst, src, arch_task_struct_size);
87 #ifdef CONFIG_VM86
88 dst->thread.vm86 = NULL;
89 #endif
90 return fpu_clone(dst);
91 }
92
93 /*
94 * Free thread data structures etc..
95 */
exit_thread(struct task_struct * tsk)96 void exit_thread(struct task_struct *tsk)
97 {
98 struct thread_struct *t = &tsk->thread;
99 struct fpu *fpu = &t->fpu;
100
101 if (test_thread_flag(TIF_IO_BITMAP))
102 io_bitmap_exit(tsk);
103
104 free_vm86(t);
105
106 fpu__drop(fpu);
107 }
108
set_new_tls(struct task_struct * p,unsigned long tls)109 static int set_new_tls(struct task_struct *p, unsigned long tls)
110 {
111 struct user_desc __user *utls = (struct user_desc __user *)tls;
112
113 if (in_ia32_syscall())
114 return do_set_thread_area(p, -1, utls, 0);
115 else
116 return do_set_thread_area_64(p, ARCH_SET_FS, tls);
117 }
118
copy_thread(unsigned long clone_flags,unsigned long sp,unsigned long arg,struct task_struct * p,unsigned long tls)119 int copy_thread(unsigned long clone_flags, unsigned long sp, unsigned long arg,
120 struct task_struct *p, unsigned long tls)
121 {
122 struct inactive_task_frame *frame;
123 struct fork_frame *fork_frame;
124 struct pt_regs *childregs;
125 int ret = 0;
126
127 childregs = task_pt_regs(p);
128 fork_frame = container_of(childregs, struct fork_frame, regs);
129 frame = &fork_frame->frame;
130
131 frame->bp = encode_frame_pointer(childregs);
132 frame->ret_addr = (unsigned long) ret_from_fork;
133 p->thread.sp = (unsigned long) fork_frame;
134 p->thread.io_bitmap = NULL;
135 p->thread.iopl_warn = 0;
136 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
137
138 #ifdef CONFIG_X86_64
139 current_save_fsgs();
140 p->thread.fsindex = current->thread.fsindex;
141 p->thread.fsbase = current->thread.fsbase;
142 p->thread.gsindex = current->thread.gsindex;
143 p->thread.gsbase = current->thread.gsbase;
144
145 savesegment(es, p->thread.es);
146 savesegment(ds, p->thread.ds);
147 #else
148 p->thread.sp0 = (unsigned long) (childregs + 1);
149 /*
150 * Clear all status flags including IF and set fixed bit. 64bit
151 * does not have this initialization as the frame does not contain
152 * flags. The flags consistency (especially vs. AC) is there
153 * ensured via objtool, which lacks 32bit support.
154 */
155 frame->flags = X86_EFLAGS_FIXED;
156 #endif
157
158 /* Kernel thread ? */
159 if (unlikely(p->flags & PF_KTHREAD)) {
160 p->thread.pkru = pkru_get_init_value();
161 memset(childregs, 0, sizeof(struct pt_regs));
162 kthread_frame_init(frame, sp, arg);
163 return 0;
164 }
165
166 /*
167 * Clone current's PKRU value from hardware. tsk->thread.pkru
168 * is only valid when scheduled out.
169 */
170 p->thread.pkru = read_pkru();
171
172 frame->bx = 0;
173 *childregs = *current_pt_regs();
174 childregs->ax = 0;
175 if (sp)
176 childregs->sp = sp;
177
178 #ifdef CONFIG_X86_32
179 task_user_gs(p) = get_user_gs(current_pt_regs());
180 #endif
181
182 if (unlikely(p->flags & PF_IO_WORKER)) {
183 /*
184 * An IO thread is a user space thread, but it doesn't
185 * return to ret_after_fork().
186 *
187 * In order to indicate that to tools like gdb,
188 * we reset the stack and instruction pointers.
189 *
190 * It does the same kernel frame setup to return to a kernel
191 * function that a kernel thread does.
192 */
193 childregs->sp = 0;
194 childregs->ip = 0;
195 kthread_frame_init(frame, sp, arg);
196 return 0;
197 }
198
199 /* Set a new TLS for the child thread? */
200 if (clone_flags & CLONE_SETTLS)
201 ret = set_new_tls(p, tls);
202
203 if (!ret && unlikely(test_tsk_thread_flag(current, TIF_IO_BITMAP)))
204 io_bitmap_share(p);
205
206 return ret;
207 }
208
pkru_flush_thread(void)209 static void pkru_flush_thread(void)
210 {
211 /*
212 * If PKRU is enabled the default PKRU value has to be loaded into
213 * the hardware right here (similar to context switch).
214 */
215 pkru_write_default();
216 }
217
flush_thread(void)218 void flush_thread(void)
219 {
220 struct task_struct *tsk = current;
221
222 flush_ptrace_hw_breakpoint(tsk);
223 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
224
225 fpu_flush_thread();
226 pkru_flush_thread();
227 }
228
disable_TSC(void)229 void disable_TSC(void)
230 {
231 preempt_disable();
232 if (!test_and_set_thread_flag(TIF_NOTSC))
233 /*
234 * Must flip the CPU state synchronously with
235 * TIF_NOTSC in the current running context.
236 */
237 cr4_set_bits(X86_CR4_TSD);
238 preempt_enable();
239 }
240
enable_TSC(void)241 static void enable_TSC(void)
242 {
243 preempt_disable();
244 if (test_and_clear_thread_flag(TIF_NOTSC))
245 /*
246 * Must flip the CPU state synchronously with
247 * TIF_NOTSC in the current running context.
248 */
249 cr4_clear_bits(X86_CR4_TSD);
250 preempt_enable();
251 }
252
get_tsc_mode(unsigned long adr)253 int get_tsc_mode(unsigned long adr)
254 {
255 unsigned int val;
256
257 if (test_thread_flag(TIF_NOTSC))
258 val = PR_TSC_SIGSEGV;
259 else
260 val = PR_TSC_ENABLE;
261
262 return put_user(val, (unsigned int __user *)adr);
263 }
264
set_tsc_mode(unsigned int val)265 int set_tsc_mode(unsigned int val)
266 {
267 if (val == PR_TSC_SIGSEGV)
268 disable_TSC();
269 else if (val == PR_TSC_ENABLE)
270 enable_TSC();
271 else
272 return -EINVAL;
273
274 return 0;
275 }
276
277 DEFINE_PER_CPU(u64, msr_misc_features_shadow);
278
set_cpuid_faulting(bool on)279 static void set_cpuid_faulting(bool on)
280 {
281 u64 msrval;
282
283 msrval = this_cpu_read(msr_misc_features_shadow);
284 msrval &= ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
285 msrval |= (on << MSR_MISC_FEATURES_ENABLES_CPUID_FAULT_BIT);
286 this_cpu_write(msr_misc_features_shadow, msrval);
287 wrmsrl(MSR_MISC_FEATURES_ENABLES, msrval);
288 }
289
disable_cpuid(void)290 static void disable_cpuid(void)
291 {
292 preempt_disable();
293 if (!test_and_set_thread_flag(TIF_NOCPUID)) {
294 /*
295 * Must flip the CPU state synchronously with
296 * TIF_NOCPUID in the current running context.
297 */
298 set_cpuid_faulting(true);
299 }
300 preempt_enable();
301 }
302
enable_cpuid(void)303 static void enable_cpuid(void)
304 {
305 preempt_disable();
306 if (test_and_clear_thread_flag(TIF_NOCPUID)) {
307 /*
308 * Must flip the CPU state synchronously with
309 * TIF_NOCPUID in the current running context.
310 */
311 set_cpuid_faulting(false);
312 }
313 preempt_enable();
314 }
315
get_cpuid_mode(void)316 static int get_cpuid_mode(void)
317 {
318 return !test_thread_flag(TIF_NOCPUID);
319 }
320
set_cpuid_mode(struct task_struct * task,unsigned long cpuid_enabled)321 static int set_cpuid_mode(struct task_struct *task, unsigned long cpuid_enabled)
322 {
323 if (!boot_cpu_has(X86_FEATURE_CPUID_FAULT))
324 return -ENODEV;
325
326 if (cpuid_enabled)
327 enable_cpuid();
328 else
329 disable_cpuid();
330
331 return 0;
332 }
333
334 /*
335 * Called immediately after a successful exec.
336 */
arch_setup_new_exec(void)337 void arch_setup_new_exec(void)
338 {
339 /* If cpuid was previously disabled for this task, re-enable it. */
340 if (test_thread_flag(TIF_NOCPUID))
341 enable_cpuid();
342
343 /*
344 * Don't inherit TIF_SSBD across exec boundary when
345 * PR_SPEC_DISABLE_NOEXEC is used.
346 */
347 if (test_thread_flag(TIF_SSBD) &&
348 task_spec_ssb_noexec(current)) {
349 clear_thread_flag(TIF_SSBD);
350 task_clear_spec_ssb_disable(current);
351 task_clear_spec_ssb_noexec(current);
352 speculation_ctrl_update(task_thread_info(current)->flags);
353 }
354 }
355
356 #ifdef CONFIG_X86_IOPL_IOPERM
switch_to_bitmap(unsigned long tifp)357 static inline void switch_to_bitmap(unsigned long tifp)
358 {
359 /*
360 * Invalidate I/O bitmap if the previous task used it. This prevents
361 * any possible leakage of an active I/O bitmap.
362 *
363 * If the next task has an I/O bitmap it will handle it on exit to
364 * user mode.
365 */
366 if (tifp & _TIF_IO_BITMAP)
367 tss_invalidate_io_bitmap();
368 }
369
tss_copy_io_bitmap(struct tss_struct * tss,struct io_bitmap * iobm)370 static void tss_copy_io_bitmap(struct tss_struct *tss, struct io_bitmap *iobm)
371 {
372 /*
373 * Copy at least the byte range of the incoming tasks bitmap which
374 * covers the permitted I/O ports.
375 *
376 * If the previous task which used an I/O bitmap had more bits
377 * permitted, then the copy needs to cover those as well so they
378 * get turned off.
379 */
380 memcpy(tss->io_bitmap.bitmap, iobm->bitmap,
381 max(tss->io_bitmap.prev_max, iobm->max));
382
383 /*
384 * Store the new max and the sequence number of this bitmap
385 * and a pointer to the bitmap itself.
386 */
387 tss->io_bitmap.prev_max = iobm->max;
388 tss->io_bitmap.prev_sequence = iobm->sequence;
389 }
390
391 /**
392 * tss_update_io_bitmap - Update I/O bitmap before exiting to usermode
393 */
native_tss_update_io_bitmap(void)394 void native_tss_update_io_bitmap(void)
395 {
396 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
397 struct thread_struct *t = ¤t->thread;
398 u16 *base = &tss->x86_tss.io_bitmap_base;
399
400 if (!test_thread_flag(TIF_IO_BITMAP)) {
401 native_tss_invalidate_io_bitmap();
402 return;
403 }
404
405 if (IS_ENABLED(CONFIG_X86_IOPL_IOPERM) && t->iopl_emul == 3) {
406 *base = IO_BITMAP_OFFSET_VALID_ALL;
407 } else {
408 struct io_bitmap *iobm = t->io_bitmap;
409
410 /*
411 * Only copy bitmap data when the sequence number differs. The
412 * update time is accounted to the incoming task.
413 */
414 if (tss->io_bitmap.prev_sequence != iobm->sequence)
415 tss_copy_io_bitmap(tss, iobm);
416
417 /* Enable the bitmap */
418 *base = IO_BITMAP_OFFSET_VALID_MAP;
419 }
420
421 /*
422 * Make sure that the TSS limit is covering the IO bitmap. It might have
423 * been cut down by a VMEXIT to 0x67 which would cause a subsequent I/O
424 * access from user space to trigger a #GP because tbe bitmap is outside
425 * the TSS limit.
426 */
427 refresh_tss_limit();
428 }
429 #else /* CONFIG_X86_IOPL_IOPERM */
switch_to_bitmap(unsigned long tifp)430 static inline void switch_to_bitmap(unsigned long tifp) { }
431 #endif
432
433 #ifdef CONFIG_SMP
434
435 struct ssb_state {
436 struct ssb_state *shared_state;
437 raw_spinlock_t lock;
438 unsigned int disable_state;
439 unsigned long local_state;
440 };
441
442 #define LSTATE_SSB 0
443
444 static DEFINE_PER_CPU(struct ssb_state, ssb_state);
445
speculative_store_bypass_ht_init(void)446 void speculative_store_bypass_ht_init(void)
447 {
448 struct ssb_state *st = this_cpu_ptr(&ssb_state);
449 unsigned int this_cpu = smp_processor_id();
450 unsigned int cpu;
451
452 st->local_state = 0;
453
454 /*
455 * Shared state setup happens once on the first bringup
456 * of the CPU. It's not destroyed on CPU hotunplug.
457 */
458 if (st->shared_state)
459 return;
460
461 raw_spin_lock_init(&st->lock);
462
463 /*
464 * Go over HT siblings and check whether one of them has set up the
465 * shared state pointer already.
466 */
467 for_each_cpu(cpu, topology_sibling_cpumask(this_cpu)) {
468 if (cpu == this_cpu)
469 continue;
470
471 if (!per_cpu(ssb_state, cpu).shared_state)
472 continue;
473
474 /* Link it to the state of the sibling: */
475 st->shared_state = per_cpu(ssb_state, cpu).shared_state;
476 return;
477 }
478
479 /*
480 * First HT sibling to come up on the core. Link shared state of
481 * the first HT sibling to itself. The siblings on the same core
482 * which come up later will see the shared state pointer and link
483 * themselves to the state of this CPU.
484 */
485 st->shared_state = st;
486 }
487
488 /*
489 * Logic is: First HT sibling enables SSBD for both siblings in the core
490 * and last sibling to disable it, disables it for the whole core. This how
491 * MSR_SPEC_CTRL works in "hardware":
492 *
493 * CORE_SPEC_CTRL = THREAD0_SPEC_CTRL | THREAD1_SPEC_CTRL
494 */
amd_set_core_ssb_state(unsigned long tifn)495 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
496 {
497 struct ssb_state *st = this_cpu_ptr(&ssb_state);
498 u64 msr = x86_amd_ls_cfg_base;
499
500 if (!static_cpu_has(X86_FEATURE_ZEN)) {
501 msr |= ssbd_tif_to_amd_ls_cfg(tifn);
502 wrmsrl(MSR_AMD64_LS_CFG, msr);
503 return;
504 }
505
506 if (tifn & _TIF_SSBD) {
507 /*
508 * Since this can race with prctl(), block reentry on the
509 * same CPU.
510 */
511 if (__test_and_set_bit(LSTATE_SSB, &st->local_state))
512 return;
513
514 msr |= x86_amd_ls_cfg_ssbd_mask;
515
516 raw_spin_lock(&st->shared_state->lock);
517 /* First sibling enables SSBD: */
518 if (!st->shared_state->disable_state)
519 wrmsrl(MSR_AMD64_LS_CFG, msr);
520 st->shared_state->disable_state++;
521 raw_spin_unlock(&st->shared_state->lock);
522 } else {
523 if (!__test_and_clear_bit(LSTATE_SSB, &st->local_state))
524 return;
525
526 raw_spin_lock(&st->shared_state->lock);
527 st->shared_state->disable_state--;
528 if (!st->shared_state->disable_state)
529 wrmsrl(MSR_AMD64_LS_CFG, msr);
530 raw_spin_unlock(&st->shared_state->lock);
531 }
532 }
533 #else
amd_set_core_ssb_state(unsigned long tifn)534 static __always_inline void amd_set_core_ssb_state(unsigned long tifn)
535 {
536 u64 msr = x86_amd_ls_cfg_base | ssbd_tif_to_amd_ls_cfg(tifn);
537
538 wrmsrl(MSR_AMD64_LS_CFG, msr);
539 }
540 #endif
541
amd_set_ssb_virt_state(unsigned long tifn)542 static __always_inline void amd_set_ssb_virt_state(unsigned long tifn)
543 {
544 /*
545 * SSBD has the same definition in SPEC_CTRL and VIRT_SPEC_CTRL,
546 * so ssbd_tif_to_spec_ctrl() just works.
547 */
548 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, ssbd_tif_to_spec_ctrl(tifn));
549 }
550
551 /*
552 * Update the MSRs managing speculation control, during context switch.
553 *
554 * tifp: Previous task's thread flags
555 * tifn: Next task's thread flags
556 */
__speculation_ctrl_update(unsigned long tifp,unsigned long tifn)557 static __always_inline void __speculation_ctrl_update(unsigned long tifp,
558 unsigned long tifn)
559 {
560 unsigned long tif_diff = tifp ^ tifn;
561 u64 msr = x86_spec_ctrl_base;
562 bool updmsr = false;
563
564 lockdep_assert_irqs_disabled();
565
566 /* Handle change of TIF_SSBD depending on the mitigation method. */
567 if (static_cpu_has(X86_FEATURE_VIRT_SSBD)) {
568 if (tif_diff & _TIF_SSBD)
569 amd_set_ssb_virt_state(tifn);
570 } else if (static_cpu_has(X86_FEATURE_LS_CFG_SSBD)) {
571 if (tif_diff & _TIF_SSBD)
572 amd_set_core_ssb_state(tifn);
573 } else if (static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
574 static_cpu_has(X86_FEATURE_AMD_SSBD)) {
575 updmsr |= !!(tif_diff & _TIF_SSBD);
576 msr |= ssbd_tif_to_spec_ctrl(tifn);
577 }
578
579 /* Only evaluate TIF_SPEC_IB if conditional STIBP is enabled. */
580 if (IS_ENABLED(CONFIG_SMP) &&
581 static_branch_unlikely(&switch_to_cond_stibp)) {
582 updmsr |= !!(tif_diff & _TIF_SPEC_IB);
583 msr |= stibp_tif_to_spec_ctrl(tifn);
584 }
585
586 if (updmsr)
587 update_spec_ctrl_cond(msr);
588 }
589
speculation_ctrl_update_tif(struct task_struct * tsk)590 static unsigned long speculation_ctrl_update_tif(struct task_struct *tsk)
591 {
592 if (test_and_clear_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE)) {
593 if (task_spec_ssb_disable(tsk))
594 set_tsk_thread_flag(tsk, TIF_SSBD);
595 else
596 clear_tsk_thread_flag(tsk, TIF_SSBD);
597
598 if (task_spec_ib_disable(tsk))
599 set_tsk_thread_flag(tsk, TIF_SPEC_IB);
600 else
601 clear_tsk_thread_flag(tsk, TIF_SPEC_IB);
602 }
603 /* Return the updated threadinfo flags*/
604 return task_thread_info(tsk)->flags;
605 }
606
speculation_ctrl_update(unsigned long tif)607 void speculation_ctrl_update(unsigned long tif)
608 {
609 unsigned long flags;
610
611 /* Forced update. Make sure all relevant TIF flags are different */
612 local_irq_save(flags);
613 __speculation_ctrl_update(~tif, tif);
614 local_irq_restore(flags);
615 }
616
617 /* Called from seccomp/prctl update */
speculation_ctrl_update_current(void)618 void speculation_ctrl_update_current(void)
619 {
620 preempt_disable();
621 speculation_ctrl_update(speculation_ctrl_update_tif(current));
622 preempt_enable();
623 }
624
cr4_toggle_bits_irqsoff(unsigned long mask)625 static inline void cr4_toggle_bits_irqsoff(unsigned long mask)
626 {
627 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
628
629 newval = cr4 ^ mask;
630 if (newval != cr4) {
631 this_cpu_write(cpu_tlbstate.cr4, newval);
632 __write_cr4(newval);
633 }
634 }
635
__switch_to_xtra(struct task_struct * prev_p,struct task_struct * next_p)636 void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p)
637 {
638 unsigned long tifp, tifn;
639
640 tifn = READ_ONCE(task_thread_info(next_p)->flags);
641 tifp = READ_ONCE(task_thread_info(prev_p)->flags);
642
643 switch_to_bitmap(tifp);
644
645 propagate_user_return_notify(prev_p, next_p);
646
647 if ((tifp & _TIF_BLOCKSTEP || tifn & _TIF_BLOCKSTEP) &&
648 arch_has_block_step()) {
649 unsigned long debugctl, msk;
650
651 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
652 debugctl &= ~DEBUGCTLMSR_BTF;
653 msk = tifn & _TIF_BLOCKSTEP;
654 debugctl |= (msk >> TIF_BLOCKSTEP) << DEBUGCTLMSR_BTF_SHIFT;
655 wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
656 }
657
658 if ((tifp ^ tifn) & _TIF_NOTSC)
659 cr4_toggle_bits_irqsoff(X86_CR4_TSD);
660
661 if ((tifp ^ tifn) & _TIF_NOCPUID)
662 set_cpuid_faulting(!!(tifn & _TIF_NOCPUID));
663
664 if (likely(!((tifp | tifn) & _TIF_SPEC_FORCE_UPDATE))) {
665 __speculation_ctrl_update(tifp, tifn);
666 } else {
667 speculation_ctrl_update_tif(prev_p);
668 tifn = speculation_ctrl_update_tif(next_p);
669
670 /* Enforce MSR update to ensure consistent state */
671 __speculation_ctrl_update(~tifn, tifn);
672 }
673
674 if ((tifp ^ tifn) & _TIF_SLD)
675 switch_to_sld(tifn);
676 }
677
678 /*
679 * Idle related variables and functions
680 */
681 unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
682 EXPORT_SYMBOL(boot_option_idle_override);
683
684 static void (*x86_idle)(void);
685
686 #ifndef CONFIG_SMP
play_dead(void)687 static inline void play_dead(void)
688 {
689 BUG();
690 }
691 #endif
692
arch_cpu_idle_enter(void)693 void arch_cpu_idle_enter(void)
694 {
695 tsc_verify_tsc_adjust(false);
696 local_touch_nmi();
697 }
698
arch_cpu_idle_dead(void)699 void arch_cpu_idle_dead(void)
700 {
701 play_dead();
702 }
703
704 /*
705 * Called from the generic idle code.
706 */
arch_cpu_idle(void)707 void arch_cpu_idle(void)
708 {
709 x86_idle();
710 }
711
712 /*
713 * We use this if we don't have any better idle routine..
714 */
default_idle(void)715 void __cpuidle default_idle(void)
716 {
717 raw_safe_halt();
718 }
719 #if defined(CONFIG_APM_MODULE) || defined(CONFIG_HALTPOLL_CPUIDLE_MODULE)
720 EXPORT_SYMBOL(default_idle);
721 #endif
722
723 #ifdef CONFIG_XEN
xen_set_default_idle(void)724 bool xen_set_default_idle(void)
725 {
726 bool ret = !!x86_idle;
727
728 x86_idle = default_idle;
729
730 return ret;
731 }
732 #endif
733
stop_this_cpu(void * dummy)734 void __noreturn stop_this_cpu(void *dummy)
735 {
736 local_irq_disable();
737 /*
738 * Remove this CPU:
739 */
740 set_cpu_online(smp_processor_id(), false);
741 disable_local_APIC();
742 mcheck_cpu_clear(this_cpu_ptr(&cpu_info));
743
744 /*
745 * Use wbinvd on processors that support SME. This provides support
746 * for performing a successful kexec when going from SME inactive
747 * to SME active (or vice-versa). The cache must be cleared so that
748 * if there are entries with the same physical address, both with and
749 * without the encryption bit, they don't race each other when flushed
750 * and potentially end up with the wrong entry being committed to
751 * memory.
752 */
753 if (boot_cpu_has(X86_FEATURE_SME))
754 native_wbinvd();
755 for (;;) {
756 /*
757 * Use native_halt() so that memory contents don't change
758 * (stack usage and variables) after possibly issuing the
759 * native_wbinvd() above.
760 */
761 native_halt();
762 }
763 }
764
765 /*
766 * AMD Erratum 400 aware idle routine. We handle it the same way as C3 power
767 * states (local apic timer and TSC stop).
768 *
769 * XXX this function is completely buggered vs RCU and tracing.
770 */
amd_e400_idle(void)771 static void amd_e400_idle(void)
772 {
773 /*
774 * We cannot use static_cpu_has_bug() here because X86_BUG_AMD_APIC_C1E
775 * gets set after static_cpu_has() places have been converted via
776 * alternatives.
777 */
778 if (!boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
779 default_idle();
780 return;
781 }
782
783 tick_broadcast_enter();
784
785 default_idle();
786
787 /*
788 * The switch back from broadcast mode needs to be called with
789 * interrupts disabled.
790 */
791 raw_local_irq_disable();
792 tick_broadcast_exit();
793 raw_local_irq_enable();
794 }
795
796 /*
797 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
798 * We can't rely on cpuidle installing MWAIT, because it will not load
799 * on systems that support only C1 -- so the boot default must be MWAIT.
800 *
801 * Some AMD machines are the opposite, they depend on using HALT.
802 *
803 * So for default C1, which is used during boot until cpuidle loads,
804 * use MWAIT-C1 on Intel HW that has it, else use HALT.
805 */
prefer_mwait_c1_over_halt(const struct cpuinfo_x86 * c)806 static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
807 {
808 /* User has disallowed the use of MWAIT. Fallback to HALT */
809 if (boot_option_idle_override == IDLE_NOMWAIT)
810 return 0;
811
812 if (c->x86_vendor != X86_VENDOR_INTEL)
813 return 0;
814
815 if (!cpu_has(c, X86_FEATURE_MWAIT) || boot_cpu_has_bug(X86_BUG_MONITOR))
816 return 0;
817
818 return 1;
819 }
820
821 /*
822 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
823 * with interrupts enabled and no flags, which is backwards compatible with the
824 * original MWAIT implementation.
825 */
mwait_idle(void)826 static __cpuidle void mwait_idle(void)
827 {
828 if (!current_set_polling_and_test()) {
829 if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
830 mb(); /* quirk */
831 clflush((void *)¤t_thread_info()->flags);
832 mb(); /* quirk */
833 }
834
835 __monitor((void *)¤t_thread_info()->flags, 0, 0);
836 if (!need_resched())
837 __sti_mwait(0, 0);
838 else
839 raw_local_irq_enable();
840 } else {
841 raw_local_irq_enable();
842 }
843 __current_clr_polling();
844 }
845
select_idle_routine(const struct cpuinfo_x86 * c)846 void select_idle_routine(const struct cpuinfo_x86 *c)
847 {
848 #ifdef CONFIG_SMP
849 if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
850 pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
851 #endif
852 if (x86_idle || boot_option_idle_override == IDLE_POLL)
853 return;
854
855 if (boot_cpu_has_bug(X86_BUG_AMD_E400)) {
856 pr_info("using AMD E400 aware idle routine\n");
857 x86_idle = amd_e400_idle;
858 } else if (prefer_mwait_c1_over_halt(c)) {
859 pr_info("using mwait in idle threads\n");
860 x86_idle = mwait_idle;
861 } else
862 x86_idle = default_idle;
863 }
864
amd_e400_c1e_apic_setup(void)865 void amd_e400_c1e_apic_setup(void)
866 {
867 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E)) {
868 pr_info("Switch to broadcast mode on CPU%d\n", smp_processor_id());
869 local_irq_disable();
870 tick_broadcast_force();
871 local_irq_enable();
872 }
873 }
874
arch_post_acpi_subsys_init(void)875 void __init arch_post_acpi_subsys_init(void)
876 {
877 u32 lo, hi;
878
879 if (!boot_cpu_has_bug(X86_BUG_AMD_E400))
880 return;
881
882 /*
883 * AMD E400 detection needs to happen after ACPI has been enabled. If
884 * the machine is affected K8_INTP_C1E_ACTIVE_MASK bits are set in
885 * MSR_K8_INT_PENDING_MSG.
886 */
887 rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
888 if (!(lo & K8_INTP_C1E_ACTIVE_MASK))
889 return;
890
891 boot_cpu_set_bug(X86_BUG_AMD_APIC_C1E);
892
893 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
894 mark_tsc_unstable("TSC halt in AMD C1E");
895 pr_info("System has AMD C1E enabled\n");
896 }
897
idle_setup(char * str)898 static int __init idle_setup(char *str)
899 {
900 if (!str)
901 return -EINVAL;
902
903 if (!strcmp(str, "poll")) {
904 pr_info("using polling idle threads\n");
905 boot_option_idle_override = IDLE_POLL;
906 cpu_idle_poll_ctrl(true);
907 } else if (!strcmp(str, "halt")) {
908 /*
909 * When the boot option of idle=halt is added, halt is
910 * forced to be used for CPU idle. In such case CPU C2/C3
911 * won't be used again.
912 * To continue to load the CPU idle driver, don't touch
913 * the boot_option_idle_override.
914 */
915 x86_idle = default_idle;
916 boot_option_idle_override = IDLE_HALT;
917 } else if (!strcmp(str, "nomwait")) {
918 /*
919 * If the boot option of "idle=nomwait" is added,
920 * it means that mwait will be disabled for CPU C1/C2/C3
921 * states.
922 */
923 boot_option_idle_override = IDLE_NOMWAIT;
924 } else
925 return -1;
926
927 return 0;
928 }
929 early_param("idle", idle_setup);
930
arch_align_stack(unsigned long sp)931 unsigned long arch_align_stack(unsigned long sp)
932 {
933 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
934 sp -= get_random_int() % 8192;
935 return sp & ~0xf;
936 }
937
arch_randomize_brk(struct mm_struct * mm)938 unsigned long arch_randomize_brk(struct mm_struct *mm)
939 {
940 return randomize_page(mm->brk, 0x02000000);
941 }
942
943 /*
944 * Called from fs/proc with a reference on @p to find the function
945 * which called into schedule(). This needs to be done carefully
946 * because the task might wake up and we might look at a stack
947 * changing under us.
948 */
get_wchan(struct task_struct * p)949 unsigned long get_wchan(struct task_struct *p)
950 {
951 unsigned long start, bottom, top, sp, fp, ip, ret = 0;
952 int count = 0;
953
954 if (p == current || task_is_running(p))
955 return 0;
956
957 if (!try_get_task_stack(p))
958 return 0;
959
960 start = (unsigned long)task_stack_page(p);
961 if (!start)
962 goto out;
963
964 /*
965 * Layout of the stack page:
966 *
967 * ----------- topmax = start + THREAD_SIZE - sizeof(unsigned long)
968 * PADDING
969 * ----------- top = topmax - TOP_OF_KERNEL_STACK_PADDING
970 * stack
971 * ----------- bottom = start
972 *
973 * The tasks stack pointer points at the location where the
974 * framepointer is stored. The data on the stack is:
975 * ... IP FP ... IP FP
976 *
977 * We need to read FP and IP, so we need to adjust the upper
978 * bound by another unsigned long.
979 */
980 top = start + THREAD_SIZE - TOP_OF_KERNEL_STACK_PADDING;
981 top -= 2 * sizeof(unsigned long);
982 bottom = start;
983
984 sp = READ_ONCE(p->thread.sp);
985 if (sp < bottom || sp > top)
986 goto out;
987
988 fp = READ_ONCE_NOCHECK(((struct inactive_task_frame *)sp)->bp);
989 do {
990 if (fp < bottom || fp > top)
991 goto out;
992 ip = READ_ONCE_NOCHECK(*(unsigned long *)(fp + sizeof(unsigned long)));
993 if (!in_sched_functions(ip)) {
994 ret = ip;
995 goto out;
996 }
997 fp = READ_ONCE_NOCHECK(*(unsigned long *)fp);
998 } while (count++ < 16 && !task_is_running(p));
999
1000 out:
1001 put_task_stack(p);
1002 return ret;
1003 }
1004
do_arch_prctl_common(struct task_struct * task,int option,unsigned long cpuid_enabled)1005 long do_arch_prctl_common(struct task_struct *task, int option,
1006 unsigned long cpuid_enabled)
1007 {
1008 switch (option) {
1009 case ARCH_GET_CPUID:
1010 return get_cpuid_mode();
1011 case ARCH_SET_CPUID:
1012 return set_cpuid_mode(task, cpuid_enabled);
1013 }
1014
1015 return -EINVAL;
1016 }
1017