• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
41 
42 #include "internals.h"
43 
44 static DEFINE_IDR(spi_master_idr);
45 
spidev_release(struct device * dev)46 static void spidev_release(struct device *dev)
47 {
48 	struct spi_device	*spi = to_spi_device(dev);
49 
50 	spi_controller_put(spi->controller);
51 	kfree(spi->driver_override);
52 	kfree(spi);
53 }
54 
55 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)56 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
57 {
58 	const struct spi_device	*spi = to_spi_device(dev);
59 	int len;
60 
61 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
62 	if (len != -ENODEV)
63 		return len;
64 
65 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
66 }
67 static DEVICE_ATTR_RO(modalias);
68 
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)69 static ssize_t driver_override_store(struct device *dev,
70 				     struct device_attribute *a,
71 				     const char *buf, size_t count)
72 {
73 	struct spi_device *spi = to_spi_device(dev);
74 	const char *end = memchr(buf, '\n', count);
75 	const size_t len = end ? end - buf : count;
76 	const char *driver_override, *old;
77 
78 	/* We need to keep extra room for a newline when displaying value */
79 	if (len >= (PAGE_SIZE - 1))
80 		return -EINVAL;
81 
82 	driver_override = kstrndup(buf, len, GFP_KERNEL);
83 	if (!driver_override)
84 		return -ENOMEM;
85 
86 	device_lock(dev);
87 	old = spi->driver_override;
88 	if (len) {
89 		spi->driver_override = driver_override;
90 	} else {
91 		/* Empty string, disable driver override */
92 		spi->driver_override = NULL;
93 		kfree(driver_override);
94 	}
95 	device_unlock(dev);
96 	kfree(old);
97 
98 	return count;
99 }
100 
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)101 static ssize_t driver_override_show(struct device *dev,
102 				    struct device_attribute *a, char *buf)
103 {
104 	const struct spi_device *spi = to_spi_device(dev);
105 	ssize_t len;
106 
107 	device_lock(dev);
108 	len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
109 	device_unlock(dev);
110 	return len;
111 }
112 static DEVICE_ATTR_RW(driver_override);
113 
114 #define SPI_STATISTICS_ATTRS(field, file)				\
115 static ssize_t spi_controller_##field##_show(struct device *dev,	\
116 					     struct device_attribute *attr, \
117 					     char *buf)			\
118 {									\
119 	struct spi_controller *ctlr = container_of(dev,			\
120 					 struct spi_controller, dev);	\
121 	return spi_statistics_##field##_show(&ctlr->statistics, buf);	\
122 }									\
123 static struct device_attribute dev_attr_spi_controller_##field = {	\
124 	.attr = { .name = file, .mode = 0444 },				\
125 	.show = spi_controller_##field##_show,				\
126 };									\
127 static ssize_t spi_device_##field##_show(struct device *dev,		\
128 					 struct device_attribute *attr,	\
129 					char *buf)			\
130 {									\
131 	struct spi_device *spi = to_spi_device(dev);			\
132 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
133 }									\
134 static struct device_attribute dev_attr_spi_device_##field = {		\
135 	.attr = { .name = file, .mode = 0444 },				\
136 	.show = spi_device_##field##_show,				\
137 }
138 
139 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
140 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
141 					    char *buf)			\
142 {									\
143 	unsigned long flags;						\
144 	ssize_t len;							\
145 	spin_lock_irqsave(&stat->lock, flags);				\
146 	len = sprintf(buf, format_string, stat->field);			\
147 	spin_unlock_irqrestore(&stat->lock, flags);			\
148 	return len;							\
149 }									\
150 SPI_STATISTICS_ATTRS(name, file)
151 
152 #define SPI_STATISTICS_SHOW(field, format_string)			\
153 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
154 				 field, format_string)
155 
156 SPI_STATISTICS_SHOW(messages, "%lu");
157 SPI_STATISTICS_SHOW(transfers, "%lu");
158 SPI_STATISTICS_SHOW(errors, "%lu");
159 SPI_STATISTICS_SHOW(timedout, "%lu");
160 
161 SPI_STATISTICS_SHOW(spi_sync, "%lu");
162 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
163 SPI_STATISTICS_SHOW(spi_async, "%lu");
164 
165 SPI_STATISTICS_SHOW(bytes, "%llu");
166 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
167 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
168 
169 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
170 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
171 				 "transfer_bytes_histo_" number,	\
172 				 transfer_bytes_histo[index],  "%lu")
173 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
174 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
175 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
176 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
190 
191 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
192 
193 static struct attribute *spi_dev_attrs[] = {
194 	&dev_attr_modalias.attr,
195 	&dev_attr_driver_override.attr,
196 	NULL,
197 };
198 
199 static const struct attribute_group spi_dev_group = {
200 	.attrs  = spi_dev_attrs,
201 };
202 
203 static struct attribute *spi_device_statistics_attrs[] = {
204 	&dev_attr_spi_device_messages.attr,
205 	&dev_attr_spi_device_transfers.attr,
206 	&dev_attr_spi_device_errors.attr,
207 	&dev_attr_spi_device_timedout.attr,
208 	&dev_attr_spi_device_spi_sync.attr,
209 	&dev_attr_spi_device_spi_sync_immediate.attr,
210 	&dev_attr_spi_device_spi_async.attr,
211 	&dev_attr_spi_device_bytes.attr,
212 	&dev_attr_spi_device_bytes_rx.attr,
213 	&dev_attr_spi_device_bytes_tx.attr,
214 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
215 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
216 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
217 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
218 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
219 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
220 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
221 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
222 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
223 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
224 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
225 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
226 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
227 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
228 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
229 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
230 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
231 	&dev_attr_spi_device_transfers_split_maxsize.attr,
232 	NULL,
233 };
234 
235 static const struct attribute_group spi_device_statistics_group = {
236 	.name  = "statistics",
237 	.attrs  = spi_device_statistics_attrs,
238 };
239 
240 static const struct attribute_group *spi_dev_groups[] = {
241 	&spi_dev_group,
242 	&spi_device_statistics_group,
243 	NULL,
244 };
245 
246 static struct attribute *spi_controller_statistics_attrs[] = {
247 	&dev_attr_spi_controller_messages.attr,
248 	&dev_attr_spi_controller_transfers.attr,
249 	&dev_attr_spi_controller_errors.attr,
250 	&dev_attr_spi_controller_timedout.attr,
251 	&dev_attr_spi_controller_spi_sync.attr,
252 	&dev_attr_spi_controller_spi_sync_immediate.attr,
253 	&dev_attr_spi_controller_spi_async.attr,
254 	&dev_attr_spi_controller_bytes.attr,
255 	&dev_attr_spi_controller_bytes_rx.attr,
256 	&dev_attr_spi_controller_bytes_tx.attr,
257 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
258 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
259 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
260 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
261 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
262 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
263 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
264 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
265 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
266 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
267 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
268 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
269 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
270 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
271 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
272 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
273 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
274 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
275 	NULL,
276 };
277 
278 static const struct attribute_group spi_controller_statistics_group = {
279 	.name  = "statistics",
280 	.attrs  = spi_controller_statistics_attrs,
281 };
282 
283 static const struct attribute_group *spi_master_groups[] = {
284 	&spi_controller_statistics_group,
285 	NULL,
286 };
287 
spi_statistics_add_transfer_stats(struct spi_statistics * stats,struct spi_transfer * xfer,struct spi_controller * ctlr)288 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
289 				       struct spi_transfer *xfer,
290 				       struct spi_controller *ctlr)
291 {
292 	unsigned long flags;
293 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
294 
295 	if (l2len < 0)
296 		l2len = 0;
297 
298 	spin_lock_irqsave(&stats->lock, flags);
299 
300 	stats->transfers++;
301 	stats->transfer_bytes_histo[l2len]++;
302 
303 	stats->bytes += xfer->len;
304 	if ((xfer->tx_buf) &&
305 	    (xfer->tx_buf != ctlr->dummy_tx))
306 		stats->bytes_tx += xfer->len;
307 	if ((xfer->rx_buf) &&
308 	    (xfer->rx_buf != ctlr->dummy_rx))
309 		stats->bytes_rx += xfer->len;
310 
311 	spin_unlock_irqrestore(&stats->lock, flags);
312 }
313 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
314 
315 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
316  * and the sysfs version makes coldplug work too.
317  */
318 
spi_match_id(const struct spi_device_id * id,const struct spi_device * sdev)319 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
320 						const struct spi_device *sdev)
321 {
322 	while (id->name[0]) {
323 		if (!strcmp(sdev->modalias, id->name))
324 			return id;
325 		id++;
326 	}
327 	return NULL;
328 }
329 
spi_get_device_id(const struct spi_device * sdev)330 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
331 {
332 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
333 
334 	return spi_match_id(sdrv->id_table, sdev);
335 }
336 EXPORT_SYMBOL_GPL(spi_get_device_id);
337 
spi_match_device(struct device * dev,struct device_driver * drv)338 static int spi_match_device(struct device *dev, struct device_driver *drv)
339 {
340 	const struct spi_device	*spi = to_spi_device(dev);
341 	const struct spi_driver	*sdrv = to_spi_driver(drv);
342 
343 	/* Check override first, and if set, only use the named driver */
344 	if (spi->driver_override)
345 		return strcmp(spi->driver_override, drv->name) == 0;
346 
347 	/* Attempt an OF style match */
348 	if (of_driver_match_device(dev, drv))
349 		return 1;
350 
351 	/* Then try ACPI */
352 	if (acpi_driver_match_device(dev, drv))
353 		return 1;
354 
355 	if (sdrv->id_table)
356 		return !!spi_match_id(sdrv->id_table, spi);
357 
358 	return strcmp(spi->modalias, drv->name) == 0;
359 }
360 
spi_uevent(struct device * dev,struct kobj_uevent_env * env)361 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
362 {
363 	const struct spi_device		*spi = to_spi_device(dev);
364 	int rc;
365 
366 	rc = acpi_device_uevent_modalias(dev, env);
367 	if (rc != -ENODEV)
368 		return rc;
369 
370 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
371 }
372 
spi_probe(struct device * dev)373 static int spi_probe(struct device *dev)
374 {
375 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
376 	struct spi_device		*spi = to_spi_device(dev);
377 	int ret;
378 
379 	ret = of_clk_set_defaults(dev->of_node, false);
380 	if (ret)
381 		return ret;
382 
383 	if (dev->of_node) {
384 		spi->irq = of_irq_get(dev->of_node, 0);
385 		if (spi->irq == -EPROBE_DEFER)
386 			return -EPROBE_DEFER;
387 		if (spi->irq < 0)
388 			spi->irq = 0;
389 	}
390 
391 	ret = dev_pm_domain_attach(dev, true);
392 	if (ret)
393 		return ret;
394 
395 	if (sdrv->probe) {
396 		ret = sdrv->probe(spi);
397 		if (ret)
398 			dev_pm_domain_detach(dev, true);
399 	}
400 
401 	return ret;
402 }
403 
spi_remove(struct device * dev)404 static void spi_remove(struct device *dev)
405 {
406 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
407 
408 	if (sdrv->remove) {
409 		int ret;
410 
411 		ret = sdrv->remove(to_spi_device(dev));
412 		if (ret)
413 			dev_warn(dev,
414 				 "Failed to unbind driver (%pe), ignoring\n",
415 				 ERR_PTR(ret));
416 	}
417 
418 	dev_pm_domain_detach(dev, true);
419 }
420 
spi_shutdown(struct device * dev)421 static void spi_shutdown(struct device *dev)
422 {
423 	if (dev->driver) {
424 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
425 
426 		if (sdrv->shutdown)
427 			sdrv->shutdown(to_spi_device(dev));
428 	}
429 }
430 
431 struct bus_type spi_bus_type = {
432 	.name		= "spi",
433 	.dev_groups	= spi_dev_groups,
434 	.match		= spi_match_device,
435 	.uevent		= spi_uevent,
436 	.probe		= spi_probe,
437 	.remove		= spi_remove,
438 	.shutdown	= spi_shutdown,
439 };
440 EXPORT_SYMBOL_GPL(spi_bus_type);
441 
442 /**
443  * __spi_register_driver - register a SPI driver
444  * @owner: owner module of the driver to register
445  * @sdrv: the driver to register
446  * Context: can sleep
447  *
448  * Return: zero on success, else a negative error code.
449  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)450 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
451 {
452 	sdrv->driver.owner = owner;
453 	sdrv->driver.bus = &spi_bus_type;
454 
455 	/*
456 	 * For Really Good Reasons we use spi: modaliases not of:
457 	 * modaliases for DT so module autoloading won't work if we
458 	 * don't have a spi_device_id as well as a compatible string.
459 	 */
460 	if (sdrv->driver.of_match_table) {
461 		const struct of_device_id *of_id;
462 
463 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
464 		     of_id++) {
465 			const char *of_name;
466 
467 			/* Strip off any vendor prefix */
468 			of_name = strnchr(of_id->compatible,
469 					  sizeof(of_id->compatible), ',');
470 			if (of_name)
471 				of_name++;
472 			else
473 				of_name = of_id->compatible;
474 
475 			if (sdrv->id_table) {
476 				const struct spi_device_id *spi_id;
477 
478 				for (spi_id = sdrv->id_table; spi_id->name[0];
479 				     spi_id++)
480 					if (strcmp(spi_id->name, of_name) == 0)
481 						break;
482 
483 				if (spi_id->name[0])
484 					continue;
485 			} else {
486 				if (strcmp(sdrv->driver.name, of_name) == 0)
487 					continue;
488 			}
489 
490 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
491 				sdrv->driver.name, of_id->compatible);
492 		}
493 	}
494 
495 	return driver_register(&sdrv->driver);
496 }
497 EXPORT_SYMBOL_GPL(__spi_register_driver);
498 
499 /*-------------------------------------------------------------------------*/
500 
501 /* SPI devices should normally not be created by SPI device drivers; that
502  * would make them board-specific.  Similarly with SPI controller drivers.
503  * Device registration normally goes into like arch/.../mach.../board-YYY.c
504  * with other readonly (flashable) information about mainboard devices.
505  */
506 
507 struct boardinfo {
508 	struct list_head	list;
509 	struct spi_board_info	board_info;
510 };
511 
512 static LIST_HEAD(board_list);
513 static LIST_HEAD(spi_controller_list);
514 
515 /*
516  * Used to protect add/del operation for board_info list and
517  * spi_controller list, and their matching process
518  * also used to protect object of type struct idr
519  */
520 static DEFINE_MUTEX(board_lock);
521 
522 /**
523  * spi_alloc_device - Allocate a new SPI device
524  * @ctlr: Controller to which device is connected
525  * Context: can sleep
526  *
527  * Allows a driver to allocate and initialize a spi_device without
528  * registering it immediately.  This allows a driver to directly
529  * fill the spi_device with device parameters before calling
530  * spi_add_device() on it.
531  *
532  * Caller is responsible to call spi_add_device() on the returned
533  * spi_device structure to add it to the SPI controller.  If the caller
534  * needs to discard the spi_device without adding it, then it should
535  * call spi_dev_put() on it.
536  *
537  * Return: a pointer to the new device, or NULL.
538  */
spi_alloc_device(struct spi_controller * ctlr)539 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
540 {
541 	struct spi_device	*spi;
542 
543 	if (!spi_controller_get(ctlr))
544 		return NULL;
545 
546 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
547 	if (!spi) {
548 		spi_controller_put(ctlr);
549 		return NULL;
550 	}
551 
552 	spi->master = spi->controller = ctlr;
553 	spi->dev.parent = &ctlr->dev;
554 	spi->dev.bus = &spi_bus_type;
555 	spi->dev.release = spidev_release;
556 	spi->cs_gpio = -ENOENT;
557 	spi->mode = ctlr->buswidth_override_bits;
558 
559 	spin_lock_init(&spi->statistics.lock);
560 
561 	device_initialize(&spi->dev);
562 	return spi;
563 }
564 EXPORT_SYMBOL_GPL(spi_alloc_device);
565 
spi_dev_set_name(struct spi_device * spi)566 static void spi_dev_set_name(struct spi_device *spi)
567 {
568 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
569 
570 	if (adev) {
571 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
572 		return;
573 	}
574 
575 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
576 		     spi->chip_select);
577 }
578 
spi_dev_check(struct device * dev,void * data)579 static int spi_dev_check(struct device *dev, void *data)
580 {
581 	struct spi_device *spi = to_spi_device(dev);
582 	struct spi_device *new_spi = data;
583 
584 	if (spi->controller == new_spi->controller &&
585 	    spi->chip_select == new_spi->chip_select)
586 		return -EBUSY;
587 	return 0;
588 }
589 
spi_cleanup(struct spi_device * spi)590 static void spi_cleanup(struct spi_device *spi)
591 {
592 	if (spi->controller->cleanup)
593 		spi->controller->cleanup(spi);
594 }
595 
__spi_add_device(struct spi_device * spi)596 static int __spi_add_device(struct spi_device *spi)
597 {
598 	struct spi_controller *ctlr = spi->controller;
599 	struct device *dev = ctlr->dev.parent;
600 	int status;
601 
602 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
603 	if (status) {
604 		dev_err(dev, "chipselect %d already in use\n",
605 				spi->chip_select);
606 		return status;
607 	}
608 
609 	/* Controller may unregister concurrently */
610 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
611 	    !device_is_registered(&ctlr->dev)) {
612 		return -ENODEV;
613 	}
614 
615 	/* Descriptors take precedence */
616 	if (ctlr->cs_gpiods)
617 		spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
618 	else if (ctlr->cs_gpios)
619 		spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
620 
621 	/* Drivers may modify this initial i/o setup, but will
622 	 * normally rely on the device being setup.  Devices
623 	 * using SPI_CS_HIGH can't coexist well otherwise...
624 	 */
625 	status = spi_setup(spi);
626 	if (status < 0) {
627 		dev_err(dev, "can't setup %s, status %d\n",
628 				dev_name(&spi->dev), status);
629 		return status;
630 	}
631 
632 	/* Device may be bound to an active driver when this returns */
633 	status = device_add(&spi->dev);
634 	if (status < 0) {
635 		dev_err(dev, "can't add %s, status %d\n",
636 				dev_name(&spi->dev), status);
637 		spi_cleanup(spi);
638 	} else {
639 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
640 	}
641 
642 	return status;
643 }
644 
645 /**
646  * spi_add_device - Add spi_device allocated with spi_alloc_device
647  * @spi: spi_device to register
648  *
649  * Companion function to spi_alloc_device.  Devices allocated with
650  * spi_alloc_device can be added onto the spi bus with this function.
651  *
652  * Return: 0 on success; negative errno on failure
653  */
spi_add_device(struct spi_device * spi)654 int spi_add_device(struct spi_device *spi)
655 {
656 	struct spi_controller *ctlr = spi->controller;
657 	struct device *dev = ctlr->dev.parent;
658 	int status;
659 
660 	/* Chipselects are numbered 0..max; validate. */
661 	if (spi->chip_select >= ctlr->num_chipselect) {
662 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
663 			ctlr->num_chipselect);
664 		return -EINVAL;
665 	}
666 
667 	/* Set the bus ID string */
668 	spi_dev_set_name(spi);
669 
670 	/* We need to make sure there's no other device with this
671 	 * chipselect **BEFORE** we call setup(), else we'll trash
672 	 * its configuration.  Lock against concurrent add() calls.
673 	 */
674 	mutex_lock(&ctlr->add_lock);
675 	status = __spi_add_device(spi);
676 	mutex_unlock(&ctlr->add_lock);
677 	return status;
678 }
679 EXPORT_SYMBOL_GPL(spi_add_device);
680 
spi_add_device_locked(struct spi_device * spi)681 static int spi_add_device_locked(struct spi_device *spi)
682 {
683 	struct spi_controller *ctlr = spi->controller;
684 	struct device *dev = ctlr->dev.parent;
685 
686 	/* Chipselects are numbered 0..max; validate. */
687 	if (spi->chip_select >= ctlr->num_chipselect) {
688 		dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
689 			ctlr->num_chipselect);
690 		return -EINVAL;
691 	}
692 
693 	/* Set the bus ID string */
694 	spi_dev_set_name(spi);
695 
696 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
697 	return __spi_add_device(spi);
698 }
699 
700 /**
701  * spi_new_device - instantiate one new SPI device
702  * @ctlr: Controller to which device is connected
703  * @chip: Describes the SPI device
704  * Context: can sleep
705  *
706  * On typical mainboards, this is purely internal; and it's not needed
707  * after board init creates the hard-wired devices.  Some development
708  * platforms may not be able to use spi_register_board_info though, and
709  * this is exported so that for example a USB or parport based adapter
710  * driver could add devices (which it would learn about out-of-band).
711  *
712  * Return: the new device, or NULL.
713  */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)714 struct spi_device *spi_new_device(struct spi_controller *ctlr,
715 				  struct spi_board_info *chip)
716 {
717 	struct spi_device	*proxy;
718 	int			status;
719 
720 	/* NOTE:  caller did any chip->bus_num checks necessary.
721 	 *
722 	 * Also, unless we change the return value convention to use
723 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
724 	 * suggests syslogged diagnostics are best here (ugh).
725 	 */
726 
727 	proxy = spi_alloc_device(ctlr);
728 	if (!proxy)
729 		return NULL;
730 
731 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
732 
733 	proxy->chip_select = chip->chip_select;
734 	proxy->max_speed_hz = chip->max_speed_hz;
735 	proxy->mode = chip->mode;
736 	proxy->irq = chip->irq;
737 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
738 	proxy->dev.platform_data = (void *) chip->platform_data;
739 	proxy->controller_data = chip->controller_data;
740 	proxy->controller_state = NULL;
741 
742 	if (chip->swnode) {
743 		status = device_add_software_node(&proxy->dev, chip->swnode);
744 		if (status) {
745 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
746 				chip->modalias, status);
747 			goto err_dev_put;
748 		}
749 	}
750 
751 	status = spi_add_device(proxy);
752 	if (status < 0)
753 		goto err_dev_put;
754 
755 	return proxy;
756 
757 err_dev_put:
758 	device_remove_software_node(&proxy->dev);
759 	spi_dev_put(proxy);
760 	return NULL;
761 }
762 EXPORT_SYMBOL_GPL(spi_new_device);
763 
764 /**
765  * spi_unregister_device - unregister a single SPI device
766  * @spi: spi_device to unregister
767  *
768  * Start making the passed SPI device vanish. Normally this would be handled
769  * by spi_unregister_controller().
770  */
spi_unregister_device(struct spi_device * spi)771 void spi_unregister_device(struct spi_device *spi)
772 {
773 	if (!spi)
774 		return;
775 
776 	if (spi->dev.of_node) {
777 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
778 		of_node_put(spi->dev.of_node);
779 	}
780 	if (ACPI_COMPANION(&spi->dev))
781 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
782 	device_remove_software_node(&spi->dev);
783 	device_del(&spi->dev);
784 	spi_cleanup(spi);
785 	put_device(&spi->dev);
786 }
787 EXPORT_SYMBOL_GPL(spi_unregister_device);
788 
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)789 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
790 					      struct spi_board_info *bi)
791 {
792 	struct spi_device *dev;
793 
794 	if (ctlr->bus_num != bi->bus_num)
795 		return;
796 
797 	dev = spi_new_device(ctlr, bi);
798 	if (!dev)
799 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
800 			bi->modalias);
801 }
802 
803 /**
804  * spi_register_board_info - register SPI devices for a given board
805  * @info: array of chip descriptors
806  * @n: how many descriptors are provided
807  * Context: can sleep
808  *
809  * Board-specific early init code calls this (probably during arch_initcall)
810  * with segments of the SPI device table.  Any device nodes are created later,
811  * after the relevant parent SPI controller (bus_num) is defined.  We keep
812  * this table of devices forever, so that reloading a controller driver will
813  * not make Linux forget about these hard-wired devices.
814  *
815  * Other code can also call this, e.g. a particular add-on board might provide
816  * SPI devices through its expansion connector, so code initializing that board
817  * would naturally declare its SPI devices.
818  *
819  * The board info passed can safely be __initdata ... but be careful of
820  * any embedded pointers (platform_data, etc), they're copied as-is.
821  *
822  * Return: zero on success, else a negative error code.
823  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)824 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
825 {
826 	struct boardinfo *bi;
827 	int i;
828 
829 	if (!n)
830 		return 0;
831 
832 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
833 	if (!bi)
834 		return -ENOMEM;
835 
836 	for (i = 0; i < n; i++, bi++, info++) {
837 		struct spi_controller *ctlr;
838 
839 		memcpy(&bi->board_info, info, sizeof(*info));
840 
841 		mutex_lock(&board_lock);
842 		list_add_tail(&bi->list, &board_list);
843 		list_for_each_entry(ctlr, &spi_controller_list, list)
844 			spi_match_controller_to_boardinfo(ctlr,
845 							  &bi->board_info);
846 		mutex_unlock(&board_lock);
847 	}
848 
849 	return 0;
850 }
851 
852 /*-------------------------------------------------------------------------*/
853 
spi_set_cs(struct spi_device * spi,bool enable,bool force)854 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
855 {
856 	bool activate = enable;
857 
858 	/*
859 	 * Avoid calling into the driver (or doing delays) if the chip select
860 	 * isn't actually changing from the last time this was called.
861 	 */
862 	if (!force && (spi->controller->last_cs_enable == enable) &&
863 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
864 		return;
865 
866 	trace_spi_set_cs(spi, activate);
867 
868 	spi->controller->last_cs_enable = enable;
869 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
870 
871 	if ((spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
872 	    !spi->controller->set_cs_timing) && !activate) {
873 		spi_delay_exec(&spi->cs_hold, NULL);
874 	}
875 
876 	if (spi->mode & SPI_CS_HIGH)
877 		enable = !enable;
878 
879 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
880 		if (!(spi->mode & SPI_NO_CS)) {
881 			if (spi->cs_gpiod) {
882 				/*
883 				 * Historically ACPI has no means of the GPIO polarity and
884 				 * thus the SPISerialBus() resource defines it on the per-chip
885 				 * basis. In order to avoid a chain of negations, the GPIO
886 				 * polarity is considered being Active High. Even for the cases
887 				 * when _DSD() is involved (in the updated versions of ACPI)
888 				 * the GPIO CS polarity must be defined Active High to avoid
889 				 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
890 				 * into account.
891 				 */
892 				if (has_acpi_companion(&spi->dev))
893 					gpiod_set_value_cansleep(spi->cs_gpiod, !enable);
894 				else
895 					/* Polarity handled by GPIO library */
896 					gpiod_set_value_cansleep(spi->cs_gpiod, activate);
897 			} else {
898 				/*
899 				 * invert the enable line, as active low is
900 				 * default for SPI.
901 				 */
902 				gpio_set_value_cansleep(spi->cs_gpio, !enable);
903 			}
904 		}
905 		/* Some SPI masters need both GPIO CS & slave_select */
906 		if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
907 		    spi->controller->set_cs)
908 			spi->controller->set_cs(spi, !enable);
909 	} else if (spi->controller->set_cs) {
910 		spi->controller->set_cs(spi, !enable);
911 	}
912 
913 	if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio) ||
914 	    !spi->controller->set_cs_timing) {
915 		if (activate)
916 			spi_delay_exec(&spi->cs_setup, NULL);
917 		else
918 			spi_delay_exec(&spi->cs_inactive, NULL);
919 	}
920 }
921 
922 #ifdef CONFIG_HAS_DMA
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)923 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
924 		struct sg_table *sgt, void *buf, size_t len,
925 		enum dma_data_direction dir)
926 {
927 	const bool vmalloced_buf = is_vmalloc_addr(buf);
928 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
929 #ifdef CONFIG_HIGHMEM
930 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
931 				(unsigned long)buf < (PKMAP_BASE +
932 					(LAST_PKMAP * PAGE_SIZE)));
933 #else
934 	const bool kmap_buf = false;
935 #endif
936 	int desc_len;
937 	int sgs;
938 	struct page *vm_page;
939 	struct scatterlist *sg;
940 	void *sg_buf;
941 	size_t min;
942 	int i, ret;
943 
944 	if (vmalloced_buf || kmap_buf) {
945 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
946 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
947 	} else if (virt_addr_valid(buf)) {
948 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
949 		sgs = DIV_ROUND_UP(len, desc_len);
950 	} else {
951 		return -EINVAL;
952 	}
953 
954 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
955 	if (ret != 0)
956 		return ret;
957 
958 	sg = &sgt->sgl[0];
959 	for (i = 0; i < sgs; i++) {
960 
961 		if (vmalloced_buf || kmap_buf) {
962 			/*
963 			 * Next scatterlist entry size is the minimum between
964 			 * the desc_len and the remaining buffer length that
965 			 * fits in a page.
966 			 */
967 			min = min_t(size_t, desc_len,
968 				    min_t(size_t, len,
969 					  PAGE_SIZE - offset_in_page(buf)));
970 			if (vmalloced_buf)
971 				vm_page = vmalloc_to_page(buf);
972 			else
973 				vm_page = kmap_to_page(buf);
974 			if (!vm_page) {
975 				sg_free_table(sgt);
976 				return -ENOMEM;
977 			}
978 			sg_set_page(sg, vm_page,
979 				    min, offset_in_page(buf));
980 		} else {
981 			min = min_t(size_t, len, desc_len);
982 			sg_buf = buf;
983 			sg_set_buf(sg, sg_buf, min);
984 		}
985 
986 		buf += min;
987 		len -= min;
988 		sg = sg_next(sg);
989 	}
990 
991 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
992 	if (!ret)
993 		ret = -ENOMEM;
994 	if (ret < 0) {
995 		sg_free_table(sgt);
996 		return ret;
997 	}
998 
999 	sgt->nents = ret;
1000 
1001 	return 0;
1002 }
1003 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)1004 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1005 		   struct sg_table *sgt, enum dma_data_direction dir)
1006 {
1007 	if (sgt->orig_nents) {
1008 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
1009 		sg_free_table(sgt);
1010 		sgt->orig_nents = 0;
1011 		sgt->nents = 0;
1012 	}
1013 }
1014 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1015 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1016 {
1017 	struct device *tx_dev, *rx_dev;
1018 	struct spi_transfer *xfer;
1019 	int ret;
1020 
1021 	if (!ctlr->can_dma)
1022 		return 0;
1023 
1024 	if (ctlr->dma_tx)
1025 		tx_dev = ctlr->dma_tx->device->dev;
1026 	else if (ctlr->dma_map_dev)
1027 		tx_dev = ctlr->dma_map_dev;
1028 	else
1029 		tx_dev = ctlr->dev.parent;
1030 
1031 	if (ctlr->dma_rx)
1032 		rx_dev = ctlr->dma_rx->device->dev;
1033 	else if (ctlr->dma_map_dev)
1034 		rx_dev = ctlr->dma_map_dev;
1035 	else
1036 		rx_dev = ctlr->dev.parent;
1037 
1038 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1039 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1040 			continue;
1041 
1042 		if (xfer->tx_buf != NULL) {
1043 			ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
1044 					  (void *)xfer->tx_buf, xfer->len,
1045 					  DMA_TO_DEVICE);
1046 			if (ret != 0)
1047 				return ret;
1048 		}
1049 
1050 		if (xfer->rx_buf != NULL) {
1051 			ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
1052 					  xfer->rx_buf, xfer->len,
1053 					  DMA_FROM_DEVICE);
1054 			if (ret != 0) {
1055 				spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
1056 					      DMA_TO_DEVICE);
1057 				return ret;
1058 			}
1059 		}
1060 	}
1061 
1062 	ctlr->cur_msg_mapped = true;
1063 
1064 	return 0;
1065 }
1066 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1067 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1068 {
1069 	struct spi_transfer *xfer;
1070 	struct device *tx_dev, *rx_dev;
1071 
1072 	if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
1073 		return 0;
1074 
1075 	if (ctlr->dma_tx)
1076 		tx_dev = ctlr->dma_tx->device->dev;
1077 	else if (ctlr->dma_map_dev)
1078 		tx_dev = ctlr->dma_map_dev;
1079 	else
1080 		tx_dev = ctlr->dev.parent;
1081 
1082 	if (ctlr->dma_rx)
1083 		rx_dev = ctlr->dma_rx->device->dev;
1084 	else if (ctlr->dma_map_dev)
1085 		rx_dev = ctlr->dma_map_dev;
1086 	else
1087 		rx_dev = ctlr->dev.parent;
1088 
1089 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1090 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1091 			continue;
1092 
1093 		spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1094 		spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1095 	}
1096 
1097 	ctlr->cur_msg_mapped = false;
1098 
1099 	return 0;
1100 }
1101 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1102 static inline int __spi_map_msg(struct spi_controller *ctlr,
1103 				struct spi_message *msg)
1104 {
1105 	return 0;
1106 }
1107 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1108 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1109 				  struct spi_message *msg)
1110 {
1111 	return 0;
1112 }
1113 #endif /* !CONFIG_HAS_DMA */
1114 
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1115 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1116 				struct spi_message *msg)
1117 {
1118 	struct spi_transfer *xfer;
1119 
1120 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1121 		/*
1122 		 * Restore the original value of tx_buf or rx_buf if they are
1123 		 * NULL.
1124 		 */
1125 		if (xfer->tx_buf == ctlr->dummy_tx)
1126 			xfer->tx_buf = NULL;
1127 		if (xfer->rx_buf == ctlr->dummy_rx)
1128 			xfer->rx_buf = NULL;
1129 	}
1130 
1131 	return __spi_unmap_msg(ctlr, msg);
1132 }
1133 
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1134 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1135 {
1136 	struct spi_transfer *xfer;
1137 	void *tmp;
1138 	unsigned int max_tx, max_rx;
1139 
1140 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1141 		&& !(msg->spi->mode & SPI_3WIRE)) {
1142 		max_tx = 0;
1143 		max_rx = 0;
1144 
1145 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1146 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1147 			    !xfer->tx_buf)
1148 				max_tx = max(xfer->len, max_tx);
1149 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1150 			    !xfer->rx_buf)
1151 				max_rx = max(xfer->len, max_rx);
1152 		}
1153 
1154 		if (max_tx) {
1155 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1156 				       GFP_KERNEL | GFP_DMA);
1157 			if (!tmp)
1158 				return -ENOMEM;
1159 			ctlr->dummy_tx = tmp;
1160 			memset(tmp, 0, max_tx);
1161 		}
1162 
1163 		if (max_rx) {
1164 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1165 				       GFP_KERNEL | GFP_DMA);
1166 			if (!tmp)
1167 				return -ENOMEM;
1168 			ctlr->dummy_rx = tmp;
1169 		}
1170 
1171 		if (max_tx || max_rx) {
1172 			list_for_each_entry(xfer, &msg->transfers,
1173 					    transfer_list) {
1174 				if (!xfer->len)
1175 					continue;
1176 				if (!xfer->tx_buf)
1177 					xfer->tx_buf = ctlr->dummy_tx;
1178 				if (!xfer->rx_buf)
1179 					xfer->rx_buf = ctlr->dummy_rx;
1180 			}
1181 		}
1182 	}
1183 
1184 	return __spi_map_msg(ctlr, msg);
1185 }
1186 
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1187 static int spi_transfer_wait(struct spi_controller *ctlr,
1188 			     struct spi_message *msg,
1189 			     struct spi_transfer *xfer)
1190 {
1191 	struct spi_statistics *statm = &ctlr->statistics;
1192 	struct spi_statistics *stats = &msg->spi->statistics;
1193 	u32 speed_hz = xfer->speed_hz;
1194 	unsigned long long ms;
1195 
1196 	if (spi_controller_is_slave(ctlr)) {
1197 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1198 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1199 			return -EINTR;
1200 		}
1201 	} else {
1202 		if (!speed_hz)
1203 			speed_hz = 100000;
1204 
1205 		/*
1206 		 * For each byte we wait for 8 cycles of the SPI clock.
1207 		 * Since speed is defined in Hz and we want milliseconds,
1208 		 * use respective multiplier, but before the division,
1209 		 * otherwise we may get 0 for short transfers.
1210 		 */
1211 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1212 		do_div(ms, speed_hz);
1213 
1214 		/*
1215 		 * Increase it twice and add 200 ms tolerance, use
1216 		 * predefined maximum in case of overflow.
1217 		 */
1218 		ms += ms + 200;
1219 		if (ms > UINT_MAX)
1220 			ms = UINT_MAX;
1221 
1222 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1223 						 msecs_to_jiffies(ms));
1224 
1225 		if (ms == 0) {
1226 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1227 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1228 			dev_err(&msg->spi->dev,
1229 				"SPI transfer timed out\n");
1230 			return -ETIMEDOUT;
1231 		}
1232 	}
1233 
1234 	return 0;
1235 }
1236 
_spi_transfer_delay_ns(u32 ns)1237 static void _spi_transfer_delay_ns(u32 ns)
1238 {
1239 	if (!ns)
1240 		return;
1241 	if (ns <= NSEC_PER_USEC) {
1242 		ndelay(ns);
1243 	} else {
1244 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1245 
1246 		if (us <= 10)
1247 			udelay(us);
1248 		else
1249 			usleep_range(us, us + DIV_ROUND_UP(us, 10));
1250 	}
1251 }
1252 
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1253 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1254 {
1255 	u32 delay = _delay->value;
1256 	u32 unit = _delay->unit;
1257 	u32 hz;
1258 
1259 	if (!delay)
1260 		return 0;
1261 
1262 	switch (unit) {
1263 	case SPI_DELAY_UNIT_USECS:
1264 		delay *= NSEC_PER_USEC;
1265 		break;
1266 	case SPI_DELAY_UNIT_NSECS:
1267 		/* Nothing to do here */
1268 		break;
1269 	case SPI_DELAY_UNIT_SCK:
1270 		/* clock cycles need to be obtained from spi_transfer */
1271 		if (!xfer)
1272 			return -EINVAL;
1273 		/*
1274 		 * If there is unknown effective speed, approximate it
1275 		 * by underestimating with half of the requested hz.
1276 		 */
1277 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1278 		if (!hz)
1279 			return -EINVAL;
1280 
1281 		/* Convert delay to nanoseconds */
1282 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1283 		break;
1284 	default:
1285 		return -EINVAL;
1286 	}
1287 
1288 	return delay;
1289 }
1290 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1291 
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1292 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1293 {
1294 	int delay;
1295 
1296 	might_sleep();
1297 
1298 	if (!_delay)
1299 		return -EINVAL;
1300 
1301 	delay = spi_delay_to_ns(_delay, xfer);
1302 	if (delay < 0)
1303 		return delay;
1304 
1305 	_spi_transfer_delay_ns(delay);
1306 
1307 	return 0;
1308 }
1309 EXPORT_SYMBOL_GPL(spi_delay_exec);
1310 
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1311 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1312 					  struct spi_transfer *xfer)
1313 {
1314 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1315 	u32 delay = xfer->cs_change_delay.value;
1316 	u32 unit = xfer->cs_change_delay.unit;
1317 	int ret;
1318 
1319 	/* return early on "fast" mode - for everything but USECS */
1320 	if (!delay) {
1321 		if (unit == SPI_DELAY_UNIT_USECS)
1322 			_spi_transfer_delay_ns(default_delay_ns);
1323 		return;
1324 	}
1325 
1326 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1327 	if (ret) {
1328 		dev_err_once(&msg->spi->dev,
1329 			     "Use of unsupported delay unit %i, using default of %luus\n",
1330 			     unit, default_delay_ns / NSEC_PER_USEC);
1331 		_spi_transfer_delay_ns(default_delay_ns);
1332 	}
1333 }
1334 
1335 /*
1336  * spi_transfer_one_message - Default implementation of transfer_one_message()
1337  *
1338  * This is a standard implementation of transfer_one_message() for
1339  * drivers which implement a transfer_one() operation.  It provides
1340  * standard handling of delays and chip select management.
1341  */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1342 static int spi_transfer_one_message(struct spi_controller *ctlr,
1343 				    struct spi_message *msg)
1344 {
1345 	struct spi_transfer *xfer;
1346 	bool keep_cs = false;
1347 	int ret = 0;
1348 	struct spi_statistics *statm = &ctlr->statistics;
1349 	struct spi_statistics *stats = &msg->spi->statistics;
1350 
1351 	spi_set_cs(msg->spi, true, false);
1352 
1353 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1354 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1355 
1356 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1357 		trace_spi_transfer_start(msg, xfer);
1358 
1359 		spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1360 		spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1361 
1362 		if (!ctlr->ptp_sts_supported) {
1363 			xfer->ptp_sts_word_pre = 0;
1364 			ptp_read_system_prets(xfer->ptp_sts);
1365 		}
1366 
1367 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1368 			reinit_completion(&ctlr->xfer_completion);
1369 
1370 fallback_pio:
1371 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1372 			if (ret < 0) {
1373 				if (ctlr->cur_msg_mapped &&
1374 				   (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1375 					__spi_unmap_msg(ctlr, msg);
1376 					ctlr->fallback = true;
1377 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1378 					goto fallback_pio;
1379 				}
1380 
1381 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1382 							       errors);
1383 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1384 							       errors);
1385 				dev_err(&msg->spi->dev,
1386 					"SPI transfer failed: %d\n", ret);
1387 				goto out;
1388 			}
1389 
1390 			if (ret > 0) {
1391 				ret = spi_transfer_wait(ctlr, msg, xfer);
1392 				if (ret < 0)
1393 					msg->status = ret;
1394 			}
1395 		} else {
1396 			if (xfer->len)
1397 				dev_err(&msg->spi->dev,
1398 					"Bufferless transfer has length %u\n",
1399 					xfer->len);
1400 		}
1401 
1402 		if (!ctlr->ptp_sts_supported) {
1403 			ptp_read_system_postts(xfer->ptp_sts);
1404 			xfer->ptp_sts_word_post = xfer->len;
1405 		}
1406 
1407 		trace_spi_transfer_stop(msg, xfer);
1408 
1409 		if (msg->status != -EINPROGRESS)
1410 			goto out;
1411 
1412 		spi_transfer_delay_exec(xfer);
1413 
1414 		if (xfer->cs_change) {
1415 			if (list_is_last(&xfer->transfer_list,
1416 					 &msg->transfers)) {
1417 				keep_cs = true;
1418 			} else {
1419 				spi_set_cs(msg->spi, false, false);
1420 				_spi_transfer_cs_change_delay(msg, xfer);
1421 				spi_set_cs(msg->spi, true, false);
1422 			}
1423 		}
1424 
1425 		msg->actual_length += xfer->len;
1426 	}
1427 
1428 out:
1429 	if (ret != 0 || !keep_cs)
1430 		spi_set_cs(msg->spi, false, false);
1431 
1432 	if (msg->status == -EINPROGRESS)
1433 		msg->status = ret;
1434 
1435 	if (msg->status && ctlr->handle_err)
1436 		ctlr->handle_err(ctlr, msg);
1437 
1438 	spi_finalize_current_message(ctlr);
1439 
1440 	return ret;
1441 }
1442 
1443 /**
1444  * spi_finalize_current_transfer - report completion of a transfer
1445  * @ctlr: the controller reporting completion
1446  *
1447  * Called by SPI drivers using the core transfer_one_message()
1448  * implementation to notify it that the current interrupt driven
1449  * transfer has finished and the next one may be scheduled.
1450  */
spi_finalize_current_transfer(struct spi_controller * ctlr)1451 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1452 {
1453 	complete(&ctlr->xfer_completion);
1454 }
1455 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1456 
spi_idle_runtime_pm(struct spi_controller * ctlr)1457 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1458 {
1459 	if (ctlr->auto_runtime_pm) {
1460 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1461 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1462 	}
1463 }
1464 
1465 /**
1466  * __spi_pump_messages - function which processes spi message queue
1467  * @ctlr: controller to process queue for
1468  * @in_kthread: true if we are in the context of the message pump thread
1469  *
1470  * This function checks if there is any spi message in the queue that
1471  * needs processing and if so call out to the driver to initialize hardware
1472  * and transfer each message.
1473  *
1474  * Note that it is called both from the kthread itself and also from
1475  * inside spi_sync(); the queue extraction handling at the top of the
1476  * function should deal with this safely.
1477  */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1478 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1479 {
1480 	struct spi_transfer *xfer;
1481 	struct spi_message *msg;
1482 	bool was_busy = false;
1483 	unsigned long flags;
1484 	int ret;
1485 
1486 	/* Lock queue */
1487 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1488 
1489 	/* Make sure we are not already running a message */
1490 	if (ctlr->cur_msg) {
1491 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1492 		return;
1493 	}
1494 
1495 	/* If another context is idling the device then defer */
1496 	if (ctlr->idling) {
1497 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1498 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1499 		return;
1500 	}
1501 
1502 	/* Check if the queue is idle */
1503 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1504 		if (!ctlr->busy) {
1505 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1506 			return;
1507 		}
1508 
1509 		/* Defer any non-atomic teardown to the thread */
1510 		if (!in_kthread) {
1511 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1512 			    !ctlr->unprepare_transfer_hardware) {
1513 				spi_idle_runtime_pm(ctlr);
1514 				ctlr->busy = false;
1515 				trace_spi_controller_idle(ctlr);
1516 			} else {
1517 				kthread_queue_work(ctlr->kworker,
1518 						   &ctlr->pump_messages);
1519 			}
1520 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1521 			return;
1522 		}
1523 
1524 		ctlr->busy = false;
1525 		ctlr->idling = true;
1526 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1527 
1528 		kfree(ctlr->dummy_rx);
1529 		ctlr->dummy_rx = NULL;
1530 		kfree(ctlr->dummy_tx);
1531 		ctlr->dummy_tx = NULL;
1532 		if (ctlr->unprepare_transfer_hardware &&
1533 		    ctlr->unprepare_transfer_hardware(ctlr))
1534 			dev_err(&ctlr->dev,
1535 				"failed to unprepare transfer hardware\n");
1536 		spi_idle_runtime_pm(ctlr);
1537 		trace_spi_controller_idle(ctlr);
1538 
1539 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1540 		ctlr->idling = false;
1541 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1542 		return;
1543 	}
1544 
1545 	/* Extract head of queue */
1546 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1547 	ctlr->cur_msg = msg;
1548 
1549 	list_del_init(&msg->queue);
1550 	if (ctlr->busy)
1551 		was_busy = true;
1552 	else
1553 		ctlr->busy = true;
1554 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1555 
1556 	mutex_lock(&ctlr->io_mutex);
1557 
1558 	if (!was_busy && ctlr->auto_runtime_pm) {
1559 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1560 		if (ret < 0) {
1561 			pm_runtime_put_noidle(ctlr->dev.parent);
1562 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1563 				ret);
1564 			mutex_unlock(&ctlr->io_mutex);
1565 			return;
1566 		}
1567 	}
1568 
1569 	if (!was_busy)
1570 		trace_spi_controller_busy(ctlr);
1571 
1572 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1573 		ret = ctlr->prepare_transfer_hardware(ctlr);
1574 		if (ret) {
1575 			dev_err(&ctlr->dev,
1576 				"failed to prepare transfer hardware: %d\n",
1577 				ret);
1578 
1579 			if (ctlr->auto_runtime_pm)
1580 				pm_runtime_put(ctlr->dev.parent);
1581 
1582 			msg->status = ret;
1583 			spi_finalize_current_message(ctlr);
1584 
1585 			mutex_unlock(&ctlr->io_mutex);
1586 			return;
1587 		}
1588 	}
1589 
1590 	trace_spi_message_start(msg);
1591 
1592 	if (ctlr->prepare_message) {
1593 		ret = ctlr->prepare_message(ctlr, msg);
1594 		if (ret) {
1595 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1596 				ret);
1597 			msg->status = ret;
1598 			spi_finalize_current_message(ctlr);
1599 			goto out;
1600 		}
1601 		ctlr->cur_msg_prepared = true;
1602 	}
1603 
1604 	ret = spi_map_msg(ctlr, msg);
1605 	if (ret) {
1606 		msg->status = ret;
1607 		spi_finalize_current_message(ctlr);
1608 		goto out;
1609 	}
1610 
1611 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1612 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1613 			xfer->ptp_sts_word_pre = 0;
1614 			ptp_read_system_prets(xfer->ptp_sts);
1615 		}
1616 	}
1617 
1618 	ret = ctlr->transfer_one_message(ctlr, msg);
1619 	if (ret) {
1620 		dev_err(&ctlr->dev,
1621 			"failed to transfer one message from queue\n");
1622 		goto out;
1623 	}
1624 
1625 out:
1626 	mutex_unlock(&ctlr->io_mutex);
1627 
1628 	/* Prod the scheduler in case transfer_one() was busy waiting */
1629 	if (!ret)
1630 		cond_resched();
1631 }
1632 
1633 /**
1634  * spi_pump_messages - kthread work function which processes spi message queue
1635  * @work: pointer to kthread work struct contained in the controller struct
1636  */
spi_pump_messages(struct kthread_work * work)1637 static void spi_pump_messages(struct kthread_work *work)
1638 {
1639 	struct spi_controller *ctlr =
1640 		container_of(work, struct spi_controller, pump_messages);
1641 
1642 	__spi_pump_messages(ctlr, true);
1643 }
1644 
1645 /**
1646  * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1647  *			    TX timestamp for the requested byte from the SPI
1648  *			    transfer. The frequency with which this function
1649  *			    must be called (once per word, once for the whole
1650  *			    transfer, once per batch of words etc) is arbitrary
1651  *			    as long as the @tx buffer offset is greater than or
1652  *			    equal to the requested byte at the time of the
1653  *			    call. The timestamp is only taken once, at the
1654  *			    first such call. It is assumed that the driver
1655  *			    advances its @tx buffer pointer monotonically.
1656  * @ctlr: Pointer to the spi_controller structure of the driver
1657  * @xfer: Pointer to the transfer being timestamped
1658  * @progress: How many words (not bytes) have been transferred so far
1659  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1660  *	      transfer, for less jitter in time measurement. Only compatible
1661  *	      with PIO drivers. If true, must follow up with
1662  *	      spi_take_timestamp_post or otherwise system will crash.
1663  *	      WARNING: for fully predictable results, the CPU frequency must
1664  *	      also be under control (governor).
1665  */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1666 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1667 			    struct spi_transfer *xfer,
1668 			    size_t progress, bool irqs_off)
1669 {
1670 	if (!xfer->ptp_sts)
1671 		return;
1672 
1673 	if (xfer->timestamped)
1674 		return;
1675 
1676 	if (progress > xfer->ptp_sts_word_pre)
1677 		return;
1678 
1679 	/* Capture the resolution of the timestamp */
1680 	xfer->ptp_sts_word_pre = progress;
1681 
1682 	if (irqs_off) {
1683 		local_irq_save(ctlr->irq_flags);
1684 		preempt_disable();
1685 	}
1686 
1687 	ptp_read_system_prets(xfer->ptp_sts);
1688 }
1689 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1690 
1691 /**
1692  * spi_take_timestamp_post - helper for drivers to collect the end of the
1693  *			     TX timestamp for the requested byte from the SPI
1694  *			     transfer. Can be called with an arbitrary
1695  *			     frequency: only the first call where @tx exceeds
1696  *			     or is equal to the requested word will be
1697  *			     timestamped.
1698  * @ctlr: Pointer to the spi_controller structure of the driver
1699  * @xfer: Pointer to the transfer being timestamped
1700  * @progress: How many words (not bytes) have been transferred so far
1701  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1702  */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1703 void spi_take_timestamp_post(struct spi_controller *ctlr,
1704 			     struct spi_transfer *xfer,
1705 			     size_t progress, bool irqs_off)
1706 {
1707 	if (!xfer->ptp_sts)
1708 		return;
1709 
1710 	if (xfer->timestamped)
1711 		return;
1712 
1713 	if (progress < xfer->ptp_sts_word_post)
1714 		return;
1715 
1716 	ptp_read_system_postts(xfer->ptp_sts);
1717 
1718 	if (irqs_off) {
1719 		local_irq_restore(ctlr->irq_flags);
1720 		preempt_enable();
1721 	}
1722 
1723 	/* Capture the resolution of the timestamp */
1724 	xfer->ptp_sts_word_post = progress;
1725 
1726 	xfer->timestamped = true;
1727 }
1728 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1729 
1730 /**
1731  * spi_set_thread_rt - set the controller to pump at realtime priority
1732  * @ctlr: controller to boost priority of
1733  *
1734  * This can be called because the controller requested realtime priority
1735  * (by setting the ->rt value before calling spi_register_controller()) or
1736  * because a device on the bus said that its transfers needed realtime
1737  * priority.
1738  *
1739  * NOTE: at the moment if any device on a bus says it needs realtime then
1740  * the thread will be at realtime priority for all transfers on that
1741  * controller.  If this eventually becomes a problem we may see if we can
1742  * find a way to boost the priority only temporarily during relevant
1743  * transfers.
1744  */
spi_set_thread_rt(struct spi_controller * ctlr)1745 static void spi_set_thread_rt(struct spi_controller *ctlr)
1746 {
1747 	dev_info(&ctlr->dev,
1748 		"will run message pump with realtime priority\n");
1749 	sched_set_fifo(ctlr->kworker->task);
1750 }
1751 
spi_init_queue(struct spi_controller * ctlr)1752 static int spi_init_queue(struct spi_controller *ctlr)
1753 {
1754 	ctlr->running = false;
1755 	ctlr->busy = false;
1756 
1757 	ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1758 	if (IS_ERR(ctlr->kworker)) {
1759 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1760 		return PTR_ERR(ctlr->kworker);
1761 	}
1762 
1763 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1764 
1765 	/*
1766 	 * Controller config will indicate if this controller should run the
1767 	 * message pump with high (realtime) priority to reduce the transfer
1768 	 * latency on the bus by minimising the delay between a transfer
1769 	 * request and the scheduling of the message pump thread. Without this
1770 	 * setting the message pump thread will remain at default priority.
1771 	 */
1772 	if (ctlr->rt)
1773 		spi_set_thread_rt(ctlr);
1774 
1775 	return 0;
1776 }
1777 
1778 /**
1779  * spi_get_next_queued_message() - called by driver to check for queued
1780  * messages
1781  * @ctlr: the controller to check for queued messages
1782  *
1783  * If there are more messages in the queue, the next message is returned from
1784  * this call.
1785  *
1786  * Return: the next message in the queue, else NULL if the queue is empty.
1787  */
spi_get_next_queued_message(struct spi_controller * ctlr)1788 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1789 {
1790 	struct spi_message *next;
1791 	unsigned long flags;
1792 
1793 	/* get a pointer to the next message, if any */
1794 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1795 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1796 					queue);
1797 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1798 
1799 	return next;
1800 }
1801 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1802 
1803 /**
1804  * spi_finalize_current_message() - the current message is complete
1805  * @ctlr: the controller to return the message to
1806  *
1807  * Called by the driver to notify the core that the message in the front of the
1808  * queue is complete and can be removed from the queue.
1809  */
spi_finalize_current_message(struct spi_controller * ctlr)1810 void spi_finalize_current_message(struct spi_controller *ctlr)
1811 {
1812 	struct spi_transfer *xfer;
1813 	struct spi_message *mesg;
1814 	unsigned long flags;
1815 	int ret;
1816 
1817 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1818 	mesg = ctlr->cur_msg;
1819 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1820 
1821 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1822 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1823 			ptp_read_system_postts(xfer->ptp_sts);
1824 			xfer->ptp_sts_word_post = xfer->len;
1825 		}
1826 	}
1827 
1828 	if (unlikely(ctlr->ptp_sts_supported))
1829 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1830 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1831 
1832 	spi_unmap_msg(ctlr, mesg);
1833 
1834 	/* In the prepare_messages callback the spi bus has the opportunity to
1835 	 * split a transfer to smaller chunks.
1836 	 * Release splited transfers here since spi_map_msg is done on the
1837 	 * splited transfers.
1838 	 */
1839 	spi_res_release(ctlr, mesg);
1840 
1841 	if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1842 		ret = ctlr->unprepare_message(ctlr, mesg);
1843 		if (ret) {
1844 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1845 				ret);
1846 		}
1847 	}
1848 
1849 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1850 	ctlr->cur_msg = NULL;
1851 	ctlr->cur_msg_prepared = false;
1852 	ctlr->fallback = false;
1853 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1854 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1855 
1856 	trace_spi_message_done(mesg);
1857 
1858 	mesg->state = NULL;
1859 	if (mesg->complete)
1860 		mesg->complete(mesg->context);
1861 }
1862 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1863 
spi_start_queue(struct spi_controller * ctlr)1864 static int spi_start_queue(struct spi_controller *ctlr)
1865 {
1866 	unsigned long flags;
1867 
1868 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1869 
1870 	if (ctlr->running || ctlr->busy) {
1871 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1872 		return -EBUSY;
1873 	}
1874 
1875 	ctlr->running = true;
1876 	ctlr->cur_msg = NULL;
1877 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1878 
1879 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1880 
1881 	return 0;
1882 }
1883 
spi_stop_queue(struct spi_controller * ctlr)1884 static int spi_stop_queue(struct spi_controller *ctlr)
1885 {
1886 	unsigned long flags;
1887 	unsigned limit = 500;
1888 	int ret = 0;
1889 
1890 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1891 
1892 	/*
1893 	 * This is a bit lame, but is optimized for the common execution path.
1894 	 * A wait_queue on the ctlr->busy could be used, but then the common
1895 	 * execution path (pump_messages) would be required to call wake_up or
1896 	 * friends on every SPI message. Do this instead.
1897 	 */
1898 	while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1899 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1900 		usleep_range(10000, 11000);
1901 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1902 	}
1903 
1904 	if (!list_empty(&ctlr->queue) || ctlr->busy)
1905 		ret = -EBUSY;
1906 	else
1907 		ctlr->running = false;
1908 
1909 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1910 
1911 	if (ret) {
1912 		dev_warn(&ctlr->dev, "could not stop message queue\n");
1913 		return ret;
1914 	}
1915 	return ret;
1916 }
1917 
spi_destroy_queue(struct spi_controller * ctlr)1918 static int spi_destroy_queue(struct spi_controller *ctlr)
1919 {
1920 	int ret;
1921 
1922 	ret = spi_stop_queue(ctlr);
1923 
1924 	/*
1925 	 * kthread_flush_worker will block until all work is done.
1926 	 * If the reason that stop_queue timed out is that the work will never
1927 	 * finish, then it does no good to call flush/stop thread, so
1928 	 * return anyway.
1929 	 */
1930 	if (ret) {
1931 		dev_err(&ctlr->dev, "problem destroying queue\n");
1932 		return ret;
1933 	}
1934 
1935 	kthread_destroy_worker(ctlr->kworker);
1936 
1937 	return 0;
1938 }
1939 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)1940 static int __spi_queued_transfer(struct spi_device *spi,
1941 				 struct spi_message *msg,
1942 				 bool need_pump)
1943 {
1944 	struct spi_controller *ctlr = spi->controller;
1945 	unsigned long flags;
1946 
1947 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1948 
1949 	if (!ctlr->running) {
1950 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1951 		return -ESHUTDOWN;
1952 	}
1953 	msg->actual_length = 0;
1954 	msg->status = -EINPROGRESS;
1955 
1956 	list_add_tail(&msg->queue, &ctlr->queue);
1957 	if (!ctlr->busy && need_pump)
1958 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1959 
1960 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1961 	return 0;
1962 }
1963 
1964 /**
1965  * spi_queued_transfer - transfer function for queued transfers
1966  * @spi: spi device which is requesting transfer
1967  * @msg: spi message which is to handled is queued to driver queue
1968  *
1969  * Return: zero on success, else a negative error code.
1970  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)1971 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1972 {
1973 	return __spi_queued_transfer(spi, msg, true);
1974 }
1975 
spi_controller_initialize_queue(struct spi_controller * ctlr)1976 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1977 {
1978 	int ret;
1979 
1980 	ctlr->transfer = spi_queued_transfer;
1981 	if (!ctlr->transfer_one_message)
1982 		ctlr->transfer_one_message = spi_transfer_one_message;
1983 
1984 	/* Initialize and start queue */
1985 	ret = spi_init_queue(ctlr);
1986 	if (ret) {
1987 		dev_err(&ctlr->dev, "problem initializing queue\n");
1988 		goto err_init_queue;
1989 	}
1990 	ctlr->queued = true;
1991 	ret = spi_start_queue(ctlr);
1992 	if (ret) {
1993 		dev_err(&ctlr->dev, "problem starting queue\n");
1994 		goto err_start_queue;
1995 	}
1996 
1997 	return 0;
1998 
1999 err_start_queue:
2000 	spi_destroy_queue(ctlr);
2001 err_init_queue:
2002 	return ret;
2003 }
2004 
2005 /**
2006  * spi_flush_queue - Send all pending messages in the queue from the callers'
2007  *		     context
2008  * @ctlr: controller to process queue for
2009  *
2010  * This should be used when one wants to ensure all pending messages have been
2011  * sent before doing something. Is used by the spi-mem code to make sure SPI
2012  * memory operations do not preempt regular SPI transfers that have been queued
2013  * before the spi-mem operation.
2014  */
spi_flush_queue(struct spi_controller * ctlr)2015 void spi_flush_queue(struct spi_controller *ctlr)
2016 {
2017 	if (ctlr->transfer == spi_queued_transfer)
2018 		__spi_pump_messages(ctlr, false);
2019 }
2020 
2021 /*-------------------------------------------------------------------------*/
2022 
2023 #if defined(CONFIG_OF)
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)2024 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2025 			   struct device_node *nc)
2026 {
2027 	u32 value;
2028 	int rc;
2029 
2030 	/* Mode (clock phase/polarity/etc.) */
2031 	if (of_property_read_bool(nc, "spi-cpha"))
2032 		spi->mode |= SPI_CPHA;
2033 	if (of_property_read_bool(nc, "spi-cpol"))
2034 		spi->mode |= SPI_CPOL;
2035 	if (of_property_read_bool(nc, "spi-3wire"))
2036 		spi->mode |= SPI_3WIRE;
2037 	if (of_property_read_bool(nc, "spi-lsb-first"))
2038 		spi->mode |= SPI_LSB_FIRST;
2039 	if (of_property_read_bool(nc, "spi-cs-high"))
2040 		spi->mode |= SPI_CS_HIGH;
2041 
2042 	/* Device DUAL/QUAD mode */
2043 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2044 		switch (value) {
2045 		case 0:
2046 			spi->mode |= SPI_NO_TX;
2047 			break;
2048 		case 1:
2049 			break;
2050 		case 2:
2051 			spi->mode |= SPI_TX_DUAL;
2052 			break;
2053 		case 4:
2054 			spi->mode |= SPI_TX_QUAD;
2055 			break;
2056 		case 8:
2057 			spi->mode |= SPI_TX_OCTAL;
2058 			break;
2059 		default:
2060 			dev_warn(&ctlr->dev,
2061 				"spi-tx-bus-width %d not supported\n",
2062 				value);
2063 			break;
2064 		}
2065 	}
2066 
2067 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2068 		switch (value) {
2069 		case 0:
2070 			spi->mode |= SPI_NO_RX;
2071 			break;
2072 		case 1:
2073 			break;
2074 		case 2:
2075 			spi->mode |= SPI_RX_DUAL;
2076 			break;
2077 		case 4:
2078 			spi->mode |= SPI_RX_QUAD;
2079 			break;
2080 		case 8:
2081 			spi->mode |= SPI_RX_OCTAL;
2082 			break;
2083 		default:
2084 			dev_warn(&ctlr->dev,
2085 				"spi-rx-bus-width %d not supported\n",
2086 				value);
2087 			break;
2088 		}
2089 	}
2090 
2091 	if (spi_controller_is_slave(ctlr)) {
2092 		if (!of_node_name_eq(nc, "slave")) {
2093 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2094 				nc);
2095 			return -EINVAL;
2096 		}
2097 		return 0;
2098 	}
2099 
2100 	/* Device address */
2101 	rc = of_property_read_u32(nc, "reg", &value);
2102 	if (rc) {
2103 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2104 			nc, rc);
2105 		return rc;
2106 	}
2107 	spi->chip_select = value;
2108 
2109 	/* Device speed */
2110 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2111 		spi->max_speed_hz = value;
2112 
2113 	return 0;
2114 }
2115 
2116 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2117 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2118 {
2119 	struct spi_device *spi;
2120 	int rc;
2121 
2122 	/* Alloc an spi_device */
2123 	spi = spi_alloc_device(ctlr);
2124 	if (!spi) {
2125 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2126 		rc = -ENOMEM;
2127 		goto err_out;
2128 	}
2129 
2130 	/* Select device driver */
2131 	rc = of_modalias_node(nc, spi->modalias,
2132 				sizeof(spi->modalias));
2133 	if (rc < 0) {
2134 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2135 		goto err_out;
2136 	}
2137 
2138 	rc = of_spi_parse_dt(ctlr, spi, nc);
2139 	if (rc)
2140 		goto err_out;
2141 
2142 	/* Store a pointer to the node in the device structure */
2143 	of_node_get(nc);
2144 	spi->dev.of_node = nc;
2145 	spi->dev.fwnode = of_fwnode_handle(nc);
2146 
2147 	/* Register the new device */
2148 	rc = spi_add_device(spi);
2149 	if (rc) {
2150 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2151 		goto err_of_node_put;
2152 	}
2153 
2154 	return spi;
2155 
2156 err_of_node_put:
2157 	of_node_put(nc);
2158 err_out:
2159 	spi_dev_put(spi);
2160 	return ERR_PTR(rc);
2161 }
2162 
2163 /**
2164  * of_register_spi_devices() - Register child devices onto the SPI bus
2165  * @ctlr:	Pointer to spi_controller device
2166  *
2167  * Registers an spi_device for each child node of controller node which
2168  * represents a valid SPI slave.
2169  */
of_register_spi_devices(struct spi_controller * ctlr)2170 static void of_register_spi_devices(struct spi_controller *ctlr)
2171 {
2172 	struct spi_device *spi;
2173 	struct device_node *nc;
2174 
2175 	if (!ctlr->dev.of_node)
2176 		return;
2177 
2178 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2179 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2180 			continue;
2181 		spi = of_register_spi_device(ctlr, nc);
2182 		if (IS_ERR(spi)) {
2183 			dev_warn(&ctlr->dev,
2184 				 "Failed to create SPI device for %pOF\n", nc);
2185 			of_node_clear_flag(nc, OF_POPULATED);
2186 		}
2187 	}
2188 }
2189 #else
of_register_spi_devices(struct spi_controller * ctlr)2190 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2191 #endif
2192 
2193 /**
2194  * spi_new_ancillary_device() - Register ancillary SPI device
2195  * @spi:         Pointer to the main SPI device registering the ancillary device
2196  * @chip_select: Chip Select of the ancillary device
2197  *
2198  * Register an ancillary SPI device; for example some chips have a chip-select
2199  * for normal device usage and another one for setup/firmware upload.
2200  *
2201  * This may only be called from main SPI device's probe routine.
2202  *
2203  * Return: 0 on success; negative errno on failure
2204  */
spi_new_ancillary_device(struct spi_device * spi,u8 chip_select)2205 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2206 					     u8 chip_select)
2207 {
2208 	struct spi_device *ancillary;
2209 	int rc = 0;
2210 
2211 	/* Alloc an spi_device */
2212 	ancillary = spi_alloc_device(spi->controller);
2213 	if (!ancillary) {
2214 		rc = -ENOMEM;
2215 		goto err_out;
2216 	}
2217 
2218 	strlcpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2219 
2220 	/* Use provided chip-select for ancillary device */
2221 	ancillary->chip_select = chip_select;
2222 
2223 	/* Take over SPI mode/speed from SPI main device */
2224 	ancillary->max_speed_hz = spi->max_speed_hz;
2225 	ancillary->mode = spi->mode;
2226 
2227 	/* Register the new device */
2228 	rc = spi_add_device_locked(ancillary);
2229 	if (rc) {
2230 		dev_err(&spi->dev, "failed to register ancillary device\n");
2231 		goto err_out;
2232 	}
2233 
2234 	return ancillary;
2235 
2236 err_out:
2237 	spi_dev_put(ancillary);
2238 	return ERR_PTR(rc);
2239 }
2240 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2241 
2242 #ifdef CONFIG_ACPI
2243 struct acpi_spi_lookup {
2244 	struct spi_controller 	*ctlr;
2245 	u32			max_speed_hz;
2246 	u32			mode;
2247 	int			irq;
2248 	u8			bits_per_word;
2249 	u8			chip_select;
2250 };
2251 
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2252 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2253 					    struct acpi_spi_lookup *lookup)
2254 {
2255 	const union acpi_object *obj;
2256 
2257 	if (!x86_apple_machine)
2258 		return;
2259 
2260 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2261 	    && obj->buffer.length >= 4)
2262 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2263 
2264 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2265 	    && obj->buffer.length == 8)
2266 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2267 
2268 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2269 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2270 		lookup->mode |= SPI_LSB_FIRST;
2271 
2272 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2273 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2274 		lookup->mode |= SPI_CPOL;
2275 
2276 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2277 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2278 		lookup->mode |= SPI_CPHA;
2279 }
2280 
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2281 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2282 {
2283 	struct acpi_spi_lookup *lookup = data;
2284 	struct spi_controller *ctlr = lookup->ctlr;
2285 
2286 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2287 		struct acpi_resource_spi_serialbus *sb;
2288 		acpi_handle parent_handle;
2289 		acpi_status status;
2290 
2291 		sb = &ares->data.spi_serial_bus;
2292 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2293 
2294 			status = acpi_get_handle(NULL,
2295 						 sb->resource_source.string_ptr,
2296 						 &parent_handle);
2297 
2298 			if (ACPI_FAILURE(status) ||
2299 			    ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2300 				return -ENODEV;
2301 
2302 			/*
2303 			 * ACPI DeviceSelection numbering is handled by the
2304 			 * host controller driver in Windows and can vary
2305 			 * from driver to driver. In Linux we always expect
2306 			 * 0 .. max - 1 so we need to ask the driver to
2307 			 * translate between the two schemes.
2308 			 */
2309 			if (ctlr->fw_translate_cs) {
2310 				int cs = ctlr->fw_translate_cs(ctlr,
2311 						sb->device_selection);
2312 				if (cs < 0)
2313 					return cs;
2314 				lookup->chip_select = cs;
2315 			} else {
2316 				lookup->chip_select = sb->device_selection;
2317 			}
2318 
2319 			lookup->max_speed_hz = sb->connection_speed;
2320 			lookup->bits_per_word = sb->data_bit_length;
2321 
2322 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2323 				lookup->mode |= SPI_CPHA;
2324 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2325 				lookup->mode |= SPI_CPOL;
2326 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2327 				lookup->mode |= SPI_CS_HIGH;
2328 		}
2329 	} else if (lookup->irq < 0) {
2330 		struct resource r;
2331 
2332 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2333 			lookup->irq = r.start;
2334 	}
2335 
2336 	/* Always tell the ACPI core to skip this resource */
2337 	return 1;
2338 }
2339 
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2340 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2341 					    struct acpi_device *adev)
2342 {
2343 	acpi_handle parent_handle = NULL;
2344 	struct list_head resource_list;
2345 	struct acpi_spi_lookup lookup = {};
2346 	struct spi_device *spi;
2347 	int ret;
2348 
2349 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2350 	    acpi_device_enumerated(adev))
2351 		return AE_OK;
2352 
2353 	lookup.ctlr		= ctlr;
2354 	lookup.irq		= -1;
2355 
2356 	INIT_LIST_HEAD(&resource_list);
2357 	ret = acpi_dev_get_resources(adev, &resource_list,
2358 				     acpi_spi_add_resource, &lookup);
2359 	acpi_dev_free_resource_list(&resource_list);
2360 
2361 	if (ret < 0)
2362 		/* found SPI in _CRS but it points to another controller */
2363 		return AE_OK;
2364 
2365 	if (!lookup.max_speed_hz &&
2366 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2367 	    ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2368 		/* Apple does not use _CRS but nested devices for SPI slaves */
2369 		acpi_spi_parse_apple_properties(adev, &lookup);
2370 	}
2371 
2372 	if (!lookup.max_speed_hz)
2373 		return AE_OK;
2374 
2375 	spi = spi_alloc_device(ctlr);
2376 	if (!spi) {
2377 		dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2378 			dev_name(&adev->dev));
2379 		return AE_NO_MEMORY;
2380 	}
2381 
2382 
2383 	ACPI_COMPANION_SET(&spi->dev, adev);
2384 	spi->max_speed_hz	= lookup.max_speed_hz;
2385 	spi->mode		|= lookup.mode;
2386 	spi->irq		= lookup.irq;
2387 	spi->bits_per_word	= lookup.bits_per_word;
2388 	spi->chip_select	= lookup.chip_select;
2389 
2390 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2391 			  sizeof(spi->modalias));
2392 
2393 	if (spi->irq < 0)
2394 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2395 
2396 	acpi_device_set_enumerated(adev);
2397 
2398 	adev->power.flags.ignore_parent = true;
2399 	if (spi_add_device(spi)) {
2400 		adev->power.flags.ignore_parent = false;
2401 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2402 			dev_name(&adev->dev));
2403 		spi_dev_put(spi);
2404 	}
2405 
2406 	return AE_OK;
2407 }
2408 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2409 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2410 				       void *data, void **return_value)
2411 {
2412 	struct spi_controller *ctlr = data;
2413 	struct acpi_device *adev;
2414 
2415 	if (acpi_bus_get_device(handle, &adev))
2416 		return AE_OK;
2417 
2418 	return acpi_register_spi_device(ctlr, adev);
2419 }
2420 
2421 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2422 
acpi_register_spi_devices(struct spi_controller * ctlr)2423 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2424 {
2425 	acpi_status status;
2426 	acpi_handle handle;
2427 
2428 	handle = ACPI_HANDLE(ctlr->dev.parent);
2429 	if (!handle)
2430 		return;
2431 
2432 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2433 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2434 				     acpi_spi_add_device, NULL, ctlr, NULL);
2435 	if (ACPI_FAILURE(status))
2436 		dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2437 }
2438 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2439 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2440 #endif /* CONFIG_ACPI */
2441 
spi_controller_release(struct device * dev)2442 static void spi_controller_release(struct device *dev)
2443 {
2444 	struct spi_controller *ctlr;
2445 
2446 	ctlr = container_of(dev, struct spi_controller, dev);
2447 	kfree(ctlr);
2448 }
2449 
2450 static struct class spi_master_class = {
2451 	.name		= "spi_master",
2452 	.owner		= THIS_MODULE,
2453 	.dev_release	= spi_controller_release,
2454 	.dev_groups	= spi_master_groups,
2455 };
2456 
2457 #ifdef CONFIG_SPI_SLAVE
2458 /**
2459  * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2460  *		     controller
2461  * @spi: device used for the current transfer
2462  */
spi_slave_abort(struct spi_device * spi)2463 int spi_slave_abort(struct spi_device *spi)
2464 {
2465 	struct spi_controller *ctlr = spi->controller;
2466 
2467 	if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2468 		return ctlr->slave_abort(ctlr);
2469 
2470 	return -ENOTSUPP;
2471 }
2472 EXPORT_SYMBOL_GPL(spi_slave_abort);
2473 
match_true(struct device * dev,void * data)2474 static int match_true(struct device *dev, void *data)
2475 {
2476 	return 1;
2477 }
2478 
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2479 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2480 			  char *buf)
2481 {
2482 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2483 						   dev);
2484 	struct device *child;
2485 
2486 	child = device_find_child(&ctlr->dev, NULL, match_true);
2487 	return sprintf(buf, "%s\n",
2488 		       child ? to_spi_device(child)->modalias : NULL);
2489 }
2490 
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2491 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2492 			   const char *buf, size_t count)
2493 {
2494 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2495 						   dev);
2496 	struct spi_device *spi;
2497 	struct device *child;
2498 	char name[32];
2499 	int rc;
2500 
2501 	rc = sscanf(buf, "%31s", name);
2502 	if (rc != 1 || !name[0])
2503 		return -EINVAL;
2504 
2505 	child = device_find_child(&ctlr->dev, NULL, match_true);
2506 	if (child) {
2507 		/* Remove registered slave */
2508 		device_unregister(child);
2509 		put_device(child);
2510 	}
2511 
2512 	if (strcmp(name, "(null)")) {
2513 		/* Register new slave */
2514 		spi = spi_alloc_device(ctlr);
2515 		if (!spi)
2516 			return -ENOMEM;
2517 
2518 		strlcpy(spi->modalias, name, sizeof(spi->modalias));
2519 
2520 		rc = spi_add_device(spi);
2521 		if (rc) {
2522 			spi_dev_put(spi);
2523 			return rc;
2524 		}
2525 	}
2526 
2527 	return count;
2528 }
2529 
2530 static DEVICE_ATTR_RW(slave);
2531 
2532 static struct attribute *spi_slave_attrs[] = {
2533 	&dev_attr_slave.attr,
2534 	NULL,
2535 };
2536 
2537 static const struct attribute_group spi_slave_group = {
2538 	.attrs = spi_slave_attrs,
2539 };
2540 
2541 static const struct attribute_group *spi_slave_groups[] = {
2542 	&spi_controller_statistics_group,
2543 	&spi_slave_group,
2544 	NULL,
2545 };
2546 
2547 static struct class spi_slave_class = {
2548 	.name		= "spi_slave",
2549 	.owner		= THIS_MODULE,
2550 	.dev_release	= spi_controller_release,
2551 	.dev_groups	= spi_slave_groups,
2552 };
2553 #else
2554 extern struct class spi_slave_class;	/* dummy */
2555 #endif
2556 
2557 /**
2558  * __spi_alloc_controller - allocate an SPI master or slave controller
2559  * @dev: the controller, possibly using the platform_bus
2560  * @size: how much zeroed driver-private data to allocate; the pointer to this
2561  *	memory is in the driver_data field of the returned device, accessible
2562  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
2563  *	drivers granting DMA access to portions of their private data need to
2564  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
2565  * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2566  *	slave (true) controller
2567  * Context: can sleep
2568  *
2569  * This call is used only by SPI controller drivers, which are the
2570  * only ones directly touching chip registers.  It's how they allocate
2571  * an spi_controller structure, prior to calling spi_register_controller().
2572  *
2573  * This must be called from context that can sleep.
2574  *
2575  * The caller is responsible for assigning the bus number and initializing the
2576  * controller's methods before calling spi_register_controller(); and (after
2577  * errors adding the device) calling spi_controller_put() to prevent a memory
2578  * leak.
2579  *
2580  * Return: the SPI controller structure on success, else NULL.
2581  */
__spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2582 struct spi_controller *__spi_alloc_controller(struct device *dev,
2583 					      unsigned int size, bool slave)
2584 {
2585 	struct spi_controller	*ctlr;
2586 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2587 
2588 	if (!dev)
2589 		return NULL;
2590 
2591 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2592 	if (!ctlr)
2593 		return NULL;
2594 
2595 	device_initialize(&ctlr->dev);
2596 	INIT_LIST_HEAD(&ctlr->queue);
2597 	spin_lock_init(&ctlr->queue_lock);
2598 	spin_lock_init(&ctlr->bus_lock_spinlock);
2599 	mutex_init(&ctlr->bus_lock_mutex);
2600 	mutex_init(&ctlr->io_mutex);
2601 	mutex_init(&ctlr->add_lock);
2602 	ctlr->bus_num = -1;
2603 	ctlr->num_chipselect = 1;
2604 	ctlr->slave = slave;
2605 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2606 		ctlr->dev.class = &spi_slave_class;
2607 	else
2608 		ctlr->dev.class = &spi_master_class;
2609 	ctlr->dev.parent = dev;
2610 	pm_suspend_ignore_children(&ctlr->dev, true);
2611 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2612 
2613 	return ctlr;
2614 }
2615 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2616 
devm_spi_release_controller(struct device * dev,void * ctlr)2617 static void devm_spi_release_controller(struct device *dev, void *ctlr)
2618 {
2619 	spi_controller_put(*(struct spi_controller **)ctlr);
2620 }
2621 
2622 /**
2623  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
2624  * @dev: physical device of SPI controller
2625  * @size: how much zeroed driver-private data to allocate
2626  * @slave: whether to allocate an SPI master (false) or SPI slave (true)
2627  * Context: can sleep
2628  *
2629  * Allocate an SPI controller and automatically release a reference on it
2630  * when @dev is unbound from its driver.  Drivers are thus relieved from
2631  * having to call spi_controller_put().
2632  *
2633  * The arguments to this function are identical to __spi_alloc_controller().
2634  *
2635  * Return: the SPI controller structure on success, else NULL.
2636  */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool slave)2637 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
2638 						   unsigned int size,
2639 						   bool slave)
2640 {
2641 	struct spi_controller **ptr, *ctlr;
2642 
2643 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
2644 			   GFP_KERNEL);
2645 	if (!ptr)
2646 		return NULL;
2647 
2648 	ctlr = __spi_alloc_controller(dev, size, slave);
2649 	if (ctlr) {
2650 		ctlr->devm_allocated = true;
2651 		*ptr = ctlr;
2652 		devres_add(dev, ptr);
2653 	} else {
2654 		devres_free(ptr);
2655 	}
2656 
2657 	return ctlr;
2658 }
2659 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
2660 
2661 #ifdef CONFIG_OF
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2662 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2663 {
2664 	int nb, i, *cs;
2665 	struct device_node *np = ctlr->dev.of_node;
2666 
2667 	if (!np)
2668 		return 0;
2669 
2670 	nb = of_gpio_named_count(np, "cs-gpios");
2671 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2672 
2673 	/* Return error only for an incorrectly formed cs-gpios property */
2674 	if (nb == 0 || nb == -ENOENT)
2675 		return 0;
2676 	else if (nb < 0)
2677 		return nb;
2678 
2679 	cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2680 			  GFP_KERNEL);
2681 	ctlr->cs_gpios = cs;
2682 
2683 	if (!ctlr->cs_gpios)
2684 		return -ENOMEM;
2685 
2686 	for (i = 0; i < ctlr->num_chipselect; i++)
2687 		cs[i] = -ENOENT;
2688 
2689 	for (i = 0; i < nb; i++)
2690 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2691 
2692 	return 0;
2693 }
2694 #else
of_spi_get_gpio_numbers(struct spi_controller * ctlr)2695 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2696 {
2697 	return 0;
2698 }
2699 #endif
2700 
2701 /**
2702  * spi_get_gpio_descs() - grab chip select GPIOs for the master
2703  * @ctlr: The SPI master to grab GPIO descriptors for
2704  */
spi_get_gpio_descs(struct spi_controller * ctlr)2705 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2706 {
2707 	int nb, i;
2708 	struct gpio_desc **cs;
2709 	struct device *dev = &ctlr->dev;
2710 	unsigned long native_cs_mask = 0;
2711 	unsigned int num_cs_gpios = 0;
2712 
2713 	nb = gpiod_count(dev, "cs");
2714 	if (nb < 0) {
2715 		/* No GPIOs at all is fine, else return the error */
2716 		if (nb == -ENOENT)
2717 			return 0;
2718 		return nb;
2719 	}
2720 
2721 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2722 
2723 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2724 			  GFP_KERNEL);
2725 	if (!cs)
2726 		return -ENOMEM;
2727 	ctlr->cs_gpiods = cs;
2728 
2729 	for (i = 0; i < nb; i++) {
2730 		/*
2731 		 * Most chipselects are active low, the inverted
2732 		 * semantics are handled by special quirks in gpiolib,
2733 		 * so initializing them GPIOD_OUT_LOW here means
2734 		 * "unasserted", in most cases this will drive the physical
2735 		 * line high.
2736 		 */
2737 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2738 						      GPIOD_OUT_LOW);
2739 		if (IS_ERR(cs[i]))
2740 			return PTR_ERR(cs[i]);
2741 
2742 		if (cs[i]) {
2743 			/*
2744 			 * If we find a CS GPIO, name it after the device and
2745 			 * chip select line.
2746 			 */
2747 			char *gpioname;
2748 
2749 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2750 						  dev_name(dev), i);
2751 			if (!gpioname)
2752 				return -ENOMEM;
2753 			gpiod_set_consumer_name(cs[i], gpioname);
2754 			num_cs_gpios++;
2755 			continue;
2756 		}
2757 
2758 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2759 			dev_err(dev, "Invalid native chip select %d\n", i);
2760 			return -EINVAL;
2761 		}
2762 		native_cs_mask |= BIT(i);
2763 	}
2764 
2765 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
2766 
2767 	if ((ctlr->flags & SPI_MASTER_GPIO_SS) && num_cs_gpios &&
2768 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
2769 		dev_err(dev, "No unused native chip select available\n");
2770 		return -EINVAL;
2771 	}
2772 
2773 	return 0;
2774 }
2775 
spi_controller_check_ops(struct spi_controller * ctlr)2776 static int spi_controller_check_ops(struct spi_controller *ctlr)
2777 {
2778 	/*
2779 	 * The controller may implement only the high-level SPI-memory like
2780 	 * operations if it does not support regular SPI transfers, and this is
2781 	 * valid use case.
2782 	 * If ->mem_ops is NULL, we request that at least one of the
2783 	 * ->transfer_xxx() method be implemented.
2784 	 */
2785 	if (ctlr->mem_ops) {
2786 		if (!ctlr->mem_ops->exec_op)
2787 			return -EINVAL;
2788 	} else if (!ctlr->transfer && !ctlr->transfer_one &&
2789 		   !ctlr->transfer_one_message) {
2790 		return -EINVAL;
2791 	}
2792 
2793 	return 0;
2794 }
2795 
2796 /**
2797  * spi_register_controller - register SPI master or slave controller
2798  * @ctlr: initialized master, originally from spi_alloc_master() or
2799  *	spi_alloc_slave()
2800  * Context: can sleep
2801  *
2802  * SPI controllers connect to their drivers using some non-SPI bus,
2803  * such as the platform bus.  The final stage of probe() in that code
2804  * includes calling spi_register_controller() to hook up to this SPI bus glue.
2805  *
2806  * SPI controllers use board specific (often SOC specific) bus numbers,
2807  * and board-specific addressing for SPI devices combines those numbers
2808  * with chip select numbers.  Since SPI does not directly support dynamic
2809  * device identification, boards need configuration tables telling which
2810  * chip is at which address.
2811  *
2812  * This must be called from context that can sleep.  It returns zero on
2813  * success, else a negative error code (dropping the controller's refcount).
2814  * After a successful return, the caller is responsible for calling
2815  * spi_unregister_controller().
2816  *
2817  * Return: zero on success, else a negative error code.
2818  */
spi_register_controller(struct spi_controller * ctlr)2819 int spi_register_controller(struct spi_controller *ctlr)
2820 {
2821 	struct device		*dev = ctlr->dev.parent;
2822 	struct boardinfo	*bi;
2823 	int			status;
2824 	int			id, first_dynamic;
2825 
2826 	if (!dev)
2827 		return -ENODEV;
2828 
2829 	/*
2830 	 * Make sure all necessary hooks are implemented before registering
2831 	 * the SPI controller.
2832 	 */
2833 	status = spi_controller_check_ops(ctlr);
2834 	if (status)
2835 		return status;
2836 
2837 	if (ctlr->bus_num >= 0) {
2838 		/* devices with a fixed bus num must check-in with the num */
2839 		mutex_lock(&board_lock);
2840 		id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2841 			ctlr->bus_num + 1, GFP_KERNEL);
2842 		mutex_unlock(&board_lock);
2843 		if (WARN(id < 0, "couldn't get idr"))
2844 			return id == -ENOSPC ? -EBUSY : id;
2845 		ctlr->bus_num = id;
2846 	} else if (ctlr->dev.of_node) {
2847 		/* allocate dynamic bus number using Linux idr */
2848 		id = of_alias_get_id(ctlr->dev.of_node, "spi");
2849 		if (id >= 0) {
2850 			ctlr->bus_num = id;
2851 			mutex_lock(&board_lock);
2852 			id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2853 				       ctlr->bus_num + 1, GFP_KERNEL);
2854 			mutex_unlock(&board_lock);
2855 			if (WARN(id < 0, "couldn't get idr"))
2856 				return id == -ENOSPC ? -EBUSY : id;
2857 		}
2858 	}
2859 	if (ctlr->bus_num < 0) {
2860 		first_dynamic = of_alias_get_highest_id("spi");
2861 		if (first_dynamic < 0)
2862 			first_dynamic = 0;
2863 		else
2864 			first_dynamic++;
2865 
2866 		mutex_lock(&board_lock);
2867 		id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2868 			       0, GFP_KERNEL);
2869 		mutex_unlock(&board_lock);
2870 		if (WARN(id < 0, "couldn't get idr"))
2871 			return id;
2872 		ctlr->bus_num = id;
2873 	}
2874 	ctlr->bus_lock_flag = 0;
2875 	init_completion(&ctlr->xfer_completion);
2876 	if (!ctlr->max_dma_len)
2877 		ctlr->max_dma_len = INT_MAX;
2878 
2879 	/* register the device, then userspace will see it.
2880 	 * registration fails if the bus ID is in use.
2881 	 */
2882 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2883 
2884 	if (!spi_controller_is_slave(ctlr)) {
2885 		if (ctlr->use_gpio_descriptors) {
2886 			status = spi_get_gpio_descs(ctlr);
2887 			if (status)
2888 				goto free_bus_id;
2889 			/*
2890 			 * A controller using GPIO descriptors always
2891 			 * supports SPI_CS_HIGH if need be.
2892 			 */
2893 			ctlr->mode_bits |= SPI_CS_HIGH;
2894 		} else {
2895 			/* Legacy code path for GPIOs from DT */
2896 			status = of_spi_get_gpio_numbers(ctlr);
2897 			if (status)
2898 				goto free_bus_id;
2899 		}
2900 	}
2901 
2902 	/*
2903 	 * Even if it's just one always-selected device, there must
2904 	 * be at least one chipselect.
2905 	 */
2906 	if (!ctlr->num_chipselect) {
2907 		status = -EINVAL;
2908 		goto free_bus_id;
2909 	}
2910 
2911 	status = device_add(&ctlr->dev);
2912 	if (status < 0)
2913 		goto free_bus_id;
2914 	dev_dbg(dev, "registered %s %s\n",
2915 			spi_controller_is_slave(ctlr) ? "slave" : "master",
2916 			dev_name(&ctlr->dev));
2917 
2918 	/*
2919 	 * If we're using a queued driver, start the queue. Note that we don't
2920 	 * need the queueing logic if the driver is only supporting high-level
2921 	 * memory operations.
2922 	 */
2923 	if (ctlr->transfer) {
2924 		dev_info(dev, "controller is unqueued, this is deprecated\n");
2925 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2926 		status = spi_controller_initialize_queue(ctlr);
2927 		if (status) {
2928 			device_del(&ctlr->dev);
2929 			goto free_bus_id;
2930 		}
2931 	}
2932 	/* add statistics */
2933 	spin_lock_init(&ctlr->statistics.lock);
2934 
2935 	mutex_lock(&board_lock);
2936 	list_add_tail(&ctlr->list, &spi_controller_list);
2937 	list_for_each_entry(bi, &board_list, list)
2938 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2939 	mutex_unlock(&board_lock);
2940 
2941 	/* Register devices from the device tree and ACPI */
2942 	of_register_spi_devices(ctlr);
2943 	acpi_register_spi_devices(ctlr);
2944 	return status;
2945 
2946 free_bus_id:
2947 	mutex_lock(&board_lock);
2948 	idr_remove(&spi_master_idr, ctlr->bus_num);
2949 	mutex_unlock(&board_lock);
2950 	return status;
2951 }
2952 EXPORT_SYMBOL_GPL(spi_register_controller);
2953 
devm_spi_unregister(struct device * dev,void * res)2954 static void devm_spi_unregister(struct device *dev, void *res)
2955 {
2956 	spi_unregister_controller(*(struct spi_controller **)res);
2957 }
2958 
2959 /**
2960  * devm_spi_register_controller - register managed SPI master or slave
2961  *	controller
2962  * @dev:    device managing SPI controller
2963  * @ctlr: initialized controller, originally from spi_alloc_master() or
2964  *	spi_alloc_slave()
2965  * Context: can sleep
2966  *
2967  * Register a SPI device as with spi_register_controller() which will
2968  * automatically be unregistered and freed.
2969  *
2970  * Return: zero on success, else a negative error code.
2971  */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)2972 int devm_spi_register_controller(struct device *dev,
2973 				 struct spi_controller *ctlr)
2974 {
2975 	struct spi_controller **ptr;
2976 	int ret;
2977 
2978 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2979 	if (!ptr)
2980 		return -ENOMEM;
2981 
2982 	ret = spi_register_controller(ctlr);
2983 	if (!ret) {
2984 		*ptr = ctlr;
2985 		devres_add(dev, ptr);
2986 	} else {
2987 		devres_free(ptr);
2988 	}
2989 
2990 	return ret;
2991 }
2992 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2993 
__unregister(struct device * dev,void * null)2994 static int __unregister(struct device *dev, void *null)
2995 {
2996 	spi_unregister_device(to_spi_device(dev));
2997 	return 0;
2998 }
2999 
3000 /**
3001  * spi_unregister_controller - unregister SPI master or slave controller
3002  * @ctlr: the controller being unregistered
3003  * Context: can sleep
3004  *
3005  * This call is used only by SPI controller drivers, which are the
3006  * only ones directly touching chip registers.
3007  *
3008  * This must be called from context that can sleep.
3009  *
3010  * Note that this function also drops a reference to the controller.
3011  */
spi_unregister_controller(struct spi_controller * ctlr)3012 void spi_unregister_controller(struct spi_controller *ctlr)
3013 {
3014 	struct spi_controller *found;
3015 	int id = ctlr->bus_num;
3016 
3017 	/* Prevent addition of new devices, unregister existing ones */
3018 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3019 		mutex_lock(&ctlr->add_lock);
3020 
3021 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3022 
3023 	/* First make sure that this controller was ever added */
3024 	mutex_lock(&board_lock);
3025 	found = idr_find(&spi_master_idr, id);
3026 	mutex_unlock(&board_lock);
3027 	if (ctlr->queued) {
3028 		if (spi_destroy_queue(ctlr))
3029 			dev_err(&ctlr->dev, "queue remove failed\n");
3030 	}
3031 	mutex_lock(&board_lock);
3032 	list_del(&ctlr->list);
3033 	mutex_unlock(&board_lock);
3034 
3035 	device_del(&ctlr->dev);
3036 
3037 	/* free bus id */
3038 	mutex_lock(&board_lock);
3039 	if (found == ctlr)
3040 		idr_remove(&spi_master_idr, id);
3041 	mutex_unlock(&board_lock);
3042 
3043 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3044 		mutex_unlock(&ctlr->add_lock);
3045 
3046 	/* Release the last reference on the controller if its driver
3047 	 * has not yet been converted to devm_spi_alloc_master/slave().
3048 	 */
3049 	if (!ctlr->devm_allocated)
3050 		put_device(&ctlr->dev);
3051 }
3052 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3053 
spi_controller_suspend(struct spi_controller * ctlr)3054 int spi_controller_suspend(struct spi_controller *ctlr)
3055 {
3056 	int ret;
3057 
3058 	/* Basically no-ops for non-queued controllers */
3059 	if (!ctlr->queued)
3060 		return 0;
3061 
3062 	ret = spi_stop_queue(ctlr);
3063 	if (ret)
3064 		dev_err(&ctlr->dev, "queue stop failed\n");
3065 
3066 	return ret;
3067 }
3068 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3069 
spi_controller_resume(struct spi_controller * ctlr)3070 int spi_controller_resume(struct spi_controller *ctlr)
3071 {
3072 	int ret;
3073 
3074 	if (!ctlr->queued)
3075 		return 0;
3076 
3077 	ret = spi_start_queue(ctlr);
3078 	if (ret)
3079 		dev_err(&ctlr->dev, "queue restart failed\n");
3080 
3081 	return ret;
3082 }
3083 EXPORT_SYMBOL_GPL(spi_controller_resume);
3084 
__spi_controller_match(struct device * dev,const void * data)3085 static int __spi_controller_match(struct device *dev, const void *data)
3086 {
3087 	struct spi_controller *ctlr;
3088 	const u16 *bus_num = data;
3089 
3090 	ctlr = container_of(dev, struct spi_controller, dev);
3091 	return ctlr->bus_num == *bus_num;
3092 }
3093 
3094 /**
3095  * spi_busnum_to_master - look up master associated with bus_num
3096  * @bus_num: the master's bus number
3097  * Context: can sleep
3098  *
3099  * This call may be used with devices that are registered after
3100  * arch init time.  It returns a refcounted pointer to the relevant
3101  * spi_controller (which the caller must release), or NULL if there is
3102  * no such master registered.
3103  *
3104  * Return: the SPI master structure on success, else NULL.
3105  */
spi_busnum_to_master(u16 bus_num)3106 struct spi_controller *spi_busnum_to_master(u16 bus_num)
3107 {
3108 	struct device		*dev;
3109 	struct spi_controller	*ctlr = NULL;
3110 
3111 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
3112 				__spi_controller_match);
3113 	if (dev)
3114 		ctlr = container_of(dev, struct spi_controller, dev);
3115 	/* reference got in class_find_device */
3116 	return ctlr;
3117 }
3118 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
3119 
3120 /*-------------------------------------------------------------------------*/
3121 
3122 /* Core methods for SPI resource management */
3123 
3124 /**
3125  * spi_res_alloc - allocate a spi resource that is life-cycle managed
3126  *                 during the processing of a spi_message while using
3127  *                 spi_transfer_one
3128  * @spi:     the spi device for which we allocate memory
3129  * @release: the release code to execute for this resource
3130  * @size:    size to alloc and return
3131  * @gfp:     GFP allocation flags
3132  *
3133  * Return: the pointer to the allocated data
3134  *
3135  * This may get enhanced in the future to allocate from a memory pool
3136  * of the @spi_device or @spi_controller to avoid repeated allocations.
3137  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)3138 void *spi_res_alloc(struct spi_device *spi,
3139 		    spi_res_release_t release,
3140 		    size_t size, gfp_t gfp)
3141 {
3142 	struct spi_res *sres;
3143 
3144 	sres = kzalloc(sizeof(*sres) + size, gfp);
3145 	if (!sres)
3146 		return NULL;
3147 
3148 	INIT_LIST_HEAD(&sres->entry);
3149 	sres->release = release;
3150 
3151 	return sres->data;
3152 }
3153 EXPORT_SYMBOL_GPL(spi_res_alloc);
3154 
3155 /**
3156  * spi_res_free - free an spi resource
3157  * @res: pointer to the custom data of a resource
3158  *
3159  */
spi_res_free(void * res)3160 void spi_res_free(void *res)
3161 {
3162 	struct spi_res *sres = container_of(res, struct spi_res, data);
3163 
3164 	if (!res)
3165 		return;
3166 
3167 	WARN_ON(!list_empty(&sres->entry));
3168 	kfree(sres);
3169 }
3170 EXPORT_SYMBOL_GPL(spi_res_free);
3171 
3172 /**
3173  * spi_res_add - add a spi_res to the spi_message
3174  * @message: the spi message
3175  * @res:     the spi_resource
3176  */
spi_res_add(struct spi_message * message,void * res)3177 void spi_res_add(struct spi_message *message, void *res)
3178 {
3179 	struct spi_res *sres = container_of(res, struct spi_res, data);
3180 
3181 	WARN_ON(!list_empty(&sres->entry));
3182 	list_add_tail(&sres->entry, &message->resources);
3183 }
3184 EXPORT_SYMBOL_GPL(spi_res_add);
3185 
3186 /**
3187  * spi_res_release - release all spi resources for this message
3188  * @ctlr:  the @spi_controller
3189  * @message: the @spi_message
3190  */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)3191 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
3192 {
3193 	struct spi_res *res, *tmp;
3194 
3195 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
3196 		if (res->release)
3197 			res->release(ctlr, message, res->data);
3198 
3199 		list_del(&res->entry);
3200 
3201 		kfree(res);
3202 	}
3203 }
3204 EXPORT_SYMBOL_GPL(spi_res_release);
3205 
3206 /*-------------------------------------------------------------------------*/
3207 
3208 /* Core methods for spi_message alterations */
3209 
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3210 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3211 					    struct spi_message *msg,
3212 					    void *res)
3213 {
3214 	struct spi_replaced_transfers *rxfer = res;
3215 	size_t i;
3216 
3217 	/* call extra callback if requested */
3218 	if (rxfer->release)
3219 		rxfer->release(ctlr, msg, res);
3220 
3221 	/* insert replaced transfers back into the message */
3222 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3223 
3224 	/* remove the formerly inserted entries */
3225 	for (i = 0; i < rxfer->inserted; i++)
3226 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3227 }
3228 
3229 /**
3230  * spi_replace_transfers - replace transfers with several transfers
3231  *                         and register change with spi_message.resources
3232  * @msg:           the spi_message we work upon
3233  * @xfer_first:    the first spi_transfer we want to replace
3234  * @remove:        number of transfers to remove
3235  * @insert:        the number of transfers we want to insert instead
3236  * @release:       extra release code necessary in some circumstances
3237  * @extradatasize: extra data to allocate (with alignment guarantees
3238  *                 of struct @spi_transfer)
3239  * @gfp:           gfp flags
3240  *
3241  * Returns: pointer to @spi_replaced_transfers,
3242  *          PTR_ERR(...) in case of errors.
3243  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3244 struct spi_replaced_transfers *spi_replace_transfers(
3245 	struct spi_message *msg,
3246 	struct spi_transfer *xfer_first,
3247 	size_t remove,
3248 	size_t insert,
3249 	spi_replaced_release_t release,
3250 	size_t extradatasize,
3251 	gfp_t gfp)
3252 {
3253 	struct spi_replaced_transfers *rxfer;
3254 	struct spi_transfer *xfer;
3255 	size_t i;
3256 
3257 	/* allocate the structure using spi_res */
3258 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3259 			      struct_size(rxfer, inserted_transfers, insert)
3260 			      + extradatasize,
3261 			      gfp);
3262 	if (!rxfer)
3263 		return ERR_PTR(-ENOMEM);
3264 
3265 	/* the release code to invoke before running the generic release */
3266 	rxfer->release = release;
3267 
3268 	/* assign extradata */
3269 	if (extradatasize)
3270 		rxfer->extradata =
3271 			&rxfer->inserted_transfers[insert];
3272 
3273 	/* init the replaced_transfers list */
3274 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3275 
3276 	/* assign the list_entry after which we should reinsert
3277 	 * the @replaced_transfers - it may be spi_message.messages!
3278 	 */
3279 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3280 
3281 	/* remove the requested number of transfers */
3282 	for (i = 0; i < remove; i++) {
3283 		/* if the entry after replaced_after it is msg->transfers
3284 		 * then we have been requested to remove more transfers
3285 		 * than are in the list
3286 		 */
3287 		if (rxfer->replaced_after->next == &msg->transfers) {
3288 			dev_err(&msg->spi->dev,
3289 				"requested to remove more spi_transfers than are available\n");
3290 			/* insert replaced transfers back into the message */
3291 			list_splice(&rxfer->replaced_transfers,
3292 				    rxfer->replaced_after);
3293 
3294 			/* free the spi_replace_transfer structure */
3295 			spi_res_free(rxfer);
3296 
3297 			/* and return with an error */
3298 			return ERR_PTR(-EINVAL);
3299 		}
3300 
3301 		/* remove the entry after replaced_after from list of
3302 		 * transfers and add it to list of replaced_transfers
3303 		 */
3304 		list_move_tail(rxfer->replaced_after->next,
3305 			       &rxfer->replaced_transfers);
3306 	}
3307 
3308 	/* create copy of the given xfer with identical settings
3309 	 * based on the first transfer to get removed
3310 	 */
3311 	for (i = 0; i < insert; i++) {
3312 		/* we need to run in reverse order */
3313 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3314 
3315 		/* copy all spi_transfer data */
3316 		memcpy(xfer, xfer_first, sizeof(*xfer));
3317 
3318 		/* add to list */
3319 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3320 
3321 		/* clear cs_change and delay for all but the last */
3322 		if (i) {
3323 			xfer->cs_change = false;
3324 			xfer->delay.value = 0;
3325 		}
3326 	}
3327 
3328 	/* set up inserted */
3329 	rxfer->inserted = insert;
3330 
3331 	/* and register it with spi_res/spi_message */
3332 	spi_res_add(msg, rxfer);
3333 
3334 	return rxfer;
3335 }
3336 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3337 
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize,gfp_t gfp)3338 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3339 					struct spi_message *msg,
3340 					struct spi_transfer **xferp,
3341 					size_t maxsize,
3342 					gfp_t gfp)
3343 {
3344 	struct spi_transfer *xfer = *xferp, *xfers;
3345 	struct spi_replaced_transfers *srt;
3346 	size_t offset;
3347 	size_t count, i;
3348 
3349 	/* calculate how many we have to replace */
3350 	count = DIV_ROUND_UP(xfer->len, maxsize);
3351 
3352 	/* create replacement */
3353 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3354 	if (IS_ERR(srt))
3355 		return PTR_ERR(srt);
3356 	xfers = srt->inserted_transfers;
3357 
3358 	/* now handle each of those newly inserted spi_transfers
3359 	 * note that the replacements spi_transfers all are preset
3360 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3361 	 * are all identical (as well as most others)
3362 	 * so we just have to fix up len and the pointers.
3363 	 *
3364 	 * this also includes support for the depreciated
3365 	 * spi_message.is_dma_mapped interface
3366 	 */
3367 
3368 	/* the first transfer just needs the length modified, so we
3369 	 * run it outside the loop
3370 	 */
3371 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3372 
3373 	/* all the others need rx_buf/tx_buf also set */
3374 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3375 		/* update rx_buf, tx_buf and dma */
3376 		if (xfers[i].rx_buf)
3377 			xfers[i].rx_buf += offset;
3378 		if (xfers[i].rx_dma)
3379 			xfers[i].rx_dma += offset;
3380 		if (xfers[i].tx_buf)
3381 			xfers[i].tx_buf += offset;
3382 		if (xfers[i].tx_dma)
3383 			xfers[i].tx_dma += offset;
3384 
3385 		/* update length */
3386 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3387 	}
3388 
3389 	/* we set up xferp to the last entry we have inserted,
3390 	 * so that we skip those already split transfers
3391 	 */
3392 	*xferp = &xfers[count - 1];
3393 
3394 	/* increment statistics counters */
3395 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3396 				       transfers_split_maxsize);
3397 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3398 				       transfers_split_maxsize);
3399 
3400 	return 0;
3401 }
3402 
3403 /**
3404  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3405  *                               when an individual transfer exceeds a
3406  *                               certain size
3407  * @ctlr:    the @spi_controller for this transfer
3408  * @msg:   the @spi_message to transform
3409  * @maxsize:  the maximum when to apply this
3410  * @gfp: GFP allocation flags
3411  *
3412  * Return: status of transformation
3413  */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize,gfp_t gfp)3414 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3415 				struct spi_message *msg,
3416 				size_t maxsize,
3417 				gfp_t gfp)
3418 {
3419 	struct spi_transfer *xfer;
3420 	int ret;
3421 
3422 	/* iterate over the transfer_list,
3423 	 * but note that xfer is advanced to the last transfer inserted
3424 	 * to avoid checking sizes again unnecessarily (also xfer does
3425 	 * potentiall belong to a different list by the time the
3426 	 * replacement has happened
3427 	 */
3428 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3429 		if (xfer->len > maxsize) {
3430 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3431 							   maxsize, gfp);
3432 			if (ret)
3433 				return ret;
3434 		}
3435 	}
3436 
3437 	return 0;
3438 }
3439 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3440 
3441 /*-------------------------------------------------------------------------*/
3442 
3443 /* Core methods for SPI controller protocol drivers.  Some of the
3444  * other core methods are currently defined as inline functions.
3445  */
3446 
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3447 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3448 					u8 bits_per_word)
3449 {
3450 	if (ctlr->bits_per_word_mask) {
3451 		/* Only 32 bits fit in the mask */
3452 		if (bits_per_word > 32)
3453 			return -EINVAL;
3454 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3455 			return -EINVAL;
3456 	}
3457 
3458 	return 0;
3459 }
3460 
3461 /**
3462  * spi_setup - setup SPI mode and clock rate
3463  * @spi: the device whose settings are being modified
3464  * Context: can sleep, and no requests are queued to the device
3465  *
3466  * SPI protocol drivers may need to update the transfer mode if the
3467  * device doesn't work with its default.  They may likewise need
3468  * to update clock rates or word sizes from initial values.  This function
3469  * changes those settings, and must be called from a context that can sleep.
3470  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3471  * effect the next time the device is selected and data is transferred to
3472  * or from it.  When this function returns, the spi device is deselected.
3473  *
3474  * Note that this call will fail if the protocol driver specifies an option
3475  * that the underlying controller or its driver does not support.  For
3476  * example, not all hardware supports wire transfers using nine bit words,
3477  * LSB-first wire encoding, or active-high chipselects.
3478  *
3479  * Return: zero on success, else a negative error code.
3480  */
spi_setup(struct spi_device * spi)3481 int spi_setup(struct spi_device *spi)
3482 {
3483 	unsigned	bad_bits, ugly_bits;
3484 	int		status;
3485 
3486 	/*
3487 	 * check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3488 	 * are set at the same time
3489 	 */
3490 	if ((hweight_long(spi->mode &
3491 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3492 	    (hweight_long(spi->mode &
3493 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3494 		dev_err(&spi->dev,
3495 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3496 		return -EINVAL;
3497 	}
3498 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3499 	 */
3500 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3501 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3502 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3503 		return -EINVAL;
3504 	/* help drivers fail *cleanly* when they need options
3505 	 * that aren't supported with their current controller
3506 	 * SPI_CS_WORD has a fallback software implementation,
3507 	 * so it is ignored here.
3508 	 */
3509 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3510 				 SPI_NO_TX | SPI_NO_RX);
3511 	/* nothing prevents from working with active-high CS in case if it
3512 	 * is driven by GPIO.
3513 	 */
3514 	if (gpio_is_valid(spi->cs_gpio))
3515 		bad_bits &= ~SPI_CS_HIGH;
3516 	ugly_bits = bad_bits &
3517 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3518 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3519 	if (ugly_bits) {
3520 		dev_warn(&spi->dev,
3521 			 "setup: ignoring unsupported mode bits %x\n",
3522 			 ugly_bits);
3523 		spi->mode &= ~ugly_bits;
3524 		bad_bits &= ~ugly_bits;
3525 	}
3526 	if (bad_bits) {
3527 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3528 			bad_bits);
3529 		return -EINVAL;
3530 	}
3531 
3532 	if (!spi->bits_per_word)
3533 		spi->bits_per_word = 8;
3534 
3535 	status = __spi_validate_bits_per_word(spi->controller,
3536 					      spi->bits_per_word);
3537 	if (status)
3538 		return status;
3539 
3540 	if (spi->controller->max_speed_hz &&
3541 	    (!spi->max_speed_hz ||
3542 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3543 		spi->max_speed_hz = spi->controller->max_speed_hz;
3544 
3545 	mutex_lock(&spi->controller->io_mutex);
3546 
3547 	if (spi->controller->setup) {
3548 		status = spi->controller->setup(spi);
3549 		if (status) {
3550 			mutex_unlock(&spi->controller->io_mutex);
3551 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3552 				status);
3553 			return status;
3554 		}
3555 	}
3556 
3557 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3558 		status = pm_runtime_get_sync(spi->controller->dev.parent);
3559 		if (status < 0) {
3560 			mutex_unlock(&spi->controller->io_mutex);
3561 			pm_runtime_put_noidle(spi->controller->dev.parent);
3562 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3563 				status);
3564 			return status;
3565 		}
3566 
3567 		/*
3568 		 * We do not want to return positive value from pm_runtime_get,
3569 		 * there are many instances of devices calling spi_setup() and
3570 		 * checking for a non-zero return value instead of a negative
3571 		 * return value.
3572 		 */
3573 		status = 0;
3574 
3575 		spi_set_cs(spi, false, true);
3576 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3577 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3578 	} else {
3579 		spi_set_cs(spi, false, true);
3580 	}
3581 
3582 	mutex_unlock(&spi->controller->io_mutex);
3583 
3584 	if (spi->rt && !spi->controller->rt) {
3585 		spi->controller->rt = true;
3586 		spi_set_thread_rt(spi->controller);
3587 	}
3588 
3589 	trace_spi_setup(spi, status);
3590 
3591 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3592 			spi->mode & SPI_MODE_X_MASK,
3593 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3594 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3595 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
3596 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
3597 			spi->bits_per_word, spi->max_speed_hz,
3598 			status);
3599 
3600 	return status;
3601 }
3602 EXPORT_SYMBOL_GPL(spi_setup);
3603 
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)3604 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3605 				       struct spi_device *spi)
3606 {
3607 	int delay1, delay2;
3608 
3609 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3610 	if (delay1 < 0)
3611 		return delay1;
3612 
3613 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3614 	if (delay2 < 0)
3615 		return delay2;
3616 
3617 	if (delay1 < delay2)
3618 		memcpy(&xfer->word_delay, &spi->word_delay,
3619 		       sizeof(xfer->word_delay));
3620 
3621 	return 0;
3622 }
3623 
__spi_validate(struct spi_device * spi,struct spi_message * message)3624 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3625 {
3626 	struct spi_controller *ctlr = spi->controller;
3627 	struct spi_transfer *xfer;
3628 	int w_size;
3629 
3630 	if (list_empty(&message->transfers))
3631 		return -EINVAL;
3632 
3633 	/* If an SPI controller does not support toggling the CS line on each
3634 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3635 	 * for the CS line, we can emulate the CS-per-word hardware function by
3636 	 * splitting transfers into one-word transfers and ensuring that
3637 	 * cs_change is set for each transfer.
3638 	 */
3639 	if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3640 					  spi->cs_gpiod ||
3641 					  gpio_is_valid(spi->cs_gpio))) {
3642 		size_t maxsize;
3643 		int ret;
3644 
3645 		maxsize = (spi->bits_per_word + 7) / 8;
3646 
3647 		/* spi_split_transfers_maxsize() requires message->spi */
3648 		message->spi = spi;
3649 
3650 		ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3651 						  GFP_KERNEL);
3652 		if (ret)
3653 			return ret;
3654 
3655 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3656 			/* don't change cs_change on the last entry in the list */
3657 			if (list_is_last(&xfer->transfer_list, &message->transfers))
3658 				break;
3659 			xfer->cs_change = 1;
3660 		}
3661 	}
3662 
3663 	/* Half-duplex links include original MicroWire, and ones with
3664 	 * only one data pin like SPI_3WIRE (switches direction) or where
3665 	 * either MOSI or MISO is missing.  They can also be caused by
3666 	 * software limitations.
3667 	 */
3668 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3669 	    (spi->mode & SPI_3WIRE)) {
3670 		unsigned flags = ctlr->flags;
3671 
3672 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3673 			if (xfer->rx_buf && xfer->tx_buf)
3674 				return -EINVAL;
3675 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3676 				return -EINVAL;
3677 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3678 				return -EINVAL;
3679 		}
3680 	}
3681 
3682 	/**
3683 	 * Set transfer bits_per_word and max speed as spi device default if
3684 	 * it is not set for this transfer.
3685 	 * Set transfer tx_nbits and rx_nbits as single transfer default
3686 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3687 	 * Ensure transfer word_delay is at least as long as that required by
3688 	 * device itself.
3689 	 */
3690 	message->frame_length = 0;
3691 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
3692 		xfer->effective_speed_hz = 0;
3693 		message->frame_length += xfer->len;
3694 		if (!xfer->bits_per_word)
3695 			xfer->bits_per_word = spi->bits_per_word;
3696 
3697 		if (!xfer->speed_hz)
3698 			xfer->speed_hz = spi->max_speed_hz;
3699 
3700 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3701 			xfer->speed_hz = ctlr->max_speed_hz;
3702 
3703 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3704 			return -EINVAL;
3705 
3706 		/*
3707 		 * SPI transfer length should be multiple of SPI word size
3708 		 * where SPI word size should be power-of-two multiple
3709 		 */
3710 		if (xfer->bits_per_word <= 8)
3711 			w_size = 1;
3712 		else if (xfer->bits_per_word <= 16)
3713 			w_size = 2;
3714 		else
3715 			w_size = 4;
3716 
3717 		/* No partial transfers accepted */
3718 		if (xfer->len % w_size)
3719 			return -EINVAL;
3720 
3721 		if (xfer->speed_hz && ctlr->min_speed_hz &&
3722 		    xfer->speed_hz < ctlr->min_speed_hz)
3723 			return -EINVAL;
3724 
3725 		if (xfer->tx_buf && !xfer->tx_nbits)
3726 			xfer->tx_nbits = SPI_NBITS_SINGLE;
3727 		if (xfer->rx_buf && !xfer->rx_nbits)
3728 			xfer->rx_nbits = SPI_NBITS_SINGLE;
3729 		/* check transfer tx/rx_nbits:
3730 		 * 1. check the value matches one of single, dual and quad
3731 		 * 2. check tx/rx_nbits match the mode in spi_device
3732 		 */
3733 		if (xfer->tx_buf) {
3734 			if (spi->mode & SPI_NO_TX)
3735 				return -EINVAL;
3736 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3737 				xfer->tx_nbits != SPI_NBITS_DUAL &&
3738 				xfer->tx_nbits != SPI_NBITS_QUAD)
3739 				return -EINVAL;
3740 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3741 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3742 				return -EINVAL;
3743 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3744 				!(spi->mode & SPI_TX_QUAD))
3745 				return -EINVAL;
3746 		}
3747 		/* check transfer rx_nbits */
3748 		if (xfer->rx_buf) {
3749 			if (spi->mode & SPI_NO_RX)
3750 				return -EINVAL;
3751 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3752 				xfer->rx_nbits != SPI_NBITS_DUAL &&
3753 				xfer->rx_nbits != SPI_NBITS_QUAD)
3754 				return -EINVAL;
3755 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3756 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3757 				return -EINVAL;
3758 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3759 				!(spi->mode & SPI_RX_QUAD))
3760 				return -EINVAL;
3761 		}
3762 
3763 		if (_spi_xfer_word_delay_update(xfer, spi))
3764 			return -EINVAL;
3765 	}
3766 
3767 	message->status = -EINPROGRESS;
3768 
3769 	return 0;
3770 }
3771 
__spi_async(struct spi_device * spi,struct spi_message * message)3772 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3773 {
3774 	struct spi_controller *ctlr = spi->controller;
3775 	struct spi_transfer *xfer;
3776 
3777 	/*
3778 	 * Some controllers do not support doing regular SPI transfers. Return
3779 	 * ENOTSUPP when this is the case.
3780 	 */
3781 	if (!ctlr->transfer)
3782 		return -ENOTSUPP;
3783 
3784 	message->spi = spi;
3785 
3786 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3787 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3788 
3789 	trace_spi_message_submit(message);
3790 
3791 	if (!ctlr->ptp_sts_supported) {
3792 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
3793 			xfer->ptp_sts_word_pre = 0;
3794 			ptp_read_system_prets(xfer->ptp_sts);
3795 		}
3796 	}
3797 
3798 	return ctlr->transfer(spi, message);
3799 }
3800 
3801 /**
3802  * spi_async - asynchronous SPI transfer
3803  * @spi: device with which data will be exchanged
3804  * @message: describes the data transfers, including completion callback
3805  * Context: any (irqs may be blocked, etc)
3806  *
3807  * This call may be used in_irq and other contexts which can't sleep,
3808  * as well as from task contexts which can sleep.
3809  *
3810  * The completion callback is invoked in a context which can't sleep.
3811  * Before that invocation, the value of message->status is undefined.
3812  * When the callback is issued, message->status holds either zero (to
3813  * indicate complete success) or a negative error code.  After that
3814  * callback returns, the driver which issued the transfer request may
3815  * deallocate the associated memory; it's no longer in use by any SPI
3816  * core or controller driver code.
3817  *
3818  * Note that although all messages to a spi_device are handled in
3819  * FIFO order, messages may go to different devices in other orders.
3820  * Some device might be higher priority, or have various "hard" access
3821  * time requirements, for example.
3822  *
3823  * On detection of any fault during the transfer, processing of
3824  * the entire message is aborted, and the device is deselected.
3825  * Until returning from the associated message completion callback,
3826  * no other spi_message queued to that device will be processed.
3827  * (This rule applies equally to all the synchronous transfer calls,
3828  * which are wrappers around this core asynchronous primitive.)
3829  *
3830  * Return: zero on success, else a negative error code.
3831  */
spi_async(struct spi_device * spi,struct spi_message * message)3832 int spi_async(struct spi_device *spi, struct spi_message *message)
3833 {
3834 	struct spi_controller *ctlr = spi->controller;
3835 	int ret;
3836 	unsigned long flags;
3837 
3838 	ret = __spi_validate(spi, message);
3839 	if (ret != 0)
3840 		return ret;
3841 
3842 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3843 
3844 	if (ctlr->bus_lock_flag)
3845 		ret = -EBUSY;
3846 	else
3847 		ret = __spi_async(spi, message);
3848 
3849 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3850 
3851 	return ret;
3852 }
3853 EXPORT_SYMBOL_GPL(spi_async);
3854 
3855 /**
3856  * spi_async_locked - version of spi_async with exclusive bus usage
3857  * @spi: device with which data will be exchanged
3858  * @message: describes the data transfers, including completion callback
3859  * Context: any (irqs may be blocked, etc)
3860  *
3861  * This call may be used in_irq and other contexts which can't sleep,
3862  * as well as from task contexts which can sleep.
3863  *
3864  * The completion callback is invoked in a context which can't sleep.
3865  * Before that invocation, the value of message->status is undefined.
3866  * When the callback is issued, message->status holds either zero (to
3867  * indicate complete success) or a negative error code.  After that
3868  * callback returns, the driver which issued the transfer request may
3869  * deallocate the associated memory; it's no longer in use by any SPI
3870  * core or controller driver code.
3871  *
3872  * Note that although all messages to a spi_device are handled in
3873  * FIFO order, messages may go to different devices in other orders.
3874  * Some device might be higher priority, or have various "hard" access
3875  * time requirements, for example.
3876  *
3877  * On detection of any fault during the transfer, processing of
3878  * the entire message is aborted, and the device is deselected.
3879  * Until returning from the associated message completion callback,
3880  * no other spi_message queued to that device will be processed.
3881  * (This rule applies equally to all the synchronous transfer calls,
3882  * which are wrappers around this core asynchronous primitive.)
3883  *
3884  * Return: zero on success, else a negative error code.
3885  */
spi_async_locked(struct spi_device * spi,struct spi_message * message)3886 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3887 {
3888 	struct spi_controller *ctlr = spi->controller;
3889 	int ret;
3890 	unsigned long flags;
3891 
3892 	ret = __spi_validate(spi, message);
3893 	if (ret != 0)
3894 		return ret;
3895 
3896 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3897 
3898 	ret = __spi_async(spi, message);
3899 
3900 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3901 
3902 	return ret;
3903 
3904 }
3905 EXPORT_SYMBOL_GPL(spi_async_locked);
3906 
3907 /*-------------------------------------------------------------------------*/
3908 
3909 /* Utility methods for SPI protocol drivers, layered on
3910  * top of the core.  Some other utility methods are defined as
3911  * inline functions.
3912  */
3913 
spi_complete(void * arg)3914 static void spi_complete(void *arg)
3915 {
3916 	complete(arg);
3917 }
3918 
__spi_sync(struct spi_device * spi,struct spi_message * message)3919 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3920 {
3921 	DECLARE_COMPLETION_ONSTACK(done);
3922 	int status;
3923 	struct spi_controller *ctlr = spi->controller;
3924 	unsigned long flags;
3925 
3926 	status = __spi_validate(spi, message);
3927 	if (status != 0)
3928 		return status;
3929 
3930 	message->complete = spi_complete;
3931 	message->context = &done;
3932 	message->spi = spi;
3933 
3934 	SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3935 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3936 
3937 	/* If we're not using the legacy transfer method then we will
3938 	 * try to transfer in the calling context so special case.
3939 	 * This code would be less tricky if we could remove the
3940 	 * support for driver implemented message queues.
3941 	 */
3942 	if (ctlr->transfer == spi_queued_transfer) {
3943 		spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3944 
3945 		trace_spi_message_submit(message);
3946 
3947 		status = __spi_queued_transfer(spi, message, false);
3948 
3949 		spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3950 	} else {
3951 		status = spi_async_locked(spi, message);
3952 	}
3953 
3954 	if (status == 0) {
3955 		/* Push out the messages in the calling context if we
3956 		 * can.
3957 		 */
3958 		if (ctlr->transfer == spi_queued_transfer) {
3959 			SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3960 						       spi_sync_immediate);
3961 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3962 						       spi_sync_immediate);
3963 			__spi_pump_messages(ctlr, false);
3964 		}
3965 
3966 		wait_for_completion(&done);
3967 		status = message->status;
3968 	}
3969 	message->context = NULL;
3970 	return status;
3971 }
3972 
3973 /**
3974  * spi_sync - blocking/synchronous SPI data transfers
3975  * @spi: device with which data will be exchanged
3976  * @message: describes the data transfers
3977  * Context: can sleep
3978  *
3979  * This call may only be used from a context that may sleep.  The sleep
3980  * is non-interruptible, and has no timeout.  Low-overhead controller
3981  * drivers may DMA directly into and out of the message buffers.
3982  *
3983  * Note that the SPI device's chip select is active during the message,
3984  * and then is normally disabled between messages.  Drivers for some
3985  * frequently-used devices may want to minimize costs of selecting a chip,
3986  * by leaving it selected in anticipation that the next message will go
3987  * to the same chip.  (That may increase power usage.)
3988  *
3989  * Also, the caller is guaranteeing that the memory associated with the
3990  * message will not be freed before this call returns.
3991  *
3992  * Return: zero on success, else a negative error code.
3993  */
spi_sync(struct spi_device * spi,struct spi_message * message)3994 int spi_sync(struct spi_device *spi, struct spi_message *message)
3995 {
3996 	int ret;
3997 
3998 	mutex_lock(&spi->controller->bus_lock_mutex);
3999 	ret = __spi_sync(spi, message);
4000 	mutex_unlock(&spi->controller->bus_lock_mutex);
4001 
4002 	return ret;
4003 }
4004 EXPORT_SYMBOL_GPL(spi_sync);
4005 
4006 /**
4007  * spi_sync_locked - version of spi_sync with exclusive bus usage
4008  * @spi: device with which data will be exchanged
4009  * @message: describes the data transfers
4010  * Context: can sleep
4011  *
4012  * This call may only be used from a context that may sleep.  The sleep
4013  * is non-interruptible, and has no timeout.  Low-overhead controller
4014  * drivers may DMA directly into and out of the message buffers.
4015  *
4016  * This call should be used by drivers that require exclusive access to the
4017  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4018  * be released by a spi_bus_unlock call when the exclusive access is over.
4019  *
4020  * Return: zero on success, else a negative error code.
4021  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)4022 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4023 {
4024 	return __spi_sync(spi, message);
4025 }
4026 EXPORT_SYMBOL_GPL(spi_sync_locked);
4027 
4028 /**
4029  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4030  * @ctlr: SPI bus master that should be locked for exclusive bus access
4031  * Context: can sleep
4032  *
4033  * This call may only be used from a context that may sleep.  The sleep
4034  * is non-interruptible, and has no timeout.
4035  *
4036  * This call should be used by drivers that require exclusive access to the
4037  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4038  * exclusive access is over. Data transfer must be done by spi_sync_locked
4039  * and spi_async_locked calls when the SPI bus lock is held.
4040  *
4041  * Return: always zero.
4042  */
spi_bus_lock(struct spi_controller * ctlr)4043 int spi_bus_lock(struct spi_controller *ctlr)
4044 {
4045 	unsigned long flags;
4046 
4047 	mutex_lock(&ctlr->bus_lock_mutex);
4048 
4049 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4050 	ctlr->bus_lock_flag = 1;
4051 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4052 
4053 	/* mutex remains locked until spi_bus_unlock is called */
4054 
4055 	return 0;
4056 }
4057 EXPORT_SYMBOL_GPL(spi_bus_lock);
4058 
4059 /**
4060  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4061  * @ctlr: SPI bus master that was locked for exclusive bus access
4062  * Context: can sleep
4063  *
4064  * This call may only be used from a context that may sleep.  The sleep
4065  * is non-interruptible, and has no timeout.
4066  *
4067  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4068  * call.
4069  *
4070  * Return: always zero.
4071  */
spi_bus_unlock(struct spi_controller * ctlr)4072 int spi_bus_unlock(struct spi_controller *ctlr)
4073 {
4074 	ctlr->bus_lock_flag = 0;
4075 
4076 	mutex_unlock(&ctlr->bus_lock_mutex);
4077 
4078 	return 0;
4079 }
4080 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4081 
4082 /* portable code must never pass more than 32 bytes */
4083 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4084 
4085 static u8	*buf;
4086 
4087 /**
4088  * spi_write_then_read - SPI synchronous write followed by read
4089  * @spi: device with which data will be exchanged
4090  * @txbuf: data to be written (need not be dma-safe)
4091  * @n_tx: size of txbuf, in bytes
4092  * @rxbuf: buffer into which data will be read (need not be dma-safe)
4093  * @n_rx: size of rxbuf, in bytes
4094  * Context: can sleep
4095  *
4096  * This performs a half duplex MicroWire style transaction with the
4097  * device, sending txbuf and then reading rxbuf.  The return value
4098  * is zero for success, else a negative errno status code.
4099  * This call may only be used from a context that may sleep.
4100  *
4101  * Parameters to this routine are always copied using a small buffer.
4102  * Performance-sensitive or bulk transfer code should instead use
4103  * spi_{async,sync}() calls with dma-safe buffers.
4104  *
4105  * Return: zero on success, else a negative error code.
4106  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)4107 int spi_write_then_read(struct spi_device *spi,
4108 		const void *txbuf, unsigned n_tx,
4109 		void *rxbuf, unsigned n_rx)
4110 {
4111 	static DEFINE_MUTEX(lock);
4112 
4113 	int			status;
4114 	struct spi_message	message;
4115 	struct spi_transfer	x[2];
4116 	u8			*local_buf;
4117 
4118 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
4119 	 * copying here, (as a pure convenience thing), but we can
4120 	 * keep heap costs out of the hot path unless someone else is
4121 	 * using the pre-allocated buffer or the transfer is too large.
4122 	 */
4123 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4124 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4125 				    GFP_KERNEL | GFP_DMA);
4126 		if (!local_buf)
4127 			return -ENOMEM;
4128 	} else {
4129 		local_buf = buf;
4130 	}
4131 
4132 	spi_message_init(&message);
4133 	memset(x, 0, sizeof(x));
4134 	if (n_tx) {
4135 		x[0].len = n_tx;
4136 		spi_message_add_tail(&x[0], &message);
4137 	}
4138 	if (n_rx) {
4139 		x[1].len = n_rx;
4140 		spi_message_add_tail(&x[1], &message);
4141 	}
4142 
4143 	memcpy(local_buf, txbuf, n_tx);
4144 	x[0].tx_buf = local_buf;
4145 	x[1].rx_buf = local_buf + n_tx;
4146 
4147 	/* do the i/o */
4148 	status = spi_sync(spi, &message);
4149 	if (status == 0)
4150 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4151 
4152 	if (x[0].tx_buf == buf)
4153 		mutex_unlock(&lock);
4154 	else
4155 		kfree(local_buf);
4156 
4157 	return status;
4158 }
4159 EXPORT_SYMBOL_GPL(spi_write_then_read);
4160 
4161 /*-------------------------------------------------------------------------*/
4162 
4163 #if IS_ENABLED(CONFIG_OF)
4164 /* must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4165 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4166 {
4167 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4168 
4169 	return dev ? to_spi_device(dev) : NULL;
4170 }
4171 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
4172 #endif /* IS_ENABLED(CONFIG_OF) */
4173 
4174 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4175 /* the spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4176 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4177 {
4178 	struct device *dev;
4179 
4180 	dev = class_find_device_by_of_node(&spi_master_class, node);
4181 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4182 		dev = class_find_device_by_of_node(&spi_slave_class, node);
4183 	if (!dev)
4184 		return NULL;
4185 
4186 	/* reference got in class_find_device */
4187 	return container_of(dev, struct spi_controller, dev);
4188 }
4189 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4190 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4191 			 void *arg)
4192 {
4193 	struct of_reconfig_data *rd = arg;
4194 	struct spi_controller *ctlr;
4195 	struct spi_device *spi;
4196 
4197 	switch (of_reconfig_get_state_change(action, arg)) {
4198 	case OF_RECONFIG_CHANGE_ADD:
4199 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4200 		if (ctlr == NULL)
4201 			return NOTIFY_OK;	/* not for us */
4202 
4203 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4204 			put_device(&ctlr->dev);
4205 			return NOTIFY_OK;
4206 		}
4207 
4208 		spi = of_register_spi_device(ctlr, rd->dn);
4209 		put_device(&ctlr->dev);
4210 
4211 		if (IS_ERR(spi)) {
4212 			pr_err("%s: failed to create for '%pOF'\n",
4213 					__func__, rd->dn);
4214 			of_node_clear_flag(rd->dn, OF_POPULATED);
4215 			return notifier_from_errno(PTR_ERR(spi));
4216 		}
4217 		break;
4218 
4219 	case OF_RECONFIG_CHANGE_REMOVE:
4220 		/* already depopulated? */
4221 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4222 			return NOTIFY_OK;
4223 
4224 		/* find our device by node */
4225 		spi = of_find_spi_device_by_node(rd->dn);
4226 		if (spi == NULL)
4227 			return NOTIFY_OK;	/* no? not meant for us */
4228 
4229 		/* unregister takes one ref away */
4230 		spi_unregister_device(spi);
4231 
4232 		/* and put the reference of the find */
4233 		put_device(&spi->dev);
4234 		break;
4235 	}
4236 
4237 	return NOTIFY_OK;
4238 }
4239 
4240 static struct notifier_block spi_of_notifier = {
4241 	.notifier_call = of_spi_notify,
4242 };
4243 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4244 extern struct notifier_block spi_of_notifier;
4245 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4246 
4247 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4248 static int spi_acpi_controller_match(struct device *dev, const void *data)
4249 {
4250 	return ACPI_COMPANION(dev->parent) == data;
4251 }
4252 
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4253 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4254 {
4255 	struct device *dev;
4256 
4257 	dev = class_find_device(&spi_master_class, NULL, adev,
4258 				spi_acpi_controller_match);
4259 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4260 		dev = class_find_device(&spi_slave_class, NULL, adev,
4261 					spi_acpi_controller_match);
4262 	if (!dev)
4263 		return NULL;
4264 
4265 	return container_of(dev, struct spi_controller, dev);
4266 }
4267 
acpi_spi_find_device_by_adev(struct acpi_device * adev)4268 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4269 {
4270 	struct device *dev;
4271 
4272 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4273 	return to_spi_device(dev);
4274 }
4275 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4276 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4277 			   void *arg)
4278 {
4279 	struct acpi_device *adev = arg;
4280 	struct spi_controller *ctlr;
4281 	struct spi_device *spi;
4282 
4283 	switch (value) {
4284 	case ACPI_RECONFIG_DEVICE_ADD:
4285 		ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4286 		if (!ctlr)
4287 			break;
4288 
4289 		acpi_register_spi_device(ctlr, adev);
4290 		put_device(&ctlr->dev);
4291 		break;
4292 	case ACPI_RECONFIG_DEVICE_REMOVE:
4293 		if (!acpi_device_enumerated(adev))
4294 			break;
4295 
4296 		spi = acpi_spi_find_device_by_adev(adev);
4297 		if (!spi)
4298 			break;
4299 
4300 		spi_unregister_device(spi);
4301 		put_device(&spi->dev);
4302 		break;
4303 	}
4304 
4305 	return NOTIFY_OK;
4306 }
4307 
4308 static struct notifier_block spi_acpi_notifier = {
4309 	.notifier_call = acpi_spi_notify,
4310 };
4311 #else
4312 extern struct notifier_block spi_acpi_notifier;
4313 #endif
4314 
spi_init(void)4315 static int __init spi_init(void)
4316 {
4317 	int	status;
4318 
4319 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4320 	if (!buf) {
4321 		status = -ENOMEM;
4322 		goto err0;
4323 	}
4324 
4325 	status = bus_register(&spi_bus_type);
4326 	if (status < 0)
4327 		goto err1;
4328 
4329 	status = class_register(&spi_master_class);
4330 	if (status < 0)
4331 		goto err2;
4332 
4333 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4334 		status = class_register(&spi_slave_class);
4335 		if (status < 0)
4336 			goto err3;
4337 	}
4338 
4339 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4340 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4341 	if (IS_ENABLED(CONFIG_ACPI))
4342 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4343 
4344 	return 0;
4345 
4346 err3:
4347 	class_unregister(&spi_master_class);
4348 err2:
4349 	bus_unregister(&spi_bus_type);
4350 err1:
4351 	kfree(buf);
4352 	buf = NULL;
4353 err0:
4354 	return status;
4355 }
4356 
4357 /* board_info is normally registered in arch_initcall(),
4358  * but even essential drivers wait till later
4359  *
4360  * REVISIT only boardinfo really needs static linking. the rest (device and
4361  * driver registration) _could_ be dynamically linked (modular) ... costs
4362  * include needing to have boardinfo data structures be much more public.
4363  */
4364 postcore_initcall(spi_init);
4365