1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-20222 Intel Corporation
9 */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 const struct ieee80211_rate *
ieee80211_get_response_rate(struct ieee80211_supported_band * sband,u32 basic_rates,int bitrate)28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30 {
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
ieee80211_mandatory_rates(struct ieee80211_supported_band * sband,enum nl80211_bss_scan_width scan_width)46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48 {
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
ieee80211_channel_to_freq_khz(int chan,enum nl80211_band band)75 u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76 {
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 case NL80211_BAND_LC:
84 if (chan == 14)
85 return MHZ_TO_KHZ(2484);
86 else if (chan < 14)
87 return MHZ_TO_KHZ(2407 + chan * 5);
88 break;
89 case NL80211_BAND_5GHZ:
90 if (chan >= 182 && chan <= 196)
91 return MHZ_TO_KHZ(4000 + chan * 5);
92 else
93 return MHZ_TO_KHZ(5000 + chan * 5);
94 break;
95 case NL80211_BAND_6GHZ:
96 /* see 802.11ax D6.1 27.3.23.2 */
97 if (chan == 2)
98 return MHZ_TO_KHZ(5935);
99 if (chan <= 233)
100 return MHZ_TO_KHZ(5950 + chan * 5);
101 break;
102 case NL80211_BAND_60GHZ:
103 if (chan < 7)
104 return MHZ_TO_KHZ(56160 + chan * 2160);
105 break;
106 case NL80211_BAND_S1GHZ:
107 return 902000 + chan * 500;
108 default:
109 ;
110 }
111 return 0; /* not supported */
112 }
113 EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115 enum nl80211_chan_width
ieee80211_s1g_channel_width(const struct ieee80211_channel * chan)116 ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117 {
118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 return NL80211_CHAN_WIDTH_20_NOHT;
120
121 /*S1G defines a single allowed channel width per channel.
122 * Extract that width here.
123 */
124 if (chan->flags & IEEE80211_CHAN_1MHZ)
125 return NL80211_CHAN_WIDTH_1;
126 else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 return NL80211_CHAN_WIDTH_2;
128 else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 return NL80211_CHAN_WIDTH_4;
130 else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 return NL80211_CHAN_WIDTH_8;
132 else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 return NL80211_CHAN_WIDTH_16;
134
135 pr_err("unknown channel width for channel at %dKHz?\n",
136 ieee80211_channel_to_khz(chan));
137
138 return NL80211_CHAN_WIDTH_1;
139 }
140 EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
ieee80211_freq_khz_to_channel(u32 freq)142 int ieee80211_freq_khz_to_channel(u32 freq)
143 {
144 /* TODO: just handle MHz for now */
145 freq = KHZ_TO_MHZ(freq);
146
147 /* see 802.11 17.3.8.3.2 and Annex J */
148 if (freq == 2484)
149 return 14;
150 else if (freq < 2484)
151 return (freq - 2407) / 5;
152 else if (freq >= 4910 && freq <= 4980)
153 return (freq - 4000) / 5;
154 else if (freq < 5925)
155 return (freq - 5000) / 5;
156 else if (freq == 5935)
157 return 2;
158 else if (freq <= 45000) /* DMG band lower limit */
159 /* see 802.11ax D6.1 27.3.22.2 */
160 return (freq - 5950) / 5;
161 else if (freq >= 58320 && freq <= 70200)
162 return (freq - 56160) / 2160;
163 else
164 return 0;
165 }
166 EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
ieee80211_get_channel_khz(struct wiphy * wiphy,u32 freq)168 struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 u32 freq)
170 {
171 enum nl80211_band band;
172 struct ieee80211_supported_band *sband;
173 int i;
174
175 for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 sband = wiphy->bands[band];
177
178 if (!sband)
179 continue;
180
181 for (i = 0; i < sband->n_channels; i++) {
182 struct ieee80211_channel *chan = &sband->channels[i];
183
184 if (ieee80211_channel_to_khz(chan) == freq)
185 return chan;
186 }
187 }
188
189 return NULL;
190 }
191 EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
set_mandatory_flags_band(struct ieee80211_supported_band * sband)193 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194 {
195 int i, want;
196
197 switch (sband->band) {
198 case NL80211_BAND_5GHZ:
199 case NL80211_BAND_6GHZ:
200 want = 3;
201 for (i = 0; i < sband->n_bitrates; i++) {
202 if (sband->bitrates[i].bitrate == 60 ||
203 sband->bitrates[i].bitrate == 120 ||
204 sband->bitrates[i].bitrate == 240) {
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_MANDATORY_A;
207 want--;
208 }
209 }
210 WARN_ON(want);
211 break;
212 case NL80211_BAND_2GHZ:
213 case NL80211_BAND_LC:
214 want = 7;
215 for (i = 0; i < sband->n_bitrates; i++) {
216 switch (sband->bitrates[i].bitrate) {
217 case 10:
218 case 20:
219 case 55:
220 case 110:
221 sband->bitrates[i].flags |=
222 IEEE80211_RATE_MANDATORY_B |
223 IEEE80211_RATE_MANDATORY_G;
224 want--;
225 break;
226 case 60:
227 case 120:
228 case 240:
229 sband->bitrates[i].flags |=
230 IEEE80211_RATE_MANDATORY_G;
231 want--;
232 fallthrough;
233 default:
234 sband->bitrates[i].flags |=
235 IEEE80211_RATE_ERP_G;
236 break;
237 }
238 }
239 WARN_ON(want != 0 && want != 3);
240 break;
241 case NL80211_BAND_60GHZ:
242 /* check for mandatory HT MCS 1..4 */
243 WARN_ON(!sband->ht_cap.ht_supported);
244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 break;
246 case NL80211_BAND_S1GHZ:
247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 * mandatory is ok.
249 */
250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 break;
252 case NUM_NL80211_BANDS:
253 default:
254 WARN_ON(1);
255 break;
256 }
257 }
258
ieee80211_set_bitrate_flags(struct wiphy * wiphy)259 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260 {
261 enum nl80211_band band;
262
263 for (band = 0; band < NUM_NL80211_BANDS; band++)
264 if (wiphy->bands[band])
265 set_mandatory_flags_band(wiphy->bands[band]);
266 }
267
cfg80211_supported_cipher_suite(struct wiphy * wiphy,u32 cipher)268 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269 {
270 int i;
271 for (i = 0; i < wiphy->n_cipher_suites; i++)
272 if (cipher == wiphy->cipher_suites[i])
273 return true;
274 return false;
275 }
276
277 static bool
cfg80211_igtk_cipher_supported(struct cfg80211_registered_device * rdev)278 cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279 {
280 struct wiphy *wiphy = &rdev->wiphy;
281 int i;
282
283 for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 switch (wiphy->cipher_suites[i]) {
285 case WLAN_CIPHER_SUITE_AES_CMAC:
286 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 return true;
290 }
291 }
292
293 return false;
294 }
295
cfg80211_valid_key_idx(struct cfg80211_registered_device * rdev,int key_idx,bool pairwise)296 bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 int key_idx, bool pairwise)
298 {
299 int max_key_idx;
300
301 if (pairwise)
302 max_key_idx = 3;
303 else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 wiphy_ext_feature_isset(&rdev->wiphy,
306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 max_key_idx = 7;
308 else if (cfg80211_igtk_cipher_supported(rdev))
309 max_key_idx = 5;
310 else
311 max_key_idx = 3;
312
313 if (key_idx < 0 || key_idx > max_key_idx)
314 return false;
315
316 return true;
317 }
318
cfg80211_validate_key_settings(struct cfg80211_registered_device * rdev,struct key_params * params,int key_idx,bool pairwise,const u8 * mac_addr)319 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 struct key_params *params, int key_idx,
321 bool pairwise, const u8 *mac_addr)
322 {
323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 return -EINVAL;
325
326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 return -EINVAL;
328
329 if (pairwise && !mac_addr)
330 return -EINVAL;
331
332 switch (params->cipher) {
333 case WLAN_CIPHER_SUITE_TKIP:
334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 if ((pairwise && key_idx) ||
336 params->mode != NL80211_KEY_RX_TX)
337 return -EINVAL;
338 break;
339 case WLAN_CIPHER_SUITE_CCMP:
340 case WLAN_CIPHER_SUITE_CCMP_256:
341 case WLAN_CIPHER_SUITE_GCMP:
342 case WLAN_CIPHER_SUITE_GCMP_256:
343 /* IEEE802.11-2016 allows only 0 and - when supporting
344 * Extended Key ID - 1 as index for pairwise keys.
345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 * the driver supports Extended Key ID.
347 * @NL80211_KEY_SET_TX can't be set when installing and
348 * validating a key.
349 */
350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 params->mode == NL80211_KEY_SET_TX)
352 return -EINVAL;
353 if (wiphy_ext_feature_isset(&rdev->wiphy,
354 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 if (pairwise && (key_idx < 0 || key_idx > 1))
356 return -EINVAL;
357 } else if (pairwise && key_idx) {
358 return -EINVAL;
359 }
360 break;
361 case WLAN_CIPHER_SUITE_AES_CMAC:
362 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 /* Disallow BIP (group-only) cipher as pairwise cipher */
366 if (pairwise)
367 return -EINVAL;
368 if (key_idx < 4)
369 return -EINVAL;
370 break;
371 case WLAN_CIPHER_SUITE_WEP40:
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (key_idx > 3)
374 return -EINVAL;
375 break;
376 default:
377 break;
378 }
379
380 switch (params->cipher) {
381 case WLAN_CIPHER_SUITE_WEP40:
382 if (params->key_len != WLAN_KEY_LEN_WEP40)
383 return -EINVAL;
384 break;
385 case WLAN_CIPHER_SUITE_TKIP:
386 if (params->key_len != WLAN_KEY_LEN_TKIP)
387 return -EINVAL;
388 break;
389 case WLAN_CIPHER_SUITE_CCMP:
390 if (params->key_len != WLAN_KEY_LEN_CCMP)
391 return -EINVAL;
392 break;
393 case WLAN_CIPHER_SUITE_CCMP_256:
394 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 return -EINVAL;
396 break;
397 case WLAN_CIPHER_SUITE_GCMP:
398 if (params->key_len != WLAN_KEY_LEN_GCMP)
399 return -EINVAL;
400 break;
401 case WLAN_CIPHER_SUITE_GCMP_256:
402 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 return -EINVAL;
404 break;
405 case WLAN_CIPHER_SUITE_WEP104:
406 if (params->key_len != WLAN_KEY_LEN_WEP104)
407 return -EINVAL;
408 break;
409 case WLAN_CIPHER_SUITE_AES_CMAC:
410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 return -EINVAL;
412 break;
413 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 return -EINVAL;
416 break;
417 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 return -EINVAL;
420 break;
421 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 return -EINVAL;
424 break;
425 default:
426 /*
427 * We don't know anything about this algorithm,
428 * allow using it -- but the driver must check
429 * all parameters! We still check below whether
430 * or not the driver supports this algorithm,
431 * of course.
432 */
433 break;
434 }
435
436 if (params->seq) {
437 switch (params->cipher) {
438 case WLAN_CIPHER_SUITE_WEP40:
439 case WLAN_CIPHER_SUITE_WEP104:
440 /* These ciphers do not use key sequence */
441 return -EINVAL;
442 case WLAN_CIPHER_SUITE_TKIP:
443 case WLAN_CIPHER_SUITE_CCMP:
444 case WLAN_CIPHER_SUITE_CCMP_256:
445 case WLAN_CIPHER_SUITE_GCMP:
446 case WLAN_CIPHER_SUITE_GCMP_256:
447 case WLAN_CIPHER_SUITE_AES_CMAC:
448 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 if (params->seq_len != 6)
452 return -EINVAL;
453 break;
454 }
455 }
456
457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 return -EINVAL;
459
460 return 0;
461 }
462
ieee80211_hdrlen(__le16 fc)463 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464 {
465 unsigned int hdrlen = 24;
466
467 if (ieee80211_is_ext(fc)) {
468 hdrlen = 4;
469 goto out;
470 }
471
472 if (ieee80211_is_data(fc)) {
473 if (ieee80211_has_a4(fc))
474 hdrlen = 30;
475 if (ieee80211_is_data_qos(fc)) {
476 hdrlen += IEEE80211_QOS_CTL_LEN;
477 if (ieee80211_has_order(fc))
478 hdrlen += IEEE80211_HT_CTL_LEN;
479 }
480 goto out;
481 }
482
483 if (ieee80211_is_mgmt(fc)) {
484 if (ieee80211_has_order(fc))
485 hdrlen += IEEE80211_HT_CTL_LEN;
486 goto out;
487 }
488
489 if (ieee80211_is_ctl(fc)) {
490 /*
491 * ACK and CTS are 10 bytes, all others 16. To see how
492 * to get this condition consider
493 * subtype mask: 0b0000000011110000 (0x00F0)
494 * ACK subtype: 0b0000000011010000 (0x00D0)
495 * CTS subtype: 0b0000000011000000 (0x00C0)
496 * bits that matter: ^^^ (0x00E0)
497 * value of those: 0b0000000011000000 (0x00C0)
498 */
499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 hdrlen = 10;
501 else
502 hdrlen = 16;
503 }
504 out:
505 return hdrlen;
506 }
507 EXPORT_SYMBOL(ieee80211_hdrlen);
508
ieee80211_get_hdrlen_from_skb(const struct sk_buff * skb)509 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510 {
511 const struct ieee80211_hdr *hdr =
512 (const struct ieee80211_hdr *)skb->data;
513 unsigned int hdrlen;
514
515 if (unlikely(skb->len < 10))
516 return 0;
517 hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 if (unlikely(hdrlen > skb->len))
519 return 0;
520 return hdrlen;
521 }
522 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
__ieee80211_get_mesh_hdrlen(u8 flags)524 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525 {
526 int ae = flags & MESH_FLAGS_AE;
527 /* 802.11-2012, 8.2.4.7.3 */
528 switch (ae) {
529 default:
530 case 0:
531 return 6;
532 case MESH_FLAGS_AE_A4:
533 return 12;
534 case MESH_FLAGS_AE_A5_A6:
535 return 18;
536 }
537 }
538
ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr * meshhdr)539 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540 {
541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542 }
543 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
ieee80211_data_to_8023_exthdr(struct sk_buff * skb,struct ethhdr * ehdr,const u8 * addr,enum nl80211_iftype iftype,u8 data_offset,bool is_amsdu)545 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
546 const u8 *addr, enum nl80211_iftype iftype,
547 u8 data_offset, bool is_amsdu)
548 {
549 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
550 struct {
551 u8 hdr[ETH_ALEN] __aligned(2);
552 __be16 proto;
553 } payload;
554 struct ethhdr tmp;
555 u16 hdrlen;
556 u8 mesh_flags = 0;
557
558 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
559 return -1;
560
561 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
562 if (skb->len < hdrlen + 8)
563 return -1;
564
565 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
566 * header
567 * IEEE 802.11 address fields:
568 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
569 * 0 0 DA SA BSSID n/a
570 * 0 1 DA BSSID SA n/a
571 * 1 0 BSSID SA DA n/a
572 * 1 1 RA TA DA SA
573 */
574 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
575 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
576
577 if (iftype == NL80211_IFTYPE_MESH_POINT)
578 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
579
580 mesh_flags &= MESH_FLAGS_AE;
581
582 switch (hdr->frame_control &
583 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
584 case cpu_to_le16(IEEE80211_FCTL_TODS):
585 if (unlikely(iftype != NL80211_IFTYPE_AP &&
586 iftype != NL80211_IFTYPE_AP_VLAN &&
587 iftype != NL80211_IFTYPE_P2P_GO))
588 return -1;
589 break;
590 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
591 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
592 iftype != NL80211_IFTYPE_AP_VLAN &&
593 iftype != NL80211_IFTYPE_STATION))
594 return -1;
595 if (iftype == NL80211_IFTYPE_MESH_POINT) {
596 if (mesh_flags == MESH_FLAGS_AE_A4)
597 return -1;
598 if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
599 skb_copy_bits(skb, hdrlen +
600 offsetof(struct ieee80211s_hdr, eaddr1),
601 tmp.h_dest, 2 * ETH_ALEN);
602 }
603 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
604 }
605 break;
606 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
607 if ((iftype != NL80211_IFTYPE_STATION &&
608 iftype != NL80211_IFTYPE_P2P_CLIENT &&
609 iftype != NL80211_IFTYPE_MESH_POINT) ||
610 (is_multicast_ether_addr(tmp.h_dest) &&
611 ether_addr_equal(tmp.h_source, addr)))
612 return -1;
613 if (iftype == NL80211_IFTYPE_MESH_POINT) {
614 if (mesh_flags == MESH_FLAGS_AE_A5_A6)
615 return -1;
616 if (mesh_flags == MESH_FLAGS_AE_A4)
617 skb_copy_bits(skb, hdrlen +
618 offsetof(struct ieee80211s_hdr, eaddr1),
619 tmp.h_source, ETH_ALEN);
620 hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
621 }
622 break;
623 case cpu_to_le16(0):
624 if (iftype != NL80211_IFTYPE_ADHOC &&
625 iftype != NL80211_IFTYPE_STATION &&
626 iftype != NL80211_IFTYPE_OCB)
627 return -1;
628 break;
629 }
630
631 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
632 tmp.h_proto = payload.proto;
633
634 if (likely((!is_amsdu && ether_addr_equal(payload.hdr, rfc1042_header) &&
635 tmp.h_proto != htons(ETH_P_AARP) &&
636 tmp.h_proto != htons(ETH_P_IPX)) ||
637 ether_addr_equal(payload.hdr, bridge_tunnel_header)))
638 /* remove RFC1042 or Bridge-Tunnel encapsulation and
639 * replace EtherType */
640 hdrlen += ETH_ALEN + 2;
641 else
642 tmp.h_proto = htons(skb->len - hdrlen);
643
644 pskb_pull(skb, hdrlen);
645
646 if (!ehdr)
647 ehdr = skb_push(skb, sizeof(struct ethhdr));
648 memcpy(ehdr, &tmp, sizeof(tmp));
649
650 return 0;
651 }
652 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
653
654 static void
__frame_add_frag(struct sk_buff * skb,struct page * page,void * ptr,int len,int size)655 __frame_add_frag(struct sk_buff *skb, struct page *page,
656 void *ptr, int len, int size)
657 {
658 struct skb_shared_info *sh = skb_shinfo(skb);
659 int page_offset;
660
661 get_page(page);
662 page_offset = ptr - page_address(page);
663 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
664 }
665
666 static void
__ieee80211_amsdu_copy_frag(struct sk_buff * skb,struct sk_buff * frame,int offset,int len)667 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
668 int offset, int len)
669 {
670 struct skb_shared_info *sh = skb_shinfo(skb);
671 const skb_frag_t *frag = &sh->frags[0];
672 struct page *frag_page;
673 void *frag_ptr;
674 int frag_len, frag_size;
675 int head_size = skb->len - skb->data_len;
676 int cur_len;
677
678 frag_page = virt_to_head_page(skb->head);
679 frag_ptr = skb->data;
680 frag_size = head_size;
681
682 while (offset >= frag_size) {
683 offset -= frag_size;
684 frag_page = skb_frag_page(frag);
685 frag_ptr = skb_frag_address(frag);
686 frag_size = skb_frag_size(frag);
687 frag++;
688 }
689
690 frag_ptr += offset;
691 frag_len = frag_size - offset;
692
693 cur_len = min(len, frag_len);
694
695 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
696 len -= cur_len;
697
698 while (len > 0) {
699 frag_len = skb_frag_size(frag);
700 cur_len = min(len, frag_len);
701 __frame_add_frag(frame, skb_frag_page(frag),
702 skb_frag_address(frag), cur_len, frag_len);
703 len -= cur_len;
704 frag++;
705 }
706 }
707
708 static struct sk_buff *
__ieee80211_amsdu_copy(struct sk_buff * skb,unsigned int hlen,int offset,int len,bool reuse_frag)709 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
710 int offset, int len, bool reuse_frag)
711 {
712 struct sk_buff *frame;
713 int cur_len = len;
714
715 if (skb->len - offset < len)
716 return NULL;
717
718 /*
719 * When reusing framents, copy some data to the head to simplify
720 * ethernet header handling and speed up protocol header processing
721 * in the stack later.
722 */
723 if (reuse_frag)
724 cur_len = min_t(int, len, 32);
725
726 /*
727 * Allocate and reserve two bytes more for payload
728 * alignment since sizeof(struct ethhdr) is 14.
729 */
730 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
731 if (!frame)
732 return NULL;
733
734 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
735 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
736
737 len -= cur_len;
738 if (!len)
739 return frame;
740
741 offset += cur_len;
742 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
743
744 return frame;
745 }
746
ieee80211_amsdu_to_8023s(struct sk_buff * skb,struct sk_buff_head * list,const u8 * addr,enum nl80211_iftype iftype,const unsigned int extra_headroom,const u8 * check_da,const u8 * check_sa)747 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
748 const u8 *addr, enum nl80211_iftype iftype,
749 const unsigned int extra_headroom,
750 const u8 *check_da, const u8 *check_sa)
751 {
752 unsigned int hlen = ALIGN(extra_headroom, 4);
753 struct sk_buff *frame = NULL;
754 u16 ethertype;
755 u8 *payload;
756 int offset = 0, remaining;
757 struct ethhdr eth;
758 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
759 bool reuse_skb = false;
760 bool last = false;
761
762 while (!last) {
763 unsigned int subframe_len;
764 int len;
765 u8 padding;
766
767 skb_copy_bits(skb, offset, ð, sizeof(eth));
768 len = ntohs(eth.h_proto);
769 subframe_len = sizeof(struct ethhdr) + len;
770 padding = (4 - subframe_len) & 0x3;
771
772 /* the last MSDU has no padding */
773 remaining = skb->len - offset;
774 if (subframe_len > remaining)
775 goto purge;
776 /* mitigate A-MSDU aggregation injection attacks */
777 if (ether_addr_equal(eth.h_dest, rfc1042_header))
778 goto purge;
779
780 offset += sizeof(struct ethhdr);
781 last = remaining <= subframe_len + padding;
782
783 /* FIXME: should we really accept multicast DA? */
784 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
785 !ether_addr_equal(check_da, eth.h_dest)) ||
786 (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
787 offset += len + padding;
788 continue;
789 }
790
791 /* reuse skb for the last subframe */
792 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
793 skb_pull(skb, offset);
794 frame = skb;
795 reuse_skb = true;
796 } else {
797 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
798 reuse_frag);
799 if (!frame)
800 goto purge;
801
802 offset += len + padding;
803 }
804
805 skb_reset_network_header(frame);
806 frame->dev = skb->dev;
807 frame->priority = skb->priority;
808
809 payload = frame->data;
810 ethertype = (payload[6] << 8) | payload[7];
811 if (likely((ether_addr_equal(payload, rfc1042_header) &&
812 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
813 ether_addr_equal(payload, bridge_tunnel_header))) {
814 eth.h_proto = htons(ethertype);
815 skb_pull(frame, ETH_ALEN + 2);
816 }
817
818 memcpy(skb_push(frame, sizeof(eth)), ð, sizeof(eth));
819 __skb_queue_tail(list, frame);
820 }
821
822 if (!reuse_skb)
823 dev_kfree_skb(skb);
824
825 return;
826
827 purge:
828 __skb_queue_purge(list);
829 dev_kfree_skb(skb);
830 }
831 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
832
833 /* Given a data frame determine the 802.1p/1d tag to use. */
cfg80211_classify8021d(struct sk_buff * skb,struct cfg80211_qos_map * qos_map)834 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
835 struct cfg80211_qos_map *qos_map)
836 {
837 unsigned int dscp;
838 unsigned char vlan_priority;
839 unsigned int ret;
840
841 /* skb->priority values from 256->263 are magic values to
842 * directly indicate a specific 802.1d priority. This is used
843 * to allow 802.1d priority to be passed directly in from VLAN
844 * tags, etc.
845 */
846 if (skb->priority >= 256 && skb->priority <= 263) {
847 ret = skb->priority - 256;
848 goto out;
849 }
850
851 if (skb_vlan_tag_present(skb)) {
852 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
853 >> VLAN_PRIO_SHIFT;
854 if (vlan_priority > 0) {
855 ret = vlan_priority;
856 goto out;
857 }
858 }
859
860 switch (skb->protocol) {
861 case htons(ETH_P_IP):
862 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
863 break;
864 case htons(ETH_P_IPV6):
865 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
866 break;
867 case htons(ETH_P_MPLS_UC):
868 case htons(ETH_P_MPLS_MC): {
869 struct mpls_label mpls_tmp, *mpls;
870
871 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
872 sizeof(*mpls), &mpls_tmp);
873 if (!mpls)
874 return 0;
875
876 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
877 >> MPLS_LS_TC_SHIFT;
878 goto out;
879 }
880 case htons(ETH_P_80221):
881 /* 802.21 is always network control traffic */
882 return 7;
883 default:
884 return 0;
885 }
886
887 if (qos_map) {
888 unsigned int i, tmp_dscp = dscp >> 2;
889
890 for (i = 0; i < qos_map->num_des; i++) {
891 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
892 ret = qos_map->dscp_exception[i].up;
893 goto out;
894 }
895 }
896
897 for (i = 0; i < 8; i++) {
898 if (tmp_dscp >= qos_map->up[i].low &&
899 tmp_dscp <= qos_map->up[i].high) {
900 ret = i;
901 goto out;
902 }
903 }
904 }
905
906 ret = dscp >> 5;
907 out:
908 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
909 }
910 EXPORT_SYMBOL(cfg80211_classify8021d);
911
ieee80211_bss_get_elem(struct cfg80211_bss * bss,u8 id)912 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
913 {
914 const struct cfg80211_bss_ies *ies;
915
916 ies = rcu_dereference(bss->ies);
917 if (!ies)
918 return NULL;
919
920 return cfg80211_find_elem(id, ies->data, ies->len);
921 }
922 EXPORT_SYMBOL(ieee80211_bss_get_elem);
923
cfg80211_upload_connect_keys(struct wireless_dev * wdev)924 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
925 {
926 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
927 struct net_device *dev = wdev->netdev;
928 int i;
929
930 if (!wdev->connect_keys)
931 return;
932
933 for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
934 if (!wdev->connect_keys->params[i].cipher)
935 continue;
936 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
937 &wdev->connect_keys->params[i])) {
938 netdev_err(dev, "failed to set key %d\n", i);
939 continue;
940 }
941 if (wdev->connect_keys->def == i &&
942 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
943 netdev_err(dev, "failed to set defkey %d\n", i);
944 continue;
945 }
946 }
947
948 kfree_sensitive(wdev->connect_keys);
949 wdev->connect_keys = NULL;
950 }
951
cfg80211_process_wdev_events(struct wireless_dev * wdev)952 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
953 {
954 struct cfg80211_event *ev;
955 unsigned long flags;
956
957 spin_lock_irqsave(&wdev->event_lock, flags);
958 while (!list_empty(&wdev->event_list)) {
959 ev = list_first_entry(&wdev->event_list,
960 struct cfg80211_event, list);
961 list_del(&ev->list);
962 spin_unlock_irqrestore(&wdev->event_lock, flags);
963
964 wdev_lock(wdev);
965 switch (ev->type) {
966 case EVENT_CONNECT_RESULT:
967 __cfg80211_connect_result(
968 wdev->netdev,
969 &ev->cr,
970 ev->cr.status == WLAN_STATUS_SUCCESS);
971 break;
972 case EVENT_ROAMED:
973 __cfg80211_roamed(wdev, &ev->rm);
974 break;
975 case EVENT_DISCONNECTED:
976 __cfg80211_disconnected(wdev->netdev,
977 ev->dc.ie, ev->dc.ie_len,
978 ev->dc.reason,
979 !ev->dc.locally_generated);
980 break;
981 case EVENT_IBSS_JOINED:
982 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
983 ev->ij.channel);
984 break;
985 case EVENT_STOPPED:
986 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
987 break;
988 case EVENT_PORT_AUTHORIZED:
989 __cfg80211_port_authorized(wdev, ev->pa.bssid,
990 ev->pa.td_bitmap,
991 ev->pa.td_bitmap_len);
992 break;
993 }
994 wdev_unlock(wdev);
995
996 kfree(ev);
997
998 spin_lock_irqsave(&wdev->event_lock, flags);
999 }
1000 spin_unlock_irqrestore(&wdev->event_lock, flags);
1001 }
1002
cfg80211_process_rdev_events(struct cfg80211_registered_device * rdev)1003 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1004 {
1005 struct wireless_dev *wdev;
1006
1007 lockdep_assert_held(&rdev->wiphy.mtx);
1008
1009 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1010 cfg80211_process_wdev_events(wdev);
1011 }
1012
cfg80211_change_iface(struct cfg80211_registered_device * rdev,struct net_device * dev,enum nl80211_iftype ntype,struct vif_params * params)1013 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1014 struct net_device *dev, enum nl80211_iftype ntype,
1015 struct vif_params *params)
1016 {
1017 int err;
1018 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1019
1020 lockdep_assert_held(&rdev->wiphy.mtx);
1021
1022 /* don't support changing VLANs, you just re-create them */
1023 if (otype == NL80211_IFTYPE_AP_VLAN)
1024 return -EOPNOTSUPP;
1025
1026 /* cannot change into P2P device or NAN */
1027 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1028 ntype == NL80211_IFTYPE_NAN)
1029 return -EOPNOTSUPP;
1030
1031 if (!rdev->ops->change_virtual_intf ||
1032 !(rdev->wiphy.interface_modes & (1 << ntype)))
1033 return -EOPNOTSUPP;
1034
1035 if (ntype != otype) {
1036 /* if it's part of a bridge, reject changing type to station/ibss */
1037 if (netif_is_bridge_port(dev) &&
1038 (ntype == NL80211_IFTYPE_ADHOC ||
1039 ntype == NL80211_IFTYPE_STATION ||
1040 ntype == NL80211_IFTYPE_P2P_CLIENT))
1041 return -EBUSY;
1042
1043 dev->ieee80211_ptr->use_4addr = false;
1044 wdev_lock(dev->ieee80211_ptr);
1045 rdev_set_qos_map(rdev, dev, NULL);
1046 wdev_unlock(dev->ieee80211_ptr);
1047
1048 switch (otype) {
1049 case NL80211_IFTYPE_AP:
1050 case NL80211_IFTYPE_P2P_GO:
1051 cfg80211_stop_ap(rdev, dev, -1, true);
1052 break;
1053 case NL80211_IFTYPE_ADHOC:
1054 cfg80211_leave_ibss(rdev, dev, false);
1055 break;
1056 case NL80211_IFTYPE_STATION:
1057 case NL80211_IFTYPE_P2P_CLIENT:
1058 wdev_lock(dev->ieee80211_ptr);
1059 cfg80211_disconnect(rdev, dev,
1060 WLAN_REASON_DEAUTH_LEAVING, true);
1061 wdev_unlock(dev->ieee80211_ptr);
1062 break;
1063 case NL80211_IFTYPE_MESH_POINT:
1064 /* mesh should be handled? */
1065 break;
1066 case NL80211_IFTYPE_OCB:
1067 cfg80211_leave_ocb(rdev, dev);
1068 break;
1069 default:
1070 break;
1071 }
1072
1073 cfg80211_process_rdev_events(rdev);
1074 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1075
1076 memset(&dev->ieee80211_ptr->u, 0,
1077 sizeof(dev->ieee80211_ptr->u));
1078 memset(&dev->ieee80211_ptr->links, 0,
1079 sizeof(dev->ieee80211_ptr->links));
1080 }
1081
1082 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1083
1084 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1085
1086 if (!err && params && params->use_4addr != -1)
1087 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1088
1089 if (!err) {
1090 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1091 switch (ntype) {
1092 case NL80211_IFTYPE_STATION:
1093 if (dev->ieee80211_ptr->use_4addr)
1094 break;
1095 fallthrough;
1096 case NL80211_IFTYPE_OCB:
1097 case NL80211_IFTYPE_P2P_CLIENT:
1098 case NL80211_IFTYPE_ADHOC:
1099 dev->priv_flags |= IFF_DONT_BRIDGE;
1100 break;
1101 case NL80211_IFTYPE_P2P_GO:
1102 case NL80211_IFTYPE_AP:
1103 case NL80211_IFTYPE_AP_VLAN:
1104 case NL80211_IFTYPE_MESH_POINT:
1105 /* bridging OK */
1106 break;
1107 case NL80211_IFTYPE_MONITOR:
1108 /* monitor can't bridge anyway */
1109 break;
1110 case NL80211_IFTYPE_UNSPECIFIED:
1111 case NUM_NL80211_IFTYPES:
1112 /* not happening */
1113 break;
1114 case NL80211_IFTYPE_P2P_DEVICE:
1115 case NL80211_IFTYPE_WDS:
1116 case NL80211_IFTYPE_NAN:
1117 WARN_ON(1);
1118 break;
1119 }
1120 }
1121
1122 if (!err && ntype != otype && netif_running(dev)) {
1123 cfg80211_update_iface_num(rdev, ntype, 1);
1124 cfg80211_update_iface_num(rdev, otype, -1);
1125 }
1126
1127 return err;
1128 }
1129
cfg80211_calculate_bitrate_ht(struct rate_info * rate)1130 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1131 {
1132 int modulation, streams, bitrate;
1133
1134 /* the formula below does only work for MCS values smaller than 32 */
1135 if (WARN_ON_ONCE(rate->mcs >= 32))
1136 return 0;
1137
1138 modulation = rate->mcs & 7;
1139 streams = (rate->mcs >> 3) + 1;
1140
1141 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1142
1143 if (modulation < 4)
1144 bitrate *= (modulation + 1);
1145 else if (modulation == 4)
1146 bitrate *= (modulation + 2);
1147 else
1148 bitrate *= (modulation + 3);
1149
1150 bitrate *= streams;
1151
1152 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1153 bitrate = (bitrate / 9) * 10;
1154
1155 /* do NOT round down here */
1156 return (bitrate + 50000) / 100000;
1157 }
1158
cfg80211_calculate_bitrate_dmg(struct rate_info * rate)1159 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1160 {
1161 static const u32 __mcs2bitrate[] = {
1162 /* control PHY */
1163 [0] = 275,
1164 /* SC PHY */
1165 [1] = 3850,
1166 [2] = 7700,
1167 [3] = 9625,
1168 [4] = 11550,
1169 [5] = 12512, /* 1251.25 mbps */
1170 [6] = 15400,
1171 [7] = 19250,
1172 [8] = 23100,
1173 [9] = 25025,
1174 [10] = 30800,
1175 [11] = 38500,
1176 [12] = 46200,
1177 /* OFDM PHY */
1178 [13] = 6930,
1179 [14] = 8662, /* 866.25 mbps */
1180 [15] = 13860,
1181 [16] = 17325,
1182 [17] = 20790,
1183 [18] = 27720,
1184 [19] = 34650,
1185 [20] = 41580,
1186 [21] = 45045,
1187 [22] = 51975,
1188 [23] = 62370,
1189 [24] = 67568, /* 6756.75 mbps */
1190 /* LP-SC PHY */
1191 [25] = 6260,
1192 [26] = 8340,
1193 [27] = 11120,
1194 [28] = 12510,
1195 [29] = 16680,
1196 [30] = 22240,
1197 [31] = 25030,
1198 };
1199
1200 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1201 return 0;
1202
1203 return __mcs2bitrate[rate->mcs];
1204 }
1205
cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info * rate)1206 static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1207 {
1208 static const u32 __mcs2bitrate[] = {
1209 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1210 [7 - 6] = 50050, /* MCS 12.1 */
1211 [8 - 6] = 53900,
1212 [9 - 6] = 57750,
1213 [10 - 6] = 63900,
1214 [11 - 6] = 75075,
1215 [12 - 6] = 80850,
1216 };
1217
1218 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1219 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1220 return 0;
1221
1222 return __mcs2bitrate[rate->mcs - 6];
1223 }
1224
cfg80211_calculate_bitrate_edmg(struct rate_info * rate)1225 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1226 {
1227 static const u32 __mcs2bitrate[] = {
1228 /* control PHY */
1229 [0] = 275,
1230 /* SC PHY */
1231 [1] = 3850,
1232 [2] = 7700,
1233 [3] = 9625,
1234 [4] = 11550,
1235 [5] = 12512, /* 1251.25 mbps */
1236 [6] = 13475,
1237 [7] = 15400,
1238 [8] = 19250,
1239 [9] = 23100,
1240 [10] = 25025,
1241 [11] = 26950,
1242 [12] = 30800,
1243 [13] = 38500,
1244 [14] = 46200,
1245 [15] = 50050,
1246 [16] = 53900,
1247 [17] = 57750,
1248 [18] = 69300,
1249 [19] = 75075,
1250 [20] = 80850,
1251 };
1252
1253 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1254 return 0;
1255
1256 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1257 }
1258
cfg80211_calculate_bitrate_vht(struct rate_info * rate)1259 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1260 {
1261 static const u32 base[4][12] = {
1262 { 6500000,
1263 13000000,
1264 19500000,
1265 26000000,
1266 39000000,
1267 52000000,
1268 58500000,
1269 65000000,
1270 78000000,
1271 /* not in the spec, but some devices use this: */
1272 86700000,
1273 97500000,
1274 108300000,
1275 },
1276 { 13500000,
1277 27000000,
1278 40500000,
1279 54000000,
1280 81000000,
1281 108000000,
1282 121500000,
1283 135000000,
1284 162000000,
1285 180000000,
1286 202500000,
1287 225000000,
1288 },
1289 { 29300000,
1290 58500000,
1291 87800000,
1292 117000000,
1293 175500000,
1294 234000000,
1295 263300000,
1296 292500000,
1297 351000000,
1298 390000000,
1299 438800000,
1300 487500000,
1301 },
1302 { 58500000,
1303 117000000,
1304 175500000,
1305 234000000,
1306 351000000,
1307 468000000,
1308 526500000,
1309 585000000,
1310 702000000,
1311 780000000,
1312 877500000,
1313 975000000,
1314 },
1315 };
1316 u32 bitrate;
1317 int idx;
1318
1319 if (rate->mcs > 11)
1320 goto warn;
1321
1322 switch (rate->bw) {
1323 case RATE_INFO_BW_160:
1324 idx = 3;
1325 break;
1326 case RATE_INFO_BW_80:
1327 idx = 2;
1328 break;
1329 case RATE_INFO_BW_40:
1330 idx = 1;
1331 break;
1332 case RATE_INFO_BW_5:
1333 case RATE_INFO_BW_10:
1334 default:
1335 goto warn;
1336 case RATE_INFO_BW_20:
1337 idx = 0;
1338 }
1339
1340 bitrate = base[idx][rate->mcs];
1341 bitrate *= rate->nss;
1342
1343 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1344 bitrate = (bitrate / 9) * 10;
1345
1346 /* do NOT round down here */
1347 return (bitrate + 50000) / 100000;
1348 warn:
1349 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1350 rate->bw, rate->mcs, rate->nss);
1351 return 0;
1352 }
1353
cfg80211_calculate_bitrate_he(struct rate_info * rate)1354 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1355 {
1356 #define SCALE 6144
1357 u32 mcs_divisors[14] = {
1358 102399, /* 16.666666... */
1359 51201, /* 8.333333... */
1360 34134, /* 5.555555... */
1361 25599, /* 4.166666... */
1362 17067, /* 2.777777... */
1363 12801, /* 2.083333... */
1364 11377, /* 1.851725... */
1365 10239, /* 1.666666... */
1366 8532, /* 1.388888... */
1367 7680, /* 1.250000... */
1368 6828, /* 1.111111... */
1369 6144, /* 1.000000... */
1370 5690, /* 0.926106... */
1371 5120, /* 0.833333... */
1372 };
1373 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1374 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1375 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1376 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1377 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1378 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1379 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1380 u64 tmp;
1381 u32 result;
1382
1383 if (WARN_ON_ONCE(rate->mcs > 13))
1384 return 0;
1385
1386 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1387 return 0;
1388 if (WARN_ON_ONCE(rate->he_ru_alloc >
1389 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1390 return 0;
1391 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1392 return 0;
1393
1394 if (rate->bw == RATE_INFO_BW_160)
1395 result = rates_160M[rate->he_gi];
1396 else if (rate->bw == RATE_INFO_BW_80 ||
1397 (rate->bw == RATE_INFO_BW_HE_RU &&
1398 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1399 result = rates_969[rate->he_gi];
1400 else if (rate->bw == RATE_INFO_BW_40 ||
1401 (rate->bw == RATE_INFO_BW_HE_RU &&
1402 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1403 result = rates_484[rate->he_gi];
1404 else if (rate->bw == RATE_INFO_BW_20 ||
1405 (rate->bw == RATE_INFO_BW_HE_RU &&
1406 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1407 result = rates_242[rate->he_gi];
1408 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1409 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1410 result = rates_106[rate->he_gi];
1411 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1412 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1413 result = rates_52[rate->he_gi];
1414 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1415 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1416 result = rates_26[rate->he_gi];
1417 else {
1418 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1419 rate->bw, rate->he_ru_alloc);
1420 return 0;
1421 }
1422
1423 /* now scale to the appropriate MCS */
1424 tmp = result;
1425 tmp *= SCALE;
1426 do_div(tmp, mcs_divisors[rate->mcs]);
1427 result = tmp;
1428
1429 /* and take NSS, DCM into account */
1430 result = (result * rate->nss) / 8;
1431 if (rate->he_dcm)
1432 result /= 2;
1433
1434 return result / 10000;
1435 }
1436
cfg80211_calculate_bitrate_eht(struct rate_info * rate)1437 static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1438 {
1439 #define SCALE 6144
1440 static const u32 mcs_divisors[16] = {
1441 102399, /* 16.666666... */
1442 51201, /* 8.333333... */
1443 34134, /* 5.555555... */
1444 25599, /* 4.166666... */
1445 17067, /* 2.777777... */
1446 12801, /* 2.083333... */
1447 11377, /* 1.851725... */
1448 10239, /* 1.666666... */
1449 8532, /* 1.388888... */
1450 7680, /* 1.250000... */
1451 6828, /* 1.111111... */
1452 6144, /* 1.000000... */
1453 5690, /* 0.926106... */
1454 5120, /* 0.833333... */
1455 409600, /* 66.666666... */
1456 204800, /* 33.333333... */
1457 };
1458 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1459 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1460 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1461 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1462 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1463 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1464 u64 tmp;
1465 u32 result;
1466
1467 if (WARN_ON_ONCE(rate->mcs > 15))
1468 return 0;
1469 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1470 return 0;
1471 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1472 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1473 return 0;
1474 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1475 return 0;
1476
1477 /* Bandwidth checks for MCS 14 */
1478 if (rate->mcs == 14) {
1479 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1480 rate->bw != RATE_INFO_BW_80 &&
1481 rate->bw != RATE_INFO_BW_160 &&
1482 rate->bw != RATE_INFO_BW_320) ||
1483 (rate->bw == RATE_INFO_BW_EHT_RU &&
1484 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1485 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1486 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1487 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1488 rate->bw, rate->eht_ru_alloc);
1489 return 0;
1490 }
1491 }
1492
1493 if (rate->bw == RATE_INFO_BW_320 ||
1494 (rate->bw == RATE_INFO_BW_EHT_RU &&
1495 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1496 result = 4 * rates_996[rate->eht_gi];
1497 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1498 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1499 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1500 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1501 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1502 result = 3 * rates_996[rate->eht_gi];
1503 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1504 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1505 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1506 else if (rate->bw == RATE_INFO_BW_160 ||
1507 (rate->bw == RATE_INFO_BW_EHT_RU &&
1508 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1509 result = 2 * rates_996[rate->eht_gi];
1510 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1511 rate->eht_ru_alloc ==
1512 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1513 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1514 + rates_242[rate->eht_gi];
1515 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1516 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1517 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1518 else if (rate->bw == RATE_INFO_BW_80 ||
1519 (rate->bw == RATE_INFO_BW_EHT_RU &&
1520 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1521 result = rates_996[rate->eht_gi];
1522 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1523 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1524 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1525 else if (rate->bw == RATE_INFO_BW_40 ||
1526 (rate->bw == RATE_INFO_BW_EHT_RU &&
1527 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1528 result = rates_484[rate->eht_gi];
1529 else if (rate->bw == RATE_INFO_BW_20 ||
1530 (rate->bw == RATE_INFO_BW_EHT_RU &&
1531 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1532 result = rates_242[rate->eht_gi];
1533 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1534 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1535 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1536 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1537 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1538 result = rates_106[rate->eht_gi];
1539 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1540 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1541 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1542 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1543 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1544 result = rates_52[rate->eht_gi];
1545 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1546 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1547 result = rates_26[rate->eht_gi];
1548 else {
1549 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1550 rate->bw, rate->eht_ru_alloc);
1551 return 0;
1552 }
1553
1554 /* now scale to the appropriate MCS */
1555 tmp = result;
1556 tmp *= SCALE;
1557 do_div(tmp, mcs_divisors[rate->mcs]);
1558
1559 /* and take NSS */
1560 tmp *= rate->nss;
1561 do_div(tmp, 8);
1562
1563 result = tmp;
1564
1565 return result / 10000;
1566 }
1567
cfg80211_calculate_bitrate(struct rate_info * rate)1568 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1569 {
1570 if (rate->flags & RATE_INFO_FLAGS_MCS)
1571 return cfg80211_calculate_bitrate_ht(rate);
1572 if (rate->flags & RATE_INFO_FLAGS_DMG)
1573 return cfg80211_calculate_bitrate_dmg(rate);
1574 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1575 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1576 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1577 return cfg80211_calculate_bitrate_edmg(rate);
1578 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1579 return cfg80211_calculate_bitrate_vht(rate);
1580 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1581 return cfg80211_calculate_bitrate_he(rate);
1582 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1583 return cfg80211_calculate_bitrate_eht(rate);
1584
1585 return rate->legacy;
1586 }
1587 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1588
cfg80211_get_p2p_attr(const u8 * ies,unsigned int len,enum ieee80211_p2p_attr_id attr,u8 * buf,unsigned int bufsize)1589 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1590 enum ieee80211_p2p_attr_id attr,
1591 u8 *buf, unsigned int bufsize)
1592 {
1593 u8 *out = buf;
1594 u16 attr_remaining = 0;
1595 bool desired_attr = false;
1596 u16 desired_len = 0;
1597
1598 while (len > 0) {
1599 unsigned int iedatalen;
1600 unsigned int copy;
1601 const u8 *iedata;
1602
1603 if (len < 2)
1604 return -EILSEQ;
1605 iedatalen = ies[1];
1606 if (iedatalen + 2 > len)
1607 return -EILSEQ;
1608
1609 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1610 goto cont;
1611
1612 if (iedatalen < 4)
1613 goto cont;
1614
1615 iedata = ies + 2;
1616
1617 /* check WFA OUI, P2P subtype */
1618 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1619 iedata[2] != 0x9a || iedata[3] != 0x09)
1620 goto cont;
1621
1622 iedatalen -= 4;
1623 iedata += 4;
1624
1625 /* check attribute continuation into this IE */
1626 copy = min_t(unsigned int, attr_remaining, iedatalen);
1627 if (copy && desired_attr) {
1628 desired_len += copy;
1629 if (out) {
1630 memcpy(out, iedata, min(bufsize, copy));
1631 out += min(bufsize, copy);
1632 bufsize -= min(bufsize, copy);
1633 }
1634
1635
1636 if (copy == attr_remaining)
1637 return desired_len;
1638 }
1639
1640 attr_remaining -= copy;
1641 if (attr_remaining)
1642 goto cont;
1643
1644 iedatalen -= copy;
1645 iedata += copy;
1646
1647 while (iedatalen > 0) {
1648 u16 attr_len;
1649
1650 /* P2P attribute ID & size must fit */
1651 if (iedatalen < 3)
1652 return -EILSEQ;
1653 desired_attr = iedata[0] == attr;
1654 attr_len = get_unaligned_le16(iedata + 1);
1655 iedatalen -= 3;
1656 iedata += 3;
1657
1658 copy = min_t(unsigned int, attr_len, iedatalen);
1659
1660 if (desired_attr) {
1661 desired_len += copy;
1662 if (out) {
1663 memcpy(out, iedata, min(bufsize, copy));
1664 out += min(bufsize, copy);
1665 bufsize -= min(bufsize, copy);
1666 }
1667
1668 if (copy == attr_len)
1669 return desired_len;
1670 }
1671
1672 iedata += copy;
1673 iedatalen -= copy;
1674 attr_remaining = attr_len - copy;
1675 }
1676
1677 cont:
1678 len -= ies[1] + 2;
1679 ies += ies[1] + 2;
1680 }
1681
1682 if (attr_remaining && desired_attr)
1683 return -EILSEQ;
1684
1685 return -ENOENT;
1686 }
1687 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1688
ieee80211_id_in_list(const u8 * ids,int n_ids,u8 id,bool id_ext)1689 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1690 {
1691 int i;
1692
1693 /* Make sure array values are legal */
1694 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1695 return false;
1696
1697 i = 0;
1698 while (i < n_ids) {
1699 if (ids[i] == WLAN_EID_EXTENSION) {
1700 if (id_ext && (ids[i + 1] == id))
1701 return true;
1702
1703 i += 2;
1704 continue;
1705 }
1706
1707 if (ids[i] == id && !id_ext)
1708 return true;
1709
1710 i++;
1711 }
1712 return false;
1713 }
1714
skip_ie(const u8 * ies,size_t ielen,size_t pos)1715 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1716 {
1717 /* we assume a validly formed IEs buffer */
1718 u8 len = ies[pos + 1];
1719
1720 pos += 2 + len;
1721
1722 /* the IE itself must have 255 bytes for fragments to follow */
1723 if (len < 255)
1724 return pos;
1725
1726 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1727 len = ies[pos + 1];
1728 pos += 2 + len;
1729 }
1730
1731 return pos;
1732 }
1733
ieee80211_ie_split_ric(const u8 * ies,size_t ielen,const u8 * ids,int n_ids,const u8 * after_ric,int n_after_ric,size_t offset)1734 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1735 const u8 *ids, int n_ids,
1736 const u8 *after_ric, int n_after_ric,
1737 size_t offset)
1738 {
1739 size_t pos = offset;
1740
1741 while (pos < ielen) {
1742 u8 ext = 0;
1743
1744 if (ies[pos] == WLAN_EID_EXTENSION)
1745 ext = 2;
1746 if ((pos + ext) >= ielen)
1747 break;
1748
1749 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1750 ies[pos] == WLAN_EID_EXTENSION))
1751 break;
1752
1753 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1754 pos = skip_ie(ies, ielen, pos);
1755
1756 while (pos < ielen) {
1757 if (ies[pos] == WLAN_EID_EXTENSION)
1758 ext = 2;
1759 else
1760 ext = 0;
1761
1762 if ((pos + ext) >= ielen)
1763 break;
1764
1765 if (!ieee80211_id_in_list(after_ric,
1766 n_after_ric,
1767 ies[pos + ext],
1768 ext == 2))
1769 pos = skip_ie(ies, ielen, pos);
1770 else
1771 break;
1772 }
1773 } else {
1774 pos = skip_ie(ies, ielen, pos);
1775 }
1776 }
1777
1778 return pos;
1779 }
1780 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1781
ieee80211_operating_class_to_band(u8 operating_class,enum nl80211_band * band)1782 bool ieee80211_operating_class_to_band(u8 operating_class,
1783 enum nl80211_band *band)
1784 {
1785 switch (operating_class) {
1786 case 112:
1787 case 115 ... 127:
1788 case 128 ... 130:
1789 *band = NL80211_BAND_5GHZ;
1790 return true;
1791 case 131 ... 135:
1792 *band = NL80211_BAND_6GHZ;
1793 return true;
1794 case 81:
1795 case 82:
1796 case 83:
1797 case 84:
1798 *band = NL80211_BAND_2GHZ;
1799 return true;
1800 case 180:
1801 *band = NL80211_BAND_60GHZ;
1802 return true;
1803 }
1804
1805 return false;
1806 }
1807 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1808
ieee80211_chandef_to_operating_class(struct cfg80211_chan_def * chandef,u8 * op_class)1809 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1810 u8 *op_class)
1811 {
1812 u8 vht_opclass;
1813 u32 freq = chandef->center_freq1;
1814
1815 if (freq >= 2412 && freq <= 2472) {
1816 if (chandef->width > NL80211_CHAN_WIDTH_40)
1817 return false;
1818
1819 /* 2.407 GHz, channels 1..13 */
1820 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1821 if (freq > chandef->chan->center_freq)
1822 *op_class = 83; /* HT40+ */
1823 else
1824 *op_class = 84; /* HT40- */
1825 } else {
1826 *op_class = 81;
1827 }
1828
1829 return true;
1830 }
1831
1832 if (freq == 2484) {
1833 /* channel 14 is only for IEEE 802.11b */
1834 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1835 return false;
1836
1837 *op_class = 82; /* channel 14 */
1838 return true;
1839 }
1840
1841 switch (chandef->width) {
1842 case NL80211_CHAN_WIDTH_80:
1843 vht_opclass = 128;
1844 break;
1845 case NL80211_CHAN_WIDTH_160:
1846 vht_opclass = 129;
1847 break;
1848 case NL80211_CHAN_WIDTH_80P80:
1849 vht_opclass = 130;
1850 break;
1851 case NL80211_CHAN_WIDTH_10:
1852 case NL80211_CHAN_WIDTH_5:
1853 return false; /* unsupported for now */
1854 default:
1855 vht_opclass = 0;
1856 break;
1857 }
1858
1859 /* 5 GHz, channels 36..48 */
1860 if (freq >= 5180 && freq <= 5240) {
1861 if (vht_opclass) {
1862 *op_class = vht_opclass;
1863 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1864 if (freq > chandef->chan->center_freq)
1865 *op_class = 116;
1866 else
1867 *op_class = 117;
1868 } else {
1869 *op_class = 115;
1870 }
1871
1872 return true;
1873 }
1874
1875 /* 5 GHz, channels 52..64 */
1876 if (freq >= 5260 && freq <= 5320) {
1877 if (vht_opclass) {
1878 *op_class = vht_opclass;
1879 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1880 if (freq > chandef->chan->center_freq)
1881 *op_class = 119;
1882 else
1883 *op_class = 120;
1884 } else {
1885 *op_class = 118;
1886 }
1887
1888 return true;
1889 }
1890
1891 /* 5 GHz, channels 100..144 */
1892 if (freq >= 5500 && freq <= 5720) {
1893 if (vht_opclass) {
1894 *op_class = vht_opclass;
1895 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1896 if (freq > chandef->chan->center_freq)
1897 *op_class = 122;
1898 else
1899 *op_class = 123;
1900 } else {
1901 *op_class = 121;
1902 }
1903
1904 return true;
1905 }
1906
1907 /* 5 GHz, channels 149..169 */
1908 if (freq >= 5745 && freq <= 5845) {
1909 if (vht_opclass) {
1910 *op_class = vht_opclass;
1911 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1912 if (freq > chandef->chan->center_freq)
1913 *op_class = 126;
1914 else
1915 *op_class = 127;
1916 } else if (freq <= 5805) {
1917 *op_class = 124;
1918 } else {
1919 *op_class = 125;
1920 }
1921
1922 return true;
1923 }
1924
1925 /* 56.16 GHz, channel 1..4 */
1926 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1927 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1928 return false;
1929
1930 *op_class = 180;
1931 return true;
1932 }
1933
1934 /* not supported yet */
1935 return false;
1936 }
1937 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1938
cfg80211_wdev_bi(struct wireless_dev * wdev)1939 static int cfg80211_wdev_bi(struct wireless_dev *wdev)
1940 {
1941 switch (wdev->iftype) {
1942 case NL80211_IFTYPE_AP:
1943 case NL80211_IFTYPE_P2P_GO:
1944 WARN_ON(wdev->valid_links);
1945 return wdev->links[0].ap.beacon_interval;
1946 case NL80211_IFTYPE_MESH_POINT:
1947 return wdev->u.mesh.beacon_interval;
1948 case NL80211_IFTYPE_ADHOC:
1949 return wdev->u.ibss.beacon_interval;
1950 default:
1951 break;
1952 }
1953
1954 return 0;
1955 }
1956
cfg80211_calculate_bi_data(struct wiphy * wiphy,u32 new_beacon_int,u32 * beacon_int_gcd,bool * beacon_int_different)1957 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1958 u32 *beacon_int_gcd,
1959 bool *beacon_int_different)
1960 {
1961 struct wireless_dev *wdev;
1962
1963 *beacon_int_gcd = 0;
1964 *beacon_int_different = false;
1965
1966 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1967 int wdev_bi;
1968
1969 /* this feature isn't supported with MLO */
1970 if (wdev->valid_links)
1971 continue;
1972
1973 wdev_bi = cfg80211_wdev_bi(wdev);
1974
1975 if (!wdev_bi)
1976 continue;
1977
1978 if (!*beacon_int_gcd) {
1979 *beacon_int_gcd = wdev_bi;
1980 continue;
1981 }
1982
1983 if (wdev_bi == *beacon_int_gcd)
1984 continue;
1985
1986 *beacon_int_different = true;
1987 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
1988 }
1989
1990 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1991 if (*beacon_int_gcd)
1992 *beacon_int_different = true;
1993 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1994 }
1995 }
1996
cfg80211_validate_beacon_int(struct cfg80211_registered_device * rdev,enum nl80211_iftype iftype,u32 beacon_int)1997 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1998 enum nl80211_iftype iftype, u32 beacon_int)
1999 {
2000 /*
2001 * This is just a basic pre-condition check; if interface combinations
2002 * are possible the driver must already be checking those with a call
2003 * to cfg80211_check_combinations(), in which case we'll validate more
2004 * through the cfg80211_calculate_bi_data() call and code in
2005 * cfg80211_iter_combinations().
2006 */
2007
2008 if (beacon_int < 10 || beacon_int > 10000)
2009 return -EINVAL;
2010
2011 return 0;
2012 }
2013
cfg80211_iter_combinations(struct wiphy * wiphy,struct iface_combination_params * params,void (* iter)(const struct ieee80211_iface_combination * c,void * data),void * data)2014 int cfg80211_iter_combinations(struct wiphy *wiphy,
2015 struct iface_combination_params *params,
2016 void (*iter)(const struct ieee80211_iface_combination *c,
2017 void *data),
2018 void *data)
2019 {
2020 const struct ieee80211_regdomain *regdom;
2021 enum nl80211_dfs_regions region = 0;
2022 int i, j, iftype;
2023 int num_interfaces = 0;
2024 u32 used_iftypes = 0;
2025 u32 beacon_int_gcd;
2026 bool beacon_int_different;
2027
2028 /*
2029 * This is a bit strange, since the iteration used to rely only on
2030 * the data given by the driver, but here it now relies on context,
2031 * in form of the currently operating interfaces.
2032 * This is OK for all current users, and saves us from having to
2033 * push the GCD calculations into all the drivers.
2034 * In the future, this should probably rely more on data that's in
2035 * cfg80211 already - the only thing not would appear to be any new
2036 * interfaces (while being brought up) and channel/radar data.
2037 */
2038 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2039 &beacon_int_gcd, &beacon_int_different);
2040
2041 if (params->radar_detect) {
2042 rcu_read_lock();
2043 regdom = rcu_dereference(cfg80211_regdomain);
2044 if (regdom)
2045 region = regdom->dfs_region;
2046 rcu_read_unlock();
2047 }
2048
2049 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2050 num_interfaces += params->iftype_num[iftype];
2051 if (params->iftype_num[iftype] > 0 &&
2052 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2053 used_iftypes |= BIT(iftype);
2054 }
2055
2056 for (i = 0; i < wiphy->n_iface_combinations; i++) {
2057 const struct ieee80211_iface_combination *c;
2058 struct ieee80211_iface_limit *limits;
2059 u32 all_iftypes = 0;
2060
2061 c = &wiphy->iface_combinations[i];
2062
2063 if (num_interfaces > c->max_interfaces)
2064 continue;
2065 if (params->num_different_channels > c->num_different_channels)
2066 continue;
2067
2068 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2069 GFP_KERNEL);
2070 if (!limits)
2071 return -ENOMEM;
2072
2073 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2074 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2075 continue;
2076 for (j = 0; j < c->n_limits; j++) {
2077 all_iftypes |= limits[j].types;
2078 if (!(limits[j].types & BIT(iftype)))
2079 continue;
2080 if (limits[j].max < params->iftype_num[iftype])
2081 goto cont;
2082 limits[j].max -= params->iftype_num[iftype];
2083 }
2084 }
2085
2086 if (params->radar_detect !=
2087 (c->radar_detect_widths & params->radar_detect))
2088 goto cont;
2089
2090 if (params->radar_detect && c->radar_detect_regions &&
2091 !(c->radar_detect_regions & BIT(region)))
2092 goto cont;
2093
2094 /* Finally check that all iftypes that we're currently
2095 * using are actually part of this combination. If they
2096 * aren't then we can't use this combination and have
2097 * to continue to the next.
2098 */
2099 if ((all_iftypes & used_iftypes) != used_iftypes)
2100 goto cont;
2101
2102 if (beacon_int_gcd) {
2103 if (c->beacon_int_min_gcd &&
2104 beacon_int_gcd < c->beacon_int_min_gcd)
2105 goto cont;
2106 if (!c->beacon_int_min_gcd && beacon_int_different)
2107 goto cont;
2108 }
2109
2110 /* This combination covered all interface types and
2111 * supported the requested numbers, so we're good.
2112 */
2113
2114 (*iter)(c, data);
2115 cont:
2116 kfree(limits);
2117 }
2118
2119 return 0;
2120 }
2121 EXPORT_SYMBOL(cfg80211_iter_combinations);
2122
2123 static void
cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination * c,void * data)2124 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2125 void *data)
2126 {
2127 int *num = data;
2128 (*num)++;
2129 }
2130
cfg80211_check_combinations(struct wiphy * wiphy,struct iface_combination_params * params)2131 int cfg80211_check_combinations(struct wiphy *wiphy,
2132 struct iface_combination_params *params)
2133 {
2134 int err, num = 0;
2135
2136 err = cfg80211_iter_combinations(wiphy, params,
2137 cfg80211_iter_sum_ifcombs, &num);
2138 if (err)
2139 return err;
2140 if (num == 0)
2141 return -EBUSY;
2142
2143 return 0;
2144 }
2145 EXPORT_SYMBOL(cfg80211_check_combinations);
2146
ieee80211_get_ratemask(struct ieee80211_supported_band * sband,const u8 * rates,unsigned int n_rates,u32 * mask)2147 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2148 const u8 *rates, unsigned int n_rates,
2149 u32 *mask)
2150 {
2151 int i, j;
2152
2153 if (!sband)
2154 return -EINVAL;
2155
2156 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2157 return -EINVAL;
2158
2159 *mask = 0;
2160
2161 for (i = 0; i < n_rates; i++) {
2162 int rate = (rates[i] & 0x7f) * 5;
2163 bool found = false;
2164
2165 for (j = 0; j < sband->n_bitrates; j++) {
2166 if (sband->bitrates[j].bitrate == rate) {
2167 found = true;
2168 *mask |= BIT(j);
2169 break;
2170 }
2171 }
2172 if (!found)
2173 return -EINVAL;
2174 }
2175
2176 /*
2177 * mask must have at least one bit set here since we
2178 * didn't accept a 0-length rates array nor allowed
2179 * entries in the array that didn't exist
2180 */
2181
2182 return 0;
2183 }
2184
ieee80211_get_num_supported_channels(struct wiphy * wiphy)2185 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2186 {
2187 enum nl80211_band band;
2188 unsigned int n_channels = 0;
2189
2190 for (band = 0; band < NUM_NL80211_BANDS; band++)
2191 if (wiphy->bands[band])
2192 n_channels += wiphy->bands[band]->n_channels;
2193
2194 return n_channels;
2195 }
2196 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2197
cfg80211_get_station(struct net_device * dev,const u8 * mac_addr,struct station_info * sinfo)2198 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2199 struct station_info *sinfo)
2200 {
2201 struct cfg80211_registered_device *rdev;
2202 struct wireless_dev *wdev;
2203
2204 wdev = dev->ieee80211_ptr;
2205 if (!wdev)
2206 return -EOPNOTSUPP;
2207
2208 rdev = wiphy_to_rdev(wdev->wiphy);
2209 if (!rdev->ops->get_station)
2210 return -EOPNOTSUPP;
2211
2212 memset(sinfo, 0, sizeof(*sinfo));
2213
2214 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2215 }
2216 EXPORT_SYMBOL(cfg80211_get_station);
2217
cfg80211_free_nan_func(struct cfg80211_nan_func * f)2218 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2219 {
2220 int i;
2221
2222 if (!f)
2223 return;
2224
2225 kfree(f->serv_spec_info);
2226 kfree(f->srf_bf);
2227 kfree(f->srf_macs);
2228 for (i = 0; i < f->num_rx_filters; i++)
2229 kfree(f->rx_filters[i].filter);
2230
2231 for (i = 0; i < f->num_tx_filters; i++)
2232 kfree(f->tx_filters[i].filter);
2233
2234 kfree(f->rx_filters);
2235 kfree(f->tx_filters);
2236 kfree(f);
2237 }
2238 EXPORT_SYMBOL(cfg80211_free_nan_func);
2239
cfg80211_does_bw_fit_range(const struct ieee80211_freq_range * freq_range,u32 center_freq_khz,u32 bw_khz)2240 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2241 u32 center_freq_khz, u32 bw_khz)
2242 {
2243 u32 start_freq_khz, end_freq_khz;
2244
2245 start_freq_khz = center_freq_khz - (bw_khz / 2);
2246 end_freq_khz = center_freq_khz + (bw_khz / 2);
2247
2248 if (start_freq_khz >= freq_range->start_freq_khz &&
2249 end_freq_khz <= freq_range->end_freq_khz)
2250 return true;
2251
2252 return false;
2253 }
2254
cfg80211_sinfo_alloc_tid_stats(struct station_info * sinfo,gfp_t gfp)2255 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2256 {
2257 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2258 sizeof(*(sinfo->pertid)),
2259 gfp);
2260 if (!sinfo->pertid)
2261 return -ENOMEM;
2262
2263 return 0;
2264 }
2265 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2266
2267 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2268 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2269 const unsigned char rfc1042_header[] __aligned(2) =
2270 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2271 EXPORT_SYMBOL(rfc1042_header);
2272
2273 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2274 const unsigned char bridge_tunnel_header[] __aligned(2) =
2275 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2276 EXPORT_SYMBOL(bridge_tunnel_header);
2277
2278 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2279 struct iapp_layer2_update {
2280 u8 da[ETH_ALEN]; /* broadcast */
2281 u8 sa[ETH_ALEN]; /* STA addr */
2282 __be16 len; /* 6 */
2283 u8 dsap; /* 0 */
2284 u8 ssap; /* 0 */
2285 u8 control;
2286 u8 xid_info[3];
2287 } __packed;
2288
cfg80211_send_layer2_update(struct net_device * dev,const u8 * addr)2289 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2290 {
2291 struct iapp_layer2_update *msg;
2292 struct sk_buff *skb;
2293
2294 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2295 * bridge devices */
2296
2297 skb = dev_alloc_skb(sizeof(*msg));
2298 if (!skb)
2299 return;
2300 msg = skb_put(skb, sizeof(*msg));
2301
2302 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2303 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2304
2305 eth_broadcast_addr(msg->da);
2306 ether_addr_copy(msg->sa, addr);
2307 msg->len = htons(6);
2308 msg->dsap = 0;
2309 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2310 msg->control = 0xaf; /* XID response lsb.1111F101.
2311 * F=0 (no poll command; unsolicited frame) */
2312 msg->xid_info[0] = 0x81; /* XID format identifier */
2313 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2314 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2315
2316 skb->dev = dev;
2317 skb->protocol = eth_type_trans(skb, dev);
2318 memset(skb->cb, 0, sizeof(skb->cb));
2319 netif_rx_ni(skb);
2320 }
2321 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2322
ieee80211_get_vht_max_nss(struct ieee80211_vht_cap * cap,enum ieee80211_vht_chanwidth bw,int mcs,bool ext_nss_bw_capable,unsigned int max_vht_nss)2323 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2324 enum ieee80211_vht_chanwidth bw,
2325 int mcs, bool ext_nss_bw_capable,
2326 unsigned int max_vht_nss)
2327 {
2328 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2329 int ext_nss_bw;
2330 int supp_width;
2331 int i, mcs_encoding;
2332
2333 if (map == 0xffff)
2334 return 0;
2335
2336 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2337 return 0;
2338 if (mcs <= 7)
2339 mcs_encoding = 0;
2340 else if (mcs == 8)
2341 mcs_encoding = 1;
2342 else
2343 mcs_encoding = 2;
2344
2345 if (!max_vht_nss) {
2346 /* find max_vht_nss for the given MCS */
2347 for (i = 7; i >= 0; i--) {
2348 int supp = (map >> (2 * i)) & 3;
2349
2350 if (supp == 3)
2351 continue;
2352
2353 if (supp >= mcs_encoding) {
2354 max_vht_nss = i + 1;
2355 break;
2356 }
2357 }
2358 }
2359
2360 if (!(cap->supp_mcs.tx_mcs_map &
2361 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2362 return max_vht_nss;
2363
2364 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2365 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2366 supp_width = le32_get_bits(cap->vht_cap_info,
2367 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2368
2369 /* if not capable, treat ext_nss_bw as 0 */
2370 if (!ext_nss_bw_capable)
2371 ext_nss_bw = 0;
2372
2373 /* This is invalid */
2374 if (supp_width == 3)
2375 return 0;
2376
2377 /* This is an invalid combination so pretend nothing is supported */
2378 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2379 return 0;
2380
2381 /*
2382 * Cover all the special cases according to IEEE 802.11-2016
2383 * Table 9-250. All other cases are either factor of 1 or not
2384 * valid/supported.
2385 */
2386 switch (bw) {
2387 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2388 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2389 if ((supp_width == 1 || supp_width == 2) &&
2390 ext_nss_bw == 3)
2391 return 2 * max_vht_nss;
2392 break;
2393 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2394 if (supp_width == 0 &&
2395 (ext_nss_bw == 1 || ext_nss_bw == 2))
2396 return max_vht_nss / 2;
2397 if (supp_width == 0 &&
2398 ext_nss_bw == 3)
2399 return (3 * max_vht_nss) / 4;
2400 if (supp_width == 1 &&
2401 ext_nss_bw == 3)
2402 return 2 * max_vht_nss;
2403 break;
2404 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2405 if (supp_width == 0 && ext_nss_bw == 1)
2406 return 0; /* not possible */
2407 if (supp_width == 0 &&
2408 ext_nss_bw == 2)
2409 return max_vht_nss / 2;
2410 if (supp_width == 0 &&
2411 ext_nss_bw == 3)
2412 return (3 * max_vht_nss) / 4;
2413 if (supp_width == 1 &&
2414 ext_nss_bw == 0)
2415 return 0; /* not possible */
2416 if (supp_width == 1 &&
2417 ext_nss_bw == 1)
2418 return max_vht_nss / 2;
2419 if (supp_width == 1 &&
2420 ext_nss_bw == 2)
2421 return (3 * max_vht_nss) / 4;
2422 break;
2423 }
2424
2425 /* not covered or invalid combination received */
2426 return max_vht_nss;
2427 }
2428 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2429
cfg80211_iftype_allowed(struct wiphy * wiphy,enum nl80211_iftype iftype,bool is_4addr,u8 check_swif)2430 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2431 bool is_4addr, u8 check_swif)
2432
2433 {
2434 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2435
2436 switch (check_swif) {
2437 case 0:
2438 if (is_vlan && is_4addr)
2439 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2440 return wiphy->interface_modes & BIT(iftype);
2441 case 1:
2442 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2443 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2444 return wiphy->software_iftypes & BIT(iftype);
2445 default:
2446 break;
2447 }
2448
2449 return false;
2450 }
2451 EXPORT_SYMBOL(cfg80211_iftype_allowed);
2452
cfg80211_remove_link(struct wireless_dev * wdev,unsigned int link_id)2453 void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2454 {
2455 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2456
2457 ASSERT_WDEV_LOCK(wdev);
2458
2459 switch (wdev->iftype) {
2460 case NL80211_IFTYPE_AP:
2461 case NL80211_IFTYPE_P2P_GO:
2462 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2463 break;
2464 default:
2465 /* per-link not relevant */
2466 break;
2467 }
2468
2469 wdev->valid_links &= ~BIT(link_id);
2470
2471 rdev_del_intf_link(rdev, wdev, link_id);
2472
2473 eth_zero_addr(wdev->links[link_id].addr);
2474 }
2475
cfg80211_remove_links(struct wireless_dev * wdev)2476 void cfg80211_remove_links(struct wireless_dev *wdev)
2477 {
2478 unsigned int link_id;
2479
2480 wdev_lock(wdev);
2481 if (wdev->valid_links) {
2482 for_each_valid_link(wdev, link_id)
2483 cfg80211_remove_link(wdev, link_id);
2484 }
2485 wdev_unlock(wdev);
2486 }
2487
cfg80211_remove_virtual_intf(struct cfg80211_registered_device * rdev,struct wireless_dev * wdev)2488 int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2489 struct wireless_dev *wdev)
2490 {
2491 cfg80211_remove_links(wdev);
2492
2493 return rdev_del_virtual_intf(rdev, wdev);
2494 }
2495
2496 const struct wiphy_iftype_ext_capab *
cfg80211_get_iftype_ext_capa(struct wiphy * wiphy,enum nl80211_iftype type)2497 cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2498 {
2499 int i;
2500
2501 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2502 if (wiphy->iftype_ext_capab[i].iftype == type)
2503 return &wiphy->iftype_ext_capab[i];
2504 }
2505
2506 return NULL;
2507 }
2508 EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2509