1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
get_nr_inodes(void)80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
get_nr_inodes_unused(void)89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
get_nr_dirty_inodes(void)98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
no_open(struct inode * inode,struct file * file)118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
inode_init_always(struct super_block * sb,struct inode * inode)131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic64_set(&inode->i_sequence, 0);
141 atomic_set(&inode->i_count, 1);
142 inode->i_op = &empty_iops;
143 inode->i_fop = &no_open_fops;
144 inode->i_ino = 0;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
168 #endif
169
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175
176 atomic_set(&inode->i_dio_count, 0);
177
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
180 mapping->flags = 0;
181 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
182 __set_bit(AS_THP_SUPPORT, &mapping->flags);
183 mapping->wb_err = 0;
184 atomic_set(&mapping->i_mmap_writable, 0);
185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
186 atomic_set(&mapping->nr_thps, 0);
187 #endif
188 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
189 mapping->private_data = NULL;
190 mapping->writeback_index = 0;
191 init_rwsem(&mapping->invalidate_lock);
192 lockdep_set_class_and_name(&mapping->invalidate_lock,
193 &sb->s_type->invalidate_lock_key,
194 "mapping.invalidate_lock");
195 inode->i_private = NULL;
196 inode->i_mapping = mapping;
197 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
198 #ifdef CONFIG_FS_POSIX_ACL
199 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
200 #endif
201
202 #ifdef CONFIG_FSNOTIFY
203 inode->i_fsnotify_mask = 0;
204 #endif
205 inode->i_flctx = NULL;
206
207 if (unlikely(security_inode_alloc(inode)))
208 return -ENOMEM;
209 this_cpu_inc(nr_inodes);
210
211 return 0;
212 }
213 EXPORT_SYMBOL(inode_init_always);
214
free_inode_nonrcu(struct inode * inode)215 void free_inode_nonrcu(struct inode *inode)
216 {
217 kmem_cache_free(inode_cachep, inode);
218 }
219 EXPORT_SYMBOL(free_inode_nonrcu);
220
i_callback(struct rcu_head * head)221 static void i_callback(struct rcu_head *head)
222 {
223 struct inode *inode = container_of(head, struct inode, i_rcu);
224 if (inode->free_inode)
225 inode->free_inode(inode);
226 else
227 free_inode_nonrcu(inode);
228 }
229
alloc_inode(struct super_block * sb)230 static struct inode *alloc_inode(struct super_block *sb)
231 {
232 const struct super_operations *ops = sb->s_op;
233 struct inode *inode;
234
235 if (ops->alloc_inode)
236 inode = ops->alloc_inode(sb);
237 else
238 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
239
240 if (!inode)
241 return NULL;
242
243 if (unlikely(inode_init_always(sb, inode))) {
244 if (ops->destroy_inode) {
245 ops->destroy_inode(inode);
246 if (!ops->free_inode)
247 return NULL;
248 }
249 inode->free_inode = ops->free_inode;
250 i_callback(&inode->i_rcu);
251 return NULL;
252 }
253
254 return inode;
255 }
256
__destroy_inode(struct inode * inode)257 void __destroy_inode(struct inode *inode)
258 {
259 BUG_ON(inode_has_buffers(inode));
260 inode_detach_wb(inode);
261 security_inode_free(inode);
262 fsnotify_inode_delete(inode);
263 locks_free_lock_context(inode);
264 if (!inode->i_nlink) {
265 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
266 atomic_long_dec(&inode->i_sb->s_remove_count);
267 }
268
269 #ifdef CONFIG_FS_POSIX_ACL
270 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
271 posix_acl_release(inode->i_acl);
272 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
273 posix_acl_release(inode->i_default_acl);
274 #endif
275 this_cpu_dec(nr_inodes);
276 }
277 EXPORT_SYMBOL(__destroy_inode);
278
destroy_inode(struct inode * inode)279 static void destroy_inode(struct inode *inode)
280 {
281 const struct super_operations *ops = inode->i_sb->s_op;
282
283 BUG_ON(!list_empty(&inode->i_lru));
284 __destroy_inode(inode);
285 if (ops->destroy_inode) {
286 ops->destroy_inode(inode);
287 if (!ops->free_inode)
288 return;
289 }
290 inode->free_inode = ops->free_inode;
291 call_rcu(&inode->i_rcu, i_callback);
292 }
293
294 /**
295 * drop_nlink - directly drop an inode's link count
296 * @inode: inode
297 *
298 * This is a low-level filesystem helper to replace any
299 * direct filesystem manipulation of i_nlink. In cases
300 * where we are attempting to track writes to the
301 * filesystem, a decrement to zero means an imminent
302 * write when the file is truncated and actually unlinked
303 * on the filesystem.
304 */
drop_nlink(struct inode * inode)305 void drop_nlink(struct inode *inode)
306 {
307 WARN_ON(inode->i_nlink == 0);
308 inode->__i_nlink--;
309 if (!inode->i_nlink)
310 atomic_long_inc(&inode->i_sb->s_remove_count);
311 }
312 EXPORT_SYMBOL_NS(drop_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
313
314 /**
315 * clear_nlink - directly zero an inode's link count
316 * @inode: inode
317 *
318 * This is a low-level filesystem helper to replace any
319 * direct filesystem manipulation of i_nlink. See
320 * drop_nlink() for why we care about i_nlink hitting zero.
321 */
clear_nlink(struct inode * inode)322 void clear_nlink(struct inode *inode)
323 {
324 if (inode->i_nlink) {
325 inode->__i_nlink = 0;
326 atomic_long_inc(&inode->i_sb->s_remove_count);
327 }
328 }
329 EXPORT_SYMBOL(clear_nlink);
330
331 /**
332 * set_nlink - directly set an inode's link count
333 * @inode: inode
334 * @nlink: new nlink (should be non-zero)
335 *
336 * This is a low-level filesystem helper to replace any
337 * direct filesystem manipulation of i_nlink.
338 */
set_nlink(struct inode * inode,unsigned int nlink)339 void set_nlink(struct inode *inode, unsigned int nlink)
340 {
341 if (!nlink) {
342 clear_nlink(inode);
343 } else {
344 /* Yes, some filesystems do change nlink from zero to one */
345 if (inode->i_nlink == 0)
346 atomic_long_dec(&inode->i_sb->s_remove_count);
347
348 inode->__i_nlink = nlink;
349 }
350 }
351 EXPORT_SYMBOL_NS(set_nlink, ANDROID_GKI_VFS_EXPORT_ONLY);
352
353 /**
354 * inc_nlink - directly increment an inode's link count
355 * @inode: inode
356 *
357 * This is a low-level filesystem helper to replace any
358 * direct filesystem manipulation of i_nlink. Currently,
359 * it is only here for parity with dec_nlink().
360 */
inc_nlink(struct inode * inode)361 void inc_nlink(struct inode *inode)
362 {
363 if (unlikely(inode->i_nlink == 0)) {
364 WARN_ON(!(inode->i_state & I_LINKABLE));
365 atomic_long_dec(&inode->i_sb->s_remove_count);
366 }
367
368 inode->__i_nlink++;
369 }
370 EXPORT_SYMBOL(inc_nlink);
371
__address_space_init_once(struct address_space * mapping)372 static void __address_space_init_once(struct address_space *mapping)
373 {
374 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
375 init_rwsem(&mapping->i_mmap_rwsem);
376 INIT_LIST_HEAD(&mapping->private_list);
377 spin_lock_init(&mapping->private_lock);
378 mapping->i_mmap = RB_ROOT_CACHED;
379 }
380
address_space_init_once(struct address_space * mapping)381 void address_space_init_once(struct address_space *mapping)
382 {
383 memset(mapping, 0, sizeof(*mapping));
384 __address_space_init_once(mapping);
385 }
386 EXPORT_SYMBOL(address_space_init_once);
387
388 /*
389 * These are initializations that only need to be done
390 * once, because the fields are idempotent across use
391 * of the inode, so let the slab aware of that.
392 */
inode_init_once(struct inode * inode)393 void inode_init_once(struct inode *inode)
394 {
395 memset(inode, 0, sizeof(*inode));
396 INIT_HLIST_NODE(&inode->i_hash);
397 INIT_LIST_HEAD(&inode->i_devices);
398 INIT_LIST_HEAD(&inode->i_io_list);
399 INIT_LIST_HEAD(&inode->i_wb_list);
400 INIT_LIST_HEAD(&inode->i_lru);
401 __address_space_init_once(&inode->i_data);
402 i_size_ordered_init(inode);
403 }
404 EXPORT_SYMBOL_NS(inode_init_once, ANDROID_GKI_VFS_EXPORT_ONLY);
405
init_once(void * foo)406 static void init_once(void *foo)
407 {
408 struct inode *inode = (struct inode *) foo;
409
410 inode_init_once(inode);
411 }
412
413 /*
414 * inode->i_lock must be held
415 */
__iget(struct inode * inode)416 void __iget(struct inode *inode)
417 {
418 atomic_inc(&inode->i_count);
419 }
420
421 /*
422 * get additional reference to inode; caller must already hold one.
423 */
ihold(struct inode * inode)424 void ihold(struct inode *inode)
425 {
426 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
427 }
428 EXPORT_SYMBOL_NS(ihold, ANDROID_GKI_VFS_EXPORT_ONLY);
429
inode_lru_list_add(struct inode * inode)430 static void inode_lru_list_add(struct inode *inode)
431 {
432 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
433 this_cpu_inc(nr_unused);
434 else
435 inode->i_state |= I_REFERENCED;
436 }
437
438 /*
439 * Add inode to LRU if needed (inode is unused and clean).
440 *
441 * Needs inode->i_lock held.
442 */
inode_add_lru(struct inode * inode)443 void inode_add_lru(struct inode *inode)
444 {
445 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
446 I_FREEING | I_WILL_FREE)) &&
447 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
448 inode_lru_list_add(inode);
449 }
450
451
inode_lru_list_del(struct inode * inode)452 static void inode_lru_list_del(struct inode *inode)
453 {
454
455 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
456 this_cpu_dec(nr_unused);
457 }
458
459 /**
460 * inode_sb_list_add - add inode to the superblock list of inodes
461 * @inode: inode to add
462 */
inode_sb_list_add(struct inode * inode)463 void inode_sb_list_add(struct inode *inode)
464 {
465 spin_lock(&inode->i_sb->s_inode_list_lock);
466 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
467 spin_unlock(&inode->i_sb->s_inode_list_lock);
468 }
469 EXPORT_SYMBOL_GPL(inode_sb_list_add);
470
inode_sb_list_del(struct inode * inode)471 static inline void inode_sb_list_del(struct inode *inode)
472 {
473 if (!list_empty(&inode->i_sb_list)) {
474 spin_lock(&inode->i_sb->s_inode_list_lock);
475 list_del_init(&inode->i_sb_list);
476 spin_unlock(&inode->i_sb->s_inode_list_lock);
477 }
478 }
479
hash(struct super_block * sb,unsigned long hashval)480 static unsigned long hash(struct super_block *sb, unsigned long hashval)
481 {
482 unsigned long tmp;
483
484 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
485 L1_CACHE_BYTES;
486 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
487 return tmp & i_hash_mask;
488 }
489
490 /**
491 * __insert_inode_hash - hash an inode
492 * @inode: unhashed inode
493 * @hashval: unsigned long value used to locate this object in the
494 * inode_hashtable.
495 *
496 * Add an inode to the inode hash for this superblock.
497 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)498 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
499 {
500 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
501
502 spin_lock(&inode_hash_lock);
503 spin_lock(&inode->i_lock);
504 hlist_add_head_rcu(&inode->i_hash, b);
505 spin_unlock(&inode->i_lock);
506 spin_unlock(&inode_hash_lock);
507 }
508 EXPORT_SYMBOL_NS(__insert_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
509
510 /**
511 * __remove_inode_hash - remove an inode from the hash
512 * @inode: inode to unhash
513 *
514 * Remove an inode from the superblock.
515 */
__remove_inode_hash(struct inode * inode)516 void __remove_inode_hash(struct inode *inode)
517 {
518 spin_lock(&inode_hash_lock);
519 spin_lock(&inode->i_lock);
520 hlist_del_init_rcu(&inode->i_hash);
521 spin_unlock(&inode->i_lock);
522 spin_unlock(&inode_hash_lock);
523 }
524 EXPORT_SYMBOL_NS(__remove_inode_hash, ANDROID_GKI_VFS_EXPORT_ONLY);
525
clear_inode(struct inode * inode)526 void clear_inode(struct inode *inode)
527 {
528 /*
529 * We have to cycle the i_pages lock here because reclaim can be in the
530 * process of removing the last page (in __delete_from_page_cache())
531 * and we must not free the mapping under it.
532 */
533 xa_lock_irq(&inode->i_data.i_pages);
534 BUG_ON(inode->i_data.nrpages);
535 /*
536 * Almost always, mapping_empty(&inode->i_data) here; but there are
537 * two known and long-standing ways in which nodes may get left behind
538 * (when deep radix-tree node allocation failed partway; or when THP
539 * collapse_file() failed). Until those two known cases are cleaned up,
540 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
541 * nor even WARN_ON(!mapping_empty).
542 */
543 xa_unlock_irq(&inode->i_data.i_pages);
544 BUG_ON(!list_empty(&inode->i_data.private_list));
545 BUG_ON(!(inode->i_state & I_FREEING));
546 BUG_ON(inode->i_state & I_CLEAR);
547 BUG_ON(!list_empty(&inode->i_wb_list));
548 /* don't need i_lock here, no concurrent mods to i_state */
549 inode->i_state = I_FREEING | I_CLEAR;
550 }
551 EXPORT_SYMBOL_NS(clear_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
552
553 /*
554 * Free the inode passed in, removing it from the lists it is still connected
555 * to. We remove any pages still attached to the inode and wait for any IO that
556 * is still in progress before finally destroying the inode.
557 *
558 * An inode must already be marked I_FREEING so that we avoid the inode being
559 * moved back onto lists if we race with other code that manipulates the lists
560 * (e.g. writeback_single_inode). The caller is responsible for setting this.
561 *
562 * An inode must already be removed from the LRU list before being evicted from
563 * the cache. This should occur atomically with setting the I_FREEING state
564 * flag, so no inodes here should ever be on the LRU when being evicted.
565 */
evict(struct inode * inode)566 static void evict(struct inode *inode)
567 {
568 const struct super_operations *op = inode->i_sb->s_op;
569
570 BUG_ON(!(inode->i_state & I_FREEING));
571 BUG_ON(!list_empty(&inode->i_lru));
572
573 if (!list_empty(&inode->i_io_list))
574 inode_io_list_del(inode);
575
576 inode_sb_list_del(inode);
577
578 /*
579 * Wait for flusher thread to be done with the inode so that filesystem
580 * does not start destroying it while writeback is still running. Since
581 * the inode has I_FREEING set, flusher thread won't start new work on
582 * the inode. We just have to wait for running writeback to finish.
583 */
584 inode_wait_for_writeback(inode);
585
586 if (op->evict_inode) {
587 op->evict_inode(inode);
588 } else {
589 truncate_inode_pages_final(&inode->i_data);
590 clear_inode(inode);
591 }
592 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
593 cd_forget(inode);
594
595 remove_inode_hash(inode);
596
597 spin_lock(&inode->i_lock);
598 wake_up_bit(&inode->i_state, __I_NEW);
599 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
600 spin_unlock(&inode->i_lock);
601
602 destroy_inode(inode);
603 }
604
605 /*
606 * dispose_list - dispose of the contents of a local list
607 * @head: the head of the list to free
608 *
609 * Dispose-list gets a local list with local inodes in it, so it doesn't
610 * need to worry about list corruption and SMP locks.
611 */
dispose_list(struct list_head * head)612 static void dispose_list(struct list_head *head)
613 {
614 while (!list_empty(head)) {
615 struct inode *inode;
616
617 inode = list_first_entry(head, struct inode, i_lru);
618 list_del_init(&inode->i_lru);
619
620 evict(inode);
621 cond_resched();
622 }
623 }
624
625 /**
626 * evict_inodes - evict all evictable inodes for a superblock
627 * @sb: superblock to operate on
628 *
629 * Make sure that no inodes with zero refcount are retained. This is
630 * called by superblock shutdown after having SB_ACTIVE flag removed,
631 * so any inode reaching zero refcount during or after that call will
632 * be immediately evicted.
633 */
evict_inodes(struct super_block * sb)634 void evict_inodes(struct super_block *sb)
635 {
636 struct inode *inode, *next;
637 LIST_HEAD(dispose);
638
639 again:
640 spin_lock(&sb->s_inode_list_lock);
641 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 if (atomic_read(&inode->i_count))
643 continue;
644
645 spin_lock(&inode->i_lock);
646 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
647 spin_unlock(&inode->i_lock);
648 continue;
649 }
650
651 inode->i_state |= I_FREEING;
652 inode_lru_list_del(inode);
653 spin_unlock(&inode->i_lock);
654 list_add(&inode->i_lru, &dispose);
655
656 /*
657 * We can have a ton of inodes to evict at unmount time given
658 * enough memory, check to see if we need to go to sleep for a
659 * bit so we don't livelock.
660 */
661 if (need_resched()) {
662 spin_unlock(&sb->s_inode_list_lock);
663 cond_resched();
664 dispose_list(&dispose);
665 goto again;
666 }
667 }
668 spin_unlock(&sb->s_inode_list_lock);
669
670 dispose_list(&dispose);
671 }
672 EXPORT_SYMBOL_GPL(evict_inodes);
673
674 /**
675 * invalidate_inodes - attempt to free all inodes on a superblock
676 * @sb: superblock to operate on
677 * @kill_dirty: flag to guide handling of dirty inodes
678 *
679 * Attempts to free all inodes for a given superblock. If there were any
680 * busy inodes return a non-zero value, else zero.
681 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
682 * them as busy.
683 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)684 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
685 {
686 int busy = 0;
687 struct inode *inode, *next;
688 LIST_HEAD(dispose);
689
690 again:
691 spin_lock(&sb->s_inode_list_lock);
692 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
693 spin_lock(&inode->i_lock);
694 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
695 spin_unlock(&inode->i_lock);
696 continue;
697 }
698 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
699 spin_unlock(&inode->i_lock);
700 busy = 1;
701 continue;
702 }
703 if (atomic_read(&inode->i_count)) {
704 spin_unlock(&inode->i_lock);
705 busy = 1;
706 continue;
707 }
708
709 inode->i_state |= I_FREEING;
710 inode_lru_list_del(inode);
711 spin_unlock(&inode->i_lock);
712 list_add(&inode->i_lru, &dispose);
713 if (need_resched()) {
714 spin_unlock(&sb->s_inode_list_lock);
715 cond_resched();
716 dispose_list(&dispose);
717 goto again;
718 }
719 }
720 spin_unlock(&sb->s_inode_list_lock);
721
722 dispose_list(&dispose);
723
724 return busy;
725 }
726
727 /*
728 * Isolate the inode from the LRU in preparation for freeing it.
729 *
730 * Any inodes which are pinned purely because of attached pagecache have their
731 * pagecache removed. If the inode has metadata buffers attached to
732 * mapping->private_list then try to remove them.
733 *
734 * If the inode has the I_REFERENCED flag set, then it means that it has been
735 * used recently - the flag is set in iput_final(). When we encounter such an
736 * inode, clear the flag and move it to the back of the LRU so it gets another
737 * pass through the LRU before it gets reclaimed. This is necessary because of
738 * the fact we are doing lazy LRU updates to minimise lock contention so the
739 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
740 * with this flag set because they are the inodes that are out of order.
741 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)742 static enum lru_status inode_lru_isolate(struct list_head *item,
743 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
744 {
745 struct list_head *freeable = arg;
746 struct inode *inode = container_of(item, struct inode, i_lru);
747
748 /*
749 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
750 * If we fail to get the lock, just skip it.
751 */
752 if (!spin_trylock(&inode->i_lock))
753 return LRU_SKIP;
754
755 /*
756 * Referenced or dirty inodes are still in use. Give them another pass
757 * through the LRU as we canot reclaim them now.
758 */
759 if (atomic_read(&inode->i_count) ||
760 (inode->i_state & ~I_REFERENCED)) {
761 list_lru_isolate(lru, &inode->i_lru);
762 spin_unlock(&inode->i_lock);
763 this_cpu_dec(nr_unused);
764 return LRU_REMOVED;
765 }
766
767 /* recently referenced inodes get one more pass */
768 if (inode->i_state & I_REFERENCED) {
769 inode->i_state &= ~I_REFERENCED;
770 spin_unlock(&inode->i_lock);
771 return LRU_ROTATE;
772 }
773
774 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
775 __iget(inode);
776 spin_unlock(&inode->i_lock);
777 spin_unlock(lru_lock);
778 if (remove_inode_buffers(inode)) {
779 unsigned long reap;
780 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
781 if (current_is_kswapd())
782 __count_vm_events(KSWAPD_INODESTEAL, reap);
783 else
784 __count_vm_events(PGINODESTEAL, reap);
785 if (current->reclaim_state)
786 current->reclaim_state->reclaimed_slab += reap;
787 }
788 iput(inode);
789 spin_lock(lru_lock);
790 return LRU_RETRY;
791 }
792
793 WARN_ON(inode->i_state & I_NEW);
794 inode->i_state |= I_FREEING;
795 list_lru_isolate_move(lru, &inode->i_lru, freeable);
796 spin_unlock(&inode->i_lock);
797
798 this_cpu_dec(nr_unused);
799 return LRU_REMOVED;
800 }
801
802 /*
803 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
804 * This is called from the superblock shrinker function with a number of inodes
805 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
806 * then are freed outside inode_lock by dispose_list().
807 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)808 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
809 {
810 LIST_HEAD(freeable);
811 long freed;
812
813 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
814 inode_lru_isolate, &freeable);
815 dispose_list(&freeable);
816 return freed;
817 }
818
819 static void __wait_on_freeing_inode(struct inode *inode);
820 /*
821 * Called with the inode lock held.
822 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)823 static struct inode *find_inode(struct super_block *sb,
824 struct hlist_head *head,
825 int (*test)(struct inode *, void *),
826 void *data)
827 {
828 struct inode *inode = NULL;
829
830 repeat:
831 hlist_for_each_entry(inode, head, i_hash) {
832 if (inode->i_sb != sb)
833 continue;
834 if (!test(inode, data))
835 continue;
836 spin_lock(&inode->i_lock);
837 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
838 __wait_on_freeing_inode(inode);
839 goto repeat;
840 }
841 if (unlikely(inode->i_state & I_CREATING)) {
842 spin_unlock(&inode->i_lock);
843 return ERR_PTR(-ESTALE);
844 }
845 __iget(inode);
846 spin_unlock(&inode->i_lock);
847 return inode;
848 }
849 return NULL;
850 }
851
852 /*
853 * find_inode_fast is the fast path version of find_inode, see the comment at
854 * iget_locked for details.
855 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)856 static struct inode *find_inode_fast(struct super_block *sb,
857 struct hlist_head *head, unsigned long ino)
858 {
859 struct inode *inode = NULL;
860
861 repeat:
862 hlist_for_each_entry(inode, head, i_hash) {
863 if (inode->i_ino != ino)
864 continue;
865 if (inode->i_sb != sb)
866 continue;
867 spin_lock(&inode->i_lock);
868 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
869 __wait_on_freeing_inode(inode);
870 goto repeat;
871 }
872 if (unlikely(inode->i_state & I_CREATING)) {
873 spin_unlock(&inode->i_lock);
874 return ERR_PTR(-ESTALE);
875 }
876 __iget(inode);
877 spin_unlock(&inode->i_lock);
878 return inode;
879 }
880 return NULL;
881 }
882
883 /*
884 * Each cpu owns a range of LAST_INO_BATCH numbers.
885 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
886 * to renew the exhausted range.
887 *
888 * This does not significantly increase overflow rate because every CPU can
889 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
890 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
891 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
892 * overflow rate by 2x, which does not seem too significant.
893 *
894 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
895 * error if st_ino won't fit in target struct field. Use 32bit counter
896 * here to attempt to avoid that.
897 */
898 #define LAST_INO_BATCH 1024
899 static DEFINE_PER_CPU(unsigned int, last_ino);
900
get_next_ino(void)901 unsigned int get_next_ino(void)
902 {
903 unsigned int *p = &get_cpu_var(last_ino);
904 unsigned int res = *p;
905
906 #ifdef CONFIG_SMP
907 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
908 static atomic_t shared_last_ino;
909 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
910
911 res = next - LAST_INO_BATCH;
912 }
913 #endif
914
915 res++;
916 /* get_next_ino should not provide a 0 inode number */
917 if (unlikely(!res))
918 res++;
919 *p = res;
920 put_cpu_var(last_ino);
921 return res;
922 }
923 EXPORT_SYMBOL(get_next_ino);
924
925 /**
926 * new_inode_pseudo - obtain an inode
927 * @sb: superblock
928 *
929 * Allocates a new inode for given superblock.
930 * Inode wont be chained in superblock s_inodes list
931 * This means :
932 * - fs can't be unmount
933 * - quotas, fsnotify, writeback can't work
934 */
new_inode_pseudo(struct super_block * sb)935 struct inode *new_inode_pseudo(struct super_block *sb)
936 {
937 struct inode *inode = alloc_inode(sb);
938
939 if (inode) {
940 spin_lock(&inode->i_lock);
941 inode->i_state = 0;
942 spin_unlock(&inode->i_lock);
943 INIT_LIST_HEAD(&inode->i_sb_list);
944 }
945 return inode;
946 }
947
948 /**
949 * new_inode - obtain an inode
950 * @sb: superblock
951 *
952 * Allocates a new inode for given superblock. The default gfp_mask
953 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
954 * If HIGHMEM pages are unsuitable or it is known that pages allocated
955 * for the page cache are not reclaimable or migratable,
956 * mapping_set_gfp_mask() must be called with suitable flags on the
957 * newly created inode's mapping
958 *
959 */
new_inode(struct super_block * sb)960 struct inode *new_inode(struct super_block *sb)
961 {
962 struct inode *inode;
963
964 spin_lock_prefetch(&sb->s_inode_list_lock);
965
966 inode = new_inode_pseudo(sb);
967 if (inode)
968 inode_sb_list_add(inode);
969 return inode;
970 }
971 EXPORT_SYMBOL(new_inode);
972
973 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)974 void lockdep_annotate_inode_mutex_key(struct inode *inode)
975 {
976 if (S_ISDIR(inode->i_mode)) {
977 struct file_system_type *type = inode->i_sb->s_type;
978
979 /* Set new key only if filesystem hasn't already changed it */
980 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
981 /*
982 * ensure nobody is actually holding i_mutex
983 */
984 // mutex_destroy(&inode->i_mutex);
985 init_rwsem(&inode->i_rwsem);
986 lockdep_set_class(&inode->i_rwsem,
987 &type->i_mutex_dir_key);
988 }
989 }
990 }
991 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
992 #endif
993
994 /**
995 * unlock_new_inode - clear the I_NEW state and wake up any waiters
996 * @inode: new inode to unlock
997 *
998 * Called when the inode is fully initialised to clear the new state of the
999 * inode and wake up anyone waiting for the inode to finish initialisation.
1000 */
unlock_new_inode(struct inode * inode)1001 void unlock_new_inode(struct inode *inode)
1002 {
1003 lockdep_annotate_inode_mutex_key(inode);
1004 spin_lock(&inode->i_lock);
1005 WARN_ON(!(inode->i_state & I_NEW));
1006 inode->i_state &= ~I_NEW & ~I_CREATING;
1007 smp_mb();
1008 wake_up_bit(&inode->i_state, __I_NEW);
1009 spin_unlock(&inode->i_lock);
1010 }
1011 EXPORT_SYMBOL_NS(unlock_new_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
1012
discard_new_inode(struct inode * inode)1013 void discard_new_inode(struct inode *inode)
1014 {
1015 lockdep_annotate_inode_mutex_key(inode);
1016 spin_lock(&inode->i_lock);
1017 WARN_ON(!(inode->i_state & I_NEW));
1018 inode->i_state &= ~I_NEW;
1019 smp_mb();
1020 wake_up_bit(&inode->i_state, __I_NEW);
1021 spin_unlock(&inode->i_lock);
1022 iput(inode);
1023 }
1024 EXPORT_SYMBOL(discard_new_inode);
1025
1026 /**
1027 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1028 *
1029 * Lock any non-NULL argument. The caller must make sure that if he is passing
1030 * in two directories, one is not ancestor of the other. Zero, one or two
1031 * objects may be locked by this function.
1032 *
1033 * @inode1: first inode to lock
1034 * @inode2: second inode to lock
1035 * @subclass1: inode lock subclass for the first lock obtained
1036 * @subclass2: inode lock subclass for the second lock obtained
1037 */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1038 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1039 unsigned subclass1, unsigned subclass2)
1040 {
1041 if (!inode1 || !inode2) {
1042 /*
1043 * Make sure @subclass1 will be used for the acquired lock.
1044 * This is not strictly necessary (no current caller cares) but
1045 * let's keep things consistent.
1046 */
1047 if (!inode1)
1048 swap(inode1, inode2);
1049 goto lock;
1050 }
1051
1052 /*
1053 * If one object is directory and the other is not, we must make sure
1054 * to lock directory first as the other object may be its child.
1055 */
1056 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1057 if (inode1 > inode2)
1058 swap(inode1, inode2);
1059 } else if (!S_ISDIR(inode1->i_mode))
1060 swap(inode1, inode2);
1061 lock:
1062 if (inode1)
1063 inode_lock_nested(inode1, subclass1);
1064 if (inode2 && inode2 != inode1)
1065 inode_lock_nested(inode2, subclass2);
1066 }
1067
1068 /**
1069 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1070 *
1071 * Lock any non-NULL argument that is not a directory.
1072 * Zero, one or two objects may be locked by this function.
1073 *
1074 * @inode1: first inode to lock
1075 * @inode2: second inode to lock
1076 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1077 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1078 {
1079 if (inode1 > inode2)
1080 swap(inode1, inode2);
1081
1082 if (inode1 && !S_ISDIR(inode1->i_mode))
1083 inode_lock(inode1);
1084 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1085 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1086 }
1087 EXPORT_SYMBOL(lock_two_nondirectories);
1088
1089 /**
1090 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1091 * @inode1: first inode to unlock
1092 * @inode2: second inode to unlock
1093 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1094 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1095 {
1096 if (inode1 && !S_ISDIR(inode1->i_mode))
1097 inode_unlock(inode1);
1098 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1099 inode_unlock(inode2);
1100 }
1101 EXPORT_SYMBOL(unlock_two_nondirectories);
1102
1103 /**
1104 * inode_insert5 - obtain an inode from a mounted file system
1105 * @inode: pre-allocated inode to use for insert to cache
1106 * @hashval: hash value (usually inode number) to get
1107 * @test: callback used for comparisons between inodes
1108 * @set: callback used to initialize a new struct inode
1109 * @data: opaque data pointer to pass to @test and @set
1110 *
1111 * Search for the inode specified by @hashval and @data in the inode cache,
1112 * and if present it is return it with an increased reference count. This is
1113 * a variant of iget5_locked() for callers that don't want to fail on memory
1114 * allocation of inode.
1115 *
1116 * If the inode is not in cache, insert the pre-allocated inode to cache and
1117 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1118 * to fill it in before unlocking it via unlock_new_inode().
1119 *
1120 * Note both @test and @set are called with the inode_hash_lock held, so can't
1121 * sleep.
1122 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1123 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1124 int (*test)(struct inode *, void *),
1125 int (*set)(struct inode *, void *), void *data)
1126 {
1127 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1128 struct inode *old;
1129 bool creating = inode->i_state & I_CREATING;
1130
1131 again:
1132 spin_lock(&inode_hash_lock);
1133 old = find_inode(inode->i_sb, head, test, data);
1134 if (unlikely(old)) {
1135 /*
1136 * Uhhuh, somebody else created the same inode under us.
1137 * Use the old inode instead of the preallocated one.
1138 */
1139 spin_unlock(&inode_hash_lock);
1140 if (IS_ERR(old))
1141 return NULL;
1142 wait_on_inode(old);
1143 if (unlikely(inode_unhashed(old))) {
1144 iput(old);
1145 goto again;
1146 }
1147 return old;
1148 }
1149
1150 if (set && unlikely(set(inode, data))) {
1151 inode = NULL;
1152 goto unlock;
1153 }
1154
1155 /*
1156 * Return the locked inode with I_NEW set, the
1157 * caller is responsible for filling in the contents
1158 */
1159 spin_lock(&inode->i_lock);
1160 inode->i_state |= I_NEW;
1161 hlist_add_head_rcu(&inode->i_hash, head);
1162 spin_unlock(&inode->i_lock);
1163 if (!creating)
1164 inode_sb_list_add(inode);
1165 unlock:
1166 spin_unlock(&inode_hash_lock);
1167
1168 return inode;
1169 }
1170 EXPORT_SYMBOL(inode_insert5);
1171
1172 /**
1173 * iget5_locked - obtain an inode from a mounted file system
1174 * @sb: super block of file system
1175 * @hashval: hash value (usually inode number) to get
1176 * @test: callback used for comparisons between inodes
1177 * @set: callback used to initialize a new struct inode
1178 * @data: opaque data pointer to pass to @test and @set
1179 *
1180 * Search for the inode specified by @hashval and @data in the inode cache,
1181 * and if present it is return it with an increased reference count. This is
1182 * a generalized version of iget_locked() for file systems where the inode
1183 * number is not sufficient for unique identification of an inode.
1184 *
1185 * If the inode is not in cache, allocate a new inode and return it locked,
1186 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1187 * before unlocking it via unlock_new_inode().
1188 *
1189 * Note both @test and @set are called with the inode_hash_lock held, so can't
1190 * sleep.
1191 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1192 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1193 int (*test)(struct inode *, void *),
1194 int (*set)(struct inode *, void *), void *data)
1195 {
1196 struct inode *inode = ilookup5(sb, hashval, test, data);
1197
1198 if (!inode) {
1199 struct inode *new = alloc_inode(sb);
1200
1201 if (new) {
1202 new->i_state = 0;
1203 inode = inode_insert5(new, hashval, test, set, data);
1204 if (unlikely(inode != new))
1205 destroy_inode(new);
1206 }
1207 }
1208 return inode;
1209 }
1210 EXPORT_SYMBOL_NS(iget5_locked, ANDROID_GKI_VFS_EXPORT_ONLY);
1211
1212 /**
1213 * iget_locked - obtain an inode from a mounted file system
1214 * @sb: super block of file system
1215 * @ino: inode number to get
1216 *
1217 * Search for the inode specified by @ino in the inode cache and if present
1218 * return it with an increased reference count. This is for file systems
1219 * where the inode number is sufficient for unique identification of an inode.
1220 *
1221 * If the inode is not in cache, allocate a new inode and return it locked,
1222 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1223 * before unlocking it via unlock_new_inode().
1224 */
iget_locked(struct super_block * sb,unsigned long ino)1225 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1226 {
1227 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1228 struct inode *inode;
1229 again:
1230 spin_lock(&inode_hash_lock);
1231 inode = find_inode_fast(sb, head, ino);
1232 spin_unlock(&inode_hash_lock);
1233 if (inode) {
1234 if (IS_ERR(inode))
1235 return NULL;
1236 wait_on_inode(inode);
1237 if (unlikely(inode_unhashed(inode))) {
1238 iput(inode);
1239 goto again;
1240 }
1241 return inode;
1242 }
1243
1244 inode = alloc_inode(sb);
1245 if (inode) {
1246 struct inode *old;
1247
1248 spin_lock(&inode_hash_lock);
1249 /* We released the lock, so.. */
1250 old = find_inode_fast(sb, head, ino);
1251 if (!old) {
1252 inode->i_ino = ino;
1253 spin_lock(&inode->i_lock);
1254 inode->i_state = I_NEW;
1255 hlist_add_head_rcu(&inode->i_hash, head);
1256 spin_unlock(&inode->i_lock);
1257 inode_sb_list_add(inode);
1258 spin_unlock(&inode_hash_lock);
1259
1260 /* Return the locked inode with I_NEW set, the
1261 * caller is responsible for filling in the contents
1262 */
1263 return inode;
1264 }
1265
1266 /*
1267 * Uhhuh, somebody else created the same inode under
1268 * us. Use the old inode instead of the one we just
1269 * allocated.
1270 */
1271 spin_unlock(&inode_hash_lock);
1272 destroy_inode(inode);
1273 if (IS_ERR(old))
1274 return NULL;
1275 inode = old;
1276 wait_on_inode(inode);
1277 if (unlikely(inode_unhashed(inode))) {
1278 iput(inode);
1279 goto again;
1280 }
1281 }
1282 return inode;
1283 }
1284 EXPORT_SYMBOL(iget_locked);
1285
1286 /*
1287 * search the inode cache for a matching inode number.
1288 * If we find one, then the inode number we are trying to
1289 * allocate is not unique and so we should not use it.
1290 *
1291 * Returns 1 if the inode number is unique, 0 if it is not.
1292 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1293 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1294 {
1295 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1296 struct inode *inode;
1297
1298 hlist_for_each_entry_rcu(inode, b, i_hash) {
1299 if (inode->i_ino == ino && inode->i_sb == sb)
1300 return 0;
1301 }
1302 return 1;
1303 }
1304
1305 /**
1306 * iunique - get a unique inode number
1307 * @sb: superblock
1308 * @max_reserved: highest reserved inode number
1309 *
1310 * Obtain an inode number that is unique on the system for a given
1311 * superblock. This is used by file systems that have no natural
1312 * permanent inode numbering system. An inode number is returned that
1313 * is higher than the reserved limit but unique.
1314 *
1315 * BUGS:
1316 * With a large number of inodes live on the file system this function
1317 * currently becomes quite slow.
1318 */
iunique(struct super_block * sb,ino_t max_reserved)1319 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1320 {
1321 /*
1322 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1323 * error if st_ino won't fit in target struct field. Use 32bit counter
1324 * here to attempt to avoid that.
1325 */
1326 static DEFINE_SPINLOCK(iunique_lock);
1327 static unsigned int counter;
1328 ino_t res;
1329
1330 rcu_read_lock();
1331 spin_lock(&iunique_lock);
1332 do {
1333 if (counter <= max_reserved)
1334 counter = max_reserved + 1;
1335 res = counter++;
1336 } while (!test_inode_iunique(sb, res));
1337 spin_unlock(&iunique_lock);
1338 rcu_read_unlock();
1339
1340 return res;
1341 }
1342 EXPORT_SYMBOL_NS(iunique, ANDROID_GKI_VFS_EXPORT_ONLY);
1343
igrab(struct inode * inode)1344 struct inode *igrab(struct inode *inode)
1345 {
1346 spin_lock(&inode->i_lock);
1347 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1348 __iget(inode);
1349 spin_unlock(&inode->i_lock);
1350 } else {
1351 spin_unlock(&inode->i_lock);
1352 /*
1353 * Handle the case where s_op->clear_inode is not been
1354 * called yet, and somebody is calling igrab
1355 * while the inode is getting freed.
1356 */
1357 inode = NULL;
1358 }
1359 return inode;
1360 }
1361 EXPORT_SYMBOL(igrab);
1362
1363 /**
1364 * ilookup5_nowait - search for an inode in the inode cache
1365 * @sb: super block of file system to search
1366 * @hashval: hash value (usually inode number) to search for
1367 * @test: callback used for comparisons between inodes
1368 * @data: opaque data pointer to pass to @test
1369 *
1370 * Search for the inode specified by @hashval and @data in the inode cache.
1371 * If the inode is in the cache, the inode is returned with an incremented
1372 * reference count.
1373 *
1374 * Note: I_NEW is not waited upon so you have to be very careful what you do
1375 * with the returned inode. You probably should be using ilookup5() instead.
1376 *
1377 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1378 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1379 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1380 int (*test)(struct inode *, void *), void *data)
1381 {
1382 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1383 struct inode *inode;
1384
1385 spin_lock(&inode_hash_lock);
1386 inode = find_inode(sb, head, test, data);
1387 spin_unlock(&inode_hash_lock);
1388
1389 return IS_ERR(inode) ? NULL : inode;
1390 }
1391 EXPORT_SYMBOL(ilookup5_nowait);
1392
1393 /**
1394 * ilookup5 - search for an inode in the inode cache
1395 * @sb: super block of file system to search
1396 * @hashval: hash value (usually inode number) to search for
1397 * @test: callback used for comparisons between inodes
1398 * @data: opaque data pointer to pass to @test
1399 *
1400 * Search for the inode specified by @hashval and @data in the inode cache,
1401 * and if the inode is in the cache, return the inode with an incremented
1402 * reference count. Waits on I_NEW before returning the inode.
1403 * returned with an incremented reference count.
1404 *
1405 * This is a generalized version of ilookup() for file systems where the
1406 * inode number is not sufficient for unique identification of an inode.
1407 *
1408 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1409 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1410 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1411 int (*test)(struct inode *, void *), void *data)
1412 {
1413 struct inode *inode;
1414 again:
1415 inode = ilookup5_nowait(sb, hashval, test, data);
1416 if (inode) {
1417 wait_on_inode(inode);
1418 if (unlikely(inode_unhashed(inode))) {
1419 iput(inode);
1420 goto again;
1421 }
1422 }
1423 return inode;
1424 }
1425 EXPORT_SYMBOL_NS(ilookup5, ANDROID_GKI_VFS_EXPORT_ONLY);
1426
1427 /**
1428 * ilookup - search for an inode in the inode cache
1429 * @sb: super block of file system to search
1430 * @ino: inode number to search for
1431 *
1432 * Search for the inode @ino in the inode cache, and if the inode is in the
1433 * cache, the inode is returned with an incremented reference count.
1434 */
ilookup(struct super_block * sb,unsigned long ino)1435 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1436 {
1437 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1438 struct inode *inode;
1439 again:
1440 spin_lock(&inode_hash_lock);
1441 inode = find_inode_fast(sb, head, ino);
1442 spin_unlock(&inode_hash_lock);
1443
1444 if (inode) {
1445 if (IS_ERR(inode))
1446 return NULL;
1447 wait_on_inode(inode);
1448 if (unlikely(inode_unhashed(inode))) {
1449 iput(inode);
1450 goto again;
1451 }
1452 }
1453 return inode;
1454 }
1455 EXPORT_SYMBOL(ilookup);
1456
1457 /**
1458 * find_inode_nowait - find an inode in the inode cache
1459 * @sb: super block of file system to search
1460 * @hashval: hash value (usually inode number) to search for
1461 * @match: callback used for comparisons between inodes
1462 * @data: opaque data pointer to pass to @match
1463 *
1464 * Search for the inode specified by @hashval and @data in the inode
1465 * cache, where the helper function @match will return 0 if the inode
1466 * does not match, 1 if the inode does match, and -1 if the search
1467 * should be stopped. The @match function must be responsible for
1468 * taking the i_lock spin_lock and checking i_state for an inode being
1469 * freed or being initialized, and incrementing the reference count
1470 * before returning 1. It also must not sleep, since it is called with
1471 * the inode_hash_lock spinlock held.
1472 *
1473 * This is a even more generalized version of ilookup5() when the
1474 * function must never block --- find_inode() can block in
1475 * __wait_on_freeing_inode() --- or when the caller can not increment
1476 * the reference count because the resulting iput() might cause an
1477 * inode eviction. The tradeoff is that the @match funtion must be
1478 * very carefully implemented.
1479 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1480 struct inode *find_inode_nowait(struct super_block *sb,
1481 unsigned long hashval,
1482 int (*match)(struct inode *, unsigned long,
1483 void *),
1484 void *data)
1485 {
1486 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1487 struct inode *inode, *ret_inode = NULL;
1488 int mval;
1489
1490 spin_lock(&inode_hash_lock);
1491 hlist_for_each_entry(inode, head, i_hash) {
1492 if (inode->i_sb != sb)
1493 continue;
1494 mval = match(inode, hashval, data);
1495 if (mval == 0)
1496 continue;
1497 if (mval == 1)
1498 ret_inode = inode;
1499 goto out;
1500 }
1501 out:
1502 spin_unlock(&inode_hash_lock);
1503 return ret_inode;
1504 }
1505 EXPORT_SYMBOL(find_inode_nowait);
1506
1507 /**
1508 * find_inode_rcu - find an inode in the inode cache
1509 * @sb: Super block of file system to search
1510 * @hashval: Key to hash
1511 * @test: Function to test match on an inode
1512 * @data: Data for test function
1513 *
1514 * Search for the inode specified by @hashval and @data in the inode cache,
1515 * where the helper function @test will return 0 if the inode does not match
1516 * and 1 if it does. The @test function must be responsible for taking the
1517 * i_lock spin_lock and checking i_state for an inode being freed or being
1518 * initialized.
1519 *
1520 * If successful, this will return the inode for which the @test function
1521 * returned 1 and NULL otherwise.
1522 *
1523 * The @test function is not permitted to take a ref on any inode presented.
1524 * It is also not permitted to sleep.
1525 *
1526 * The caller must hold the RCU read lock.
1527 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1528 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1529 int (*test)(struct inode *, void *), void *data)
1530 {
1531 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1532 struct inode *inode;
1533
1534 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1535 "suspicious find_inode_rcu() usage");
1536
1537 hlist_for_each_entry_rcu(inode, head, i_hash) {
1538 if (inode->i_sb == sb &&
1539 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1540 test(inode, data))
1541 return inode;
1542 }
1543 return NULL;
1544 }
1545 EXPORT_SYMBOL(find_inode_rcu);
1546
1547 /**
1548 * find_inode_by_ino_rcu - Find an inode in the inode cache
1549 * @sb: Super block of file system to search
1550 * @ino: The inode number to match
1551 *
1552 * Search for the inode specified by @hashval and @data in the inode cache,
1553 * where the helper function @test will return 0 if the inode does not match
1554 * and 1 if it does. The @test function must be responsible for taking the
1555 * i_lock spin_lock and checking i_state for an inode being freed or being
1556 * initialized.
1557 *
1558 * If successful, this will return the inode for which the @test function
1559 * returned 1 and NULL otherwise.
1560 *
1561 * The @test function is not permitted to take a ref on any inode presented.
1562 * It is also not permitted to sleep.
1563 *
1564 * The caller must hold the RCU read lock.
1565 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1566 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1567 unsigned long ino)
1568 {
1569 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1570 struct inode *inode;
1571
1572 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1573 "suspicious find_inode_by_ino_rcu() usage");
1574
1575 hlist_for_each_entry_rcu(inode, head, i_hash) {
1576 if (inode->i_ino == ino &&
1577 inode->i_sb == sb &&
1578 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1579 return inode;
1580 }
1581 return NULL;
1582 }
1583 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1584
insert_inode_locked(struct inode * inode)1585 int insert_inode_locked(struct inode *inode)
1586 {
1587 struct super_block *sb = inode->i_sb;
1588 ino_t ino = inode->i_ino;
1589 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1590
1591 while (1) {
1592 struct inode *old = NULL;
1593 spin_lock(&inode_hash_lock);
1594 hlist_for_each_entry(old, head, i_hash) {
1595 if (old->i_ino != ino)
1596 continue;
1597 if (old->i_sb != sb)
1598 continue;
1599 spin_lock(&old->i_lock);
1600 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1601 spin_unlock(&old->i_lock);
1602 continue;
1603 }
1604 break;
1605 }
1606 if (likely(!old)) {
1607 spin_lock(&inode->i_lock);
1608 inode->i_state |= I_NEW | I_CREATING;
1609 hlist_add_head_rcu(&inode->i_hash, head);
1610 spin_unlock(&inode->i_lock);
1611 spin_unlock(&inode_hash_lock);
1612 return 0;
1613 }
1614 if (unlikely(old->i_state & I_CREATING)) {
1615 spin_unlock(&old->i_lock);
1616 spin_unlock(&inode_hash_lock);
1617 return -EBUSY;
1618 }
1619 __iget(old);
1620 spin_unlock(&old->i_lock);
1621 spin_unlock(&inode_hash_lock);
1622 wait_on_inode(old);
1623 if (unlikely(!inode_unhashed(old))) {
1624 iput(old);
1625 return -EBUSY;
1626 }
1627 iput(old);
1628 }
1629 }
1630 EXPORT_SYMBOL(insert_inode_locked);
1631
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1632 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1633 int (*test)(struct inode *, void *), void *data)
1634 {
1635 struct inode *old;
1636
1637 inode->i_state |= I_CREATING;
1638 old = inode_insert5(inode, hashval, test, NULL, data);
1639
1640 if (old != inode) {
1641 iput(old);
1642 return -EBUSY;
1643 }
1644 return 0;
1645 }
1646 EXPORT_SYMBOL(insert_inode_locked4);
1647
1648
generic_delete_inode(struct inode * inode)1649 int generic_delete_inode(struct inode *inode)
1650 {
1651 return 1;
1652 }
1653 EXPORT_SYMBOL(generic_delete_inode);
1654
1655 /*
1656 * Called when we're dropping the last reference
1657 * to an inode.
1658 *
1659 * Call the FS "drop_inode()" function, defaulting to
1660 * the legacy UNIX filesystem behaviour. If it tells
1661 * us to evict inode, do so. Otherwise, retain inode
1662 * in cache if fs is alive, sync and evict if fs is
1663 * shutting down.
1664 */
iput_final(struct inode * inode)1665 static void iput_final(struct inode *inode)
1666 {
1667 struct super_block *sb = inode->i_sb;
1668 const struct super_operations *op = inode->i_sb->s_op;
1669 unsigned long state;
1670 int drop;
1671
1672 WARN_ON(inode->i_state & I_NEW);
1673
1674 if (op->drop_inode)
1675 drop = op->drop_inode(inode);
1676 else
1677 drop = generic_drop_inode(inode);
1678
1679 if (!drop &&
1680 !(inode->i_state & I_DONTCACHE) &&
1681 (sb->s_flags & SB_ACTIVE)) {
1682 inode_add_lru(inode);
1683 spin_unlock(&inode->i_lock);
1684 return;
1685 }
1686
1687 state = inode->i_state;
1688 if (!drop) {
1689 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1690 spin_unlock(&inode->i_lock);
1691
1692 write_inode_now(inode, 1);
1693
1694 spin_lock(&inode->i_lock);
1695 state = inode->i_state;
1696 WARN_ON(state & I_NEW);
1697 state &= ~I_WILL_FREE;
1698 }
1699
1700 WRITE_ONCE(inode->i_state, state | I_FREEING);
1701 if (!list_empty(&inode->i_lru))
1702 inode_lru_list_del(inode);
1703 spin_unlock(&inode->i_lock);
1704
1705 evict(inode);
1706 }
1707
1708 /**
1709 * iput - put an inode
1710 * @inode: inode to put
1711 *
1712 * Puts an inode, dropping its usage count. If the inode use count hits
1713 * zero, the inode is then freed and may also be destroyed.
1714 *
1715 * Consequently, iput() can sleep.
1716 */
iput(struct inode * inode)1717 void iput(struct inode *inode)
1718 {
1719 if (!inode)
1720 return;
1721 BUG_ON(inode->i_state & I_CLEAR);
1722 retry:
1723 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1724 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1725 atomic_inc(&inode->i_count);
1726 spin_unlock(&inode->i_lock);
1727 trace_writeback_lazytime_iput(inode);
1728 mark_inode_dirty_sync(inode);
1729 goto retry;
1730 }
1731 iput_final(inode);
1732 }
1733 }
1734 EXPORT_SYMBOL(iput);
1735
1736 #ifdef CONFIG_BLOCK
1737 /**
1738 * bmap - find a block number in a file
1739 * @inode: inode owning the block number being requested
1740 * @block: pointer containing the block to find
1741 *
1742 * Replaces the value in ``*block`` with the block number on the device holding
1743 * corresponding to the requested block number in the file.
1744 * That is, asked for block 4 of inode 1 the function will replace the
1745 * 4 in ``*block``, with disk block relative to the disk start that holds that
1746 * block of the file.
1747 *
1748 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1749 * hole, returns 0 and ``*block`` is also set to 0.
1750 */
bmap(struct inode * inode,sector_t * block)1751 int bmap(struct inode *inode, sector_t *block)
1752 {
1753 if (!inode->i_mapping->a_ops->bmap)
1754 return -EINVAL;
1755
1756 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1757 return 0;
1758 }
1759 EXPORT_SYMBOL(bmap);
1760 #endif
1761
1762 /*
1763 * With relative atime, only update atime if the previous atime is
1764 * earlier than either the ctime or mtime or if at least a day has
1765 * passed since the last atime update.
1766 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1767 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1768 struct timespec64 now)
1769 {
1770
1771 if (!(mnt->mnt_flags & MNT_RELATIME))
1772 return 1;
1773 /*
1774 * Is mtime younger than atime? If yes, update atime:
1775 */
1776 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1777 return 1;
1778 /*
1779 * Is ctime younger than atime? If yes, update atime:
1780 */
1781 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1782 return 1;
1783
1784 /*
1785 * Is the previous atime value older than a day? If yes,
1786 * update atime:
1787 */
1788 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1789 return 1;
1790 /*
1791 * Good, we can skip the atime update:
1792 */
1793 return 0;
1794 }
1795
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1796 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1797 {
1798 int dirty_flags = 0;
1799
1800 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1801 if (flags & S_ATIME)
1802 inode->i_atime = *time;
1803 if (flags & S_CTIME)
1804 inode->i_ctime = *time;
1805 if (flags & S_MTIME)
1806 inode->i_mtime = *time;
1807
1808 if (inode->i_sb->s_flags & SB_LAZYTIME)
1809 dirty_flags |= I_DIRTY_TIME;
1810 else
1811 dirty_flags |= I_DIRTY_SYNC;
1812 }
1813
1814 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1815 dirty_flags |= I_DIRTY_SYNC;
1816
1817 __mark_inode_dirty(inode, dirty_flags);
1818 return 0;
1819 }
1820 EXPORT_SYMBOL(generic_update_time);
1821
1822 /*
1823 * This does the actual work of updating an inodes time or version. Must have
1824 * had called mnt_want_write() before calling this.
1825 */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1826 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1827 {
1828 if (inode->i_op->update_time)
1829 return inode->i_op->update_time(inode, time, flags);
1830 return generic_update_time(inode, time, flags);
1831 }
1832 EXPORT_SYMBOL(inode_update_time);
1833
1834 /**
1835 * atime_needs_update - update the access time
1836 * @path: the &struct path to update
1837 * @inode: inode to update
1838 *
1839 * Update the accessed time on an inode and mark it for writeback.
1840 * This function automatically handles read only file systems and media,
1841 * as well as the "noatime" flag and inode specific "noatime" markers.
1842 */
atime_needs_update(const struct path * path,struct inode * inode)1843 bool atime_needs_update(const struct path *path, struct inode *inode)
1844 {
1845 struct vfsmount *mnt = path->mnt;
1846 struct timespec64 now;
1847
1848 if (inode->i_flags & S_NOATIME)
1849 return false;
1850
1851 /* Atime updates will likely cause i_uid and i_gid to be written
1852 * back improprely if their true value is unknown to the vfs.
1853 */
1854 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1855 return false;
1856
1857 if (IS_NOATIME(inode))
1858 return false;
1859 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1860 return false;
1861
1862 if (mnt->mnt_flags & MNT_NOATIME)
1863 return false;
1864 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1865 return false;
1866
1867 now = current_time(inode);
1868
1869 if (!relatime_need_update(mnt, inode, now))
1870 return false;
1871
1872 if (timespec64_equal(&inode->i_atime, &now))
1873 return false;
1874
1875 return true;
1876 }
1877
touch_atime(const struct path * path)1878 void touch_atime(const struct path *path)
1879 {
1880 struct vfsmount *mnt = path->mnt;
1881 struct inode *inode = d_inode(path->dentry);
1882 struct timespec64 now;
1883
1884 if (!atime_needs_update(path, inode))
1885 return;
1886
1887 if (!sb_start_write_trylock(inode->i_sb))
1888 return;
1889
1890 if (__mnt_want_write(mnt) != 0)
1891 goto skip_update;
1892 /*
1893 * File systems can error out when updating inodes if they need to
1894 * allocate new space to modify an inode (such is the case for
1895 * Btrfs), but since we touch atime while walking down the path we
1896 * really don't care if we failed to update the atime of the file,
1897 * so just ignore the return value.
1898 * We may also fail on filesystems that have the ability to make parts
1899 * of the fs read only, e.g. subvolumes in Btrfs.
1900 */
1901 now = current_time(inode);
1902 inode_update_time(inode, &now, S_ATIME);
1903 __mnt_drop_write(mnt);
1904 skip_update:
1905 sb_end_write(inode->i_sb);
1906 }
1907 EXPORT_SYMBOL_NS(touch_atime, ANDROID_GKI_VFS_EXPORT_ONLY);
1908
1909 /*
1910 * Return mask of changes for notify_change() that need to be done as a
1911 * response to write or truncate. Return 0 if nothing has to be changed.
1912 * Negative value on error (change should be denied).
1913 */
dentry_needs_remove_privs(struct user_namespace * mnt_userns,struct dentry * dentry)1914 int dentry_needs_remove_privs(struct user_namespace *mnt_userns,
1915 struct dentry *dentry)
1916 {
1917 struct inode *inode = d_inode(dentry);
1918 int mask = 0;
1919 int ret;
1920
1921 if (IS_NOSEC(inode))
1922 return 0;
1923
1924 mask = setattr_should_drop_suidgid(mnt_userns, inode);
1925 ret = security_inode_need_killpriv(dentry);
1926 if (ret < 0)
1927 return ret;
1928 if (ret)
1929 mask |= ATTR_KILL_PRIV;
1930 return mask;
1931 }
1932
__remove_privs(struct user_namespace * mnt_userns,struct dentry * dentry,int kill)1933 static int __remove_privs(struct user_namespace *mnt_userns,
1934 struct dentry *dentry, int kill)
1935 {
1936 struct iattr newattrs;
1937
1938 newattrs.ia_valid = ATTR_FORCE | kill;
1939 /*
1940 * Note we call this on write, so notify_change will not
1941 * encounter any conflicting delegations:
1942 */
1943 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1944 }
1945
1946 /*
1947 * Remove special file priviledges (suid, capabilities) when file is written
1948 * to or truncated.
1949 */
file_remove_privs(struct file * file)1950 int file_remove_privs(struct file *file)
1951 {
1952 struct dentry *dentry = file_dentry(file);
1953 struct inode *inode = file_inode(file);
1954 int kill;
1955 int error = 0;
1956
1957 /*
1958 * Fast path for nothing security related.
1959 * As well for non-regular files, e.g. blkdev inodes.
1960 * For example, blkdev_write_iter() might get here
1961 * trying to remove privs which it is not allowed to.
1962 */
1963 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1964 return 0;
1965
1966 kill = dentry_needs_remove_privs(file_mnt_user_ns(file), dentry);
1967 if (kill < 0)
1968 return kill;
1969 if (kill)
1970 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1971 if (!error)
1972 inode_has_no_xattr(inode);
1973
1974 return error;
1975 }
1976 EXPORT_SYMBOL_NS(file_remove_privs, ANDROID_GKI_VFS_EXPORT_ONLY);
1977
1978 /**
1979 * file_update_time - update mtime and ctime time
1980 * @file: file accessed
1981 *
1982 * Update the mtime and ctime members of an inode and mark the inode
1983 * for writeback. Note that this function is meant exclusively for
1984 * usage in the file write path of filesystems, and filesystems may
1985 * choose to explicitly ignore update via this function with the
1986 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1987 * timestamps are handled by the server. This can return an error for
1988 * file systems who need to allocate space in order to update an inode.
1989 */
1990
file_update_time(struct file * file)1991 int file_update_time(struct file *file)
1992 {
1993 struct inode *inode = file_inode(file);
1994 struct timespec64 now;
1995 int sync_it = 0;
1996 int ret;
1997
1998 /* First try to exhaust all avenues to not sync */
1999 if (IS_NOCMTIME(inode))
2000 return 0;
2001
2002 now = current_time(inode);
2003 if (!timespec64_equal(&inode->i_mtime, &now))
2004 sync_it = S_MTIME;
2005
2006 if (!timespec64_equal(&inode->i_ctime, &now))
2007 sync_it |= S_CTIME;
2008
2009 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2010 sync_it |= S_VERSION;
2011
2012 if (!sync_it)
2013 return 0;
2014
2015 /* Finally allowed to write? Takes lock. */
2016 if (__mnt_want_write_file(file))
2017 return 0;
2018
2019 ret = inode_update_time(inode, &now, sync_it);
2020 __mnt_drop_write_file(file);
2021
2022 return ret;
2023 }
2024 EXPORT_SYMBOL(file_update_time);
2025
2026 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2027 int file_modified(struct file *file)
2028 {
2029 int err;
2030
2031 /*
2032 * Clear the security bits if the process is not being run by root.
2033 * This keeps people from modifying setuid and setgid binaries.
2034 */
2035 err = file_remove_privs(file);
2036 if (err)
2037 return err;
2038
2039 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2040 return 0;
2041
2042 return file_update_time(file);
2043 }
2044 EXPORT_SYMBOL(file_modified);
2045
inode_needs_sync(struct inode * inode)2046 int inode_needs_sync(struct inode *inode)
2047 {
2048 if (IS_SYNC(inode))
2049 return 1;
2050 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2051 return 1;
2052 return 0;
2053 }
2054 EXPORT_SYMBOL(inode_needs_sync);
2055
2056 /*
2057 * If we try to find an inode in the inode hash while it is being
2058 * deleted, we have to wait until the filesystem completes its
2059 * deletion before reporting that it isn't found. This function waits
2060 * until the deletion _might_ have completed. Callers are responsible
2061 * to recheck inode state.
2062 *
2063 * It doesn't matter if I_NEW is not set initially, a call to
2064 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2065 * will DTRT.
2066 */
__wait_on_freeing_inode(struct inode * inode)2067 static void __wait_on_freeing_inode(struct inode *inode)
2068 {
2069 wait_queue_head_t *wq;
2070 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2071 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2072 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2073 spin_unlock(&inode->i_lock);
2074 spin_unlock(&inode_hash_lock);
2075 schedule();
2076 finish_wait(wq, &wait.wq_entry);
2077 spin_lock(&inode_hash_lock);
2078 }
2079
2080 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2081 static int __init set_ihash_entries(char *str)
2082 {
2083 if (!str)
2084 return 0;
2085 ihash_entries = simple_strtoul(str, &str, 0);
2086 return 1;
2087 }
2088 __setup("ihash_entries=", set_ihash_entries);
2089
2090 /*
2091 * Initialize the waitqueues and inode hash table.
2092 */
inode_init_early(void)2093 void __init inode_init_early(void)
2094 {
2095 /* If hashes are distributed across NUMA nodes, defer
2096 * hash allocation until vmalloc space is available.
2097 */
2098 if (hashdist)
2099 return;
2100
2101 inode_hashtable =
2102 alloc_large_system_hash("Inode-cache",
2103 sizeof(struct hlist_head),
2104 ihash_entries,
2105 14,
2106 HASH_EARLY | HASH_ZERO,
2107 &i_hash_shift,
2108 &i_hash_mask,
2109 0,
2110 0);
2111 }
2112
inode_init(void)2113 void __init inode_init(void)
2114 {
2115 /* inode slab cache */
2116 inode_cachep = kmem_cache_create("inode_cache",
2117 sizeof(struct inode),
2118 0,
2119 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2120 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2121 init_once);
2122
2123 /* Hash may have been set up in inode_init_early */
2124 if (!hashdist)
2125 return;
2126
2127 inode_hashtable =
2128 alloc_large_system_hash("Inode-cache",
2129 sizeof(struct hlist_head),
2130 ihash_entries,
2131 14,
2132 HASH_ZERO,
2133 &i_hash_shift,
2134 &i_hash_mask,
2135 0,
2136 0);
2137 }
2138
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2139 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2140 {
2141 inode->i_mode = mode;
2142 if (S_ISCHR(mode)) {
2143 inode->i_fop = &def_chr_fops;
2144 inode->i_rdev = rdev;
2145 } else if (S_ISBLK(mode)) {
2146 inode->i_fop = &def_blk_fops;
2147 inode->i_rdev = rdev;
2148 } else if (S_ISFIFO(mode))
2149 inode->i_fop = &pipefifo_fops;
2150 else if (S_ISSOCK(mode))
2151 ; /* leave it no_open_fops */
2152 else
2153 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2154 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2155 inode->i_ino);
2156 }
2157 EXPORT_SYMBOL_NS(init_special_inode, ANDROID_GKI_VFS_EXPORT_ONLY);
2158
2159 /**
2160 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2161 * @mnt_userns: User namespace of the mount the inode was created from
2162 * @inode: New inode
2163 * @dir: Directory inode
2164 * @mode: mode of the new inode
2165 *
2166 * If the inode has been created through an idmapped mount the user namespace of
2167 * the vfsmount must be passed through @mnt_userns. This function will then take
2168 * care to map the inode according to @mnt_userns before checking permissions
2169 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2170 * checking is to be performed on the raw inode simply passs init_user_ns.
2171 */
inode_init_owner(struct user_namespace * mnt_userns,struct inode * inode,const struct inode * dir,umode_t mode)2172 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2173 const struct inode *dir, umode_t mode)
2174 {
2175 inode_fsuid_set(inode, mnt_userns);
2176 if (dir && dir->i_mode & S_ISGID) {
2177 inode->i_gid = dir->i_gid;
2178
2179 /* Directories are special, and always inherit S_ISGID */
2180 if (S_ISDIR(mode))
2181 mode |= S_ISGID;
2182 } else
2183 inode_fsgid_set(inode, mnt_userns);
2184 inode->i_mode = mode;
2185 }
2186 EXPORT_SYMBOL_NS(inode_init_owner, ANDROID_GKI_VFS_EXPORT_ONLY);
2187
2188 /**
2189 * inode_owner_or_capable - check current task permissions to inode
2190 * @mnt_userns: user namespace of the mount the inode was found from
2191 * @inode: inode being checked
2192 *
2193 * Return true if current either has CAP_FOWNER in a namespace with the
2194 * inode owner uid mapped, or owns the file.
2195 *
2196 * If the inode has been found through an idmapped mount the user namespace of
2197 * the vfsmount must be passed through @mnt_userns. This function will then take
2198 * care to map the inode according to @mnt_userns before checking permissions.
2199 * On non-idmapped mounts or if permission checking is to be performed on the
2200 * raw inode simply passs init_user_ns.
2201 */
inode_owner_or_capable(struct user_namespace * mnt_userns,const struct inode * inode)2202 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2203 const struct inode *inode)
2204 {
2205 kuid_t i_uid;
2206 struct user_namespace *ns;
2207
2208 i_uid = i_uid_into_mnt(mnt_userns, inode);
2209 if (uid_eq(current_fsuid(), i_uid))
2210 return true;
2211
2212 ns = current_user_ns();
2213 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2214 return true;
2215 return false;
2216 }
2217 EXPORT_SYMBOL(inode_owner_or_capable);
2218
2219 /*
2220 * Direct i/o helper functions
2221 */
__inode_dio_wait(struct inode * inode)2222 static void __inode_dio_wait(struct inode *inode)
2223 {
2224 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2225 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2226
2227 do {
2228 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2229 if (atomic_read(&inode->i_dio_count))
2230 schedule();
2231 } while (atomic_read(&inode->i_dio_count));
2232 finish_wait(wq, &q.wq_entry);
2233 }
2234
2235 /**
2236 * inode_dio_wait - wait for outstanding DIO requests to finish
2237 * @inode: inode to wait for
2238 *
2239 * Waits for all pending direct I/O requests to finish so that we can
2240 * proceed with a truncate or equivalent operation.
2241 *
2242 * Must be called under a lock that serializes taking new references
2243 * to i_dio_count, usually by inode->i_mutex.
2244 */
inode_dio_wait(struct inode * inode)2245 void inode_dio_wait(struct inode *inode)
2246 {
2247 if (atomic_read(&inode->i_dio_count))
2248 __inode_dio_wait(inode);
2249 }
2250 EXPORT_SYMBOL_NS(inode_dio_wait, ANDROID_GKI_VFS_EXPORT_ONLY);
2251
2252 /*
2253 * inode_set_flags - atomically set some inode flags
2254 *
2255 * Note: the caller should be holding i_mutex, or else be sure that
2256 * they have exclusive access to the inode structure (i.e., while the
2257 * inode is being instantiated). The reason for the cmpxchg() loop
2258 * --- which wouldn't be necessary if all code paths which modify
2259 * i_flags actually followed this rule, is that there is at least one
2260 * code path which doesn't today so we use cmpxchg() out of an abundance
2261 * of caution.
2262 *
2263 * In the long run, i_mutex is overkill, and we should probably look
2264 * at using the i_lock spinlock to protect i_flags, and then make sure
2265 * it is so documented in include/linux/fs.h and that all code follows
2266 * the locking convention!!
2267 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2268 void inode_set_flags(struct inode *inode, unsigned int flags,
2269 unsigned int mask)
2270 {
2271 WARN_ON_ONCE(flags & ~mask);
2272 set_mask_bits(&inode->i_flags, mask, flags);
2273 }
2274 EXPORT_SYMBOL_NS(inode_set_flags, ANDROID_GKI_VFS_EXPORT_ONLY);
2275
inode_nohighmem(struct inode * inode)2276 void inode_nohighmem(struct inode *inode)
2277 {
2278 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2279 }
2280 EXPORT_SYMBOL(inode_nohighmem);
2281
2282 /**
2283 * timestamp_truncate - Truncate timespec to a granularity
2284 * @t: Timespec
2285 * @inode: inode being updated
2286 *
2287 * Truncate a timespec to the granularity supported by the fs
2288 * containing the inode. Always rounds down. gran must
2289 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2290 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2291 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2292 {
2293 struct super_block *sb = inode->i_sb;
2294 unsigned int gran = sb->s_time_gran;
2295
2296 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2297 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2298 t.tv_nsec = 0;
2299
2300 /* Avoid division in the common cases 1 ns and 1 s. */
2301 if (gran == 1)
2302 ; /* nothing */
2303 else if (gran == NSEC_PER_SEC)
2304 t.tv_nsec = 0;
2305 else if (gran > 1 && gran < NSEC_PER_SEC)
2306 t.tv_nsec -= t.tv_nsec % gran;
2307 else
2308 WARN(1, "invalid file time granularity: %u", gran);
2309 return t;
2310 }
2311 EXPORT_SYMBOL_NS(timestamp_truncate, ANDROID_GKI_VFS_EXPORT_ONLY);
2312
2313 /**
2314 * current_time - Return FS time
2315 * @inode: inode.
2316 *
2317 * Return the current time truncated to the time granularity supported by
2318 * the fs.
2319 *
2320 * Note that inode and inode->sb cannot be NULL.
2321 * Otherwise, the function warns and returns time without truncation.
2322 */
current_time(struct inode * inode)2323 struct timespec64 current_time(struct inode *inode)
2324 {
2325 struct timespec64 now;
2326
2327 ktime_get_coarse_real_ts64(&now);
2328
2329 if (unlikely(!inode->i_sb)) {
2330 WARN(1, "current_time() called with uninitialized super_block in the inode");
2331 return now;
2332 }
2333
2334 return timestamp_truncate(now, inode);
2335 }
2336 EXPORT_SYMBOL(current_time);
2337
2338 /**
2339 * inode_set_ctime_current - set the ctime to current_time
2340 * @inode: inode
2341 *
2342 * Set the inode->i_ctime to the current value for the inode. Returns
2343 * the current value that was assigned to i_ctime.
2344 */
inode_set_ctime_current(struct inode * inode)2345 struct timespec64 inode_set_ctime_current(struct inode *inode)
2346 {
2347 struct timespec64 now = current_time(inode);
2348
2349 inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
2350 return now;
2351 }
2352 EXPORT_SYMBOL(inode_set_ctime_current);
2353
2354 /**
2355 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2356 * @mnt_userns: user namespace of the mount @inode was found from
2357 * @inode: inode to check
2358 * @gid: the new/current gid of @inode
2359 *
2360 * Check wether @gid is in the caller's group list or if the caller is
2361 * privileged with CAP_FSETID over @inode. This can be used to determine
2362 * whether the setgid bit can be kept or must be dropped.
2363 *
2364 * Return: true if the caller is sufficiently privileged, false if not.
2365 */
in_group_or_capable(struct user_namespace * mnt_userns,const struct inode * inode,kgid_t gid)2366 bool in_group_or_capable(struct user_namespace *mnt_userns,
2367 const struct inode *inode, kgid_t gid)
2368 {
2369 if (in_group_p(gid))
2370 return true;
2371 if (capable_wrt_inode_uidgid(mnt_userns, inode, CAP_FSETID))
2372 return true;
2373 return false;
2374 }
2375
2376 /**
2377 * mode_strip_sgid - handle the sgid bit for non-directories
2378 * @mnt_userns: User namespace of the mount the inode was created from
2379 * @dir: parent directory inode
2380 * @mode: mode of the file to be created in @dir
2381 *
2382 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2383 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2384 * either in the group of the parent directory or they have CAP_FSETID
2385 * in their user namespace and are privileged over the parent directory.
2386 * In all other cases, strip the S_ISGID bit from @mode.
2387 *
2388 * Return: the new mode to use for the file
2389 */
mode_strip_sgid(struct user_namespace * mnt_userns,const struct inode * dir,umode_t mode)2390 umode_t mode_strip_sgid(struct user_namespace *mnt_userns,
2391 const struct inode *dir, umode_t mode)
2392 {
2393 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2394 return mode;
2395 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2396 return mode;
2397 if (in_group_or_capable(mnt_userns, dir,
2398 i_gid_into_mnt(mnt_userns, dir)))
2399 return mode;
2400 return mode & ~S_ISGID;
2401 }
2402 EXPORT_SYMBOL(mode_strip_sgid);
2403