1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90
91 #define emul_to_vcpu(ctxt) \
92 ((struct kvm_vcpu *)(ctxt)->vcpu)
93
94 /* EFER defaults:
95 * - enable syscall per default because its emulated by KVM
96 * - enable LME and LMA per default on 64 bit KVM
97 */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125
126 #define KVM_X86_OP(func) \
127 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
128 *(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32 __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64 __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164
165 /*
166 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
167 * adaptive tuning starting from default advancement of 1000ns. '0' disables
168 * advancement entirely. Any other value is used as-is and disables adaptive
169 * tuning, i.e. allows privileged userspace to set an exact advancement time.
170 */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /* Enable/disable SMT_RSB bug mitigation */
188 bool __read_mostly mitigate_smt_rsb;
189 module_param(mitigate_smt_rsb, bool, 0444);
190
191 /*
192 * Restoring the host value for MSRs that are only consumed when running in
193 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
194 * returns to userspace, i.e. the kernel can run with the guest's value.
195 */
196 #define KVM_MAX_NR_USER_RETURN_MSRS 16
197
198 struct kvm_user_return_msrs {
199 struct user_return_notifier urn;
200 bool registered;
201 struct kvm_user_return_msr_values {
202 u64 host;
203 u64 curr;
204 } values[KVM_MAX_NR_USER_RETURN_MSRS];
205 };
206
207 u32 __read_mostly kvm_nr_uret_msrs;
208 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
209 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
210 static struct kvm_user_return_msrs __percpu *user_return_msrs;
211
212 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
213 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
214 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
215 | XFEATURE_MASK_PKRU)
216
217 u64 __read_mostly host_efer;
218 EXPORT_SYMBOL_GPL(host_efer);
219
220 bool __read_mostly allow_smaller_maxphyaddr = 0;
221 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
222
223 bool __read_mostly enable_apicv = true;
224 EXPORT_SYMBOL_GPL(enable_apicv);
225
226 u64 __read_mostly host_xss;
227 EXPORT_SYMBOL_GPL(host_xss);
228 u64 __read_mostly supported_xss;
229 EXPORT_SYMBOL_GPL(supported_xss);
230
231 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
232 KVM_GENERIC_VM_STATS(),
233 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
234 STATS_DESC_COUNTER(VM, mmu_pte_write),
235 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
236 STATS_DESC_COUNTER(VM, mmu_flooded),
237 STATS_DESC_COUNTER(VM, mmu_recycled),
238 STATS_DESC_COUNTER(VM, mmu_cache_miss),
239 STATS_DESC_ICOUNTER(VM, mmu_unsync),
240 STATS_DESC_ICOUNTER(VM, pages_4k),
241 STATS_DESC_ICOUNTER(VM, pages_2m),
242 STATS_DESC_ICOUNTER(VM, pages_1g),
243 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
244 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
245 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
246 };
247
248 const struct kvm_stats_header kvm_vm_stats_header = {
249 .name_size = KVM_STATS_NAME_SIZE,
250 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
251 .id_offset = sizeof(struct kvm_stats_header),
252 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
253 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
254 sizeof(kvm_vm_stats_desc),
255 };
256
257 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
258 KVM_GENERIC_VCPU_STATS(),
259 STATS_DESC_COUNTER(VCPU, pf_fixed),
260 STATS_DESC_COUNTER(VCPU, pf_guest),
261 STATS_DESC_COUNTER(VCPU, tlb_flush),
262 STATS_DESC_COUNTER(VCPU, invlpg),
263 STATS_DESC_COUNTER(VCPU, exits),
264 STATS_DESC_COUNTER(VCPU, io_exits),
265 STATS_DESC_COUNTER(VCPU, mmio_exits),
266 STATS_DESC_COUNTER(VCPU, signal_exits),
267 STATS_DESC_COUNTER(VCPU, irq_window_exits),
268 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
269 STATS_DESC_COUNTER(VCPU, l1d_flush),
270 STATS_DESC_COUNTER(VCPU, halt_exits),
271 STATS_DESC_COUNTER(VCPU, request_irq_exits),
272 STATS_DESC_COUNTER(VCPU, irq_exits),
273 STATS_DESC_COUNTER(VCPU, host_state_reload),
274 STATS_DESC_COUNTER(VCPU, fpu_reload),
275 STATS_DESC_COUNTER(VCPU, insn_emulation),
276 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
277 STATS_DESC_COUNTER(VCPU, hypercalls),
278 STATS_DESC_COUNTER(VCPU, irq_injections),
279 STATS_DESC_COUNTER(VCPU, nmi_injections),
280 STATS_DESC_COUNTER(VCPU, req_event),
281 STATS_DESC_COUNTER(VCPU, nested_run),
282 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
283 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
284 STATS_DESC_COUNTER(VCPU, preemption_reported),
285 STATS_DESC_COUNTER(VCPU, preemption_other),
286 STATS_DESC_ICOUNTER(VCPU, guest_mode)
287 };
288
289 const struct kvm_stats_header kvm_vcpu_stats_header = {
290 .name_size = KVM_STATS_NAME_SIZE,
291 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
292 .id_offset = sizeof(struct kvm_stats_header),
293 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
294 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
295 sizeof(kvm_vcpu_stats_desc),
296 };
297
298 u64 __read_mostly host_xcr0;
299 u64 __read_mostly supported_xcr0;
300 EXPORT_SYMBOL_GPL(supported_xcr0);
301
302 static struct kmem_cache *x86_fpu_cache;
303
304 static struct kmem_cache *x86_emulator_cache;
305
306 /*
307 * When called, it means the previous get/set msr reached an invalid msr.
308 * Return true if we want to ignore/silent this failed msr access.
309 */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)310 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
311 {
312 const char *op = write ? "wrmsr" : "rdmsr";
313
314 if (ignore_msrs) {
315 if (report_ignored_msrs)
316 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
317 op, msr, data);
318 /* Mask the error */
319 return true;
320 } else {
321 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
322 op, msr, data);
323 return false;
324 }
325 }
326
kvm_alloc_emulator_cache(void)327 static struct kmem_cache *kvm_alloc_emulator_cache(void)
328 {
329 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
330 unsigned int size = sizeof(struct x86_emulate_ctxt);
331
332 return kmem_cache_create_usercopy("x86_emulator", size,
333 __alignof__(struct x86_emulate_ctxt),
334 SLAB_ACCOUNT, useroffset,
335 size - useroffset, NULL);
336 }
337
338 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
339
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)340 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
341 {
342 int i;
343 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
344 vcpu->arch.apf.gfns[i] = ~0;
345 }
346
kvm_on_user_return(struct user_return_notifier * urn)347 static void kvm_on_user_return(struct user_return_notifier *urn)
348 {
349 unsigned slot;
350 struct kvm_user_return_msrs *msrs
351 = container_of(urn, struct kvm_user_return_msrs, urn);
352 struct kvm_user_return_msr_values *values;
353 unsigned long flags;
354
355 /*
356 * Disabling irqs at this point since the following code could be
357 * interrupted and executed through kvm_arch_hardware_disable()
358 */
359 local_irq_save(flags);
360 if (msrs->registered) {
361 msrs->registered = false;
362 user_return_notifier_unregister(urn);
363 }
364 local_irq_restore(flags);
365 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
366 values = &msrs->values[slot];
367 if (values->host != values->curr) {
368 wrmsrl(kvm_uret_msrs_list[slot], values->host);
369 values->curr = values->host;
370 }
371 }
372 }
373
kvm_probe_user_return_msr(u32 msr)374 static int kvm_probe_user_return_msr(u32 msr)
375 {
376 u64 val;
377 int ret;
378
379 preempt_disable();
380 ret = rdmsrl_safe(msr, &val);
381 if (ret)
382 goto out;
383 ret = wrmsrl_safe(msr, val);
384 out:
385 preempt_enable();
386 return ret;
387 }
388
kvm_add_user_return_msr(u32 msr)389 int kvm_add_user_return_msr(u32 msr)
390 {
391 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
392
393 if (kvm_probe_user_return_msr(msr))
394 return -1;
395
396 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
397 return kvm_nr_uret_msrs++;
398 }
399 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
400
kvm_find_user_return_msr(u32 msr)401 int kvm_find_user_return_msr(u32 msr)
402 {
403 int i;
404
405 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
406 if (kvm_uret_msrs_list[i] == msr)
407 return i;
408 }
409 return -1;
410 }
411 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
412
kvm_user_return_msr_cpu_online(void)413 static void kvm_user_return_msr_cpu_online(void)
414 {
415 unsigned int cpu = smp_processor_id();
416 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
417 u64 value;
418 int i;
419
420 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
422 msrs->values[i].host = value;
423 msrs->values[i].curr = value;
424 }
425 }
426
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)427 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
428 {
429 unsigned int cpu = smp_processor_id();
430 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
431 int err;
432
433 value = (value & mask) | (msrs->values[slot].host & ~mask);
434 if (value == msrs->values[slot].curr)
435 return 0;
436 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
437 if (err)
438 return 1;
439
440 msrs->values[slot].curr = value;
441 if (!msrs->registered) {
442 msrs->urn.on_user_return = kvm_on_user_return;
443 user_return_notifier_register(&msrs->urn);
444 msrs->registered = true;
445 }
446 return 0;
447 }
448 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
449
drop_user_return_notifiers(void)450 static void drop_user_return_notifiers(void)
451 {
452 unsigned int cpu = smp_processor_id();
453 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
454
455 if (msrs->registered)
456 kvm_on_user_return(&msrs->urn);
457 }
458
kvm_get_apic_base(struct kvm_vcpu * vcpu)459 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
460 {
461 return vcpu->arch.apic_base;
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
464
kvm_get_apic_mode(struct kvm_vcpu * vcpu)465 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
466 {
467 return kvm_apic_mode(kvm_get_apic_base(vcpu));
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
470
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)471 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
472 {
473 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
474 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
475 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
476 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
477
478 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
479 return 1;
480 if (!msr_info->host_initiated) {
481 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
482 return 1;
483 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
484 return 1;
485 }
486
487 kvm_lapic_set_base(vcpu, msr_info->data);
488 kvm_recalculate_apic_map(vcpu->kvm);
489 return 0;
490 }
491 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
492
493 /*
494 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
495 *
496 * Hardware virtualization extension instructions may fault if a reboot turns
497 * off virtualization while processes are running. Usually after catching the
498 * fault we just panic; during reboot instead the instruction is ignored.
499 */
kvm_spurious_fault(void)500 noinstr void kvm_spurious_fault(void)
501 {
502 /* Fault while not rebooting. We want the trace. */
503 BUG_ON(!kvm_rebooting);
504 }
505 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
506
507 #define EXCPT_BENIGN 0
508 #define EXCPT_CONTRIBUTORY 1
509 #define EXCPT_PF 2
510
exception_class(int vector)511 static int exception_class(int vector)
512 {
513 switch (vector) {
514 case PF_VECTOR:
515 return EXCPT_PF;
516 case DE_VECTOR:
517 case TS_VECTOR:
518 case NP_VECTOR:
519 case SS_VECTOR:
520 case GP_VECTOR:
521 return EXCPT_CONTRIBUTORY;
522 default:
523 break;
524 }
525 return EXCPT_BENIGN;
526 }
527
528 #define EXCPT_FAULT 0
529 #define EXCPT_TRAP 1
530 #define EXCPT_ABORT 2
531 #define EXCPT_INTERRUPT 3
532 #define EXCPT_DB 4
533
exception_type(int vector)534 static int exception_type(int vector)
535 {
536 unsigned int mask;
537
538 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
539 return EXCPT_INTERRUPT;
540
541 mask = 1 << vector;
542
543 /*
544 * #DBs can be trap-like or fault-like, the caller must check other CPU
545 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
546 */
547 if (mask & (1 << DB_VECTOR))
548 return EXCPT_DB;
549
550 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
551 return EXCPT_TRAP;
552
553 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
554 return EXCPT_ABORT;
555
556 /* Reserved exceptions will result in fault */
557 return EXCPT_FAULT;
558 }
559
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)560 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
561 {
562 unsigned nr = vcpu->arch.exception.nr;
563 bool has_payload = vcpu->arch.exception.has_payload;
564 unsigned long payload = vcpu->arch.exception.payload;
565
566 if (!has_payload)
567 return;
568
569 switch (nr) {
570 case DB_VECTOR:
571 /*
572 * "Certain debug exceptions may clear bit 0-3. The
573 * remaining contents of the DR6 register are never
574 * cleared by the processor".
575 */
576 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
577 /*
578 * In order to reflect the #DB exception payload in guest
579 * dr6, three components need to be considered: active low
580 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
581 * DR6_BS and DR6_BT)
582 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
583 * In the target guest dr6:
584 * FIXED_1 bits should always be set.
585 * Active low bits should be cleared if 1-setting in payload.
586 * Active high bits should be set if 1-setting in payload.
587 *
588 * Note, the payload is compatible with the pending debug
589 * exceptions/exit qualification under VMX, that active_low bits
590 * are active high in payload.
591 * So they need to be flipped for DR6.
592 */
593 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
594 vcpu->arch.dr6 |= payload;
595 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
596
597 /*
598 * The #DB payload is defined as compatible with the 'pending
599 * debug exceptions' field under VMX, not DR6. While bit 12 is
600 * defined in the 'pending debug exceptions' field (enabled
601 * breakpoint), it is reserved and must be zero in DR6.
602 */
603 vcpu->arch.dr6 &= ~BIT(12);
604 break;
605 case PF_VECTOR:
606 vcpu->arch.cr2 = payload;
607 break;
608 }
609
610 vcpu->arch.exception.has_payload = false;
611 vcpu->arch.exception.payload = 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
614
615 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)616 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
617 {
618 kvm_x86_ops.nested_ops->leave_nested(vcpu);
619 }
620
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622 unsigned nr, bool has_error, u32 error_code,
623 bool has_payload, unsigned long payload, bool reinject)
624 {
625 u32 prev_nr;
626 int class1, class2;
627
628 kvm_make_request(KVM_REQ_EVENT, vcpu);
629
630 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631 queue:
632 if (reinject) {
633 /*
634 * On vmentry, vcpu->arch.exception.pending is only
635 * true if an event injection was blocked by
636 * nested_run_pending. In that case, however,
637 * vcpu_enter_guest requests an immediate exit,
638 * and the guest shouldn't proceed far enough to
639 * need reinjection.
640 */
641 WARN_ON_ONCE(vcpu->arch.exception.pending);
642 vcpu->arch.exception.injected = true;
643 if (WARN_ON_ONCE(has_payload)) {
644 /*
645 * A reinjected event has already
646 * delivered its payload.
647 */
648 has_payload = false;
649 payload = 0;
650 }
651 } else {
652 vcpu->arch.exception.pending = true;
653 vcpu->arch.exception.injected = false;
654 }
655 vcpu->arch.exception.has_error_code = has_error;
656 vcpu->arch.exception.nr = nr;
657 vcpu->arch.exception.error_code = error_code;
658 vcpu->arch.exception.has_payload = has_payload;
659 vcpu->arch.exception.payload = payload;
660 if (!is_guest_mode(vcpu))
661 kvm_deliver_exception_payload(vcpu);
662 return;
663 }
664
665 /* to check exception */
666 prev_nr = vcpu->arch.exception.nr;
667 if (prev_nr == DF_VECTOR) {
668 /* triple fault -> shutdown */
669 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670 return;
671 }
672 class1 = exception_class(prev_nr);
673 class2 = exception_class(nr);
674 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676 /*
677 * Generate double fault per SDM Table 5-5. Set
678 * exception.pending = true so that the double fault
679 * can trigger a nested vmexit.
680 */
681 vcpu->arch.exception.pending = true;
682 vcpu->arch.exception.injected = false;
683 vcpu->arch.exception.has_error_code = true;
684 vcpu->arch.exception.nr = DF_VECTOR;
685 vcpu->arch.exception.error_code = 0;
686 vcpu->arch.exception.has_payload = false;
687 vcpu->arch.exception.payload = 0;
688 } else
689 /* replace previous exception with a new one in a hope
690 that instruction re-execution will regenerate lost
691 exception */
692 goto queue;
693 }
694
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708 unsigned long payload)
709 {
710 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715 u32 error_code, unsigned long payload)
716 {
717 kvm_multiple_exception(vcpu, nr, true, error_code,
718 true, payload, false);
719 }
720
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723 if (err)
724 kvm_inject_gp(vcpu, 0);
725 else
726 return kvm_skip_emulated_instruction(vcpu);
727
728 return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)732 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
733 {
734 ++vcpu->stat.pf_guest;
735 vcpu->arch.exception.nested_apf =
736 is_guest_mode(vcpu) && fault->async_page_fault;
737 if (vcpu->arch.exception.nested_apf) {
738 vcpu->arch.apf.nested_apf_token = fault->address;
739 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
740 } else {
741 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
742 fault->address);
743 }
744 }
745 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
746
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)747 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
748 struct x86_exception *fault)
749 {
750 struct kvm_mmu *fault_mmu;
751 WARN_ON_ONCE(fault->vector != PF_VECTOR);
752
753 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
754 vcpu->arch.walk_mmu;
755
756 /*
757 * Invalidate the TLB entry for the faulting address, if it exists,
758 * else the access will fault indefinitely (and to emulate hardware).
759 */
760 if ((fault->error_code & PFERR_PRESENT_MASK) &&
761 !(fault->error_code & PFERR_RSVD_MASK))
762 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
763 fault_mmu->root_hpa);
764
765 fault_mmu->inject_page_fault(vcpu, fault);
766 return fault->nested_page_fault;
767 }
768 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
769
kvm_inject_nmi(struct kvm_vcpu * vcpu)770 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
771 {
772 atomic_inc(&vcpu->arch.nmi_queued);
773 kvm_make_request(KVM_REQ_NMI, vcpu);
774 }
775 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
776
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)777 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
778 {
779 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
780 }
781 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
782
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)783 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
784 {
785 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
786 }
787 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
788
789 /*
790 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
791 * a #GP and return false.
792 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)793 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
794 {
795 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
796 return true;
797 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
798 return false;
799 }
800 EXPORT_SYMBOL_GPL(kvm_require_cpl);
801
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)802 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
803 {
804 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
805 return true;
806
807 kvm_queue_exception(vcpu, UD_VECTOR);
808 return false;
809 }
810 EXPORT_SYMBOL_GPL(kvm_require_dr);
811
812 /*
813 * This function will be used to read from the physical memory of the currently
814 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
815 * can read from guest physical or from the guest's guest physical memory.
816 */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)817 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
818 gfn_t ngfn, void *data, int offset, int len,
819 u32 access)
820 {
821 struct x86_exception exception;
822 gfn_t real_gfn;
823 gpa_t ngpa;
824
825 ngpa = gfn_to_gpa(ngfn);
826 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
827 if (real_gfn == UNMAPPED_GVA)
828 return -EFAULT;
829
830 real_gfn = gpa_to_gfn(real_gfn);
831
832 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
833 }
834 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
835
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)836 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
837 {
838 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
839 }
840
841 /*
842 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
843 */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)844 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
845 {
846 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
847 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
848 int i;
849 int ret;
850 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
851
852 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
853 offset * sizeof(u64), sizeof(pdpte),
854 PFERR_USER_MASK|PFERR_WRITE_MASK);
855 if (ret < 0) {
856 ret = 0;
857 goto out;
858 }
859 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
860 if ((pdpte[i] & PT_PRESENT_MASK) &&
861 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
862 ret = 0;
863 goto out;
864 }
865 }
866 ret = 1;
867
868 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
869 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
870 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
871 vcpu->arch.pdptrs_from_userspace = false;
872
873 out:
874
875 return ret;
876 }
877 EXPORT_SYMBOL_GPL(load_pdptrs);
878
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)879 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
880 {
881 #ifdef CONFIG_X86_64
882 if (cr0 & 0xffffffff00000000UL)
883 return false;
884 #endif
885
886 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
887 return false;
888
889 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
890 return false;
891
892 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
893 }
894
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)895 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
896 {
897 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
898 kvm_clear_async_pf_completion_queue(vcpu);
899 kvm_async_pf_hash_reset(vcpu);
900 }
901
902 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
903 kvm_mmu_reset_context(vcpu);
904
905 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
906 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
907 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
908 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
909 }
910 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
911
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)912 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
913 {
914 unsigned long old_cr0 = kvm_read_cr0(vcpu);
915 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
916
917 if (!kvm_is_valid_cr0(vcpu, cr0))
918 return 1;
919
920 cr0 |= X86_CR0_ET;
921
922 /* Write to CR0 reserved bits are ignored, even on Intel. */
923 cr0 &= ~CR0_RESERVED_BITS;
924
925 #ifdef CONFIG_X86_64
926 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
927 (cr0 & X86_CR0_PG)) {
928 int cs_db, cs_l;
929
930 if (!is_pae(vcpu))
931 return 1;
932 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
933 if (cs_l)
934 return 1;
935 }
936 #endif
937 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
938 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
939 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
940 return 1;
941
942 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
943 return 1;
944
945 static_call(kvm_x86_set_cr0)(vcpu, cr0);
946
947 kvm_post_set_cr0(vcpu, old_cr0, cr0);
948
949 return 0;
950 }
951 EXPORT_SYMBOL_GPL(kvm_set_cr0);
952
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)953 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
954 {
955 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
956 }
957 EXPORT_SYMBOL_GPL(kvm_lmsw);
958
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)959 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
960 {
961 if (vcpu->arch.guest_state_protected)
962 return;
963
964 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
965
966 if (vcpu->arch.xcr0 != host_xcr0)
967 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
968
969 if (vcpu->arch.xsaves_enabled &&
970 vcpu->arch.ia32_xss != host_xss)
971 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
972 }
973
974 if (static_cpu_has(X86_FEATURE_PKU) &&
975 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
976 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
977 vcpu->arch.pkru != vcpu->arch.host_pkru)
978 write_pkru(vcpu->arch.pkru);
979 }
980 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
981
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)982 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
983 {
984 if (vcpu->arch.guest_state_protected)
985 return;
986
987 if (static_cpu_has(X86_FEATURE_PKU) &&
988 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
989 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
990 vcpu->arch.pkru = rdpkru();
991 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
992 write_pkru(vcpu->arch.host_pkru);
993 }
994
995 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
996
997 if (vcpu->arch.xcr0 != host_xcr0)
998 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
999
1000 if (vcpu->arch.xsaves_enabled &&
1001 vcpu->arch.ia32_xss != host_xss)
1002 wrmsrl(MSR_IA32_XSS, host_xss);
1003 }
1004
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1007
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1008 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1009 {
1010 u64 xcr0 = xcr;
1011 u64 old_xcr0 = vcpu->arch.xcr0;
1012 u64 valid_bits;
1013
1014 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1015 if (index != XCR_XFEATURE_ENABLED_MASK)
1016 return 1;
1017 if (!(xcr0 & XFEATURE_MASK_FP))
1018 return 1;
1019 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1020 return 1;
1021
1022 /*
1023 * Do not allow the guest to set bits that we do not support
1024 * saving. However, xcr0 bit 0 is always set, even if the
1025 * emulated CPU does not support XSAVE (see fx_init).
1026 */
1027 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1028 if (xcr0 & ~valid_bits)
1029 return 1;
1030
1031 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1032 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1033 return 1;
1034
1035 if (xcr0 & XFEATURE_MASK_AVX512) {
1036 if (!(xcr0 & XFEATURE_MASK_YMM))
1037 return 1;
1038 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1039 return 1;
1040 }
1041 vcpu->arch.xcr0 = xcr0;
1042
1043 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1044 kvm_update_cpuid_runtime(vcpu);
1045 return 0;
1046 }
1047
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1048 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1049 {
1050 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1051 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1052 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1053 kvm_inject_gp(vcpu, 0);
1054 return 1;
1055 }
1056
1057 return kvm_skip_emulated_instruction(vcpu);
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1060
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1061 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1062 {
1063 if (cr4 & cr4_reserved_bits)
1064 return false;
1065
1066 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1067 return false;
1068
1069 return true;
1070 }
1071 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1072
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1073 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1074 {
1075 return __kvm_is_valid_cr4(vcpu, cr4) &&
1076 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1077 }
1078
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1080 {
1081 if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1082 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1083 kvm_mmu_reset_context(vcpu);
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1086
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1087 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1088 {
1089 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1090 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1091 X86_CR4_SMEP;
1092
1093 if (!kvm_is_valid_cr4(vcpu, cr4))
1094 return 1;
1095
1096 if (is_long_mode(vcpu)) {
1097 if (!(cr4 & X86_CR4_PAE))
1098 return 1;
1099 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1100 return 1;
1101 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1102 && ((cr4 ^ old_cr4) & pdptr_bits)
1103 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1104 kvm_read_cr3(vcpu)))
1105 return 1;
1106
1107 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1108 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1109 return 1;
1110
1111 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1112 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1113 return 1;
1114 }
1115
1116 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1117
1118 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1119
1120 return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1123
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1124 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1125 {
1126 struct kvm_mmu *mmu = vcpu->arch.mmu;
1127 unsigned long roots_to_free = 0;
1128 int i;
1129
1130 /*
1131 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1132 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1133 * also via the emulator. KVM's TDP page tables are not in the scope of
1134 * the invalidation, but the guest's TLB entries need to be flushed as
1135 * the CPU may have cached entries in its TLB for the target PCID.
1136 */
1137 if (unlikely(tdp_enabled)) {
1138 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1139 return;
1140 }
1141
1142 /*
1143 * If neither the current CR3 nor any of the prev_roots use the given
1144 * PCID, then nothing needs to be done here because a resync will
1145 * happen anyway before switching to any other CR3.
1146 */
1147 if (kvm_get_active_pcid(vcpu) == pcid) {
1148 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1149 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1150 }
1151
1152 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1153 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1154 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1155
1156 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1157 }
1158
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1159 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1160 {
1161 bool skip_tlb_flush = false;
1162 unsigned long pcid = 0;
1163 #ifdef CONFIG_X86_64
1164 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1165
1166 if (pcid_enabled) {
1167 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1168 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1169 pcid = cr3 & X86_CR3_PCID_MASK;
1170 }
1171 #endif
1172
1173 /* PDPTRs are always reloaded for PAE paging. */
1174 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1175 goto handle_tlb_flush;
1176
1177 /*
1178 * Do not condition the GPA check on long mode, this helper is used to
1179 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1180 * the current vCPU mode is accurate.
1181 */
1182 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1183 return 1;
1184
1185 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1186 return 1;
1187
1188 if (cr3 != kvm_read_cr3(vcpu))
1189 kvm_mmu_new_pgd(vcpu, cr3);
1190
1191 vcpu->arch.cr3 = cr3;
1192 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1193
1194 handle_tlb_flush:
1195 /*
1196 * A load of CR3 that flushes the TLB flushes only the current PCID,
1197 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1198 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1199 * and it's impossible to use a non-zero PCID when PCID is disabled,
1200 * i.e. only PCID=0 can be relevant.
1201 */
1202 if (!skip_tlb_flush)
1203 kvm_invalidate_pcid(vcpu, pcid);
1204
1205 return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1208
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1209 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1210 {
1211 if (cr8 & CR8_RESERVED_BITS)
1212 return 1;
1213 if (lapic_in_kernel(vcpu))
1214 kvm_lapic_set_tpr(vcpu, cr8);
1215 else
1216 vcpu->arch.cr8 = cr8;
1217 return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1220
kvm_get_cr8(struct kvm_vcpu * vcpu)1221 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1222 {
1223 if (lapic_in_kernel(vcpu))
1224 return kvm_lapic_get_cr8(vcpu);
1225 else
1226 return vcpu->arch.cr8;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1229
kvm_update_dr0123(struct kvm_vcpu * vcpu)1230 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1231 {
1232 int i;
1233
1234 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1235 for (i = 0; i < KVM_NR_DB_REGS; i++)
1236 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1237 }
1238 }
1239
kvm_update_dr7(struct kvm_vcpu * vcpu)1240 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1241 {
1242 unsigned long dr7;
1243
1244 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1245 dr7 = vcpu->arch.guest_debug_dr7;
1246 else
1247 dr7 = vcpu->arch.dr7;
1248 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1249 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1250 if (dr7 & DR7_BP_EN_MASK)
1251 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1254
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1255 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1256 {
1257 u64 fixed = DR6_FIXED_1;
1258
1259 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1260 fixed |= DR6_RTM;
1261
1262 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1263 fixed |= DR6_BUS_LOCK;
1264 return fixed;
1265 }
1266
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1267 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1268 {
1269 size_t size = ARRAY_SIZE(vcpu->arch.db);
1270
1271 switch (dr) {
1272 case 0 ... 3:
1273 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1274 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1275 vcpu->arch.eff_db[dr] = val;
1276 break;
1277 case 4:
1278 case 6:
1279 if (!kvm_dr6_valid(val))
1280 return 1; /* #GP */
1281 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1282 break;
1283 case 5:
1284 default: /* 7 */
1285 if (!kvm_dr7_valid(val))
1286 return 1; /* #GP */
1287 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1288 kvm_update_dr7(vcpu);
1289 break;
1290 }
1291
1292 return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_set_dr);
1295
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1296 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1297 {
1298 size_t size = ARRAY_SIZE(vcpu->arch.db);
1299
1300 switch (dr) {
1301 case 0 ... 3:
1302 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1303 break;
1304 case 4:
1305 case 6:
1306 *val = vcpu->arch.dr6;
1307 break;
1308 case 5:
1309 default: /* 7 */
1310 *val = vcpu->arch.dr7;
1311 break;
1312 }
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_get_dr);
1315
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1316 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1317 {
1318 u32 ecx = kvm_rcx_read(vcpu);
1319 u64 data;
1320
1321 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1322 kvm_inject_gp(vcpu, 0);
1323 return 1;
1324 }
1325
1326 kvm_rax_write(vcpu, (u32)data);
1327 kvm_rdx_write(vcpu, data >> 32);
1328 return kvm_skip_emulated_instruction(vcpu);
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1331
1332 /*
1333 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1334 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1335 *
1336 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1337 * extract the supported MSRs from the related const lists.
1338 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1339 * capabilities of the host cpu. This capabilities test skips MSRs that are
1340 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1341 * may depend on host virtualization features rather than host cpu features.
1342 */
1343
1344 static const u32 msrs_to_save_all[] = {
1345 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1346 MSR_STAR,
1347 #ifdef CONFIG_X86_64
1348 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1349 #endif
1350 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1351 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1352 MSR_IA32_SPEC_CTRL,
1353 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1354 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1355 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1356 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1357 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1358 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1359 MSR_IA32_UMWAIT_CONTROL,
1360
1361 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1362 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1363 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1364 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1365 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1366 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1367 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1368 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1369 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1370 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1371 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1372 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1373
1374 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1375 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1376 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1377 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1378 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1379 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1380 };
1381
1382 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1383 static unsigned num_msrs_to_save;
1384
1385 static const u32 emulated_msrs_all[] = {
1386 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1387 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1388 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1389 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1390 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1391 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1392 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1393 HV_X64_MSR_RESET,
1394 HV_X64_MSR_VP_INDEX,
1395 HV_X64_MSR_VP_RUNTIME,
1396 HV_X64_MSR_SCONTROL,
1397 HV_X64_MSR_STIMER0_CONFIG,
1398 HV_X64_MSR_VP_ASSIST_PAGE,
1399 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1400 HV_X64_MSR_TSC_EMULATION_STATUS,
1401 HV_X64_MSR_SYNDBG_OPTIONS,
1402 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1403 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1404 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1405
1406 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1407 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1408
1409 MSR_IA32_TSC_ADJUST,
1410 MSR_IA32_TSC_DEADLINE,
1411 MSR_IA32_ARCH_CAPABILITIES,
1412 MSR_IA32_PERF_CAPABILITIES,
1413 MSR_IA32_MISC_ENABLE,
1414 MSR_IA32_MCG_STATUS,
1415 MSR_IA32_MCG_CTL,
1416 MSR_IA32_MCG_EXT_CTL,
1417 MSR_IA32_SMBASE,
1418 MSR_SMI_COUNT,
1419 MSR_PLATFORM_INFO,
1420 MSR_MISC_FEATURES_ENABLES,
1421 MSR_AMD64_VIRT_SPEC_CTRL,
1422 MSR_IA32_POWER_CTL,
1423 MSR_IA32_UCODE_REV,
1424
1425 /*
1426 * The following list leaves out MSRs whose values are determined
1427 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1428 * We always support the "true" VMX control MSRs, even if the host
1429 * processor does not, so I am putting these registers here rather
1430 * than in msrs_to_save_all.
1431 */
1432 MSR_IA32_VMX_BASIC,
1433 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1434 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1435 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1436 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1437 MSR_IA32_VMX_MISC,
1438 MSR_IA32_VMX_CR0_FIXED0,
1439 MSR_IA32_VMX_CR4_FIXED0,
1440 MSR_IA32_VMX_VMCS_ENUM,
1441 MSR_IA32_VMX_PROCBASED_CTLS2,
1442 MSR_IA32_VMX_EPT_VPID_CAP,
1443 MSR_IA32_VMX_VMFUNC,
1444
1445 MSR_K7_HWCR,
1446 MSR_KVM_POLL_CONTROL,
1447 };
1448
1449 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1450 static unsigned num_emulated_msrs;
1451
1452 /*
1453 * List of msr numbers which are used to expose MSR-based features that
1454 * can be used by a hypervisor to validate requested CPU features.
1455 */
1456 static const u32 msr_based_features_all[] = {
1457 MSR_IA32_VMX_BASIC,
1458 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1459 MSR_IA32_VMX_PINBASED_CTLS,
1460 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1461 MSR_IA32_VMX_PROCBASED_CTLS,
1462 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1463 MSR_IA32_VMX_EXIT_CTLS,
1464 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1465 MSR_IA32_VMX_ENTRY_CTLS,
1466 MSR_IA32_VMX_MISC,
1467 MSR_IA32_VMX_CR0_FIXED0,
1468 MSR_IA32_VMX_CR0_FIXED1,
1469 MSR_IA32_VMX_CR4_FIXED0,
1470 MSR_IA32_VMX_CR4_FIXED1,
1471 MSR_IA32_VMX_VMCS_ENUM,
1472 MSR_IA32_VMX_PROCBASED_CTLS2,
1473 MSR_IA32_VMX_EPT_VPID_CAP,
1474 MSR_IA32_VMX_VMFUNC,
1475
1476 MSR_AMD64_DE_CFG,
1477 MSR_IA32_UCODE_REV,
1478 MSR_IA32_ARCH_CAPABILITIES,
1479 MSR_IA32_PERF_CAPABILITIES,
1480 };
1481
1482 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1483 static unsigned int num_msr_based_features;
1484
1485 /*
1486 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1487 * does not yet virtualize. These include:
1488 * 10 - MISC_PACKAGE_CTRLS
1489 * 11 - ENERGY_FILTERING_CTL
1490 * 12 - DOITM
1491 * 18 - FB_CLEAR_CTRL
1492 * 21 - XAPIC_DISABLE_STATUS
1493 * 23 - OVERCLOCKING_STATUS
1494 */
1495
1496 #define KVM_SUPPORTED_ARCH_CAP \
1497 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1498 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1499 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1500 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1501 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1502
kvm_get_arch_capabilities(void)1503 static u64 kvm_get_arch_capabilities(void)
1504 {
1505 u64 data = 0;
1506
1507 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1508 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1509 data &= KVM_SUPPORTED_ARCH_CAP;
1510 }
1511
1512 /*
1513 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1514 * the nested hypervisor runs with NX huge pages. If it is not,
1515 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1516 * L1 guests, so it need not worry about its own (L2) guests.
1517 */
1518 data |= ARCH_CAP_PSCHANGE_MC_NO;
1519
1520 /*
1521 * If we're doing cache flushes (either "always" or "cond")
1522 * we will do one whenever the guest does a vmlaunch/vmresume.
1523 * If an outer hypervisor is doing the cache flush for us
1524 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1525 * capability to the guest too, and if EPT is disabled we're not
1526 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1527 * require a nested hypervisor to do a flush of its own.
1528 */
1529 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1530 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1531
1532 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1533 data |= ARCH_CAP_RDCL_NO;
1534 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1535 data |= ARCH_CAP_SSB_NO;
1536 if (!boot_cpu_has_bug(X86_BUG_MDS))
1537 data |= ARCH_CAP_MDS_NO;
1538
1539 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1540 /*
1541 * If RTM=0 because the kernel has disabled TSX, the host might
1542 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1543 * and therefore knows that there cannot be TAA) but keep
1544 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1545 * and we want to allow migrating those guests to tsx=off hosts.
1546 */
1547 data &= ~ARCH_CAP_TAA_NO;
1548 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1549 data |= ARCH_CAP_TAA_NO;
1550 } else {
1551 /*
1552 * Nothing to do here; we emulate TSX_CTRL if present on the
1553 * host so the guest can choose between disabling TSX or
1554 * using VERW to clear CPU buffers.
1555 */
1556 }
1557
1558 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1559 data |= ARCH_CAP_GDS_NO;
1560
1561 return data;
1562 }
1563
kvm_get_msr_feature(struct kvm_msr_entry * msr)1564 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1565 {
1566 switch (msr->index) {
1567 case MSR_IA32_ARCH_CAPABILITIES:
1568 msr->data = kvm_get_arch_capabilities();
1569 break;
1570 case MSR_IA32_UCODE_REV:
1571 rdmsrl_safe(msr->index, &msr->data);
1572 break;
1573 default:
1574 return static_call(kvm_x86_get_msr_feature)(msr);
1575 }
1576 return 0;
1577 }
1578
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1579 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1580 {
1581 struct kvm_msr_entry msr;
1582 int r;
1583
1584 msr.index = index;
1585 r = kvm_get_msr_feature(&msr);
1586
1587 if (r == KVM_MSR_RET_INVALID) {
1588 /* Unconditionally clear the output for simplicity */
1589 *data = 0;
1590 if (kvm_msr_ignored_check(index, 0, false))
1591 r = 0;
1592 }
1593
1594 if (r)
1595 return r;
1596
1597 *data = msr.data;
1598
1599 return 0;
1600 }
1601
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1602 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1603 {
1604 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1605 return false;
1606
1607 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1608 return false;
1609
1610 if (efer & (EFER_LME | EFER_LMA) &&
1611 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1612 return false;
1613
1614 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1615 return false;
1616
1617 return true;
1618
1619 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1620 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1621 {
1622 if (efer & efer_reserved_bits)
1623 return false;
1624
1625 return __kvm_valid_efer(vcpu, efer);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1628
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1629 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1630 {
1631 u64 old_efer = vcpu->arch.efer;
1632 u64 efer = msr_info->data;
1633 int r;
1634
1635 if (efer & efer_reserved_bits)
1636 return 1;
1637
1638 if (!msr_info->host_initiated) {
1639 if (!__kvm_valid_efer(vcpu, efer))
1640 return 1;
1641
1642 if (is_paging(vcpu) &&
1643 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1644 return 1;
1645 }
1646
1647 efer &= ~EFER_LMA;
1648 efer |= vcpu->arch.efer & EFER_LMA;
1649
1650 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1651 if (r) {
1652 WARN_ON(r > 0);
1653 return r;
1654 }
1655
1656 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1657 kvm_mmu_reset_context(vcpu);
1658
1659 return 0;
1660 }
1661
kvm_enable_efer_bits(u64 mask)1662 void kvm_enable_efer_bits(u64 mask)
1663 {
1664 efer_reserved_bits &= ~mask;
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1667
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1668 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1669 {
1670 struct kvm_x86_msr_filter *msr_filter;
1671 struct msr_bitmap_range *ranges;
1672 struct kvm *kvm = vcpu->kvm;
1673 bool allowed;
1674 int idx;
1675 u32 i;
1676
1677 /* x2APIC MSRs do not support filtering. */
1678 if (index >= 0x800 && index <= 0x8ff)
1679 return true;
1680
1681 idx = srcu_read_lock(&kvm->srcu);
1682
1683 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1684 if (!msr_filter) {
1685 allowed = true;
1686 goto out;
1687 }
1688
1689 allowed = msr_filter->default_allow;
1690 ranges = msr_filter->ranges;
1691
1692 for (i = 0; i < msr_filter->count; i++) {
1693 u32 start = ranges[i].base;
1694 u32 end = start + ranges[i].nmsrs;
1695 u32 flags = ranges[i].flags;
1696 unsigned long *bitmap = ranges[i].bitmap;
1697
1698 if ((index >= start) && (index < end) && (flags & type)) {
1699 allowed = !!test_bit(index - start, bitmap);
1700 break;
1701 }
1702 }
1703
1704 out:
1705 srcu_read_unlock(&kvm->srcu, idx);
1706
1707 return allowed;
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1710
1711 /*
1712 * Write @data into the MSR specified by @index. Select MSR specific fault
1713 * checks are bypassed if @host_initiated is %true.
1714 * Returns 0 on success, non-0 otherwise.
1715 * Assumes vcpu_load() was already called.
1716 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1717 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1718 bool host_initiated)
1719 {
1720 struct msr_data msr;
1721
1722 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1723 return KVM_MSR_RET_FILTERED;
1724
1725 switch (index) {
1726 case MSR_FS_BASE:
1727 case MSR_GS_BASE:
1728 case MSR_KERNEL_GS_BASE:
1729 case MSR_CSTAR:
1730 case MSR_LSTAR:
1731 if (is_noncanonical_address(data, vcpu))
1732 return 1;
1733 break;
1734 case MSR_IA32_SYSENTER_EIP:
1735 case MSR_IA32_SYSENTER_ESP:
1736 /*
1737 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1738 * non-canonical address is written on Intel but not on
1739 * AMD (which ignores the top 32-bits, because it does
1740 * not implement 64-bit SYSENTER).
1741 *
1742 * 64-bit code should hence be able to write a non-canonical
1743 * value on AMD. Making the address canonical ensures that
1744 * vmentry does not fail on Intel after writing a non-canonical
1745 * value, and that something deterministic happens if the guest
1746 * invokes 64-bit SYSENTER.
1747 */
1748 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1749 break;
1750 case MSR_TSC_AUX:
1751 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752 return 1;
1753
1754 if (!host_initiated &&
1755 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757 return 1;
1758
1759 /*
1760 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1761 * incomplete and conflicting architectural behavior. Current
1762 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1763 * reserved and always read as zeros. Enforce Intel's reserved
1764 * bits check if and only if the guest CPU is Intel, and clear
1765 * the bits in all other cases. This ensures cross-vendor
1766 * migration will provide consistent behavior for the guest.
1767 */
1768 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1769 return 1;
1770
1771 data = (u32)data;
1772 break;
1773 }
1774
1775 msr.data = data;
1776 msr.index = index;
1777 msr.host_initiated = host_initiated;
1778
1779 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1780 }
1781
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1782 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1783 u32 index, u64 data, bool host_initiated)
1784 {
1785 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1786
1787 if (ret == KVM_MSR_RET_INVALID)
1788 if (kvm_msr_ignored_check(index, data, true))
1789 ret = 0;
1790
1791 return ret;
1792 }
1793
1794 /*
1795 * Read the MSR specified by @index into @data. Select MSR specific fault
1796 * checks are bypassed if @host_initiated is %true.
1797 * Returns 0 on success, non-0 otherwise.
1798 * Assumes vcpu_load() was already called.
1799 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1800 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1801 bool host_initiated)
1802 {
1803 struct msr_data msr;
1804 int ret;
1805
1806 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1807 return KVM_MSR_RET_FILTERED;
1808
1809 switch (index) {
1810 case MSR_TSC_AUX:
1811 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1812 return 1;
1813
1814 if (!host_initiated &&
1815 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1816 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1817 return 1;
1818 break;
1819 }
1820
1821 msr.index = index;
1822 msr.host_initiated = host_initiated;
1823
1824 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1825 if (!ret)
1826 *data = msr.data;
1827 return ret;
1828 }
1829
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1830 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1831 u32 index, u64 *data, bool host_initiated)
1832 {
1833 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1834
1835 if (ret == KVM_MSR_RET_INVALID) {
1836 /* Unconditionally clear *data for simplicity */
1837 *data = 0;
1838 if (kvm_msr_ignored_check(index, 0, false))
1839 ret = 0;
1840 }
1841
1842 return ret;
1843 }
1844
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1845 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1846 {
1847 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_get_msr);
1850
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1851 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1852 {
1853 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_set_msr);
1856
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1857 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1858 {
1859 int err = vcpu->run->msr.error;
1860 if (!err) {
1861 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1862 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1863 }
1864
1865 return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1866 }
1867
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1868 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1869 {
1870 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1871 }
1872
kvm_msr_reason(int r)1873 static u64 kvm_msr_reason(int r)
1874 {
1875 switch (r) {
1876 case KVM_MSR_RET_INVALID:
1877 return KVM_MSR_EXIT_REASON_UNKNOWN;
1878 case KVM_MSR_RET_FILTERED:
1879 return KVM_MSR_EXIT_REASON_FILTER;
1880 default:
1881 return KVM_MSR_EXIT_REASON_INVAL;
1882 }
1883 }
1884
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1885 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1886 u32 exit_reason, u64 data,
1887 int (*completion)(struct kvm_vcpu *vcpu),
1888 int r)
1889 {
1890 u64 msr_reason = kvm_msr_reason(r);
1891
1892 /* Check if the user wanted to know about this MSR fault */
1893 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1894 return 0;
1895
1896 vcpu->run->exit_reason = exit_reason;
1897 vcpu->run->msr.error = 0;
1898 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1899 vcpu->run->msr.reason = msr_reason;
1900 vcpu->run->msr.index = index;
1901 vcpu->run->msr.data = data;
1902 vcpu->arch.complete_userspace_io = completion;
1903
1904 return 1;
1905 }
1906
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1907 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1908 {
1909 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1910 complete_emulated_rdmsr, r);
1911 }
1912
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1913 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1914 {
1915 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1916 complete_emulated_wrmsr, r);
1917 }
1918
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1919 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1920 {
1921 u32 ecx = kvm_rcx_read(vcpu);
1922 u64 data;
1923 int r;
1924
1925 r = kvm_get_msr(vcpu, ecx, &data);
1926
1927 /* MSR read failed? See if we should ask user space */
1928 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1929 /* Bounce to user space */
1930 return 0;
1931 }
1932
1933 if (!r) {
1934 trace_kvm_msr_read(ecx, data);
1935
1936 kvm_rax_write(vcpu, data & -1u);
1937 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1938 } else {
1939 trace_kvm_msr_read_ex(ecx);
1940 }
1941
1942 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1945
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1946 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1947 {
1948 u32 ecx = kvm_rcx_read(vcpu);
1949 u64 data = kvm_read_edx_eax(vcpu);
1950 int r;
1951
1952 r = kvm_set_msr(vcpu, ecx, data);
1953
1954 /* MSR write failed? See if we should ask user space */
1955 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1956 /* Bounce to user space */
1957 return 0;
1958
1959 /* Signal all other negative errors to userspace */
1960 if (r < 0)
1961 return r;
1962
1963 if (!r)
1964 trace_kvm_msr_write(ecx, data);
1965 else
1966 trace_kvm_msr_write_ex(ecx, data);
1967
1968 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1971
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)1972 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1973 {
1974 return kvm_skip_emulated_instruction(vcpu);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1977
kvm_emulate_invd(struct kvm_vcpu * vcpu)1978 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1979 {
1980 /* Treat an INVD instruction as a NOP and just skip it. */
1981 return kvm_emulate_as_nop(vcpu);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1984
kvm_emulate_mwait(struct kvm_vcpu * vcpu)1985 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1986 {
1987 pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1988 return kvm_emulate_as_nop(vcpu);
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1991
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)1992 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1993 {
1994 kvm_queue_exception(vcpu, UD_VECTOR);
1995 return 1;
1996 }
1997 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1998
kvm_emulate_monitor(struct kvm_vcpu * vcpu)1999 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2000 {
2001 pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2002 return kvm_emulate_as_nop(vcpu);
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2005
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2006 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2007 {
2008 xfer_to_guest_mode_prepare();
2009 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2010 xfer_to_guest_mode_work_pending();
2011 }
2012
2013 /*
2014 * The fast path for frequent and performance sensitive wrmsr emulation,
2015 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2016 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2017 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2018 * other cases which must be called after interrupts are enabled on the host.
2019 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2020 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2021 {
2022 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2023 return 1;
2024
2025 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2026 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2027 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2028 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
2029
2030 data &= ~(1 << 12);
2031 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2032 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2033 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2034 trace_kvm_apic_write(APIC_ICR, (u32)data);
2035 return 0;
2036 }
2037
2038 return 1;
2039 }
2040
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2041 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2042 {
2043 if (!kvm_can_use_hv_timer(vcpu))
2044 return 1;
2045
2046 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2047 return 0;
2048 }
2049
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2050 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2051 {
2052 u32 msr = kvm_rcx_read(vcpu);
2053 u64 data;
2054 fastpath_t ret = EXIT_FASTPATH_NONE;
2055
2056 switch (msr) {
2057 case APIC_BASE_MSR + (APIC_ICR >> 4):
2058 data = kvm_read_edx_eax(vcpu);
2059 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2060 kvm_skip_emulated_instruction(vcpu);
2061 ret = EXIT_FASTPATH_EXIT_HANDLED;
2062 }
2063 break;
2064 case MSR_IA32_TSC_DEADLINE:
2065 data = kvm_read_edx_eax(vcpu);
2066 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2067 kvm_skip_emulated_instruction(vcpu);
2068 ret = EXIT_FASTPATH_REENTER_GUEST;
2069 }
2070 break;
2071 default:
2072 break;
2073 }
2074
2075 if (ret != EXIT_FASTPATH_NONE)
2076 trace_kvm_msr_write(msr, data);
2077
2078 return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2081
2082 /*
2083 * Adapt set_msr() to msr_io()'s calling convention
2084 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2085 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2086 {
2087 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2088 }
2089
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2090 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2091 {
2092 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2093 }
2094
2095 #ifdef CONFIG_X86_64
2096 struct pvclock_clock {
2097 int vclock_mode;
2098 u64 cycle_last;
2099 u64 mask;
2100 u32 mult;
2101 u32 shift;
2102 u64 base_cycles;
2103 u64 offset;
2104 };
2105
2106 struct pvclock_gtod_data {
2107 seqcount_t seq;
2108
2109 struct pvclock_clock clock; /* extract of a clocksource struct */
2110 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2111
2112 ktime_t offs_boot;
2113 u64 wall_time_sec;
2114 };
2115
2116 static struct pvclock_gtod_data pvclock_gtod_data;
2117
update_pvclock_gtod(struct timekeeper * tk)2118 static void update_pvclock_gtod(struct timekeeper *tk)
2119 {
2120 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2121
2122 write_seqcount_begin(&vdata->seq);
2123
2124 /* copy pvclock gtod data */
2125 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2126 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2127 vdata->clock.mask = tk->tkr_mono.mask;
2128 vdata->clock.mult = tk->tkr_mono.mult;
2129 vdata->clock.shift = tk->tkr_mono.shift;
2130 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2131 vdata->clock.offset = tk->tkr_mono.base;
2132
2133 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2134 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2135 vdata->raw_clock.mask = tk->tkr_raw.mask;
2136 vdata->raw_clock.mult = tk->tkr_raw.mult;
2137 vdata->raw_clock.shift = tk->tkr_raw.shift;
2138 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2139 vdata->raw_clock.offset = tk->tkr_raw.base;
2140
2141 vdata->wall_time_sec = tk->xtime_sec;
2142
2143 vdata->offs_boot = tk->offs_boot;
2144
2145 write_seqcount_end(&vdata->seq);
2146 }
2147
get_kvmclock_base_ns(void)2148 static s64 get_kvmclock_base_ns(void)
2149 {
2150 /* Count up from boot time, but with the frequency of the raw clock. */
2151 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2152 }
2153 #else
get_kvmclock_base_ns(void)2154 static s64 get_kvmclock_base_ns(void)
2155 {
2156 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2157 return ktime_get_boottime_ns();
2158 }
2159 #endif
2160
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2161 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2162 {
2163 int version;
2164 int r;
2165 struct pvclock_wall_clock wc;
2166 u32 wc_sec_hi;
2167 u64 wall_nsec;
2168
2169 if (!wall_clock)
2170 return;
2171
2172 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2173 if (r)
2174 return;
2175
2176 if (version & 1)
2177 ++version; /* first time write, random junk */
2178
2179 ++version;
2180
2181 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2182 return;
2183
2184 /*
2185 * The guest calculates current wall clock time by adding
2186 * system time (updated by kvm_guest_time_update below) to the
2187 * wall clock specified here. We do the reverse here.
2188 */
2189 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2190
2191 wc.nsec = do_div(wall_nsec, 1000000000);
2192 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2193 wc.version = version;
2194
2195 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2196
2197 if (sec_hi_ofs) {
2198 wc_sec_hi = wall_nsec >> 32;
2199 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2200 &wc_sec_hi, sizeof(wc_sec_hi));
2201 }
2202
2203 version++;
2204 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2205 }
2206
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2207 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2208 bool old_msr, bool host_initiated)
2209 {
2210 struct kvm_arch *ka = &vcpu->kvm->arch;
2211
2212 if (vcpu->vcpu_id == 0 && !host_initiated) {
2213 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2214 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2215
2216 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2217 }
2218
2219 vcpu->arch.time = system_time;
2220 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2221
2222 /* we verify if the enable bit is set... */
2223 vcpu->arch.pv_time_enabled = false;
2224 if (!(system_time & 1))
2225 return;
2226
2227 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2228 &vcpu->arch.pv_time, system_time & ~1ULL,
2229 sizeof(struct pvclock_vcpu_time_info)))
2230 vcpu->arch.pv_time_enabled = true;
2231
2232 return;
2233 }
2234
div_frac(uint32_t dividend,uint32_t divisor)2235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2236 {
2237 do_shl32_div32(dividend, divisor);
2238 return dividend;
2239 }
2240
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2242 s8 *pshift, u32 *pmultiplier)
2243 {
2244 uint64_t scaled64;
2245 int32_t shift = 0;
2246 uint64_t tps64;
2247 uint32_t tps32;
2248
2249 tps64 = base_hz;
2250 scaled64 = scaled_hz;
2251 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2252 tps64 >>= 1;
2253 shift--;
2254 }
2255
2256 tps32 = (uint32_t)tps64;
2257 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2258 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2259 scaled64 >>= 1;
2260 else
2261 tps32 <<= 1;
2262 shift++;
2263 }
2264
2265 *pshift = shift;
2266 *pmultiplier = div_frac(scaled64, tps32);
2267 }
2268
2269 #ifdef CONFIG_X86_64
2270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2271 #endif
2272
2273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2274 static unsigned long max_tsc_khz;
2275
adjust_tsc_khz(u32 khz,s32 ppm)2276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2277 {
2278 u64 v = (u64)khz * (1000000 + ppm);
2279 do_div(v, 1000000);
2280 return v;
2281 }
2282
2283 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2284
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2285 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2286 {
2287 u64 ratio;
2288
2289 /* Guest TSC same frequency as host TSC? */
2290 if (!scale) {
2291 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2292 return 0;
2293 }
2294
2295 /* TSC scaling supported? */
2296 if (!kvm_has_tsc_control) {
2297 if (user_tsc_khz > tsc_khz) {
2298 vcpu->arch.tsc_catchup = 1;
2299 vcpu->arch.tsc_always_catchup = 1;
2300 return 0;
2301 } else {
2302 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2303 return -1;
2304 }
2305 }
2306
2307 /* TSC scaling required - calculate ratio */
2308 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2309 user_tsc_khz, tsc_khz);
2310
2311 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2312 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2313 user_tsc_khz);
2314 return -1;
2315 }
2316
2317 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2318 return 0;
2319 }
2320
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2321 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2322 {
2323 u32 thresh_lo, thresh_hi;
2324 int use_scaling = 0;
2325
2326 /* tsc_khz can be zero if TSC calibration fails */
2327 if (user_tsc_khz == 0) {
2328 /* set tsc_scaling_ratio to a safe value */
2329 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2330 return -1;
2331 }
2332
2333 /* Compute a scale to convert nanoseconds in TSC cycles */
2334 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2335 &vcpu->arch.virtual_tsc_shift,
2336 &vcpu->arch.virtual_tsc_mult);
2337 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2338
2339 /*
2340 * Compute the variation in TSC rate which is acceptable
2341 * within the range of tolerance and decide if the
2342 * rate being applied is within that bounds of the hardware
2343 * rate. If so, no scaling or compensation need be done.
2344 */
2345 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2346 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2347 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2348 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2349 use_scaling = 1;
2350 }
2351 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2352 }
2353
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2354 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2355 {
2356 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2357 vcpu->arch.virtual_tsc_mult,
2358 vcpu->arch.virtual_tsc_shift);
2359 tsc += vcpu->arch.this_tsc_write;
2360 return tsc;
2361 }
2362
gtod_is_based_on_tsc(int mode)2363 static inline int gtod_is_based_on_tsc(int mode)
2364 {
2365 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2366 }
2367
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2368 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2369 {
2370 #ifdef CONFIG_X86_64
2371 bool vcpus_matched;
2372 struct kvm_arch *ka = &vcpu->kvm->arch;
2373 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2374
2375 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2376 atomic_read(&vcpu->kvm->online_vcpus));
2377
2378 /*
2379 * Once the masterclock is enabled, always perform request in
2380 * order to update it.
2381 *
2382 * In order to enable masterclock, the host clocksource must be TSC
2383 * and the vcpus need to have matched TSCs. When that happens,
2384 * perform request to enable masterclock.
2385 */
2386 if (ka->use_master_clock ||
2387 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2388 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2389
2390 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2391 atomic_read(&vcpu->kvm->online_vcpus),
2392 ka->use_master_clock, gtod->clock.vclock_mode);
2393 #endif
2394 }
2395
2396 /*
2397 * Multiply tsc by a fixed point number represented by ratio.
2398 *
2399 * The most significant 64-N bits (mult) of ratio represent the
2400 * integral part of the fixed point number; the remaining N bits
2401 * (frac) represent the fractional part, ie. ratio represents a fixed
2402 * point number (mult + frac * 2^(-N)).
2403 *
2404 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2405 */
__scale_tsc(u64 ratio,u64 tsc)2406 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2407 {
2408 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2409 }
2410
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc,u64 ratio)2411 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2412 {
2413 u64 _tsc = tsc;
2414
2415 if (ratio != kvm_default_tsc_scaling_ratio)
2416 _tsc = __scale_tsc(ratio, tsc);
2417
2418 return _tsc;
2419 }
2420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2421
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2422 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2423 {
2424 u64 tsc;
2425
2426 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2427
2428 return target_tsc - tsc;
2429 }
2430
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2432 {
2433 return vcpu->arch.l1_tsc_offset +
2434 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2435 }
2436 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2437
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2438 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2439 {
2440 u64 nested_offset;
2441
2442 if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2443 nested_offset = l1_offset;
2444 else
2445 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2446 kvm_tsc_scaling_ratio_frac_bits);
2447
2448 nested_offset += l2_offset;
2449 return nested_offset;
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2452
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2453 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2454 {
2455 if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2456 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2457 kvm_tsc_scaling_ratio_frac_bits);
2458
2459 return l1_multiplier;
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2462
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2463 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2464 {
2465 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2466 vcpu->arch.l1_tsc_offset,
2467 l1_offset);
2468
2469 vcpu->arch.l1_tsc_offset = l1_offset;
2470
2471 /*
2472 * If we are here because L1 chose not to trap WRMSR to TSC then
2473 * according to the spec this should set L1's TSC (as opposed to
2474 * setting L1's offset for L2).
2475 */
2476 if (is_guest_mode(vcpu))
2477 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2478 l1_offset,
2479 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2480 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2481 else
2482 vcpu->arch.tsc_offset = l1_offset;
2483
2484 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2485 }
2486
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2487 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2488 {
2489 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2490
2491 /* Userspace is changing the multiplier while L2 is active */
2492 if (is_guest_mode(vcpu))
2493 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2494 l1_multiplier,
2495 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2496 else
2497 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2498
2499 if (kvm_has_tsc_control)
2500 static_call(kvm_x86_write_tsc_multiplier)(
2501 vcpu, vcpu->arch.tsc_scaling_ratio);
2502 }
2503
kvm_check_tsc_unstable(void)2504 static inline bool kvm_check_tsc_unstable(void)
2505 {
2506 #ifdef CONFIG_X86_64
2507 /*
2508 * TSC is marked unstable when we're running on Hyper-V,
2509 * 'TSC page' clocksource is good.
2510 */
2511 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2512 return false;
2513 #endif
2514 return check_tsc_unstable();
2515 }
2516
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2517 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2518 {
2519 struct kvm *kvm = vcpu->kvm;
2520 u64 offset, ns, elapsed;
2521 unsigned long flags;
2522 bool matched;
2523 bool already_matched;
2524 bool synchronizing = false;
2525
2526 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2527 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2528 ns = get_kvmclock_base_ns();
2529 elapsed = ns - kvm->arch.last_tsc_nsec;
2530
2531 if (vcpu->arch.virtual_tsc_khz) {
2532 if (data == 0) {
2533 /*
2534 * detection of vcpu initialization -- need to sync
2535 * with other vCPUs. This particularly helps to keep
2536 * kvm_clock stable after CPU hotplug
2537 */
2538 synchronizing = true;
2539 } else {
2540 u64 tsc_exp = kvm->arch.last_tsc_write +
2541 nsec_to_cycles(vcpu, elapsed);
2542 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2543 /*
2544 * Special case: TSC write with a small delta (1 second)
2545 * of virtual cycle time against real time is
2546 * interpreted as an attempt to synchronize the CPU.
2547 */
2548 synchronizing = data < tsc_exp + tsc_hz &&
2549 data + tsc_hz > tsc_exp;
2550 }
2551 }
2552
2553 /*
2554 * For a reliable TSC, we can match TSC offsets, and for an unstable
2555 * TSC, we add elapsed time in this computation. We could let the
2556 * compensation code attempt to catch up if we fall behind, but
2557 * it's better to try to match offsets from the beginning.
2558 */
2559 if (synchronizing &&
2560 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2561 if (!kvm_check_tsc_unstable()) {
2562 offset = kvm->arch.cur_tsc_offset;
2563 } else {
2564 u64 delta = nsec_to_cycles(vcpu, elapsed);
2565 data += delta;
2566 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2567 }
2568 matched = true;
2569 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2570 } else {
2571 /*
2572 * We split periods of matched TSC writes into generations.
2573 * For each generation, we track the original measured
2574 * nanosecond time, offset, and write, so if TSCs are in
2575 * sync, we can match exact offset, and if not, we can match
2576 * exact software computation in compute_guest_tsc()
2577 *
2578 * These values are tracked in kvm->arch.cur_xxx variables.
2579 */
2580 kvm->arch.cur_tsc_generation++;
2581 kvm->arch.cur_tsc_nsec = ns;
2582 kvm->arch.cur_tsc_write = data;
2583 kvm->arch.cur_tsc_offset = offset;
2584 matched = false;
2585 }
2586
2587 /*
2588 * We also track th most recent recorded KHZ, write and time to
2589 * allow the matching interval to be extended at each write.
2590 */
2591 kvm->arch.last_tsc_nsec = ns;
2592 kvm->arch.last_tsc_write = data;
2593 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2594
2595 vcpu->arch.last_guest_tsc = data;
2596
2597 /* Keep track of which generation this VCPU has synchronized to */
2598 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2599 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2600 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2601
2602 kvm_vcpu_write_tsc_offset(vcpu, offset);
2603 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2604
2605 raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2606 if (!matched) {
2607 kvm->arch.nr_vcpus_matched_tsc = 0;
2608 } else if (!already_matched) {
2609 kvm->arch.nr_vcpus_matched_tsc++;
2610 }
2611
2612 kvm_track_tsc_matching(vcpu);
2613 raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2614 }
2615
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2616 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2617 s64 adjustment)
2618 {
2619 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2620 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2621 }
2622
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2623 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2624 {
2625 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2626 WARN_ON(adjustment < 0);
2627 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2628 vcpu->arch.l1_tsc_scaling_ratio);
2629 adjust_tsc_offset_guest(vcpu, adjustment);
2630 }
2631
2632 #ifdef CONFIG_X86_64
2633
read_tsc(void)2634 static u64 read_tsc(void)
2635 {
2636 u64 ret = (u64)rdtsc_ordered();
2637 u64 last = pvclock_gtod_data.clock.cycle_last;
2638
2639 if (likely(ret >= last))
2640 return ret;
2641
2642 /*
2643 * GCC likes to generate cmov here, but this branch is extremely
2644 * predictable (it's just a function of time and the likely is
2645 * very likely) and there's a data dependence, so force GCC
2646 * to generate a branch instead. I don't barrier() because
2647 * we don't actually need a barrier, and if this function
2648 * ever gets inlined it will generate worse code.
2649 */
2650 asm volatile ("");
2651 return last;
2652 }
2653
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2654 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2655 int *mode)
2656 {
2657 long v;
2658 u64 tsc_pg_val;
2659
2660 switch (clock->vclock_mode) {
2661 case VDSO_CLOCKMODE_HVCLOCK:
2662 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2663 tsc_timestamp);
2664 if (tsc_pg_val != U64_MAX) {
2665 /* TSC page valid */
2666 *mode = VDSO_CLOCKMODE_HVCLOCK;
2667 v = (tsc_pg_val - clock->cycle_last) &
2668 clock->mask;
2669 } else {
2670 /* TSC page invalid */
2671 *mode = VDSO_CLOCKMODE_NONE;
2672 }
2673 break;
2674 case VDSO_CLOCKMODE_TSC:
2675 *mode = VDSO_CLOCKMODE_TSC;
2676 *tsc_timestamp = read_tsc();
2677 v = (*tsc_timestamp - clock->cycle_last) &
2678 clock->mask;
2679 break;
2680 default:
2681 *mode = VDSO_CLOCKMODE_NONE;
2682 }
2683
2684 if (*mode == VDSO_CLOCKMODE_NONE)
2685 *tsc_timestamp = v = 0;
2686
2687 return v * clock->mult;
2688 }
2689
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2690 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2691 {
2692 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2693 unsigned long seq;
2694 int mode;
2695 u64 ns;
2696
2697 do {
2698 seq = read_seqcount_begin(>od->seq);
2699 ns = gtod->raw_clock.base_cycles;
2700 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2701 ns >>= gtod->raw_clock.shift;
2702 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2703 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2704 *t = ns;
2705
2706 return mode;
2707 }
2708
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2709 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2710 {
2711 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2712 unsigned long seq;
2713 int mode;
2714 u64 ns;
2715
2716 do {
2717 seq = read_seqcount_begin(>od->seq);
2718 ts->tv_sec = gtod->wall_time_sec;
2719 ns = gtod->clock.base_cycles;
2720 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2721 ns >>= gtod->clock.shift;
2722 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2723
2724 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2725 ts->tv_nsec = ns;
2726
2727 return mode;
2728 }
2729
2730 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2731 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2732 {
2733 /* checked again under seqlock below */
2734 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2735 return false;
2736
2737 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2738 tsc_timestamp));
2739 }
2740
2741 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2742 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2743 u64 *tsc_timestamp)
2744 {
2745 /* checked again under seqlock below */
2746 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2747 return false;
2748
2749 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2750 }
2751 #endif
2752
2753 /*
2754 *
2755 * Assuming a stable TSC across physical CPUS, and a stable TSC
2756 * across virtual CPUs, the following condition is possible.
2757 * Each numbered line represents an event visible to both
2758 * CPUs at the next numbered event.
2759 *
2760 * "timespecX" represents host monotonic time. "tscX" represents
2761 * RDTSC value.
2762 *
2763 * VCPU0 on CPU0 | VCPU1 on CPU1
2764 *
2765 * 1. read timespec0,tsc0
2766 * 2. | timespec1 = timespec0 + N
2767 * | tsc1 = tsc0 + M
2768 * 3. transition to guest | transition to guest
2769 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2770 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2771 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2772 *
2773 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2774 *
2775 * - ret0 < ret1
2776 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2777 * ...
2778 * - 0 < N - M => M < N
2779 *
2780 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2781 * always the case (the difference between two distinct xtime instances
2782 * might be smaller then the difference between corresponding TSC reads,
2783 * when updating guest vcpus pvclock areas).
2784 *
2785 * To avoid that problem, do not allow visibility of distinct
2786 * system_timestamp/tsc_timestamp values simultaneously: use a master
2787 * copy of host monotonic time values. Update that master copy
2788 * in lockstep.
2789 *
2790 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2791 *
2792 */
2793
pvclock_update_vm_gtod_copy(struct kvm * kvm)2794 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2795 {
2796 #ifdef CONFIG_X86_64
2797 struct kvm_arch *ka = &kvm->arch;
2798 int vclock_mode;
2799 bool host_tsc_clocksource, vcpus_matched;
2800
2801 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2802 atomic_read(&kvm->online_vcpus));
2803
2804 /*
2805 * If the host uses TSC clock, then passthrough TSC as stable
2806 * to the guest.
2807 */
2808 host_tsc_clocksource = kvm_get_time_and_clockread(
2809 &ka->master_kernel_ns,
2810 &ka->master_cycle_now);
2811
2812 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2813 && !ka->backwards_tsc_observed
2814 && !ka->boot_vcpu_runs_old_kvmclock;
2815
2816 if (ka->use_master_clock)
2817 atomic_set(&kvm_guest_has_master_clock, 1);
2818
2819 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2820 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2821 vcpus_matched);
2822 #endif
2823 }
2824
kvm_make_mclock_inprogress_request(struct kvm * kvm)2825 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2826 {
2827 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2828 }
2829
kvm_gen_update_masterclock(struct kvm * kvm)2830 static void kvm_gen_update_masterclock(struct kvm *kvm)
2831 {
2832 #ifdef CONFIG_X86_64
2833 int i;
2834 struct kvm_vcpu *vcpu;
2835 struct kvm_arch *ka = &kvm->arch;
2836 unsigned long flags;
2837
2838 kvm_hv_invalidate_tsc_page(kvm);
2839
2840 kvm_make_mclock_inprogress_request(kvm);
2841
2842 /* no guest entries from this point */
2843 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2844 pvclock_update_vm_gtod_copy(kvm);
2845 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2846
2847 kvm_for_each_vcpu(i, vcpu, kvm)
2848 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2849
2850 /* guest entries allowed */
2851 kvm_for_each_vcpu(i, vcpu, kvm)
2852 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2853 #endif
2854 }
2855
get_kvmclock_ns(struct kvm * kvm)2856 u64 get_kvmclock_ns(struct kvm *kvm)
2857 {
2858 struct kvm_arch *ka = &kvm->arch;
2859 struct pvclock_vcpu_time_info hv_clock;
2860 unsigned long flags;
2861 u64 ret;
2862
2863 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2864 if (!ka->use_master_clock) {
2865 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2866 return get_kvmclock_base_ns() + ka->kvmclock_offset;
2867 }
2868
2869 hv_clock.tsc_timestamp = ka->master_cycle_now;
2870 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2871 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2872
2873 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2874 get_cpu();
2875
2876 if (__this_cpu_read(cpu_tsc_khz)) {
2877 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2878 &hv_clock.tsc_shift,
2879 &hv_clock.tsc_to_system_mul);
2880 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2881 } else
2882 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2883
2884 put_cpu();
2885
2886 return ret;
2887 }
2888
kvm_setup_pvclock_page(struct kvm_vcpu * v,struct gfn_to_hva_cache * cache,unsigned int offset)2889 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2890 struct gfn_to_hva_cache *cache,
2891 unsigned int offset)
2892 {
2893 struct kvm_vcpu_arch *vcpu = &v->arch;
2894 struct pvclock_vcpu_time_info guest_hv_clock;
2895
2896 if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2897 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2898 return;
2899
2900 /* This VCPU is paused, but it's legal for a guest to read another
2901 * VCPU's kvmclock, so we really have to follow the specification where
2902 * it says that version is odd if data is being modified, and even after
2903 * it is consistent.
2904 *
2905 * Version field updates must be kept separate. This is because
2906 * kvm_write_guest_cached might use a "rep movs" instruction, and
2907 * writes within a string instruction are weakly ordered. So there
2908 * are three writes overall.
2909 *
2910 * As a small optimization, only write the version field in the first
2911 * and third write. The vcpu->pv_time cache is still valid, because the
2912 * version field is the first in the struct.
2913 */
2914 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2915
2916 if (guest_hv_clock.version & 1)
2917 ++guest_hv_clock.version; /* first time write, random junk */
2918
2919 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2920 kvm_write_guest_offset_cached(v->kvm, cache,
2921 &vcpu->hv_clock, offset,
2922 sizeof(vcpu->hv_clock.version));
2923
2924 smp_wmb();
2925
2926 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2927 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2928
2929 if (vcpu->pvclock_set_guest_stopped_request) {
2930 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2931 vcpu->pvclock_set_guest_stopped_request = false;
2932 }
2933
2934 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2935
2936 kvm_write_guest_offset_cached(v->kvm, cache,
2937 &vcpu->hv_clock, offset,
2938 sizeof(vcpu->hv_clock));
2939
2940 smp_wmb();
2941
2942 vcpu->hv_clock.version++;
2943 kvm_write_guest_offset_cached(v->kvm, cache,
2944 &vcpu->hv_clock, offset,
2945 sizeof(vcpu->hv_clock.version));
2946 }
2947
kvm_guest_time_update(struct kvm_vcpu * v)2948 static int kvm_guest_time_update(struct kvm_vcpu *v)
2949 {
2950 unsigned long flags, tgt_tsc_khz;
2951 struct kvm_vcpu_arch *vcpu = &v->arch;
2952 struct kvm_arch *ka = &v->kvm->arch;
2953 s64 kernel_ns;
2954 u64 tsc_timestamp, host_tsc;
2955 u8 pvclock_flags;
2956 bool use_master_clock;
2957
2958 kernel_ns = 0;
2959 host_tsc = 0;
2960
2961 /*
2962 * If the host uses TSC clock, then passthrough TSC as stable
2963 * to the guest.
2964 */
2965 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2966 use_master_clock = ka->use_master_clock;
2967 if (use_master_clock) {
2968 host_tsc = ka->master_cycle_now;
2969 kernel_ns = ka->master_kernel_ns;
2970 }
2971 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2972
2973 /* Keep irq disabled to prevent changes to the clock */
2974 local_irq_save(flags);
2975 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2976 if (unlikely(tgt_tsc_khz == 0)) {
2977 local_irq_restore(flags);
2978 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2979 return 1;
2980 }
2981 if (!use_master_clock) {
2982 host_tsc = rdtsc();
2983 kernel_ns = get_kvmclock_base_ns();
2984 }
2985
2986 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2987
2988 /*
2989 * We may have to catch up the TSC to match elapsed wall clock
2990 * time for two reasons, even if kvmclock is used.
2991 * 1) CPU could have been running below the maximum TSC rate
2992 * 2) Broken TSC compensation resets the base at each VCPU
2993 * entry to avoid unknown leaps of TSC even when running
2994 * again on the same CPU. This may cause apparent elapsed
2995 * time to disappear, and the guest to stand still or run
2996 * very slowly.
2997 */
2998 if (vcpu->tsc_catchup) {
2999 u64 tsc = compute_guest_tsc(v, kernel_ns);
3000 if (tsc > tsc_timestamp) {
3001 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3002 tsc_timestamp = tsc;
3003 }
3004 }
3005
3006 local_irq_restore(flags);
3007
3008 /* With all the info we got, fill in the values */
3009
3010 if (kvm_has_tsc_control)
3011 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3012 v->arch.l1_tsc_scaling_ratio);
3013
3014 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3015 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3016 &vcpu->hv_clock.tsc_shift,
3017 &vcpu->hv_clock.tsc_to_system_mul);
3018 vcpu->hw_tsc_khz = tgt_tsc_khz;
3019 }
3020
3021 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3022 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3023 vcpu->last_guest_tsc = tsc_timestamp;
3024
3025 /* If the host uses TSC clocksource, then it is stable */
3026 pvclock_flags = 0;
3027 if (use_master_clock)
3028 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3029
3030 vcpu->hv_clock.flags = pvclock_flags;
3031
3032 if (vcpu->pv_time_enabled)
3033 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3034 if (vcpu->xen.vcpu_info_set)
3035 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3036 offsetof(struct compat_vcpu_info, time));
3037 if (vcpu->xen.vcpu_time_info_set)
3038 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3039 if (!v->vcpu_idx)
3040 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3041 return 0;
3042 }
3043
3044 /*
3045 * kvmclock updates which are isolated to a given vcpu, such as
3046 * vcpu->cpu migration, should not allow system_timestamp from
3047 * the rest of the vcpus to remain static. Otherwise ntp frequency
3048 * correction applies to one vcpu's system_timestamp but not
3049 * the others.
3050 *
3051 * So in those cases, request a kvmclock update for all vcpus.
3052 * We need to rate-limit these requests though, as they can
3053 * considerably slow guests that have a large number of vcpus.
3054 * The time for a remote vcpu to update its kvmclock is bound
3055 * by the delay we use to rate-limit the updates.
3056 */
3057
3058 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3059
kvmclock_update_fn(struct work_struct * work)3060 static void kvmclock_update_fn(struct work_struct *work)
3061 {
3062 int i;
3063 struct delayed_work *dwork = to_delayed_work(work);
3064 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3065 kvmclock_update_work);
3066 struct kvm *kvm = container_of(ka, struct kvm, arch);
3067 struct kvm_vcpu *vcpu;
3068
3069 kvm_for_each_vcpu(i, vcpu, kvm) {
3070 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3071 kvm_vcpu_kick(vcpu);
3072 }
3073 }
3074
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3075 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3076 {
3077 struct kvm *kvm = v->kvm;
3078
3079 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3080 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3081 KVMCLOCK_UPDATE_DELAY);
3082 }
3083
3084 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3085
kvmclock_sync_fn(struct work_struct * work)3086 static void kvmclock_sync_fn(struct work_struct *work)
3087 {
3088 struct delayed_work *dwork = to_delayed_work(work);
3089 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3090 kvmclock_sync_work);
3091 struct kvm *kvm = container_of(ka, struct kvm, arch);
3092
3093 if (!kvmclock_periodic_sync)
3094 return;
3095
3096 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3097 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3098 KVMCLOCK_SYNC_PERIOD);
3099 }
3100
3101 /*
3102 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3103 */
can_set_mci_status(struct kvm_vcpu * vcpu)3104 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3105 {
3106 /* McStatusWrEn enabled? */
3107 if (guest_cpuid_is_amd_or_hygon(vcpu))
3108 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3109
3110 return false;
3111 }
3112
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3113 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3114 {
3115 u64 mcg_cap = vcpu->arch.mcg_cap;
3116 unsigned bank_num = mcg_cap & 0xff;
3117 u32 msr = msr_info->index;
3118 u64 data = msr_info->data;
3119
3120 switch (msr) {
3121 case MSR_IA32_MCG_STATUS:
3122 vcpu->arch.mcg_status = data;
3123 break;
3124 case MSR_IA32_MCG_CTL:
3125 if (!(mcg_cap & MCG_CTL_P) &&
3126 (data || !msr_info->host_initiated))
3127 return 1;
3128 if (data != 0 && data != ~(u64)0)
3129 return 1;
3130 vcpu->arch.mcg_ctl = data;
3131 break;
3132 default:
3133 if (msr >= MSR_IA32_MC0_CTL &&
3134 msr < MSR_IA32_MCx_CTL(bank_num)) {
3135 u32 offset = array_index_nospec(
3136 msr - MSR_IA32_MC0_CTL,
3137 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3138
3139 /* only 0 or all 1s can be written to IA32_MCi_CTL
3140 * some Linux kernels though clear bit 10 in bank 4 to
3141 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3142 * this to avoid an uncatched #GP in the guest.
3143 *
3144 * UNIXWARE clears bit 0 of MC1_CTL to ignore
3145 * correctable, single-bit ECC data errors.
3146 */
3147 if ((offset & 0x3) == 0 &&
3148 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3149 return 1;
3150
3151 /* MCi_STATUS */
3152 if (!msr_info->host_initiated &&
3153 (offset & 0x3) == 1 && data != 0) {
3154 if (!can_set_mci_status(vcpu))
3155 return 1;
3156 }
3157
3158 vcpu->arch.mce_banks[offset] = data;
3159 break;
3160 }
3161 return 1;
3162 }
3163 return 0;
3164 }
3165
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3166 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3167 {
3168 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3169
3170 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3171 }
3172
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3173 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3174 {
3175 gpa_t gpa = data & ~0x3f;
3176
3177 /* Bits 4:5 are reserved, Should be zero */
3178 if (data & 0x30)
3179 return 1;
3180
3181 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3182 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3183 return 1;
3184
3185 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3186 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3187 return 1;
3188
3189 if (!lapic_in_kernel(vcpu))
3190 return data ? 1 : 0;
3191
3192 vcpu->arch.apf.msr_en_val = data;
3193
3194 if (!kvm_pv_async_pf_enabled(vcpu)) {
3195 kvm_clear_async_pf_completion_queue(vcpu);
3196 kvm_async_pf_hash_reset(vcpu);
3197 return 0;
3198 }
3199
3200 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3201 sizeof(u64)))
3202 return 1;
3203
3204 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3205 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3206
3207 kvm_async_pf_wakeup_all(vcpu);
3208
3209 return 0;
3210 }
3211
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3212 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3213 {
3214 /* Bits 8-63 are reserved */
3215 if (data >> 8)
3216 return 1;
3217
3218 if (!lapic_in_kernel(vcpu))
3219 return 1;
3220
3221 vcpu->arch.apf.msr_int_val = data;
3222
3223 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3224
3225 return 0;
3226 }
3227
kvmclock_reset(struct kvm_vcpu * vcpu)3228 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3229 {
3230 vcpu->arch.pv_time_enabled = false;
3231 vcpu->arch.time = 0;
3232 }
3233
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3234 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3235 {
3236 ++vcpu->stat.tlb_flush;
3237 static_call(kvm_x86_tlb_flush_all)(vcpu);
3238 }
3239
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3240 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3241 {
3242 ++vcpu->stat.tlb_flush;
3243
3244 if (!tdp_enabled) {
3245 /*
3246 * A TLB flush on behalf of the guest is equivalent to
3247 * INVPCID(all), toggling CR4.PGE, etc., which requires
3248 * a forced sync of the shadow page tables. Unload the
3249 * entire MMU here and the subsequent load will sync the
3250 * shadow page tables, and also flush the TLB.
3251 */
3252 kvm_mmu_unload(vcpu);
3253 return;
3254 }
3255
3256 static_call(kvm_x86_tlb_flush_guest)(vcpu);
3257 }
3258
3259
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3260 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3261 {
3262 ++vcpu->stat.tlb_flush;
3263 static_call(kvm_x86_tlb_flush_current)(vcpu);
3264 }
3265
3266 /*
3267 * Service "local" TLB flush requests, which are specific to the current MMU
3268 * context. In addition to the generic event handling in vcpu_enter_guest(),
3269 * TLB flushes that are targeted at an MMU context also need to be serviced
3270 * prior before nested VM-Enter/VM-Exit.
3271 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3272 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3273 {
3274 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3275 kvm_vcpu_flush_tlb_current(vcpu);
3276
3277 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3278 kvm_vcpu_flush_tlb_guest(vcpu);
3279 }
3280 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3281
record_steal_time(struct kvm_vcpu * vcpu)3282 static void record_steal_time(struct kvm_vcpu *vcpu)
3283 {
3284 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3285 struct kvm_steal_time __user *st;
3286 struct kvm_memslots *slots;
3287 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3288 u64 steal;
3289 u32 version;
3290
3291 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3292 kvm_xen_runstate_set_running(vcpu);
3293 return;
3294 }
3295
3296 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3297 return;
3298
3299 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3300 return;
3301
3302 slots = kvm_memslots(vcpu->kvm);
3303
3304 if (unlikely(slots->generation != ghc->generation ||
3305 gpa != ghc->gpa ||
3306 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3307 /* We rely on the fact that it fits in a single page. */
3308 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3309
3310 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3311 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3312 return;
3313 }
3314
3315 st = (struct kvm_steal_time __user *)ghc->hva;
3316 /*
3317 * Doing a TLB flush here, on the guest's behalf, can avoid
3318 * expensive IPIs.
3319 */
3320 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3321 u8 st_preempted = 0;
3322 int err = -EFAULT;
3323
3324 if (!user_access_begin(st, sizeof(*st)))
3325 return;
3326
3327 asm volatile("1: xchgb %0, %2\n"
3328 "xor %1, %1\n"
3329 "2:\n"
3330 _ASM_EXTABLE_UA(1b, 2b)
3331 : "+q" (st_preempted),
3332 "+&r" (err),
3333 "+m" (st->preempted));
3334 if (err)
3335 goto out;
3336
3337 user_access_end();
3338
3339 vcpu->arch.st.preempted = 0;
3340
3341 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3342 st_preempted & KVM_VCPU_FLUSH_TLB);
3343 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3344 kvm_vcpu_flush_tlb_guest(vcpu);
3345
3346 if (!user_access_begin(st, sizeof(*st)))
3347 goto dirty;
3348 } else {
3349 if (!user_access_begin(st, sizeof(*st)))
3350 return;
3351
3352 unsafe_put_user(0, &st->preempted, out);
3353 vcpu->arch.st.preempted = 0;
3354 }
3355
3356 unsafe_get_user(version, &st->version, out);
3357 if (version & 1)
3358 version += 1; /* first time write, random junk */
3359
3360 version += 1;
3361 unsafe_put_user(version, &st->version, out);
3362
3363 smp_wmb();
3364
3365 unsafe_get_user(steal, &st->steal, out);
3366 steal += current->sched_info.run_delay -
3367 vcpu->arch.st.last_steal;
3368 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3369 unsafe_put_user(steal, &st->steal, out);
3370
3371 version += 1;
3372 unsafe_put_user(version, &st->version, out);
3373
3374 out:
3375 user_access_end();
3376 dirty:
3377 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3378 }
3379
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3380 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3381 {
3382 bool pr = false;
3383 u32 msr = msr_info->index;
3384 u64 data = msr_info->data;
3385
3386 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3387 return kvm_xen_write_hypercall_page(vcpu, data);
3388
3389 switch (msr) {
3390 case MSR_AMD64_NB_CFG:
3391 case MSR_IA32_UCODE_WRITE:
3392 case MSR_VM_HSAVE_PA:
3393 case MSR_AMD64_PATCH_LOADER:
3394 case MSR_AMD64_BU_CFG2:
3395 case MSR_AMD64_DC_CFG:
3396 case MSR_AMD64_TW_CFG:
3397 case MSR_F15H_EX_CFG:
3398 break;
3399
3400 case MSR_IA32_UCODE_REV:
3401 if (msr_info->host_initiated)
3402 vcpu->arch.microcode_version = data;
3403 break;
3404 case MSR_IA32_ARCH_CAPABILITIES:
3405 if (!msr_info->host_initiated)
3406 return 1;
3407 vcpu->arch.arch_capabilities = data;
3408 break;
3409 case MSR_IA32_PERF_CAPABILITIES: {
3410 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3411
3412 if (!msr_info->host_initiated)
3413 return 1;
3414 if (kvm_get_msr_feature(&msr_ent))
3415 return 1;
3416 if (data & ~msr_ent.data)
3417 return 1;
3418
3419 vcpu->arch.perf_capabilities = data;
3420
3421 return 0;
3422 }
3423 case MSR_EFER:
3424 return set_efer(vcpu, msr_info);
3425 case MSR_K7_HWCR:
3426 data &= ~(u64)0x40; /* ignore flush filter disable */
3427 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3428 data &= ~(u64)0x8; /* ignore TLB cache disable */
3429
3430 /* Handle McStatusWrEn */
3431 if (data == BIT_ULL(18)) {
3432 vcpu->arch.msr_hwcr = data;
3433 } else if (data != 0) {
3434 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3435 data);
3436 return 1;
3437 }
3438 break;
3439 case MSR_FAM10H_MMIO_CONF_BASE:
3440 if (data != 0) {
3441 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3442 "0x%llx\n", data);
3443 return 1;
3444 }
3445 break;
3446 case 0x200 ... 0x2ff:
3447 return kvm_mtrr_set_msr(vcpu, msr, data);
3448 case MSR_IA32_APICBASE:
3449 return kvm_set_apic_base(vcpu, msr_info);
3450 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3451 return kvm_x2apic_msr_write(vcpu, msr, data);
3452 case MSR_IA32_TSC_DEADLINE:
3453 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3454 break;
3455 case MSR_IA32_TSC_ADJUST:
3456 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3457 if (!msr_info->host_initiated) {
3458 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3459 adjust_tsc_offset_guest(vcpu, adj);
3460 /* Before back to guest, tsc_timestamp must be adjusted
3461 * as well, otherwise guest's percpu pvclock time could jump.
3462 */
3463 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3464 }
3465 vcpu->arch.ia32_tsc_adjust_msr = data;
3466 }
3467 break;
3468 case MSR_IA32_MISC_ENABLE:
3469 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3470 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3471 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3472 return 1;
3473 vcpu->arch.ia32_misc_enable_msr = data;
3474 kvm_update_cpuid_runtime(vcpu);
3475 } else {
3476 vcpu->arch.ia32_misc_enable_msr = data;
3477 }
3478 break;
3479 case MSR_IA32_SMBASE:
3480 if (!msr_info->host_initiated)
3481 return 1;
3482 vcpu->arch.smbase = data;
3483 break;
3484 case MSR_IA32_POWER_CTL:
3485 vcpu->arch.msr_ia32_power_ctl = data;
3486 break;
3487 case MSR_IA32_TSC:
3488 if (msr_info->host_initiated) {
3489 kvm_synchronize_tsc(vcpu, data);
3490 } else {
3491 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3492 adjust_tsc_offset_guest(vcpu, adj);
3493 vcpu->arch.ia32_tsc_adjust_msr += adj;
3494 }
3495 break;
3496 case MSR_IA32_XSS:
3497 if (!msr_info->host_initiated &&
3498 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3499 return 1;
3500 /*
3501 * KVM supports exposing PT to the guest, but does not support
3502 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3503 * XSAVES/XRSTORS to save/restore PT MSRs.
3504 */
3505 if (data & ~supported_xss)
3506 return 1;
3507 vcpu->arch.ia32_xss = data;
3508 kvm_update_cpuid_runtime(vcpu);
3509 break;
3510 case MSR_SMI_COUNT:
3511 if (!msr_info->host_initiated)
3512 return 1;
3513 vcpu->arch.smi_count = data;
3514 break;
3515 case MSR_KVM_WALL_CLOCK_NEW:
3516 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3517 return 1;
3518
3519 vcpu->kvm->arch.wall_clock = data;
3520 kvm_write_wall_clock(vcpu->kvm, data, 0);
3521 break;
3522 case MSR_KVM_WALL_CLOCK:
3523 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3524 return 1;
3525
3526 vcpu->kvm->arch.wall_clock = data;
3527 kvm_write_wall_clock(vcpu->kvm, data, 0);
3528 break;
3529 case MSR_KVM_SYSTEM_TIME_NEW:
3530 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3531 return 1;
3532
3533 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3534 break;
3535 case MSR_KVM_SYSTEM_TIME:
3536 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3537 return 1;
3538
3539 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3540 break;
3541 case MSR_KVM_ASYNC_PF_EN:
3542 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3543 return 1;
3544
3545 if (kvm_pv_enable_async_pf(vcpu, data))
3546 return 1;
3547 break;
3548 case MSR_KVM_ASYNC_PF_INT:
3549 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3550 return 1;
3551
3552 if (kvm_pv_enable_async_pf_int(vcpu, data))
3553 return 1;
3554 break;
3555 case MSR_KVM_ASYNC_PF_ACK:
3556 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3557 return 1;
3558 if (data & 0x1) {
3559 vcpu->arch.apf.pageready_pending = false;
3560 kvm_check_async_pf_completion(vcpu);
3561 }
3562 break;
3563 case MSR_KVM_STEAL_TIME:
3564 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3565 return 1;
3566
3567 if (unlikely(!sched_info_on()))
3568 return 1;
3569
3570 if (data & KVM_STEAL_RESERVED_MASK)
3571 return 1;
3572
3573 vcpu->arch.st.msr_val = data;
3574
3575 if (!(data & KVM_MSR_ENABLED))
3576 break;
3577
3578 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3579
3580 break;
3581 case MSR_KVM_PV_EOI_EN:
3582 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3583 return 1;
3584
3585 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3586 return 1;
3587 break;
3588
3589 case MSR_KVM_POLL_CONTROL:
3590 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3591 return 1;
3592
3593 /* only enable bit supported */
3594 if (data & (-1ULL << 1))
3595 return 1;
3596
3597 vcpu->arch.msr_kvm_poll_control = data;
3598 break;
3599
3600 case MSR_IA32_MCG_CTL:
3601 case MSR_IA32_MCG_STATUS:
3602 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3603 return set_msr_mce(vcpu, msr_info);
3604
3605 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3606 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3607 pr = true;
3608 fallthrough;
3609 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3610 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3611 if (kvm_pmu_is_valid_msr(vcpu, msr))
3612 return kvm_pmu_set_msr(vcpu, msr_info);
3613
3614 if (pr || data != 0)
3615 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3616 "0x%x data 0x%llx\n", msr, data);
3617 break;
3618 case MSR_K7_CLK_CTL:
3619 /*
3620 * Ignore all writes to this no longer documented MSR.
3621 * Writes are only relevant for old K7 processors,
3622 * all pre-dating SVM, but a recommended workaround from
3623 * AMD for these chips. It is possible to specify the
3624 * affected processor models on the command line, hence
3625 * the need to ignore the workaround.
3626 */
3627 break;
3628 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3629 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3630 case HV_X64_MSR_SYNDBG_OPTIONS:
3631 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3632 case HV_X64_MSR_CRASH_CTL:
3633 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3634 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3635 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3636 case HV_X64_MSR_TSC_EMULATION_STATUS:
3637 return kvm_hv_set_msr_common(vcpu, msr, data,
3638 msr_info->host_initiated);
3639 case MSR_IA32_BBL_CR_CTL3:
3640 /* Drop writes to this legacy MSR -- see rdmsr
3641 * counterpart for further detail.
3642 */
3643 if (report_ignored_msrs)
3644 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3645 msr, data);
3646 break;
3647 case MSR_AMD64_OSVW_ID_LENGTH:
3648 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3649 return 1;
3650 vcpu->arch.osvw.length = data;
3651 break;
3652 case MSR_AMD64_OSVW_STATUS:
3653 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3654 return 1;
3655 vcpu->arch.osvw.status = data;
3656 break;
3657 case MSR_PLATFORM_INFO:
3658 if (!msr_info->host_initiated ||
3659 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3660 cpuid_fault_enabled(vcpu)))
3661 return 1;
3662 vcpu->arch.msr_platform_info = data;
3663 break;
3664 case MSR_MISC_FEATURES_ENABLES:
3665 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3666 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3667 !supports_cpuid_fault(vcpu)))
3668 return 1;
3669 vcpu->arch.msr_misc_features_enables = data;
3670 break;
3671 default:
3672 if (kvm_pmu_is_valid_msr(vcpu, msr))
3673 return kvm_pmu_set_msr(vcpu, msr_info);
3674 return KVM_MSR_RET_INVALID;
3675 }
3676 return 0;
3677 }
3678 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3679
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3680 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3681 {
3682 u64 data;
3683 u64 mcg_cap = vcpu->arch.mcg_cap;
3684 unsigned bank_num = mcg_cap & 0xff;
3685
3686 switch (msr) {
3687 case MSR_IA32_P5_MC_ADDR:
3688 case MSR_IA32_P5_MC_TYPE:
3689 data = 0;
3690 break;
3691 case MSR_IA32_MCG_CAP:
3692 data = vcpu->arch.mcg_cap;
3693 break;
3694 case MSR_IA32_MCG_CTL:
3695 if (!(mcg_cap & MCG_CTL_P) && !host)
3696 return 1;
3697 data = vcpu->arch.mcg_ctl;
3698 break;
3699 case MSR_IA32_MCG_STATUS:
3700 data = vcpu->arch.mcg_status;
3701 break;
3702 default:
3703 if (msr >= MSR_IA32_MC0_CTL &&
3704 msr < MSR_IA32_MCx_CTL(bank_num)) {
3705 u32 offset = array_index_nospec(
3706 msr - MSR_IA32_MC0_CTL,
3707 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3708
3709 data = vcpu->arch.mce_banks[offset];
3710 break;
3711 }
3712 return 1;
3713 }
3714 *pdata = data;
3715 return 0;
3716 }
3717
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3718 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3719 {
3720 switch (msr_info->index) {
3721 case MSR_IA32_PLATFORM_ID:
3722 case MSR_IA32_EBL_CR_POWERON:
3723 case MSR_IA32_LASTBRANCHFROMIP:
3724 case MSR_IA32_LASTBRANCHTOIP:
3725 case MSR_IA32_LASTINTFROMIP:
3726 case MSR_IA32_LASTINTTOIP:
3727 case MSR_AMD64_SYSCFG:
3728 case MSR_K8_TSEG_ADDR:
3729 case MSR_K8_TSEG_MASK:
3730 case MSR_VM_HSAVE_PA:
3731 case MSR_K8_INT_PENDING_MSG:
3732 case MSR_AMD64_NB_CFG:
3733 case MSR_FAM10H_MMIO_CONF_BASE:
3734 case MSR_AMD64_BU_CFG2:
3735 case MSR_IA32_PERF_CTL:
3736 case MSR_AMD64_DC_CFG:
3737 case MSR_AMD64_TW_CFG:
3738 case MSR_F15H_EX_CFG:
3739 /*
3740 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3741 * limit) MSRs. Just return 0, as we do not want to expose the host
3742 * data here. Do not conditionalize this on CPUID, as KVM does not do
3743 * so for existing CPU-specific MSRs.
3744 */
3745 case MSR_RAPL_POWER_UNIT:
3746 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3747 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3748 case MSR_PKG_ENERGY_STATUS: /* Total package */
3749 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3750 msr_info->data = 0;
3751 break;
3752 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3753 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3754 return kvm_pmu_get_msr(vcpu, msr_info);
3755 if (!msr_info->host_initiated)
3756 return 1;
3757 msr_info->data = 0;
3758 break;
3759 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3760 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3761 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3762 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3763 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3764 return kvm_pmu_get_msr(vcpu, msr_info);
3765 msr_info->data = 0;
3766 break;
3767 case MSR_IA32_UCODE_REV:
3768 msr_info->data = vcpu->arch.microcode_version;
3769 break;
3770 case MSR_IA32_ARCH_CAPABILITIES:
3771 if (!msr_info->host_initiated &&
3772 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3773 return 1;
3774 msr_info->data = vcpu->arch.arch_capabilities;
3775 break;
3776 case MSR_IA32_PERF_CAPABILITIES:
3777 if (!msr_info->host_initiated &&
3778 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3779 return 1;
3780 msr_info->data = vcpu->arch.perf_capabilities;
3781 break;
3782 case MSR_IA32_POWER_CTL:
3783 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3784 break;
3785 case MSR_IA32_TSC: {
3786 /*
3787 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3788 * even when not intercepted. AMD manual doesn't explicitly
3789 * state this but appears to behave the same.
3790 *
3791 * On userspace reads and writes, however, we unconditionally
3792 * return L1's TSC value to ensure backwards-compatible
3793 * behavior for migration.
3794 */
3795 u64 offset, ratio;
3796
3797 if (msr_info->host_initiated) {
3798 offset = vcpu->arch.l1_tsc_offset;
3799 ratio = vcpu->arch.l1_tsc_scaling_ratio;
3800 } else {
3801 offset = vcpu->arch.tsc_offset;
3802 ratio = vcpu->arch.tsc_scaling_ratio;
3803 }
3804
3805 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3806 break;
3807 }
3808 case MSR_MTRRcap:
3809 case 0x200 ... 0x2ff:
3810 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3811 case 0xcd: /* fsb frequency */
3812 msr_info->data = 3;
3813 break;
3814 /*
3815 * MSR_EBC_FREQUENCY_ID
3816 * Conservative value valid for even the basic CPU models.
3817 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3818 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3819 * and 266MHz for model 3, or 4. Set Core Clock
3820 * Frequency to System Bus Frequency Ratio to 1 (bits
3821 * 31:24) even though these are only valid for CPU
3822 * models > 2, however guests may end up dividing or
3823 * multiplying by zero otherwise.
3824 */
3825 case MSR_EBC_FREQUENCY_ID:
3826 msr_info->data = 1 << 24;
3827 break;
3828 case MSR_IA32_APICBASE:
3829 msr_info->data = kvm_get_apic_base(vcpu);
3830 break;
3831 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3832 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3833 case MSR_IA32_TSC_DEADLINE:
3834 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3835 break;
3836 case MSR_IA32_TSC_ADJUST:
3837 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3838 break;
3839 case MSR_IA32_MISC_ENABLE:
3840 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3841 break;
3842 case MSR_IA32_SMBASE:
3843 if (!msr_info->host_initiated)
3844 return 1;
3845 msr_info->data = vcpu->arch.smbase;
3846 break;
3847 case MSR_SMI_COUNT:
3848 msr_info->data = vcpu->arch.smi_count;
3849 break;
3850 case MSR_IA32_PERF_STATUS:
3851 /* TSC increment by tick */
3852 msr_info->data = 1000ULL;
3853 /* CPU multiplier */
3854 msr_info->data |= (((uint64_t)4ULL) << 40);
3855 break;
3856 case MSR_EFER:
3857 msr_info->data = vcpu->arch.efer;
3858 break;
3859 case MSR_KVM_WALL_CLOCK:
3860 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3861 return 1;
3862
3863 msr_info->data = vcpu->kvm->arch.wall_clock;
3864 break;
3865 case MSR_KVM_WALL_CLOCK_NEW:
3866 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3867 return 1;
3868
3869 msr_info->data = vcpu->kvm->arch.wall_clock;
3870 break;
3871 case MSR_KVM_SYSTEM_TIME:
3872 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3873 return 1;
3874
3875 msr_info->data = vcpu->arch.time;
3876 break;
3877 case MSR_KVM_SYSTEM_TIME_NEW:
3878 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3879 return 1;
3880
3881 msr_info->data = vcpu->arch.time;
3882 break;
3883 case MSR_KVM_ASYNC_PF_EN:
3884 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3885 return 1;
3886
3887 msr_info->data = vcpu->arch.apf.msr_en_val;
3888 break;
3889 case MSR_KVM_ASYNC_PF_INT:
3890 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3891 return 1;
3892
3893 msr_info->data = vcpu->arch.apf.msr_int_val;
3894 break;
3895 case MSR_KVM_ASYNC_PF_ACK:
3896 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3897 return 1;
3898
3899 msr_info->data = 0;
3900 break;
3901 case MSR_KVM_STEAL_TIME:
3902 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3903 return 1;
3904
3905 msr_info->data = vcpu->arch.st.msr_val;
3906 break;
3907 case MSR_KVM_PV_EOI_EN:
3908 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3909 return 1;
3910
3911 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3912 break;
3913 case MSR_KVM_POLL_CONTROL:
3914 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3915 return 1;
3916
3917 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3918 break;
3919 case MSR_IA32_P5_MC_ADDR:
3920 case MSR_IA32_P5_MC_TYPE:
3921 case MSR_IA32_MCG_CAP:
3922 case MSR_IA32_MCG_CTL:
3923 case MSR_IA32_MCG_STATUS:
3924 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3925 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3926 msr_info->host_initiated);
3927 case MSR_IA32_XSS:
3928 if (!msr_info->host_initiated &&
3929 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3930 return 1;
3931 msr_info->data = vcpu->arch.ia32_xss;
3932 break;
3933 case MSR_K7_CLK_CTL:
3934 /*
3935 * Provide expected ramp-up count for K7. All other
3936 * are set to zero, indicating minimum divisors for
3937 * every field.
3938 *
3939 * This prevents guest kernels on AMD host with CPU
3940 * type 6, model 8 and higher from exploding due to
3941 * the rdmsr failing.
3942 */
3943 msr_info->data = 0x20000000;
3944 break;
3945 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3946 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3947 case HV_X64_MSR_SYNDBG_OPTIONS:
3948 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3949 case HV_X64_MSR_CRASH_CTL:
3950 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3951 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3952 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3953 case HV_X64_MSR_TSC_EMULATION_STATUS:
3954 return kvm_hv_get_msr_common(vcpu,
3955 msr_info->index, &msr_info->data,
3956 msr_info->host_initiated);
3957 case MSR_IA32_BBL_CR_CTL3:
3958 /* This legacy MSR exists but isn't fully documented in current
3959 * silicon. It is however accessed by winxp in very narrow
3960 * scenarios where it sets bit #19, itself documented as
3961 * a "reserved" bit. Best effort attempt to source coherent
3962 * read data here should the balance of the register be
3963 * interpreted by the guest:
3964 *
3965 * L2 cache control register 3: 64GB range, 256KB size,
3966 * enabled, latency 0x1, configured
3967 */
3968 msr_info->data = 0xbe702111;
3969 break;
3970 case MSR_AMD64_OSVW_ID_LENGTH:
3971 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3972 return 1;
3973 msr_info->data = vcpu->arch.osvw.length;
3974 break;
3975 case MSR_AMD64_OSVW_STATUS:
3976 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3977 return 1;
3978 msr_info->data = vcpu->arch.osvw.status;
3979 break;
3980 case MSR_PLATFORM_INFO:
3981 if (!msr_info->host_initiated &&
3982 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3983 return 1;
3984 msr_info->data = vcpu->arch.msr_platform_info;
3985 break;
3986 case MSR_MISC_FEATURES_ENABLES:
3987 msr_info->data = vcpu->arch.msr_misc_features_enables;
3988 break;
3989 case MSR_K7_HWCR:
3990 msr_info->data = vcpu->arch.msr_hwcr;
3991 break;
3992 default:
3993 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3994 return kvm_pmu_get_msr(vcpu, msr_info);
3995 return KVM_MSR_RET_INVALID;
3996 }
3997 return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4000
4001 /*
4002 * Read or write a bunch of msrs. All parameters are kernel addresses.
4003 *
4004 * @return number of msrs set successfully.
4005 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4006 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4007 struct kvm_msr_entry *entries,
4008 int (*do_msr)(struct kvm_vcpu *vcpu,
4009 unsigned index, u64 *data))
4010 {
4011 int i;
4012
4013 for (i = 0; i < msrs->nmsrs; ++i)
4014 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4015 break;
4016
4017 return i;
4018 }
4019
4020 /*
4021 * Read or write a bunch of msrs. Parameters are user addresses.
4022 *
4023 * @return number of msrs set successfully.
4024 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4025 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4026 int (*do_msr)(struct kvm_vcpu *vcpu,
4027 unsigned index, u64 *data),
4028 int writeback)
4029 {
4030 struct kvm_msrs msrs;
4031 struct kvm_msr_entry *entries;
4032 int r, n;
4033 unsigned size;
4034
4035 r = -EFAULT;
4036 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4037 goto out;
4038
4039 r = -E2BIG;
4040 if (msrs.nmsrs >= MAX_IO_MSRS)
4041 goto out;
4042
4043 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4044 entries = memdup_user(user_msrs->entries, size);
4045 if (IS_ERR(entries)) {
4046 r = PTR_ERR(entries);
4047 goto out;
4048 }
4049
4050 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4051 if (r < 0)
4052 goto out_free;
4053
4054 r = -EFAULT;
4055 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4056 goto out_free;
4057
4058 r = n;
4059
4060 out_free:
4061 kfree(entries);
4062 out:
4063 return r;
4064 }
4065
kvm_can_mwait_in_guest(void)4066 static inline bool kvm_can_mwait_in_guest(void)
4067 {
4068 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4069 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4070 boot_cpu_has(X86_FEATURE_ARAT);
4071 }
4072
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4073 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4074 struct kvm_cpuid2 __user *cpuid_arg)
4075 {
4076 struct kvm_cpuid2 cpuid;
4077 int r;
4078
4079 r = -EFAULT;
4080 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4081 return r;
4082
4083 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4084 if (r)
4085 return r;
4086
4087 r = -EFAULT;
4088 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4089 return r;
4090
4091 return 0;
4092 }
4093
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4094 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4095 {
4096 int r = 0;
4097
4098 switch (ext) {
4099 case KVM_CAP_IRQCHIP:
4100 case KVM_CAP_HLT:
4101 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4102 case KVM_CAP_SET_TSS_ADDR:
4103 case KVM_CAP_EXT_CPUID:
4104 case KVM_CAP_EXT_EMUL_CPUID:
4105 case KVM_CAP_CLOCKSOURCE:
4106 case KVM_CAP_PIT:
4107 case KVM_CAP_NOP_IO_DELAY:
4108 case KVM_CAP_MP_STATE:
4109 case KVM_CAP_SYNC_MMU:
4110 case KVM_CAP_USER_NMI:
4111 case KVM_CAP_REINJECT_CONTROL:
4112 case KVM_CAP_IRQ_INJECT_STATUS:
4113 case KVM_CAP_IOEVENTFD:
4114 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4115 case KVM_CAP_PIT2:
4116 case KVM_CAP_PIT_STATE2:
4117 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4118 case KVM_CAP_VCPU_EVENTS:
4119 case KVM_CAP_HYPERV:
4120 case KVM_CAP_HYPERV_VAPIC:
4121 case KVM_CAP_HYPERV_SPIN:
4122 case KVM_CAP_HYPERV_SYNIC:
4123 case KVM_CAP_HYPERV_SYNIC2:
4124 case KVM_CAP_HYPERV_VP_INDEX:
4125 case KVM_CAP_HYPERV_EVENTFD:
4126 case KVM_CAP_HYPERV_TLBFLUSH:
4127 case KVM_CAP_HYPERV_SEND_IPI:
4128 case KVM_CAP_HYPERV_CPUID:
4129 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4130 case KVM_CAP_SYS_HYPERV_CPUID:
4131 case KVM_CAP_PCI_SEGMENT:
4132 case KVM_CAP_DEBUGREGS:
4133 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4134 case KVM_CAP_XSAVE:
4135 case KVM_CAP_ASYNC_PF:
4136 case KVM_CAP_ASYNC_PF_INT:
4137 case KVM_CAP_GET_TSC_KHZ:
4138 case KVM_CAP_KVMCLOCK_CTRL:
4139 case KVM_CAP_READONLY_MEM:
4140 case KVM_CAP_HYPERV_TIME:
4141 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4142 case KVM_CAP_TSC_DEADLINE_TIMER:
4143 case KVM_CAP_DISABLE_QUIRKS:
4144 case KVM_CAP_SET_BOOT_CPU_ID:
4145 case KVM_CAP_SPLIT_IRQCHIP:
4146 case KVM_CAP_IMMEDIATE_EXIT:
4147 case KVM_CAP_PMU_EVENT_FILTER:
4148 case KVM_CAP_GET_MSR_FEATURES:
4149 case KVM_CAP_MSR_PLATFORM_INFO:
4150 case KVM_CAP_EXCEPTION_PAYLOAD:
4151 case KVM_CAP_SET_GUEST_DEBUG:
4152 case KVM_CAP_LAST_CPU:
4153 case KVM_CAP_X86_USER_SPACE_MSR:
4154 case KVM_CAP_X86_MSR_FILTER:
4155 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4156 #ifdef CONFIG_X86_SGX_KVM
4157 case KVM_CAP_SGX_ATTRIBUTE:
4158 #endif
4159 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4160 case KVM_CAP_SREGS2:
4161 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4162 r = 1;
4163 break;
4164 case KVM_CAP_EXIT_HYPERCALL:
4165 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4166 break;
4167 case KVM_CAP_SET_GUEST_DEBUG2:
4168 return KVM_GUESTDBG_VALID_MASK;
4169 #ifdef CONFIG_KVM_XEN
4170 case KVM_CAP_XEN_HVM:
4171 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4172 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4173 KVM_XEN_HVM_CONFIG_SHARED_INFO;
4174 if (sched_info_on())
4175 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4176 break;
4177 #endif
4178 case KVM_CAP_SYNC_REGS:
4179 r = KVM_SYNC_X86_VALID_FIELDS;
4180 break;
4181 case KVM_CAP_ADJUST_CLOCK:
4182 r = KVM_CLOCK_TSC_STABLE;
4183 break;
4184 case KVM_CAP_X86_DISABLE_EXITS:
4185 r = KVM_X86_DISABLE_EXITS_PAUSE;
4186
4187 if (!mitigate_smt_rsb) {
4188 r |= KVM_X86_DISABLE_EXITS_HLT |
4189 KVM_X86_DISABLE_EXITS_CSTATE;
4190
4191 if (kvm_can_mwait_in_guest())
4192 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4193 }
4194 break;
4195 case KVM_CAP_X86_SMM:
4196 /* SMBASE is usually relocated above 1M on modern chipsets,
4197 * and SMM handlers might indeed rely on 4G segment limits,
4198 * so do not report SMM to be available if real mode is
4199 * emulated via vm86 mode. Still, do not go to great lengths
4200 * to avoid userspace's usage of the feature, because it is a
4201 * fringe case that is not enabled except via specific settings
4202 * of the module parameters.
4203 */
4204 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4205 break;
4206 case KVM_CAP_VAPIC:
4207 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4208 break;
4209 case KVM_CAP_NR_VCPUS:
4210 r = KVM_SOFT_MAX_VCPUS;
4211 break;
4212 case KVM_CAP_MAX_VCPUS:
4213 r = KVM_MAX_VCPUS;
4214 break;
4215 case KVM_CAP_MAX_VCPU_ID:
4216 r = KVM_MAX_VCPU_ID;
4217 break;
4218 case KVM_CAP_PV_MMU: /* obsolete */
4219 r = 0;
4220 break;
4221 case KVM_CAP_MCE:
4222 r = KVM_MAX_MCE_BANKS;
4223 break;
4224 case KVM_CAP_XCRS:
4225 r = boot_cpu_has(X86_FEATURE_XSAVE);
4226 break;
4227 case KVM_CAP_TSC_CONTROL:
4228 r = kvm_has_tsc_control;
4229 break;
4230 case KVM_CAP_X2APIC_API:
4231 r = KVM_X2APIC_API_VALID_FLAGS;
4232 break;
4233 case KVM_CAP_NESTED_STATE:
4234 r = kvm_x86_ops.nested_ops->get_state ?
4235 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4236 break;
4237 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4238 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4239 break;
4240 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4241 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4242 break;
4243 case KVM_CAP_SMALLER_MAXPHYADDR:
4244 r = (int) allow_smaller_maxphyaddr;
4245 break;
4246 case KVM_CAP_STEAL_TIME:
4247 r = sched_info_on();
4248 break;
4249 case KVM_CAP_X86_BUS_LOCK_EXIT:
4250 if (kvm_has_bus_lock_exit)
4251 r = KVM_BUS_LOCK_DETECTION_OFF |
4252 KVM_BUS_LOCK_DETECTION_EXIT;
4253 else
4254 r = 0;
4255 break;
4256 default:
4257 break;
4258 }
4259 return r;
4260
4261 }
4262
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4263 long kvm_arch_dev_ioctl(struct file *filp,
4264 unsigned int ioctl, unsigned long arg)
4265 {
4266 void __user *argp = (void __user *)arg;
4267 long r;
4268
4269 switch (ioctl) {
4270 case KVM_GET_MSR_INDEX_LIST: {
4271 struct kvm_msr_list __user *user_msr_list = argp;
4272 struct kvm_msr_list msr_list;
4273 unsigned n;
4274
4275 r = -EFAULT;
4276 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4277 goto out;
4278 n = msr_list.nmsrs;
4279 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4280 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4281 goto out;
4282 r = -E2BIG;
4283 if (n < msr_list.nmsrs)
4284 goto out;
4285 r = -EFAULT;
4286 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4287 num_msrs_to_save * sizeof(u32)))
4288 goto out;
4289 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4290 &emulated_msrs,
4291 num_emulated_msrs * sizeof(u32)))
4292 goto out;
4293 r = 0;
4294 break;
4295 }
4296 case KVM_GET_SUPPORTED_CPUID:
4297 case KVM_GET_EMULATED_CPUID: {
4298 struct kvm_cpuid2 __user *cpuid_arg = argp;
4299 struct kvm_cpuid2 cpuid;
4300
4301 r = -EFAULT;
4302 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4303 goto out;
4304
4305 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4306 ioctl);
4307 if (r)
4308 goto out;
4309
4310 r = -EFAULT;
4311 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4312 goto out;
4313 r = 0;
4314 break;
4315 }
4316 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4317 r = -EFAULT;
4318 if (copy_to_user(argp, &kvm_mce_cap_supported,
4319 sizeof(kvm_mce_cap_supported)))
4320 goto out;
4321 r = 0;
4322 break;
4323 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4324 struct kvm_msr_list __user *user_msr_list = argp;
4325 struct kvm_msr_list msr_list;
4326 unsigned int n;
4327
4328 r = -EFAULT;
4329 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4330 goto out;
4331 n = msr_list.nmsrs;
4332 msr_list.nmsrs = num_msr_based_features;
4333 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4334 goto out;
4335 r = -E2BIG;
4336 if (n < msr_list.nmsrs)
4337 goto out;
4338 r = -EFAULT;
4339 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4340 num_msr_based_features * sizeof(u32)))
4341 goto out;
4342 r = 0;
4343 break;
4344 }
4345 case KVM_GET_MSRS:
4346 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4347 break;
4348 case KVM_GET_SUPPORTED_HV_CPUID:
4349 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4350 break;
4351 default:
4352 r = -EINVAL;
4353 break;
4354 }
4355 out:
4356 return r;
4357 }
4358
wbinvd_ipi(void * garbage)4359 static void wbinvd_ipi(void *garbage)
4360 {
4361 wbinvd();
4362 }
4363
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4364 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4365 {
4366 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4367 }
4368
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4369 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4370 {
4371 /* Address WBINVD may be executed by guest */
4372 if (need_emulate_wbinvd(vcpu)) {
4373 if (static_call(kvm_x86_has_wbinvd_exit)())
4374 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4375 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4376 smp_call_function_single(vcpu->cpu,
4377 wbinvd_ipi, NULL, 1);
4378 }
4379
4380 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4381
4382 /* Save host pkru register if supported */
4383 vcpu->arch.host_pkru = read_pkru();
4384
4385 /* Apply any externally detected TSC adjustments (due to suspend) */
4386 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4387 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4388 vcpu->arch.tsc_offset_adjustment = 0;
4389 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4390 }
4391
4392 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4393 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4394 rdtsc() - vcpu->arch.last_host_tsc;
4395 if (tsc_delta < 0)
4396 mark_tsc_unstable("KVM discovered backwards TSC");
4397
4398 if (kvm_check_tsc_unstable()) {
4399 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4400 vcpu->arch.last_guest_tsc);
4401 kvm_vcpu_write_tsc_offset(vcpu, offset);
4402 vcpu->arch.tsc_catchup = 1;
4403 }
4404
4405 if (kvm_lapic_hv_timer_in_use(vcpu))
4406 kvm_lapic_restart_hv_timer(vcpu);
4407
4408 /*
4409 * On a host with synchronized TSC, there is no need to update
4410 * kvmclock on vcpu->cpu migration
4411 */
4412 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4413 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4414 if (vcpu->cpu != cpu)
4415 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4416 vcpu->cpu = cpu;
4417 }
4418
4419 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4420 }
4421
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4422 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4423 {
4424 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4425 struct kvm_steal_time __user *st;
4426 struct kvm_memslots *slots;
4427 static const u8 preempted = KVM_VCPU_PREEMPTED;
4428 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4429
4430 /*
4431 * The vCPU can be marked preempted if and only if the VM-Exit was on
4432 * an instruction boundary and will not trigger guest emulation of any
4433 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4434 * when this is true, for example allowing the vCPU to be marked
4435 * preempted if and only if the VM-Exit was due to a host interrupt.
4436 */
4437 if (!vcpu->arch.at_instruction_boundary) {
4438 vcpu->stat.preemption_other++;
4439 return;
4440 }
4441
4442 vcpu->stat.preemption_reported++;
4443 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4444 return;
4445
4446 if (vcpu->arch.st.preempted)
4447 return;
4448
4449 /* This happens on process exit */
4450 if (unlikely(current->mm != vcpu->kvm->mm))
4451 return;
4452
4453 slots = kvm_memslots(vcpu->kvm);
4454
4455 if (unlikely(slots->generation != ghc->generation ||
4456 gpa != ghc->gpa ||
4457 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4458 return;
4459
4460 st = (struct kvm_steal_time __user *)ghc->hva;
4461 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4462
4463 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4464 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4465
4466 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4467 }
4468
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4469 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4470 {
4471 int idx;
4472
4473 if (vcpu->preempted) {
4474 if (!vcpu->arch.guest_state_protected)
4475 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4476
4477 /*
4478 * Take the srcu lock as memslots will be accessed to check the gfn
4479 * cache generation against the memslots generation.
4480 */
4481 idx = srcu_read_lock(&vcpu->kvm->srcu);
4482 if (kvm_xen_msr_enabled(vcpu->kvm))
4483 kvm_xen_runstate_set_preempted(vcpu);
4484 else
4485 kvm_steal_time_set_preempted(vcpu);
4486 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4487 }
4488
4489 static_call(kvm_x86_vcpu_put)(vcpu);
4490 vcpu->arch.last_host_tsc = rdtsc();
4491 }
4492
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4493 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4494 struct kvm_lapic_state *s)
4495 {
4496 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4497
4498 return kvm_apic_get_state(vcpu, s);
4499 }
4500
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4501 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4502 struct kvm_lapic_state *s)
4503 {
4504 int r;
4505
4506 r = kvm_apic_set_state(vcpu, s);
4507 if (r)
4508 return r;
4509 update_cr8_intercept(vcpu);
4510
4511 return 0;
4512 }
4513
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4514 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4515 {
4516 /*
4517 * We can accept userspace's request for interrupt injection
4518 * as long as we have a place to store the interrupt number.
4519 * The actual injection will happen when the CPU is able to
4520 * deliver the interrupt.
4521 */
4522 if (kvm_cpu_has_extint(vcpu))
4523 return false;
4524
4525 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4526 return (!lapic_in_kernel(vcpu) ||
4527 kvm_apic_accept_pic_intr(vcpu));
4528 }
4529
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4530 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4531 {
4532 /*
4533 * Do not cause an interrupt window exit if an exception
4534 * is pending or an event needs reinjection; userspace
4535 * might want to inject the interrupt manually using KVM_SET_REGS
4536 * or KVM_SET_SREGS. For that to work, we must be at an
4537 * instruction boundary and with no events half-injected.
4538 */
4539 return (kvm_arch_interrupt_allowed(vcpu) &&
4540 kvm_cpu_accept_dm_intr(vcpu) &&
4541 !kvm_event_needs_reinjection(vcpu) &&
4542 !vcpu->arch.exception.pending);
4543 }
4544
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4545 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4546 struct kvm_interrupt *irq)
4547 {
4548 if (irq->irq >= KVM_NR_INTERRUPTS)
4549 return -EINVAL;
4550
4551 if (!irqchip_in_kernel(vcpu->kvm)) {
4552 kvm_queue_interrupt(vcpu, irq->irq, false);
4553 kvm_make_request(KVM_REQ_EVENT, vcpu);
4554 return 0;
4555 }
4556
4557 /*
4558 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4559 * fail for in-kernel 8259.
4560 */
4561 if (pic_in_kernel(vcpu->kvm))
4562 return -ENXIO;
4563
4564 if (vcpu->arch.pending_external_vector != -1)
4565 return -EEXIST;
4566
4567 vcpu->arch.pending_external_vector = irq->irq;
4568 kvm_make_request(KVM_REQ_EVENT, vcpu);
4569 return 0;
4570 }
4571
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4572 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4573 {
4574 kvm_inject_nmi(vcpu);
4575
4576 return 0;
4577 }
4578
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4579 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4580 {
4581 kvm_make_request(KVM_REQ_SMI, vcpu);
4582
4583 return 0;
4584 }
4585
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4586 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4587 struct kvm_tpr_access_ctl *tac)
4588 {
4589 if (tac->flags)
4590 return -EINVAL;
4591 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4592 return 0;
4593 }
4594
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4595 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4596 u64 mcg_cap)
4597 {
4598 int r;
4599 unsigned bank_num = mcg_cap & 0xff, bank;
4600
4601 r = -EINVAL;
4602 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4603 goto out;
4604 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4605 goto out;
4606 r = 0;
4607 vcpu->arch.mcg_cap = mcg_cap;
4608 /* Init IA32_MCG_CTL to all 1s */
4609 if (mcg_cap & MCG_CTL_P)
4610 vcpu->arch.mcg_ctl = ~(u64)0;
4611 /* Init IA32_MCi_CTL to all 1s */
4612 for (bank = 0; bank < bank_num; bank++)
4613 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4614
4615 static_call(kvm_x86_setup_mce)(vcpu);
4616 out:
4617 return r;
4618 }
4619
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4620 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4621 struct kvm_x86_mce *mce)
4622 {
4623 u64 mcg_cap = vcpu->arch.mcg_cap;
4624 unsigned bank_num = mcg_cap & 0xff;
4625 u64 *banks = vcpu->arch.mce_banks;
4626
4627 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4628 return -EINVAL;
4629 /*
4630 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4631 * reporting is disabled
4632 */
4633 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4634 vcpu->arch.mcg_ctl != ~(u64)0)
4635 return 0;
4636 banks += 4 * mce->bank;
4637 /*
4638 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4639 * reporting is disabled for the bank
4640 */
4641 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4642 return 0;
4643 if (mce->status & MCI_STATUS_UC) {
4644 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4645 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4646 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4647 return 0;
4648 }
4649 if (banks[1] & MCI_STATUS_VAL)
4650 mce->status |= MCI_STATUS_OVER;
4651 banks[2] = mce->addr;
4652 banks[3] = mce->misc;
4653 vcpu->arch.mcg_status = mce->mcg_status;
4654 banks[1] = mce->status;
4655 kvm_queue_exception(vcpu, MC_VECTOR);
4656 } else if (!(banks[1] & MCI_STATUS_VAL)
4657 || !(banks[1] & MCI_STATUS_UC)) {
4658 if (banks[1] & MCI_STATUS_VAL)
4659 mce->status |= MCI_STATUS_OVER;
4660 banks[2] = mce->addr;
4661 banks[3] = mce->misc;
4662 banks[1] = mce->status;
4663 } else
4664 banks[1] |= MCI_STATUS_OVER;
4665 return 0;
4666 }
4667
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4668 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4669 struct kvm_vcpu_events *events)
4670 {
4671 process_nmi(vcpu);
4672
4673 if (kvm_check_request(KVM_REQ_SMI, vcpu))
4674 process_smi(vcpu);
4675
4676 /*
4677 * In guest mode, payload delivery should be deferred,
4678 * so that the L1 hypervisor can intercept #PF before
4679 * CR2 is modified (or intercept #DB before DR6 is
4680 * modified under nVMX). Unless the per-VM capability,
4681 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4682 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4683 * opportunistically defer the exception payload, deliver it if the
4684 * capability hasn't been requested before processing a
4685 * KVM_GET_VCPU_EVENTS.
4686 */
4687 if (!vcpu->kvm->arch.exception_payload_enabled &&
4688 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4689 kvm_deliver_exception_payload(vcpu);
4690
4691 /*
4692 * The API doesn't provide the instruction length for software
4693 * exceptions, so don't report them. As long as the guest RIP
4694 * isn't advanced, we should expect to encounter the exception
4695 * again.
4696 */
4697 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4698 events->exception.injected = 0;
4699 events->exception.pending = 0;
4700 } else {
4701 events->exception.injected = vcpu->arch.exception.injected;
4702 events->exception.pending = vcpu->arch.exception.pending;
4703 /*
4704 * For ABI compatibility, deliberately conflate
4705 * pending and injected exceptions when
4706 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4707 */
4708 if (!vcpu->kvm->arch.exception_payload_enabled)
4709 events->exception.injected |=
4710 vcpu->arch.exception.pending;
4711 }
4712 events->exception.nr = vcpu->arch.exception.nr;
4713 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4714 events->exception.error_code = vcpu->arch.exception.error_code;
4715 events->exception_has_payload = vcpu->arch.exception.has_payload;
4716 events->exception_payload = vcpu->arch.exception.payload;
4717
4718 events->interrupt.injected =
4719 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4720 events->interrupt.nr = vcpu->arch.interrupt.nr;
4721 events->interrupt.soft = 0;
4722 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4723
4724 events->nmi.injected = vcpu->arch.nmi_injected;
4725 events->nmi.pending = vcpu->arch.nmi_pending != 0;
4726 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4727 events->nmi.pad = 0;
4728
4729 events->sipi_vector = 0; /* never valid when reporting to user space */
4730
4731 events->smi.smm = is_smm(vcpu);
4732 events->smi.pending = vcpu->arch.smi_pending;
4733 events->smi.smm_inside_nmi =
4734 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4735 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4736
4737 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4738 | KVM_VCPUEVENT_VALID_SHADOW
4739 | KVM_VCPUEVENT_VALID_SMM);
4740 if (vcpu->kvm->arch.exception_payload_enabled)
4741 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4742
4743 memset(&events->reserved, 0, sizeof(events->reserved));
4744 }
4745
4746 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4747
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4748 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4749 struct kvm_vcpu_events *events)
4750 {
4751 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4752 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4753 | KVM_VCPUEVENT_VALID_SHADOW
4754 | KVM_VCPUEVENT_VALID_SMM
4755 | KVM_VCPUEVENT_VALID_PAYLOAD))
4756 return -EINVAL;
4757
4758 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4759 if (!vcpu->kvm->arch.exception_payload_enabled)
4760 return -EINVAL;
4761 if (events->exception.pending)
4762 events->exception.injected = 0;
4763 else
4764 events->exception_has_payload = 0;
4765 } else {
4766 events->exception.pending = 0;
4767 events->exception_has_payload = 0;
4768 }
4769
4770 if ((events->exception.injected || events->exception.pending) &&
4771 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4772 return -EINVAL;
4773
4774 /* INITs are latched while in SMM */
4775 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4776 (events->smi.smm || events->smi.pending) &&
4777 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4778 return -EINVAL;
4779
4780 process_nmi(vcpu);
4781 vcpu->arch.exception.injected = events->exception.injected;
4782 vcpu->arch.exception.pending = events->exception.pending;
4783 vcpu->arch.exception.nr = events->exception.nr;
4784 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4785 vcpu->arch.exception.error_code = events->exception.error_code;
4786 vcpu->arch.exception.has_payload = events->exception_has_payload;
4787 vcpu->arch.exception.payload = events->exception_payload;
4788
4789 vcpu->arch.interrupt.injected = events->interrupt.injected;
4790 vcpu->arch.interrupt.nr = events->interrupt.nr;
4791 vcpu->arch.interrupt.soft = events->interrupt.soft;
4792 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4793 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4794 events->interrupt.shadow);
4795
4796 vcpu->arch.nmi_injected = events->nmi.injected;
4797 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4798 vcpu->arch.nmi_pending = events->nmi.pending;
4799 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4800
4801 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4802 lapic_in_kernel(vcpu))
4803 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4804
4805 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4806 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4807 kvm_leave_nested(vcpu);
4808 kvm_smm_changed(vcpu, events->smi.smm);
4809 }
4810
4811 vcpu->arch.smi_pending = events->smi.pending;
4812
4813 if (events->smi.smm) {
4814 if (events->smi.smm_inside_nmi)
4815 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4816 else
4817 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4818 }
4819
4820 if (lapic_in_kernel(vcpu)) {
4821 if (events->smi.latched_init)
4822 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4823 else
4824 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4825 }
4826 }
4827
4828 kvm_make_request(KVM_REQ_EVENT, vcpu);
4829
4830 return 0;
4831 }
4832
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4833 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4834 struct kvm_debugregs *dbgregs)
4835 {
4836 unsigned long val;
4837
4838 memset(dbgregs, 0, sizeof(*dbgregs));
4839 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4840 kvm_get_dr(vcpu, 6, &val);
4841 dbgregs->dr6 = val;
4842 dbgregs->dr7 = vcpu->arch.dr7;
4843 }
4844
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4845 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4846 struct kvm_debugregs *dbgregs)
4847 {
4848 if (dbgregs->flags)
4849 return -EINVAL;
4850
4851 if (!kvm_dr6_valid(dbgregs->dr6))
4852 return -EINVAL;
4853 if (!kvm_dr7_valid(dbgregs->dr7))
4854 return -EINVAL;
4855
4856 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4857 kvm_update_dr0123(vcpu);
4858 vcpu->arch.dr6 = dbgregs->dr6;
4859 vcpu->arch.dr7 = dbgregs->dr7;
4860 kvm_update_dr7(vcpu);
4861
4862 return 0;
4863 }
4864
4865 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4866
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4867 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4868 {
4869 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4870 u64 xstate_bv = xsave->header.xfeatures;
4871 u64 valid;
4872
4873 /*
4874 * Copy legacy XSAVE area, to avoid complications with CPUID
4875 * leaves 0 and 1 in the loop below.
4876 */
4877 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4878
4879 /* Set XSTATE_BV */
4880 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4881 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4882
4883 /*
4884 * Copy each region from the possibly compacted offset to the
4885 * non-compacted offset.
4886 */
4887 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4888 while (valid) {
4889 u32 size, offset, ecx, edx;
4890 u64 xfeature_mask = valid & -valid;
4891 int xfeature_nr = fls64(xfeature_mask) - 1;
4892 void *src;
4893
4894 cpuid_count(XSTATE_CPUID, xfeature_nr,
4895 &size, &offset, &ecx, &edx);
4896
4897 if (xfeature_nr == XFEATURE_PKRU) {
4898 memcpy(dest + offset, &vcpu->arch.pkru,
4899 sizeof(vcpu->arch.pkru));
4900 } else {
4901 src = get_xsave_addr(xsave, xfeature_nr);
4902 if (src)
4903 memcpy(dest + offset, src, size);
4904 }
4905
4906 valid -= xfeature_mask;
4907 }
4908 }
4909
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4910 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4911 {
4912 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4913 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4914 u64 valid;
4915
4916 /*
4917 * Copy legacy XSAVE area, to avoid complications with CPUID
4918 * leaves 0 and 1 in the loop below.
4919 */
4920 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4921
4922 /* Set XSTATE_BV and possibly XCOMP_BV. */
4923 xsave->header.xfeatures = xstate_bv;
4924 if (boot_cpu_has(X86_FEATURE_XSAVES))
4925 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4926
4927 /*
4928 * Copy each region from the non-compacted offset to the
4929 * possibly compacted offset.
4930 */
4931 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4932 while (valid) {
4933 u32 size, offset, ecx, edx;
4934 u64 xfeature_mask = valid & -valid;
4935 int xfeature_nr = fls64(xfeature_mask) - 1;
4936
4937 cpuid_count(XSTATE_CPUID, xfeature_nr,
4938 &size, &offset, &ecx, &edx);
4939
4940 if (xfeature_nr == XFEATURE_PKRU) {
4941 memcpy(&vcpu->arch.pkru, src + offset,
4942 sizeof(vcpu->arch.pkru));
4943 } else {
4944 void *dest = get_xsave_addr(xsave, xfeature_nr);
4945
4946 if (dest)
4947 memcpy(dest, src + offset, size);
4948 }
4949
4950 valid -= xfeature_mask;
4951 }
4952 }
4953
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4954 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4955 struct kvm_xsave *guest_xsave)
4956 {
4957 if (!vcpu->arch.guest_fpu)
4958 return;
4959
4960 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4961 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4962 fill_xsave((u8 *) guest_xsave->region, vcpu);
4963 } else {
4964 memcpy(guest_xsave->region,
4965 &vcpu->arch.guest_fpu->state.fxsave,
4966 sizeof(struct fxregs_state));
4967 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4968 XFEATURE_MASK_FPSSE;
4969 }
4970 }
4971
4972 #define XSAVE_MXCSR_OFFSET 24
4973
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4974 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4975 struct kvm_xsave *guest_xsave)
4976 {
4977 u64 xstate_bv;
4978 u32 mxcsr;
4979
4980 if (!vcpu->arch.guest_fpu)
4981 return 0;
4982
4983 xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4984 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4985
4986 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4987 /*
4988 * Here we allow setting states that are not present in
4989 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4990 * with old userspace.
4991 */
4992 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4993 return -EINVAL;
4994 load_xsave(vcpu, (u8 *)guest_xsave->region);
4995 } else {
4996 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4997 mxcsr & ~mxcsr_feature_mask)
4998 return -EINVAL;
4999 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
5000 guest_xsave->region, sizeof(struct fxregs_state));
5001 }
5002 return 0;
5003 }
5004
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5005 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5006 struct kvm_xcrs *guest_xcrs)
5007 {
5008 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5009 guest_xcrs->nr_xcrs = 0;
5010 return;
5011 }
5012
5013 guest_xcrs->nr_xcrs = 1;
5014 guest_xcrs->flags = 0;
5015 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5016 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5017 }
5018
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5019 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5020 struct kvm_xcrs *guest_xcrs)
5021 {
5022 int i, r = 0;
5023
5024 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5025 return -EINVAL;
5026
5027 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5028 return -EINVAL;
5029
5030 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5031 /* Only support XCR0 currently */
5032 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5033 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5034 guest_xcrs->xcrs[i].value);
5035 break;
5036 }
5037 if (r)
5038 r = -EINVAL;
5039 return r;
5040 }
5041
5042 /*
5043 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5044 * stopped by the hypervisor. This function will be called from the host only.
5045 * EINVAL is returned when the host attempts to set the flag for a guest that
5046 * does not support pv clocks.
5047 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5048 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5049 {
5050 if (!vcpu->arch.pv_time_enabled)
5051 return -EINVAL;
5052 vcpu->arch.pvclock_set_guest_stopped_request = true;
5053 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5054 return 0;
5055 }
5056
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5057 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5058 struct kvm_enable_cap *cap)
5059 {
5060 int r;
5061 uint16_t vmcs_version;
5062 void __user *user_ptr;
5063
5064 if (cap->flags)
5065 return -EINVAL;
5066
5067 switch (cap->cap) {
5068 case KVM_CAP_HYPERV_SYNIC2:
5069 if (cap->args[0])
5070 return -EINVAL;
5071 fallthrough;
5072
5073 case KVM_CAP_HYPERV_SYNIC:
5074 if (!irqchip_in_kernel(vcpu->kvm))
5075 return -EINVAL;
5076 return kvm_hv_activate_synic(vcpu, cap->cap ==
5077 KVM_CAP_HYPERV_SYNIC2);
5078 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5079 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5080 return -ENOTTY;
5081 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5082 if (!r) {
5083 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5084 if (copy_to_user(user_ptr, &vmcs_version,
5085 sizeof(vmcs_version)))
5086 r = -EFAULT;
5087 }
5088 return r;
5089 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5090 if (!kvm_x86_ops.enable_direct_tlbflush)
5091 return -ENOTTY;
5092
5093 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5094
5095 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5096 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5097
5098 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5099 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5100 if (vcpu->arch.pv_cpuid.enforce)
5101 kvm_update_pv_runtime(vcpu);
5102
5103 return 0;
5104 default:
5105 return -EINVAL;
5106 }
5107 }
5108
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5109 long kvm_arch_vcpu_ioctl(struct file *filp,
5110 unsigned int ioctl, unsigned long arg)
5111 {
5112 struct kvm_vcpu *vcpu = filp->private_data;
5113 void __user *argp = (void __user *)arg;
5114 int r;
5115 union {
5116 struct kvm_sregs2 *sregs2;
5117 struct kvm_lapic_state *lapic;
5118 struct kvm_xsave *xsave;
5119 struct kvm_xcrs *xcrs;
5120 void *buffer;
5121 } u;
5122
5123 vcpu_load(vcpu);
5124
5125 u.buffer = NULL;
5126 switch (ioctl) {
5127 case KVM_GET_LAPIC: {
5128 r = -EINVAL;
5129 if (!lapic_in_kernel(vcpu))
5130 goto out;
5131 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5132 GFP_KERNEL_ACCOUNT);
5133
5134 r = -ENOMEM;
5135 if (!u.lapic)
5136 goto out;
5137 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5138 if (r)
5139 goto out;
5140 r = -EFAULT;
5141 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5142 goto out;
5143 r = 0;
5144 break;
5145 }
5146 case KVM_SET_LAPIC: {
5147 r = -EINVAL;
5148 if (!lapic_in_kernel(vcpu))
5149 goto out;
5150 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5151 if (IS_ERR(u.lapic)) {
5152 r = PTR_ERR(u.lapic);
5153 goto out_nofree;
5154 }
5155
5156 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5157 break;
5158 }
5159 case KVM_INTERRUPT: {
5160 struct kvm_interrupt irq;
5161
5162 r = -EFAULT;
5163 if (copy_from_user(&irq, argp, sizeof(irq)))
5164 goto out;
5165 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5166 break;
5167 }
5168 case KVM_NMI: {
5169 r = kvm_vcpu_ioctl_nmi(vcpu);
5170 break;
5171 }
5172 case KVM_SMI: {
5173 r = kvm_vcpu_ioctl_smi(vcpu);
5174 break;
5175 }
5176 case KVM_SET_CPUID: {
5177 struct kvm_cpuid __user *cpuid_arg = argp;
5178 struct kvm_cpuid cpuid;
5179
5180 r = -EFAULT;
5181 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5182 goto out;
5183 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5184 break;
5185 }
5186 case KVM_SET_CPUID2: {
5187 struct kvm_cpuid2 __user *cpuid_arg = argp;
5188 struct kvm_cpuid2 cpuid;
5189
5190 r = -EFAULT;
5191 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5192 goto out;
5193 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5194 cpuid_arg->entries);
5195 break;
5196 }
5197 case KVM_GET_CPUID2: {
5198 struct kvm_cpuid2 __user *cpuid_arg = argp;
5199 struct kvm_cpuid2 cpuid;
5200
5201 r = -EFAULT;
5202 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5203 goto out;
5204 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5205 cpuid_arg->entries);
5206 if (r)
5207 goto out;
5208 r = -EFAULT;
5209 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5210 goto out;
5211 r = 0;
5212 break;
5213 }
5214 case KVM_GET_MSRS: {
5215 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5216 r = msr_io(vcpu, argp, do_get_msr, 1);
5217 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5218 break;
5219 }
5220 case KVM_SET_MSRS: {
5221 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5222 r = msr_io(vcpu, argp, do_set_msr, 0);
5223 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5224 break;
5225 }
5226 case KVM_TPR_ACCESS_REPORTING: {
5227 struct kvm_tpr_access_ctl tac;
5228
5229 r = -EFAULT;
5230 if (copy_from_user(&tac, argp, sizeof(tac)))
5231 goto out;
5232 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5233 if (r)
5234 goto out;
5235 r = -EFAULT;
5236 if (copy_to_user(argp, &tac, sizeof(tac)))
5237 goto out;
5238 r = 0;
5239 break;
5240 };
5241 case KVM_SET_VAPIC_ADDR: {
5242 struct kvm_vapic_addr va;
5243 int idx;
5244
5245 r = -EINVAL;
5246 if (!lapic_in_kernel(vcpu))
5247 goto out;
5248 r = -EFAULT;
5249 if (copy_from_user(&va, argp, sizeof(va)))
5250 goto out;
5251 idx = srcu_read_lock(&vcpu->kvm->srcu);
5252 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5253 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5254 break;
5255 }
5256 case KVM_X86_SETUP_MCE: {
5257 u64 mcg_cap;
5258
5259 r = -EFAULT;
5260 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5261 goto out;
5262 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5263 break;
5264 }
5265 case KVM_X86_SET_MCE: {
5266 struct kvm_x86_mce mce;
5267
5268 r = -EFAULT;
5269 if (copy_from_user(&mce, argp, sizeof(mce)))
5270 goto out;
5271 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5272 break;
5273 }
5274 case KVM_GET_VCPU_EVENTS: {
5275 struct kvm_vcpu_events events;
5276
5277 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5278
5279 r = -EFAULT;
5280 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5281 break;
5282 r = 0;
5283 break;
5284 }
5285 case KVM_SET_VCPU_EVENTS: {
5286 struct kvm_vcpu_events events;
5287
5288 r = -EFAULT;
5289 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5290 break;
5291
5292 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5293 break;
5294 }
5295 case KVM_GET_DEBUGREGS: {
5296 struct kvm_debugregs dbgregs;
5297
5298 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5299
5300 r = -EFAULT;
5301 if (copy_to_user(argp, &dbgregs,
5302 sizeof(struct kvm_debugregs)))
5303 break;
5304 r = 0;
5305 break;
5306 }
5307 case KVM_SET_DEBUGREGS: {
5308 struct kvm_debugregs dbgregs;
5309
5310 r = -EFAULT;
5311 if (copy_from_user(&dbgregs, argp,
5312 sizeof(struct kvm_debugregs)))
5313 break;
5314
5315 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5316 break;
5317 }
5318 case KVM_GET_XSAVE: {
5319 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5320 r = -ENOMEM;
5321 if (!u.xsave)
5322 break;
5323
5324 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5325
5326 r = -EFAULT;
5327 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5328 break;
5329 r = 0;
5330 break;
5331 }
5332 case KVM_SET_XSAVE: {
5333 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5334 if (IS_ERR(u.xsave)) {
5335 r = PTR_ERR(u.xsave);
5336 goto out_nofree;
5337 }
5338
5339 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5340 break;
5341 }
5342 case KVM_GET_XCRS: {
5343 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5344 r = -ENOMEM;
5345 if (!u.xcrs)
5346 break;
5347
5348 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5349
5350 r = -EFAULT;
5351 if (copy_to_user(argp, u.xcrs,
5352 sizeof(struct kvm_xcrs)))
5353 break;
5354 r = 0;
5355 break;
5356 }
5357 case KVM_SET_XCRS: {
5358 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5359 if (IS_ERR(u.xcrs)) {
5360 r = PTR_ERR(u.xcrs);
5361 goto out_nofree;
5362 }
5363
5364 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5365 break;
5366 }
5367 case KVM_SET_TSC_KHZ: {
5368 u32 user_tsc_khz;
5369
5370 r = -EINVAL;
5371 user_tsc_khz = (u32)arg;
5372
5373 if (kvm_has_tsc_control &&
5374 user_tsc_khz >= kvm_max_guest_tsc_khz)
5375 goto out;
5376
5377 if (user_tsc_khz == 0)
5378 user_tsc_khz = tsc_khz;
5379
5380 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5381 r = 0;
5382
5383 goto out;
5384 }
5385 case KVM_GET_TSC_KHZ: {
5386 r = vcpu->arch.virtual_tsc_khz;
5387 goto out;
5388 }
5389 case KVM_KVMCLOCK_CTRL: {
5390 r = kvm_set_guest_paused(vcpu);
5391 goto out;
5392 }
5393 case KVM_ENABLE_CAP: {
5394 struct kvm_enable_cap cap;
5395
5396 r = -EFAULT;
5397 if (copy_from_user(&cap, argp, sizeof(cap)))
5398 goto out;
5399 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5400 break;
5401 }
5402 case KVM_GET_NESTED_STATE: {
5403 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5404 u32 user_data_size;
5405
5406 r = -EINVAL;
5407 if (!kvm_x86_ops.nested_ops->get_state)
5408 break;
5409
5410 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5411 r = -EFAULT;
5412 if (get_user(user_data_size, &user_kvm_nested_state->size))
5413 break;
5414
5415 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5416 user_data_size);
5417 if (r < 0)
5418 break;
5419
5420 if (r > user_data_size) {
5421 if (put_user(r, &user_kvm_nested_state->size))
5422 r = -EFAULT;
5423 else
5424 r = -E2BIG;
5425 break;
5426 }
5427
5428 r = 0;
5429 break;
5430 }
5431 case KVM_SET_NESTED_STATE: {
5432 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5433 struct kvm_nested_state kvm_state;
5434 int idx;
5435
5436 r = -EINVAL;
5437 if (!kvm_x86_ops.nested_ops->set_state)
5438 break;
5439
5440 r = -EFAULT;
5441 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5442 break;
5443
5444 r = -EINVAL;
5445 if (kvm_state.size < sizeof(kvm_state))
5446 break;
5447
5448 if (kvm_state.flags &
5449 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5450 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5451 | KVM_STATE_NESTED_GIF_SET))
5452 break;
5453
5454 /* nested_run_pending implies guest_mode. */
5455 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5456 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5457 break;
5458
5459 idx = srcu_read_lock(&vcpu->kvm->srcu);
5460 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5461 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5462 break;
5463 }
5464 case KVM_GET_SUPPORTED_HV_CPUID:
5465 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5466 break;
5467 #ifdef CONFIG_KVM_XEN
5468 case KVM_XEN_VCPU_GET_ATTR: {
5469 struct kvm_xen_vcpu_attr xva;
5470
5471 r = -EFAULT;
5472 if (copy_from_user(&xva, argp, sizeof(xva)))
5473 goto out;
5474 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5475 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5476 r = -EFAULT;
5477 break;
5478 }
5479 case KVM_XEN_VCPU_SET_ATTR: {
5480 struct kvm_xen_vcpu_attr xva;
5481
5482 r = -EFAULT;
5483 if (copy_from_user(&xva, argp, sizeof(xva)))
5484 goto out;
5485 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5486 break;
5487 }
5488 #endif
5489 case KVM_GET_SREGS2: {
5490 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5491 r = -ENOMEM;
5492 if (!u.sregs2)
5493 goto out;
5494 __get_sregs2(vcpu, u.sregs2);
5495 r = -EFAULT;
5496 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5497 goto out;
5498 r = 0;
5499 break;
5500 }
5501 case KVM_SET_SREGS2: {
5502 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5503 if (IS_ERR(u.sregs2)) {
5504 r = PTR_ERR(u.sregs2);
5505 u.sregs2 = NULL;
5506 goto out;
5507 }
5508 r = __set_sregs2(vcpu, u.sregs2);
5509 break;
5510 }
5511 default:
5512 r = -EINVAL;
5513 }
5514 out:
5515 kfree(u.buffer);
5516 out_nofree:
5517 vcpu_put(vcpu);
5518 return r;
5519 }
5520
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5521 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5522 {
5523 return VM_FAULT_SIGBUS;
5524 }
5525
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5526 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5527 {
5528 int ret;
5529
5530 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5531 return -EINVAL;
5532 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5533 return ret;
5534 }
5535
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5536 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5537 u64 ident_addr)
5538 {
5539 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5540 }
5541
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5542 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5543 unsigned long kvm_nr_mmu_pages)
5544 {
5545 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5546 return -EINVAL;
5547
5548 mutex_lock(&kvm->slots_lock);
5549
5550 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5551 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5552
5553 mutex_unlock(&kvm->slots_lock);
5554 return 0;
5555 }
5556
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5557 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5558 {
5559 return kvm->arch.n_max_mmu_pages;
5560 }
5561
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5562 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5563 {
5564 struct kvm_pic *pic = kvm->arch.vpic;
5565 int r;
5566
5567 r = 0;
5568 switch (chip->chip_id) {
5569 case KVM_IRQCHIP_PIC_MASTER:
5570 memcpy(&chip->chip.pic, &pic->pics[0],
5571 sizeof(struct kvm_pic_state));
5572 break;
5573 case KVM_IRQCHIP_PIC_SLAVE:
5574 memcpy(&chip->chip.pic, &pic->pics[1],
5575 sizeof(struct kvm_pic_state));
5576 break;
5577 case KVM_IRQCHIP_IOAPIC:
5578 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5579 break;
5580 default:
5581 r = -EINVAL;
5582 break;
5583 }
5584 return r;
5585 }
5586
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5587 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5588 {
5589 struct kvm_pic *pic = kvm->arch.vpic;
5590 int r;
5591
5592 r = 0;
5593 switch (chip->chip_id) {
5594 case KVM_IRQCHIP_PIC_MASTER:
5595 spin_lock(&pic->lock);
5596 memcpy(&pic->pics[0], &chip->chip.pic,
5597 sizeof(struct kvm_pic_state));
5598 spin_unlock(&pic->lock);
5599 break;
5600 case KVM_IRQCHIP_PIC_SLAVE:
5601 spin_lock(&pic->lock);
5602 memcpy(&pic->pics[1], &chip->chip.pic,
5603 sizeof(struct kvm_pic_state));
5604 spin_unlock(&pic->lock);
5605 break;
5606 case KVM_IRQCHIP_IOAPIC:
5607 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5608 break;
5609 default:
5610 r = -EINVAL;
5611 break;
5612 }
5613 kvm_pic_update_irq(pic);
5614 return r;
5615 }
5616
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5617 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5618 {
5619 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5620
5621 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5622
5623 mutex_lock(&kps->lock);
5624 memcpy(ps, &kps->channels, sizeof(*ps));
5625 mutex_unlock(&kps->lock);
5626 return 0;
5627 }
5628
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5629 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5630 {
5631 int i;
5632 struct kvm_pit *pit = kvm->arch.vpit;
5633
5634 mutex_lock(&pit->pit_state.lock);
5635 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5636 for (i = 0; i < 3; i++)
5637 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5638 mutex_unlock(&pit->pit_state.lock);
5639 return 0;
5640 }
5641
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5642 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5643 {
5644 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5645 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5646 sizeof(ps->channels));
5647 ps->flags = kvm->arch.vpit->pit_state.flags;
5648 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5649 memset(&ps->reserved, 0, sizeof(ps->reserved));
5650 return 0;
5651 }
5652
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5653 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5654 {
5655 int start = 0;
5656 int i;
5657 u32 prev_legacy, cur_legacy;
5658 struct kvm_pit *pit = kvm->arch.vpit;
5659
5660 mutex_lock(&pit->pit_state.lock);
5661 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5662 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5663 if (!prev_legacy && cur_legacy)
5664 start = 1;
5665 memcpy(&pit->pit_state.channels, &ps->channels,
5666 sizeof(pit->pit_state.channels));
5667 pit->pit_state.flags = ps->flags;
5668 for (i = 0; i < 3; i++)
5669 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5670 start && i == 0);
5671 mutex_unlock(&pit->pit_state.lock);
5672 return 0;
5673 }
5674
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5675 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5676 struct kvm_reinject_control *control)
5677 {
5678 struct kvm_pit *pit = kvm->arch.vpit;
5679
5680 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5681 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5682 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5683 */
5684 mutex_lock(&pit->pit_state.lock);
5685 kvm_pit_set_reinject(pit, control->pit_reinject);
5686 mutex_unlock(&pit->pit_state.lock);
5687
5688 return 0;
5689 }
5690
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5691 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5692 {
5693
5694 /*
5695 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
5696 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
5697 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5698 * VM-Exit.
5699 */
5700 struct kvm_vcpu *vcpu;
5701 int i;
5702
5703 kvm_for_each_vcpu(i, vcpu, kvm)
5704 kvm_vcpu_kick(vcpu);
5705 }
5706
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5707 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5708 bool line_status)
5709 {
5710 if (!irqchip_in_kernel(kvm))
5711 return -ENXIO;
5712
5713 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5714 irq_event->irq, irq_event->level,
5715 line_status);
5716 return 0;
5717 }
5718
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5719 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5720 struct kvm_enable_cap *cap)
5721 {
5722 int r;
5723
5724 if (cap->flags)
5725 return -EINVAL;
5726
5727 switch (cap->cap) {
5728 case KVM_CAP_DISABLE_QUIRKS:
5729 kvm->arch.disabled_quirks = cap->args[0];
5730 r = 0;
5731 break;
5732 case KVM_CAP_SPLIT_IRQCHIP: {
5733 mutex_lock(&kvm->lock);
5734 r = -EINVAL;
5735 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5736 goto split_irqchip_unlock;
5737 r = -EEXIST;
5738 if (irqchip_in_kernel(kvm))
5739 goto split_irqchip_unlock;
5740 if (kvm->created_vcpus)
5741 goto split_irqchip_unlock;
5742 r = kvm_setup_empty_irq_routing(kvm);
5743 if (r)
5744 goto split_irqchip_unlock;
5745 /* Pairs with irqchip_in_kernel. */
5746 smp_wmb();
5747 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5748 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5749 r = 0;
5750 split_irqchip_unlock:
5751 mutex_unlock(&kvm->lock);
5752 break;
5753 }
5754 case KVM_CAP_X2APIC_API:
5755 r = -EINVAL;
5756 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5757 break;
5758
5759 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5760 kvm->arch.x2apic_format = true;
5761 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5762 kvm->arch.x2apic_broadcast_quirk_disabled = true;
5763
5764 r = 0;
5765 break;
5766 case KVM_CAP_X86_DISABLE_EXITS:
5767 r = -EINVAL;
5768 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5769 break;
5770
5771 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5772 kvm->arch.pause_in_guest = true;
5773
5774 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
5775 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
5776
5777 if (!mitigate_smt_rsb) {
5778 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
5779 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
5780 pr_warn_once(SMT_RSB_MSG);
5781
5782 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5783 kvm_can_mwait_in_guest())
5784 kvm->arch.mwait_in_guest = true;
5785 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5786 kvm->arch.hlt_in_guest = true;
5787 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5788 kvm->arch.cstate_in_guest = true;
5789 }
5790
5791 r = 0;
5792 break;
5793 case KVM_CAP_MSR_PLATFORM_INFO:
5794 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5795 r = 0;
5796 break;
5797 case KVM_CAP_EXCEPTION_PAYLOAD:
5798 kvm->arch.exception_payload_enabled = cap->args[0];
5799 r = 0;
5800 break;
5801 case KVM_CAP_X86_USER_SPACE_MSR:
5802 r = -EINVAL;
5803 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5804 KVM_MSR_EXIT_REASON_UNKNOWN |
5805 KVM_MSR_EXIT_REASON_FILTER))
5806 break;
5807 kvm->arch.user_space_msr_mask = cap->args[0];
5808 r = 0;
5809 break;
5810 case KVM_CAP_X86_BUS_LOCK_EXIT:
5811 r = -EINVAL;
5812 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5813 break;
5814
5815 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5816 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5817 break;
5818
5819 if (kvm_has_bus_lock_exit &&
5820 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5821 kvm->arch.bus_lock_detection_enabled = true;
5822 r = 0;
5823 break;
5824 #ifdef CONFIG_X86_SGX_KVM
5825 case KVM_CAP_SGX_ATTRIBUTE: {
5826 unsigned long allowed_attributes = 0;
5827
5828 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5829 if (r)
5830 break;
5831
5832 /* KVM only supports the PROVISIONKEY privileged attribute. */
5833 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5834 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5835 kvm->arch.sgx_provisioning_allowed = true;
5836 else
5837 r = -EINVAL;
5838 break;
5839 }
5840 #endif
5841 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5842 r = -EINVAL;
5843 if (kvm_x86_ops.vm_copy_enc_context_from)
5844 r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5845 return r;
5846 case KVM_CAP_EXIT_HYPERCALL:
5847 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5848 r = -EINVAL;
5849 break;
5850 }
5851 kvm->arch.hypercall_exit_enabled = cap->args[0];
5852 r = 0;
5853 break;
5854 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5855 r = -EINVAL;
5856 if (cap->args[0] & ~1)
5857 break;
5858 kvm->arch.exit_on_emulation_error = cap->args[0];
5859 r = 0;
5860 break;
5861 default:
5862 r = -EINVAL;
5863 break;
5864 }
5865 return r;
5866 }
5867
kvm_alloc_msr_filter(bool default_allow)5868 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5869 {
5870 struct kvm_x86_msr_filter *msr_filter;
5871
5872 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5873 if (!msr_filter)
5874 return NULL;
5875
5876 msr_filter->default_allow = default_allow;
5877 return msr_filter;
5878 }
5879
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)5880 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5881 {
5882 u32 i;
5883
5884 if (!msr_filter)
5885 return;
5886
5887 for (i = 0; i < msr_filter->count; i++)
5888 kfree(msr_filter->ranges[i].bitmap);
5889
5890 kfree(msr_filter);
5891 }
5892
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)5893 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5894 struct kvm_msr_filter_range *user_range)
5895 {
5896 unsigned long *bitmap = NULL;
5897 size_t bitmap_size;
5898
5899 if (!user_range->nmsrs)
5900 return 0;
5901
5902 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5903 return -EINVAL;
5904
5905 if (!user_range->flags)
5906 return -EINVAL;
5907
5908 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5909 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5910 return -EINVAL;
5911
5912 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5913 if (IS_ERR(bitmap))
5914 return PTR_ERR(bitmap);
5915
5916 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5917 .flags = user_range->flags,
5918 .base = user_range->base,
5919 .nmsrs = user_range->nmsrs,
5920 .bitmap = bitmap,
5921 };
5922
5923 msr_filter->count++;
5924 return 0;
5925 }
5926
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)5927 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5928 struct kvm_msr_filter *filter)
5929 {
5930 struct kvm_x86_msr_filter *new_filter, *old_filter;
5931 bool default_allow;
5932 bool empty = true;
5933 int r = 0;
5934 u32 i;
5935
5936 if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5937 return -EINVAL;
5938
5939 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5940 empty &= !filter->ranges[i].nmsrs;
5941
5942 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5943 if (empty && !default_allow)
5944 return -EINVAL;
5945
5946 new_filter = kvm_alloc_msr_filter(default_allow);
5947 if (!new_filter)
5948 return -ENOMEM;
5949
5950 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5951 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5952 if (r) {
5953 kvm_free_msr_filter(new_filter);
5954 return r;
5955 }
5956 }
5957
5958 mutex_lock(&kvm->lock);
5959
5960 /* The per-VM filter is protected by kvm->lock... */
5961 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5962
5963 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5964 synchronize_srcu(&kvm->srcu);
5965
5966 kvm_free_msr_filter(old_filter);
5967
5968 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5969 mutex_unlock(&kvm->lock);
5970
5971 return 0;
5972 }
5973
5974 #ifdef CONFIG_KVM_COMPAT
5975 /* for KVM_X86_SET_MSR_FILTER */
5976 struct kvm_msr_filter_range_compat {
5977 __u32 flags;
5978 __u32 nmsrs;
5979 __u32 base;
5980 __u32 bitmap;
5981 };
5982
5983 struct kvm_msr_filter_compat {
5984 __u32 flags;
5985 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5986 };
5987
5988 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5989
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5990 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5991 unsigned long arg)
5992 {
5993 void __user *argp = (void __user *)arg;
5994 struct kvm *kvm = filp->private_data;
5995 long r = -ENOTTY;
5996
5997 switch (ioctl) {
5998 case KVM_X86_SET_MSR_FILTER_COMPAT: {
5999 struct kvm_msr_filter __user *user_msr_filter = argp;
6000 struct kvm_msr_filter_compat filter_compat;
6001 struct kvm_msr_filter filter;
6002 int i;
6003
6004 if (copy_from_user(&filter_compat, user_msr_filter,
6005 sizeof(filter_compat)))
6006 return -EFAULT;
6007
6008 filter.flags = filter_compat.flags;
6009 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6010 struct kvm_msr_filter_range_compat *cr;
6011
6012 cr = &filter_compat.ranges[i];
6013 filter.ranges[i] = (struct kvm_msr_filter_range) {
6014 .flags = cr->flags,
6015 .nmsrs = cr->nmsrs,
6016 .base = cr->base,
6017 .bitmap = (__u8 *)(ulong)cr->bitmap,
6018 };
6019 }
6020
6021 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6022 break;
6023 }
6024 }
6025
6026 return r;
6027 }
6028 #endif
6029
6030 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6031 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6032 {
6033 struct kvm_vcpu *vcpu;
6034 int i, ret = 0;
6035
6036 mutex_lock(&kvm->lock);
6037 kvm_for_each_vcpu(i, vcpu, kvm) {
6038 if (!vcpu->arch.pv_time_enabled)
6039 continue;
6040
6041 ret = kvm_set_guest_paused(vcpu);
6042 if (ret) {
6043 kvm_err("Failed to pause guest VCPU%d: %d\n",
6044 vcpu->vcpu_id, ret);
6045 break;
6046 }
6047 }
6048 mutex_unlock(&kvm->lock);
6049
6050 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6051 }
6052
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6053 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6054 {
6055 switch (state) {
6056 case PM_HIBERNATION_PREPARE:
6057 case PM_SUSPEND_PREPARE:
6058 return kvm_arch_suspend_notifier(kvm);
6059 }
6060
6061 return NOTIFY_DONE;
6062 }
6063 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6064
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6065 long kvm_arch_vm_ioctl(struct file *filp,
6066 unsigned int ioctl, unsigned long arg)
6067 {
6068 struct kvm *kvm = filp->private_data;
6069 void __user *argp = (void __user *)arg;
6070 int r = -ENOTTY;
6071 /*
6072 * This union makes it completely explicit to gcc-3.x
6073 * that these two variables' stack usage should be
6074 * combined, not added together.
6075 */
6076 union {
6077 struct kvm_pit_state ps;
6078 struct kvm_pit_state2 ps2;
6079 struct kvm_pit_config pit_config;
6080 } u;
6081
6082 switch (ioctl) {
6083 case KVM_SET_TSS_ADDR:
6084 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6085 break;
6086 case KVM_SET_IDENTITY_MAP_ADDR: {
6087 u64 ident_addr;
6088
6089 mutex_lock(&kvm->lock);
6090 r = -EINVAL;
6091 if (kvm->created_vcpus)
6092 goto set_identity_unlock;
6093 r = -EFAULT;
6094 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6095 goto set_identity_unlock;
6096 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6097 set_identity_unlock:
6098 mutex_unlock(&kvm->lock);
6099 break;
6100 }
6101 case KVM_SET_NR_MMU_PAGES:
6102 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6103 break;
6104 case KVM_GET_NR_MMU_PAGES:
6105 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6106 break;
6107 case KVM_CREATE_IRQCHIP: {
6108 mutex_lock(&kvm->lock);
6109
6110 r = -EEXIST;
6111 if (irqchip_in_kernel(kvm))
6112 goto create_irqchip_unlock;
6113
6114 r = -EINVAL;
6115 if (kvm->created_vcpus)
6116 goto create_irqchip_unlock;
6117
6118 r = kvm_pic_init(kvm);
6119 if (r)
6120 goto create_irqchip_unlock;
6121
6122 r = kvm_ioapic_init(kvm);
6123 if (r) {
6124 kvm_pic_destroy(kvm);
6125 goto create_irqchip_unlock;
6126 }
6127
6128 r = kvm_setup_default_irq_routing(kvm);
6129 if (r) {
6130 kvm_ioapic_destroy(kvm);
6131 kvm_pic_destroy(kvm);
6132 goto create_irqchip_unlock;
6133 }
6134 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6135 smp_wmb();
6136 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6137 create_irqchip_unlock:
6138 mutex_unlock(&kvm->lock);
6139 break;
6140 }
6141 case KVM_CREATE_PIT:
6142 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6143 goto create_pit;
6144 case KVM_CREATE_PIT2:
6145 r = -EFAULT;
6146 if (copy_from_user(&u.pit_config, argp,
6147 sizeof(struct kvm_pit_config)))
6148 goto out;
6149 create_pit:
6150 mutex_lock(&kvm->lock);
6151 r = -EEXIST;
6152 if (kvm->arch.vpit)
6153 goto create_pit_unlock;
6154 r = -ENOMEM;
6155 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6156 if (kvm->arch.vpit)
6157 r = 0;
6158 create_pit_unlock:
6159 mutex_unlock(&kvm->lock);
6160 break;
6161 case KVM_GET_IRQCHIP: {
6162 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6163 struct kvm_irqchip *chip;
6164
6165 chip = memdup_user(argp, sizeof(*chip));
6166 if (IS_ERR(chip)) {
6167 r = PTR_ERR(chip);
6168 goto out;
6169 }
6170
6171 r = -ENXIO;
6172 if (!irqchip_kernel(kvm))
6173 goto get_irqchip_out;
6174 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6175 if (r)
6176 goto get_irqchip_out;
6177 r = -EFAULT;
6178 if (copy_to_user(argp, chip, sizeof(*chip)))
6179 goto get_irqchip_out;
6180 r = 0;
6181 get_irqchip_out:
6182 kfree(chip);
6183 break;
6184 }
6185 case KVM_SET_IRQCHIP: {
6186 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6187 struct kvm_irqchip *chip;
6188
6189 chip = memdup_user(argp, sizeof(*chip));
6190 if (IS_ERR(chip)) {
6191 r = PTR_ERR(chip);
6192 goto out;
6193 }
6194
6195 r = -ENXIO;
6196 if (!irqchip_kernel(kvm))
6197 goto set_irqchip_out;
6198 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6199 set_irqchip_out:
6200 kfree(chip);
6201 break;
6202 }
6203 case KVM_GET_PIT: {
6204 r = -EFAULT;
6205 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6206 goto out;
6207 r = -ENXIO;
6208 if (!kvm->arch.vpit)
6209 goto out;
6210 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6211 if (r)
6212 goto out;
6213 r = -EFAULT;
6214 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6215 goto out;
6216 r = 0;
6217 break;
6218 }
6219 case KVM_SET_PIT: {
6220 r = -EFAULT;
6221 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6222 goto out;
6223 mutex_lock(&kvm->lock);
6224 r = -ENXIO;
6225 if (!kvm->arch.vpit)
6226 goto set_pit_out;
6227 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6228 set_pit_out:
6229 mutex_unlock(&kvm->lock);
6230 break;
6231 }
6232 case KVM_GET_PIT2: {
6233 r = -ENXIO;
6234 if (!kvm->arch.vpit)
6235 goto out;
6236 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6237 if (r)
6238 goto out;
6239 r = -EFAULT;
6240 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6241 goto out;
6242 r = 0;
6243 break;
6244 }
6245 case KVM_SET_PIT2: {
6246 r = -EFAULT;
6247 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6248 goto out;
6249 mutex_lock(&kvm->lock);
6250 r = -ENXIO;
6251 if (!kvm->arch.vpit)
6252 goto set_pit2_out;
6253 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6254 set_pit2_out:
6255 mutex_unlock(&kvm->lock);
6256 break;
6257 }
6258 case KVM_REINJECT_CONTROL: {
6259 struct kvm_reinject_control control;
6260 r = -EFAULT;
6261 if (copy_from_user(&control, argp, sizeof(control)))
6262 goto out;
6263 r = -ENXIO;
6264 if (!kvm->arch.vpit)
6265 goto out;
6266 r = kvm_vm_ioctl_reinject(kvm, &control);
6267 break;
6268 }
6269 case KVM_SET_BOOT_CPU_ID:
6270 r = 0;
6271 mutex_lock(&kvm->lock);
6272 if (kvm->created_vcpus)
6273 r = -EBUSY;
6274 else
6275 kvm->arch.bsp_vcpu_id = arg;
6276 mutex_unlock(&kvm->lock);
6277 break;
6278 #ifdef CONFIG_KVM_XEN
6279 case KVM_XEN_HVM_CONFIG: {
6280 struct kvm_xen_hvm_config xhc;
6281 r = -EFAULT;
6282 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6283 goto out;
6284 r = kvm_xen_hvm_config(kvm, &xhc);
6285 break;
6286 }
6287 case KVM_XEN_HVM_GET_ATTR: {
6288 struct kvm_xen_hvm_attr xha;
6289
6290 r = -EFAULT;
6291 if (copy_from_user(&xha, argp, sizeof(xha)))
6292 goto out;
6293 r = kvm_xen_hvm_get_attr(kvm, &xha);
6294 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6295 r = -EFAULT;
6296 break;
6297 }
6298 case KVM_XEN_HVM_SET_ATTR: {
6299 struct kvm_xen_hvm_attr xha;
6300
6301 r = -EFAULT;
6302 if (copy_from_user(&xha, argp, sizeof(xha)))
6303 goto out;
6304 r = kvm_xen_hvm_set_attr(kvm, &xha);
6305 break;
6306 }
6307 #endif
6308 case KVM_SET_CLOCK: {
6309 struct kvm_arch *ka = &kvm->arch;
6310 struct kvm_clock_data user_ns;
6311 u64 now_ns;
6312
6313 r = -EFAULT;
6314 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6315 goto out;
6316
6317 r = -EINVAL;
6318 if (user_ns.flags)
6319 goto out;
6320
6321 r = 0;
6322 /*
6323 * TODO: userspace has to take care of races with VCPU_RUN, so
6324 * kvm_gen_update_masterclock() can be cut down to locked
6325 * pvclock_update_vm_gtod_copy().
6326 */
6327 kvm_gen_update_masterclock(kvm);
6328
6329 /*
6330 * This pairs with kvm_guest_time_update(): when masterclock is
6331 * in use, we use master_kernel_ns + kvmclock_offset to set
6332 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6333 * is slightly ahead) here we risk going negative on unsigned
6334 * 'system_time' when 'user_ns.clock' is very small.
6335 */
6336 raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6337 if (kvm->arch.use_master_clock)
6338 now_ns = ka->master_kernel_ns;
6339 else
6340 now_ns = get_kvmclock_base_ns();
6341 ka->kvmclock_offset = user_ns.clock - now_ns;
6342 raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6343
6344 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6345 break;
6346 }
6347 case KVM_GET_CLOCK: {
6348 struct kvm_clock_data user_ns;
6349 u64 now_ns;
6350
6351 now_ns = get_kvmclock_ns(kvm);
6352 user_ns.clock = now_ns;
6353 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6354 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6355
6356 r = -EFAULT;
6357 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6358 goto out;
6359 r = 0;
6360 break;
6361 }
6362 case KVM_MEMORY_ENCRYPT_OP: {
6363 r = -ENOTTY;
6364 if (kvm_x86_ops.mem_enc_op)
6365 r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6366 break;
6367 }
6368 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6369 struct kvm_enc_region region;
6370
6371 r = -EFAULT;
6372 if (copy_from_user(®ion, argp, sizeof(region)))
6373 goto out;
6374
6375 r = -ENOTTY;
6376 if (kvm_x86_ops.mem_enc_reg_region)
6377 r = static_call(kvm_x86_mem_enc_reg_region)(kvm, ®ion);
6378 break;
6379 }
6380 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6381 struct kvm_enc_region region;
6382
6383 r = -EFAULT;
6384 if (copy_from_user(®ion, argp, sizeof(region)))
6385 goto out;
6386
6387 r = -ENOTTY;
6388 if (kvm_x86_ops.mem_enc_unreg_region)
6389 r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, ®ion);
6390 break;
6391 }
6392 case KVM_HYPERV_EVENTFD: {
6393 struct kvm_hyperv_eventfd hvevfd;
6394
6395 r = -EFAULT;
6396 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6397 goto out;
6398 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6399 break;
6400 }
6401 case KVM_SET_PMU_EVENT_FILTER:
6402 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6403 break;
6404 case KVM_X86_SET_MSR_FILTER: {
6405 struct kvm_msr_filter __user *user_msr_filter = argp;
6406 struct kvm_msr_filter filter;
6407
6408 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6409 return -EFAULT;
6410
6411 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6412 break;
6413 }
6414 default:
6415 r = -ENOTTY;
6416 }
6417 out:
6418 return r;
6419 }
6420
kvm_init_msr_list(void)6421 static void kvm_init_msr_list(void)
6422 {
6423 struct x86_pmu_capability x86_pmu;
6424 u32 dummy[2];
6425 unsigned i;
6426
6427 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6428 "Please update the fixed PMCs in msrs_to_saved_all[]");
6429
6430 perf_get_x86_pmu_capability(&x86_pmu);
6431
6432 num_msrs_to_save = 0;
6433 num_emulated_msrs = 0;
6434 num_msr_based_features = 0;
6435
6436 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6437 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6438 continue;
6439
6440 /*
6441 * Even MSRs that are valid in the host may not be exposed
6442 * to the guests in some cases.
6443 */
6444 switch (msrs_to_save_all[i]) {
6445 case MSR_IA32_BNDCFGS:
6446 if (!kvm_mpx_supported())
6447 continue;
6448 break;
6449 case MSR_TSC_AUX:
6450 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6451 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6452 continue;
6453 break;
6454 case MSR_IA32_UMWAIT_CONTROL:
6455 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6456 continue;
6457 break;
6458 case MSR_IA32_RTIT_CTL:
6459 case MSR_IA32_RTIT_STATUS:
6460 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6461 continue;
6462 break;
6463 case MSR_IA32_RTIT_CR3_MATCH:
6464 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6465 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6466 continue;
6467 break;
6468 case MSR_IA32_RTIT_OUTPUT_BASE:
6469 case MSR_IA32_RTIT_OUTPUT_MASK:
6470 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6471 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6472 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6473 continue;
6474 break;
6475 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6476 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6477 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6478 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6479 continue;
6480 break;
6481 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 7:
6482 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6483 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6484 continue;
6485 break;
6486 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 7:
6487 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6488 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6489 continue;
6490 break;
6491 default:
6492 break;
6493 }
6494
6495 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6496 }
6497
6498 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6499 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6500 continue;
6501
6502 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6503 }
6504
6505 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6506 struct kvm_msr_entry msr;
6507
6508 msr.index = msr_based_features_all[i];
6509 if (kvm_get_msr_feature(&msr))
6510 continue;
6511
6512 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6513 }
6514 }
6515
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)6516 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6517 const void *v)
6518 {
6519 int handled = 0;
6520 int n;
6521
6522 do {
6523 n = min(len, 8);
6524 if (!(lapic_in_kernel(vcpu) &&
6525 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6526 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6527 break;
6528 handled += n;
6529 addr += n;
6530 len -= n;
6531 v += n;
6532 } while (len);
6533
6534 return handled;
6535 }
6536
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)6537 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6538 {
6539 int handled = 0;
6540 int n;
6541
6542 do {
6543 n = min(len, 8);
6544 if (!(lapic_in_kernel(vcpu) &&
6545 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6546 addr, n, v))
6547 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6548 break;
6549 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6550 handled += n;
6551 addr += n;
6552 len -= n;
6553 v += n;
6554 } while (len);
6555
6556 return handled;
6557 }
6558
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6559 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6560 struct kvm_segment *var, int seg)
6561 {
6562 static_call(kvm_x86_set_segment)(vcpu, var, seg);
6563 }
6564
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6565 void kvm_get_segment(struct kvm_vcpu *vcpu,
6566 struct kvm_segment *var, int seg)
6567 {
6568 static_call(kvm_x86_get_segment)(vcpu, var, seg);
6569 }
6570
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)6571 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6572 struct x86_exception *exception)
6573 {
6574 gpa_t t_gpa;
6575
6576 BUG_ON(!mmu_is_nested(vcpu));
6577
6578 /* NPT walks are always user-walks */
6579 access |= PFERR_USER_MASK;
6580 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6581
6582 return t_gpa;
6583 }
6584
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6585 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6586 struct x86_exception *exception)
6587 {
6588 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6589 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6590 }
6591 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6592
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6593 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6594 struct x86_exception *exception)
6595 {
6596 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6597 access |= PFERR_FETCH_MASK;
6598 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6599 }
6600
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6601 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6602 struct x86_exception *exception)
6603 {
6604 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6605 access |= PFERR_WRITE_MASK;
6606 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6607 }
6608 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6609
6610 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6611 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6612 struct x86_exception *exception)
6613 {
6614 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6615 }
6616
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6617 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6618 struct kvm_vcpu *vcpu, u32 access,
6619 struct x86_exception *exception)
6620 {
6621 void *data = val;
6622 int r = X86EMUL_CONTINUE;
6623
6624 while (bytes) {
6625 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6626 exception);
6627 unsigned offset = addr & (PAGE_SIZE-1);
6628 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6629 int ret;
6630
6631 if (gpa == UNMAPPED_GVA)
6632 return X86EMUL_PROPAGATE_FAULT;
6633 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6634 offset, toread);
6635 if (ret < 0) {
6636 r = X86EMUL_IO_NEEDED;
6637 goto out;
6638 }
6639
6640 bytes -= toread;
6641 data += toread;
6642 addr += toread;
6643 }
6644 out:
6645 return r;
6646 }
6647
6648 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6649 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6650 gva_t addr, void *val, unsigned int bytes,
6651 struct x86_exception *exception)
6652 {
6653 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6654 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6655 unsigned offset;
6656 int ret;
6657
6658 /* Inline kvm_read_guest_virt_helper for speed. */
6659 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6660 exception);
6661 if (unlikely(gpa == UNMAPPED_GVA))
6662 return X86EMUL_PROPAGATE_FAULT;
6663
6664 offset = addr & (PAGE_SIZE-1);
6665 if (WARN_ON(offset + bytes > PAGE_SIZE))
6666 bytes = (unsigned)PAGE_SIZE - offset;
6667 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6668 offset, bytes);
6669 if (unlikely(ret < 0))
6670 return X86EMUL_IO_NEEDED;
6671
6672 return X86EMUL_CONTINUE;
6673 }
6674
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6675 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6676 gva_t addr, void *val, unsigned int bytes,
6677 struct x86_exception *exception)
6678 {
6679 u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6680
6681 /*
6682 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6683 * is returned, but our callers are not ready for that and they blindly
6684 * call kvm_inject_page_fault. Ensure that they at least do not leak
6685 * uninitialized kernel stack memory into cr2 and error code.
6686 */
6687 memset(exception, 0, sizeof(*exception));
6688 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6689 exception);
6690 }
6691 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6692
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6693 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6694 gva_t addr, void *val, unsigned int bytes,
6695 struct x86_exception *exception, bool system)
6696 {
6697 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6698 u32 access = 0;
6699
6700 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6701 access |= PFERR_USER_MASK;
6702
6703 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6704 }
6705
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6706 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6707 unsigned long addr, void *val, unsigned int bytes)
6708 {
6709 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6710 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6711
6712 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6713 }
6714
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6715 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6716 struct kvm_vcpu *vcpu, u32 access,
6717 struct x86_exception *exception)
6718 {
6719 void *data = val;
6720 int r = X86EMUL_CONTINUE;
6721
6722 while (bytes) {
6723 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6724 access,
6725 exception);
6726 unsigned offset = addr & (PAGE_SIZE-1);
6727 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6728 int ret;
6729
6730 if (gpa == UNMAPPED_GVA)
6731 return X86EMUL_PROPAGATE_FAULT;
6732 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6733 if (ret < 0) {
6734 r = X86EMUL_IO_NEEDED;
6735 goto out;
6736 }
6737
6738 bytes -= towrite;
6739 data += towrite;
6740 addr += towrite;
6741 }
6742 out:
6743 return r;
6744 }
6745
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6746 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6747 unsigned int bytes, struct x86_exception *exception,
6748 bool system)
6749 {
6750 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6751 u32 access = PFERR_WRITE_MASK;
6752
6753 if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6754 access |= PFERR_USER_MASK;
6755
6756 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6757 access, exception);
6758 }
6759
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6760 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6761 unsigned int bytes, struct x86_exception *exception)
6762 {
6763 /* kvm_write_guest_virt_system can pull in tons of pages. */
6764 vcpu->arch.l1tf_flush_l1d = true;
6765
6766 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6767 PFERR_WRITE_MASK, exception);
6768 }
6769 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6770
handle_ud(struct kvm_vcpu * vcpu)6771 int handle_ud(struct kvm_vcpu *vcpu)
6772 {
6773 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6774 int emul_type = EMULTYPE_TRAP_UD;
6775 char sig[5]; /* ud2; .ascii "kvm" */
6776 struct x86_exception e;
6777
6778 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6779 return 1;
6780
6781 if (force_emulation_prefix &&
6782 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6783 sig, sizeof(sig), &e) == 0 &&
6784 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6785 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6786 emul_type = EMULTYPE_TRAP_UD_FORCED;
6787 }
6788
6789 return kvm_emulate_instruction(vcpu, emul_type);
6790 }
6791 EXPORT_SYMBOL_GPL(handle_ud);
6792
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6793 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6794 gpa_t gpa, bool write)
6795 {
6796 /* For APIC access vmexit */
6797 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6798 return 1;
6799
6800 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6801 trace_vcpu_match_mmio(gva, gpa, write, true);
6802 return 1;
6803 }
6804
6805 return 0;
6806 }
6807
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6808 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6809 gpa_t *gpa, struct x86_exception *exception,
6810 bool write)
6811 {
6812 u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6813 | (write ? PFERR_WRITE_MASK : 0);
6814
6815 /*
6816 * currently PKRU is only applied to ept enabled guest so
6817 * there is no pkey in EPT page table for L1 guest or EPT
6818 * shadow page table for L2 guest.
6819 */
6820 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6821 !permission_fault(vcpu, vcpu->arch.walk_mmu,
6822 vcpu->arch.mmio_access, 0, access))) {
6823 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6824 (gva & (PAGE_SIZE - 1));
6825 trace_vcpu_match_mmio(gva, *gpa, write, false);
6826 return 1;
6827 }
6828
6829 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6830
6831 if (*gpa == UNMAPPED_GVA)
6832 return -1;
6833
6834 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6835 }
6836
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6837 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6838 const void *val, int bytes)
6839 {
6840 int ret;
6841
6842 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6843 if (ret < 0)
6844 return 0;
6845 kvm_page_track_write(vcpu, gpa, val, bytes);
6846 return 1;
6847 }
6848
6849 struct read_write_emulator_ops {
6850 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6851 int bytes);
6852 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6853 void *val, int bytes);
6854 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6855 int bytes, void *val);
6856 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6857 void *val, int bytes);
6858 bool write;
6859 };
6860
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6861 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6862 {
6863 if (vcpu->mmio_read_completed) {
6864 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6865 vcpu->mmio_fragments[0].gpa, val);
6866 vcpu->mmio_read_completed = 0;
6867 return 1;
6868 }
6869
6870 return 0;
6871 }
6872
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6873 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6874 void *val, int bytes)
6875 {
6876 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6877 }
6878
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6879 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6880 void *val, int bytes)
6881 {
6882 return emulator_write_phys(vcpu, gpa, val, bytes);
6883 }
6884
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6885 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6886 {
6887 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6888 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6889 }
6890
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6891 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6892 void *val, int bytes)
6893 {
6894 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6895 return X86EMUL_IO_NEEDED;
6896 }
6897
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6898 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6899 void *val, int bytes)
6900 {
6901 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6902
6903 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6904 return X86EMUL_CONTINUE;
6905 }
6906
6907 static const struct read_write_emulator_ops read_emultor = {
6908 .read_write_prepare = read_prepare,
6909 .read_write_emulate = read_emulate,
6910 .read_write_mmio = vcpu_mmio_read,
6911 .read_write_exit_mmio = read_exit_mmio,
6912 };
6913
6914 static const struct read_write_emulator_ops write_emultor = {
6915 .read_write_emulate = write_emulate,
6916 .read_write_mmio = write_mmio,
6917 .read_write_exit_mmio = write_exit_mmio,
6918 .write = true,
6919 };
6920
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6921 static int emulator_read_write_onepage(unsigned long addr, void *val,
6922 unsigned int bytes,
6923 struct x86_exception *exception,
6924 struct kvm_vcpu *vcpu,
6925 const struct read_write_emulator_ops *ops)
6926 {
6927 gpa_t gpa;
6928 int handled, ret;
6929 bool write = ops->write;
6930 struct kvm_mmio_fragment *frag;
6931 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6932
6933 /*
6934 * If the exit was due to a NPF we may already have a GPA.
6935 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6936 * Note, this cannot be used on string operations since string
6937 * operation using rep will only have the initial GPA from the NPF
6938 * occurred.
6939 */
6940 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6941 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6942 gpa = ctxt->gpa_val;
6943 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6944 } else {
6945 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6946 if (ret < 0)
6947 return X86EMUL_PROPAGATE_FAULT;
6948 }
6949
6950 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6951 return X86EMUL_CONTINUE;
6952
6953 /*
6954 * Is this MMIO handled locally?
6955 */
6956 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6957 if (handled == bytes)
6958 return X86EMUL_CONTINUE;
6959
6960 gpa += handled;
6961 bytes -= handled;
6962 val += handled;
6963
6964 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6965 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6966 frag->gpa = gpa;
6967 frag->data = val;
6968 frag->len = bytes;
6969 return X86EMUL_CONTINUE;
6970 }
6971
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6972 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6973 unsigned long addr,
6974 void *val, unsigned int bytes,
6975 struct x86_exception *exception,
6976 const struct read_write_emulator_ops *ops)
6977 {
6978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6979 gpa_t gpa;
6980 int rc;
6981
6982 if (ops->read_write_prepare &&
6983 ops->read_write_prepare(vcpu, val, bytes))
6984 return X86EMUL_CONTINUE;
6985
6986 vcpu->mmio_nr_fragments = 0;
6987
6988 /* Crossing a page boundary? */
6989 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6990 int now;
6991
6992 now = -addr & ~PAGE_MASK;
6993 rc = emulator_read_write_onepage(addr, val, now, exception,
6994 vcpu, ops);
6995
6996 if (rc != X86EMUL_CONTINUE)
6997 return rc;
6998 addr += now;
6999 if (ctxt->mode != X86EMUL_MODE_PROT64)
7000 addr = (u32)addr;
7001 val += now;
7002 bytes -= now;
7003 }
7004
7005 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7006 vcpu, ops);
7007 if (rc != X86EMUL_CONTINUE)
7008 return rc;
7009
7010 if (!vcpu->mmio_nr_fragments)
7011 return rc;
7012
7013 gpa = vcpu->mmio_fragments[0].gpa;
7014
7015 vcpu->mmio_needed = 1;
7016 vcpu->mmio_cur_fragment = 0;
7017
7018 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7019 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7020 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7021 vcpu->run->mmio.phys_addr = gpa;
7022
7023 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7024 }
7025
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7026 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7027 unsigned long addr,
7028 void *val,
7029 unsigned int bytes,
7030 struct x86_exception *exception)
7031 {
7032 return emulator_read_write(ctxt, addr, val, bytes,
7033 exception, &read_emultor);
7034 }
7035
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7036 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7037 unsigned long addr,
7038 const void *val,
7039 unsigned int bytes,
7040 struct x86_exception *exception)
7041 {
7042 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7043 exception, &write_emultor);
7044 }
7045
7046 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7047 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7048
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7049 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7050 unsigned long addr,
7051 const void *old,
7052 const void *new,
7053 unsigned int bytes,
7054 struct x86_exception *exception)
7055 {
7056 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7057 u64 page_line_mask;
7058 unsigned long hva;
7059 gpa_t gpa;
7060 int r;
7061
7062 /* guests cmpxchg8b have to be emulated atomically */
7063 if (bytes > 8 || (bytes & (bytes - 1)))
7064 goto emul_write;
7065
7066 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7067
7068 if (gpa == UNMAPPED_GVA ||
7069 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7070 goto emul_write;
7071
7072 /*
7073 * Emulate the atomic as a straight write to avoid #AC if SLD is
7074 * enabled in the host and the access splits a cache line.
7075 */
7076 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7077 page_line_mask = ~(cache_line_size() - 1);
7078 else
7079 page_line_mask = PAGE_MASK;
7080
7081 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7082 goto emul_write;
7083
7084 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7085 if (kvm_is_error_hva(hva))
7086 goto emul_write;
7087
7088 hva += offset_in_page(gpa);
7089
7090 switch (bytes) {
7091 case 1:
7092 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7093 break;
7094 case 2:
7095 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7096 break;
7097 case 4:
7098 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7099 break;
7100 case 8:
7101 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7102 break;
7103 default:
7104 BUG();
7105 }
7106
7107 if (r < 0)
7108 goto emul_write;
7109 if (r)
7110 return X86EMUL_CMPXCHG_FAILED;
7111
7112 kvm_page_track_write(vcpu, gpa, new, bytes);
7113
7114 return X86EMUL_CONTINUE;
7115
7116 emul_write:
7117 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7118
7119 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7120 }
7121
kernel_pio(struct kvm_vcpu * vcpu,void * pd)7122 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7123 {
7124 int r = 0, i;
7125
7126 for (i = 0; i < vcpu->arch.pio.count; i++) {
7127 if (vcpu->arch.pio.in)
7128 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7129 vcpu->arch.pio.size, pd);
7130 else
7131 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7132 vcpu->arch.pio.port, vcpu->arch.pio.size,
7133 pd);
7134 if (r)
7135 break;
7136 pd += vcpu->arch.pio.size;
7137 }
7138 return r;
7139 }
7140
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,unsigned int count,bool in)7141 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7142 unsigned short port,
7143 unsigned int count, bool in)
7144 {
7145 vcpu->arch.pio.port = port;
7146 vcpu->arch.pio.in = in;
7147 vcpu->arch.pio.count = count;
7148 vcpu->arch.pio.size = size;
7149
7150 if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7151 return 1;
7152
7153 vcpu->run->exit_reason = KVM_EXIT_IO;
7154 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7155 vcpu->run->io.size = size;
7156 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7157 vcpu->run->io.count = count;
7158 vcpu->run->io.port = port;
7159
7160 return 0;
7161 }
7162
__emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,unsigned int count)7163 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7164 unsigned short port, unsigned int count)
7165 {
7166 WARN_ON(vcpu->arch.pio.count);
7167 memset(vcpu->arch.pio_data, 0, size * count);
7168 return emulator_pio_in_out(vcpu, size, port, count, true);
7169 }
7170
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7171 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7172 {
7173 int size = vcpu->arch.pio.size;
7174 unsigned count = vcpu->arch.pio.count;
7175 memcpy(val, vcpu->arch.pio_data, size * count);
7176 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7177 vcpu->arch.pio.count = 0;
7178 }
7179
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7180 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7181 unsigned short port, void *val, unsigned int count)
7182 {
7183 if (vcpu->arch.pio.count) {
7184 /*
7185 * Complete a previous iteration that required userspace I/O.
7186 * Note, @count isn't guaranteed to match pio.count as userspace
7187 * can modify ECX before rerunning the vCPU. Ignore any such
7188 * shenanigans as KVM doesn't support modifying the rep count,
7189 * and the emulator ensures @count doesn't overflow the buffer.
7190 */
7191 } else {
7192 int r = __emulator_pio_in(vcpu, size, port, count);
7193 if (!r)
7194 return r;
7195
7196 /* Results already available, fall through. */
7197 }
7198
7199 complete_emulator_pio_in(vcpu, val);
7200 return 1;
7201 }
7202
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7203 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7204 int size, unsigned short port, void *val,
7205 unsigned int count)
7206 {
7207 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7208
7209 }
7210
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7211 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7212 unsigned short port, const void *val,
7213 unsigned int count)
7214 {
7215 int ret;
7216
7217 memcpy(vcpu->arch.pio_data, val, size * count);
7218 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7219 ret = emulator_pio_in_out(vcpu, size, port, count, false);
7220 if (ret)
7221 vcpu->arch.pio.count = 0;
7222
7223 return ret;
7224 }
7225
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7226 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7227 int size, unsigned short port,
7228 const void *val, unsigned int count)
7229 {
7230 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7231 }
7232
get_segment_base(struct kvm_vcpu * vcpu,int seg)7233 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7234 {
7235 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7236 }
7237
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7238 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7239 {
7240 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7241 }
7242
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7243 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7244 {
7245 if (!need_emulate_wbinvd(vcpu))
7246 return X86EMUL_CONTINUE;
7247
7248 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7249 int cpu = get_cpu();
7250
7251 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7252 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7253 wbinvd_ipi, NULL, 1);
7254 put_cpu();
7255 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7256 } else
7257 wbinvd();
7258 return X86EMUL_CONTINUE;
7259 }
7260
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)7261 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7262 {
7263 kvm_emulate_wbinvd_noskip(vcpu);
7264 return kvm_skip_emulated_instruction(vcpu);
7265 }
7266 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7267
7268
7269
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)7270 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7271 {
7272 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7273 }
7274
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)7275 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7276 unsigned long *dest)
7277 {
7278 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7279 }
7280
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)7281 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7282 unsigned long value)
7283 {
7284
7285 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7286 }
7287
mk_cr_64(u64 curr_cr,u32 new_val)7288 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7289 {
7290 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7291 }
7292
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)7293 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7294 {
7295 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7296 unsigned long value;
7297
7298 switch (cr) {
7299 case 0:
7300 value = kvm_read_cr0(vcpu);
7301 break;
7302 case 2:
7303 value = vcpu->arch.cr2;
7304 break;
7305 case 3:
7306 value = kvm_read_cr3(vcpu);
7307 break;
7308 case 4:
7309 value = kvm_read_cr4(vcpu);
7310 break;
7311 case 8:
7312 value = kvm_get_cr8(vcpu);
7313 break;
7314 default:
7315 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7316 return 0;
7317 }
7318
7319 return value;
7320 }
7321
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)7322 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7323 {
7324 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7325 int res = 0;
7326
7327 switch (cr) {
7328 case 0:
7329 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7330 break;
7331 case 2:
7332 vcpu->arch.cr2 = val;
7333 break;
7334 case 3:
7335 res = kvm_set_cr3(vcpu, val);
7336 break;
7337 case 4:
7338 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7339 break;
7340 case 8:
7341 res = kvm_set_cr8(vcpu, val);
7342 break;
7343 default:
7344 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7345 res = -1;
7346 }
7347
7348 return res;
7349 }
7350
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)7351 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7352 {
7353 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7354 }
7355
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7356 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7357 {
7358 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7359 }
7360
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7361 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7362 {
7363 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7364 }
7365
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7366 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7367 {
7368 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7369 }
7370
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7371 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7372 {
7373 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7374 }
7375
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)7376 static unsigned long emulator_get_cached_segment_base(
7377 struct x86_emulate_ctxt *ctxt, int seg)
7378 {
7379 return get_segment_base(emul_to_vcpu(ctxt), seg);
7380 }
7381
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)7382 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7383 struct desc_struct *desc, u32 *base3,
7384 int seg)
7385 {
7386 struct kvm_segment var;
7387
7388 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7389 *selector = var.selector;
7390
7391 if (var.unusable) {
7392 memset(desc, 0, sizeof(*desc));
7393 if (base3)
7394 *base3 = 0;
7395 return false;
7396 }
7397
7398 if (var.g)
7399 var.limit >>= 12;
7400 set_desc_limit(desc, var.limit);
7401 set_desc_base(desc, (unsigned long)var.base);
7402 #ifdef CONFIG_X86_64
7403 if (base3)
7404 *base3 = var.base >> 32;
7405 #endif
7406 desc->type = var.type;
7407 desc->s = var.s;
7408 desc->dpl = var.dpl;
7409 desc->p = var.present;
7410 desc->avl = var.avl;
7411 desc->l = var.l;
7412 desc->d = var.db;
7413 desc->g = var.g;
7414
7415 return true;
7416 }
7417
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)7418 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7419 struct desc_struct *desc, u32 base3,
7420 int seg)
7421 {
7422 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7423 struct kvm_segment var;
7424
7425 var.selector = selector;
7426 var.base = get_desc_base(desc);
7427 #ifdef CONFIG_X86_64
7428 var.base |= ((u64)base3) << 32;
7429 #endif
7430 var.limit = get_desc_limit(desc);
7431 if (desc->g)
7432 var.limit = (var.limit << 12) | 0xfff;
7433 var.type = desc->type;
7434 var.dpl = desc->dpl;
7435 var.db = desc->d;
7436 var.s = desc->s;
7437 var.l = desc->l;
7438 var.g = desc->g;
7439 var.avl = desc->avl;
7440 var.present = desc->p;
7441 var.unusable = !var.present;
7442 var.padding = 0;
7443
7444 kvm_set_segment(vcpu, &var, seg);
7445 return;
7446 }
7447
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)7448 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7449 u32 msr_index, u64 *pdata)
7450 {
7451 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7452 int r;
7453
7454 r = kvm_get_msr(vcpu, msr_index, pdata);
7455
7456 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7457 /* Bounce to user space */
7458 return X86EMUL_IO_NEEDED;
7459 }
7460
7461 return r;
7462 }
7463
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)7464 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7465 u32 msr_index, u64 data)
7466 {
7467 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7468 int r;
7469
7470 r = kvm_set_msr(vcpu, msr_index, data);
7471
7472 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7473 /* Bounce to user space */
7474 return X86EMUL_IO_NEEDED;
7475 }
7476
7477 return r;
7478 }
7479
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)7480 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7481 {
7482 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7483
7484 return vcpu->arch.smbase;
7485 }
7486
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)7487 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7488 {
7489 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7490
7491 vcpu->arch.smbase = smbase;
7492 }
7493
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)7494 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7495 u32 pmc)
7496 {
7497 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7498 }
7499
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)7500 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7501 u32 pmc, u64 *pdata)
7502 {
7503 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7504 }
7505
emulator_halt(struct x86_emulate_ctxt * ctxt)7506 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7507 {
7508 emul_to_vcpu(ctxt)->arch.halt_request = 1;
7509 }
7510
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)7511 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7512 struct x86_instruction_info *info,
7513 enum x86_intercept_stage stage)
7514 {
7515 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7516 &ctxt->exception);
7517 }
7518
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)7519 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7520 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7521 bool exact_only)
7522 {
7523 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7524 }
7525
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)7526 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7527 {
7528 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7529 }
7530
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)7531 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7532 {
7533 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7534 }
7535
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)7536 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7537 {
7538 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7539 }
7540
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)7541 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7542 {
7543 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7544 }
7545
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)7546 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7547 {
7548 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7549 }
7550
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)7551 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7552 {
7553 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7554 }
7555
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)7556 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7557 {
7558 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7559 }
7560
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)7561 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7562 {
7563 return emul_to_vcpu(ctxt)->arch.hflags;
7564 }
7565
emulator_exiting_smm(struct x86_emulate_ctxt * ctxt)7566 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7567 {
7568 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7569
7570 kvm_smm_changed(vcpu, false);
7571 }
7572
emulator_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)7573 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7574 const char *smstate)
7575 {
7576 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7577 }
7578
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)7579 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7580 {
7581 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7582 }
7583
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)7584 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7585 {
7586 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7587 }
7588
7589 static const struct x86_emulate_ops emulate_ops = {
7590 .read_gpr = emulator_read_gpr,
7591 .write_gpr = emulator_write_gpr,
7592 .read_std = emulator_read_std,
7593 .write_std = emulator_write_std,
7594 .read_phys = kvm_read_guest_phys_system,
7595 .fetch = kvm_fetch_guest_virt,
7596 .read_emulated = emulator_read_emulated,
7597 .write_emulated = emulator_write_emulated,
7598 .cmpxchg_emulated = emulator_cmpxchg_emulated,
7599 .invlpg = emulator_invlpg,
7600 .pio_in_emulated = emulator_pio_in_emulated,
7601 .pio_out_emulated = emulator_pio_out_emulated,
7602 .get_segment = emulator_get_segment,
7603 .set_segment = emulator_set_segment,
7604 .get_cached_segment_base = emulator_get_cached_segment_base,
7605 .get_gdt = emulator_get_gdt,
7606 .get_idt = emulator_get_idt,
7607 .set_gdt = emulator_set_gdt,
7608 .set_idt = emulator_set_idt,
7609 .get_cr = emulator_get_cr,
7610 .set_cr = emulator_set_cr,
7611 .cpl = emulator_get_cpl,
7612 .get_dr = emulator_get_dr,
7613 .set_dr = emulator_set_dr,
7614 .get_smbase = emulator_get_smbase,
7615 .set_smbase = emulator_set_smbase,
7616 .set_msr = emulator_set_msr,
7617 .get_msr = emulator_get_msr,
7618 .check_pmc = emulator_check_pmc,
7619 .read_pmc = emulator_read_pmc,
7620 .halt = emulator_halt,
7621 .wbinvd = emulator_wbinvd,
7622 .fix_hypercall = emulator_fix_hypercall,
7623 .intercept = emulator_intercept,
7624 .get_cpuid = emulator_get_cpuid,
7625 .guest_has_long_mode = emulator_guest_has_long_mode,
7626 .guest_has_movbe = emulator_guest_has_movbe,
7627 .guest_has_fxsr = emulator_guest_has_fxsr,
7628 .guest_has_rdpid = emulator_guest_has_rdpid,
7629 .set_nmi_mask = emulator_set_nmi_mask,
7630 .get_hflags = emulator_get_hflags,
7631 .exiting_smm = emulator_exiting_smm,
7632 .leave_smm = emulator_leave_smm,
7633 .triple_fault = emulator_triple_fault,
7634 .set_xcr = emulator_set_xcr,
7635 };
7636
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)7637 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7638 {
7639 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7640 /*
7641 * an sti; sti; sequence only disable interrupts for the first
7642 * instruction. So, if the last instruction, be it emulated or
7643 * not, left the system with the INT_STI flag enabled, it
7644 * means that the last instruction is an sti. We should not
7645 * leave the flag on in this case. The same goes for mov ss
7646 */
7647 if (int_shadow & mask)
7648 mask = 0;
7649 if (unlikely(int_shadow || mask)) {
7650 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7651 if (!mask)
7652 kvm_make_request(KVM_REQ_EVENT, vcpu);
7653 }
7654 }
7655
inject_emulated_exception(struct kvm_vcpu * vcpu)7656 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7657 {
7658 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7659 if (ctxt->exception.vector == PF_VECTOR)
7660 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7661
7662 if (ctxt->exception.error_code_valid)
7663 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7664 ctxt->exception.error_code);
7665 else
7666 kvm_queue_exception(vcpu, ctxt->exception.vector);
7667 return false;
7668 }
7669
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7670 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7671 {
7672 struct x86_emulate_ctxt *ctxt;
7673
7674 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7675 if (!ctxt) {
7676 pr_err("kvm: failed to allocate vcpu's emulator\n");
7677 return NULL;
7678 }
7679
7680 ctxt->vcpu = vcpu;
7681 ctxt->ops = &emulate_ops;
7682 vcpu->arch.emulate_ctxt = ctxt;
7683
7684 return ctxt;
7685 }
7686
init_emulate_ctxt(struct kvm_vcpu * vcpu)7687 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7688 {
7689 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7690 int cs_db, cs_l;
7691
7692 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7693
7694 ctxt->gpa_available = false;
7695 ctxt->eflags = kvm_get_rflags(vcpu);
7696 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7697
7698 ctxt->eip = kvm_rip_read(vcpu);
7699 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
7700 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
7701 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
7702 cs_db ? X86EMUL_MODE_PROT32 :
7703 X86EMUL_MODE_PROT16;
7704 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7705 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7706 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7707
7708 ctxt->interruptibility = 0;
7709 ctxt->have_exception = false;
7710 ctxt->exception.vector = -1;
7711 ctxt->perm_ok = false;
7712
7713 init_decode_cache(ctxt);
7714 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7715 }
7716
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)7717 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7718 {
7719 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7720 int ret;
7721
7722 init_emulate_ctxt(vcpu);
7723
7724 ctxt->op_bytes = 2;
7725 ctxt->ad_bytes = 2;
7726 ctxt->_eip = ctxt->eip + inc_eip;
7727 ret = emulate_int_real(ctxt, irq);
7728
7729 if (ret != X86EMUL_CONTINUE) {
7730 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7731 } else {
7732 ctxt->eip = ctxt->_eip;
7733 kvm_rip_write(vcpu, ctxt->eip);
7734 kvm_set_rflags(vcpu, ctxt->eflags);
7735 }
7736 }
7737 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7738
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)7739 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7740 {
7741 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7742 u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7743 struct kvm_run *run = vcpu->run;
7744
7745 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7746 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7747 run->emulation_failure.ndata = 0;
7748 run->emulation_failure.flags = 0;
7749
7750 if (insn_size) {
7751 run->emulation_failure.ndata = 3;
7752 run->emulation_failure.flags |=
7753 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7754 run->emulation_failure.insn_size = insn_size;
7755 memset(run->emulation_failure.insn_bytes, 0x90,
7756 sizeof(run->emulation_failure.insn_bytes));
7757 memcpy(run->emulation_failure.insn_bytes,
7758 ctxt->fetch.data, insn_size);
7759 }
7760 }
7761
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)7762 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7763 {
7764 struct kvm *kvm = vcpu->kvm;
7765
7766 ++vcpu->stat.insn_emulation_fail;
7767 trace_kvm_emulate_insn_failed(vcpu);
7768
7769 if (emulation_type & EMULTYPE_VMWARE_GP) {
7770 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7771 return 1;
7772 }
7773
7774 if (kvm->arch.exit_on_emulation_error ||
7775 (emulation_type & EMULTYPE_SKIP)) {
7776 prepare_emulation_failure_exit(vcpu);
7777 return 0;
7778 }
7779
7780 kvm_queue_exception(vcpu, UD_VECTOR);
7781
7782 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7783 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7784 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7785 vcpu->run->internal.ndata = 0;
7786 return 0;
7787 }
7788
7789 return 1;
7790 }
7791
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7792 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7793 bool write_fault_to_shadow_pgtable,
7794 int emulation_type)
7795 {
7796 gpa_t gpa = cr2_or_gpa;
7797 kvm_pfn_t pfn;
7798
7799 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7800 return false;
7801
7802 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7803 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7804 return false;
7805
7806 if (!vcpu->arch.mmu->direct_map) {
7807 /*
7808 * Write permission should be allowed since only
7809 * write access need to be emulated.
7810 */
7811 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7812
7813 /*
7814 * If the mapping is invalid in guest, let cpu retry
7815 * it to generate fault.
7816 */
7817 if (gpa == UNMAPPED_GVA)
7818 return true;
7819 }
7820
7821 /*
7822 * Do not retry the unhandleable instruction if it faults on the
7823 * readonly host memory, otherwise it will goto a infinite loop:
7824 * retry instruction -> write #PF -> emulation fail -> retry
7825 * instruction -> ...
7826 */
7827 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7828
7829 /*
7830 * If the instruction failed on the error pfn, it can not be fixed,
7831 * report the error to userspace.
7832 */
7833 if (is_error_noslot_pfn(pfn))
7834 return false;
7835
7836 kvm_release_pfn_clean(pfn);
7837
7838 /* The instructions are well-emulated on direct mmu. */
7839 if (vcpu->arch.mmu->direct_map) {
7840 unsigned int indirect_shadow_pages;
7841
7842 write_lock(&vcpu->kvm->mmu_lock);
7843 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7844 write_unlock(&vcpu->kvm->mmu_lock);
7845
7846 if (indirect_shadow_pages)
7847 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7848
7849 return true;
7850 }
7851
7852 /*
7853 * if emulation was due to access to shadowed page table
7854 * and it failed try to unshadow page and re-enter the
7855 * guest to let CPU execute the instruction.
7856 */
7857 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7858
7859 /*
7860 * If the access faults on its page table, it can not
7861 * be fixed by unprotecting shadow page and it should
7862 * be reported to userspace.
7863 */
7864 return !write_fault_to_shadow_pgtable;
7865 }
7866
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7867 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7868 gpa_t cr2_or_gpa, int emulation_type)
7869 {
7870 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7871 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7872
7873 last_retry_eip = vcpu->arch.last_retry_eip;
7874 last_retry_addr = vcpu->arch.last_retry_addr;
7875
7876 /*
7877 * If the emulation is caused by #PF and it is non-page_table
7878 * writing instruction, it means the VM-EXIT is caused by shadow
7879 * page protected, we can zap the shadow page and retry this
7880 * instruction directly.
7881 *
7882 * Note: if the guest uses a non-page-table modifying instruction
7883 * on the PDE that points to the instruction, then we will unmap
7884 * the instruction and go to an infinite loop. So, we cache the
7885 * last retried eip and the last fault address, if we meet the eip
7886 * and the address again, we can break out of the potential infinite
7887 * loop.
7888 */
7889 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7890
7891 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7892 return false;
7893
7894 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7895 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7896 return false;
7897
7898 if (x86_page_table_writing_insn(ctxt))
7899 return false;
7900
7901 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7902 return false;
7903
7904 vcpu->arch.last_retry_eip = ctxt->eip;
7905 vcpu->arch.last_retry_addr = cr2_or_gpa;
7906
7907 if (!vcpu->arch.mmu->direct_map)
7908 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7909
7910 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7911
7912 return true;
7913 }
7914
7915 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7916 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7917
kvm_smm_changed(struct kvm_vcpu * vcpu,bool entering_smm)7918 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7919 {
7920 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7921
7922 if (entering_smm) {
7923 vcpu->arch.hflags |= HF_SMM_MASK;
7924 } else {
7925 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7926
7927 /* Process a latched INIT or SMI, if any. */
7928 kvm_make_request(KVM_REQ_EVENT, vcpu);
7929
7930 /*
7931 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7932 * on SMM exit we still need to reload them from
7933 * guest memory
7934 */
7935 vcpu->arch.pdptrs_from_userspace = false;
7936 }
7937
7938 kvm_mmu_reset_context(vcpu);
7939 }
7940
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7941 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7942 unsigned long *db)
7943 {
7944 u32 dr6 = 0;
7945 int i;
7946 u32 enable, rwlen;
7947
7948 enable = dr7;
7949 rwlen = dr7 >> 16;
7950 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7951 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7952 dr6 |= (1 << i);
7953 return dr6;
7954 }
7955
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7956 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7957 {
7958 struct kvm_run *kvm_run = vcpu->run;
7959
7960 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7961 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7962 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7963 kvm_run->debug.arch.exception = DB_VECTOR;
7964 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7965 return 0;
7966 }
7967 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7968 return 1;
7969 }
7970
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7971 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7972 {
7973 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7974 int r;
7975
7976 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7977 if (unlikely(!r))
7978 return 0;
7979
7980 /*
7981 * rflags is the old, "raw" value of the flags. The new value has
7982 * not been saved yet.
7983 *
7984 * This is correct even for TF set by the guest, because "the
7985 * processor will not generate this exception after the instruction
7986 * that sets the TF flag".
7987 */
7988 if (unlikely(rflags & X86_EFLAGS_TF))
7989 r = kvm_vcpu_do_singlestep(vcpu);
7990 return r;
7991 }
7992 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7993
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int * r)7994 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7995 {
7996 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7997 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7998 struct kvm_run *kvm_run = vcpu->run;
7999 unsigned long eip = kvm_get_linear_rip(vcpu);
8000 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8001 vcpu->arch.guest_debug_dr7,
8002 vcpu->arch.eff_db);
8003
8004 if (dr6 != 0) {
8005 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8006 kvm_run->debug.arch.pc = eip;
8007 kvm_run->debug.arch.exception = DB_VECTOR;
8008 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8009 *r = 0;
8010 return true;
8011 }
8012 }
8013
8014 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8015 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8016 unsigned long eip = kvm_get_linear_rip(vcpu);
8017 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8018 vcpu->arch.dr7,
8019 vcpu->arch.db);
8020
8021 if (dr6 != 0) {
8022 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8023 *r = 1;
8024 return true;
8025 }
8026 }
8027
8028 return false;
8029 }
8030
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8031 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8032 {
8033 switch (ctxt->opcode_len) {
8034 case 1:
8035 switch (ctxt->b) {
8036 case 0xe4: /* IN */
8037 case 0xe5:
8038 case 0xec:
8039 case 0xed:
8040 case 0xe6: /* OUT */
8041 case 0xe7:
8042 case 0xee:
8043 case 0xef:
8044 case 0x6c: /* INS */
8045 case 0x6d:
8046 case 0x6e: /* OUTS */
8047 case 0x6f:
8048 return true;
8049 }
8050 break;
8051 case 2:
8052 switch (ctxt->b) {
8053 case 0x33: /* RDPMC */
8054 return true;
8055 }
8056 break;
8057 }
8058
8059 return false;
8060 }
8061
8062 /*
8063 * Decode an instruction for emulation. The caller is responsible for handling
8064 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8065 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8066 * code breakpoints have higher priority and thus have already been done by
8067 * hardware.
8068 *
8069 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8070 * response to a machine check.
8071 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8072 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8073 void *insn, int insn_len)
8074 {
8075 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8076 int r;
8077
8078 init_emulate_ctxt(vcpu);
8079
8080 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8081
8082 trace_kvm_emulate_insn_start(vcpu);
8083 ++vcpu->stat.insn_emulation;
8084
8085 return r;
8086 }
8087 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8088
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8089 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8090 int emulation_type, void *insn, int insn_len)
8091 {
8092 int r;
8093 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8094 bool writeback = true;
8095 bool write_fault_to_spt;
8096
8097 if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8098 return 1;
8099
8100 vcpu->arch.l1tf_flush_l1d = true;
8101
8102 /*
8103 * Clear write_fault_to_shadow_pgtable here to ensure it is
8104 * never reused.
8105 */
8106 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8107 vcpu->arch.write_fault_to_shadow_pgtable = false;
8108
8109 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8110 kvm_clear_exception_queue(vcpu);
8111
8112 /*
8113 * Return immediately if RIP hits a code breakpoint, such #DBs
8114 * are fault-like and are higher priority than any faults on
8115 * the code fetch itself.
8116 */
8117 if (!(emulation_type & EMULTYPE_SKIP) &&
8118 kvm_vcpu_check_code_breakpoint(vcpu, &r))
8119 return r;
8120
8121 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8122 insn, insn_len);
8123 if (r != EMULATION_OK) {
8124 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8125 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8126 kvm_queue_exception(vcpu, UD_VECTOR);
8127 return 1;
8128 }
8129 if (reexecute_instruction(vcpu, cr2_or_gpa,
8130 write_fault_to_spt,
8131 emulation_type))
8132 return 1;
8133
8134 if (ctxt->have_exception &&
8135 !(emulation_type & EMULTYPE_SKIP)) {
8136 /*
8137 * #UD should result in just EMULATION_FAILED, and trap-like
8138 * exception should not be encountered during decode.
8139 */
8140 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8141 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8142 inject_emulated_exception(vcpu);
8143 return 1;
8144 }
8145 return handle_emulation_failure(vcpu, emulation_type);
8146 }
8147 }
8148
8149 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8150 !is_vmware_backdoor_opcode(ctxt)) {
8151 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8152 return 1;
8153 }
8154
8155 /*
8156 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
8157 * for kvm_skip_emulated_instruction(). The caller is responsible for
8158 * updating interruptibility state and injecting single-step #DBs.
8159 */
8160 if (emulation_type & EMULTYPE_SKIP) {
8161 if (ctxt->mode != X86EMUL_MODE_PROT64)
8162 ctxt->eip = (u32)ctxt->_eip;
8163 else
8164 ctxt->eip = ctxt->_eip;
8165
8166 kvm_rip_write(vcpu, ctxt->eip);
8167 if (ctxt->eflags & X86_EFLAGS_RF)
8168 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8169 return 1;
8170 }
8171
8172 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8173 return 1;
8174
8175 /* this is needed for vmware backdoor interface to work since it
8176 changes registers values during IO operation */
8177 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8178 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8179 emulator_invalidate_register_cache(ctxt);
8180 }
8181
8182 restart:
8183 if (emulation_type & EMULTYPE_PF) {
8184 /* Save the faulting GPA (cr2) in the address field */
8185 ctxt->exception.address = cr2_or_gpa;
8186
8187 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8188 if (vcpu->arch.mmu->direct_map) {
8189 ctxt->gpa_available = true;
8190 ctxt->gpa_val = cr2_or_gpa;
8191 }
8192 } else {
8193 /* Sanitize the address out of an abundance of paranoia. */
8194 ctxt->exception.address = 0;
8195 }
8196
8197 r = x86_emulate_insn(ctxt);
8198
8199 if (r == EMULATION_INTERCEPTED)
8200 return 1;
8201
8202 if (r == EMULATION_FAILED) {
8203 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8204 emulation_type))
8205 return 1;
8206
8207 return handle_emulation_failure(vcpu, emulation_type);
8208 }
8209
8210 if (ctxt->have_exception) {
8211 r = 1;
8212 if (inject_emulated_exception(vcpu))
8213 return r;
8214 } else if (vcpu->arch.pio.count) {
8215 if (!vcpu->arch.pio.in) {
8216 /* FIXME: return into emulator if single-stepping. */
8217 vcpu->arch.pio.count = 0;
8218 } else {
8219 writeback = false;
8220 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8221 }
8222 r = 0;
8223 } else if (vcpu->mmio_needed) {
8224 ++vcpu->stat.mmio_exits;
8225
8226 if (!vcpu->mmio_is_write)
8227 writeback = false;
8228 r = 0;
8229 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8230 } else if (vcpu->arch.complete_userspace_io) {
8231 writeback = false;
8232 r = 0;
8233 } else if (r == EMULATION_RESTART)
8234 goto restart;
8235 else
8236 r = 1;
8237
8238 if (writeback) {
8239 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8240 toggle_interruptibility(vcpu, ctxt->interruptibility);
8241 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8242
8243 /*
8244 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8245 * only supports code breakpoints and general detect #DB, both
8246 * of which are fault-like.
8247 */
8248 if (!ctxt->have_exception ||
8249 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8250 kvm_rip_write(vcpu, ctxt->eip);
8251 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8252 r = kvm_vcpu_do_singlestep(vcpu);
8253 if (kvm_x86_ops.update_emulated_instruction)
8254 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8255 __kvm_set_rflags(vcpu, ctxt->eflags);
8256 }
8257
8258 /*
8259 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8260 * do nothing, and it will be requested again as soon as
8261 * the shadow expires. But we still need to check here,
8262 * because POPF has no interrupt shadow.
8263 */
8264 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8265 kvm_make_request(KVM_REQ_EVENT, vcpu);
8266 } else
8267 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8268
8269 return r;
8270 }
8271
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)8272 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8273 {
8274 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8275 }
8276 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8277
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)8278 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8279 void *insn, int insn_len)
8280 {
8281 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8282 }
8283 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8284
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)8285 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8286 {
8287 vcpu->arch.pio.count = 0;
8288 return 1;
8289 }
8290
complete_fast_pio_out(struct kvm_vcpu * vcpu)8291 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8292 {
8293 vcpu->arch.pio.count = 0;
8294
8295 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8296 return 1;
8297
8298 return kvm_skip_emulated_instruction(vcpu);
8299 }
8300
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)8301 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8302 unsigned short port)
8303 {
8304 unsigned long val = kvm_rax_read(vcpu);
8305 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8306
8307 if (ret)
8308 return ret;
8309
8310 /*
8311 * Workaround userspace that relies on old KVM behavior of %rip being
8312 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8313 */
8314 if (port == 0x7e &&
8315 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8316 vcpu->arch.complete_userspace_io =
8317 complete_fast_pio_out_port_0x7e;
8318 kvm_skip_emulated_instruction(vcpu);
8319 } else {
8320 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8321 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8322 }
8323 return 0;
8324 }
8325
complete_fast_pio_in(struct kvm_vcpu * vcpu)8326 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8327 {
8328 unsigned long val;
8329
8330 /* We should only ever be called with arch.pio.count equal to 1 */
8331 BUG_ON(vcpu->arch.pio.count != 1);
8332
8333 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8334 vcpu->arch.pio.count = 0;
8335 return 1;
8336 }
8337
8338 /* For size less than 4 we merge, else we zero extend */
8339 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8340
8341 /*
8342 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8343 * the copy and tracing
8344 */
8345 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8346 kvm_rax_write(vcpu, val);
8347
8348 return kvm_skip_emulated_instruction(vcpu);
8349 }
8350
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)8351 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8352 unsigned short port)
8353 {
8354 unsigned long val;
8355 int ret;
8356
8357 /* For size less than 4 we merge, else we zero extend */
8358 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8359
8360 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8361 if (ret) {
8362 kvm_rax_write(vcpu, val);
8363 return ret;
8364 }
8365
8366 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8367 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8368
8369 return 0;
8370 }
8371
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)8372 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8373 {
8374 int ret;
8375
8376 if (in)
8377 ret = kvm_fast_pio_in(vcpu, size, port);
8378 else
8379 ret = kvm_fast_pio_out(vcpu, size, port);
8380 return ret && kvm_skip_emulated_instruction(vcpu);
8381 }
8382 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8383
kvmclock_cpu_down_prep(unsigned int cpu)8384 static int kvmclock_cpu_down_prep(unsigned int cpu)
8385 {
8386 __this_cpu_write(cpu_tsc_khz, 0);
8387 return 0;
8388 }
8389
tsc_khz_changed(void * data)8390 static void tsc_khz_changed(void *data)
8391 {
8392 struct cpufreq_freqs *freq = data;
8393 unsigned long khz = 0;
8394
8395 if (data)
8396 khz = freq->new;
8397 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8398 khz = cpufreq_quick_get(raw_smp_processor_id());
8399 if (!khz)
8400 khz = tsc_khz;
8401 __this_cpu_write(cpu_tsc_khz, khz);
8402 }
8403
8404 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)8405 static void kvm_hyperv_tsc_notifier(void)
8406 {
8407 struct kvm *kvm;
8408 struct kvm_vcpu *vcpu;
8409 int cpu;
8410 unsigned long flags;
8411
8412 mutex_lock(&kvm_lock);
8413 list_for_each_entry(kvm, &vm_list, vm_list)
8414 kvm_make_mclock_inprogress_request(kvm);
8415
8416 hyperv_stop_tsc_emulation();
8417
8418 /* TSC frequency always matches when on Hyper-V */
8419 for_each_present_cpu(cpu)
8420 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8421 kvm_max_guest_tsc_khz = tsc_khz;
8422
8423 list_for_each_entry(kvm, &vm_list, vm_list) {
8424 struct kvm_arch *ka = &kvm->arch;
8425
8426 raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8427 pvclock_update_vm_gtod_copy(kvm);
8428 raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8429
8430 kvm_for_each_vcpu(cpu, vcpu, kvm)
8431 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8432
8433 kvm_for_each_vcpu(cpu, vcpu, kvm)
8434 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8435 }
8436 mutex_unlock(&kvm_lock);
8437 }
8438 #endif
8439
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)8440 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8441 {
8442 struct kvm *kvm;
8443 struct kvm_vcpu *vcpu;
8444 int i, send_ipi = 0;
8445
8446 /*
8447 * We allow guests to temporarily run on slowing clocks,
8448 * provided we notify them after, or to run on accelerating
8449 * clocks, provided we notify them before. Thus time never
8450 * goes backwards.
8451 *
8452 * However, we have a problem. We can't atomically update
8453 * the frequency of a given CPU from this function; it is
8454 * merely a notifier, which can be called from any CPU.
8455 * Changing the TSC frequency at arbitrary points in time
8456 * requires a recomputation of local variables related to
8457 * the TSC for each VCPU. We must flag these local variables
8458 * to be updated and be sure the update takes place with the
8459 * new frequency before any guests proceed.
8460 *
8461 * Unfortunately, the combination of hotplug CPU and frequency
8462 * change creates an intractable locking scenario; the order
8463 * of when these callouts happen is undefined with respect to
8464 * CPU hotplug, and they can race with each other. As such,
8465 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8466 * undefined; you can actually have a CPU frequency change take
8467 * place in between the computation of X and the setting of the
8468 * variable. To protect against this problem, all updates of
8469 * the per_cpu tsc_khz variable are done in an interrupt
8470 * protected IPI, and all callers wishing to update the value
8471 * must wait for a synchronous IPI to complete (which is trivial
8472 * if the caller is on the CPU already). This establishes the
8473 * necessary total order on variable updates.
8474 *
8475 * Note that because a guest time update may take place
8476 * anytime after the setting of the VCPU's request bit, the
8477 * correct TSC value must be set before the request. However,
8478 * to ensure the update actually makes it to any guest which
8479 * starts running in hardware virtualization between the set
8480 * and the acquisition of the spinlock, we must also ping the
8481 * CPU after setting the request bit.
8482 *
8483 */
8484
8485 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8486
8487 mutex_lock(&kvm_lock);
8488 list_for_each_entry(kvm, &vm_list, vm_list) {
8489 kvm_for_each_vcpu(i, vcpu, kvm) {
8490 if (vcpu->cpu != cpu)
8491 continue;
8492 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8493 if (vcpu->cpu != raw_smp_processor_id())
8494 send_ipi = 1;
8495 }
8496 }
8497 mutex_unlock(&kvm_lock);
8498
8499 if (freq->old < freq->new && send_ipi) {
8500 /*
8501 * We upscale the frequency. Must make the guest
8502 * doesn't see old kvmclock values while running with
8503 * the new frequency, otherwise we risk the guest sees
8504 * time go backwards.
8505 *
8506 * In case we update the frequency for another cpu
8507 * (which might be in guest context) send an interrupt
8508 * to kick the cpu out of guest context. Next time
8509 * guest context is entered kvmclock will be updated,
8510 * so the guest will not see stale values.
8511 */
8512 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8513 }
8514 }
8515
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)8516 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8517 void *data)
8518 {
8519 struct cpufreq_freqs *freq = data;
8520 int cpu;
8521
8522 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8523 return 0;
8524 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8525 return 0;
8526
8527 for_each_cpu(cpu, freq->policy->cpus)
8528 __kvmclock_cpufreq_notifier(freq, cpu);
8529
8530 return 0;
8531 }
8532
8533 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8534 .notifier_call = kvmclock_cpufreq_notifier
8535 };
8536
kvmclock_cpu_online(unsigned int cpu)8537 static int kvmclock_cpu_online(unsigned int cpu)
8538 {
8539 tsc_khz_changed(NULL);
8540 return 0;
8541 }
8542
kvm_timer_init(void)8543 static void kvm_timer_init(void)
8544 {
8545 max_tsc_khz = tsc_khz;
8546
8547 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8548 #ifdef CONFIG_CPU_FREQ
8549 struct cpufreq_policy *policy;
8550 int cpu;
8551
8552 cpu = get_cpu();
8553 policy = cpufreq_cpu_get(cpu);
8554 if (policy) {
8555 if (policy->cpuinfo.max_freq)
8556 max_tsc_khz = policy->cpuinfo.max_freq;
8557 cpufreq_cpu_put(policy);
8558 }
8559 put_cpu();
8560 #endif
8561 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8562 CPUFREQ_TRANSITION_NOTIFIER);
8563 }
8564
8565 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8566 kvmclock_cpu_online, kvmclock_cpu_down_prep);
8567 }
8568
8569 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8570 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8571
kvm_is_in_guest(void)8572 int kvm_is_in_guest(void)
8573 {
8574 return __this_cpu_read(current_vcpu) != NULL;
8575 }
8576
kvm_is_user_mode(void)8577 static int kvm_is_user_mode(void)
8578 {
8579 int user_mode = 3;
8580
8581 if (__this_cpu_read(current_vcpu))
8582 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8583
8584 return user_mode != 0;
8585 }
8586
kvm_get_guest_ip(void)8587 static unsigned long kvm_get_guest_ip(void)
8588 {
8589 unsigned long ip = 0;
8590
8591 if (__this_cpu_read(current_vcpu))
8592 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8593
8594 return ip;
8595 }
8596
kvm_handle_intel_pt_intr(void)8597 static void kvm_handle_intel_pt_intr(void)
8598 {
8599 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8600
8601 kvm_make_request(KVM_REQ_PMI, vcpu);
8602 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8603 (unsigned long *)&vcpu->arch.pmu.global_status);
8604 }
8605
8606 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8607 .is_in_guest = kvm_is_in_guest,
8608 .is_user_mode = kvm_is_user_mode,
8609 .get_guest_ip = kvm_get_guest_ip,
8610 .handle_intel_pt_intr = NULL,
8611 };
8612
8613 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)8614 static void pvclock_gtod_update_fn(struct work_struct *work)
8615 {
8616 struct kvm *kvm;
8617
8618 struct kvm_vcpu *vcpu;
8619 int i;
8620
8621 mutex_lock(&kvm_lock);
8622 list_for_each_entry(kvm, &vm_list, vm_list)
8623 kvm_for_each_vcpu(i, vcpu, kvm)
8624 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8625 atomic_set(&kvm_guest_has_master_clock, 0);
8626 mutex_unlock(&kvm_lock);
8627 }
8628
8629 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8630
8631 /*
8632 * Indirection to move queue_work() out of the tk_core.seq write held
8633 * region to prevent possible deadlocks against time accessors which
8634 * are invoked with work related locks held.
8635 */
pvclock_irq_work_fn(struct irq_work * w)8636 static void pvclock_irq_work_fn(struct irq_work *w)
8637 {
8638 queue_work(system_long_wq, &pvclock_gtod_work);
8639 }
8640
8641 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8642
8643 /*
8644 * Notification about pvclock gtod data update.
8645 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)8646 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8647 void *priv)
8648 {
8649 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8650 struct timekeeper *tk = priv;
8651
8652 update_pvclock_gtod(tk);
8653
8654 /*
8655 * Disable master clock if host does not trust, or does not use,
8656 * TSC based clocksource. Delegate queue_work() to irq_work as
8657 * this is invoked with tk_core.seq write held.
8658 */
8659 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8660 atomic_read(&kvm_guest_has_master_clock) != 0)
8661 irq_work_queue(&pvclock_irq_work);
8662 return 0;
8663 }
8664
8665 static struct notifier_block pvclock_gtod_notifier = {
8666 .notifier_call = pvclock_gtod_notify,
8667 };
8668 #endif
8669
kvm_arch_init(void * opaque)8670 int kvm_arch_init(void *opaque)
8671 {
8672 struct kvm_x86_init_ops *ops = opaque;
8673 int r;
8674
8675 if (kvm_x86_ops.hardware_enable) {
8676 printk(KERN_ERR "kvm: already loaded the other module\n");
8677 r = -EEXIST;
8678 goto out;
8679 }
8680
8681 if (!ops->cpu_has_kvm_support()) {
8682 pr_err_ratelimited("kvm: no hardware support\n");
8683 r = -EOPNOTSUPP;
8684 goto out;
8685 }
8686 if (ops->disabled_by_bios()) {
8687 pr_err_ratelimited("kvm: disabled by bios\n");
8688 r = -EOPNOTSUPP;
8689 goto out;
8690 }
8691
8692 /*
8693 * KVM explicitly assumes that the guest has an FPU and
8694 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8695 * vCPU's FPU state as a fxregs_state struct.
8696 */
8697 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8698 printk(KERN_ERR "kvm: inadequate fpu\n");
8699 r = -EOPNOTSUPP;
8700 goto out;
8701 }
8702
8703 r = -ENOMEM;
8704 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8705 __alignof__(struct fpu), SLAB_ACCOUNT,
8706 NULL);
8707 if (!x86_fpu_cache) {
8708 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8709 goto out;
8710 }
8711
8712 x86_emulator_cache = kvm_alloc_emulator_cache();
8713 if (!x86_emulator_cache) {
8714 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8715 goto out_free_x86_fpu_cache;
8716 }
8717
8718 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8719 if (!user_return_msrs) {
8720 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8721 goto out_free_x86_emulator_cache;
8722 }
8723 kvm_nr_uret_msrs = 0;
8724
8725 r = kvm_mmu_vendor_module_init();
8726 if (r)
8727 goto out_free_percpu;
8728
8729 kvm_timer_init();
8730
8731 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8732 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8733 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8734 }
8735
8736 if (pi_inject_timer == -1)
8737 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8738 #ifdef CONFIG_X86_64
8739 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8740
8741 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8742 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8743 #endif
8744
8745 return 0;
8746
8747 out_free_percpu:
8748 free_percpu(user_return_msrs);
8749 out_free_x86_emulator_cache:
8750 kmem_cache_destroy(x86_emulator_cache);
8751 out_free_x86_fpu_cache:
8752 kmem_cache_destroy(x86_fpu_cache);
8753 out:
8754 return r;
8755 }
8756
kvm_arch_exit(void)8757 void kvm_arch_exit(void)
8758 {
8759 #ifdef CONFIG_X86_64
8760 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8761 clear_hv_tscchange_cb();
8762 #endif
8763 kvm_lapic_exit();
8764
8765 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8766 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8767 CPUFREQ_TRANSITION_NOTIFIER);
8768 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8769 #ifdef CONFIG_X86_64
8770 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8771 irq_work_sync(&pvclock_irq_work);
8772 cancel_work_sync(&pvclock_gtod_work);
8773 #endif
8774 kvm_x86_ops.hardware_enable = NULL;
8775 kvm_mmu_vendor_module_exit();
8776 free_percpu(user_return_msrs);
8777 kmem_cache_destroy(x86_emulator_cache);
8778 kmem_cache_destroy(x86_fpu_cache);
8779 #ifdef CONFIG_KVM_XEN
8780 static_key_deferred_flush(&kvm_xen_enabled);
8781 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8782 #endif
8783 }
8784
__kvm_vcpu_halt(struct kvm_vcpu * vcpu,int state,int reason)8785 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8786 {
8787 ++vcpu->stat.halt_exits;
8788 if (lapic_in_kernel(vcpu)) {
8789 vcpu->arch.mp_state = state;
8790 return 1;
8791 } else {
8792 vcpu->run->exit_reason = reason;
8793 return 0;
8794 }
8795 }
8796
kvm_vcpu_halt(struct kvm_vcpu * vcpu)8797 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8798 {
8799 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8800 }
8801 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8802
kvm_emulate_halt(struct kvm_vcpu * vcpu)8803 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8804 {
8805 int ret = kvm_skip_emulated_instruction(vcpu);
8806 /*
8807 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8808 * KVM_EXIT_DEBUG here.
8809 */
8810 return kvm_vcpu_halt(vcpu) && ret;
8811 }
8812 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8813
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)8814 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8815 {
8816 int ret = kvm_skip_emulated_instruction(vcpu);
8817
8818 return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8819 }
8820 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8821
8822 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)8823 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8824 unsigned long clock_type)
8825 {
8826 struct kvm_clock_pairing clock_pairing;
8827 struct timespec64 ts;
8828 u64 cycle;
8829 int ret;
8830
8831 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8832 return -KVM_EOPNOTSUPP;
8833
8834 /*
8835 * When tsc is in permanent catchup mode guests won't be able to use
8836 * pvclock_read_retry loop to get consistent view of pvclock
8837 */
8838 if (vcpu->arch.tsc_always_catchup)
8839 return -KVM_EOPNOTSUPP;
8840
8841 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8842 return -KVM_EOPNOTSUPP;
8843
8844 clock_pairing.sec = ts.tv_sec;
8845 clock_pairing.nsec = ts.tv_nsec;
8846 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8847 clock_pairing.flags = 0;
8848 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8849
8850 ret = 0;
8851 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8852 sizeof(struct kvm_clock_pairing)))
8853 ret = -KVM_EFAULT;
8854
8855 return ret;
8856 }
8857 #endif
8858
8859 /*
8860 * kvm_pv_kick_cpu_op: Kick a vcpu.
8861 *
8862 * @apicid - apicid of vcpu to be kicked.
8863 */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8864 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8865 {
8866 /*
8867 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8868 * common code, e.g. for tracing. Defer initialization to the compiler.
8869 */
8870 struct kvm_lapic_irq lapic_irq = {
8871 .delivery_mode = APIC_DM_REMRD,
8872 .dest_mode = APIC_DEST_PHYSICAL,
8873 .shorthand = APIC_DEST_NOSHORT,
8874 .dest_id = apicid,
8875 };
8876
8877 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8878 }
8879
kvm_apicv_activated(struct kvm * kvm)8880 bool kvm_apicv_activated(struct kvm *kvm)
8881 {
8882 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8883 }
8884 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8885
kvm_apicv_init(struct kvm * kvm)8886 static void kvm_apicv_init(struct kvm *kvm)
8887 {
8888 mutex_init(&kvm->arch.apicv_update_lock);
8889
8890 if (enable_apicv)
8891 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8892 &kvm->arch.apicv_inhibit_reasons);
8893 else
8894 set_bit(APICV_INHIBIT_REASON_DISABLE,
8895 &kvm->arch.apicv_inhibit_reasons);
8896 }
8897
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)8898 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8899 {
8900 struct kvm_vcpu *target = NULL;
8901 struct kvm_apic_map *map;
8902
8903 vcpu->stat.directed_yield_attempted++;
8904
8905 if (single_task_running())
8906 goto no_yield;
8907
8908 rcu_read_lock();
8909 map = rcu_dereference(vcpu->kvm->arch.apic_map);
8910
8911 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8912 target = map->phys_map[dest_id]->vcpu;
8913
8914 rcu_read_unlock();
8915
8916 if (!target || !READ_ONCE(target->ready))
8917 goto no_yield;
8918
8919 /* Ignore requests to yield to self */
8920 if (vcpu == target)
8921 goto no_yield;
8922
8923 if (kvm_vcpu_yield_to(target) <= 0)
8924 goto no_yield;
8925
8926 vcpu->stat.directed_yield_successful++;
8927
8928 no_yield:
8929 return;
8930 }
8931
complete_hypercall_exit(struct kvm_vcpu * vcpu)8932 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8933 {
8934 u64 ret = vcpu->run->hypercall.ret;
8935
8936 if (!is_64_bit_mode(vcpu))
8937 ret = (u32)ret;
8938 kvm_rax_write(vcpu, ret);
8939 ++vcpu->stat.hypercalls;
8940 return kvm_skip_emulated_instruction(vcpu);
8941 }
8942
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8943 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8944 {
8945 unsigned long nr, a0, a1, a2, a3, ret;
8946 int op_64_bit;
8947
8948 if (kvm_xen_hypercall_enabled(vcpu->kvm))
8949 return kvm_xen_hypercall(vcpu);
8950
8951 if (kvm_hv_hypercall_enabled(vcpu))
8952 return kvm_hv_hypercall(vcpu);
8953
8954 nr = kvm_rax_read(vcpu);
8955 a0 = kvm_rbx_read(vcpu);
8956 a1 = kvm_rcx_read(vcpu);
8957 a2 = kvm_rdx_read(vcpu);
8958 a3 = kvm_rsi_read(vcpu);
8959
8960 trace_kvm_hypercall(nr, a0, a1, a2, a3);
8961
8962 op_64_bit = is_64_bit_hypercall(vcpu);
8963 if (!op_64_bit) {
8964 nr &= 0xFFFFFFFF;
8965 a0 &= 0xFFFFFFFF;
8966 a1 &= 0xFFFFFFFF;
8967 a2 &= 0xFFFFFFFF;
8968 a3 &= 0xFFFFFFFF;
8969 }
8970
8971 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8972 ret = -KVM_EPERM;
8973 goto out;
8974 }
8975
8976 ret = -KVM_ENOSYS;
8977
8978 switch (nr) {
8979 case KVM_HC_VAPIC_POLL_IRQ:
8980 ret = 0;
8981 break;
8982 case KVM_HC_KICK_CPU:
8983 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8984 break;
8985
8986 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8987 kvm_sched_yield(vcpu, a1);
8988 ret = 0;
8989 break;
8990 #ifdef CONFIG_X86_64
8991 case KVM_HC_CLOCK_PAIRING:
8992 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8993 break;
8994 #endif
8995 case KVM_HC_SEND_IPI:
8996 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8997 break;
8998
8999 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9000 break;
9001 case KVM_HC_SCHED_YIELD:
9002 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9003 break;
9004
9005 kvm_sched_yield(vcpu, a0);
9006 ret = 0;
9007 break;
9008 case KVM_HC_MAP_GPA_RANGE: {
9009 u64 gpa = a0, npages = a1, attrs = a2;
9010
9011 ret = -KVM_ENOSYS;
9012 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9013 break;
9014
9015 if (!PAGE_ALIGNED(gpa) || !npages ||
9016 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9017 ret = -KVM_EINVAL;
9018 break;
9019 }
9020
9021 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9022 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9023 vcpu->run->hypercall.args[0] = gpa;
9024 vcpu->run->hypercall.args[1] = npages;
9025 vcpu->run->hypercall.args[2] = attrs;
9026 vcpu->run->hypercall.longmode = op_64_bit;
9027 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9028 return 0;
9029 }
9030 default:
9031 ret = -KVM_ENOSYS;
9032 break;
9033 }
9034 out:
9035 if (!op_64_bit)
9036 ret = (u32)ret;
9037 kvm_rax_write(vcpu, ret);
9038
9039 ++vcpu->stat.hypercalls;
9040 return kvm_skip_emulated_instruction(vcpu);
9041 }
9042 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9043
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9044 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9045 {
9046 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9047 char instruction[3];
9048 unsigned long rip = kvm_rip_read(vcpu);
9049
9050 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9051
9052 return emulator_write_emulated(ctxt, rip, instruction, 3,
9053 &ctxt->exception);
9054 }
9055
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9056 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9057 {
9058 return vcpu->run->request_interrupt_window &&
9059 likely(!pic_in_kernel(vcpu->kvm));
9060 }
9061
post_kvm_run_save(struct kvm_vcpu * vcpu)9062 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9063 {
9064 struct kvm_run *kvm_run = vcpu->run;
9065
9066 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9067 kvm_run->cr8 = kvm_get_cr8(vcpu);
9068 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9069
9070 /*
9071 * The call to kvm_ready_for_interrupt_injection() may end up in
9072 * kvm_xen_has_interrupt() which may require the srcu lock to be
9073 * held, to protect against changes in the vcpu_info address.
9074 */
9075 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9076 kvm_run->ready_for_interrupt_injection =
9077 pic_in_kernel(vcpu->kvm) ||
9078 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9079 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9080
9081 if (is_smm(vcpu))
9082 kvm_run->flags |= KVM_RUN_X86_SMM;
9083 }
9084
update_cr8_intercept(struct kvm_vcpu * vcpu)9085 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9086 {
9087 int max_irr, tpr;
9088
9089 if (!kvm_x86_ops.update_cr8_intercept)
9090 return;
9091
9092 if (!lapic_in_kernel(vcpu))
9093 return;
9094
9095 if (vcpu->arch.apicv_active)
9096 return;
9097
9098 if (!vcpu->arch.apic->vapic_addr)
9099 max_irr = kvm_lapic_find_highest_irr(vcpu);
9100 else
9101 max_irr = -1;
9102
9103 if (max_irr != -1)
9104 max_irr >>= 4;
9105
9106 tpr = kvm_lapic_get_cr8(vcpu);
9107
9108 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9109 }
9110
9111
kvm_check_nested_events(struct kvm_vcpu * vcpu)9112 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9113 {
9114 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9115 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9116 return 1;
9117 }
9118
9119 return kvm_x86_ops.nested_ops->check_events(vcpu);
9120 }
9121
kvm_inject_exception(struct kvm_vcpu * vcpu)9122 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9123 {
9124 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9125 vcpu->arch.exception.has_error_code,
9126 vcpu->arch.exception.error_code,
9127 vcpu->arch.exception.injected);
9128
9129 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9130 vcpu->arch.exception.error_code = false;
9131 static_call(kvm_x86_queue_exception)(vcpu);
9132 }
9133
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)9134 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9135 {
9136 int r;
9137 bool can_inject = true;
9138
9139 /* try to reinject previous events if any */
9140
9141 if (vcpu->arch.exception.injected) {
9142 kvm_inject_exception(vcpu);
9143 can_inject = false;
9144 }
9145 /*
9146 * Do not inject an NMI or interrupt if there is a pending
9147 * exception. Exceptions and interrupts are recognized at
9148 * instruction boundaries, i.e. the start of an instruction.
9149 * Trap-like exceptions, e.g. #DB, have higher priority than
9150 * NMIs and interrupts, i.e. traps are recognized before an
9151 * NMI/interrupt that's pending on the same instruction.
9152 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9153 * priority, but are only generated (pended) during instruction
9154 * execution, i.e. a pending fault-like exception means the
9155 * fault occurred on the *previous* instruction and must be
9156 * serviced prior to recognizing any new events in order to
9157 * fully complete the previous instruction.
9158 */
9159 else if (!vcpu->arch.exception.pending) {
9160 if (vcpu->arch.nmi_injected) {
9161 static_call(kvm_x86_set_nmi)(vcpu);
9162 can_inject = false;
9163 } else if (vcpu->arch.interrupt.injected) {
9164 static_call(kvm_x86_set_irq)(vcpu);
9165 can_inject = false;
9166 }
9167 }
9168
9169 WARN_ON_ONCE(vcpu->arch.exception.injected &&
9170 vcpu->arch.exception.pending);
9171
9172 /*
9173 * Call check_nested_events() even if we reinjected a previous event
9174 * in order for caller to determine if it should require immediate-exit
9175 * from L2 to L1 due to pending L1 events which require exit
9176 * from L2 to L1.
9177 */
9178 if (is_guest_mode(vcpu)) {
9179 r = kvm_check_nested_events(vcpu);
9180 if (r < 0)
9181 goto out;
9182 }
9183
9184 /* try to inject new event if pending */
9185 if (vcpu->arch.exception.pending) {
9186 /*
9187 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9188 * value pushed on the stack. Trap-like exception and all #DBs
9189 * leave RF as-is (KVM follows Intel's behavior in this regard;
9190 * AMD states that code breakpoint #DBs excplitly clear RF=0).
9191 *
9192 * Note, most versions of Intel's SDM and AMD's APM incorrectly
9193 * describe the behavior of General Detect #DBs, which are
9194 * fault-like. They do _not_ set RF, a la code breakpoints.
9195 */
9196 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9197 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9198 X86_EFLAGS_RF);
9199
9200 if (vcpu->arch.exception.nr == DB_VECTOR) {
9201 kvm_deliver_exception_payload(vcpu);
9202 if (vcpu->arch.dr7 & DR7_GD) {
9203 vcpu->arch.dr7 &= ~DR7_GD;
9204 kvm_update_dr7(vcpu);
9205 }
9206 }
9207
9208 kvm_inject_exception(vcpu);
9209
9210 vcpu->arch.exception.pending = false;
9211 vcpu->arch.exception.injected = true;
9212
9213 can_inject = false;
9214 }
9215
9216 /* Don't inject interrupts if the user asked to avoid doing so */
9217 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9218 return 0;
9219
9220 /*
9221 * Finally, inject interrupt events. If an event cannot be injected
9222 * due to architectural conditions (e.g. IF=0) a window-open exit
9223 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9224 * and can architecturally be injected, but we cannot do it right now:
9225 * an interrupt could have arrived just now and we have to inject it
9226 * as a vmexit, or there could already an event in the queue, which is
9227 * indicated by can_inject. In that case we request an immediate exit
9228 * in order to make progress and get back here for another iteration.
9229 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9230 */
9231 if (vcpu->arch.smi_pending) {
9232 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9233 if (r < 0)
9234 goto out;
9235 if (r) {
9236 vcpu->arch.smi_pending = false;
9237 ++vcpu->arch.smi_count;
9238 enter_smm(vcpu);
9239 can_inject = false;
9240 } else
9241 static_call(kvm_x86_enable_smi_window)(vcpu);
9242 }
9243
9244 if (vcpu->arch.nmi_pending) {
9245 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9246 if (r < 0)
9247 goto out;
9248 if (r) {
9249 --vcpu->arch.nmi_pending;
9250 vcpu->arch.nmi_injected = true;
9251 static_call(kvm_x86_set_nmi)(vcpu);
9252 can_inject = false;
9253 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9254 }
9255 if (vcpu->arch.nmi_pending)
9256 static_call(kvm_x86_enable_nmi_window)(vcpu);
9257 }
9258
9259 if (kvm_cpu_has_injectable_intr(vcpu)) {
9260 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9261 if (r < 0)
9262 goto out;
9263 if (r) {
9264 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9265 static_call(kvm_x86_set_irq)(vcpu);
9266 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9267 }
9268 if (kvm_cpu_has_injectable_intr(vcpu))
9269 static_call(kvm_x86_enable_irq_window)(vcpu);
9270 }
9271
9272 if (is_guest_mode(vcpu) &&
9273 kvm_x86_ops.nested_ops->hv_timer_pending &&
9274 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9275 *req_immediate_exit = true;
9276
9277 WARN_ON(vcpu->arch.exception.pending);
9278 return 0;
9279
9280 out:
9281 if (r == -EBUSY) {
9282 *req_immediate_exit = true;
9283 r = 0;
9284 }
9285 return r;
9286 }
9287
process_nmi(struct kvm_vcpu * vcpu)9288 static void process_nmi(struct kvm_vcpu *vcpu)
9289 {
9290 unsigned limit = 2;
9291
9292 /*
9293 * x86 is limited to one NMI running, and one NMI pending after it.
9294 * If an NMI is already in progress, limit further NMIs to just one.
9295 * Otherwise, allow two (and we'll inject the first one immediately).
9296 */
9297 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9298 limit = 1;
9299
9300 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9301 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9302 kvm_make_request(KVM_REQ_EVENT, vcpu);
9303 }
9304
enter_smm_get_segment_flags(struct kvm_segment * seg)9305 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9306 {
9307 u32 flags = 0;
9308 flags |= seg->g << 23;
9309 flags |= seg->db << 22;
9310 flags |= seg->l << 21;
9311 flags |= seg->avl << 20;
9312 flags |= seg->present << 15;
9313 flags |= seg->dpl << 13;
9314 flags |= seg->s << 12;
9315 flags |= seg->type << 8;
9316 return flags;
9317 }
9318
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)9319 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9320 {
9321 struct kvm_segment seg;
9322 int offset;
9323
9324 kvm_get_segment(vcpu, &seg, n);
9325 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9326
9327 if (n < 3)
9328 offset = 0x7f84 + n * 12;
9329 else
9330 offset = 0x7f2c + (n - 3) * 12;
9331
9332 put_smstate(u32, buf, offset + 8, seg.base);
9333 put_smstate(u32, buf, offset + 4, seg.limit);
9334 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9335 }
9336
9337 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)9338 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9339 {
9340 struct kvm_segment seg;
9341 int offset;
9342 u16 flags;
9343
9344 kvm_get_segment(vcpu, &seg, n);
9345 offset = 0x7e00 + n * 16;
9346
9347 flags = enter_smm_get_segment_flags(&seg) >> 8;
9348 put_smstate(u16, buf, offset, seg.selector);
9349 put_smstate(u16, buf, offset + 2, flags);
9350 put_smstate(u32, buf, offset + 4, seg.limit);
9351 put_smstate(u64, buf, offset + 8, seg.base);
9352 }
9353 #endif
9354
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)9355 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9356 {
9357 struct desc_ptr dt;
9358 struct kvm_segment seg;
9359 unsigned long val;
9360 int i;
9361
9362 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9363 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9364 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9365 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9366
9367 for (i = 0; i < 8; i++)
9368 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9369
9370 kvm_get_dr(vcpu, 6, &val);
9371 put_smstate(u32, buf, 0x7fcc, (u32)val);
9372 kvm_get_dr(vcpu, 7, &val);
9373 put_smstate(u32, buf, 0x7fc8, (u32)val);
9374
9375 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9376 put_smstate(u32, buf, 0x7fc4, seg.selector);
9377 put_smstate(u32, buf, 0x7f64, seg.base);
9378 put_smstate(u32, buf, 0x7f60, seg.limit);
9379 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9380
9381 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9382 put_smstate(u32, buf, 0x7fc0, seg.selector);
9383 put_smstate(u32, buf, 0x7f80, seg.base);
9384 put_smstate(u32, buf, 0x7f7c, seg.limit);
9385 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9386
9387 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9388 put_smstate(u32, buf, 0x7f74, dt.address);
9389 put_smstate(u32, buf, 0x7f70, dt.size);
9390
9391 static_call(kvm_x86_get_idt)(vcpu, &dt);
9392 put_smstate(u32, buf, 0x7f58, dt.address);
9393 put_smstate(u32, buf, 0x7f54, dt.size);
9394
9395 for (i = 0; i < 6; i++)
9396 enter_smm_save_seg_32(vcpu, buf, i);
9397
9398 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9399
9400 /* revision id */
9401 put_smstate(u32, buf, 0x7efc, 0x00020000);
9402 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9403 }
9404
9405 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)9406 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9407 {
9408 struct desc_ptr dt;
9409 struct kvm_segment seg;
9410 unsigned long val;
9411 int i;
9412
9413 for (i = 0; i < 16; i++)
9414 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9415
9416 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9417 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9418
9419 kvm_get_dr(vcpu, 6, &val);
9420 put_smstate(u64, buf, 0x7f68, val);
9421 kvm_get_dr(vcpu, 7, &val);
9422 put_smstate(u64, buf, 0x7f60, val);
9423
9424 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9425 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9426 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9427
9428 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9429
9430 /* revision id */
9431 put_smstate(u32, buf, 0x7efc, 0x00020064);
9432
9433 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9434
9435 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9436 put_smstate(u16, buf, 0x7e90, seg.selector);
9437 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9438 put_smstate(u32, buf, 0x7e94, seg.limit);
9439 put_smstate(u64, buf, 0x7e98, seg.base);
9440
9441 static_call(kvm_x86_get_idt)(vcpu, &dt);
9442 put_smstate(u32, buf, 0x7e84, dt.size);
9443 put_smstate(u64, buf, 0x7e88, dt.address);
9444
9445 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9446 put_smstate(u16, buf, 0x7e70, seg.selector);
9447 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9448 put_smstate(u32, buf, 0x7e74, seg.limit);
9449 put_smstate(u64, buf, 0x7e78, seg.base);
9450
9451 static_call(kvm_x86_get_gdt)(vcpu, &dt);
9452 put_smstate(u32, buf, 0x7e64, dt.size);
9453 put_smstate(u64, buf, 0x7e68, dt.address);
9454
9455 for (i = 0; i < 6; i++)
9456 enter_smm_save_seg_64(vcpu, buf, i);
9457 }
9458 #endif
9459
enter_smm(struct kvm_vcpu * vcpu)9460 static void enter_smm(struct kvm_vcpu *vcpu)
9461 {
9462 struct kvm_segment cs, ds;
9463 struct desc_ptr dt;
9464 unsigned long cr0;
9465 char buf[512];
9466
9467 memset(buf, 0, 512);
9468 #ifdef CONFIG_X86_64
9469 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9470 enter_smm_save_state_64(vcpu, buf);
9471 else
9472 #endif
9473 enter_smm_save_state_32(vcpu, buf);
9474
9475 /*
9476 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9477 * state (e.g. leave guest mode) after we've saved the state into the
9478 * SMM state-save area.
9479 */
9480 static_call(kvm_x86_enter_smm)(vcpu, buf);
9481
9482 kvm_smm_changed(vcpu, true);
9483 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9484
9485 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9486 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9487 else
9488 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9489
9490 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9491 kvm_rip_write(vcpu, 0x8000);
9492
9493 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9494 static_call(kvm_x86_set_cr0)(vcpu, cr0);
9495 vcpu->arch.cr0 = cr0;
9496
9497 static_call(kvm_x86_set_cr4)(vcpu, 0);
9498
9499 /* Undocumented: IDT limit is set to zero on entry to SMM. */
9500 dt.address = dt.size = 0;
9501 static_call(kvm_x86_set_idt)(vcpu, &dt);
9502
9503 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9504
9505 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9506 cs.base = vcpu->arch.smbase;
9507
9508 ds.selector = 0;
9509 ds.base = 0;
9510
9511 cs.limit = ds.limit = 0xffffffff;
9512 cs.type = ds.type = 0x3;
9513 cs.dpl = ds.dpl = 0;
9514 cs.db = ds.db = 0;
9515 cs.s = ds.s = 1;
9516 cs.l = ds.l = 0;
9517 cs.g = ds.g = 1;
9518 cs.avl = ds.avl = 0;
9519 cs.present = ds.present = 1;
9520 cs.unusable = ds.unusable = 0;
9521 cs.padding = ds.padding = 0;
9522
9523 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9524 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9525 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9526 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9527 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9528 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9529
9530 #ifdef CONFIG_X86_64
9531 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9532 static_call(kvm_x86_set_efer)(vcpu, 0);
9533 #endif
9534
9535 kvm_update_cpuid_runtime(vcpu);
9536 kvm_mmu_reset_context(vcpu);
9537 }
9538
process_smi(struct kvm_vcpu * vcpu)9539 static void process_smi(struct kvm_vcpu *vcpu)
9540 {
9541 vcpu->arch.smi_pending = true;
9542 kvm_make_request(KVM_REQ_EVENT, vcpu);
9543 }
9544
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)9545 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9546 unsigned long *vcpu_bitmap)
9547 {
9548 cpumask_var_t cpus;
9549
9550 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9551
9552 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9553 NULL, vcpu_bitmap, cpus);
9554
9555 free_cpumask_var(cpus);
9556 }
9557
kvm_make_scan_ioapic_request(struct kvm * kvm)9558 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9559 {
9560 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9561 }
9562
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)9563 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9564 {
9565 bool activate;
9566
9567 if (!lapic_in_kernel(vcpu))
9568 return;
9569
9570 mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9571
9572 activate = kvm_apicv_activated(vcpu->kvm);
9573 if (vcpu->arch.apicv_active == activate)
9574 goto out;
9575
9576 vcpu->arch.apicv_active = activate;
9577 kvm_apic_update_apicv(vcpu);
9578 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9579
9580 /*
9581 * When APICv gets disabled, we may still have injected interrupts
9582 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9583 * still active when the interrupt got accepted. Make sure
9584 * inject_pending_event() is called to check for that.
9585 */
9586 if (!vcpu->arch.apicv_active)
9587 kvm_make_request(KVM_REQ_EVENT, vcpu);
9588
9589 out:
9590 mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9591 }
9592 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9593
__kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)9594 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9595 {
9596 unsigned long old, new;
9597
9598 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9599 !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9600 return;
9601
9602 old = new = kvm->arch.apicv_inhibit_reasons;
9603
9604 if (activate)
9605 __clear_bit(bit, &new);
9606 else
9607 __set_bit(bit, &new);
9608
9609 if (!!old != !!new) {
9610 trace_kvm_apicv_update_request(activate, bit);
9611 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9612 kvm->arch.apicv_inhibit_reasons = new;
9613 if (new) {
9614 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9615 kvm_zap_gfn_range(kvm, gfn, gfn+1);
9616 }
9617 } else
9618 kvm->arch.apicv_inhibit_reasons = new;
9619 }
9620 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9621
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)9622 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9623 {
9624 mutex_lock(&kvm->arch.apicv_update_lock);
9625 __kvm_request_apicv_update(kvm, activate, bit);
9626 mutex_unlock(&kvm->arch.apicv_update_lock);
9627 }
9628 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9629
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)9630 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9631 {
9632 if (!kvm_apic_present(vcpu))
9633 return;
9634
9635 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9636
9637 if (irqchip_split(vcpu->kvm))
9638 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9639 else {
9640 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9641 if (ioapic_in_kernel(vcpu->kvm))
9642 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9643 }
9644
9645 if (is_guest_mode(vcpu))
9646 vcpu->arch.load_eoi_exitmap_pending = true;
9647 else
9648 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9649 }
9650
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)9651 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9652 {
9653 u64 eoi_exit_bitmap[4];
9654
9655 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9656 return;
9657
9658 if (to_hv_vcpu(vcpu)) {
9659 bitmap_or((ulong *)eoi_exit_bitmap,
9660 vcpu->arch.ioapic_handled_vectors,
9661 to_hv_synic(vcpu)->vec_bitmap, 256);
9662 static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9663 return;
9664 }
9665
9666 static_call(kvm_x86_load_eoi_exitmap)(
9667 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9668 }
9669
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)9670 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9671 unsigned long start, unsigned long end)
9672 {
9673 unsigned long apic_address;
9674
9675 /*
9676 * The physical address of apic access page is stored in the VMCS.
9677 * Update it when it becomes invalid.
9678 */
9679 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9680 if (start <= apic_address && apic_address < end)
9681 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9682 }
9683
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)9684 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9685 {
9686 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9687 }
9688
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)9689 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9690 {
9691 if (!lapic_in_kernel(vcpu))
9692 return;
9693
9694 if (!kvm_x86_ops.set_apic_access_page_addr)
9695 return;
9696
9697 static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9698 }
9699
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)9700 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9701 {
9702 smp_send_reschedule(vcpu->cpu);
9703 }
9704 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9705
9706 /*
9707 * Returns 1 to let vcpu_run() continue the guest execution loop without
9708 * exiting to the userspace. Otherwise, the value will be returned to the
9709 * userspace.
9710 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)9711 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9712 {
9713 int r;
9714 bool req_int_win =
9715 dm_request_for_irq_injection(vcpu) &&
9716 kvm_cpu_accept_dm_intr(vcpu);
9717 fastpath_t exit_fastpath;
9718
9719 bool req_immediate_exit = false;
9720
9721 /* Forbid vmenter if vcpu dirty ring is soft-full */
9722 if (unlikely(vcpu->kvm->dirty_ring_size &&
9723 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9724 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9725 trace_kvm_dirty_ring_exit(vcpu);
9726 r = 0;
9727 goto out;
9728 }
9729
9730 if (kvm_request_pending(vcpu)) {
9731 if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9732 r = -EIO;
9733 goto out;
9734 }
9735 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9736 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9737 r = 0;
9738 goto out;
9739 }
9740 }
9741 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9742 kvm_mmu_unload(vcpu);
9743 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9744 __kvm_migrate_timers(vcpu);
9745 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9746 kvm_gen_update_masterclock(vcpu->kvm);
9747 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9748 kvm_gen_kvmclock_update(vcpu);
9749 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9750 r = kvm_guest_time_update(vcpu);
9751 if (unlikely(r))
9752 goto out;
9753 }
9754 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9755 kvm_mmu_sync_roots(vcpu);
9756 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9757 kvm_mmu_load_pgd(vcpu);
9758 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9759 kvm_vcpu_flush_tlb_all(vcpu);
9760
9761 /* Flushing all ASIDs flushes the current ASID... */
9762 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9763 }
9764 kvm_service_local_tlb_flush_requests(vcpu);
9765
9766 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9767 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9768 r = 0;
9769 goto out;
9770 }
9771 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9772 if (is_guest_mode(vcpu)) {
9773 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9774 } else {
9775 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9776 vcpu->mmio_needed = 0;
9777 r = 0;
9778 goto out;
9779 }
9780 }
9781 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9782 /* Page is swapped out. Do synthetic halt */
9783 vcpu->arch.apf.halted = true;
9784 r = 1;
9785 goto out;
9786 }
9787 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9788 record_steal_time(vcpu);
9789 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9790 process_smi(vcpu);
9791 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9792 process_nmi(vcpu);
9793 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9794 kvm_pmu_handle_event(vcpu);
9795 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9796 kvm_pmu_deliver_pmi(vcpu);
9797 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9798 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9799 if (test_bit(vcpu->arch.pending_ioapic_eoi,
9800 vcpu->arch.ioapic_handled_vectors)) {
9801 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9802 vcpu->run->eoi.vector =
9803 vcpu->arch.pending_ioapic_eoi;
9804 r = 0;
9805 goto out;
9806 }
9807 }
9808 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9809 vcpu_scan_ioapic(vcpu);
9810 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9811 vcpu_load_eoi_exitmap(vcpu);
9812 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9813 kvm_vcpu_reload_apic_access_page(vcpu);
9814 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9815 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9816 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9817 r = 0;
9818 goto out;
9819 }
9820 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9821 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9822 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9823 r = 0;
9824 goto out;
9825 }
9826 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9827 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9828
9829 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9830 vcpu->run->hyperv = hv_vcpu->exit;
9831 r = 0;
9832 goto out;
9833 }
9834
9835 /*
9836 * KVM_REQ_HV_STIMER has to be processed after
9837 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9838 * depend on the guest clock being up-to-date
9839 */
9840 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9841 kvm_hv_process_stimers(vcpu);
9842 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9843 kvm_vcpu_update_apicv(vcpu);
9844 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9845 kvm_check_async_pf_completion(vcpu);
9846 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9847 static_call(kvm_x86_msr_filter_changed)(vcpu);
9848
9849 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9850 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9851 }
9852
9853 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9854 kvm_xen_has_interrupt(vcpu)) {
9855 ++vcpu->stat.req_event;
9856 r = kvm_apic_accept_events(vcpu);
9857 if (r < 0) {
9858 r = 0;
9859 goto out;
9860 }
9861 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9862 r = 1;
9863 goto out;
9864 }
9865
9866 r = inject_pending_event(vcpu, &req_immediate_exit);
9867 if (r < 0) {
9868 r = 0;
9869 goto out;
9870 }
9871 if (req_int_win)
9872 static_call(kvm_x86_enable_irq_window)(vcpu);
9873
9874 if (kvm_lapic_enabled(vcpu)) {
9875 update_cr8_intercept(vcpu);
9876 kvm_lapic_sync_to_vapic(vcpu);
9877 }
9878 }
9879
9880 r = kvm_mmu_reload(vcpu);
9881 if (unlikely(r)) {
9882 goto cancel_injection;
9883 }
9884
9885 preempt_disable();
9886
9887 static_call(kvm_x86_prepare_guest_switch)(vcpu);
9888
9889 /*
9890 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
9891 * IPI are then delayed after guest entry, which ensures that they
9892 * result in virtual interrupt delivery.
9893 */
9894 local_irq_disable();
9895 vcpu->mode = IN_GUEST_MODE;
9896
9897 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9898
9899 /*
9900 * 1) We should set ->mode before checking ->requests. Please see
9901 * the comment in kvm_vcpu_exiting_guest_mode().
9902 *
9903 * 2) For APICv, we should set ->mode before checking PID.ON. This
9904 * pairs with the memory barrier implicit in pi_test_and_set_on
9905 * (see vmx_deliver_posted_interrupt).
9906 *
9907 * 3) This also orders the write to mode from any reads to the page
9908 * tables done while the VCPU is running. Please see the comment
9909 * in kvm_flush_remote_tlbs.
9910 */
9911 smp_mb__after_srcu_read_unlock();
9912
9913 /*
9914 * This handles the case where a posted interrupt was
9915 * notified with kvm_vcpu_kick. Assigned devices can
9916 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9917 * so do it even if APICv is disabled on this vCPU.
9918 */
9919 if (kvm_lapic_enabled(vcpu))
9920 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9921
9922 if (kvm_vcpu_exit_request(vcpu)) {
9923 vcpu->mode = OUTSIDE_GUEST_MODE;
9924 smp_wmb();
9925 local_irq_enable();
9926 preempt_enable();
9927 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9928 r = 1;
9929 goto cancel_injection;
9930 }
9931
9932 if (req_immediate_exit) {
9933 kvm_make_request(KVM_REQ_EVENT, vcpu);
9934 static_call(kvm_x86_request_immediate_exit)(vcpu);
9935 }
9936
9937 fpregs_assert_state_consistent();
9938 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9939 switch_fpu_return();
9940
9941 if (unlikely(vcpu->arch.switch_db_regs)) {
9942 set_debugreg(0, 7);
9943 set_debugreg(vcpu->arch.eff_db[0], 0);
9944 set_debugreg(vcpu->arch.eff_db[1], 1);
9945 set_debugreg(vcpu->arch.eff_db[2], 2);
9946 set_debugreg(vcpu->arch.eff_db[3], 3);
9947 } else if (unlikely(hw_breakpoint_active())) {
9948 set_debugreg(0, 7);
9949 }
9950
9951 for (;;) {
9952 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9953 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9954 break;
9955
9956 if (kvm_lapic_enabled(vcpu))
9957 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9958
9959 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9960 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9961 break;
9962 }
9963
9964 /* Note, VM-Exits that go down the "slow" path are accounted below. */
9965 ++vcpu->stat.exits;
9966 }
9967
9968 /*
9969 * Do this here before restoring debug registers on the host. And
9970 * since we do this before handling the vmexit, a DR access vmexit
9971 * can (a) read the correct value of the debug registers, (b) set
9972 * KVM_DEBUGREG_WONT_EXIT again.
9973 */
9974 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9975 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9976 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9977 kvm_update_dr0123(vcpu);
9978 kvm_update_dr7(vcpu);
9979 }
9980
9981 /*
9982 * If the guest has used debug registers, at least dr7
9983 * will be disabled while returning to the host.
9984 * If we don't have active breakpoints in the host, we don't
9985 * care about the messed up debug address registers. But if
9986 * we have some of them active, restore the old state.
9987 */
9988 if (hw_breakpoint_active())
9989 hw_breakpoint_restore();
9990
9991 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9992 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9993
9994 vcpu->mode = OUTSIDE_GUEST_MODE;
9995 smp_wmb();
9996
9997 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9998
9999 /*
10000 * Consume any pending interrupts, including the possible source of
10001 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10002 * An instruction is required after local_irq_enable() to fully unblock
10003 * interrupts on processors that implement an interrupt shadow, the
10004 * stat.exits increment will do nicely.
10005 */
10006 kvm_before_interrupt(vcpu);
10007 local_irq_enable();
10008 ++vcpu->stat.exits;
10009 local_irq_disable();
10010 kvm_after_interrupt(vcpu);
10011
10012 /*
10013 * Wait until after servicing IRQs to account guest time so that any
10014 * ticks that occurred while running the guest are properly accounted
10015 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10016 * of accounting via context tracking, but the loss of accuracy is
10017 * acceptable for all known use cases.
10018 */
10019 vtime_account_guest_exit();
10020
10021 if (lapic_in_kernel(vcpu)) {
10022 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10023 if (delta != S64_MIN) {
10024 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10025 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10026 }
10027 }
10028
10029 local_irq_enable();
10030 preempt_enable();
10031
10032 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10033
10034 /*
10035 * Profile KVM exit RIPs:
10036 */
10037 if (unlikely(prof_on == KVM_PROFILING)) {
10038 unsigned long rip = kvm_rip_read(vcpu);
10039 profile_hit(KVM_PROFILING, (void *)rip);
10040 }
10041
10042 if (unlikely(vcpu->arch.tsc_always_catchup))
10043 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10044
10045 if (vcpu->arch.apic_attention)
10046 kvm_lapic_sync_from_vapic(vcpu);
10047
10048 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10049 return r;
10050
10051 cancel_injection:
10052 if (req_immediate_exit)
10053 kvm_make_request(KVM_REQ_EVENT, vcpu);
10054 static_call(kvm_x86_cancel_injection)(vcpu);
10055 if (unlikely(vcpu->arch.apic_attention))
10056 kvm_lapic_sync_from_vapic(vcpu);
10057 out:
10058 return r;
10059 }
10060
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)10061 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10062 {
10063 bool hv_timer;
10064
10065 if (!kvm_arch_vcpu_runnable(vcpu) &&
10066 (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
10067 /*
10068 * Switch to the software timer before halt-polling/blocking as
10069 * the guest's timer may be a break event for the vCPU, and the
10070 * hypervisor timer runs only when the CPU is in guest mode.
10071 * Switch before halt-polling so that KVM recognizes an expired
10072 * timer before blocking.
10073 */
10074 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10075 if (hv_timer)
10076 kvm_lapic_switch_to_sw_timer(vcpu);
10077
10078 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10079 kvm_vcpu_block(vcpu);
10080 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10081
10082 if (hv_timer)
10083 kvm_lapic_switch_to_hv_timer(vcpu);
10084
10085 if (kvm_x86_ops.post_block)
10086 static_call(kvm_x86_post_block)(vcpu);
10087
10088 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10089 return 1;
10090 }
10091
10092 if (kvm_apic_accept_events(vcpu) < 0)
10093 return 0;
10094 switch(vcpu->arch.mp_state) {
10095 case KVM_MP_STATE_HALTED:
10096 case KVM_MP_STATE_AP_RESET_HOLD:
10097 vcpu->arch.pv.pv_unhalted = false;
10098 vcpu->arch.mp_state =
10099 KVM_MP_STATE_RUNNABLE;
10100 fallthrough;
10101 case KVM_MP_STATE_RUNNABLE:
10102 vcpu->arch.apf.halted = false;
10103 break;
10104 case KVM_MP_STATE_INIT_RECEIVED:
10105 break;
10106 default:
10107 return -EINTR;
10108 }
10109 return 1;
10110 }
10111
kvm_vcpu_running(struct kvm_vcpu * vcpu)10112 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10113 {
10114 if (is_guest_mode(vcpu))
10115 kvm_check_nested_events(vcpu);
10116
10117 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10118 !vcpu->arch.apf.halted);
10119 }
10120
vcpu_run(struct kvm_vcpu * vcpu)10121 static int vcpu_run(struct kvm_vcpu *vcpu)
10122 {
10123 int r;
10124 struct kvm *kvm = vcpu->kvm;
10125
10126 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10127 vcpu->arch.l1tf_flush_l1d = true;
10128
10129 for (;;) {
10130 /*
10131 * If another guest vCPU requests a PV TLB flush in the middle
10132 * of instruction emulation, the rest of the emulation could
10133 * use a stale page translation. Assume that any code after
10134 * this point can start executing an instruction.
10135 */
10136 vcpu->arch.at_instruction_boundary = false;
10137 if (kvm_vcpu_running(vcpu)) {
10138 r = vcpu_enter_guest(vcpu);
10139 } else {
10140 r = vcpu_block(kvm, vcpu);
10141 }
10142
10143 if (r <= 0)
10144 break;
10145
10146 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10147 if (kvm_cpu_has_pending_timer(vcpu))
10148 kvm_inject_pending_timer_irqs(vcpu);
10149
10150 if (dm_request_for_irq_injection(vcpu) &&
10151 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10152 r = 0;
10153 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10154 ++vcpu->stat.request_irq_exits;
10155 break;
10156 }
10157
10158 if (__xfer_to_guest_mode_work_pending()) {
10159 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10160 r = xfer_to_guest_mode_handle_work(vcpu);
10161 if (r)
10162 return r;
10163 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10164 }
10165 }
10166
10167 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10168
10169 return r;
10170 }
10171
complete_emulated_io(struct kvm_vcpu * vcpu)10172 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10173 {
10174 int r;
10175
10176 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10177 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10178 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10179 return r;
10180 }
10181
complete_emulated_pio(struct kvm_vcpu * vcpu)10182 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10183 {
10184 BUG_ON(!vcpu->arch.pio.count);
10185
10186 return complete_emulated_io(vcpu);
10187 }
10188
10189 /*
10190 * Implements the following, as a state machine:
10191 *
10192 * read:
10193 * for each fragment
10194 * for each mmio piece in the fragment
10195 * write gpa, len
10196 * exit
10197 * copy data
10198 * execute insn
10199 *
10200 * write:
10201 * for each fragment
10202 * for each mmio piece in the fragment
10203 * write gpa, len
10204 * copy data
10205 * exit
10206 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)10207 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10208 {
10209 struct kvm_run *run = vcpu->run;
10210 struct kvm_mmio_fragment *frag;
10211 unsigned len;
10212
10213 BUG_ON(!vcpu->mmio_needed);
10214
10215 /* Complete previous fragment */
10216 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10217 len = min(8u, frag->len);
10218 if (!vcpu->mmio_is_write)
10219 memcpy(frag->data, run->mmio.data, len);
10220
10221 if (frag->len <= 8) {
10222 /* Switch to the next fragment. */
10223 frag++;
10224 vcpu->mmio_cur_fragment++;
10225 } else {
10226 /* Go forward to the next mmio piece. */
10227 frag->data += len;
10228 frag->gpa += len;
10229 frag->len -= len;
10230 }
10231
10232 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10233 vcpu->mmio_needed = 0;
10234
10235 /* FIXME: return into emulator if single-stepping. */
10236 if (vcpu->mmio_is_write)
10237 return 1;
10238 vcpu->mmio_read_completed = 1;
10239 return complete_emulated_io(vcpu);
10240 }
10241
10242 run->exit_reason = KVM_EXIT_MMIO;
10243 run->mmio.phys_addr = frag->gpa;
10244 if (vcpu->mmio_is_write)
10245 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10246 run->mmio.len = min(8u, frag->len);
10247 run->mmio.is_write = vcpu->mmio_is_write;
10248 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10249 return 0;
10250 }
10251
kvm_save_current_fpu(struct fpu * fpu)10252 static void kvm_save_current_fpu(struct fpu *fpu)
10253 {
10254 /*
10255 * If the target FPU state is not resident in the CPU registers, just
10256 * memcpy() from current, else save CPU state directly to the target.
10257 */
10258 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10259 memcpy(&fpu->state, ¤t->thread.fpu.state,
10260 fpu_kernel_xstate_size);
10261 else
10262 save_fpregs_to_fpstate(fpu);
10263 }
10264
10265 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)10266 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10267 {
10268 fpregs_lock();
10269
10270 kvm_save_current_fpu(vcpu->arch.user_fpu);
10271
10272 /*
10273 * Guests with protected state can't have it set by the hypervisor,
10274 * so skip trying to set it.
10275 */
10276 if (vcpu->arch.guest_fpu)
10277 /* PKRU is separately restored in kvm_x86_ops.run. */
10278 __restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10279 ~XFEATURE_MASK_PKRU);
10280
10281 fpregs_mark_activate();
10282 fpregs_unlock();
10283
10284 trace_kvm_fpu(1);
10285 }
10286
10287 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)10288 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10289 {
10290 fpregs_lock();
10291
10292 /*
10293 * Guests with protected state can't have it read by the hypervisor,
10294 * so skip trying to save it.
10295 */
10296 if (vcpu->arch.guest_fpu)
10297 kvm_save_current_fpu(vcpu->arch.guest_fpu);
10298
10299 restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10300
10301 fpregs_mark_activate();
10302 fpregs_unlock();
10303
10304 ++vcpu->stat.fpu_reload;
10305 trace_kvm_fpu(0);
10306 }
10307
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)10308 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10309 {
10310 struct kvm_run *kvm_run = vcpu->run;
10311 int r;
10312
10313 vcpu_load(vcpu);
10314 kvm_sigset_activate(vcpu);
10315 kvm_run->flags = 0;
10316 kvm_load_guest_fpu(vcpu);
10317
10318 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10319 if (kvm_run->immediate_exit) {
10320 r = -EINTR;
10321 goto out;
10322 }
10323 /*
10324 * It should be impossible for the hypervisor timer to be in
10325 * use before KVM has ever run the vCPU.
10326 */
10327 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10328 kvm_vcpu_block(vcpu);
10329 if (kvm_apic_accept_events(vcpu) < 0) {
10330 r = 0;
10331 goto out;
10332 }
10333 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10334 r = -EAGAIN;
10335 if (signal_pending(current)) {
10336 r = -EINTR;
10337 kvm_run->exit_reason = KVM_EXIT_INTR;
10338 ++vcpu->stat.signal_exits;
10339 }
10340 goto out;
10341 }
10342
10343 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10344 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10345 r = -EINVAL;
10346 goto out;
10347 }
10348
10349 if (kvm_run->kvm_dirty_regs) {
10350 r = sync_regs(vcpu);
10351 if (r != 0)
10352 goto out;
10353 }
10354
10355 /* re-sync apic's tpr */
10356 if (!lapic_in_kernel(vcpu)) {
10357 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10358 r = -EINVAL;
10359 goto out;
10360 }
10361 }
10362
10363 if (unlikely(vcpu->arch.complete_userspace_io)) {
10364 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10365 vcpu->arch.complete_userspace_io = NULL;
10366 r = cui(vcpu);
10367 if (r <= 0)
10368 goto out;
10369 } else
10370 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10371
10372 if (kvm_run->immediate_exit)
10373 r = -EINTR;
10374 else
10375 r = vcpu_run(vcpu);
10376
10377 out:
10378 kvm_put_guest_fpu(vcpu);
10379 if (kvm_run->kvm_valid_regs)
10380 store_regs(vcpu);
10381 post_kvm_run_save(vcpu);
10382 kvm_sigset_deactivate(vcpu);
10383
10384 vcpu_put(vcpu);
10385 return r;
10386 }
10387
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10388 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10389 {
10390 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10391 /*
10392 * We are here if userspace calls get_regs() in the middle of
10393 * instruction emulation. Registers state needs to be copied
10394 * back from emulation context to vcpu. Userspace shouldn't do
10395 * that usually, but some bad designed PV devices (vmware
10396 * backdoor interface) need this to work
10397 */
10398 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10399 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10400 }
10401 regs->rax = kvm_rax_read(vcpu);
10402 regs->rbx = kvm_rbx_read(vcpu);
10403 regs->rcx = kvm_rcx_read(vcpu);
10404 regs->rdx = kvm_rdx_read(vcpu);
10405 regs->rsi = kvm_rsi_read(vcpu);
10406 regs->rdi = kvm_rdi_read(vcpu);
10407 regs->rsp = kvm_rsp_read(vcpu);
10408 regs->rbp = kvm_rbp_read(vcpu);
10409 #ifdef CONFIG_X86_64
10410 regs->r8 = kvm_r8_read(vcpu);
10411 regs->r9 = kvm_r9_read(vcpu);
10412 regs->r10 = kvm_r10_read(vcpu);
10413 regs->r11 = kvm_r11_read(vcpu);
10414 regs->r12 = kvm_r12_read(vcpu);
10415 regs->r13 = kvm_r13_read(vcpu);
10416 regs->r14 = kvm_r14_read(vcpu);
10417 regs->r15 = kvm_r15_read(vcpu);
10418 #endif
10419
10420 regs->rip = kvm_rip_read(vcpu);
10421 regs->rflags = kvm_get_rflags(vcpu);
10422 }
10423
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10424 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10425 {
10426 vcpu_load(vcpu);
10427 __get_regs(vcpu, regs);
10428 vcpu_put(vcpu);
10429 return 0;
10430 }
10431
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10432 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10433 {
10434 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10435 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10436
10437 kvm_rax_write(vcpu, regs->rax);
10438 kvm_rbx_write(vcpu, regs->rbx);
10439 kvm_rcx_write(vcpu, regs->rcx);
10440 kvm_rdx_write(vcpu, regs->rdx);
10441 kvm_rsi_write(vcpu, regs->rsi);
10442 kvm_rdi_write(vcpu, regs->rdi);
10443 kvm_rsp_write(vcpu, regs->rsp);
10444 kvm_rbp_write(vcpu, regs->rbp);
10445 #ifdef CONFIG_X86_64
10446 kvm_r8_write(vcpu, regs->r8);
10447 kvm_r9_write(vcpu, regs->r9);
10448 kvm_r10_write(vcpu, regs->r10);
10449 kvm_r11_write(vcpu, regs->r11);
10450 kvm_r12_write(vcpu, regs->r12);
10451 kvm_r13_write(vcpu, regs->r13);
10452 kvm_r14_write(vcpu, regs->r14);
10453 kvm_r15_write(vcpu, regs->r15);
10454 #endif
10455
10456 kvm_rip_write(vcpu, regs->rip);
10457 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10458
10459 vcpu->arch.exception.pending = false;
10460
10461 kvm_make_request(KVM_REQ_EVENT, vcpu);
10462 }
10463
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10464 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10465 {
10466 vcpu_load(vcpu);
10467 __set_regs(vcpu, regs);
10468 vcpu_put(vcpu);
10469 return 0;
10470 }
10471
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)10472 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10473 {
10474 struct kvm_segment cs;
10475
10476 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10477 *db = cs.db;
10478 *l = cs.l;
10479 }
10480 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10481
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10482 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10483 {
10484 struct desc_ptr dt;
10485
10486 if (vcpu->arch.guest_state_protected)
10487 goto skip_protected_regs;
10488
10489 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10490 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10491 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10492 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10493 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10494 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10495
10496 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10497 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10498
10499 static_call(kvm_x86_get_idt)(vcpu, &dt);
10500 sregs->idt.limit = dt.size;
10501 sregs->idt.base = dt.address;
10502 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10503 sregs->gdt.limit = dt.size;
10504 sregs->gdt.base = dt.address;
10505
10506 sregs->cr2 = vcpu->arch.cr2;
10507 sregs->cr3 = kvm_read_cr3(vcpu);
10508
10509 skip_protected_regs:
10510 sregs->cr0 = kvm_read_cr0(vcpu);
10511 sregs->cr4 = kvm_read_cr4(vcpu);
10512 sregs->cr8 = kvm_get_cr8(vcpu);
10513 sregs->efer = vcpu->arch.efer;
10514 sregs->apic_base = kvm_get_apic_base(vcpu);
10515 }
10516
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10517 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10518 {
10519 __get_sregs_common(vcpu, sregs);
10520
10521 if (vcpu->arch.guest_state_protected)
10522 return;
10523
10524 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10525 set_bit(vcpu->arch.interrupt.nr,
10526 (unsigned long *)sregs->interrupt_bitmap);
10527 }
10528
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)10529 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10530 {
10531 int i;
10532
10533 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10534
10535 if (vcpu->arch.guest_state_protected)
10536 return;
10537
10538 if (is_pae_paging(vcpu)) {
10539 for (i = 0 ; i < 4 ; i++)
10540 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10541 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10542 }
10543 }
10544
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10545 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10546 struct kvm_sregs *sregs)
10547 {
10548 vcpu_load(vcpu);
10549 __get_sregs(vcpu, sregs);
10550 vcpu_put(vcpu);
10551 return 0;
10552 }
10553
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)10554 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10555 struct kvm_mp_state *mp_state)
10556 {
10557 int r;
10558
10559 vcpu_load(vcpu);
10560 if (kvm_mpx_supported())
10561 kvm_load_guest_fpu(vcpu);
10562
10563 r = kvm_apic_accept_events(vcpu);
10564 if (r < 0)
10565 goto out;
10566 r = 0;
10567
10568 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10569 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10570 vcpu->arch.pv.pv_unhalted)
10571 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10572 else
10573 mp_state->mp_state = vcpu->arch.mp_state;
10574
10575 out:
10576 if (kvm_mpx_supported())
10577 kvm_put_guest_fpu(vcpu);
10578 vcpu_put(vcpu);
10579 return r;
10580 }
10581
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)10582 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10583 struct kvm_mp_state *mp_state)
10584 {
10585 int ret = -EINVAL;
10586
10587 vcpu_load(vcpu);
10588
10589 if (!lapic_in_kernel(vcpu) &&
10590 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10591 goto out;
10592
10593 /*
10594 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10595 * INIT state; latched init should be reported using
10596 * KVM_SET_VCPU_EVENTS, so reject it here.
10597 */
10598 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10599 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10600 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10601 goto out;
10602
10603 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10604 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10605 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10606 } else
10607 vcpu->arch.mp_state = mp_state->mp_state;
10608 kvm_make_request(KVM_REQ_EVENT, vcpu);
10609
10610 ret = 0;
10611 out:
10612 vcpu_put(vcpu);
10613 return ret;
10614 }
10615
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)10616 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10617 int reason, bool has_error_code, u32 error_code)
10618 {
10619 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10620 int ret;
10621
10622 init_emulate_ctxt(vcpu);
10623
10624 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10625 has_error_code, error_code);
10626 if (ret) {
10627 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10628 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10629 vcpu->run->internal.ndata = 0;
10630 return 0;
10631 }
10632
10633 kvm_rip_write(vcpu, ctxt->eip);
10634 kvm_set_rflags(vcpu, ctxt->eflags);
10635 return 1;
10636 }
10637 EXPORT_SYMBOL_GPL(kvm_task_switch);
10638
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10639 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10640 {
10641 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10642 /*
10643 * When EFER.LME and CR0.PG are set, the processor is in
10644 * 64-bit mode (though maybe in a 32-bit code segment).
10645 * CR4.PAE and EFER.LMA must be set.
10646 */
10647 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10648 return false;
10649 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10650 return false;
10651 } else {
10652 /*
10653 * Not in 64-bit mode: EFER.LMA is clear and the code
10654 * segment cannot be 64-bit.
10655 */
10656 if (sregs->efer & EFER_LMA || sregs->cs.l)
10657 return false;
10658 }
10659
10660 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
10661 kvm_is_valid_cr0(vcpu, sregs->cr0);
10662 }
10663
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)10664 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10665 int *mmu_reset_needed, bool update_pdptrs)
10666 {
10667 struct msr_data apic_base_msr;
10668 int idx;
10669 struct desc_ptr dt;
10670
10671 if (!kvm_is_valid_sregs(vcpu, sregs))
10672 return -EINVAL;
10673
10674 apic_base_msr.data = sregs->apic_base;
10675 apic_base_msr.host_initiated = true;
10676 if (kvm_set_apic_base(vcpu, &apic_base_msr))
10677 return -EINVAL;
10678
10679 if (vcpu->arch.guest_state_protected)
10680 return 0;
10681
10682 dt.size = sregs->idt.limit;
10683 dt.address = sregs->idt.base;
10684 static_call(kvm_x86_set_idt)(vcpu, &dt);
10685 dt.size = sregs->gdt.limit;
10686 dt.address = sregs->gdt.base;
10687 static_call(kvm_x86_set_gdt)(vcpu, &dt);
10688
10689 vcpu->arch.cr2 = sregs->cr2;
10690 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10691 vcpu->arch.cr3 = sregs->cr3;
10692 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10693
10694 kvm_set_cr8(vcpu, sregs->cr8);
10695
10696 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10697 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10698
10699 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10700 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10701 vcpu->arch.cr0 = sregs->cr0;
10702
10703 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10704 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10705
10706 if (update_pdptrs) {
10707 idx = srcu_read_lock(&vcpu->kvm->srcu);
10708 if (is_pae_paging(vcpu)) {
10709 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10710 *mmu_reset_needed = 1;
10711 }
10712 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10713 }
10714
10715 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10716 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10717 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10718 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10719 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10720 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10721
10722 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10723 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10724
10725 update_cr8_intercept(vcpu);
10726
10727 /* Older userspace won't unhalt the vcpu on reset. */
10728 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10729 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10730 !is_protmode(vcpu))
10731 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10732
10733 return 0;
10734 }
10735
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10736 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10737 {
10738 int pending_vec, max_bits;
10739 int mmu_reset_needed = 0;
10740 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10741
10742 if (ret)
10743 return ret;
10744
10745 if (mmu_reset_needed)
10746 kvm_mmu_reset_context(vcpu);
10747
10748 max_bits = KVM_NR_INTERRUPTS;
10749 pending_vec = find_first_bit(
10750 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10751
10752 if (pending_vec < max_bits) {
10753 kvm_queue_interrupt(vcpu, pending_vec, false);
10754 pr_debug("Set back pending irq %d\n", pending_vec);
10755 kvm_make_request(KVM_REQ_EVENT, vcpu);
10756 }
10757 return 0;
10758 }
10759
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)10760 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10761 {
10762 int mmu_reset_needed = 0;
10763 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10764 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10765 !(sregs2->efer & EFER_LMA);
10766 int i, ret;
10767
10768 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10769 return -EINVAL;
10770
10771 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10772 return -EINVAL;
10773
10774 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10775 &mmu_reset_needed, !valid_pdptrs);
10776 if (ret)
10777 return ret;
10778
10779 if (valid_pdptrs) {
10780 for (i = 0; i < 4 ; i++)
10781 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10782
10783 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10784 mmu_reset_needed = 1;
10785 vcpu->arch.pdptrs_from_userspace = true;
10786 }
10787 if (mmu_reset_needed)
10788 kvm_mmu_reset_context(vcpu);
10789 return 0;
10790 }
10791
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10792 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10793 struct kvm_sregs *sregs)
10794 {
10795 int ret;
10796
10797 vcpu_load(vcpu);
10798 ret = __set_sregs(vcpu, sregs);
10799 vcpu_put(vcpu);
10800 return ret;
10801 }
10802
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)10803 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10804 struct kvm_guest_debug *dbg)
10805 {
10806 unsigned long rflags;
10807 int i, r;
10808
10809 if (vcpu->arch.guest_state_protected)
10810 return -EINVAL;
10811
10812 vcpu_load(vcpu);
10813
10814 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10815 r = -EBUSY;
10816 if (vcpu->arch.exception.pending)
10817 goto out;
10818 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10819 kvm_queue_exception(vcpu, DB_VECTOR);
10820 else
10821 kvm_queue_exception(vcpu, BP_VECTOR);
10822 }
10823
10824 /*
10825 * Read rflags as long as potentially injected trace flags are still
10826 * filtered out.
10827 */
10828 rflags = kvm_get_rflags(vcpu);
10829
10830 vcpu->guest_debug = dbg->control;
10831 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10832 vcpu->guest_debug = 0;
10833
10834 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10835 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10836 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10837 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10838 } else {
10839 for (i = 0; i < KVM_NR_DB_REGS; i++)
10840 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10841 }
10842 kvm_update_dr7(vcpu);
10843
10844 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10845 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10846
10847 /*
10848 * Trigger an rflags update that will inject or remove the trace
10849 * flags.
10850 */
10851 kvm_set_rflags(vcpu, rflags);
10852
10853 static_call(kvm_x86_update_exception_bitmap)(vcpu);
10854
10855 r = 0;
10856
10857 out:
10858 vcpu_put(vcpu);
10859 return r;
10860 }
10861
10862 /*
10863 * Translate a guest virtual address to a guest physical address.
10864 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)10865 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10866 struct kvm_translation *tr)
10867 {
10868 unsigned long vaddr = tr->linear_address;
10869 gpa_t gpa;
10870 int idx;
10871
10872 vcpu_load(vcpu);
10873
10874 idx = srcu_read_lock(&vcpu->kvm->srcu);
10875 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10876 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10877 tr->physical_address = gpa;
10878 tr->valid = gpa != UNMAPPED_GVA;
10879 tr->writeable = 1;
10880 tr->usermode = 0;
10881
10882 vcpu_put(vcpu);
10883 return 0;
10884 }
10885
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10886 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10887 {
10888 struct fxregs_state *fxsave;
10889
10890 if (!vcpu->arch.guest_fpu)
10891 return 0;
10892
10893 vcpu_load(vcpu);
10894
10895 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10896 memcpy(fpu->fpr, fxsave->st_space, 128);
10897 fpu->fcw = fxsave->cwd;
10898 fpu->fsw = fxsave->swd;
10899 fpu->ftwx = fxsave->twd;
10900 fpu->last_opcode = fxsave->fop;
10901 fpu->last_ip = fxsave->rip;
10902 fpu->last_dp = fxsave->rdp;
10903 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10904
10905 vcpu_put(vcpu);
10906 return 0;
10907 }
10908
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10909 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10910 {
10911 struct fxregs_state *fxsave;
10912
10913 if (!vcpu->arch.guest_fpu)
10914 return 0;
10915
10916 vcpu_load(vcpu);
10917
10918 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10919
10920 memcpy(fxsave->st_space, fpu->fpr, 128);
10921 fxsave->cwd = fpu->fcw;
10922 fxsave->swd = fpu->fsw;
10923 fxsave->twd = fpu->ftwx;
10924 fxsave->fop = fpu->last_opcode;
10925 fxsave->rip = fpu->last_ip;
10926 fxsave->rdp = fpu->last_dp;
10927 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10928
10929 vcpu_put(vcpu);
10930 return 0;
10931 }
10932
store_regs(struct kvm_vcpu * vcpu)10933 static void store_regs(struct kvm_vcpu *vcpu)
10934 {
10935 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10936
10937 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10938 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10939
10940 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10941 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10942
10943 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10944 kvm_vcpu_ioctl_x86_get_vcpu_events(
10945 vcpu, &vcpu->run->s.regs.events);
10946 }
10947
sync_regs(struct kvm_vcpu * vcpu)10948 static int sync_regs(struct kvm_vcpu *vcpu)
10949 {
10950 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10951 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10952 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10953 }
10954 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10955 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10956 return -EINVAL;
10957 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10958 }
10959 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10960 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10961 vcpu, &vcpu->run->s.regs.events))
10962 return -EINVAL;
10963 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10964 }
10965
10966 return 0;
10967 }
10968
fx_init(struct kvm_vcpu * vcpu)10969 static void fx_init(struct kvm_vcpu *vcpu)
10970 {
10971 if (!vcpu->arch.guest_fpu)
10972 return;
10973
10974 fpstate_init(&vcpu->arch.guest_fpu->state);
10975 if (boot_cpu_has(X86_FEATURE_XSAVES))
10976 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10977 host_xcr0 | XSTATE_COMPACTION_ENABLED;
10978
10979 /*
10980 * Ensure guest xcr0 is valid for loading
10981 */
10982 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10983
10984 vcpu->arch.cr0 |= X86_CR0_ET;
10985 }
10986
kvm_free_guest_fpu(struct kvm_vcpu * vcpu)10987 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10988 {
10989 if (vcpu->arch.guest_fpu) {
10990 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10991 vcpu->arch.guest_fpu = NULL;
10992 }
10993 }
10994 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10995
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)10996 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10997 {
10998 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10999 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11000 "guest TSC will not be reliable\n");
11001
11002 return 0;
11003 }
11004
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11005 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11006 {
11007 struct page *page;
11008 int r;
11009
11010 vcpu->arch.last_vmentry_cpu = -1;
11011 vcpu->arch.regs_avail = ~0;
11012 vcpu->arch.regs_dirty = ~0;
11013
11014 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11015 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11016 else
11017 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11018
11019 r = kvm_mmu_create(vcpu);
11020 if (r < 0)
11021 return r;
11022
11023 if (irqchip_in_kernel(vcpu->kvm)) {
11024 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11025 if (r < 0)
11026 goto fail_mmu_destroy;
11027
11028 /*
11029 * Defer evaluating inhibits until the vCPU is first run, as
11030 * this vCPU will not get notified of any changes until this
11031 * vCPU is visible to other vCPUs (marked online and added to
11032 * the set of vCPUs). Opportunistically mark APICv active as
11033 * VMX in particularly is highly unlikely to have inhibits.
11034 * Ignore the current per-VM APICv state so that vCPU creation
11035 * is guaranteed to run with a deterministic value, the request
11036 * will ensure the vCPU gets the correct state before VM-Entry.
11037 */
11038 if (enable_apicv) {
11039 vcpu->arch.apicv_active = true;
11040 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11041 }
11042 } else
11043 static_branch_inc(&kvm_has_noapic_vcpu);
11044
11045 r = -ENOMEM;
11046
11047 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11048 if (!page)
11049 goto fail_free_lapic;
11050 vcpu->arch.pio_data = page_address(page);
11051
11052 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11053 GFP_KERNEL_ACCOUNT);
11054 if (!vcpu->arch.mce_banks)
11055 goto fail_free_pio_data;
11056 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11057
11058 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11059 GFP_KERNEL_ACCOUNT))
11060 goto fail_free_mce_banks;
11061
11062 if (!alloc_emulate_ctxt(vcpu))
11063 goto free_wbinvd_dirty_mask;
11064
11065 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
11066 GFP_KERNEL_ACCOUNT);
11067 if (!vcpu->arch.user_fpu) {
11068 pr_err("kvm: failed to allocate userspace's fpu\n");
11069 goto free_emulate_ctxt;
11070 }
11071
11072 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
11073 GFP_KERNEL_ACCOUNT);
11074 if (!vcpu->arch.guest_fpu) {
11075 pr_err("kvm: failed to allocate vcpu's fpu\n");
11076 goto free_user_fpu;
11077 }
11078 fx_init(vcpu);
11079
11080 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11081 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11082
11083 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11084
11085 kvm_async_pf_hash_reset(vcpu);
11086 kvm_pmu_init(vcpu);
11087
11088 vcpu->arch.pending_external_vector = -1;
11089 vcpu->arch.preempted_in_kernel = false;
11090
11091 #if IS_ENABLED(CONFIG_HYPERV)
11092 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11093 #endif
11094
11095 r = static_call(kvm_x86_vcpu_create)(vcpu);
11096 if (r)
11097 goto free_guest_fpu;
11098
11099 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11100 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11101 kvm_vcpu_mtrr_init(vcpu);
11102 vcpu_load(vcpu);
11103 kvm_set_tsc_khz(vcpu, max_tsc_khz);
11104 kvm_vcpu_reset(vcpu, false);
11105 kvm_init_mmu(vcpu);
11106 vcpu_put(vcpu);
11107 return 0;
11108
11109 free_guest_fpu:
11110 kvm_free_guest_fpu(vcpu);
11111 free_user_fpu:
11112 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
11113 free_emulate_ctxt:
11114 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11115 free_wbinvd_dirty_mask:
11116 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11117 fail_free_mce_banks:
11118 kfree(vcpu->arch.mce_banks);
11119 fail_free_pio_data:
11120 free_page((unsigned long)vcpu->arch.pio_data);
11121 fail_free_lapic:
11122 kvm_free_lapic(vcpu);
11123 fail_mmu_destroy:
11124 kvm_mmu_destroy(vcpu);
11125 return r;
11126 }
11127
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11128 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11129 {
11130 struct kvm *kvm = vcpu->kvm;
11131
11132 if (mutex_lock_killable(&vcpu->mutex))
11133 return;
11134 vcpu_load(vcpu);
11135 kvm_synchronize_tsc(vcpu, 0);
11136 vcpu_put(vcpu);
11137
11138 /* poll control enabled by default */
11139 vcpu->arch.msr_kvm_poll_control = 1;
11140
11141 mutex_unlock(&vcpu->mutex);
11142
11143 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11144 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11145 KVMCLOCK_SYNC_PERIOD);
11146 }
11147
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)11148 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11149 {
11150 int idx;
11151
11152 kvmclock_reset(vcpu);
11153
11154 static_call(kvm_x86_vcpu_free)(vcpu);
11155
11156 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11157 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11158 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
11159 kvm_free_guest_fpu(vcpu);
11160
11161 kvm_hv_vcpu_uninit(vcpu);
11162 kvm_pmu_destroy(vcpu);
11163 kfree(vcpu->arch.mce_banks);
11164 kvm_free_lapic(vcpu);
11165 idx = srcu_read_lock(&vcpu->kvm->srcu);
11166 kvm_mmu_destroy(vcpu);
11167 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11168 free_page((unsigned long)vcpu->arch.pio_data);
11169 kvfree(vcpu->arch.cpuid_entries);
11170 if (!lapic_in_kernel(vcpu))
11171 static_branch_dec(&kvm_has_noapic_vcpu);
11172 }
11173
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)11174 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11175 {
11176 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11177 unsigned long new_cr0;
11178 u32 eax, dummy;
11179
11180 /*
11181 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11182 * possible to INIT the vCPU while L2 is active. Force the vCPU back
11183 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11184 * bits), i.e. virtualization is disabled.
11185 */
11186 if (is_guest_mode(vcpu))
11187 kvm_leave_nested(vcpu);
11188
11189 kvm_lapic_reset(vcpu, init_event);
11190
11191 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11192 vcpu->arch.hflags = 0;
11193
11194 vcpu->arch.smi_pending = 0;
11195 vcpu->arch.smi_count = 0;
11196 atomic_set(&vcpu->arch.nmi_queued, 0);
11197 vcpu->arch.nmi_pending = 0;
11198 vcpu->arch.nmi_injected = false;
11199 kvm_clear_interrupt_queue(vcpu);
11200 kvm_clear_exception_queue(vcpu);
11201
11202 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11203 kvm_update_dr0123(vcpu);
11204 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11205 vcpu->arch.dr7 = DR7_FIXED_1;
11206 kvm_update_dr7(vcpu);
11207
11208 vcpu->arch.cr2 = 0;
11209
11210 kvm_make_request(KVM_REQ_EVENT, vcpu);
11211 vcpu->arch.apf.msr_en_val = 0;
11212 vcpu->arch.apf.msr_int_val = 0;
11213 vcpu->arch.st.msr_val = 0;
11214
11215 kvmclock_reset(vcpu);
11216
11217 kvm_clear_async_pf_completion_queue(vcpu);
11218 kvm_async_pf_hash_reset(vcpu);
11219 vcpu->arch.apf.halted = false;
11220
11221 if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
11222 void *mpx_state_buffer;
11223
11224 /*
11225 * To avoid have the INIT path from kvm_apic_has_events() that be
11226 * called with loaded FPU and does not let userspace fix the state.
11227 */
11228 if (init_event)
11229 kvm_put_guest_fpu(vcpu);
11230 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
11231 XFEATURE_BNDREGS);
11232 if (mpx_state_buffer)
11233 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
11234 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
11235 XFEATURE_BNDCSR);
11236 if (mpx_state_buffer)
11237 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
11238 if (init_event)
11239 kvm_load_guest_fpu(vcpu);
11240 }
11241
11242 if (!init_event) {
11243 kvm_pmu_reset(vcpu);
11244 vcpu->arch.smbase = 0x30000;
11245
11246 vcpu->arch.msr_misc_features_enables = 0;
11247
11248 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11249 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11250 }
11251
11252 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11253 vcpu->arch.regs_avail = ~0;
11254 vcpu->arch.regs_dirty = ~0;
11255
11256 /*
11257 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11258 * if no CPUID match is found. Note, it's impossible to get a match at
11259 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11260 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
11261 * But, go through the motions in case that's ever remedied.
11262 */
11263 eax = 1;
11264 if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
11265 eax = 0x600;
11266 kvm_rdx_write(vcpu, eax);
11267
11268 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11269
11270 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11271 kvm_rip_write(vcpu, 0xfff0);
11272
11273 vcpu->arch.cr3 = 0;
11274 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11275
11276 /*
11277 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
11278 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11279 * (or qualify) that with a footnote stating that CD/NW are preserved.
11280 */
11281 new_cr0 = X86_CR0_ET;
11282 if (init_event)
11283 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11284 else
11285 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11286
11287 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11288 static_call(kvm_x86_set_cr4)(vcpu, 0);
11289 static_call(kvm_x86_set_efer)(vcpu, 0);
11290 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11291
11292 /*
11293 * Reset the MMU context if paging was enabled prior to INIT (which is
11294 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET). Unlike the
11295 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11296 * checked because it is unconditionally cleared on INIT and all other
11297 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11298 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11299 */
11300 if (old_cr0 & X86_CR0_PG)
11301 kvm_mmu_reset_context(vcpu);
11302
11303 /*
11304 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
11305 * APM states the TLBs are untouched by INIT, but it also states that
11306 * the TLBs are flushed on "External initialization of the processor."
11307 * Flush the guest TLB regardless of vendor, there is no meaningful
11308 * benefit in relying on the guest to flush the TLB immediately after
11309 * INIT. A spurious TLB flush is benign and likely negligible from a
11310 * performance perspective.
11311 */
11312 if (init_event)
11313 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11314 }
11315 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11316
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)11317 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11318 {
11319 struct kvm_segment cs;
11320
11321 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11322 cs.selector = vector << 8;
11323 cs.base = vector << 12;
11324 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11325 kvm_rip_write(vcpu, 0);
11326 }
11327 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11328
kvm_arch_hardware_enable(void)11329 int kvm_arch_hardware_enable(void)
11330 {
11331 struct kvm *kvm;
11332 struct kvm_vcpu *vcpu;
11333 int i;
11334 int ret;
11335 u64 local_tsc;
11336 u64 max_tsc = 0;
11337 bool stable, backwards_tsc = false;
11338
11339 kvm_user_return_msr_cpu_online();
11340 ret = static_call(kvm_x86_hardware_enable)();
11341 if (ret != 0)
11342 return ret;
11343
11344 local_tsc = rdtsc();
11345 stable = !kvm_check_tsc_unstable();
11346 list_for_each_entry(kvm, &vm_list, vm_list) {
11347 kvm_for_each_vcpu(i, vcpu, kvm) {
11348 if (!stable && vcpu->cpu == smp_processor_id())
11349 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11350 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11351 backwards_tsc = true;
11352 if (vcpu->arch.last_host_tsc > max_tsc)
11353 max_tsc = vcpu->arch.last_host_tsc;
11354 }
11355 }
11356 }
11357
11358 /*
11359 * Sometimes, even reliable TSCs go backwards. This happens on
11360 * platforms that reset TSC during suspend or hibernate actions, but
11361 * maintain synchronization. We must compensate. Fortunately, we can
11362 * detect that condition here, which happens early in CPU bringup,
11363 * before any KVM threads can be running. Unfortunately, we can't
11364 * bring the TSCs fully up to date with real time, as we aren't yet far
11365 * enough into CPU bringup that we know how much real time has actually
11366 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11367 * variables that haven't been updated yet.
11368 *
11369 * So we simply find the maximum observed TSC above, then record the
11370 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
11371 * the adjustment will be applied. Note that we accumulate
11372 * adjustments, in case multiple suspend cycles happen before some VCPU
11373 * gets a chance to run again. In the event that no KVM threads get a
11374 * chance to run, we will miss the entire elapsed period, as we'll have
11375 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11376 * loose cycle time. This isn't too big a deal, since the loss will be
11377 * uniform across all VCPUs (not to mention the scenario is extremely
11378 * unlikely). It is possible that a second hibernate recovery happens
11379 * much faster than a first, causing the observed TSC here to be
11380 * smaller; this would require additional padding adjustment, which is
11381 * why we set last_host_tsc to the local tsc observed here.
11382 *
11383 * N.B. - this code below runs only on platforms with reliable TSC,
11384 * as that is the only way backwards_tsc is set above. Also note
11385 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11386 * have the same delta_cyc adjustment applied if backwards_tsc
11387 * is detected. Note further, this adjustment is only done once,
11388 * as we reset last_host_tsc on all VCPUs to stop this from being
11389 * called multiple times (one for each physical CPU bringup).
11390 *
11391 * Platforms with unreliable TSCs don't have to deal with this, they
11392 * will be compensated by the logic in vcpu_load, which sets the TSC to
11393 * catchup mode. This will catchup all VCPUs to real time, but cannot
11394 * guarantee that they stay in perfect synchronization.
11395 */
11396 if (backwards_tsc) {
11397 u64 delta_cyc = max_tsc - local_tsc;
11398 list_for_each_entry(kvm, &vm_list, vm_list) {
11399 kvm->arch.backwards_tsc_observed = true;
11400 kvm_for_each_vcpu(i, vcpu, kvm) {
11401 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11402 vcpu->arch.last_host_tsc = local_tsc;
11403 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11404 }
11405
11406 /*
11407 * We have to disable TSC offset matching.. if you were
11408 * booting a VM while issuing an S4 host suspend....
11409 * you may have some problem. Solving this issue is
11410 * left as an exercise to the reader.
11411 */
11412 kvm->arch.last_tsc_nsec = 0;
11413 kvm->arch.last_tsc_write = 0;
11414 }
11415
11416 }
11417 return 0;
11418 }
11419
kvm_arch_hardware_disable(void)11420 void kvm_arch_hardware_disable(void)
11421 {
11422 static_call(kvm_x86_hardware_disable)();
11423 drop_user_return_notifiers();
11424 }
11425
kvm_arch_hardware_setup(void * opaque)11426 int kvm_arch_hardware_setup(void *opaque)
11427 {
11428 struct kvm_x86_init_ops *ops = opaque;
11429 int r;
11430
11431 rdmsrl_safe(MSR_EFER, &host_efer);
11432
11433 if (boot_cpu_has(X86_FEATURE_XSAVES))
11434 rdmsrl(MSR_IA32_XSS, host_xss);
11435
11436 r = ops->hardware_setup();
11437 if (r != 0)
11438 return r;
11439
11440 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11441 kvm_ops_static_call_update();
11442
11443 if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
11444 kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
11445 perf_register_guest_info_callbacks(&kvm_guest_cbs);
11446
11447 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11448 supported_xss = 0;
11449
11450 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11451 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11452 #undef __kvm_cpu_cap_has
11453
11454 if (kvm_has_tsc_control) {
11455 /*
11456 * Make sure the user can only configure tsc_khz values that
11457 * fit into a signed integer.
11458 * A min value is not calculated because it will always
11459 * be 1 on all machines.
11460 */
11461 u64 max = min(0x7fffffffULL,
11462 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11463 kvm_max_guest_tsc_khz = max;
11464
11465 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11466 }
11467
11468 kvm_init_msr_list();
11469 return 0;
11470 }
11471
kvm_arch_hardware_unsetup(void)11472 void kvm_arch_hardware_unsetup(void)
11473 {
11474 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
11475 kvm_guest_cbs.handle_intel_pt_intr = NULL;
11476
11477 static_call(kvm_x86_hardware_unsetup)();
11478 }
11479
kvm_arch_check_processor_compat(void * opaque)11480 int kvm_arch_check_processor_compat(void *opaque)
11481 {
11482 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11483 struct kvm_x86_init_ops *ops = opaque;
11484
11485 WARN_ON(!irqs_disabled());
11486
11487 if (__cr4_reserved_bits(cpu_has, c) !=
11488 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11489 return -EIO;
11490
11491 return ops->check_processor_compatibility();
11492 }
11493
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)11494 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11495 {
11496 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11497 }
11498 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11499
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)11500 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11501 {
11502 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11503 }
11504
11505 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11506 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11507
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)11508 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11509 {
11510 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11511
11512 vcpu->arch.l1tf_flush_l1d = true;
11513 if (pmu->version && unlikely(pmu->event_count)) {
11514 pmu->need_cleanup = true;
11515 kvm_make_request(KVM_REQ_PMU, vcpu);
11516 }
11517 static_call(kvm_x86_sched_in)(vcpu, cpu);
11518 }
11519
kvm_arch_free_vm(struct kvm * kvm)11520 void kvm_arch_free_vm(struct kvm *kvm)
11521 {
11522 kfree(to_kvm_hv(kvm)->hv_pa_pg);
11523 vfree(kvm);
11524 }
11525
11526
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)11527 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11528 {
11529 int ret;
11530
11531 if (type)
11532 return -EINVAL;
11533
11534 ret = kvm_page_track_init(kvm);
11535 if (ret)
11536 return ret;
11537
11538 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11539 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11540 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11541 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11542 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11543 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11544
11545 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11546 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11547 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11548 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11549 &kvm->arch.irq_sources_bitmap);
11550
11551 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11552 mutex_init(&kvm->arch.apic_map_lock);
11553 raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11554
11555 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11556 pvclock_update_vm_gtod_copy(kvm);
11557
11558 kvm->arch.guest_can_read_msr_platform_info = true;
11559
11560 #if IS_ENABLED(CONFIG_HYPERV)
11561 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11562 kvm->arch.hv_root_tdp = INVALID_PAGE;
11563 #endif
11564
11565 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11566 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11567
11568 kvm_apicv_init(kvm);
11569 kvm_hv_init_vm(kvm);
11570 kvm_mmu_init_vm(kvm);
11571 kvm_xen_init_vm(kvm);
11572
11573 return static_call(kvm_x86_vm_init)(kvm);
11574 }
11575
kvm_arch_post_init_vm(struct kvm * kvm)11576 int kvm_arch_post_init_vm(struct kvm *kvm)
11577 {
11578 return kvm_mmu_post_init_vm(kvm);
11579 }
11580
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)11581 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11582 {
11583 vcpu_load(vcpu);
11584 kvm_mmu_unload(vcpu);
11585 vcpu_put(vcpu);
11586 }
11587
kvm_free_vcpus(struct kvm * kvm)11588 static void kvm_free_vcpus(struct kvm *kvm)
11589 {
11590 unsigned int i;
11591 struct kvm_vcpu *vcpu;
11592
11593 /*
11594 * Unpin any mmu pages first.
11595 */
11596 kvm_for_each_vcpu(i, vcpu, kvm) {
11597 kvm_clear_async_pf_completion_queue(vcpu);
11598 kvm_unload_vcpu_mmu(vcpu);
11599 }
11600 kvm_for_each_vcpu(i, vcpu, kvm)
11601 kvm_vcpu_destroy(vcpu);
11602
11603 mutex_lock(&kvm->lock);
11604 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11605 kvm->vcpus[i] = NULL;
11606
11607 atomic_set(&kvm->online_vcpus, 0);
11608 mutex_unlock(&kvm->lock);
11609 }
11610
kvm_arch_sync_events(struct kvm * kvm)11611 void kvm_arch_sync_events(struct kvm *kvm)
11612 {
11613 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11614 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11615 kvm_free_pit(kvm);
11616 }
11617
11618 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
11619
11620 /**
11621 * __x86_set_memory_region: Setup KVM internal memory slot
11622 *
11623 * @kvm: the kvm pointer to the VM.
11624 * @id: the slot ID to setup.
11625 * @gpa: the GPA to install the slot (unused when @size == 0).
11626 * @size: the size of the slot. Set to zero to uninstall a slot.
11627 *
11628 * This function helps to setup a KVM internal memory slot. Specify
11629 * @size > 0 to install a new slot, while @size == 0 to uninstall a
11630 * slot. The return code can be one of the following:
11631 *
11632 * HVA: on success (uninstall will return a bogus HVA)
11633 * -errno: on error
11634 *
11635 * The caller should always use IS_ERR() to check the return value
11636 * before use. Note, the KVM internal memory slots are guaranteed to
11637 * remain valid and unchanged until the VM is destroyed, i.e., the
11638 * GPA->HVA translation will not change. However, the HVA is a user
11639 * address, i.e. its accessibility is not guaranteed, and must be
11640 * accessed via __copy_{to,from}_user().
11641 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)11642 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11643 u32 size)
11644 {
11645 int i, r;
11646 unsigned long hva, old_npages;
11647 struct kvm_memslots *slots = kvm_memslots(kvm);
11648 struct kvm_memory_slot *slot;
11649
11650 /* Called with kvm->slots_lock held. */
11651 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11652 return ERR_PTR_USR(-EINVAL);
11653
11654 slot = id_to_memslot(slots, id);
11655 if (size) {
11656 if (slot && slot->npages)
11657 return ERR_PTR_USR(-EEXIST);
11658
11659 /*
11660 * MAP_SHARED to prevent internal slot pages from being moved
11661 * by fork()/COW.
11662 */
11663 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11664 MAP_SHARED | MAP_ANONYMOUS, 0);
11665 if (IS_ERR((void *)hva))
11666 return (void __user *)hva;
11667 } else {
11668 if (!slot || !slot->npages)
11669 return NULL;
11670
11671 old_npages = slot->npages;
11672 hva = slot->userspace_addr;
11673 }
11674
11675 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11676 struct kvm_userspace_memory_region m;
11677
11678 m.slot = id | (i << 16);
11679 m.flags = 0;
11680 m.guest_phys_addr = gpa;
11681 m.userspace_addr = hva;
11682 m.memory_size = size;
11683 r = __kvm_set_memory_region(kvm, &m);
11684 if (r < 0)
11685 return ERR_PTR_USR(r);
11686 }
11687
11688 if (!size)
11689 vm_munmap(hva, old_npages * PAGE_SIZE);
11690
11691 return (void __user *)hva;
11692 }
11693 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11694
kvm_arch_pre_destroy_vm(struct kvm * kvm)11695 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11696 {
11697 kvm_mmu_pre_destroy_vm(kvm);
11698 }
11699
kvm_arch_destroy_vm(struct kvm * kvm)11700 void kvm_arch_destroy_vm(struct kvm *kvm)
11701 {
11702 if (current->mm == kvm->mm) {
11703 /*
11704 * Free memory regions allocated on behalf of userspace,
11705 * unless the the memory map has changed due to process exit
11706 * or fd copying.
11707 */
11708 mutex_lock(&kvm->slots_lock);
11709 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11710 0, 0);
11711 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11712 0, 0);
11713 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11714 mutex_unlock(&kvm->slots_lock);
11715 }
11716 static_call_cond(kvm_x86_vm_destroy)(kvm);
11717 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11718 kvm_pic_destroy(kvm);
11719 kvm_ioapic_destroy(kvm);
11720 kvm_free_vcpus(kvm);
11721 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11722 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11723 kvm_mmu_uninit_vm(kvm);
11724 kvm_page_track_cleanup(kvm);
11725 kvm_xen_destroy_vm(kvm);
11726 kvm_hv_destroy_vm(kvm);
11727 }
11728
memslot_rmap_free(struct kvm_memory_slot * slot)11729 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11730 {
11731 int i;
11732
11733 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11734 kvfree(slot->arch.rmap[i]);
11735 slot->arch.rmap[i] = NULL;
11736 }
11737 }
11738
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)11739 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11740 {
11741 int i;
11742
11743 memslot_rmap_free(slot);
11744
11745 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11746 kvfree(slot->arch.lpage_info[i - 1]);
11747 slot->arch.lpage_info[i - 1] = NULL;
11748 }
11749
11750 kvm_page_track_free_memslot(slot);
11751 }
11752
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)11753 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11754 unsigned long npages)
11755 {
11756 const int sz = sizeof(*slot->arch.rmap[0]);
11757 int i;
11758
11759 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11760 int level = i + 1;
11761 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11762
11763 if (slot->arch.rmap[i])
11764 continue;
11765
11766 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11767 if (!slot->arch.rmap[i]) {
11768 memslot_rmap_free(slot);
11769 return -ENOMEM;
11770 }
11771 }
11772
11773 return 0;
11774 }
11775
alloc_all_memslots_rmaps(struct kvm * kvm)11776 int alloc_all_memslots_rmaps(struct kvm *kvm)
11777 {
11778 struct kvm_memslots *slots;
11779 struct kvm_memory_slot *slot;
11780 int r, i;
11781
11782 /*
11783 * Check if memslots alreday have rmaps early before acquiring
11784 * the slots_arch_lock below.
11785 */
11786 if (kvm_memslots_have_rmaps(kvm))
11787 return 0;
11788
11789 mutex_lock(&kvm->slots_arch_lock);
11790
11791 /*
11792 * Read memslots_have_rmaps again, under the slots arch lock,
11793 * before allocating the rmaps
11794 */
11795 if (kvm_memslots_have_rmaps(kvm)) {
11796 mutex_unlock(&kvm->slots_arch_lock);
11797 return 0;
11798 }
11799
11800 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11801 slots = __kvm_memslots(kvm, i);
11802 kvm_for_each_memslot(slot, slots) {
11803 r = memslot_rmap_alloc(slot, slot->npages);
11804 if (r) {
11805 mutex_unlock(&kvm->slots_arch_lock);
11806 return r;
11807 }
11808 }
11809 }
11810
11811 /*
11812 * Ensure that memslots_have_rmaps becomes true strictly after
11813 * all the rmap pointers are set.
11814 */
11815 smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11816 mutex_unlock(&kvm->slots_arch_lock);
11817 return 0;
11818 }
11819
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)11820 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11821 struct kvm_memory_slot *slot,
11822 unsigned long npages)
11823 {
11824 int i, r;
11825
11826 /*
11827 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
11828 * old arrays will be freed by __kvm_set_memory_region() if installing
11829 * the new memslot is successful.
11830 */
11831 memset(&slot->arch, 0, sizeof(slot->arch));
11832
11833 if (kvm_memslots_have_rmaps(kvm)) {
11834 r = memslot_rmap_alloc(slot, npages);
11835 if (r)
11836 return r;
11837 }
11838
11839 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11840 struct kvm_lpage_info *linfo;
11841 unsigned long ugfn;
11842 int lpages;
11843 int level = i + 1;
11844
11845 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11846
11847 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11848 if (!linfo)
11849 goto out_free;
11850
11851 slot->arch.lpage_info[i - 1] = linfo;
11852
11853 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11854 linfo[0].disallow_lpage = 1;
11855 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11856 linfo[lpages - 1].disallow_lpage = 1;
11857 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11858 /*
11859 * If the gfn and userspace address are not aligned wrt each
11860 * other, disable large page support for this slot.
11861 */
11862 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11863 unsigned long j;
11864
11865 for (j = 0; j < lpages; ++j)
11866 linfo[j].disallow_lpage = 1;
11867 }
11868 }
11869
11870 if (kvm_page_track_create_memslot(slot, npages))
11871 goto out_free;
11872
11873 return 0;
11874
11875 out_free:
11876 memslot_rmap_free(slot);
11877
11878 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11879 kvfree(slot->arch.lpage_info[i - 1]);
11880 slot->arch.lpage_info[i - 1] = NULL;
11881 }
11882 return -ENOMEM;
11883 }
11884
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)11885 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11886 {
11887 struct kvm_vcpu *vcpu;
11888 int i;
11889
11890 /*
11891 * memslots->generation has been incremented.
11892 * mmio generation may have reached its maximum value.
11893 */
11894 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11895
11896 /* Force re-initialization of steal_time cache */
11897 kvm_for_each_vcpu(i, vcpu, kvm)
11898 kvm_vcpu_kick(vcpu);
11899 }
11900
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)11901 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11902 struct kvm_memory_slot *memslot,
11903 const struct kvm_userspace_memory_region *mem,
11904 enum kvm_mr_change change)
11905 {
11906 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11907 return kvm_alloc_memslot_metadata(kvm, memslot,
11908 mem->memory_size >> PAGE_SHIFT);
11909 return 0;
11910 }
11911
11912
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)11913 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11914 {
11915 struct kvm_arch *ka = &kvm->arch;
11916
11917 if (!kvm_x86_ops.cpu_dirty_log_size)
11918 return;
11919
11920 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11921 (!enable && --ka->cpu_dirty_logging_count == 0))
11922 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11923
11924 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11925 }
11926
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)11927 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11928 struct kvm_memory_slot *old,
11929 const struct kvm_memory_slot *new,
11930 enum kvm_mr_change change)
11931 {
11932 bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11933
11934 /*
11935 * Update CPU dirty logging if dirty logging is being toggled. This
11936 * applies to all operations.
11937 */
11938 if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11939 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11940
11941 /*
11942 * Nothing more to do for RO slots (which can't be dirtied and can't be
11943 * made writable) or CREATE/MOVE/DELETE of a slot.
11944 *
11945 * For a memslot with dirty logging disabled:
11946 * CREATE: No dirty mappings will already exist.
11947 * MOVE/DELETE: The old mappings will already have been cleaned up by
11948 * kvm_arch_flush_shadow_memslot()
11949 *
11950 * For a memslot with dirty logging enabled:
11951 * CREATE: No shadow pages exist, thus nothing to write-protect
11952 * and no dirty bits to clear.
11953 * MOVE/DELETE: The old mappings will already have been cleaned up by
11954 * kvm_arch_flush_shadow_memslot().
11955 */
11956 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11957 return;
11958
11959 /*
11960 * READONLY and non-flags changes were filtered out above, and the only
11961 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11962 * logging isn't being toggled on or off.
11963 */
11964 if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11965 return;
11966
11967 if (!log_dirty_pages) {
11968 /*
11969 * Dirty logging tracks sptes in 4k granularity, meaning that
11970 * large sptes have to be split. If live migration succeeds,
11971 * the guest in the source machine will be destroyed and large
11972 * sptes will be created in the destination. However, if the
11973 * guest continues to run in the source machine (for example if
11974 * live migration fails), small sptes will remain around and
11975 * cause bad performance.
11976 *
11977 * Scan sptes if dirty logging has been stopped, dropping those
11978 * which can be collapsed into a single large-page spte. Later
11979 * page faults will create the large-page sptes.
11980 */
11981 kvm_mmu_zap_collapsible_sptes(kvm, new);
11982 } else {
11983 /*
11984 * Initially-all-set does not require write protecting any page,
11985 * because they're all assumed to be dirty.
11986 */
11987 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11988 return;
11989
11990 if (kvm_x86_ops.cpu_dirty_log_size) {
11991 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11992 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11993 } else {
11994 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11995 }
11996 }
11997 }
11998
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)11999 void kvm_arch_commit_memory_region(struct kvm *kvm,
12000 const struct kvm_userspace_memory_region *mem,
12001 struct kvm_memory_slot *old,
12002 const struct kvm_memory_slot *new,
12003 enum kvm_mr_change change)
12004 {
12005 if (!kvm->arch.n_requested_mmu_pages)
12006 kvm_mmu_change_mmu_pages(kvm,
12007 kvm_mmu_calculate_default_mmu_pages(kvm));
12008
12009 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12010
12011 /* Free the arrays associated with the old memslot. */
12012 if (change == KVM_MR_MOVE)
12013 kvm_arch_free_memslot(kvm, old);
12014 }
12015
kvm_arch_flush_shadow_all(struct kvm * kvm)12016 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12017 {
12018 kvm_mmu_zap_all(kvm);
12019 }
12020
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12021 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12022 struct kvm_memory_slot *slot)
12023 {
12024 kvm_page_track_flush_slot(kvm, slot);
12025 }
12026
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12027 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12028 {
12029 return (is_guest_mode(vcpu) &&
12030 kvm_x86_ops.guest_apic_has_interrupt &&
12031 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12032 }
12033
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12034 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12035 {
12036 if (!list_empty_careful(&vcpu->async_pf.done))
12037 return true;
12038
12039 if (kvm_apic_has_events(vcpu))
12040 return true;
12041
12042 if (vcpu->arch.pv.pv_unhalted)
12043 return true;
12044
12045 if (vcpu->arch.exception.pending)
12046 return true;
12047
12048 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12049 (vcpu->arch.nmi_pending &&
12050 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12051 return true;
12052
12053 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12054 (vcpu->arch.smi_pending &&
12055 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12056 return true;
12057
12058 if (kvm_arch_interrupt_allowed(vcpu) &&
12059 (kvm_cpu_has_interrupt(vcpu) ||
12060 kvm_guest_apic_has_interrupt(vcpu)))
12061 return true;
12062
12063 if (kvm_hv_has_stimer_pending(vcpu))
12064 return true;
12065
12066 if (is_guest_mode(vcpu) &&
12067 kvm_x86_ops.nested_ops->hv_timer_pending &&
12068 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12069 return true;
12070
12071 return false;
12072 }
12073
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12074 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12075 {
12076 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12077 }
12078
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12079 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12080 {
12081 if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12082 return true;
12083
12084 return false;
12085 }
12086
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12087 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12088 {
12089 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12090 return true;
12091
12092 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12093 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12094 kvm_test_request(KVM_REQ_EVENT, vcpu))
12095 return true;
12096
12097 return kvm_arch_dy_has_pending_interrupt(vcpu);
12098 }
12099
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12100 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12101 {
12102 if (vcpu->arch.guest_state_protected)
12103 return true;
12104
12105 return vcpu->arch.preempted_in_kernel;
12106 }
12107
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12108 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12109 {
12110 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12111 }
12112
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12113 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12114 {
12115 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12116 }
12117
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12118 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12119 {
12120 /* Can't read the RIP when guest state is protected, just return 0 */
12121 if (vcpu->arch.guest_state_protected)
12122 return 0;
12123
12124 if (is_64_bit_mode(vcpu))
12125 return kvm_rip_read(vcpu);
12126 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12127 kvm_rip_read(vcpu));
12128 }
12129 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12130
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12131 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12132 {
12133 return kvm_get_linear_rip(vcpu) == linear_rip;
12134 }
12135 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12136
kvm_get_rflags(struct kvm_vcpu * vcpu)12137 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12138 {
12139 unsigned long rflags;
12140
12141 rflags = static_call(kvm_x86_get_rflags)(vcpu);
12142 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12143 rflags &= ~X86_EFLAGS_TF;
12144 return rflags;
12145 }
12146 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12147
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12148 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12149 {
12150 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12151 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12152 rflags |= X86_EFLAGS_TF;
12153 static_call(kvm_x86_set_rflags)(vcpu, rflags);
12154 }
12155
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12156 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12157 {
12158 __kvm_set_rflags(vcpu, rflags);
12159 kvm_make_request(KVM_REQ_EVENT, vcpu);
12160 }
12161 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12162
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12163 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12164 {
12165 int r;
12166
12167 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12168 work->wakeup_all)
12169 return;
12170
12171 r = kvm_mmu_reload(vcpu);
12172 if (unlikely(r))
12173 return;
12174
12175 if (!vcpu->arch.mmu->direct_map &&
12176 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12177 return;
12178
12179 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12180 }
12181
kvm_async_pf_hash_fn(gfn_t gfn)12182 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12183 {
12184 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12185
12186 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12187 }
12188
kvm_async_pf_next_probe(u32 key)12189 static inline u32 kvm_async_pf_next_probe(u32 key)
12190 {
12191 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12192 }
12193
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12194 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12195 {
12196 u32 key = kvm_async_pf_hash_fn(gfn);
12197
12198 while (vcpu->arch.apf.gfns[key] != ~0)
12199 key = kvm_async_pf_next_probe(key);
12200
12201 vcpu->arch.apf.gfns[key] = gfn;
12202 }
12203
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)12204 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12205 {
12206 int i;
12207 u32 key = kvm_async_pf_hash_fn(gfn);
12208
12209 for (i = 0; i < ASYNC_PF_PER_VCPU &&
12210 (vcpu->arch.apf.gfns[key] != gfn &&
12211 vcpu->arch.apf.gfns[key] != ~0); i++)
12212 key = kvm_async_pf_next_probe(key);
12213
12214 return key;
12215 }
12216
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12217 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12218 {
12219 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12220 }
12221
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12222 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12223 {
12224 u32 i, j, k;
12225
12226 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12227
12228 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12229 return;
12230
12231 while (true) {
12232 vcpu->arch.apf.gfns[i] = ~0;
12233 do {
12234 j = kvm_async_pf_next_probe(j);
12235 if (vcpu->arch.apf.gfns[j] == ~0)
12236 return;
12237 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12238 /*
12239 * k lies cyclically in ]i,j]
12240 * | i.k.j |
12241 * |....j i.k.| or |.k..j i...|
12242 */
12243 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12244 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12245 i = j;
12246 }
12247 }
12248
apf_put_user_notpresent(struct kvm_vcpu * vcpu)12249 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12250 {
12251 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12252
12253 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12254 sizeof(reason));
12255 }
12256
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)12257 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12258 {
12259 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12260
12261 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12262 &token, offset, sizeof(token));
12263 }
12264
apf_pageready_slot_free(struct kvm_vcpu * vcpu)12265 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12266 {
12267 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12268 u32 val;
12269
12270 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12271 &val, offset, sizeof(val)))
12272 return false;
12273
12274 return !val;
12275 }
12276
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)12277 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12278 {
12279 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12280 return false;
12281
12282 if (!kvm_pv_async_pf_enabled(vcpu) ||
12283 (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12284 return false;
12285
12286 return true;
12287 }
12288
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)12289 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12290 {
12291 if (unlikely(!lapic_in_kernel(vcpu) ||
12292 kvm_event_needs_reinjection(vcpu) ||
12293 vcpu->arch.exception.pending))
12294 return false;
12295
12296 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12297 return false;
12298
12299 /*
12300 * If interrupts are off we cannot even use an artificial
12301 * halt state.
12302 */
12303 return kvm_arch_interrupt_allowed(vcpu);
12304 }
12305
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12306 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12307 struct kvm_async_pf *work)
12308 {
12309 struct x86_exception fault;
12310
12311 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12312 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12313
12314 if (kvm_can_deliver_async_pf(vcpu) &&
12315 !apf_put_user_notpresent(vcpu)) {
12316 fault.vector = PF_VECTOR;
12317 fault.error_code_valid = true;
12318 fault.error_code = 0;
12319 fault.nested_page_fault = false;
12320 fault.address = work->arch.token;
12321 fault.async_page_fault = true;
12322 kvm_inject_page_fault(vcpu, &fault);
12323 return true;
12324 } else {
12325 /*
12326 * It is not possible to deliver a paravirtualized asynchronous
12327 * page fault, but putting the guest in an artificial halt state
12328 * can be beneficial nevertheless: if an interrupt arrives, we
12329 * can deliver it timely and perhaps the guest will schedule
12330 * another process. When the instruction that triggered a page
12331 * fault is retried, hopefully the page will be ready in the host.
12332 */
12333 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12334 return false;
12335 }
12336 }
12337
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12338 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12339 struct kvm_async_pf *work)
12340 {
12341 struct kvm_lapic_irq irq = {
12342 .delivery_mode = APIC_DM_FIXED,
12343 .vector = vcpu->arch.apf.vec
12344 };
12345
12346 if (work->wakeup_all)
12347 work->arch.token = ~0; /* broadcast wakeup */
12348 else
12349 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12350 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12351
12352 if ((work->wakeup_all || work->notpresent_injected) &&
12353 kvm_pv_async_pf_enabled(vcpu) &&
12354 !apf_put_user_ready(vcpu, work->arch.token)) {
12355 vcpu->arch.apf.pageready_pending = true;
12356 kvm_apic_set_irq(vcpu, &irq, NULL);
12357 }
12358
12359 vcpu->arch.apf.halted = false;
12360 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12361 }
12362
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)12363 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12364 {
12365 kvm_make_request(KVM_REQ_APF_READY, vcpu);
12366 if (!vcpu->arch.apf.pageready_pending)
12367 kvm_vcpu_kick(vcpu);
12368 }
12369
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)12370 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12371 {
12372 if (!kvm_pv_async_pf_enabled(vcpu))
12373 return true;
12374 else
12375 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12376 }
12377
kvm_arch_start_assignment(struct kvm * kvm)12378 void kvm_arch_start_assignment(struct kvm *kvm)
12379 {
12380 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12381 static_call_cond(kvm_x86_start_assignment)(kvm);
12382 }
12383 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12384
kvm_arch_end_assignment(struct kvm * kvm)12385 void kvm_arch_end_assignment(struct kvm *kvm)
12386 {
12387 atomic_dec(&kvm->arch.assigned_device_count);
12388 }
12389 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12390
kvm_arch_has_assigned_device(struct kvm * kvm)12391 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12392 {
12393 return arch_atomic_read(&kvm->arch.assigned_device_count);
12394 }
12395 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12396
kvm_arch_register_noncoherent_dma(struct kvm * kvm)12397 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12398 {
12399 atomic_inc(&kvm->arch.noncoherent_dma_count);
12400 }
12401 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12402
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)12403 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12404 {
12405 atomic_dec(&kvm->arch.noncoherent_dma_count);
12406 }
12407 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12408
kvm_arch_has_noncoherent_dma(struct kvm * kvm)12409 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12410 {
12411 return atomic_read(&kvm->arch.noncoherent_dma_count);
12412 }
12413 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12414
kvm_arch_has_irq_bypass(void)12415 bool kvm_arch_has_irq_bypass(void)
12416 {
12417 return true;
12418 }
12419
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)12420 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12421 struct irq_bypass_producer *prod)
12422 {
12423 struct kvm_kernel_irqfd *irqfd =
12424 container_of(cons, struct kvm_kernel_irqfd, consumer);
12425 int ret;
12426
12427 irqfd->producer = prod;
12428 kvm_arch_start_assignment(irqfd->kvm);
12429 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12430 prod->irq, irqfd->gsi, 1);
12431
12432 if (ret)
12433 kvm_arch_end_assignment(irqfd->kvm);
12434
12435 return ret;
12436 }
12437
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)12438 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12439 struct irq_bypass_producer *prod)
12440 {
12441 int ret;
12442 struct kvm_kernel_irqfd *irqfd =
12443 container_of(cons, struct kvm_kernel_irqfd, consumer);
12444
12445 WARN_ON(irqfd->producer != prod);
12446 irqfd->producer = NULL;
12447
12448 /*
12449 * When producer of consumer is unregistered, we change back to
12450 * remapped mode, so we can re-use the current implementation
12451 * when the irq is masked/disabled or the consumer side (KVM
12452 * int this case doesn't want to receive the interrupts.
12453 */
12454 ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12455 if (ret)
12456 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12457 " fails: %d\n", irqfd->consumer.token, ret);
12458
12459 kvm_arch_end_assignment(irqfd->kvm);
12460 }
12461
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)12462 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12463 uint32_t guest_irq, bool set)
12464 {
12465 return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12466 }
12467
kvm_vector_hashing_enabled(void)12468 bool kvm_vector_hashing_enabled(void)
12469 {
12470 return vector_hashing;
12471 }
12472
kvm_arch_no_poll(struct kvm_vcpu * vcpu)12473 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12474 {
12475 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12476 }
12477 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12478
12479
kvm_spec_ctrl_test_value(u64 value)12480 int kvm_spec_ctrl_test_value(u64 value)
12481 {
12482 /*
12483 * test that setting IA32_SPEC_CTRL to given value
12484 * is allowed by the host processor
12485 */
12486
12487 u64 saved_value;
12488 unsigned long flags;
12489 int ret = 0;
12490
12491 local_irq_save(flags);
12492
12493 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12494 ret = 1;
12495 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12496 ret = 1;
12497 else
12498 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12499
12500 local_irq_restore(flags);
12501
12502 return ret;
12503 }
12504 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12505
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)12506 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12507 {
12508 struct x86_exception fault;
12509 u32 access = error_code &
12510 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12511
12512 if (!(error_code & PFERR_PRESENT_MASK) ||
12513 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12514 /*
12515 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12516 * tables probably do not match the TLB. Just proceed
12517 * with the error code that the processor gave.
12518 */
12519 fault.vector = PF_VECTOR;
12520 fault.error_code_valid = true;
12521 fault.error_code = error_code;
12522 fault.nested_page_fault = false;
12523 fault.address = gva;
12524 }
12525 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12526 }
12527 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12528
12529 /*
12530 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12531 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12532 * indicates whether exit to userspace is needed.
12533 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)12534 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12535 struct x86_exception *e)
12536 {
12537 if (r == X86EMUL_PROPAGATE_FAULT) {
12538 kvm_inject_emulated_page_fault(vcpu, e);
12539 return 1;
12540 }
12541
12542 /*
12543 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12544 * while handling a VMX instruction KVM could've handled the request
12545 * correctly by exiting to userspace and performing I/O but there
12546 * doesn't seem to be a real use-case behind such requests, just return
12547 * KVM_EXIT_INTERNAL_ERROR for now.
12548 */
12549 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12550 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12551 vcpu->run->internal.ndata = 0;
12552
12553 return 0;
12554 }
12555 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12556
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)12557 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12558 {
12559 bool pcid_enabled;
12560 struct x86_exception e;
12561 struct {
12562 u64 pcid;
12563 u64 gla;
12564 } operand;
12565 int r;
12566
12567 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12568 if (r != X86EMUL_CONTINUE)
12569 return kvm_handle_memory_failure(vcpu, r, &e);
12570
12571 if (operand.pcid >> 12 != 0) {
12572 kvm_inject_gp(vcpu, 0);
12573 return 1;
12574 }
12575
12576 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12577
12578 switch (type) {
12579 case INVPCID_TYPE_INDIV_ADDR:
12580 if ((!pcid_enabled && (operand.pcid != 0)) ||
12581 is_noncanonical_address(operand.gla, vcpu)) {
12582 kvm_inject_gp(vcpu, 0);
12583 return 1;
12584 }
12585 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12586 return kvm_skip_emulated_instruction(vcpu);
12587
12588 case INVPCID_TYPE_SINGLE_CTXT:
12589 if (!pcid_enabled && (operand.pcid != 0)) {
12590 kvm_inject_gp(vcpu, 0);
12591 return 1;
12592 }
12593
12594 kvm_invalidate_pcid(vcpu, operand.pcid);
12595 return kvm_skip_emulated_instruction(vcpu);
12596
12597 case INVPCID_TYPE_ALL_NON_GLOBAL:
12598 /*
12599 * Currently, KVM doesn't mark global entries in the shadow
12600 * page tables, so a non-global flush just degenerates to a
12601 * global flush. If needed, we could optimize this later by
12602 * keeping track of global entries in shadow page tables.
12603 */
12604
12605 fallthrough;
12606 case INVPCID_TYPE_ALL_INCL_GLOBAL:
12607 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12608 return kvm_skip_emulated_instruction(vcpu);
12609
12610 default:
12611 BUG(); /* We have already checked above that type <= 3 */
12612 }
12613 }
12614 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12615
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)12616 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12617 {
12618 struct kvm_run *run = vcpu->run;
12619 struct kvm_mmio_fragment *frag;
12620 unsigned int len;
12621
12622 BUG_ON(!vcpu->mmio_needed);
12623
12624 /* Complete previous fragment */
12625 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12626 len = min(8u, frag->len);
12627 if (!vcpu->mmio_is_write)
12628 memcpy(frag->data, run->mmio.data, len);
12629
12630 if (frag->len <= 8) {
12631 /* Switch to the next fragment. */
12632 frag++;
12633 vcpu->mmio_cur_fragment++;
12634 } else {
12635 /* Go forward to the next mmio piece. */
12636 frag->data += len;
12637 frag->gpa += len;
12638 frag->len -= len;
12639 }
12640
12641 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12642 vcpu->mmio_needed = 0;
12643
12644 // VMG change, at this point, we're always done
12645 // RIP has already been advanced
12646 return 1;
12647 }
12648
12649 // More MMIO is needed
12650 run->mmio.phys_addr = frag->gpa;
12651 run->mmio.len = min(8u, frag->len);
12652 run->mmio.is_write = vcpu->mmio_is_write;
12653 if (run->mmio.is_write)
12654 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12655 run->exit_reason = KVM_EXIT_MMIO;
12656
12657 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12658
12659 return 0;
12660 }
12661
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)12662 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12663 void *data)
12664 {
12665 int handled;
12666 struct kvm_mmio_fragment *frag;
12667
12668 if (!data)
12669 return -EINVAL;
12670
12671 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12672 if (handled == bytes)
12673 return 1;
12674
12675 bytes -= handled;
12676 gpa += handled;
12677 data += handled;
12678
12679 /*TODO: Check if need to increment number of frags */
12680 frag = vcpu->mmio_fragments;
12681 vcpu->mmio_nr_fragments = 1;
12682 frag->len = bytes;
12683 frag->gpa = gpa;
12684 frag->data = data;
12685
12686 vcpu->mmio_needed = 1;
12687 vcpu->mmio_cur_fragment = 0;
12688
12689 vcpu->run->mmio.phys_addr = gpa;
12690 vcpu->run->mmio.len = min(8u, frag->len);
12691 vcpu->run->mmio.is_write = 1;
12692 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12693 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12694
12695 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12696
12697 return 0;
12698 }
12699 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12700
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)12701 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12702 void *data)
12703 {
12704 int handled;
12705 struct kvm_mmio_fragment *frag;
12706
12707 if (!data)
12708 return -EINVAL;
12709
12710 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12711 if (handled == bytes)
12712 return 1;
12713
12714 bytes -= handled;
12715 gpa += handled;
12716 data += handled;
12717
12718 /*TODO: Check if need to increment number of frags */
12719 frag = vcpu->mmio_fragments;
12720 vcpu->mmio_nr_fragments = 1;
12721 frag->len = bytes;
12722 frag->gpa = gpa;
12723 frag->data = data;
12724
12725 vcpu->mmio_needed = 1;
12726 vcpu->mmio_cur_fragment = 0;
12727
12728 vcpu->run->mmio.phys_addr = gpa;
12729 vcpu->run->mmio.len = min(8u, frag->len);
12730 vcpu->run->mmio.is_write = 0;
12731 vcpu->run->exit_reason = KVM_EXIT_MMIO;
12732
12733 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12734
12735 return 0;
12736 }
12737 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12738
12739 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12740 unsigned int port);
12741
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)12742 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12743 {
12744 int size = vcpu->arch.pio.size;
12745 int port = vcpu->arch.pio.port;
12746
12747 vcpu->arch.pio.count = 0;
12748 if (vcpu->arch.sev_pio_count)
12749 return kvm_sev_es_outs(vcpu, size, port);
12750 return 1;
12751 }
12752
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)12753 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12754 unsigned int port)
12755 {
12756 for (;;) {
12757 unsigned int count =
12758 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12759 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12760
12761 /* memcpy done already by emulator_pio_out. */
12762 vcpu->arch.sev_pio_count -= count;
12763 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12764 if (!ret)
12765 break;
12766
12767 /* Emulation done by the kernel. */
12768 if (!vcpu->arch.sev_pio_count)
12769 return 1;
12770 }
12771
12772 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12773 return 0;
12774 }
12775
12776 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12777 unsigned int port);
12778
advance_sev_es_emulated_ins(struct kvm_vcpu * vcpu)12779 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12780 {
12781 unsigned count = vcpu->arch.pio.count;
12782 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12783 vcpu->arch.sev_pio_count -= count;
12784 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12785 }
12786
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)12787 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12788 {
12789 int size = vcpu->arch.pio.size;
12790 int port = vcpu->arch.pio.port;
12791
12792 advance_sev_es_emulated_ins(vcpu);
12793 if (vcpu->arch.sev_pio_count)
12794 return kvm_sev_es_ins(vcpu, size, port);
12795 return 1;
12796 }
12797
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)12798 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12799 unsigned int port)
12800 {
12801 for (;;) {
12802 unsigned int count =
12803 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12804 if (!__emulator_pio_in(vcpu, size, port, count))
12805 break;
12806
12807 /* Emulation done by the kernel. */
12808 advance_sev_es_emulated_ins(vcpu);
12809 if (!vcpu->arch.sev_pio_count)
12810 return 1;
12811 }
12812
12813 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12814 return 0;
12815 }
12816
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)12817 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12818 unsigned int port, void *data, unsigned int count,
12819 int in)
12820 {
12821 vcpu->arch.sev_pio_data = data;
12822 vcpu->arch.sev_pio_count = count;
12823 return in ? kvm_sev_es_ins(vcpu, size, port)
12824 : kvm_sev_es_outs(vcpu, size, port);
12825 }
12826 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12827
12828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12855
kvm_x86_init(void)12856 static int __init kvm_x86_init(void)
12857 {
12858 kvm_mmu_x86_module_init();
12859 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
12860 return 0;
12861 }
12862 module_init(kvm_x86_init);
12863
kvm_x86_exit(void)12864 static void __exit kvm_x86_exit(void)
12865 {
12866 /*
12867 * If module_init() is implemented, module_exit() must also be
12868 * implemented to allow module unload.
12869 */
12870 }
12871 module_exit(kvm_x86_exit);
12872