• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18 
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33 
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62 
63 #include <trace/events/kvm.h>
64 
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/internal.h> /* Ugh! */
72 #include <asm/pvclock.h>
73 #include <asm/div64.h>
74 #include <asm/irq_remapping.h>
75 #include <asm/mshyperv.h>
76 #include <asm/hypervisor.h>
77 #include <asm/tlbflush.h>
78 #include <asm/intel_pt.h>
79 #include <asm/emulate_prefix.h>
80 #include <asm/sgx.h>
81 #include <clocksource/hyperv_timer.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include "trace.h"
85 
86 #define MAX_IO_MSRS 256
87 #define KVM_MAX_MCE_BANKS 32
88 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
89 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
90 
91 #define emul_to_vcpu(ctxt) \
92 	((struct kvm_vcpu *)(ctxt)->vcpu)
93 
94 /* EFER defaults:
95  * - enable syscall per default because its emulated by KVM
96  * - enable LME and LMA per default on 64 bit KVM
97  */
98 #ifdef CONFIG_X86_64
99 static
100 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
101 #else
102 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
103 #endif
104 
105 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
106 
107 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
108 
109 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
110                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
111 
112 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
113 static void process_nmi(struct kvm_vcpu *vcpu);
114 static void process_smi(struct kvm_vcpu *vcpu);
115 static void enter_smm(struct kvm_vcpu *vcpu);
116 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
117 static void store_regs(struct kvm_vcpu *vcpu);
118 static int sync_regs(struct kvm_vcpu *vcpu);
119 
120 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
121 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
122 
123 struct kvm_x86_ops kvm_x86_ops __read_mostly;
124 EXPORT_SYMBOL_GPL(kvm_x86_ops);
125 
126 #define KVM_X86_OP(func)					     \
127 	DEFINE_STATIC_CALL_NULL(kvm_x86_##func,			     \
128 				*(((struct kvm_x86_ops *)0)->func));
129 #define KVM_X86_OP_NULL KVM_X86_OP
130 #include <asm/kvm-x86-ops.h>
131 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
132 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
133 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
134 
135 static bool __read_mostly ignore_msrs = 0;
136 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
137 
138 bool __read_mostly report_ignored_msrs = true;
139 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
140 EXPORT_SYMBOL_GPL(report_ignored_msrs);
141 
142 unsigned int min_timer_period_us = 200;
143 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
144 
145 static bool __read_mostly kvmclock_periodic_sync = true;
146 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
147 
148 bool __read_mostly kvm_has_tsc_control;
149 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
150 u32  __read_mostly kvm_max_guest_tsc_khz;
151 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
152 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
153 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
154 u64  __read_mostly kvm_max_tsc_scaling_ratio;
155 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
156 u64 __read_mostly kvm_default_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
158 bool __read_mostly kvm_has_bus_lock_exit;
159 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
160 
161 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
162 static u32 __read_mostly tsc_tolerance_ppm = 250;
163 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
164 
165 /*
166  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
167  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
168  * advancement entirely.  Any other value is used as-is and disables adaptive
169  * tuning, i.e. allows privileged userspace to set an exact advancement time.
170  */
171 static int __read_mostly lapic_timer_advance_ns = -1;
172 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
173 
174 static bool __read_mostly vector_hashing = true;
175 module_param(vector_hashing, bool, S_IRUGO);
176 
177 bool __read_mostly enable_vmware_backdoor = false;
178 module_param(enable_vmware_backdoor, bool, S_IRUGO);
179 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
180 
181 static bool __read_mostly force_emulation_prefix = false;
182 module_param(force_emulation_prefix, bool, S_IRUGO);
183 
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186 
187 /* Enable/disable SMT_RSB bug mitigation */
188 bool __read_mostly mitigate_smt_rsb;
189 module_param(mitigate_smt_rsb, bool, 0444);
190 
191 /*
192  * Restoring the host value for MSRs that are only consumed when running in
193  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
194  * returns to userspace, i.e. the kernel can run with the guest's value.
195  */
196 #define KVM_MAX_NR_USER_RETURN_MSRS 16
197 
198 struct kvm_user_return_msrs {
199 	struct user_return_notifier urn;
200 	bool registered;
201 	struct kvm_user_return_msr_values {
202 		u64 host;
203 		u64 curr;
204 	} values[KVM_MAX_NR_USER_RETURN_MSRS];
205 };
206 
207 u32 __read_mostly kvm_nr_uret_msrs;
208 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
209 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
210 static struct kvm_user_return_msrs __percpu *user_return_msrs;
211 
212 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
213 				| XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
214 				| XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
215 				| XFEATURE_MASK_PKRU)
216 
217 u64 __read_mostly host_efer;
218 EXPORT_SYMBOL_GPL(host_efer);
219 
220 bool __read_mostly allow_smaller_maxphyaddr = 0;
221 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
222 
223 bool __read_mostly enable_apicv = true;
224 EXPORT_SYMBOL_GPL(enable_apicv);
225 
226 u64 __read_mostly host_xss;
227 EXPORT_SYMBOL_GPL(host_xss);
228 u64 __read_mostly supported_xss;
229 EXPORT_SYMBOL_GPL(supported_xss);
230 
231 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
232 	KVM_GENERIC_VM_STATS(),
233 	STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
234 	STATS_DESC_COUNTER(VM, mmu_pte_write),
235 	STATS_DESC_COUNTER(VM, mmu_pde_zapped),
236 	STATS_DESC_COUNTER(VM, mmu_flooded),
237 	STATS_DESC_COUNTER(VM, mmu_recycled),
238 	STATS_DESC_COUNTER(VM, mmu_cache_miss),
239 	STATS_DESC_ICOUNTER(VM, mmu_unsync),
240 	STATS_DESC_ICOUNTER(VM, pages_4k),
241 	STATS_DESC_ICOUNTER(VM, pages_2m),
242 	STATS_DESC_ICOUNTER(VM, pages_1g),
243 	STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
244 	STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
245 	STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
246 };
247 
248 const struct kvm_stats_header kvm_vm_stats_header = {
249 	.name_size = KVM_STATS_NAME_SIZE,
250 	.num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
251 	.id_offset = sizeof(struct kvm_stats_header),
252 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
253 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
254 		       sizeof(kvm_vm_stats_desc),
255 };
256 
257 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
258 	KVM_GENERIC_VCPU_STATS(),
259 	STATS_DESC_COUNTER(VCPU, pf_fixed),
260 	STATS_DESC_COUNTER(VCPU, pf_guest),
261 	STATS_DESC_COUNTER(VCPU, tlb_flush),
262 	STATS_DESC_COUNTER(VCPU, invlpg),
263 	STATS_DESC_COUNTER(VCPU, exits),
264 	STATS_DESC_COUNTER(VCPU, io_exits),
265 	STATS_DESC_COUNTER(VCPU, mmio_exits),
266 	STATS_DESC_COUNTER(VCPU, signal_exits),
267 	STATS_DESC_COUNTER(VCPU, irq_window_exits),
268 	STATS_DESC_COUNTER(VCPU, nmi_window_exits),
269 	STATS_DESC_COUNTER(VCPU, l1d_flush),
270 	STATS_DESC_COUNTER(VCPU, halt_exits),
271 	STATS_DESC_COUNTER(VCPU, request_irq_exits),
272 	STATS_DESC_COUNTER(VCPU, irq_exits),
273 	STATS_DESC_COUNTER(VCPU, host_state_reload),
274 	STATS_DESC_COUNTER(VCPU, fpu_reload),
275 	STATS_DESC_COUNTER(VCPU, insn_emulation),
276 	STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
277 	STATS_DESC_COUNTER(VCPU, hypercalls),
278 	STATS_DESC_COUNTER(VCPU, irq_injections),
279 	STATS_DESC_COUNTER(VCPU, nmi_injections),
280 	STATS_DESC_COUNTER(VCPU, req_event),
281 	STATS_DESC_COUNTER(VCPU, nested_run),
282 	STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
283 	STATS_DESC_COUNTER(VCPU, directed_yield_successful),
284 	STATS_DESC_COUNTER(VCPU, preemption_reported),
285 	STATS_DESC_COUNTER(VCPU, preemption_other),
286 	STATS_DESC_ICOUNTER(VCPU, guest_mode)
287 };
288 
289 const struct kvm_stats_header kvm_vcpu_stats_header = {
290 	.name_size = KVM_STATS_NAME_SIZE,
291 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
292 	.id_offset = sizeof(struct kvm_stats_header),
293 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
294 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
295 		       sizeof(kvm_vcpu_stats_desc),
296 };
297 
298 u64 __read_mostly host_xcr0;
299 u64 __read_mostly supported_xcr0;
300 EXPORT_SYMBOL_GPL(supported_xcr0);
301 
302 static struct kmem_cache *x86_fpu_cache;
303 
304 static struct kmem_cache *x86_emulator_cache;
305 
306 /*
307  * When called, it means the previous get/set msr reached an invalid msr.
308  * Return true if we want to ignore/silent this failed msr access.
309  */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)310 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
311 {
312 	const char *op = write ? "wrmsr" : "rdmsr";
313 
314 	if (ignore_msrs) {
315 		if (report_ignored_msrs)
316 			kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
317 				      op, msr, data);
318 		/* Mask the error */
319 		return true;
320 	} else {
321 		kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
322 				      op, msr, data);
323 		return false;
324 	}
325 }
326 
kvm_alloc_emulator_cache(void)327 static struct kmem_cache *kvm_alloc_emulator_cache(void)
328 {
329 	unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
330 	unsigned int size = sizeof(struct x86_emulate_ctxt);
331 
332 	return kmem_cache_create_usercopy("x86_emulator", size,
333 					  __alignof__(struct x86_emulate_ctxt),
334 					  SLAB_ACCOUNT, useroffset,
335 					  size - useroffset, NULL);
336 }
337 
338 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
339 
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)340 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
341 {
342 	int i;
343 	for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
344 		vcpu->arch.apf.gfns[i] = ~0;
345 }
346 
kvm_on_user_return(struct user_return_notifier * urn)347 static void kvm_on_user_return(struct user_return_notifier *urn)
348 {
349 	unsigned slot;
350 	struct kvm_user_return_msrs *msrs
351 		= container_of(urn, struct kvm_user_return_msrs, urn);
352 	struct kvm_user_return_msr_values *values;
353 	unsigned long flags;
354 
355 	/*
356 	 * Disabling irqs at this point since the following code could be
357 	 * interrupted and executed through kvm_arch_hardware_disable()
358 	 */
359 	local_irq_save(flags);
360 	if (msrs->registered) {
361 		msrs->registered = false;
362 		user_return_notifier_unregister(urn);
363 	}
364 	local_irq_restore(flags);
365 	for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
366 		values = &msrs->values[slot];
367 		if (values->host != values->curr) {
368 			wrmsrl(kvm_uret_msrs_list[slot], values->host);
369 			values->curr = values->host;
370 		}
371 	}
372 }
373 
kvm_probe_user_return_msr(u32 msr)374 static int kvm_probe_user_return_msr(u32 msr)
375 {
376 	u64 val;
377 	int ret;
378 
379 	preempt_disable();
380 	ret = rdmsrl_safe(msr, &val);
381 	if (ret)
382 		goto out;
383 	ret = wrmsrl_safe(msr, val);
384 out:
385 	preempt_enable();
386 	return ret;
387 }
388 
kvm_add_user_return_msr(u32 msr)389 int kvm_add_user_return_msr(u32 msr)
390 {
391 	BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
392 
393 	if (kvm_probe_user_return_msr(msr))
394 		return -1;
395 
396 	kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
397 	return kvm_nr_uret_msrs++;
398 }
399 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
400 
kvm_find_user_return_msr(u32 msr)401 int kvm_find_user_return_msr(u32 msr)
402 {
403 	int i;
404 
405 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
406 		if (kvm_uret_msrs_list[i] == msr)
407 			return i;
408 	}
409 	return -1;
410 }
411 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
412 
kvm_user_return_msr_cpu_online(void)413 static void kvm_user_return_msr_cpu_online(void)
414 {
415 	unsigned int cpu = smp_processor_id();
416 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
417 	u64 value;
418 	int i;
419 
420 	for (i = 0; i < kvm_nr_uret_msrs; ++i) {
421 		rdmsrl_safe(kvm_uret_msrs_list[i], &value);
422 		msrs->values[i].host = value;
423 		msrs->values[i].curr = value;
424 	}
425 }
426 
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)427 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
428 {
429 	unsigned int cpu = smp_processor_id();
430 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
431 	int err;
432 
433 	value = (value & mask) | (msrs->values[slot].host & ~mask);
434 	if (value == msrs->values[slot].curr)
435 		return 0;
436 	err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
437 	if (err)
438 		return 1;
439 
440 	msrs->values[slot].curr = value;
441 	if (!msrs->registered) {
442 		msrs->urn.on_user_return = kvm_on_user_return;
443 		user_return_notifier_register(&msrs->urn);
444 		msrs->registered = true;
445 	}
446 	return 0;
447 }
448 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
449 
drop_user_return_notifiers(void)450 static void drop_user_return_notifiers(void)
451 {
452 	unsigned int cpu = smp_processor_id();
453 	struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
454 
455 	if (msrs->registered)
456 		kvm_on_user_return(&msrs->urn);
457 }
458 
kvm_get_apic_base(struct kvm_vcpu * vcpu)459 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
460 {
461 	return vcpu->arch.apic_base;
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
464 
kvm_get_apic_mode(struct kvm_vcpu * vcpu)465 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
466 {
467 	return kvm_apic_mode(kvm_get_apic_base(vcpu));
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
470 
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)471 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
472 {
473 	enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
474 	enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
475 	u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
476 		(guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
477 
478 	if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
479 		return 1;
480 	if (!msr_info->host_initiated) {
481 		if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
482 			return 1;
483 		if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
484 			return 1;
485 	}
486 
487 	kvm_lapic_set_base(vcpu, msr_info->data);
488 	kvm_recalculate_apic_map(vcpu->kvm);
489 	return 0;
490 }
491 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
492 
493 /*
494  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
495  *
496  * Hardware virtualization extension instructions may fault if a reboot turns
497  * off virtualization while processes are running.  Usually after catching the
498  * fault we just panic; during reboot instead the instruction is ignored.
499  */
kvm_spurious_fault(void)500 noinstr void kvm_spurious_fault(void)
501 {
502 	/* Fault while not rebooting.  We want the trace. */
503 	BUG_ON(!kvm_rebooting);
504 }
505 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
506 
507 #define EXCPT_BENIGN		0
508 #define EXCPT_CONTRIBUTORY	1
509 #define EXCPT_PF		2
510 
exception_class(int vector)511 static int exception_class(int vector)
512 {
513 	switch (vector) {
514 	case PF_VECTOR:
515 		return EXCPT_PF;
516 	case DE_VECTOR:
517 	case TS_VECTOR:
518 	case NP_VECTOR:
519 	case SS_VECTOR:
520 	case GP_VECTOR:
521 		return EXCPT_CONTRIBUTORY;
522 	default:
523 		break;
524 	}
525 	return EXCPT_BENIGN;
526 }
527 
528 #define EXCPT_FAULT		0
529 #define EXCPT_TRAP		1
530 #define EXCPT_ABORT		2
531 #define EXCPT_INTERRUPT		3
532 #define EXCPT_DB		4
533 
exception_type(int vector)534 static int exception_type(int vector)
535 {
536 	unsigned int mask;
537 
538 	if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
539 		return EXCPT_INTERRUPT;
540 
541 	mask = 1 << vector;
542 
543 	/*
544 	 * #DBs can be trap-like or fault-like, the caller must check other CPU
545 	 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
546 	 */
547 	if (mask & (1 << DB_VECTOR))
548 		return EXCPT_DB;
549 
550 	if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
551 		return EXCPT_TRAP;
552 
553 	if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
554 		return EXCPT_ABORT;
555 
556 	/* Reserved exceptions will result in fault */
557 	return EXCPT_FAULT;
558 }
559 
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu)560 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
561 {
562 	unsigned nr = vcpu->arch.exception.nr;
563 	bool has_payload = vcpu->arch.exception.has_payload;
564 	unsigned long payload = vcpu->arch.exception.payload;
565 
566 	if (!has_payload)
567 		return;
568 
569 	switch (nr) {
570 	case DB_VECTOR:
571 		/*
572 		 * "Certain debug exceptions may clear bit 0-3.  The
573 		 * remaining contents of the DR6 register are never
574 		 * cleared by the processor".
575 		 */
576 		vcpu->arch.dr6 &= ~DR_TRAP_BITS;
577 		/*
578 		 * In order to reflect the #DB exception payload in guest
579 		 * dr6, three components need to be considered: active low
580 		 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
581 		 * DR6_BS and DR6_BT)
582 		 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
583 		 * In the target guest dr6:
584 		 * FIXED_1 bits should always be set.
585 		 * Active low bits should be cleared if 1-setting in payload.
586 		 * Active high bits should be set if 1-setting in payload.
587 		 *
588 		 * Note, the payload is compatible with the pending debug
589 		 * exceptions/exit qualification under VMX, that active_low bits
590 		 * are active high in payload.
591 		 * So they need to be flipped for DR6.
592 		 */
593 		vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
594 		vcpu->arch.dr6 |= payload;
595 		vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
596 
597 		/*
598 		 * The #DB payload is defined as compatible with the 'pending
599 		 * debug exceptions' field under VMX, not DR6. While bit 12 is
600 		 * defined in the 'pending debug exceptions' field (enabled
601 		 * breakpoint), it is reserved and must be zero in DR6.
602 		 */
603 		vcpu->arch.dr6 &= ~BIT(12);
604 		break;
605 	case PF_VECTOR:
606 		vcpu->arch.cr2 = payload;
607 		break;
608 	}
609 
610 	vcpu->arch.exception.has_payload = false;
611 	vcpu->arch.exception.payload = 0;
612 }
613 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
614 
615 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)616 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
617 {
618 	kvm_x86_ops.nested_ops->leave_nested(vcpu);
619 }
620 
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)621 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
622 		unsigned nr, bool has_error, u32 error_code,
623 	        bool has_payload, unsigned long payload, bool reinject)
624 {
625 	u32 prev_nr;
626 	int class1, class2;
627 
628 	kvm_make_request(KVM_REQ_EVENT, vcpu);
629 
630 	if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
631 	queue:
632 		if (reinject) {
633 			/*
634 			 * On vmentry, vcpu->arch.exception.pending is only
635 			 * true if an event injection was blocked by
636 			 * nested_run_pending.  In that case, however,
637 			 * vcpu_enter_guest requests an immediate exit,
638 			 * and the guest shouldn't proceed far enough to
639 			 * need reinjection.
640 			 */
641 			WARN_ON_ONCE(vcpu->arch.exception.pending);
642 			vcpu->arch.exception.injected = true;
643 			if (WARN_ON_ONCE(has_payload)) {
644 				/*
645 				 * A reinjected event has already
646 				 * delivered its payload.
647 				 */
648 				has_payload = false;
649 				payload = 0;
650 			}
651 		} else {
652 			vcpu->arch.exception.pending = true;
653 			vcpu->arch.exception.injected = false;
654 		}
655 		vcpu->arch.exception.has_error_code = has_error;
656 		vcpu->arch.exception.nr = nr;
657 		vcpu->arch.exception.error_code = error_code;
658 		vcpu->arch.exception.has_payload = has_payload;
659 		vcpu->arch.exception.payload = payload;
660 		if (!is_guest_mode(vcpu))
661 			kvm_deliver_exception_payload(vcpu);
662 		return;
663 	}
664 
665 	/* to check exception */
666 	prev_nr = vcpu->arch.exception.nr;
667 	if (prev_nr == DF_VECTOR) {
668 		/* triple fault -> shutdown */
669 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
670 		return;
671 	}
672 	class1 = exception_class(prev_nr);
673 	class2 = exception_class(nr);
674 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
675 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
676 		/*
677 		 * Generate double fault per SDM Table 5-5.  Set
678 		 * exception.pending = true so that the double fault
679 		 * can trigger a nested vmexit.
680 		 */
681 		vcpu->arch.exception.pending = true;
682 		vcpu->arch.exception.injected = false;
683 		vcpu->arch.exception.has_error_code = true;
684 		vcpu->arch.exception.nr = DF_VECTOR;
685 		vcpu->arch.exception.error_code = 0;
686 		vcpu->arch.exception.has_payload = false;
687 		vcpu->arch.exception.payload = 0;
688 	} else
689 		/* replace previous exception with a new one in a hope
690 		   that instruction re-execution will regenerate lost
691 		   exception */
692 		goto queue;
693 }
694 
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)695 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
696 {
697 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
698 }
699 EXPORT_SYMBOL_GPL(kvm_queue_exception);
700 
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)701 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
702 {
703 	kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
704 }
705 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
706 
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)707 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
708 			   unsigned long payload)
709 {
710 	kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
711 }
712 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
713 
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)714 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
715 				    u32 error_code, unsigned long payload)
716 {
717 	kvm_multiple_exception(vcpu, nr, true, error_code,
718 			       true, payload, false);
719 }
720 
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)721 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
722 {
723 	if (err)
724 		kvm_inject_gp(vcpu, 0);
725 	else
726 		return kvm_skip_emulated_instruction(vcpu);
727 
728 	return 1;
729 }
730 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
731 
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)732 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
733 {
734 	++vcpu->stat.pf_guest;
735 	vcpu->arch.exception.nested_apf =
736 		is_guest_mode(vcpu) && fault->async_page_fault;
737 	if (vcpu->arch.exception.nested_apf) {
738 		vcpu->arch.apf.nested_apf_token = fault->address;
739 		kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
740 	} else {
741 		kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
742 					fault->address);
743 	}
744 }
745 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
746 
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)747 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
748 				    struct x86_exception *fault)
749 {
750 	struct kvm_mmu *fault_mmu;
751 	WARN_ON_ONCE(fault->vector != PF_VECTOR);
752 
753 	fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
754 					       vcpu->arch.walk_mmu;
755 
756 	/*
757 	 * Invalidate the TLB entry for the faulting address, if it exists,
758 	 * else the access will fault indefinitely (and to emulate hardware).
759 	 */
760 	if ((fault->error_code & PFERR_PRESENT_MASK) &&
761 	    !(fault->error_code & PFERR_RSVD_MASK))
762 		kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
763 				       fault_mmu->root_hpa);
764 
765 	fault_mmu->inject_page_fault(vcpu, fault);
766 	return fault->nested_page_fault;
767 }
768 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
769 
kvm_inject_nmi(struct kvm_vcpu * vcpu)770 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
771 {
772 	atomic_inc(&vcpu->arch.nmi_queued);
773 	kvm_make_request(KVM_REQ_NMI, vcpu);
774 }
775 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
776 
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)777 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
778 {
779 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
780 }
781 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
782 
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)783 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
784 {
785 	kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
786 }
787 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
788 
789 /*
790  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
791  * a #GP and return false.
792  */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)793 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
794 {
795 	if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
796 		return true;
797 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
798 	return false;
799 }
800 EXPORT_SYMBOL_GPL(kvm_require_cpl);
801 
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)802 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
803 {
804 	if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
805 		return true;
806 
807 	kvm_queue_exception(vcpu, UD_VECTOR);
808 	return false;
809 }
810 EXPORT_SYMBOL_GPL(kvm_require_dr);
811 
812 /*
813  * This function will be used to read from the physical memory of the currently
814  * running guest. The difference to kvm_vcpu_read_guest_page is that this function
815  * can read from guest physical or from the guest's guest physical memory.
816  */
kvm_read_guest_page_mmu(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gfn_t ngfn,void * data,int offset,int len,u32 access)817 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
818 			    gfn_t ngfn, void *data, int offset, int len,
819 			    u32 access)
820 {
821 	struct x86_exception exception;
822 	gfn_t real_gfn;
823 	gpa_t ngpa;
824 
825 	ngpa     = gfn_to_gpa(ngfn);
826 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
827 	if (real_gfn == UNMAPPED_GVA)
828 		return -EFAULT;
829 
830 	real_gfn = gpa_to_gfn(real_gfn);
831 
832 	return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
833 }
834 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
835 
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)836 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
837 {
838 	return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
839 }
840 
841 /*
842  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
843  */
load_pdptrs(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,unsigned long cr3)844 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
845 {
846 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
847 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
848 	int i;
849 	int ret;
850 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
851 
852 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
853 				      offset * sizeof(u64), sizeof(pdpte),
854 				      PFERR_USER_MASK|PFERR_WRITE_MASK);
855 	if (ret < 0) {
856 		ret = 0;
857 		goto out;
858 	}
859 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
860 		if ((pdpte[i] & PT_PRESENT_MASK) &&
861 		    (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
862 			ret = 0;
863 			goto out;
864 		}
865 	}
866 	ret = 1;
867 
868 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
869 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
870 	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
871 	vcpu->arch.pdptrs_from_userspace = false;
872 
873 out:
874 
875 	return ret;
876 }
877 EXPORT_SYMBOL_GPL(load_pdptrs);
878 
kvm_is_valid_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)879 static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
880 {
881 #ifdef CONFIG_X86_64
882 	if (cr0 & 0xffffffff00000000UL)
883 		return false;
884 #endif
885 
886 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
887 		return false;
888 
889 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
890 		return false;
891 
892 	return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
893 }
894 
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)895 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
896 {
897 	if ((cr0 ^ old_cr0) & X86_CR0_PG) {
898 		kvm_clear_async_pf_completion_queue(vcpu);
899 		kvm_async_pf_hash_reset(vcpu);
900 	}
901 
902 	if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
903 		kvm_mmu_reset_context(vcpu);
904 
905 	if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
906 	    kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
907 	    !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
908 		kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
909 }
910 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
911 
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)912 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
913 {
914 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
915 	unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
916 
917 	if (!kvm_is_valid_cr0(vcpu, cr0))
918 		return 1;
919 
920 	cr0 |= X86_CR0_ET;
921 
922 	/* Write to CR0 reserved bits are ignored, even on Intel. */
923 	cr0 &= ~CR0_RESERVED_BITS;
924 
925 #ifdef CONFIG_X86_64
926 	if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
927 	    (cr0 & X86_CR0_PG)) {
928 		int cs_db, cs_l;
929 
930 		if (!is_pae(vcpu))
931 			return 1;
932 		static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
933 		if (cs_l)
934 			return 1;
935 	}
936 #endif
937 	if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
938 	    is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
939 	    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
940 		return 1;
941 
942 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
943 		return 1;
944 
945 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
946 
947 	kvm_post_set_cr0(vcpu, old_cr0, cr0);
948 
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(kvm_set_cr0);
952 
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)953 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
954 {
955 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
956 }
957 EXPORT_SYMBOL_GPL(kvm_lmsw);
958 
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)959 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
960 {
961 	if (vcpu->arch.guest_state_protected)
962 		return;
963 
964 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
965 
966 		if (vcpu->arch.xcr0 != host_xcr0)
967 			xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
968 
969 		if (vcpu->arch.xsaves_enabled &&
970 		    vcpu->arch.ia32_xss != host_xss)
971 			wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
972 	}
973 
974 	if (static_cpu_has(X86_FEATURE_PKU) &&
975 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
976 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
977 	    vcpu->arch.pkru != vcpu->arch.host_pkru)
978 		write_pkru(vcpu->arch.pkru);
979 }
980 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
981 
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)982 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
983 {
984 	if (vcpu->arch.guest_state_protected)
985 		return;
986 
987 	if (static_cpu_has(X86_FEATURE_PKU) &&
988 	    (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
989 	     (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
990 		vcpu->arch.pkru = rdpkru();
991 		if (vcpu->arch.pkru != vcpu->arch.host_pkru)
992 			write_pkru(vcpu->arch.host_pkru);
993 	}
994 
995 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
996 
997 		if (vcpu->arch.xcr0 != host_xcr0)
998 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
999 
1000 		if (vcpu->arch.xsaves_enabled &&
1001 		    vcpu->arch.ia32_xss != host_xss)
1002 			wrmsrl(MSR_IA32_XSS, host_xss);
1003 	}
1004 
1005 }
1006 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1007 
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1008 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1009 {
1010 	u64 xcr0 = xcr;
1011 	u64 old_xcr0 = vcpu->arch.xcr0;
1012 	u64 valid_bits;
1013 
1014 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1015 	if (index != XCR_XFEATURE_ENABLED_MASK)
1016 		return 1;
1017 	if (!(xcr0 & XFEATURE_MASK_FP))
1018 		return 1;
1019 	if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1020 		return 1;
1021 
1022 	/*
1023 	 * Do not allow the guest to set bits that we do not support
1024 	 * saving.  However, xcr0 bit 0 is always set, even if the
1025 	 * emulated CPU does not support XSAVE (see fx_init).
1026 	 */
1027 	valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1028 	if (xcr0 & ~valid_bits)
1029 		return 1;
1030 
1031 	if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1032 	    (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1033 		return 1;
1034 
1035 	if (xcr0 & XFEATURE_MASK_AVX512) {
1036 		if (!(xcr0 & XFEATURE_MASK_YMM))
1037 			return 1;
1038 		if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1039 			return 1;
1040 	}
1041 	vcpu->arch.xcr0 = xcr0;
1042 
1043 	if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1044 		kvm_update_cpuid_runtime(vcpu);
1045 	return 0;
1046 }
1047 
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1048 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1049 {
1050 	/* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1051 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1052 	    __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1053 		kvm_inject_gp(vcpu, 0);
1054 		return 1;
1055 	}
1056 
1057 	return kvm_skip_emulated_instruction(vcpu);
1058 }
1059 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1060 
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1061 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1062 {
1063 	if (cr4 & cr4_reserved_bits)
1064 		return false;
1065 
1066 	if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1067 		return false;
1068 
1069 	return true;
1070 }
1071 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1072 
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1073 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1074 {
1075 	return __kvm_is_valid_cr4(vcpu, cr4) &&
1076 	       static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1077 }
1078 
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1079 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1080 {
1081 	if (((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) ||
1082 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1083 		kvm_mmu_reset_context(vcpu);
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1086 
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1087 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1088 {
1089 	unsigned long old_cr4 = kvm_read_cr4(vcpu);
1090 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1091 				   X86_CR4_SMEP;
1092 
1093 	if (!kvm_is_valid_cr4(vcpu, cr4))
1094 		return 1;
1095 
1096 	if (is_long_mode(vcpu)) {
1097 		if (!(cr4 & X86_CR4_PAE))
1098 			return 1;
1099 		if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1100 			return 1;
1101 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1102 		   && ((cr4 ^ old_cr4) & pdptr_bits)
1103 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1104 				   kvm_read_cr3(vcpu)))
1105 		return 1;
1106 
1107 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1108 		if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1109 			return 1;
1110 
1111 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1112 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1113 			return 1;
1114 	}
1115 
1116 	static_call(kvm_x86_set_cr4)(vcpu, cr4);
1117 
1118 	kvm_post_set_cr4(vcpu, old_cr4, cr4);
1119 
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1123 
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1124 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1125 {
1126 	struct kvm_mmu *mmu = vcpu->arch.mmu;
1127 	unsigned long roots_to_free = 0;
1128 	int i;
1129 
1130 	/*
1131 	 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1132 	 * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1133 	 * also via the emulator.  KVM's TDP page tables are not in the scope of
1134 	 * the invalidation, but the guest's TLB entries need to be flushed as
1135 	 * the CPU may have cached entries in its TLB for the target PCID.
1136 	 */
1137 	if (unlikely(tdp_enabled)) {
1138 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1139 		return;
1140 	}
1141 
1142 	/*
1143 	 * If neither the current CR3 nor any of the prev_roots use the given
1144 	 * PCID, then nothing needs to be done here because a resync will
1145 	 * happen anyway before switching to any other CR3.
1146 	 */
1147 	if (kvm_get_active_pcid(vcpu) == pcid) {
1148 		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1149 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1150 	}
1151 
1152 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1153 		if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1154 			roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1155 
1156 	kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1157 }
1158 
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1159 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1160 {
1161 	bool skip_tlb_flush = false;
1162 	unsigned long pcid = 0;
1163 #ifdef CONFIG_X86_64
1164 	bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1165 
1166 	if (pcid_enabled) {
1167 		skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1168 		cr3 &= ~X86_CR3_PCID_NOFLUSH;
1169 		pcid = cr3 & X86_CR3_PCID_MASK;
1170 	}
1171 #endif
1172 
1173 	/* PDPTRs are always reloaded for PAE paging. */
1174 	if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1175 		goto handle_tlb_flush;
1176 
1177 	/*
1178 	 * Do not condition the GPA check on long mode, this helper is used to
1179 	 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1180 	 * the current vCPU mode is accurate.
1181 	 */
1182 	if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1183 		return 1;
1184 
1185 	if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1186 		return 1;
1187 
1188 	if (cr3 != kvm_read_cr3(vcpu))
1189 		kvm_mmu_new_pgd(vcpu, cr3);
1190 
1191 	vcpu->arch.cr3 = cr3;
1192 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1193 
1194 handle_tlb_flush:
1195 	/*
1196 	 * A load of CR3 that flushes the TLB flushes only the current PCID,
1197 	 * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1198 	 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1199 	 * and it's impossible to use a non-zero PCID when PCID is disabled,
1200 	 * i.e. only PCID=0 can be relevant.
1201 	 */
1202 	if (!skip_tlb_flush)
1203 		kvm_invalidate_pcid(vcpu, pcid);
1204 
1205 	return 0;
1206 }
1207 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1208 
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1209 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1210 {
1211 	if (cr8 & CR8_RESERVED_BITS)
1212 		return 1;
1213 	if (lapic_in_kernel(vcpu))
1214 		kvm_lapic_set_tpr(vcpu, cr8);
1215 	else
1216 		vcpu->arch.cr8 = cr8;
1217 	return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1220 
kvm_get_cr8(struct kvm_vcpu * vcpu)1221 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1222 {
1223 	if (lapic_in_kernel(vcpu))
1224 		return kvm_lapic_get_cr8(vcpu);
1225 	else
1226 		return vcpu->arch.cr8;
1227 }
1228 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1229 
kvm_update_dr0123(struct kvm_vcpu * vcpu)1230 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1231 {
1232 	int i;
1233 
1234 	if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1235 		for (i = 0; i < KVM_NR_DB_REGS; i++)
1236 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1237 	}
1238 }
1239 
kvm_update_dr7(struct kvm_vcpu * vcpu)1240 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1241 {
1242 	unsigned long dr7;
1243 
1244 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1245 		dr7 = vcpu->arch.guest_debug_dr7;
1246 	else
1247 		dr7 = vcpu->arch.dr7;
1248 	static_call(kvm_x86_set_dr7)(vcpu, dr7);
1249 	vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1250 	if (dr7 & DR7_BP_EN_MASK)
1251 		vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1252 }
1253 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1254 
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1255 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1256 {
1257 	u64 fixed = DR6_FIXED_1;
1258 
1259 	if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1260 		fixed |= DR6_RTM;
1261 
1262 	if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1263 		fixed |= DR6_BUS_LOCK;
1264 	return fixed;
1265 }
1266 
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1267 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1268 {
1269 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1270 
1271 	switch (dr) {
1272 	case 0 ... 3:
1273 		vcpu->arch.db[array_index_nospec(dr, size)] = val;
1274 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1275 			vcpu->arch.eff_db[dr] = val;
1276 		break;
1277 	case 4:
1278 	case 6:
1279 		if (!kvm_dr6_valid(val))
1280 			return 1; /* #GP */
1281 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1282 		break;
1283 	case 5:
1284 	default: /* 7 */
1285 		if (!kvm_dr7_valid(val))
1286 			return 1; /* #GP */
1287 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1288 		kvm_update_dr7(vcpu);
1289 		break;
1290 	}
1291 
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(kvm_set_dr);
1295 
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1296 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1297 {
1298 	size_t size = ARRAY_SIZE(vcpu->arch.db);
1299 
1300 	switch (dr) {
1301 	case 0 ... 3:
1302 		*val = vcpu->arch.db[array_index_nospec(dr, size)];
1303 		break;
1304 	case 4:
1305 	case 6:
1306 		*val = vcpu->arch.dr6;
1307 		break;
1308 	case 5:
1309 	default: /* 7 */
1310 		*val = vcpu->arch.dr7;
1311 		break;
1312 	}
1313 }
1314 EXPORT_SYMBOL_GPL(kvm_get_dr);
1315 
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1316 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1317 {
1318 	u32 ecx = kvm_rcx_read(vcpu);
1319 	u64 data;
1320 
1321 	if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1322 		kvm_inject_gp(vcpu, 0);
1323 		return 1;
1324 	}
1325 
1326 	kvm_rax_write(vcpu, (u32)data);
1327 	kvm_rdx_write(vcpu, data >> 32);
1328 	return kvm_skip_emulated_instruction(vcpu);
1329 }
1330 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1331 
1332 /*
1333  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1334  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1335  *
1336  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1337  * extract the supported MSRs from the related const lists.
1338  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1339  * capabilities of the host cpu. This capabilities test skips MSRs that are
1340  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1341  * may depend on host virtualization features rather than host cpu features.
1342  */
1343 
1344 static const u32 msrs_to_save_all[] = {
1345 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1346 	MSR_STAR,
1347 #ifdef CONFIG_X86_64
1348 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1349 #endif
1350 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1351 	MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1352 	MSR_IA32_SPEC_CTRL,
1353 	MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1354 	MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1355 	MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1356 	MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1357 	MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1358 	MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1359 	MSR_IA32_UMWAIT_CONTROL,
1360 
1361 	MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1362 	MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1363 	MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1364 	MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1365 	MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1366 	MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1367 	MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1368 	MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1369 	MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1370 	MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1371 	MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1372 	MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1373 
1374 	MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1375 	MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1376 	MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1377 	MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1378 	MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1379 	MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1380 };
1381 
1382 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1383 static unsigned num_msrs_to_save;
1384 
1385 static const u32 emulated_msrs_all[] = {
1386 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1387 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1388 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1389 	HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1390 	HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1391 	HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1392 	HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1393 	HV_X64_MSR_RESET,
1394 	HV_X64_MSR_VP_INDEX,
1395 	HV_X64_MSR_VP_RUNTIME,
1396 	HV_X64_MSR_SCONTROL,
1397 	HV_X64_MSR_STIMER0_CONFIG,
1398 	HV_X64_MSR_VP_ASSIST_PAGE,
1399 	HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1400 	HV_X64_MSR_TSC_EMULATION_STATUS,
1401 	HV_X64_MSR_SYNDBG_OPTIONS,
1402 	HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1403 	HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1404 	HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1405 
1406 	MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1407 	MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1408 
1409 	MSR_IA32_TSC_ADJUST,
1410 	MSR_IA32_TSC_DEADLINE,
1411 	MSR_IA32_ARCH_CAPABILITIES,
1412 	MSR_IA32_PERF_CAPABILITIES,
1413 	MSR_IA32_MISC_ENABLE,
1414 	MSR_IA32_MCG_STATUS,
1415 	MSR_IA32_MCG_CTL,
1416 	MSR_IA32_MCG_EXT_CTL,
1417 	MSR_IA32_SMBASE,
1418 	MSR_SMI_COUNT,
1419 	MSR_PLATFORM_INFO,
1420 	MSR_MISC_FEATURES_ENABLES,
1421 	MSR_AMD64_VIRT_SPEC_CTRL,
1422 	MSR_IA32_POWER_CTL,
1423 	MSR_IA32_UCODE_REV,
1424 
1425 	/*
1426 	 * The following list leaves out MSRs whose values are determined
1427 	 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1428 	 * We always support the "true" VMX control MSRs, even if the host
1429 	 * processor does not, so I am putting these registers here rather
1430 	 * than in msrs_to_save_all.
1431 	 */
1432 	MSR_IA32_VMX_BASIC,
1433 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1434 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1435 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1436 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1437 	MSR_IA32_VMX_MISC,
1438 	MSR_IA32_VMX_CR0_FIXED0,
1439 	MSR_IA32_VMX_CR4_FIXED0,
1440 	MSR_IA32_VMX_VMCS_ENUM,
1441 	MSR_IA32_VMX_PROCBASED_CTLS2,
1442 	MSR_IA32_VMX_EPT_VPID_CAP,
1443 	MSR_IA32_VMX_VMFUNC,
1444 
1445 	MSR_K7_HWCR,
1446 	MSR_KVM_POLL_CONTROL,
1447 };
1448 
1449 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1450 static unsigned num_emulated_msrs;
1451 
1452 /*
1453  * List of msr numbers which are used to expose MSR-based features that
1454  * can be used by a hypervisor to validate requested CPU features.
1455  */
1456 static const u32 msr_based_features_all[] = {
1457 	MSR_IA32_VMX_BASIC,
1458 	MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1459 	MSR_IA32_VMX_PINBASED_CTLS,
1460 	MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1461 	MSR_IA32_VMX_PROCBASED_CTLS,
1462 	MSR_IA32_VMX_TRUE_EXIT_CTLS,
1463 	MSR_IA32_VMX_EXIT_CTLS,
1464 	MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1465 	MSR_IA32_VMX_ENTRY_CTLS,
1466 	MSR_IA32_VMX_MISC,
1467 	MSR_IA32_VMX_CR0_FIXED0,
1468 	MSR_IA32_VMX_CR0_FIXED1,
1469 	MSR_IA32_VMX_CR4_FIXED0,
1470 	MSR_IA32_VMX_CR4_FIXED1,
1471 	MSR_IA32_VMX_VMCS_ENUM,
1472 	MSR_IA32_VMX_PROCBASED_CTLS2,
1473 	MSR_IA32_VMX_EPT_VPID_CAP,
1474 	MSR_IA32_VMX_VMFUNC,
1475 
1476 	MSR_AMD64_DE_CFG,
1477 	MSR_IA32_UCODE_REV,
1478 	MSR_IA32_ARCH_CAPABILITIES,
1479 	MSR_IA32_PERF_CAPABILITIES,
1480 };
1481 
1482 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1483 static unsigned int num_msr_based_features;
1484 
1485 /*
1486  * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1487  * does not yet virtualize. These include:
1488  *   10 - MISC_PACKAGE_CTRLS
1489  *   11 - ENERGY_FILTERING_CTL
1490  *   12 - DOITM
1491  *   18 - FB_CLEAR_CTRL
1492  *   21 - XAPIC_DISABLE_STATUS
1493  *   23 - OVERCLOCKING_STATUS
1494  */
1495 
1496 #define KVM_SUPPORTED_ARCH_CAP \
1497 	(ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1498 	 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1499 	 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1500 	 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1501 	 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
1502 
kvm_get_arch_capabilities(void)1503 static u64 kvm_get_arch_capabilities(void)
1504 {
1505 	u64 data = 0;
1506 
1507 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1508 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1509 		data &= KVM_SUPPORTED_ARCH_CAP;
1510 	}
1511 
1512 	/*
1513 	 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1514 	 * the nested hypervisor runs with NX huge pages.  If it is not,
1515 	 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1516 	 * L1 guests, so it need not worry about its own (L2) guests.
1517 	 */
1518 	data |= ARCH_CAP_PSCHANGE_MC_NO;
1519 
1520 	/*
1521 	 * If we're doing cache flushes (either "always" or "cond")
1522 	 * we will do one whenever the guest does a vmlaunch/vmresume.
1523 	 * If an outer hypervisor is doing the cache flush for us
1524 	 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1525 	 * capability to the guest too, and if EPT is disabled we're not
1526 	 * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1527 	 * require a nested hypervisor to do a flush of its own.
1528 	 */
1529 	if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1530 		data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1531 
1532 	if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1533 		data |= ARCH_CAP_RDCL_NO;
1534 	if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1535 		data |= ARCH_CAP_SSB_NO;
1536 	if (!boot_cpu_has_bug(X86_BUG_MDS))
1537 		data |= ARCH_CAP_MDS_NO;
1538 
1539 	if (!boot_cpu_has(X86_FEATURE_RTM)) {
1540 		/*
1541 		 * If RTM=0 because the kernel has disabled TSX, the host might
1542 		 * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1543 		 * and therefore knows that there cannot be TAA) but keep
1544 		 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1545 		 * and we want to allow migrating those guests to tsx=off hosts.
1546 		 */
1547 		data &= ~ARCH_CAP_TAA_NO;
1548 	} else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1549 		data |= ARCH_CAP_TAA_NO;
1550 	} else {
1551 		/*
1552 		 * Nothing to do here; we emulate TSX_CTRL if present on the
1553 		 * host so the guest can choose between disabling TSX or
1554 		 * using VERW to clear CPU buffers.
1555 		 */
1556 	}
1557 
1558 	if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1559 		data |= ARCH_CAP_GDS_NO;
1560 
1561 	return data;
1562 }
1563 
kvm_get_msr_feature(struct kvm_msr_entry * msr)1564 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1565 {
1566 	switch (msr->index) {
1567 	case MSR_IA32_ARCH_CAPABILITIES:
1568 		msr->data = kvm_get_arch_capabilities();
1569 		break;
1570 	case MSR_IA32_UCODE_REV:
1571 		rdmsrl_safe(msr->index, &msr->data);
1572 		break;
1573 	default:
1574 		return static_call(kvm_x86_get_msr_feature)(msr);
1575 	}
1576 	return 0;
1577 }
1578 
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1579 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1580 {
1581 	struct kvm_msr_entry msr;
1582 	int r;
1583 
1584 	msr.index = index;
1585 	r = kvm_get_msr_feature(&msr);
1586 
1587 	if (r == KVM_MSR_RET_INVALID) {
1588 		/* Unconditionally clear the output for simplicity */
1589 		*data = 0;
1590 		if (kvm_msr_ignored_check(index, 0, false))
1591 			r = 0;
1592 	}
1593 
1594 	if (r)
1595 		return r;
1596 
1597 	*data = msr.data;
1598 
1599 	return 0;
1600 }
1601 
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1602 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1603 {
1604 	if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1605 		return false;
1606 
1607 	if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1608 		return false;
1609 
1610 	if (efer & (EFER_LME | EFER_LMA) &&
1611 	    !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1612 		return false;
1613 
1614 	if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1615 		return false;
1616 
1617 	return true;
1618 
1619 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1620 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1621 {
1622 	if (efer & efer_reserved_bits)
1623 		return false;
1624 
1625 	return __kvm_valid_efer(vcpu, efer);
1626 }
1627 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1628 
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1629 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1630 {
1631 	u64 old_efer = vcpu->arch.efer;
1632 	u64 efer = msr_info->data;
1633 	int r;
1634 
1635 	if (efer & efer_reserved_bits)
1636 		return 1;
1637 
1638 	if (!msr_info->host_initiated) {
1639 		if (!__kvm_valid_efer(vcpu, efer))
1640 			return 1;
1641 
1642 		if (is_paging(vcpu) &&
1643 		    (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1644 			return 1;
1645 	}
1646 
1647 	efer &= ~EFER_LMA;
1648 	efer |= vcpu->arch.efer & EFER_LMA;
1649 
1650 	r = static_call(kvm_x86_set_efer)(vcpu, efer);
1651 	if (r) {
1652 		WARN_ON(r > 0);
1653 		return r;
1654 	}
1655 
1656 	if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1657 		kvm_mmu_reset_context(vcpu);
1658 
1659 	return 0;
1660 }
1661 
kvm_enable_efer_bits(u64 mask)1662 void kvm_enable_efer_bits(u64 mask)
1663 {
1664        efer_reserved_bits &= ~mask;
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1667 
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1668 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1669 {
1670 	struct kvm_x86_msr_filter *msr_filter;
1671 	struct msr_bitmap_range *ranges;
1672 	struct kvm *kvm = vcpu->kvm;
1673 	bool allowed;
1674 	int idx;
1675 	u32 i;
1676 
1677 	/* x2APIC MSRs do not support filtering. */
1678 	if (index >= 0x800 && index <= 0x8ff)
1679 		return true;
1680 
1681 	idx = srcu_read_lock(&kvm->srcu);
1682 
1683 	msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1684 	if (!msr_filter) {
1685 		allowed = true;
1686 		goto out;
1687 	}
1688 
1689 	allowed = msr_filter->default_allow;
1690 	ranges = msr_filter->ranges;
1691 
1692 	for (i = 0; i < msr_filter->count; i++) {
1693 		u32 start = ranges[i].base;
1694 		u32 end = start + ranges[i].nmsrs;
1695 		u32 flags = ranges[i].flags;
1696 		unsigned long *bitmap = ranges[i].bitmap;
1697 
1698 		if ((index >= start) && (index < end) && (flags & type)) {
1699 			allowed = !!test_bit(index - start, bitmap);
1700 			break;
1701 		}
1702 	}
1703 
1704 out:
1705 	srcu_read_unlock(&kvm->srcu, idx);
1706 
1707 	return allowed;
1708 }
1709 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1710 
1711 /*
1712  * Write @data into the MSR specified by @index.  Select MSR specific fault
1713  * checks are bypassed if @host_initiated is %true.
1714  * Returns 0 on success, non-0 otherwise.
1715  * Assumes vcpu_load() was already called.
1716  */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1717 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1718 			 bool host_initiated)
1719 {
1720 	struct msr_data msr;
1721 
1722 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1723 		return KVM_MSR_RET_FILTERED;
1724 
1725 	switch (index) {
1726 	case MSR_FS_BASE:
1727 	case MSR_GS_BASE:
1728 	case MSR_KERNEL_GS_BASE:
1729 	case MSR_CSTAR:
1730 	case MSR_LSTAR:
1731 		if (is_noncanonical_address(data, vcpu))
1732 			return 1;
1733 		break;
1734 	case MSR_IA32_SYSENTER_EIP:
1735 	case MSR_IA32_SYSENTER_ESP:
1736 		/*
1737 		 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1738 		 * non-canonical address is written on Intel but not on
1739 		 * AMD (which ignores the top 32-bits, because it does
1740 		 * not implement 64-bit SYSENTER).
1741 		 *
1742 		 * 64-bit code should hence be able to write a non-canonical
1743 		 * value on AMD.  Making the address canonical ensures that
1744 		 * vmentry does not fail on Intel after writing a non-canonical
1745 		 * value, and that something deterministic happens if the guest
1746 		 * invokes 64-bit SYSENTER.
1747 		 */
1748 		data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1749 		break;
1750 	case MSR_TSC_AUX:
1751 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1752 			return 1;
1753 
1754 		if (!host_initiated &&
1755 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1756 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1757 			return 1;
1758 
1759 		/*
1760 		 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1761 		 * incomplete and conflicting architectural behavior.  Current
1762 		 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1763 		 * reserved and always read as zeros.  Enforce Intel's reserved
1764 		 * bits check if and only if the guest CPU is Intel, and clear
1765 		 * the bits in all other cases.  This ensures cross-vendor
1766 		 * migration will provide consistent behavior for the guest.
1767 		 */
1768 		if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1769 			return 1;
1770 
1771 		data = (u32)data;
1772 		break;
1773 	}
1774 
1775 	msr.data = data;
1776 	msr.index = index;
1777 	msr.host_initiated = host_initiated;
1778 
1779 	return static_call(kvm_x86_set_msr)(vcpu, &msr);
1780 }
1781 
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1782 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1783 				     u32 index, u64 data, bool host_initiated)
1784 {
1785 	int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1786 
1787 	if (ret == KVM_MSR_RET_INVALID)
1788 		if (kvm_msr_ignored_check(index, data, true))
1789 			ret = 0;
1790 
1791 	return ret;
1792 }
1793 
1794 /*
1795  * Read the MSR specified by @index into @data.  Select MSR specific fault
1796  * checks are bypassed if @host_initiated is %true.
1797  * Returns 0 on success, non-0 otherwise.
1798  * Assumes vcpu_load() was already called.
1799  */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1800 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1801 		  bool host_initiated)
1802 {
1803 	struct msr_data msr;
1804 	int ret;
1805 
1806 	if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1807 		return KVM_MSR_RET_FILTERED;
1808 
1809 	switch (index) {
1810 	case MSR_TSC_AUX:
1811 		if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1812 			return 1;
1813 
1814 		if (!host_initiated &&
1815 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1816 		    !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1817 			return 1;
1818 		break;
1819 	}
1820 
1821 	msr.index = index;
1822 	msr.host_initiated = host_initiated;
1823 
1824 	ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1825 	if (!ret)
1826 		*data = msr.data;
1827 	return ret;
1828 }
1829 
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1830 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1831 				     u32 index, u64 *data, bool host_initiated)
1832 {
1833 	int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1834 
1835 	if (ret == KVM_MSR_RET_INVALID) {
1836 		/* Unconditionally clear *data for simplicity */
1837 		*data = 0;
1838 		if (kvm_msr_ignored_check(index, 0, false))
1839 			ret = 0;
1840 	}
1841 
1842 	return ret;
1843 }
1844 
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1845 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1846 {
1847 	return kvm_get_msr_ignored_check(vcpu, index, data, false);
1848 }
1849 EXPORT_SYMBOL_GPL(kvm_get_msr);
1850 
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1851 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1852 {
1853 	return kvm_set_msr_ignored_check(vcpu, index, data, false);
1854 }
1855 EXPORT_SYMBOL_GPL(kvm_set_msr);
1856 
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1857 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1858 {
1859 	int err = vcpu->run->msr.error;
1860 	if (!err) {
1861 		kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1862 		kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1863 	}
1864 
1865 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1866 }
1867 
complete_emulated_wrmsr(struct kvm_vcpu * vcpu)1868 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1869 {
1870 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1871 }
1872 
kvm_msr_reason(int r)1873 static u64 kvm_msr_reason(int r)
1874 {
1875 	switch (r) {
1876 	case KVM_MSR_RET_INVALID:
1877 		return KVM_MSR_EXIT_REASON_UNKNOWN;
1878 	case KVM_MSR_RET_FILTERED:
1879 		return KVM_MSR_EXIT_REASON_FILTER;
1880 	default:
1881 		return KVM_MSR_EXIT_REASON_INVAL;
1882 	}
1883 }
1884 
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1885 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1886 			      u32 exit_reason, u64 data,
1887 			      int (*completion)(struct kvm_vcpu *vcpu),
1888 			      int r)
1889 {
1890 	u64 msr_reason = kvm_msr_reason(r);
1891 
1892 	/* Check if the user wanted to know about this MSR fault */
1893 	if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1894 		return 0;
1895 
1896 	vcpu->run->exit_reason = exit_reason;
1897 	vcpu->run->msr.error = 0;
1898 	memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1899 	vcpu->run->msr.reason = msr_reason;
1900 	vcpu->run->msr.index = index;
1901 	vcpu->run->msr.data = data;
1902 	vcpu->arch.complete_userspace_io = completion;
1903 
1904 	return 1;
1905 }
1906 
kvm_get_msr_user_space(struct kvm_vcpu * vcpu,u32 index,int r)1907 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1908 {
1909 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1910 				   complete_emulated_rdmsr, r);
1911 }
1912 
kvm_set_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u64 data,int r)1913 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1914 {
1915 	return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1916 				   complete_emulated_wrmsr, r);
1917 }
1918 
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)1919 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1920 {
1921 	u32 ecx = kvm_rcx_read(vcpu);
1922 	u64 data;
1923 	int r;
1924 
1925 	r = kvm_get_msr(vcpu, ecx, &data);
1926 
1927 	/* MSR read failed? See if we should ask user space */
1928 	if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1929 		/* Bounce to user space */
1930 		return 0;
1931 	}
1932 
1933 	if (!r) {
1934 		trace_kvm_msr_read(ecx, data);
1935 
1936 		kvm_rax_write(vcpu, data & -1u);
1937 		kvm_rdx_write(vcpu, (data >> 32) & -1u);
1938 	} else {
1939 		trace_kvm_msr_read_ex(ecx);
1940 	}
1941 
1942 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1945 
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)1946 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1947 {
1948 	u32 ecx = kvm_rcx_read(vcpu);
1949 	u64 data = kvm_read_edx_eax(vcpu);
1950 	int r;
1951 
1952 	r = kvm_set_msr(vcpu, ecx, data);
1953 
1954 	/* MSR write failed? See if we should ask user space */
1955 	if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1956 		/* Bounce to user space */
1957 		return 0;
1958 
1959 	/* Signal all other negative errors to userspace */
1960 	if (r < 0)
1961 		return r;
1962 
1963 	if (!r)
1964 		trace_kvm_msr_write(ecx, data);
1965 	else
1966 		trace_kvm_msr_write_ex(ecx, data);
1967 
1968 	return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1969 }
1970 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1971 
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)1972 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1973 {
1974 	return kvm_skip_emulated_instruction(vcpu);
1975 }
1976 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1977 
kvm_emulate_invd(struct kvm_vcpu * vcpu)1978 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1979 {
1980 	/* Treat an INVD instruction as a NOP and just skip it. */
1981 	return kvm_emulate_as_nop(vcpu);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1984 
kvm_emulate_mwait(struct kvm_vcpu * vcpu)1985 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1986 {
1987 	pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1988 	return kvm_emulate_as_nop(vcpu);
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1991 
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)1992 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1993 {
1994 	kvm_queue_exception(vcpu, UD_VECTOR);
1995 	return 1;
1996 }
1997 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1998 
kvm_emulate_monitor(struct kvm_vcpu * vcpu)1999 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2000 {
2001 	pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2002 	return kvm_emulate_as_nop(vcpu);
2003 }
2004 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2005 
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2006 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2007 {
2008 	xfer_to_guest_mode_prepare();
2009 	return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2010 		xfer_to_guest_mode_work_pending();
2011 }
2012 
2013 /*
2014  * The fast path for frequent and performance sensitive wrmsr emulation,
2015  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2016  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2017  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2018  * other cases which must be called after interrupts are enabled on the host.
2019  */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2020 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2021 {
2022 	if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2023 		return 1;
2024 
2025 	if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2026 		((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2027 		((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2028 		((u32)(data >> 32) != X2APIC_BROADCAST)) {
2029 
2030 		data &= ~(1 << 12);
2031 		kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2032 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2033 		kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2034 		trace_kvm_apic_write(APIC_ICR, (u32)data);
2035 		return 0;
2036 	}
2037 
2038 	return 1;
2039 }
2040 
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2041 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2042 {
2043 	if (!kvm_can_use_hv_timer(vcpu))
2044 		return 1;
2045 
2046 	kvm_set_lapic_tscdeadline_msr(vcpu, data);
2047 	return 0;
2048 }
2049 
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2050 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2051 {
2052 	u32 msr = kvm_rcx_read(vcpu);
2053 	u64 data;
2054 	fastpath_t ret = EXIT_FASTPATH_NONE;
2055 
2056 	switch (msr) {
2057 	case APIC_BASE_MSR + (APIC_ICR >> 4):
2058 		data = kvm_read_edx_eax(vcpu);
2059 		if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2060 			kvm_skip_emulated_instruction(vcpu);
2061 			ret = EXIT_FASTPATH_EXIT_HANDLED;
2062 		}
2063 		break;
2064 	case MSR_IA32_TSC_DEADLINE:
2065 		data = kvm_read_edx_eax(vcpu);
2066 		if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2067 			kvm_skip_emulated_instruction(vcpu);
2068 			ret = EXIT_FASTPATH_REENTER_GUEST;
2069 		}
2070 		break;
2071 	default:
2072 		break;
2073 	}
2074 
2075 	if (ret != EXIT_FASTPATH_NONE)
2076 		trace_kvm_msr_write(msr, data);
2077 
2078 	return ret;
2079 }
2080 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2081 
2082 /*
2083  * Adapt set_msr() to msr_io()'s calling convention
2084  */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2085 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2086 {
2087 	return kvm_get_msr_ignored_check(vcpu, index, data, true);
2088 }
2089 
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2090 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2091 {
2092 	return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2093 }
2094 
2095 #ifdef CONFIG_X86_64
2096 struct pvclock_clock {
2097 	int vclock_mode;
2098 	u64 cycle_last;
2099 	u64 mask;
2100 	u32 mult;
2101 	u32 shift;
2102 	u64 base_cycles;
2103 	u64 offset;
2104 };
2105 
2106 struct pvclock_gtod_data {
2107 	seqcount_t	seq;
2108 
2109 	struct pvclock_clock clock; /* extract of a clocksource struct */
2110 	struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2111 
2112 	ktime_t		offs_boot;
2113 	u64		wall_time_sec;
2114 };
2115 
2116 static struct pvclock_gtod_data pvclock_gtod_data;
2117 
update_pvclock_gtod(struct timekeeper * tk)2118 static void update_pvclock_gtod(struct timekeeper *tk)
2119 {
2120 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2121 
2122 	write_seqcount_begin(&vdata->seq);
2123 
2124 	/* copy pvclock gtod data */
2125 	vdata->clock.vclock_mode	= tk->tkr_mono.clock->vdso_clock_mode;
2126 	vdata->clock.cycle_last		= tk->tkr_mono.cycle_last;
2127 	vdata->clock.mask		= tk->tkr_mono.mask;
2128 	vdata->clock.mult		= tk->tkr_mono.mult;
2129 	vdata->clock.shift		= tk->tkr_mono.shift;
2130 	vdata->clock.base_cycles	= tk->tkr_mono.xtime_nsec;
2131 	vdata->clock.offset		= tk->tkr_mono.base;
2132 
2133 	vdata->raw_clock.vclock_mode	= tk->tkr_raw.clock->vdso_clock_mode;
2134 	vdata->raw_clock.cycle_last	= tk->tkr_raw.cycle_last;
2135 	vdata->raw_clock.mask		= tk->tkr_raw.mask;
2136 	vdata->raw_clock.mult		= tk->tkr_raw.mult;
2137 	vdata->raw_clock.shift		= tk->tkr_raw.shift;
2138 	vdata->raw_clock.base_cycles	= tk->tkr_raw.xtime_nsec;
2139 	vdata->raw_clock.offset		= tk->tkr_raw.base;
2140 
2141 	vdata->wall_time_sec            = tk->xtime_sec;
2142 
2143 	vdata->offs_boot		= tk->offs_boot;
2144 
2145 	write_seqcount_end(&vdata->seq);
2146 }
2147 
get_kvmclock_base_ns(void)2148 static s64 get_kvmclock_base_ns(void)
2149 {
2150 	/* Count up from boot time, but with the frequency of the raw clock.  */
2151 	return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2152 }
2153 #else
get_kvmclock_base_ns(void)2154 static s64 get_kvmclock_base_ns(void)
2155 {
2156 	/* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2157 	return ktime_get_boottime_ns();
2158 }
2159 #endif
2160 
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2161 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2162 {
2163 	int version;
2164 	int r;
2165 	struct pvclock_wall_clock wc;
2166 	u32 wc_sec_hi;
2167 	u64 wall_nsec;
2168 
2169 	if (!wall_clock)
2170 		return;
2171 
2172 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2173 	if (r)
2174 		return;
2175 
2176 	if (version & 1)
2177 		++version;  /* first time write, random junk */
2178 
2179 	++version;
2180 
2181 	if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2182 		return;
2183 
2184 	/*
2185 	 * The guest calculates current wall clock time by adding
2186 	 * system time (updated by kvm_guest_time_update below) to the
2187 	 * wall clock specified here.  We do the reverse here.
2188 	 */
2189 	wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2190 
2191 	wc.nsec = do_div(wall_nsec, 1000000000);
2192 	wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2193 	wc.version = version;
2194 
2195 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2196 
2197 	if (sec_hi_ofs) {
2198 		wc_sec_hi = wall_nsec >> 32;
2199 		kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2200 				&wc_sec_hi, sizeof(wc_sec_hi));
2201 	}
2202 
2203 	version++;
2204 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2205 }
2206 
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2207 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2208 				  bool old_msr, bool host_initiated)
2209 {
2210 	struct kvm_arch *ka = &vcpu->kvm->arch;
2211 
2212 	if (vcpu->vcpu_id == 0 && !host_initiated) {
2213 		if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2214 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2215 
2216 		ka->boot_vcpu_runs_old_kvmclock = old_msr;
2217 	}
2218 
2219 	vcpu->arch.time = system_time;
2220 	kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2221 
2222 	/* we verify if the enable bit is set... */
2223 	vcpu->arch.pv_time_enabled = false;
2224 	if (!(system_time & 1))
2225 		return;
2226 
2227 	if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2228 				       &vcpu->arch.pv_time, system_time & ~1ULL,
2229 				       sizeof(struct pvclock_vcpu_time_info)))
2230 		vcpu->arch.pv_time_enabled = true;
2231 
2232 	return;
2233 }
2234 
div_frac(uint32_t dividend,uint32_t divisor)2235 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2236 {
2237 	do_shl32_div32(dividend, divisor);
2238 	return dividend;
2239 }
2240 
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2241 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2242 			       s8 *pshift, u32 *pmultiplier)
2243 {
2244 	uint64_t scaled64;
2245 	int32_t  shift = 0;
2246 	uint64_t tps64;
2247 	uint32_t tps32;
2248 
2249 	tps64 = base_hz;
2250 	scaled64 = scaled_hz;
2251 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2252 		tps64 >>= 1;
2253 		shift--;
2254 	}
2255 
2256 	tps32 = (uint32_t)tps64;
2257 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2258 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2259 			scaled64 >>= 1;
2260 		else
2261 			tps32 <<= 1;
2262 		shift++;
2263 	}
2264 
2265 	*pshift = shift;
2266 	*pmultiplier = div_frac(scaled64, tps32);
2267 }
2268 
2269 #ifdef CONFIG_X86_64
2270 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2271 #endif
2272 
2273 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2274 static unsigned long max_tsc_khz;
2275 
adjust_tsc_khz(u32 khz,s32 ppm)2276 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2277 {
2278 	u64 v = (u64)khz * (1000000 + ppm);
2279 	do_div(v, 1000000);
2280 	return v;
2281 }
2282 
2283 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2284 
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2285 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2286 {
2287 	u64 ratio;
2288 
2289 	/* Guest TSC same frequency as host TSC? */
2290 	if (!scale) {
2291 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2292 		return 0;
2293 	}
2294 
2295 	/* TSC scaling supported? */
2296 	if (!kvm_has_tsc_control) {
2297 		if (user_tsc_khz > tsc_khz) {
2298 			vcpu->arch.tsc_catchup = 1;
2299 			vcpu->arch.tsc_always_catchup = 1;
2300 			return 0;
2301 		} else {
2302 			pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2303 			return -1;
2304 		}
2305 	}
2306 
2307 	/* TSC scaling required  - calculate ratio */
2308 	ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2309 				user_tsc_khz, tsc_khz);
2310 
2311 	if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2312 		pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2313 			            user_tsc_khz);
2314 		return -1;
2315 	}
2316 
2317 	kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2318 	return 0;
2319 }
2320 
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2321 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2322 {
2323 	u32 thresh_lo, thresh_hi;
2324 	int use_scaling = 0;
2325 
2326 	/* tsc_khz can be zero if TSC calibration fails */
2327 	if (user_tsc_khz == 0) {
2328 		/* set tsc_scaling_ratio to a safe value */
2329 		kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2330 		return -1;
2331 	}
2332 
2333 	/* Compute a scale to convert nanoseconds in TSC cycles */
2334 	kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2335 			   &vcpu->arch.virtual_tsc_shift,
2336 			   &vcpu->arch.virtual_tsc_mult);
2337 	vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2338 
2339 	/*
2340 	 * Compute the variation in TSC rate which is acceptable
2341 	 * within the range of tolerance and decide if the
2342 	 * rate being applied is within that bounds of the hardware
2343 	 * rate.  If so, no scaling or compensation need be done.
2344 	 */
2345 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2346 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2347 	if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2348 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2349 		use_scaling = 1;
2350 	}
2351 	return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2352 }
2353 
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2354 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2355 {
2356 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2357 				      vcpu->arch.virtual_tsc_mult,
2358 				      vcpu->arch.virtual_tsc_shift);
2359 	tsc += vcpu->arch.this_tsc_write;
2360 	return tsc;
2361 }
2362 
gtod_is_based_on_tsc(int mode)2363 static inline int gtod_is_based_on_tsc(int mode)
2364 {
2365 	return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2366 }
2367 
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2368 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2369 {
2370 #ifdef CONFIG_X86_64
2371 	bool vcpus_matched;
2372 	struct kvm_arch *ka = &vcpu->kvm->arch;
2373 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2374 
2375 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2376 			 atomic_read(&vcpu->kvm->online_vcpus));
2377 
2378 	/*
2379 	 * Once the masterclock is enabled, always perform request in
2380 	 * order to update it.
2381 	 *
2382 	 * In order to enable masterclock, the host clocksource must be TSC
2383 	 * and the vcpus need to have matched TSCs.  When that happens,
2384 	 * perform request to enable masterclock.
2385 	 */
2386 	if (ka->use_master_clock ||
2387 	    (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2388 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2389 
2390 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2391 			    atomic_read(&vcpu->kvm->online_vcpus),
2392 		            ka->use_master_clock, gtod->clock.vclock_mode);
2393 #endif
2394 }
2395 
2396 /*
2397  * Multiply tsc by a fixed point number represented by ratio.
2398  *
2399  * The most significant 64-N bits (mult) of ratio represent the
2400  * integral part of the fixed point number; the remaining N bits
2401  * (frac) represent the fractional part, ie. ratio represents a fixed
2402  * point number (mult + frac * 2^(-N)).
2403  *
2404  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2405  */
__scale_tsc(u64 ratio,u64 tsc)2406 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2407 {
2408 	return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2409 }
2410 
kvm_scale_tsc(struct kvm_vcpu * vcpu,u64 tsc,u64 ratio)2411 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2412 {
2413 	u64 _tsc = tsc;
2414 
2415 	if (ratio != kvm_default_tsc_scaling_ratio)
2416 		_tsc = __scale_tsc(ratio, tsc);
2417 
2418 	return _tsc;
2419 }
2420 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2421 
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2422 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2423 {
2424 	u64 tsc;
2425 
2426 	tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2427 
2428 	return target_tsc - tsc;
2429 }
2430 
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2431 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2432 {
2433 	return vcpu->arch.l1_tsc_offset +
2434 		kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2435 }
2436 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2437 
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2438 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2439 {
2440 	u64 nested_offset;
2441 
2442 	if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2443 		nested_offset = l1_offset;
2444 	else
2445 		nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2446 						kvm_tsc_scaling_ratio_frac_bits);
2447 
2448 	nested_offset += l2_offset;
2449 	return nested_offset;
2450 }
2451 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2452 
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2453 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2454 {
2455 	if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2456 		return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2457 				       kvm_tsc_scaling_ratio_frac_bits);
2458 
2459 	return l1_multiplier;
2460 }
2461 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2462 
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2463 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2464 {
2465 	trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2466 				   vcpu->arch.l1_tsc_offset,
2467 				   l1_offset);
2468 
2469 	vcpu->arch.l1_tsc_offset = l1_offset;
2470 
2471 	/*
2472 	 * If we are here because L1 chose not to trap WRMSR to TSC then
2473 	 * according to the spec this should set L1's TSC (as opposed to
2474 	 * setting L1's offset for L2).
2475 	 */
2476 	if (is_guest_mode(vcpu))
2477 		vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2478 			l1_offset,
2479 			static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2480 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2481 	else
2482 		vcpu->arch.tsc_offset = l1_offset;
2483 
2484 	static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2485 }
2486 
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2487 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2488 {
2489 	vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2490 
2491 	/* Userspace is changing the multiplier while L2 is active */
2492 	if (is_guest_mode(vcpu))
2493 		vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2494 			l1_multiplier,
2495 			static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2496 	else
2497 		vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2498 
2499 	if (kvm_has_tsc_control)
2500 		static_call(kvm_x86_write_tsc_multiplier)(
2501 			vcpu, vcpu->arch.tsc_scaling_ratio);
2502 }
2503 
kvm_check_tsc_unstable(void)2504 static inline bool kvm_check_tsc_unstable(void)
2505 {
2506 #ifdef CONFIG_X86_64
2507 	/*
2508 	 * TSC is marked unstable when we're running on Hyper-V,
2509 	 * 'TSC page' clocksource is good.
2510 	 */
2511 	if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2512 		return false;
2513 #endif
2514 	return check_tsc_unstable();
2515 }
2516 
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2517 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2518 {
2519 	struct kvm *kvm = vcpu->kvm;
2520 	u64 offset, ns, elapsed;
2521 	unsigned long flags;
2522 	bool matched;
2523 	bool already_matched;
2524 	bool synchronizing = false;
2525 
2526 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2527 	offset = kvm_compute_l1_tsc_offset(vcpu, data);
2528 	ns = get_kvmclock_base_ns();
2529 	elapsed = ns - kvm->arch.last_tsc_nsec;
2530 
2531 	if (vcpu->arch.virtual_tsc_khz) {
2532 		if (data == 0) {
2533 			/*
2534 			 * detection of vcpu initialization -- need to sync
2535 			 * with other vCPUs. This particularly helps to keep
2536 			 * kvm_clock stable after CPU hotplug
2537 			 */
2538 			synchronizing = true;
2539 		} else {
2540 			u64 tsc_exp = kvm->arch.last_tsc_write +
2541 						nsec_to_cycles(vcpu, elapsed);
2542 			u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2543 			/*
2544 			 * Special case: TSC write with a small delta (1 second)
2545 			 * of virtual cycle time against real time is
2546 			 * interpreted as an attempt to synchronize the CPU.
2547 			 */
2548 			synchronizing = data < tsc_exp + tsc_hz &&
2549 					data + tsc_hz > tsc_exp;
2550 		}
2551 	}
2552 
2553 	/*
2554 	 * For a reliable TSC, we can match TSC offsets, and for an unstable
2555 	 * TSC, we add elapsed time in this computation.  We could let the
2556 	 * compensation code attempt to catch up if we fall behind, but
2557 	 * it's better to try to match offsets from the beginning.
2558          */
2559 	if (synchronizing &&
2560 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2561 		if (!kvm_check_tsc_unstable()) {
2562 			offset = kvm->arch.cur_tsc_offset;
2563 		} else {
2564 			u64 delta = nsec_to_cycles(vcpu, elapsed);
2565 			data += delta;
2566 			offset = kvm_compute_l1_tsc_offset(vcpu, data);
2567 		}
2568 		matched = true;
2569 		already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
2570 	} else {
2571 		/*
2572 		 * We split periods of matched TSC writes into generations.
2573 		 * For each generation, we track the original measured
2574 		 * nanosecond time, offset, and write, so if TSCs are in
2575 		 * sync, we can match exact offset, and if not, we can match
2576 		 * exact software computation in compute_guest_tsc()
2577 		 *
2578 		 * These values are tracked in kvm->arch.cur_xxx variables.
2579 		 */
2580 		kvm->arch.cur_tsc_generation++;
2581 		kvm->arch.cur_tsc_nsec = ns;
2582 		kvm->arch.cur_tsc_write = data;
2583 		kvm->arch.cur_tsc_offset = offset;
2584 		matched = false;
2585 	}
2586 
2587 	/*
2588 	 * We also track th most recent recorded KHZ, write and time to
2589 	 * allow the matching interval to be extended at each write.
2590 	 */
2591 	kvm->arch.last_tsc_nsec = ns;
2592 	kvm->arch.last_tsc_write = data;
2593 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2594 
2595 	vcpu->arch.last_guest_tsc = data;
2596 
2597 	/* Keep track of which generation this VCPU has synchronized to */
2598 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2599 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2600 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2601 
2602 	kvm_vcpu_write_tsc_offset(vcpu, offset);
2603 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2604 
2605 	raw_spin_lock_irqsave(&kvm->arch.pvclock_gtod_sync_lock, flags);
2606 	if (!matched) {
2607 		kvm->arch.nr_vcpus_matched_tsc = 0;
2608 	} else if (!already_matched) {
2609 		kvm->arch.nr_vcpus_matched_tsc++;
2610 	}
2611 
2612 	kvm_track_tsc_matching(vcpu);
2613 	raw_spin_unlock_irqrestore(&kvm->arch.pvclock_gtod_sync_lock, flags);
2614 }
2615 
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2616 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2617 					   s64 adjustment)
2618 {
2619 	u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2620 	kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2621 }
2622 
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2623 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2624 {
2625 	if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2626 		WARN_ON(adjustment < 0);
2627 	adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2628 				   vcpu->arch.l1_tsc_scaling_ratio);
2629 	adjust_tsc_offset_guest(vcpu, adjustment);
2630 }
2631 
2632 #ifdef CONFIG_X86_64
2633 
read_tsc(void)2634 static u64 read_tsc(void)
2635 {
2636 	u64 ret = (u64)rdtsc_ordered();
2637 	u64 last = pvclock_gtod_data.clock.cycle_last;
2638 
2639 	if (likely(ret >= last))
2640 		return ret;
2641 
2642 	/*
2643 	 * GCC likes to generate cmov here, but this branch is extremely
2644 	 * predictable (it's just a function of time and the likely is
2645 	 * very likely) and there's a data dependence, so force GCC
2646 	 * to generate a branch instead.  I don't barrier() because
2647 	 * we don't actually need a barrier, and if this function
2648 	 * ever gets inlined it will generate worse code.
2649 	 */
2650 	asm volatile ("");
2651 	return last;
2652 }
2653 
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2654 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2655 			  int *mode)
2656 {
2657 	long v;
2658 	u64 tsc_pg_val;
2659 
2660 	switch (clock->vclock_mode) {
2661 	case VDSO_CLOCKMODE_HVCLOCK:
2662 		tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2663 						  tsc_timestamp);
2664 		if (tsc_pg_val != U64_MAX) {
2665 			/* TSC page valid */
2666 			*mode = VDSO_CLOCKMODE_HVCLOCK;
2667 			v = (tsc_pg_val - clock->cycle_last) &
2668 				clock->mask;
2669 		} else {
2670 			/* TSC page invalid */
2671 			*mode = VDSO_CLOCKMODE_NONE;
2672 		}
2673 		break;
2674 	case VDSO_CLOCKMODE_TSC:
2675 		*mode = VDSO_CLOCKMODE_TSC;
2676 		*tsc_timestamp = read_tsc();
2677 		v = (*tsc_timestamp - clock->cycle_last) &
2678 			clock->mask;
2679 		break;
2680 	default:
2681 		*mode = VDSO_CLOCKMODE_NONE;
2682 	}
2683 
2684 	if (*mode == VDSO_CLOCKMODE_NONE)
2685 		*tsc_timestamp = v = 0;
2686 
2687 	return v * clock->mult;
2688 }
2689 
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2690 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2691 {
2692 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2693 	unsigned long seq;
2694 	int mode;
2695 	u64 ns;
2696 
2697 	do {
2698 		seq = read_seqcount_begin(&gtod->seq);
2699 		ns = gtod->raw_clock.base_cycles;
2700 		ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2701 		ns >>= gtod->raw_clock.shift;
2702 		ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2703 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2704 	*t = ns;
2705 
2706 	return mode;
2707 }
2708 
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2709 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2710 {
2711 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2712 	unsigned long seq;
2713 	int mode;
2714 	u64 ns;
2715 
2716 	do {
2717 		seq = read_seqcount_begin(&gtod->seq);
2718 		ts->tv_sec = gtod->wall_time_sec;
2719 		ns = gtod->clock.base_cycles;
2720 		ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2721 		ns >>= gtod->clock.shift;
2722 	} while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2723 
2724 	ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2725 	ts->tv_nsec = ns;
2726 
2727 	return mode;
2728 }
2729 
2730 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2731 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2732 {
2733 	/* checked again under seqlock below */
2734 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2735 		return false;
2736 
2737 	return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2738 						      tsc_timestamp));
2739 }
2740 
2741 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2742 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2743 					   u64 *tsc_timestamp)
2744 {
2745 	/* checked again under seqlock below */
2746 	if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2747 		return false;
2748 
2749 	return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2750 }
2751 #endif
2752 
2753 /*
2754  *
2755  * Assuming a stable TSC across physical CPUS, and a stable TSC
2756  * across virtual CPUs, the following condition is possible.
2757  * Each numbered line represents an event visible to both
2758  * CPUs at the next numbered event.
2759  *
2760  * "timespecX" represents host monotonic time. "tscX" represents
2761  * RDTSC value.
2762  *
2763  * 		VCPU0 on CPU0		|	VCPU1 on CPU1
2764  *
2765  * 1.  read timespec0,tsc0
2766  * 2.					| timespec1 = timespec0 + N
2767  * 					| tsc1 = tsc0 + M
2768  * 3. transition to guest		| transition to guest
2769  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2770  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1)
2771  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2772  *
2773  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2774  *
2775  * 	- ret0 < ret1
2776  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2777  *		...
2778  *	- 0 < N - M => M < N
2779  *
2780  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2781  * always the case (the difference between two distinct xtime instances
2782  * might be smaller then the difference between corresponding TSC reads,
2783  * when updating guest vcpus pvclock areas).
2784  *
2785  * To avoid that problem, do not allow visibility of distinct
2786  * system_timestamp/tsc_timestamp values simultaneously: use a master
2787  * copy of host monotonic time values. Update that master copy
2788  * in lockstep.
2789  *
2790  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2791  *
2792  */
2793 
pvclock_update_vm_gtod_copy(struct kvm * kvm)2794 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2795 {
2796 #ifdef CONFIG_X86_64
2797 	struct kvm_arch *ka = &kvm->arch;
2798 	int vclock_mode;
2799 	bool host_tsc_clocksource, vcpus_matched;
2800 
2801 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2802 			atomic_read(&kvm->online_vcpus));
2803 
2804 	/*
2805 	 * If the host uses TSC clock, then passthrough TSC as stable
2806 	 * to the guest.
2807 	 */
2808 	host_tsc_clocksource = kvm_get_time_and_clockread(
2809 					&ka->master_kernel_ns,
2810 					&ka->master_cycle_now);
2811 
2812 	ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2813 				&& !ka->backwards_tsc_observed
2814 				&& !ka->boot_vcpu_runs_old_kvmclock;
2815 
2816 	if (ka->use_master_clock)
2817 		atomic_set(&kvm_guest_has_master_clock, 1);
2818 
2819 	vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2820 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2821 					vcpus_matched);
2822 #endif
2823 }
2824 
kvm_make_mclock_inprogress_request(struct kvm * kvm)2825 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2826 {
2827 	kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2828 }
2829 
kvm_gen_update_masterclock(struct kvm * kvm)2830 static void kvm_gen_update_masterclock(struct kvm *kvm)
2831 {
2832 #ifdef CONFIG_X86_64
2833 	int i;
2834 	struct kvm_vcpu *vcpu;
2835 	struct kvm_arch *ka = &kvm->arch;
2836 	unsigned long flags;
2837 
2838 	kvm_hv_invalidate_tsc_page(kvm);
2839 
2840 	kvm_make_mclock_inprogress_request(kvm);
2841 
2842 	/* no guest entries from this point */
2843 	raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2844 	pvclock_update_vm_gtod_copy(kvm);
2845 	raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2846 
2847 	kvm_for_each_vcpu(i, vcpu, kvm)
2848 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2849 
2850 	/* guest entries allowed */
2851 	kvm_for_each_vcpu(i, vcpu, kvm)
2852 		kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2853 #endif
2854 }
2855 
get_kvmclock_ns(struct kvm * kvm)2856 u64 get_kvmclock_ns(struct kvm *kvm)
2857 {
2858 	struct kvm_arch *ka = &kvm->arch;
2859 	struct pvclock_vcpu_time_info hv_clock;
2860 	unsigned long flags;
2861 	u64 ret;
2862 
2863 	raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2864 	if (!ka->use_master_clock) {
2865 		raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2866 		return get_kvmclock_base_ns() + ka->kvmclock_offset;
2867 	}
2868 
2869 	hv_clock.tsc_timestamp = ka->master_cycle_now;
2870 	hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2871 	raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2872 
2873 	/* both __this_cpu_read() and rdtsc() should be on the same cpu */
2874 	get_cpu();
2875 
2876 	if (__this_cpu_read(cpu_tsc_khz)) {
2877 		kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2878 				   &hv_clock.tsc_shift,
2879 				   &hv_clock.tsc_to_system_mul);
2880 		ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2881 	} else
2882 		ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
2883 
2884 	put_cpu();
2885 
2886 	return ret;
2887 }
2888 
kvm_setup_pvclock_page(struct kvm_vcpu * v,struct gfn_to_hva_cache * cache,unsigned int offset)2889 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2890 				   struct gfn_to_hva_cache *cache,
2891 				   unsigned int offset)
2892 {
2893 	struct kvm_vcpu_arch *vcpu = &v->arch;
2894 	struct pvclock_vcpu_time_info guest_hv_clock;
2895 
2896 	if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2897 		&guest_hv_clock, offset, sizeof(guest_hv_clock))))
2898 		return;
2899 
2900 	/* This VCPU is paused, but it's legal for a guest to read another
2901 	 * VCPU's kvmclock, so we really have to follow the specification where
2902 	 * it says that version is odd if data is being modified, and even after
2903 	 * it is consistent.
2904 	 *
2905 	 * Version field updates must be kept separate.  This is because
2906 	 * kvm_write_guest_cached might use a "rep movs" instruction, and
2907 	 * writes within a string instruction are weakly ordered.  So there
2908 	 * are three writes overall.
2909 	 *
2910 	 * As a small optimization, only write the version field in the first
2911 	 * and third write.  The vcpu->pv_time cache is still valid, because the
2912 	 * version field is the first in the struct.
2913 	 */
2914 	BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2915 
2916 	if (guest_hv_clock.version & 1)
2917 		++guest_hv_clock.version;  /* first time write, random junk */
2918 
2919 	vcpu->hv_clock.version = guest_hv_clock.version + 1;
2920 	kvm_write_guest_offset_cached(v->kvm, cache,
2921 				      &vcpu->hv_clock, offset,
2922 				      sizeof(vcpu->hv_clock.version));
2923 
2924 	smp_wmb();
2925 
2926 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2927 	vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2928 
2929 	if (vcpu->pvclock_set_guest_stopped_request) {
2930 		vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2931 		vcpu->pvclock_set_guest_stopped_request = false;
2932 	}
2933 
2934 	trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2935 
2936 	kvm_write_guest_offset_cached(v->kvm, cache,
2937 				      &vcpu->hv_clock, offset,
2938 				      sizeof(vcpu->hv_clock));
2939 
2940 	smp_wmb();
2941 
2942 	vcpu->hv_clock.version++;
2943 	kvm_write_guest_offset_cached(v->kvm, cache,
2944 				     &vcpu->hv_clock, offset,
2945 				     sizeof(vcpu->hv_clock.version));
2946 }
2947 
kvm_guest_time_update(struct kvm_vcpu * v)2948 static int kvm_guest_time_update(struct kvm_vcpu *v)
2949 {
2950 	unsigned long flags, tgt_tsc_khz;
2951 	struct kvm_vcpu_arch *vcpu = &v->arch;
2952 	struct kvm_arch *ka = &v->kvm->arch;
2953 	s64 kernel_ns;
2954 	u64 tsc_timestamp, host_tsc;
2955 	u8 pvclock_flags;
2956 	bool use_master_clock;
2957 
2958 	kernel_ns = 0;
2959 	host_tsc = 0;
2960 
2961 	/*
2962 	 * If the host uses TSC clock, then passthrough TSC as stable
2963 	 * to the guest.
2964 	 */
2965 	raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
2966 	use_master_clock = ka->use_master_clock;
2967 	if (use_master_clock) {
2968 		host_tsc = ka->master_cycle_now;
2969 		kernel_ns = ka->master_kernel_ns;
2970 	}
2971 	raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
2972 
2973 	/* Keep irq disabled to prevent changes to the clock */
2974 	local_irq_save(flags);
2975 	tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2976 	if (unlikely(tgt_tsc_khz == 0)) {
2977 		local_irq_restore(flags);
2978 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2979 		return 1;
2980 	}
2981 	if (!use_master_clock) {
2982 		host_tsc = rdtsc();
2983 		kernel_ns = get_kvmclock_base_ns();
2984 	}
2985 
2986 	tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2987 
2988 	/*
2989 	 * We may have to catch up the TSC to match elapsed wall clock
2990 	 * time for two reasons, even if kvmclock is used.
2991 	 *   1) CPU could have been running below the maximum TSC rate
2992 	 *   2) Broken TSC compensation resets the base at each VCPU
2993 	 *      entry to avoid unknown leaps of TSC even when running
2994 	 *      again on the same CPU.  This may cause apparent elapsed
2995 	 *      time to disappear, and the guest to stand still or run
2996 	 *	very slowly.
2997 	 */
2998 	if (vcpu->tsc_catchup) {
2999 		u64 tsc = compute_guest_tsc(v, kernel_ns);
3000 		if (tsc > tsc_timestamp) {
3001 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3002 			tsc_timestamp = tsc;
3003 		}
3004 	}
3005 
3006 	local_irq_restore(flags);
3007 
3008 	/* With all the info we got, fill in the values */
3009 
3010 	if (kvm_has_tsc_control)
3011 		tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3012 					    v->arch.l1_tsc_scaling_ratio);
3013 
3014 	if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3015 		kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3016 				   &vcpu->hv_clock.tsc_shift,
3017 				   &vcpu->hv_clock.tsc_to_system_mul);
3018 		vcpu->hw_tsc_khz = tgt_tsc_khz;
3019 	}
3020 
3021 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3022 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3023 	vcpu->last_guest_tsc = tsc_timestamp;
3024 
3025 	/* If the host uses TSC clocksource, then it is stable */
3026 	pvclock_flags = 0;
3027 	if (use_master_clock)
3028 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3029 
3030 	vcpu->hv_clock.flags = pvclock_flags;
3031 
3032 	if (vcpu->pv_time_enabled)
3033 		kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3034 	if (vcpu->xen.vcpu_info_set)
3035 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3036 				       offsetof(struct compat_vcpu_info, time));
3037 	if (vcpu->xen.vcpu_time_info_set)
3038 		kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3039 	if (!v->vcpu_idx)
3040 		kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3041 	return 0;
3042 }
3043 
3044 /*
3045  * kvmclock updates which are isolated to a given vcpu, such as
3046  * vcpu->cpu migration, should not allow system_timestamp from
3047  * the rest of the vcpus to remain static. Otherwise ntp frequency
3048  * correction applies to one vcpu's system_timestamp but not
3049  * the others.
3050  *
3051  * So in those cases, request a kvmclock update for all vcpus.
3052  * We need to rate-limit these requests though, as they can
3053  * considerably slow guests that have a large number of vcpus.
3054  * The time for a remote vcpu to update its kvmclock is bound
3055  * by the delay we use to rate-limit the updates.
3056  */
3057 
3058 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3059 
kvmclock_update_fn(struct work_struct * work)3060 static void kvmclock_update_fn(struct work_struct *work)
3061 {
3062 	int i;
3063 	struct delayed_work *dwork = to_delayed_work(work);
3064 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3065 					   kvmclock_update_work);
3066 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3067 	struct kvm_vcpu *vcpu;
3068 
3069 	kvm_for_each_vcpu(i, vcpu, kvm) {
3070 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3071 		kvm_vcpu_kick(vcpu);
3072 	}
3073 }
3074 
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3075 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3076 {
3077 	struct kvm *kvm = v->kvm;
3078 
3079 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3080 	schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3081 					KVMCLOCK_UPDATE_DELAY);
3082 }
3083 
3084 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3085 
kvmclock_sync_fn(struct work_struct * work)3086 static void kvmclock_sync_fn(struct work_struct *work)
3087 {
3088 	struct delayed_work *dwork = to_delayed_work(work);
3089 	struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3090 					   kvmclock_sync_work);
3091 	struct kvm *kvm = container_of(ka, struct kvm, arch);
3092 
3093 	if (!kvmclock_periodic_sync)
3094 		return;
3095 
3096 	schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3097 	schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3098 					KVMCLOCK_SYNC_PERIOD);
3099 }
3100 
3101 /*
3102  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3103  */
can_set_mci_status(struct kvm_vcpu * vcpu)3104 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3105 {
3106 	/* McStatusWrEn enabled? */
3107 	if (guest_cpuid_is_amd_or_hygon(vcpu))
3108 		return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3109 
3110 	return false;
3111 }
3112 
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3113 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3114 {
3115 	u64 mcg_cap = vcpu->arch.mcg_cap;
3116 	unsigned bank_num = mcg_cap & 0xff;
3117 	u32 msr = msr_info->index;
3118 	u64 data = msr_info->data;
3119 
3120 	switch (msr) {
3121 	case MSR_IA32_MCG_STATUS:
3122 		vcpu->arch.mcg_status = data;
3123 		break;
3124 	case MSR_IA32_MCG_CTL:
3125 		if (!(mcg_cap & MCG_CTL_P) &&
3126 		    (data || !msr_info->host_initiated))
3127 			return 1;
3128 		if (data != 0 && data != ~(u64)0)
3129 			return 1;
3130 		vcpu->arch.mcg_ctl = data;
3131 		break;
3132 	default:
3133 		if (msr >= MSR_IA32_MC0_CTL &&
3134 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3135 			u32 offset = array_index_nospec(
3136 				msr - MSR_IA32_MC0_CTL,
3137 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3138 
3139 			/* only 0 or all 1s can be written to IA32_MCi_CTL
3140 			 * some Linux kernels though clear bit 10 in bank 4 to
3141 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3142 			 * this to avoid an uncatched #GP in the guest.
3143 			 *
3144 			 * UNIXWARE clears bit 0 of MC1_CTL to ignore
3145 			 * correctable, single-bit ECC data errors.
3146 			 */
3147 			if ((offset & 0x3) == 0 &&
3148 			    data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3149 				return 1;
3150 
3151 			/* MCi_STATUS */
3152 			if (!msr_info->host_initiated &&
3153 			    (offset & 0x3) == 1 && data != 0) {
3154 				if (!can_set_mci_status(vcpu))
3155 					return 1;
3156 			}
3157 
3158 			vcpu->arch.mce_banks[offset] = data;
3159 			break;
3160 		}
3161 		return 1;
3162 	}
3163 	return 0;
3164 }
3165 
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3166 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3167 {
3168 	u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3169 
3170 	return (vcpu->arch.apf.msr_en_val & mask) == mask;
3171 }
3172 
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3173 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3174 {
3175 	gpa_t gpa = data & ~0x3f;
3176 
3177 	/* Bits 4:5 are reserved, Should be zero */
3178 	if (data & 0x30)
3179 		return 1;
3180 
3181 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3182 	    (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3183 		return 1;
3184 
3185 	if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3186 	    (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3187 		return 1;
3188 
3189 	if (!lapic_in_kernel(vcpu))
3190 		return data ? 1 : 0;
3191 
3192 	vcpu->arch.apf.msr_en_val = data;
3193 
3194 	if (!kvm_pv_async_pf_enabled(vcpu)) {
3195 		kvm_clear_async_pf_completion_queue(vcpu);
3196 		kvm_async_pf_hash_reset(vcpu);
3197 		return 0;
3198 	}
3199 
3200 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3201 					sizeof(u64)))
3202 		return 1;
3203 
3204 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3205 	vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3206 
3207 	kvm_async_pf_wakeup_all(vcpu);
3208 
3209 	return 0;
3210 }
3211 
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3212 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3213 {
3214 	/* Bits 8-63 are reserved */
3215 	if (data >> 8)
3216 		return 1;
3217 
3218 	if (!lapic_in_kernel(vcpu))
3219 		return 1;
3220 
3221 	vcpu->arch.apf.msr_int_val = data;
3222 
3223 	vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3224 
3225 	return 0;
3226 }
3227 
kvmclock_reset(struct kvm_vcpu * vcpu)3228 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3229 {
3230 	vcpu->arch.pv_time_enabled = false;
3231 	vcpu->arch.time = 0;
3232 }
3233 
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3234 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3235 {
3236 	++vcpu->stat.tlb_flush;
3237 	static_call(kvm_x86_tlb_flush_all)(vcpu);
3238 }
3239 
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3240 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3241 {
3242 	++vcpu->stat.tlb_flush;
3243 
3244 	if (!tdp_enabled) {
3245                /*
3246 		 * A TLB flush on behalf of the guest is equivalent to
3247 		 * INVPCID(all), toggling CR4.PGE, etc., which requires
3248 		 * a forced sync of the shadow page tables.  Unload the
3249 		 * entire MMU here and the subsequent load will sync the
3250 		 * shadow page tables, and also flush the TLB.
3251 		 */
3252 		kvm_mmu_unload(vcpu);
3253 		return;
3254 	}
3255 
3256 	static_call(kvm_x86_tlb_flush_guest)(vcpu);
3257 }
3258 
3259 
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3260 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3261 {
3262 	++vcpu->stat.tlb_flush;
3263 	static_call(kvm_x86_tlb_flush_current)(vcpu);
3264 }
3265 
3266 /*
3267  * Service "local" TLB flush requests, which are specific to the current MMU
3268  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3269  * TLB flushes that are targeted at an MMU context also need to be serviced
3270  * prior before nested VM-Enter/VM-Exit.
3271  */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3272 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3273 {
3274 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3275 		kvm_vcpu_flush_tlb_current(vcpu);
3276 
3277 	if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3278 		kvm_vcpu_flush_tlb_guest(vcpu);
3279 }
3280 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3281 
record_steal_time(struct kvm_vcpu * vcpu)3282 static void record_steal_time(struct kvm_vcpu *vcpu)
3283 {
3284 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3285 	struct kvm_steal_time __user *st;
3286 	struct kvm_memslots *slots;
3287 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3288 	u64 steal;
3289 	u32 version;
3290 
3291 	if (kvm_xen_msr_enabled(vcpu->kvm)) {
3292 		kvm_xen_runstate_set_running(vcpu);
3293 		return;
3294 	}
3295 
3296 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3297 		return;
3298 
3299 	if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3300 		return;
3301 
3302 	slots = kvm_memslots(vcpu->kvm);
3303 
3304 	if (unlikely(slots->generation != ghc->generation ||
3305 		     gpa != ghc->gpa ||
3306 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3307 		/* We rely on the fact that it fits in a single page. */
3308 		BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3309 
3310 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3311 		    kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3312 			return;
3313 	}
3314 
3315 	st = (struct kvm_steal_time __user *)ghc->hva;
3316 	/*
3317 	 * Doing a TLB flush here, on the guest's behalf, can avoid
3318 	 * expensive IPIs.
3319 	 */
3320 	if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3321 		u8 st_preempted = 0;
3322 		int err = -EFAULT;
3323 
3324 		if (!user_access_begin(st, sizeof(*st)))
3325 			return;
3326 
3327 		asm volatile("1: xchgb %0, %2\n"
3328 			     "xor %1, %1\n"
3329 			     "2:\n"
3330 			     _ASM_EXTABLE_UA(1b, 2b)
3331 			     : "+q" (st_preempted),
3332 			       "+&r" (err),
3333 			       "+m" (st->preempted));
3334 		if (err)
3335 			goto out;
3336 
3337 		user_access_end();
3338 
3339 		vcpu->arch.st.preempted = 0;
3340 
3341 		trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3342 				       st_preempted & KVM_VCPU_FLUSH_TLB);
3343 		if (st_preempted & KVM_VCPU_FLUSH_TLB)
3344 			kvm_vcpu_flush_tlb_guest(vcpu);
3345 
3346 		if (!user_access_begin(st, sizeof(*st)))
3347 			goto dirty;
3348 	} else {
3349 		if (!user_access_begin(st, sizeof(*st)))
3350 			return;
3351 
3352 		unsafe_put_user(0, &st->preempted, out);
3353 		vcpu->arch.st.preempted = 0;
3354 	}
3355 
3356 	unsafe_get_user(version, &st->version, out);
3357 	if (version & 1)
3358 		version += 1;  /* first time write, random junk */
3359 
3360 	version += 1;
3361 	unsafe_put_user(version, &st->version, out);
3362 
3363 	smp_wmb();
3364 
3365 	unsafe_get_user(steal, &st->steal, out);
3366 	steal += current->sched_info.run_delay -
3367 		vcpu->arch.st.last_steal;
3368 	vcpu->arch.st.last_steal = current->sched_info.run_delay;
3369 	unsafe_put_user(steal, &st->steal, out);
3370 
3371 	version += 1;
3372 	unsafe_put_user(version, &st->version, out);
3373 
3374  out:
3375 	user_access_end();
3376  dirty:
3377 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3378 }
3379 
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3380 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3381 {
3382 	bool pr = false;
3383 	u32 msr = msr_info->index;
3384 	u64 data = msr_info->data;
3385 
3386 	if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3387 		return kvm_xen_write_hypercall_page(vcpu, data);
3388 
3389 	switch (msr) {
3390 	case MSR_AMD64_NB_CFG:
3391 	case MSR_IA32_UCODE_WRITE:
3392 	case MSR_VM_HSAVE_PA:
3393 	case MSR_AMD64_PATCH_LOADER:
3394 	case MSR_AMD64_BU_CFG2:
3395 	case MSR_AMD64_DC_CFG:
3396 	case MSR_AMD64_TW_CFG:
3397 	case MSR_F15H_EX_CFG:
3398 		break;
3399 
3400 	case MSR_IA32_UCODE_REV:
3401 		if (msr_info->host_initiated)
3402 			vcpu->arch.microcode_version = data;
3403 		break;
3404 	case MSR_IA32_ARCH_CAPABILITIES:
3405 		if (!msr_info->host_initiated)
3406 			return 1;
3407 		vcpu->arch.arch_capabilities = data;
3408 		break;
3409 	case MSR_IA32_PERF_CAPABILITIES: {
3410 		struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3411 
3412 		if (!msr_info->host_initiated)
3413 			return 1;
3414 		if (kvm_get_msr_feature(&msr_ent))
3415 			return 1;
3416 		if (data & ~msr_ent.data)
3417 			return 1;
3418 
3419 		vcpu->arch.perf_capabilities = data;
3420 
3421 		return 0;
3422 		}
3423 	case MSR_EFER:
3424 		return set_efer(vcpu, msr_info);
3425 	case MSR_K7_HWCR:
3426 		data &= ~(u64)0x40;	/* ignore flush filter disable */
3427 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */
3428 		data &= ~(u64)0x8;	/* ignore TLB cache disable */
3429 
3430 		/* Handle McStatusWrEn */
3431 		if (data == BIT_ULL(18)) {
3432 			vcpu->arch.msr_hwcr = data;
3433 		} else if (data != 0) {
3434 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3435 				    data);
3436 			return 1;
3437 		}
3438 		break;
3439 	case MSR_FAM10H_MMIO_CONF_BASE:
3440 		if (data != 0) {
3441 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3442 				    "0x%llx\n", data);
3443 			return 1;
3444 		}
3445 		break;
3446 	case 0x200 ... 0x2ff:
3447 		return kvm_mtrr_set_msr(vcpu, msr, data);
3448 	case MSR_IA32_APICBASE:
3449 		return kvm_set_apic_base(vcpu, msr_info);
3450 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3451 		return kvm_x2apic_msr_write(vcpu, msr, data);
3452 	case MSR_IA32_TSC_DEADLINE:
3453 		kvm_set_lapic_tscdeadline_msr(vcpu, data);
3454 		break;
3455 	case MSR_IA32_TSC_ADJUST:
3456 		if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3457 			if (!msr_info->host_initiated) {
3458 				s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3459 				adjust_tsc_offset_guest(vcpu, adj);
3460 				/* Before back to guest, tsc_timestamp must be adjusted
3461 				 * as well, otherwise guest's percpu pvclock time could jump.
3462 				 */
3463 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3464 			}
3465 			vcpu->arch.ia32_tsc_adjust_msr = data;
3466 		}
3467 		break;
3468 	case MSR_IA32_MISC_ENABLE:
3469 		if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3470 		    ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3471 			if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3472 				return 1;
3473 			vcpu->arch.ia32_misc_enable_msr = data;
3474 			kvm_update_cpuid_runtime(vcpu);
3475 		} else {
3476 			vcpu->arch.ia32_misc_enable_msr = data;
3477 		}
3478 		break;
3479 	case MSR_IA32_SMBASE:
3480 		if (!msr_info->host_initiated)
3481 			return 1;
3482 		vcpu->arch.smbase = data;
3483 		break;
3484 	case MSR_IA32_POWER_CTL:
3485 		vcpu->arch.msr_ia32_power_ctl = data;
3486 		break;
3487 	case MSR_IA32_TSC:
3488 		if (msr_info->host_initiated) {
3489 			kvm_synchronize_tsc(vcpu, data);
3490 		} else {
3491 			u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3492 			adjust_tsc_offset_guest(vcpu, adj);
3493 			vcpu->arch.ia32_tsc_adjust_msr += adj;
3494 		}
3495 		break;
3496 	case MSR_IA32_XSS:
3497 		if (!msr_info->host_initiated &&
3498 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3499 			return 1;
3500 		/*
3501 		 * KVM supports exposing PT to the guest, but does not support
3502 		 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3503 		 * XSAVES/XRSTORS to save/restore PT MSRs.
3504 		 */
3505 		if (data & ~supported_xss)
3506 			return 1;
3507 		vcpu->arch.ia32_xss = data;
3508 		kvm_update_cpuid_runtime(vcpu);
3509 		break;
3510 	case MSR_SMI_COUNT:
3511 		if (!msr_info->host_initiated)
3512 			return 1;
3513 		vcpu->arch.smi_count = data;
3514 		break;
3515 	case MSR_KVM_WALL_CLOCK_NEW:
3516 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3517 			return 1;
3518 
3519 		vcpu->kvm->arch.wall_clock = data;
3520 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3521 		break;
3522 	case MSR_KVM_WALL_CLOCK:
3523 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3524 			return 1;
3525 
3526 		vcpu->kvm->arch.wall_clock = data;
3527 		kvm_write_wall_clock(vcpu->kvm, data, 0);
3528 		break;
3529 	case MSR_KVM_SYSTEM_TIME_NEW:
3530 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3531 			return 1;
3532 
3533 		kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3534 		break;
3535 	case MSR_KVM_SYSTEM_TIME:
3536 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3537 			return 1;
3538 
3539 		kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3540 		break;
3541 	case MSR_KVM_ASYNC_PF_EN:
3542 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3543 			return 1;
3544 
3545 		if (kvm_pv_enable_async_pf(vcpu, data))
3546 			return 1;
3547 		break;
3548 	case MSR_KVM_ASYNC_PF_INT:
3549 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3550 			return 1;
3551 
3552 		if (kvm_pv_enable_async_pf_int(vcpu, data))
3553 			return 1;
3554 		break;
3555 	case MSR_KVM_ASYNC_PF_ACK:
3556 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3557 			return 1;
3558 		if (data & 0x1) {
3559 			vcpu->arch.apf.pageready_pending = false;
3560 			kvm_check_async_pf_completion(vcpu);
3561 		}
3562 		break;
3563 	case MSR_KVM_STEAL_TIME:
3564 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3565 			return 1;
3566 
3567 		if (unlikely(!sched_info_on()))
3568 			return 1;
3569 
3570 		if (data & KVM_STEAL_RESERVED_MASK)
3571 			return 1;
3572 
3573 		vcpu->arch.st.msr_val = data;
3574 
3575 		if (!(data & KVM_MSR_ENABLED))
3576 			break;
3577 
3578 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3579 
3580 		break;
3581 	case MSR_KVM_PV_EOI_EN:
3582 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3583 			return 1;
3584 
3585 		if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
3586 			return 1;
3587 		break;
3588 
3589 	case MSR_KVM_POLL_CONTROL:
3590 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3591 			return 1;
3592 
3593 		/* only enable bit supported */
3594 		if (data & (-1ULL << 1))
3595 			return 1;
3596 
3597 		vcpu->arch.msr_kvm_poll_control = data;
3598 		break;
3599 
3600 	case MSR_IA32_MCG_CTL:
3601 	case MSR_IA32_MCG_STATUS:
3602 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3603 		return set_msr_mce(vcpu, msr_info);
3604 
3605 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3606 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3607 		pr = true;
3608 		fallthrough;
3609 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3610 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3611 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3612 			return kvm_pmu_set_msr(vcpu, msr_info);
3613 
3614 		if (pr || data != 0)
3615 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3616 				    "0x%x data 0x%llx\n", msr, data);
3617 		break;
3618 	case MSR_K7_CLK_CTL:
3619 		/*
3620 		 * Ignore all writes to this no longer documented MSR.
3621 		 * Writes are only relevant for old K7 processors,
3622 		 * all pre-dating SVM, but a recommended workaround from
3623 		 * AMD for these chips. It is possible to specify the
3624 		 * affected processor models on the command line, hence
3625 		 * the need to ignore the workaround.
3626 		 */
3627 		break;
3628 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3629 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3630 	case HV_X64_MSR_SYNDBG_OPTIONS:
3631 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3632 	case HV_X64_MSR_CRASH_CTL:
3633 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3634 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3635 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3636 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3637 		return kvm_hv_set_msr_common(vcpu, msr, data,
3638 					     msr_info->host_initiated);
3639 	case MSR_IA32_BBL_CR_CTL3:
3640 		/* Drop writes to this legacy MSR -- see rdmsr
3641 		 * counterpart for further detail.
3642 		 */
3643 		if (report_ignored_msrs)
3644 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3645 				msr, data);
3646 		break;
3647 	case MSR_AMD64_OSVW_ID_LENGTH:
3648 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3649 			return 1;
3650 		vcpu->arch.osvw.length = data;
3651 		break;
3652 	case MSR_AMD64_OSVW_STATUS:
3653 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3654 			return 1;
3655 		vcpu->arch.osvw.status = data;
3656 		break;
3657 	case MSR_PLATFORM_INFO:
3658 		if (!msr_info->host_initiated ||
3659 		    (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3660 		     cpuid_fault_enabled(vcpu)))
3661 			return 1;
3662 		vcpu->arch.msr_platform_info = data;
3663 		break;
3664 	case MSR_MISC_FEATURES_ENABLES:
3665 		if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3666 		    (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3667 		     !supports_cpuid_fault(vcpu)))
3668 			return 1;
3669 		vcpu->arch.msr_misc_features_enables = data;
3670 		break;
3671 	default:
3672 		if (kvm_pmu_is_valid_msr(vcpu, msr))
3673 			return kvm_pmu_set_msr(vcpu, msr_info);
3674 		return KVM_MSR_RET_INVALID;
3675 	}
3676 	return 0;
3677 }
3678 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3679 
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3680 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3681 {
3682 	u64 data;
3683 	u64 mcg_cap = vcpu->arch.mcg_cap;
3684 	unsigned bank_num = mcg_cap & 0xff;
3685 
3686 	switch (msr) {
3687 	case MSR_IA32_P5_MC_ADDR:
3688 	case MSR_IA32_P5_MC_TYPE:
3689 		data = 0;
3690 		break;
3691 	case MSR_IA32_MCG_CAP:
3692 		data = vcpu->arch.mcg_cap;
3693 		break;
3694 	case MSR_IA32_MCG_CTL:
3695 		if (!(mcg_cap & MCG_CTL_P) && !host)
3696 			return 1;
3697 		data = vcpu->arch.mcg_ctl;
3698 		break;
3699 	case MSR_IA32_MCG_STATUS:
3700 		data = vcpu->arch.mcg_status;
3701 		break;
3702 	default:
3703 		if (msr >= MSR_IA32_MC0_CTL &&
3704 		    msr < MSR_IA32_MCx_CTL(bank_num)) {
3705 			u32 offset = array_index_nospec(
3706 				msr - MSR_IA32_MC0_CTL,
3707 				MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3708 
3709 			data = vcpu->arch.mce_banks[offset];
3710 			break;
3711 		}
3712 		return 1;
3713 	}
3714 	*pdata = data;
3715 	return 0;
3716 }
3717 
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3718 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3719 {
3720 	switch (msr_info->index) {
3721 	case MSR_IA32_PLATFORM_ID:
3722 	case MSR_IA32_EBL_CR_POWERON:
3723 	case MSR_IA32_LASTBRANCHFROMIP:
3724 	case MSR_IA32_LASTBRANCHTOIP:
3725 	case MSR_IA32_LASTINTFROMIP:
3726 	case MSR_IA32_LASTINTTOIP:
3727 	case MSR_AMD64_SYSCFG:
3728 	case MSR_K8_TSEG_ADDR:
3729 	case MSR_K8_TSEG_MASK:
3730 	case MSR_VM_HSAVE_PA:
3731 	case MSR_K8_INT_PENDING_MSG:
3732 	case MSR_AMD64_NB_CFG:
3733 	case MSR_FAM10H_MMIO_CONF_BASE:
3734 	case MSR_AMD64_BU_CFG2:
3735 	case MSR_IA32_PERF_CTL:
3736 	case MSR_AMD64_DC_CFG:
3737 	case MSR_AMD64_TW_CFG:
3738 	case MSR_F15H_EX_CFG:
3739 	/*
3740 	 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3741 	 * limit) MSRs. Just return 0, as we do not want to expose the host
3742 	 * data here. Do not conditionalize this on CPUID, as KVM does not do
3743 	 * so for existing CPU-specific MSRs.
3744 	 */
3745 	case MSR_RAPL_POWER_UNIT:
3746 	case MSR_PP0_ENERGY_STATUS:	/* Power plane 0 (core) */
3747 	case MSR_PP1_ENERGY_STATUS:	/* Power plane 1 (graphics uncore) */
3748 	case MSR_PKG_ENERGY_STATUS:	/* Total package */
3749 	case MSR_DRAM_ENERGY_STATUS:	/* DRAM controller */
3750 		msr_info->data = 0;
3751 		break;
3752 	case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3753 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3754 			return kvm_pmu_get_msr(vcpu, msr_info);
3755 		if (!msr_info->host_initiated)
3756 			return 1;
3757 		msr_info->data = 0;
3758 		break;
3759 	case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3760 	case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3761 	case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3762 	case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3763 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3764 			return kvm_pmu_get_msr(vcpu, msr_info);
3765 		msr_info->data = 0;
3766 		break;
3767 	case MSR_IA32_UCODE_REV:
3768 		msr_info->data = vcpu->arch.microcode_version;
3769 		break;
3770 	case MSR_IA32_ARCH_CAPABILITIES:
3771 		if (!msr_info->host_initiated &&
3772 		    !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3773 			return 1;
3774 		msr_info->data = vcpu->arch.arch_capabilities;
3775 		break;
3776 	case MSR_IA32_PERF_CAPABILITIES:
3777 		if (!msr_info->host_initiated &&
3778 		    !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3779 			return 1;
3780 		msr_info->data = vcpu->arch.perf_capabilities;
3781 		break;
3782 	case MSR_IA32_POWER_CTL:
3783 		msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3784 		break;
3785 	case MSR_IA32_TSC: {
3786 		/*
3787 		 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3788 		 * even when not intercepted. AMD manual doesn't explicitly
3789 		 * state this but appears to behave the same.
3790 		 *
3791 		 * On userspace reads and writes, however, we unconditionally
3792 		 * return L1's TSC value to ensure backwards-compatible
3793 		 * behavior for migration.
3794 		 */
3795 		u64 offset, ratio;
3796 
3797 		if (msr_info->host_initiated) {
3798 			offset = vcpu->arch.l1_tsc_offset;
3799 			ratio = vcpu->arch.l1_tsc_scaling_ratio;
3800 		} else {
3801 			offset = vcpu->arch.tsc_offset;
3802 			ratio = vcpu->arch.tsc_scaling_ratio;
3803 		}
3804 
3805 		msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3806 		break;
3807 	}
3808 	case MSR_MTRRcap:
3809 	case 0x200 ... 0x2ff:
3810 		return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3811 	case 0xcd: /* fsb frequency */
3812 		msr_info->data = 3;
3813 		break;
3814 		/*
3815 		 * MSR_EBC_FREQUENCY_ID
3816 		 * Conservative value valid for even the basic CPU models.
3817 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3818 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3819 		 * and 266MHz for model 3, or 4. Set Core Clock
3820 		 * Frequency to System Bus Frequency Ratio to 1 (bits
3821 		 * 31:24) even though these are only valid for CPU
3822 		 * models > 2, however guests may end up dividing or
3823 		 * multiplying by zero otherwise.
3824 		 */
3825 	case MSR_EBC_FREQUENCY_ID:
3826 		msr_info->data = 1 << 24;
3827 		break;
3828 	case MSR_IA32_APICBASE:
3829 		msr_info->data = kvm_get_apic_base(vcpu);
3830 		break;
3831 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3832 		return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3833 	case MSR_IA32_TSC_DEADLINE:
3834 		msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3835 		break;
3836 	case MSR_IA32_TSC_ADJUST:
3837 		msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3838 		break;
3839 	case MSR_IA32_MISC_ENABLE:
3840 		msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3841 		break;
3842 	case MSR_IA32_SMBASE:
3843 		if (!msr_info->host_initiated)
3844 			return 1;
3845 		msr_info->data = vcpu->arch.smbase;
3846 		break;
3847 	case MSR_SMI_COUNT:
3848 		msr_info->data = vcpu->arch.smi_count;
3849 		break;
3850 	case MSR_IA32_PERF_STATUS:
3851 		/* TSC increment by tick */
3852 		msr_info->data = 1000ULL;
3853 		/* CPU multiplier */
3854 		msr_info->data |= (((uint64_t)4ULL) << 40);
3855 		break;
3856 	case MSR_EFER:
3857 		msr_info->data = vcpu->arch.efer;
3858 		break;
3859 	case MSR_KVM_WALL_CLOCK:
3860 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3861 			return 1;
3862 
3863 		msr_info->data = vcpu->kvm->arch.wall_clock;
3864 		break;
3865 	case MSR_KVM_WALL_CLOCK_NEW:
3866 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3867 			return 1;
3868 
3869 		msr_info->data = vcpu->kvm->arch.wall_clock;
3870 		break;
3871 	case MSR_KVM_SYSTEM_TIME:
3872 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3873 			return 1;
3874 
3875 		msr_info->data = vcpu->arch.time;
3876 		break;
3877 	case MSR_KVM_SYSTEM_TIME_NEW:
3878 		if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3879 			return 1;
3880 
3881 		msr_info->data = vcpu->arch.time;
3882 		break;
3883 	case MSR_KVM_ASYNC_PF_EN:
3884 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3885 			return 1;
3886 
3887 		msr_info->data = vcpu->arch.apf.msr_en_val;
3888 		break;
3889 	case MSR_KVM_ASYNC_PF_INT:
3890 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3891 			return 1;
3892 
3893 		msr_info->data = vcpu->arch.apf.msr_int_val;
3894 		break;
3895 	case MSR_KVM_ASYNC_PF_ACK:
3896 		if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3897 			return 1;
3898 
3899 		msr_info->data = 0;
3900 		break;
3901 	case MSR_KVM_STEAL_TIME:
3902 		if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3903 			return 1;
3904 
3905 		msr_info->data = vcpu->arch.st.msr_val;
3906 		break;
3907 	case MSR_KVM_PV_EOI_EN:
3908 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3909 			return 1;
3910 
3911 		msr_info->data = vcpu->arch.pv_eoi.msr_val;
3912 		break;
3913 	case MSR_KVM_POLL_CONTROL:
3914 		if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3915 			return 1;
3916 
3917 		msr_info->data = vcpu->arch.msr_kvm_poll_control;
3918 		break;
3919 	case MSR_IA32_P5_MC_ADDR:
3920 	case MSR_IA32_P5_MC_TYPE:
3921 	case MSR_IA32_MCG_CAP:
3922 	case MSR_IA32_MCG_CTL:
3923 	case MSR_IA32_MCG_STATUS:
3924 	case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3925 		return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3926 				   msr_info->host_initiated);
3927 	case MSR_IA32_XSS:
3928 		if (!msr_info->host_initiated &&
3929 		    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3930 			return 1;
3931 		msr_info->data = vcpu->arch.ia32_xss;
3932 		break;
3933 	case MSR_K7_CLK_CTL:
3934 		/*
3935 		 * Provide expected ramp-up count for K7. All other
3936 		 * are set to zero, indicating minimum divisors for
3937 		 * every field.
3938 		 *
3939 		 * This prevents guest kernels on AMD host with CPU
3940 		 * type 6, model 8 and higher from exploding due to
3941 		 * the rdmsr failing.
3942 		 */
3943 		msr_info->data = 0x20000000;
3944 		break;
3945 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3946 	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3947 	case HV_X64_MSR_SYNDBG_OPTIONS:
3948 	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3949 	case HV_X64_MSR_CRASH_CTL:
3950 	case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3951 	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3952 	case HV_X64_MSR_TSC_EMULATION_CONTROL:
3953 	case HV_X64_MSR_TSC_EMULATION_STATUS:
3954 		return kvm_hv_get_msr_common(vcpu,
3955 					     msr_info->index, &msr_info->data,
3956 					     msr_info->host_initiated);
3957 	case MSR_IA32_BBL_CR_CTL3:
3958 		/* This legacy MSR exists but isn't fully documented in current
3959 		 * silicon.  It is however accessed by winxp in very narrow
3960 		 * scenarios where it sets bit #19, itself documented as
3961 		 * a "reserved" bit.  Best effort attempt to source coherent
3962 		 * read data here should the balance of the register be
3963 		 * interpreted by the guest:
3964 		 *
3965 		 * L2 cache control register 3: 64GB range, 256KB size,
3966 		 * enabled, latency 0x1, configured
3967 		 */
3968 		msr_info->data = 0xbe702111;
3969 		break;
3970 	case MSR_AMD64_OSVW_ID_LENGTH:
3971 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3972 			return 1;
3973 		msr_info->data = vcpu->arch.osvw.length;
3974 		break;
3975 	case MSR_AMD64_OSVW_STATUS:
3976 		if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3977 			return 1;
3978 		msr_info->data = vcpu->arch.osvw.status;
3979 		break;
3980 	case MSR_PLATFORM_INFO:
3981 		if (!msr_info->host_initiated &&
3982 		    !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3983 			return 1;
3984 		msr_info->data = vcpu->arch.msr_platform_info;
3985 		break;
3986 	case MSR_MISC_FEATURES_ENABLES:
3987 		msr_info->data = vcpu->arch.msr_misc_features_enables;
3988 		break;
3989 	case MSR_K7_HWCR:
3990 		msr_info->data = vcpu->arch.msr_hwcr;
3991 		break;
3992 	default:
3993 		if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3994 			return kvm_pmu_get_msr(vcpu, msr_info);
3995 		return KVM_MSR_RET_INVALID;
3996 	}
3997 	return 0;
3998 }
3999 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4000 
4001 /*
4002  * Read or write a bunch of msrs. All parameters are kernel addresses.
4003  *
4004  * @return number of msrs set successfully.
4005  */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4006 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4007 		    struct kvm_msr_entry *entries,
4008 		    int (*do_msr)(struct kvm_vcpu *vcpu,
4009 				  unsigned index, u64 *data))
4010 {
4011 	int i;
4012 
4013 	for (i = 0; i < msrs->nmsrs; ++i)
4014 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
4015 			break;
4016 
4017 	return i;
4018 }
4019 
4020 /*
4021  * Read or write a bunch of msrs. Parameters are user addresses.
4022  *
4023  * @return number of msrs set successfully.
4024  */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4025 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4026 		  int (*do_msr)(struct kvm_vcpu *vcpu,
4027 				unsigned index, u64 *data),
4028 		  int writeback)
4029 {
4030 	struct kvm_msrs msrs;
4031 	struct kvm_msr_entry *entries;
4032 	int r, n;
4033 	unsigned size;
4034 
4035 	r = -EFAULT;
4036 	if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4037 		goto out;
4038 
4039 	r = -E2BIG;
4040 	if (msrs.nmsrs >= MAX_IO_MSRS)
4041 		goto out;
4042 
4043 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4044 	entries = memdup_user(user_msrs->entries, size);
4045 	if (IS_ERR(entries)) {
4046 		r = PTR_ERR(entries);
4047 		goto out;
4048 	}
4049 
4050 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4051 	if (r < 0)
4052 		goto out_free;
4053 
4054 	r = -EFAULT;
4055 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
4056 		goto out_free;
4057 
4058 	r = n;
4059 
4060 out_free:
4061 	kfree(entries);
4062 out:
4063 	return r;
4064 }
4065 
kvm_can_mwait_in_guest(void)4066 static inline bool kvm_can_mwait_in_guest(void)
4067 {
4068 	return boot_cpu_has(X86_FEATURE_MWAIT) &&
4069 		!boot_cpu_has_bug(X86_BUG_MONITOR) &&
4070 		boot_cpu_has(X86_FEATURE_ARAT);
4071 }
4072 
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4073 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4074 					    struct kvm_cpuid2 __user *cpuid_arg)
4075 {
4076 	struct kvm_cpuid2 cpuid;
4077 	int r;
4078 
4079 	r = -EFAULT;
4080 	if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4081 		return r;
4082 
4083 	r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4084 	if (r)
4085 		return r;
4086 
4087 	r = -EFAULT;
4088 	if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4089 		return r;
4090 
4091 	return 0;
4092 }
4093 
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4094 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4095 {
4096 	int r = 0;
4097 
4098 	switch (ext) {
4099 	case KVM_CAP_IRQCHIP:
4100 	case KVM_CAP_HLT:
4101 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4102 	case KVM_CAP_SET_TSS_ADDR:
4103 	case KVM_CAP_EXT_CPUID:
4104 	case KVM_CAP_EXT_EMUL_CPUID:
4105 	case KVM_CAP_CLOCKSOURCE:
4106 	case KVM_CAP_PIT:
4107 	case KVM_CAP_NOP_IO_DELAY:
4108 	case KVM_CAP_MP_STATE:
4109 	case KVM_CAP_SYNC_MMU:
4110 	case KVM_CAP_USER_NMI:
4111 	case KVM_CAP_REINJECT_CONTROL:
4112 	case KVM_CAP_IRQ_INJECT_STATUS:
4113 	case KVM_CAP_IOEVENTFD:
4114 	case KVM_CAP_IOEVENTFD_NO_LENGTH:
4115 	case KVM_CAP_PIT2:
4116 	case KVM_CAP_PIT_STATE2:
4117 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4118 	case KVM_CAP_VCPU_EVENTS:
4119 	case KVM_CAP_HYPERV:
4120 	case KVM_CAP_HYPERV_VAPIC:
4121 	case KVM_CAP_HYPERV_SPIN:
4122 	case KVM_CAP_HYPERV_SYNIC:
4123 	case KVM_CAP_HYPERV_SYNIC2:
4124 	case KVM_CAP_HYPERV_VP_INDEX:
4125 	case KVM_CAP_HYPERV_EVENTFD:
4126 	case KVM_CAP_HYPERV_TLBFLUSH:
4127 	case KVM_CAP_HYPERV_SEND_IPI:
4128 	case KVM_CAP_HYPERV_CPUID:
4129 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
4130 	case KVM_CAP_SYS_HYPERV_CPUID:
4131 	case KVM_CAP_PCI_SEGMENT:
4132 	case KVM_CAP_DEBUGREGS:
4133 	case KVM_CAP_X86_ROBUST_SINGLESTEP:
4134 	case KVM_CAP_XSAVE:
4135 	case KVM_CAP_ASYNC_PF:
4136 	case KVM_CAP_ASYNC_PF_INT:
4137 	case KVM_CAP_GET_TSC_KHZ:
4138 	case KVM_CAP_KVMCLOCK_CTRL:
4139 	case KVM_CAP_READONLY_MEM:
4140 	case KVM_CAP_HYPERV_TIME:
4141 	case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4142 	case KVM_CAP_TSC_DEADLINE_TIMER:
4143 	case KVM_CAP_DISABLE_QUIRKS:
4144 	case KVM_CAP_SET_BOOT_CPU_ID:
4145  	case KVM_CAP_SPLIT_IRQCHIP:
4146 	case KVM_CAP_IMMEDIATE_EXIT:
4147 	case KVM_CAP_PMU_EVENT_FILTER:
4148 	case KVM_CAP_GET_MSR_FEATURES:
4149 	case KVM_CAP_MSR_PLATFORM_INFO:
4150 	case KVM_CAP_EXCEPTION_PAYLOAD:
4151 	case KVM_CAP_SET_GUEST_DEBUG:
4152 	case KVM_CAP_LAST_CPU:
4153 	case KVM_CAP_X86_USER_SPACE_MSR:
4154 	case KVM_CAP_X86_MSR_FILTER:
4155 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4156 #ifdef CONFIG_X86_SGX_KVM
4157 	case KVM_CAP_SGX_ATTRIBUTE:
4158 #endif
4159 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4160 	case KVM_CAP_SREGS2:
4161 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4162 		r = 1;
4163 		break;
4164 	case KVM_CAP_EXIT_HYPERCALL:
4165 		r = KVM_EXIT_HYPERCALL_VALID_MASK;
4166 		break;
4167 	case KVM_CAP_SET_GUEST_DEBUG2:
4168 		return KVM_GUESTDBG_VALID_MASK;
4169 #ifdef CONFIG_KVM_XEN
4170 	case KVM_CAP_XEN_HVM:
4171 		r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4172 		    KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4173 		    KVM_XEN_HVM_CONFIG_SHARED_INFO;
4174 		if (sched_info_on())
4175 			r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4176 		break;
4177 #endif
4178 	case KVM_CAP_SYNC_REGS:
4179 		r = KVM_SYNC_X86_VALID_FIELDS;
4180 		break;
4181 	case KVM_CAP_ADJUST_CLOCK:
4182 		r = KVM_CLOCK_TSC_STABLE;
4183 		break;
4184 	case KVM_CAP_X86_DISABLE_EXITS:
4185 		r = KVM_X86_DISABLE_EXITS_PAUSE;
4186 
4187 		if (!mitigate_smt_rsb) {
4188 			r |= KVM_X86_DISABLE_EXITS_HLT |
4189 			     KVM_X86_DISABLE_EXITS_CSTATE;
4190 
4191 			if (kvm_can_mwait_in_guest())
4192 				r |= KVM_X86_DISABLE_EXITS_MWAIT;
4193 		}
4194 		break;
4195 	case KVM_CAP_X86_SMM:
4196 		/* SMBASE is usually relocated above 1M on modern chipsets,
4197 		 * and SMM handlers might indeed rely on 4G segment limits,
4198 		 * so do not report SMM to be available if real mode is
4199 		 * emulated via vm86 mode.  Still, do not go to great lengths
4200 		 * to avoid userspace's usage of the feature, because it is a
4201 		 * fringe case that is not enabled except via specific settings
4202 		 * of the module parameters.
4203 		 */
4204 		r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4205 		break;
4206 	case KVM_CAP_VAPIC:
4207 		r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4208 		break;
4209 	case KVM_CAP_NR_VCPUS:
4210 		r = KVM_SOFT_MAX_VCPUS;
4211 		break;
4212 	case KVM_CAP_MAX_VCPUS:
4213 		r = KVM_MAX_VCPUS;
4214 		break;
4215 	case KVM_CAP_MAX_VCPU_ID:
4216 		r = KVM_MAX_VCPU_ID;
4217 		break;
4218 	case KVM_CAP_PV_MMU:	/* obsolete */
4219 		r = 0;
4220 		break;
4221 	case KVM_CAP_MCE:
4222 		r = KVM_MAX_MCE_BANKS;
4223 		break;
4224 	case KVM_CAP_XCRS:
4225 		r = boot_cpu_has(X86_FEATURE_XSAVE);
4226 		break;
4227 	case KVM_CAP_TSC_CONTROL:
4228 		r = kvm_has_tsc_control;
4229 		break;
4230 	case KVM_CAP_X2APIC_API:
4231 		r = KVM_X2APIC_API_VALID_FLAGS;
4232 		break;
4233 	case KVM_CAP_NESTED_STATE:
4234 		r = kvm_x86_ops.nested_ops->get_state ?
4235 			kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4236 		break;
4237 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4238 		r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4239 		break;
4240 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4241 		r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4242 		break;
4243 	case KVM_CAP_SMALLER_MAXPHYADDR:
4244 		r = (int) allow_smaller_maxphyaddr;
4245 		break;
4246 	case KVM_CAP_STEAL_TIME:
4247 		r = sched_info_on();
4248 		break;
4249 	case KVM_CAP_X86_BUS_LOCK_EXIT:
4250 		if (kvm_has_bus_lock_exit)
4251 			r = KVM_BUS_LOCK_DETECTION_OFF |
4252 			    KVM_BUS_LOCK_DETECTION_EXIT;
4253 		else
4254 			r = 0;
4255 		break;
4256 	default:
4257 		break;
4258 	}
4259 	return r;
4260 
4261 }
4262 
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4263 long kvm_arch_dev_ioctl(struct file *filp,
4264 			unsigned int ioctl, unsigned long arg)
4265 {
4266 	void __user *argp = (void __user *)arg;
4267 	long r;
4268 
4269 	switch (ioctl) {
4270 	case KVM_GET_MSR_INDEX_LIST: {
4271 		struct kvm_msr_list __user *user_msr_list = argp;
4272 		struct kvm_msr_list msr_list;
4273 		unsigned n;
4274 
4275 		r = -EFAULT;
4276 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4277 			goto out;
4278 		n = msr_list.nmsrs;
4279 		msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4280 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4281 			goto out;
4282 		r = -E2BIG;
4283 		if (n < msr_list.nmsrs)
4284 			goto out;
4285 		r = -EFAULT;
4286 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4287 				 num_msrs_to_save * sizeof(u32)))
4288 			goto out;
4289 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4290 				 &emulated_msrs,
4291 				 num_emulated_msrs * sizeof(u32)))
4292 			goto out;
4293 		r = 0;
4294 		break;
4295 	}
4296 	case KVM_GET_SUPPORTED_CPUID:
4297 	case KVM_GET_EMULATED_CPUID: {
4298 		struct kvm_cpuid2 __user *cpuid_arg = argp;
4299 		struct kvm_cpuid2 cpuid;
4300 
4301 		r = -EFAULT;
4302 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4303 			goto out;
4304 
4305 		r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4306 					    ioctl);
4307 		if (r)
4308 			goto out;
4309 
4310 		r = -EFAULT;
4311 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4312 			goto out;
4313 		r = 0;
4314 		break;
4315 	}
4316 	case KVM_X86_GET_MCE_CAP_SUPPORTED:
4317 		r = -EFAULT;
4318 		if (copy_to_user(argp, &kvm_mce_cap_supported,
4319 				 sizeof(kvm_mce_cap_supported)))
4320 			goto out;
4321 		r = 0;
4322 		break;
4323 	case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4324 		struct kvm_msr_list __user *user_msr_list = argp;
4325 		struct kvm_msr_list msr_list;
4326 		unsigned int n;
4327 
4328 		r = -EFAULT;
4329 		if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4330 			goto out;
4331 		n = msr_list.nmsrs;
4332 		msr_list.nmsrs = num_msr_based_features;
4333 		if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4334 			goto out;
4335 		r = -E2BIG;
4336 		if (n < msr_list.nmsrs)
4337 			goto out;
4338 		r = -EFAULT;
4339 		if (copy_to_user(user_msr_list->indices, &msr_based_features,
4340 				 num_msr_based_features * sizeof(u32)))
4341 			goto out;
4342 		r = 0;
4343 		break;
4344 	}
4345 	case KVM_GET_MSRS:
4346 		r = msr_io(NULL, argp, do_get_msr_feature, 1);
4347 		break;
4348 	case KVM_GET_SUPPORTED_HV_CPUID:
4349 		r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4350 		break;
4351 	default:
4352 		r = -EINVAL;
4353 		break;
4354 	}
4355 out:
4356 	return r;
4357 }
4358 
wbinvd_ipi(void * garbage)4359 static void wbinvd_ipi(void *garbage)
4360 {
4361 	wbinvd();
4362 }
4363 
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4364 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4365 {
4366 	return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4367 }
4368 
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4369 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4370 {
4371 	/* Address WBINVD may be executed by guest */
4372 	if (need_emulate_wbinvd(vcpu)) {
4373 		if (static_call(kvm_x86_has_wbinvd_exit)())
4374 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4375 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4376 			smp_call_function_single(vcpu->cpu,
4377 					wbinvd_ipi, NULL, 1);
4378 	}
4379 
4380 	static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4381 
4382 	/* Save host pkru register if supported */
4383 	vcpu->arch.host_pkru = read_pkru();
4384 
4385 	/* Apply any externally detected TSC adjustments (due to suspend) */
4386 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4387 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4388 		vcpu->arch.tsc_offset_adjustment = 0;
4389 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4390 	}
4391 
4392 	if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4393 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4394 				rdtsc() - vcpu->arch.last_host_tsc;
4395 		if (tsc_delta < 0)
4396 			mark_tsc_unstable("KVM discovered backwards TSC");
4397 
4398 		if (kvm_check_tsc_unstable()) {
4399 			u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4400 						vcpu->arch.last_guest_tsc);
4401 			kvm_vcpu_write_tsc_offset(vcpu, offset);
4402 			vcpu->arch.tsc_catchup = 1;
4403 		}
4404 
4405 		if (kvm_lapic_hv_timer_in_use(vcpu))
4406 			kvm_lapic_restart_hv_timer(vcpu);
4407 
4408 		/*
4409 		 * On a host with synchronized TSC, there is no need to update
4410 		 * kvmclock on vcpu->cpu migration
4411 		 */
4412 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4413 			kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4414 		if (vcpu->cpu != cpu)
4415 			kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4416 		vcpu->cpu = cpu;
4417 	}
4418 
4419 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4420 }
4421 
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4422 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4423 {
4424 	struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4425 	struct kvm_steal_time __user *st;
4426 	struct kvm_memslots *slots;
4427 	static const u8 preempted = KVM_VCPU_PREEMPTED;
4428 	gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4429 
4430 	/*
4431 	 * The vCPU can be marked preempted if and only if the VM-Exit was on
4432 	 * an instruction boundary and will not trigger guest emulation of any
4433 	 * kind (see vcpu_run).  Vendor specific code controls (conservatively)
4434 	 * when this is true, for example allowing the vCPU to be marked
4435 	 * preempted if and only if the VM-Exit was due to a host interrupt.
4436 	 */
4437 	if (!vcpu->arch.at_instruction_boundary) {
4438 		vcpu->stat.preemption_other++;
4439 		return;
4440 	}
4441 
4442 	vcpu->stat.preemption_reported++;
4443 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4444 		return;
4445 
4446 	if (vcpu->arch.st.preempted)
4447 		return;
4448 
4449 	/* This happens on process exit */
4450 	if (unlikely(current->mm != vcpu->kvm->mm))
4451 		return;
4452 
4453 	slots = kvm_memslots(vcpu->kvm);
4454 
4455 	if (unlikely(slots->generation != ghc->generation ||
4456 		     gpa != ghc->gpa ||
4457 		     kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4458 		return;
4459 
4460 	st = (struct kvm_steal_time __user *)ghc->hva;
4461 	BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4462 
4463 	if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4464 		vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4465 
4466 	mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4467 }
4468 
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4469 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4470 {
4471 	int idx;
4472 
4473 	if (vcpu->preempted) {
4474 		if (!vcpu->arch.guest_state_protected)
4475 			vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4476 
4477 		/*
4478 		 * Take the srcu lock as memslots will be accessed to check the gfn
4479 		 * cache generation against the memslots generation.
4480 		 */
4481 		idx = srcu_read_lock(&vcpu->kvm->srcu);
4482 		if (kvm_xen_msr_enabled(vcpu->kvm))
4483 			kvm_xen_runstate_set_preempted(vcpu);
4484 		else
4485 			kvm_steal_time_set_preempted(vcpu);
4486 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
4487 	}
4488 
4489 	static_call(kvm_x86_vcpu_put)(vcpu);
4490 	vcpu->arch.last_host_tsc = rdtsc();
4491 }
4492 
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4493 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4494 				    struct kvm_lapic_state *s)
4495 {
4496 	static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4497 
4498 	return kvm_apic_get_state(vcpu, s);
4499 }
4500 
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4501 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4502 				    struct kvm_lapic_state *s)
4503 {
4504 	int r;
4505 
4506 	r = kvm_apic_set_state(vcpu, s);
4507 	if (r)
4508 		return r;
4509 	update_cr8_intercept(vcpu);
4510 
4511 	return 0;
4512 }
4513 
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4514 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4515 {
4516 	/*
4517 	 * We can accept userspace's request for interrupt injection
4518 	 * as long as we have a place to store the interrupt number.
4519 	 * The actual injection will happen when the CPU is able to
4520 	 * deliver the interrupt.
4521 	 */
4522 	if (kvm_cpu_has_extint(vcpu))
4523 		return false;
4524 
4525 	/* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4526 	return (!lapic_in_kernel(vcpu) ||
4527 		kvm_apic_accept_pic_intr(vcpu));
4528 }
4529 
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4530 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4531 {
4532 	/*
4533 	 * Do not cause an interrupt window exit if an exception
4534 	 * is pending or an event needs reinjection; userspace
4535 	 * might want to inject the interrupt manually using KVM_SET_REGS
4536 	 * or KVM_SET_SREGS.  For that to work, we must be at an
4537 	 * instruction boundary and with no events half-injected.
4538 	 */
4539 	return (kvm_arch_interrupt_allowed(vcpu) &&
4540 		kvm_cpu_accept_dm_intr(vcpu) &&
4541 		!kvm_event_needs_reinjection(vcpu) &&
4542 		!vcpu->arch.exception.pending);
4543 }
4544 
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4545 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4546 				    struct kvm_interrupt *irq)
4547 {
4548 	if (irq->irq >= KVM_NR_INTERRUPTS)
4549 		return -EINVAL;
4550 
4551 	if (!irqchip_in_kernel(vcpu->kvm)) {
4552 		kvm_queue_interrupt(vcpu, irq->irq, false);
4553 		kvm_make_request(KVM_REQ_EVENT, vcpu);
4554 		return 0;
4555 	}
4556 
4557 	/*
4558 	 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4559 	 * fail for in-kernel 8259.
4560 	 */
4561 	if (pic_in_kernel(vcpu->kvm))
4562 		return -ENXIO;
4563 
4564 	if (vcpu->arch.pending_external_vector != -1)
4565 		return -EEXIST;
4566 
4567 	vcpu->arch.pending_external_vector = irq->irq;
4568 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4569 	return 0;
4570 }
4571 
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4572 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4573 {
4574 	kvm_inject_nmi(vcpu);
4575 
4576 	return 0;
4577 }
4578 
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4579 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4580 {
4581 	kvm_make_request(KVM_REQ_SMI, vcpu);
4582 
4583 	return 0;
4584 }
4585 
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4586 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4587 					   struct kvm_tpr_access_ctl *tac)
4588 {
4589 	if (tac->flags)
4590 		return -EINVAL;
4591 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
4592 	return 0;
4593 }
4594 
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4595 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4596 					u64 mcg_cap)
4597 {
4598 	int r;
4599 	unsigned bank_num = mcg_cap & 0xff, bank;
4600 
4601 	r = -EINVAL;
4602 	if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4603 		goto out;
4604 	if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4605 		goto out;
4606 	r = 0;
4607 	vcpu->arch.mcg_cap = mcg_cap;
4608 	/* Init IA32_MCG_CTL to all 1s */
4609 	if (mcg_cap & MCG_CTL_P)
4610 		vcpu->arch.mcg_ctl = ~(u64)0;
4611 	/* Init IA32_MCi_CTL to all 1s */
4612 	for (bank = 0; bank < bank_num; bank++)
4613 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4614 
4615 	static_call(kvm_x86_setup_mce)(vcpu);
4616 out:
4617 	return r;
4618 }
4619 
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4620 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4621 				      struct kvm_x86_mce *mce)
4622 {
4623 	u64 mcg_cap = vcpu->arch.mcg_cap;
4624 	unsigned bank_num = mcg_cap & 0xff;
4625 	u64 *banks = vcpu->arch.mce_banks;
4626 
4627 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4628 		return -EINVAL;
4629 	/*
4630 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4631 	 * reporting is disabled
4632 	 */
4633 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4634 	    vcpu->arch.mcg_ctl != ~(u64)0)
4635 		return 0;
4636 	banks += 4 * mce->bank;
4637 	/*
4638 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4639 	 * reporting is disabled for the bank
4640 	 */
4641 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4642 		return 0;
4643 	if (mce->status & MCI_STATUS_UC) {
4644 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4645 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4646 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4647 			return 0;
4648 		}
4649 		if (banks[1] & MCI_STATUS_VAL)
4650 			mce->status |= MCI_STATUS_OVER;
4651 		banks[2] = mce->addr;
4652 		banks[3] = mce->misc;
4653 		vcpu->arch.mcg_status = mce->mcg_status;
4654 		banks[1] = mce->status;
4655 		kvm_queue_exception(vcpu, MC_VECTOR);
4656 	} else if (!(banks[1] & MCI_STATUS_VAL)
4657 		   || !(banks[1] & MCI_STATUS_UC)) {
4658 		if (banks[1] & MCI_STATUS_VAL)
4659 			mce->status |= MCI_STATUS_OVER;
4660 		banks[2] = mce->addr;
4661 		banks[3] = mce->misc;
4662 		banks[1] = mce->status;
4663 	} else
4664 		banks[1] |= MCI_STATUS_OVER;
4665 	return 0;
4666 }
4667 
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4668 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4669 					       struct kvm_vcpu_events *events)
4670 {
4671 	process_nmi(vcpu);
4672 
4673 	if (kvm_check_request(KVM_REQ_SMI, vcpu))
4674 		process_smi(vcpu);
4675 
4676 	/*
4677 	 * In guest mode, payload delivery should be deferred,
4678 	 * so that the L1 hypervisor can intercept #PF before
4679 	 * CR2 is modified (or intercept #DB before DR6 is
4680 	 * modified under nVMX). Unless the per-VM capability,
4681 	 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4682 	 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4683 	 * opportunistically defer the exception payload, deliver it if the
4684 	 * capability hasn't been requested before processing a
4685 	 * KVM_GET_VCPU_EVENTS.
4686 	 */
4687 	if (!vcpu->kvm->arch.exception_payload_enabled &&
4688 	    vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4689 		kvm_deliver_exception_payload(vcpu);
4690 
4691 	/*
4692 	 * The API doesn't provide the instruction length for software
4693 	 * exceptions, so don't report them. As long as the guest RIP
4694 	 * isn't advanced, we should expect to encounter the exception
4695 	 * again.
4696 	 */
4697 	if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4698 		events->exception.injected = 0;
4699 		events->exception.pending = 0;
4700 	} else {
4701 		events->exception.injected = vcpu->arch.exception.injected;
4702 		events->exception.pending = vcpu->arch.exception.pending;
4703 		/*
4704 		 * For ABI compatibility, deliberately conflate
4705 		 * pending and injected exceptions when
4706 		 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4707 		 */
4708 		if (!vcpu->kvm->arch.exception_payload_enabled)
4709 			events->exception.injected |=
4710 				vcpu->arch.exception.pending;
4711 	}
4712 	events->exception.nr = vcpu->arch.exception.nr;
4713 	events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4714 	events->exception.error_code = vcpu->arch.exception.error_code;
4715 	events->exception_has_payload = vcpu->arch.exception.has_payload;
4716 	events->exception_payload = vcpu->arch.exception.payload;
4717 
4718 	events->interrupt.injected =
4719 		vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4720 	events->interrupt.nr = vcpu->arch.interrupt.nr;
4721 	events->interrupt.soft = 0;
4722 	events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4723 
4724 	events->nmi.injected = vcpu->arch.nmi_injected;
4725 	events->nmi.pending = vcpu->arch.nmi_pending != 0;
4726 	events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4727 	events->nmi.pad = 0;
4728 
4729 	events->sipi_vector = 0; /* never valid when reporting to user space */
4730 
4731 	events->smi.smm = is_smm(vcpu);
4732 	events->smi.pending = vcpu->arch.smi_pending;
4733 	events->smi.smm_inside_nmi =
4734 		!!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4735 	events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4736 
4737 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4738 			 | KVM_VCPUEVENT_VALID_SHADOW
4739 			 | KVM_VCPUEVENT_VALID_SMM);
4740 	if (vcpu->kvm->arch.exception_payload_enabled)
4741 		events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4742 
4743 	memset(&events->reserved, 0, sizeof(events->reserved));
4744 }
4745 
4746 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4747 
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)4748 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4749 					      struct kvm_vcpu_events *events)
4750 {
4751 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4752 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4753 			      | KVM_VCPUEVENT_VALID_SHADOW
4754 			      | KVM_VCPUEVENT_VALID_SMM
4755 			      | KVM_VCPUEVENT_VALID_PAYLOAD))
4756 		return -EINVAL;
4757 
4758 	if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4759 		if (!vcpu->kvm->arch.exception_payload_enabled)
4760 			return -EINVAL;
4761 		if (events->exception.pending)
4762 			events->exception.injected = 0;
4763 		else
4764 			events->exception_has_payload = 0;
4765 	} else {
4766 		events->exception.pending = 0;
4767 		events->exception_has_payload = 0;
4768 	}
4769 
4770 	if ((events->exception.injected || events->exception.pending) &&
4771 	    (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4772 		return -EINVAL;
4773 
4774 	/* INITs are latched while in SMM */
4775 	if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4776 	    (events->smi.smm || events->smi.pending) &&
4777 	    vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4778 		return -EINVAL;
4779 
4780 	process_nmi(vcpu);
4781 	vcpu->arch.exception.injected = events->exception.injected;
4782 	vcpu->arch.exception.pending = events->exception.pending;
4783 	vcpu->arch.exception.nr = events->exception.nr;
4784 	vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4785 	vcpu->arch.exception.error_code = events->exception.error_code;
4786 	vcpu->arch.exception.has_payload = events->exception_has_payload;
4787 	vcpu->arch.exception.payload = events->exception_payload;
4788 
4789 	vcpu->arch.interrupt.injected = events->interrupt.injected;
4790 	vcpu->arch.interrupt.nr = events->interrupt.nr;
4791 	vcpu->arch.interrupt.soft = events->interrupt.soft;
4792 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4793 		static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4794 						events->interrupt.shadow);
4795 
4796 	vcpu->arch.nmi_injected = events->nmi.injected;
4797 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4798 		vcpu->arch.nmi_pending = events->nmi.pending;
4799 	static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4800 
4801 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4802 	    lapic_in_kernel(vcpu))
4803 		vcpu->arch.apic->sipi_vector = events->sipi_vector;
4804 
4805 	if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4806 		if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4807 			kvm_leave_nested(vcpu);
4808 			kvm_smm_changed(vcpu, events->smi.smm);
4809 		}
4810 
4811 		vcpu->arch.smi_pending = events->smi.pending;
4812 
4813 		if (events->smi.smm) {
4814 			if (events->smi.smm_inside_nmi)
4815 				vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4816 			else
4817 				vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4818 		}
4819 
4820 		if (lapic_in_kernel(vcpu)) {
4821 			if (events->smi.latched_init)
4822 				set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4823 			else
4824 				clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4825 		}
4826 	}
4827 
4828 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4829 
4830 	return 0;
4831 }
4832 
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4833 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4834 					     struct kvm_debugregs *dbgregs)
4835 {
4836 	unsigned long val;
4837 
4838 	memset(dbgregs, 0, sizeof(*dbgregs));
4839 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4840 	kvm_get_dr(vcpu, 6, &val);
4841 	dbgregs->dr6 = val;
4842 	dbgregs->dr7 = vcpu->arch.dr7;
4843 }
4844 
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)4845 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4846 					    struct kvm_debugregs *dbgregs)
4847 {
4848 	if (dbgregs->flags)
4849 		return -EINVAL;
4850 
4851 	if (!kvm_dr6_valid(dbgregs->dr6))
4852 		return -EINVAL;
4853 	if (!kvm_dr7_valid(dbgregs->dr7))
4854 		return -EINVAL;
4855 
4856 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4857 	kvm_update_dr0123(vcpu);
4858 	vcpu->arch.dr6 = dbgregs->dr6;
4859 	vcpu->arch.dr7 = dbgregs->dr7;
4860 	kvm_update_dr7(vcpu);
4861 
4862 	return 0;
4863 }
4864 
4865 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4866 
fill_xsave(u8 * dest,struct kvm_vcpu * vcpu)4867 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4868 {
4869 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4870 	u64 xstate_bv = xsave->header.xfeatures;
4871 	u64 valid;
4872 
4873 	/*
4874 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4875 	 * leaves 0 and 1 in the loop below.
4876 	 */
4877 	memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4878 
4879 	/* Set XSTATE_BV */
4880 	xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
4881 	*(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4882 
4883 	/*
4884 	 * Copy each region from the possibly compacted offset to the
4885 	 * non-compacted offset.
4886 	 */
4887 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4888 	while (valid) {
4889 		u32 size, offset, ecx, edx;
4890 		u64 xfeature_mask = valid & -valid;
4891 		int xfeature_nr = fls64(xfeature_mask) - 1;
4892 		void *src;
4893 
4894 		cpuid_count(XSTATE_CPUID, xfeature_nr,
4895 			    &size, &offset, &ecx, &edx);
4896 
4897 		if (xfeature_nr == XFEATURE_PKRU) {
4898 			memcpy(dest + offset, &vcpu->arch.pkru,
4899 			       sizeof(vcpu->arch.pkru));
4900 		} else {
4901 			src = get_xsave_addr(xsave, xfeature_nr);
4902 			if (src)
4903 				memcpy(dest + offset, src, size);
4904 		}
4905 
4906 		valid -= xfeature_mask;
4907 	}
4908 }
4909 
load_xsave(struct kvm_vcpu * vcpu,u8 * src)4910 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4911 {
4912 	struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4913 	u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4914 	u64 valid;
4915 
4916 	/*
4917 	 * Copy legacy XSAVE area, to avoid complications with CPUID
4918 	 * leaves 0 and 1 in the loop below.
4919 	 */
4920 	memcpy(xsave, src, XSAVE_HDR_OFFSET);
4921 
4922 	/* Set XSTATE_BV and possibly XCOMP_BV.  */
4923 	xsave->header.xfeatures = xstate_bv;
4924 	if (boot_cpu_has(X86_FEATURE_XSAVES))
4925 		xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4926 
4927 	/*
4928 	 * Copy each region from the non-compacted offset to the
4929 	 * possibly compacted offset.
4930 	 */
4931 	valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4932 	while (valid) {
4933 		u32 size, offset, ecx, edx;
4934 		u64 xfeature_mask = valid & -valid;
4935 		int xfeature_nr = fls64(xfeature_mask) - 1;
4936 
4937 		cpuid_count(XSTATE_CPUID, xfeature_nr,
4938 			    &size, &offset, &ecx, &edx);
4939 
4940 		if (xfeature_nr == XFEATURE_PKRU) {
4941 			memcpy(&vcpu->arch.pkru, src + offset,
4942 			       sizeof(vcpu->arch.pkru));
4943 		} else {
4944 			void *dest = get_xsave_addr(xsave, xfeature_nr);
4945 
4946 			if (dest)
4947 				memcpy(dest, src + offset, size);
4948 		}
4949 
4950 		valid -= xfeature_mask;
4951 	}
4952 }
4953 
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4954 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4955 					 struct kvm_xsave *guest_xsave)
4956 {
4957 	if (!vcpu->arch.guest_fpu)
4958 		return;
4959 
4960 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4961 		memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4962 		fill_xsave((u8 *) guest_xsave->region, vcpu);
4963 	} else {
4964 		memcpy(guest_xsave->region,
4965 			&vcpu->arch.guest_fpu->state.fxsave,
4966 			sizeof(struct fxregs_state));
4967 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4968 			XFEATURE_MASK_FPSSE;
4969 	}
4970 }
4971 
4972 #define XSAVE_MXCSR_OFFSET 24
4973 
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)4974 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4975 					struct kvm_xsave *guest_xsave)
4976 {
4977 	u64 xstate_bv;
4978 	u32 mxcsr;
4979 
4980 	if (!vcpu->arch.guest_fpu)
4981 		return 0;
4982 
4983 	xstate_bv = *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4984 	mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4985 
4986 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4987 		/*
4988 		 * Here we allow setting states that are not present in
4989 		 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
4990 		 * with old userspace.
4991 		 */
4992 		if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
4993 			return -EINVAL;
4994 		load_xsave(vcpu, (u8 *)guest_xsave->region);
4995 	} else {
4996 		if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4997 			mxcsr & ~mxcsr_feature_mask)
4998 			return -EINVAL;
4999 		memcpy(&vcpu->arch.guest_fpu->state.fxsave,
5000 			guest_xsave->region, sizeof(struct fxregs_state));
5001 	}
5002 	return 0;
5003 }
5004 
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5005 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5006 					struct kvm_xcrs *guest_xcrs)
5007 {
5008 	if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5009 		guest_xcrs->nr_xcrs = 0;
5010 		return;
5011 	}
5012 
5013 	guest_xcrs->nr_xcrs = 1;
5014 	guest_xcrs->flags = 0;
5015 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5016 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5017 }
5018 
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5019 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5020 				       struct kvm_xcrs *guest_xcrs)
5021 {
5022 	int i, r = 0;
5023 
5024 	if (!boot_cpu_has(X86_FEATURE_XSAVE))
5025 		return -EINVAL;
5026 
5027 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5028 		return -EINVAL;
5029 
5030 	for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5031 		/* Only support XCR0 currently */
5032 		if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5033 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5034 				guest_xcrs->xcrs[i].value);
5035 			break;
5036 		}
5037 	if (r)
5038 		r = -EINVAL;
5039 	return r;
5040 }
5041 
5042 /*
5043  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5044  * stopped by the hypervisor.  This function will be called from the host only.
5045  * EINVAL is returned when the host attempts to set the flag for a guest that
5046  * does not support pv clocks.
5047  */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5048 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5049 {
5050 	if (!vcpu->arch.pv_time_enabled)
5051 		return -EINVAL;
5052 	vcpu->arch.pvclock_set_guest_stopped_request = true;
5053 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5054 	return 0;
5055 }
5056 
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5057 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5058 				     struct kvm_enable_cap *cap)
5059 {
5060 	int r;
5061 	uint16_t vmcs_version;
5062 	void __user *user_ptr;
5063 
5064 	if (cap->flags)
5065 		return -EINVAL;
5066 
5067 	switch (cap->cap) {
5068 	case KVM_CAP_HYPERV_SYNIC2:
5069 		if (cap->args[0])
5070 			return -EINVAL;
5071 		fallthrough;
5072 
5073 	case KVM_CAP_HYPERV_SYNIC:
5074 		if (!irqchip_in_kernel(vcpu->kvm))
5075 			return -EINVAL;
5076 		return kvm_hv_activate_synic(vcpu, cap->cap ==
5077 					     KVM_CAP_HYPERV_SYNIC2);
5078 	case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5079 		if (!kvm_x86_ops.nested_ops->enable_evmcs)
5080 			return -ENOTTY;
5081 		r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5082 		if (!r) {
5083 			user_ptr = (void __user *)(uintptr_t)cap->args[0];
5084 			if (copy_to_user(user_ptr, &vmcs_version,
5085 					 sizeof(vmcs_version)))
5086 				r = -EFAULT;
5087 		}
5088 		return r;
5089 	case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5090 		if (!kvm_x86_ops.enable_direct_tlbflush)
5091 			return -ENOTTY;
5092 
5093 		return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5094 
5095 	case KVM_CAP_HYPERV_ENFORCE_CPUID:
5096 		return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5097 
5098 	case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5099 		vcpu->arch.pv_cpuid.enforce = cap->args[0];
5100 		if (vcpu->arch.pv_cpuid.enforce)
5101 			kvm_update_pv_runtime(vcpu);
5102 
5103 		return 0;
5104 	default:
5105 		return -EINVAL;
5106 	}
5107 }
5108 
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5109 long kvm_arch_vcpu_ioctl(struct file *filp,
5110 			 unsigned int ioctl, unsigned long arg)
5111 {
5112 	struct kvm_vcpu *vcpu = filp->private_data;
5113 	void __user *argp = (void __user *)arg;
5114 	int r;
5115 	union {
5116 		struct kvm_sregs2 *sregs2;
5117 		struct kvm_lapic_state *lapic;
5118 		struct kvm_xsave *xsave;
5119 		struct kvm_xcrs *xcrs;
5120 		void *buffer;
5121 	} u;
5122 
5123 	vcpu_load(vcpu);
5124 
5125 	u.buffer = NULL;
5126 	switch (ioctl) {
5127 	case KVM_GET_LAPIC: {
5128 		r = -EINVAL;
5129 		if (!lapic_in_kernel(vcpu))
5130 			goto out;
5131 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5132 				GFP_KERNEL_ACCOUNT);
5133 
5134 		r = -ENOMEM;
5135 		if (!u.lapic)
5136 			goto out;
5137 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5138 		if (r)
5139 			goto out;
5140 		r = -EFAULT;
5141 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5142 			goto out;
5143 		r = 0;
5144 		break;
5145 	}
5146 	case KVM_SET_LAPIC: {
5147 		r = -EINVAL;
5148 		if (!lapic_in_kernel(vcpu))
5149 			goto out;
5150 		u.lapic = memdup_user(argp, sizeof(*u.lapic));
5151 		if (IS_ERR(u.lapic)) {
5152 			r = PTR_ERR(u.lapic);
5153 			goto out_nofree;
5154 		}
5155 
5156 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5157 		break;
5158 	}
5159 	case KVM_INTERRUPT: {
5160 		struct kvm_interrupt irq;
5161 
5162 		r = -EFAULT;
5163 		if (copy_from_user(&irq, argp, sizeof(irq)))
5164 			goto out;
5165 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5166 		break;
5167 	}
5168 	case KVM_NMI: {
5169 		r = kvm_vcpu_ioctl_nmi(vcpu);
5170 		break;
5171 	}
5172 	case KVM_SMI: {
5173 		r = kvm_vcpu_ioctl_smi(vcpu);
5174 		break;
5175 	}
5176 	case KVM_SET_CPUID: {
5177 		struct kvm_cpuid __user *cpuid_arg = argp;
5178 		struct kvm_cpuid cpuid;
5179 
5180 		r = -EFAULT;
5181 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5182 			goto out;
5183 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5184 		break;
5185 	}
5186 	case KVM_SET_CPUID2: {
5187 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5188 		struct kvm_cpuid2 cpuid;
5189 
5190 		r = -EFAULT;
5191 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5192 			goto out;
5193 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5194 					      cpuid_arg->entries);
5195 		break;
5196 	}
5197 	case KVM_GET_CPUID2: {
5198 		struct kvm_cpuid2 __user *cpuid_arg = argp;
5199 		struct kvm_cpuid2 cpuid;
5200 
5201 		r = -EFAULT;
5202 		if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5203 			goto out;
5204 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5205 					      cpuid_arg->entries);
5206 		if (r)
5207 			goto out;
5208 		r = -EFAULT;
5209 		if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5210 			goto out;
5211 		r = 0;
5212 		break;
5213 	}
5214 	case KVM_GET_MSRS: {
5215 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5216 		r = msr_io(vcpu, argp, do_get_msr, 1);
5217 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5218 		break;
5219 	}
5220 	case KVM_SET_MSRS: {
5221 		int idx = srcu_read_lock(&vcpu->kvm->srcu);
5222 		r = msr_io(vcpu, argp, do_set_msr, 0);
5223 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5224 		break;
5225 	}
5226 	case KVM_TPR_ACCESS_REPORTING: {
5227 		struct kvm_tpr_access_ctl tac;
5228 
5229 		r = -EFAULT;
5230 		if (copy_from_user(&tac, argp, sizeof(tac)))
5231 			goto out;
5232 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5233 		if (r)
5234 			goto out;
5235 		r = -EFAULT;
5236 		if (copy_to_user(argp, &tac, sizeof(tac)))
5237 			goto out;
5238 		r = 0;
5239 		break;
5240 	};
5241 	case KVM_SET_VAPIC_ADDR: {
5242 		struct kvm_vapic_addr va;
5243 		int idx;
5244 
5245 		r = -EINVAL;
5246 		if (!lapic_in_kernel(vcpu))
5247 			goto out;
5248 		r = -EFAULT;
5249 		if (copy_from_user(&va, argp, sizeof(va)))
5250 			goto out;
5251 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5252 		r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5253 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5254 		break;
5255 	}
5256 	case KVM_X86_SETUP_MCE: {
5257 		u64 mcg_cap;
5258 
5259 		r = -EFAULT;
5260 		if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5261 			goto out;
5262 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5263 		break;
5264 	}
5265 	case KVM_X86_SET_MCE: {
5266 		struct kvm_x86_mce mce;
5267 
5268 		r = -EFAULT;
5269 		if (copy_from_user(&mce, argp, sizeof(mce)))
5270 			goto out;
5271 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5272 		break;
5273 	}
5274 	case KVM_GET_VCPU_EVENTS: {
5275 		struct kvm_vcpu_events events;
5276 
5277 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5278 
5279 		r = -EFAULT;
5280 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5281 			break;
5282 		r = 0;
5283 		break;
5284 	}
5285 	case KVM_SET_VCPU_EVENTS: {
5286 		struct kvm_vcpu_events events;
5287 
5288 		r = -EFAULT;
5289 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5290 			break;
5291 
5292 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5293 		break;
5294 	}
5295 	case KVM_GET_DEBUGREGS: {
5296 		struct kvm_debugregs dbgregs;
5297 
5298 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5299 
5300 		r = -EFAULT;
5301 		if (copy_to_user(argp, &dbgregs,
5302 				 sizeof(struct kvm_debugregs)))
5303 			break;
5304 		r = 0;
5305 		break;
5306 	}
5307 	case KVM_SET_DEBUGREGS: {
5308 		struct kvm_debugregs dbgregs;
5309 
5310 		r = -EFAULT;
5311 		if (copy_from_user(&dbgregs, argp,
5312 				   sizeof(struct kvm_debugregs)))
5313 			break;
5314 
5315 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5316 		break;
5317 	}
5318 	case KVM_GET_XSAVE: {
5319 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5320 		r = -ENOMEM;
5321 		if (!u.xsave)
5322 			break;
5323 
5324 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5325 
5326 		r = -EFAULT;
5327 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5328 			break;
5329 		r = 0;
5330 		break;
5331 	}
5332 	case KVM_SET_XSAVE: {
5333 		u.xsave = memdup_user(argp, sizeof(*u.xsave));
5334 		if (IS_ERR(u.xsave)) {
5335 			r = PTR_ERR(u.xsave);
5336 			goto out_nofree;
5337 		}
5338 
5339 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5340 		break;
5341 	}
5342 	case KVM_GET_XCRS: {
5343 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5344 		r = -ENOMEM;
5345 		if (!u.xcrs)
5346 			break;
5347 
5348 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5349 
5350 		r = -EFAULT;
5351 		if (copy_to_user(argp, u.xcrs,
5352 				 sizeof(struct kvm_xcrs)))
5353 			break;
5354 		r = 0;
5355 		break;
5356 	}
5357 	case KVM_SET_XCRS: {
5358 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5359 		if (IS_ERR(u.xcrs)) {
5360 			r = PTR_ERR(u.xcrs);
5361 			goto out_nofree;
5362 		}
5363 
5364 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5365 		break;
5366 	}
5367 	case KVM_SET_TSC_KHZ: {
5368 		u32 user_tsc_khz;
5369 
5370 		r = -EINVAL;
5371 		user_tsc_khz = (u32)arg;
5372 
5373 		if (kvm_has_tsc_control &&
5374 		    user_tsc_khz >= kvm_max_guest_tsc_khz)
5375 			goto out;
5376 
5377 		if (user_tsc_khz == 0)
5378 			user_tsc_khz = tsc_khz;
5379 
5380 		if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5381 			r = 0;
5382 
5383 		goto out;
5384 	}
5385 	case KVM_GET_TSC_KHZ: {
5386 		r = vcpu->arch.virtual_tsc_khz;
5387 		goto out;
5388 	}
5389 	case KVM_KVMCLOCK_CTRL: {
5390 		r = kvm_set_guest_paused(vcpu);
5391 		goto out;
5392 	}
5393 	case KVM_ENABLE_CAP: {
5394 		struct kvm_enable_cap cap;
5395 
5396 		r = -EFAULT;
5397 		if (copy_from_user(&cap, argp, sizeof(cap)))
5398 			goto out;
5399 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5400 		break;
5401 	}
5402 	case KVM_GET_NESTED_STATE: {
5403 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5404 		u32 user_data_size;
5405 
5406 		r = -EINVAL;
5407 		if (!kvm_x86_ops.nested_ops->get_state)
5408 			break;
5409 
5410 		BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5411 		r = -EFAULT;
5412 		if (get_user(user_data_size, &user_kvm_nested_state->size))
5413 			break;
5414 
5415 		r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5416 						     user_data_size);
5417 		if (r < 0)
5418 			break;
5419 
5420 		if (r > user_data_size) {
5421 			if (put_user(r, &user_kvm_nested_state->size))
5422 				r = -EFAULT;
5423 			else
5424 				r = -E2BIG;
5425 			break;
5426 		}
5427 
5428 		r = 0;
5429 		break;
5430 	}
5431 	case KVM_SET_NESTED_STATE: {
5432 		struct kvm_nested_state __user *user_kvm_nested_state = argp;
5433 		struct kvm_nested_state kvm_state;
5434 		int idx;
5435 
5436 		r = -EINVAL;
5437 		if (!kvm_x86_ops.nested_ops->set_state)
5438 			break;
5439 
5440 		r = -EFAULT;
5441 		if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5442 			break;
5443 
5444 		r = -EINVAL;
5445 		if (kvm_state.size < sizeof(kvm_state))
5446 			break;
5447 
5448 		if (kvm_state.flags &
5449 		    ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5450 		      | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5451 		      | KVM_STATE_NESTED_GIF_SET))
5452 			break;
5453 
5454 		/* nested_run_pending implies guest_mode.  */
5455 		if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5456 		    && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5457 			break;
5458 
5459 		idx = srcu_read_lock(&vcpu->kvm->srcu);
5460 		r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5461 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
5462 		break;
5463 	}
5464 	case KVM_GET_SUPPORTED_HV_CPUID:
5465 		r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5466 		break;
5467 #ifdef CONFIG_KVM_XEN
5468 	case KVM_XEN_VCPU_GET_ATTR: {
5469 		struct kvm_xen_vcpu_attr xva;
5470 
5471 		r = -EFAULT;
5472 		if (copy_from_user(&xva, argp, sizeof(xva)))
5473 			goto out;
5474 		r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5475 		if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5476 			r = -EFAULT;
5477 		break;
5478 	}
5479 	case KVM_XEN_VCPU_SET_ATTR: {
5480 		struct kvm_xen_vcpu_attr xva;
5481 
5482 		r = -EFAULT;
5483 		if (copy_from_user(&xva, argp, sizeof(xva)))
5484 			goto out;
5485 		r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5486 		break;
5487 	}
5488 #endif
5489 	case KVM_GET_SREGS2: {
5490 		u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5491 		r = -ENOMEM;
5492 		if (!u.sregs2)
5493 			goto out;
5494 		__get_sregs2(vcpu, u.sregs2);
5495 		r = -EFAULT;
5496 		if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5497 			goto out;
5498 		r = 0;
5499 		break;
5500 	}
5501 	case KVM_SET_SREGS2: {
5502 		u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5503 		if (IS_ERR(u.sregs2)) {
5504 			r = PTR_ERR(u.sregs2);
5505 			u.sregs2 = NULL;
5506 			goto out;
5507 		}
5508 		r = __set_sregs2(vcpu, u.sregs2);
5509 		break;
5510 	}
5511 	default:
5512 		r = -EINVAL;
5513 	}
5514 out:
5515 	kfree(u.buffer);
5516 out_nofree:
5517 	vcpu_put(vcpu);
5518 	return r;
5519 }
5520 
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5521 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5522 {
5523 	return VM_FAULT_SIGBUS;
5524 }
5525 
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5526 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5527 {
5528 	int ret;
5529 
5530 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
5531 		return -EINVAL;
5532 	ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5533 	return ret;
5534 }
5535 
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5536 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5537 					      u64 ident_addr)
5538 {
5539 	return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5540 }
5541 
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5542 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5543 					 unsigned long kvm_nr_mmu_pages)
5544 {
5545 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5546 		return -EINVAL;
5547 
5548 	mutex_lock(&kvm->slots_lock);
5549 
5550 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5551 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5552 
5553 	mutex_unlock(&kvm->slots_lock);
5554 	return 0;
5555 }
5556 
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5557 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5558 {
5559 	return kvm->arch.n_max_mmu_pages;
5560 }
5561 
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5562 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5563 {
5564 	struct kvm_pic *pic = kvm->arch.vpic;
5565 	int r;
5566 
5567 	r = 0;
5568 	switch (chip->chip_id) {
5569 	case KVM_IRQCHIP_PIC_MASTER:
5570 		memcpy(&chip->chip.pic, &pic->pics[0],
5571 			sizeof(struct kvm_pic_state));
5572 		break;
5573 	case KVM_IRQCHIP_PIC_SLAVE:
5574 		memcpy(&chip->chip.pic, &pic->pics[1],
5575 			sizeof(struct kvm_pic_state));
5576 		break;
5577 	case KVM_IRQCHIP_IOAPIC:
5578 		kvm_get_ioapic(kvm, &chip->chip.ioapic);
5579 		break;
5580 	default:
5581 		r = -EINVAL;
5582 		break;
5583 	}
5584 	return r;
5585 }
5586 
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)5587 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5588 {
5589 	struct kvm_pic *pic = kvm->arch.vpic;
5590 	int r;
5591 
5592 	r = 0;
5593 	switch (chip->chip_id) {
5594 	case KVM_IRQCHIP_PIC_MASTER:
5595 		spin_lock(&pic->lock);
5596 		memcpy(&pic->pics[0], &chip->chip.pic,
5597 			sizeof(struct kvm_pic_state));
5598 		spin_unlock(&pic->lock);
5599 		break;
5600 	case KVM_IRQCHIP_PIC_SLAVE:
5601 		spin_lock(&pic->lock);
5602 		memcpy(&pic->pics[1], &chip->chip.pic,
5603 			sizeof(struct kvm_pic_state));
5604 		spin_unlock(&pic->lock);
5605 		break;
5606 	case KVM_IRQCHIP_IOAPIC:
5607 		kvm_set_ioapic(kvm, &chip->chip.ioapic);
5608 		break;
5609 	default:
5610 		r = -EINVAL;
5611 		break;
5612 	}
5613 	kvm_pic_update_irq(pic);
5614 	return r;
5615 }
5616 
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)5617 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5618 {
5619 	struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5620 
5621 	BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5622 
5623 	mutex_lock(&kps->lock);
5624 	memcpy(ps, &kps->channels, sizeof(*ps));
5625 	mutex_unlock(&kps->lock);
5626 	return 0;
5627 }
5628 
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)5629 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5630 {
5631 	int i;
5632 	struct kvm_pit *pit = kvm->arch.vpit;
5633 
5634 	mutex_lock(&pit->pit_state.lock);
5635 	memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5636 	for (i = 0; i < 3; i++)
5637 		kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5638 	mutex_unlock(&pit->pit_state.lock);
5639 	return 0;
5640 }
5641 
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5642 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5643 {
5644 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
5645 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5646 		sizeof(ps->channels));
5647 	ps->flags = kvm->arch.vpit->pit_state.flags;
5648 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5649 	memset(&ps->reserved, 0, sizeof(ps->reserved));
5650 	return 0;
5651 }
5652 
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)5653 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5654 {
5655 	int start = 0;
5656 	int i;
5657 	u32 prev_legacy, cur_legacy;
5658 	struct kvm_pit *pit = kvm->arch.vpit;
5659 
5660 	mutex_lock(&pit->pit_state.lock);
5661 	prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5662 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5663 	if (!prev_legacy && cur_legacy)
5664 		start = 1;
5665 	memcpy(&pit->pit_state.channels, &ps->channels,
5666 	       sizeof(pit->pit_state.channels));
5667 	pit->pit_state.flags = ps->flags;
5668 	for (i = 0; i < 3; i++)
5669 		kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5670 				   start && i == 0);
5671 	mutex_unlock(&pit->pit_state.lock);
5672 	return 0;
5673 }
5674 
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)5675 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5676 				 struct kvm_reinject_control *control)
5677 {
5678 	struct kvm_pit *pit = kvm->arch.vpit;
5679 
5680 	/* pit->pit_state.lock was overloaded to prevent userspace from getting
5681 	 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5682 	 * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5683 	 */
5684 	mutex_lock(&pit->pit_state.lock);
5685 	kvm_pit_set_reinject(pit, control->pit_reinject);
5686 	mutex_unlock(&pit->pit_state.lock);
5687 
5688 	return 0;
5689 }
5690 
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)5691 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5692 {
5693 
5694 	/*
5695 	 * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5696 	 * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5697 	 * on all VM-Exits, thus we only need to kick running vCPUs to force a
5698 	 * VM-Exit.
5699 	 */
5700 	struct kvm_vcpu *vcpu;
5701 	int i;
5702 
5703 	kvm_for_each_vcpu(i, vcpu, kvm)
5704 		kvm_vcpu_kick(vcpu);
5705 }
5706 
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)5707 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5708 			bool line_status)
5709 {
5710 	if (!irqchip_in_kernel(kvm))
5711 		return -ENXIO;
5712 
5713 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5714 					irq_event->irq, irq_event->level,
5715 					line_status);
5716 	return 0;
5717 }
5718 
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)5719 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5720 			    struct kvm_enable_cap *cap)
5721 {
5722 	int r;
5723 
5724 	if (cap->flags)
5725 		return -EINVAL;
5726 
5727 	switch (cap->cap) {
5728 	case KVM_CAP_DISABLE_QUIRKS:
5729 		kvm->arch.disabled_quirks = cap->args[0];
5730 		r = 0;
5731 		break;
5732 	case KVM_CAP_SPLIT_IRQCHIP: {
5733 		mutex_lock(&kvm->lock);
5734 		r = -EINVAL;
5735 		if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5736 			goto split_irqchip_unlock;
5737 		r = -EEXIST;
5738 		if (irqchip_in_kernel(kvm))
5739 			goto split_irqchip_unlock;
5740 		if (kvm->created_vcpus)
5741 			goto split_irqchip_unlock;
5742 		r = kvm_setup_empty_irq_routing(kvm);
5743 		if (r)
5744 			goto split_irqchip_unlock;
5745 		/* Pairs with irqchip_in_kernel. */
5746 		smp_wmb();
5747 		kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5748 		kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5749 		r = 0;
5750 split_irqchip_unlock:
5751 		mutex_unlock(&kvm->lock);
5752 		break;
5753 	}
5754 	case KVM_CAP_X2APIC_API:
5755 		r = -EINVAL;
5756 		if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5757 			break;
5758 
5759 		if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5760 			kvm->arch.x2apic_format = true;
5761 		if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5762 			kvm->arch.x2apic_broadcast_quirk_disabled = true;
5763 
5764 		r = 0;
5765 		break;
5766 	case KVM_CAP_X86_DISABLE_EXITS:
5767 		r = -EINVAL;
5768 		if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5769 			break;
5770 
5771 		if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5772 			kvm->arch.pause_in_guest = true;
5773 
5774 #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
5775 		    "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
5776 
5777 		if (!mitigate_smt_rsb) {
5778 			if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
5779 			    (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
5780 				pr_warn_once(SMT_RSB_MSG);
5781 
5782 			if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5783 			    kvm_can_mwait_in_guest())
5784 				kvm->arch.mwait_in_guest = true;
5785 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5786 				kvm->arch.hlt_in_guest = true;
5787 			if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5788 				kvm->arch.cstate_in_guest = true;
5789 		}
5790 
5791 		r = 0;
5792 		break;
5793 	case KVM_CAP_MSR_PLATFORM_INFO:
5794 		kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5795 		r = 0;
5796 		break;
5797 	case KVM_CAP_EXCEPTION_PAYLOAD:
5798 		kvm->arch.exception_payload_enabled = cap->args[0];
5799 		r = 0;
5800 		break;
5801 	case KVM_CAP_X86_USER_SPACE_MSR:
5802 		r = -EINVAL;
5803 		if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
5804 				     KVM_MSR_EXIT_REASON_UNKNOWN |
5805 				     KVM_MSR_EXIT_REASON_FILTER))
5806 			break;
5807 		kvm->arch.user_space_msr_mask = cap->args[0];
5808 		r = 0;
5809 		break;
5810 	case KVM_CAP_X86_BUS_LOCK_EXIT:
5811 		r = -EINVAL;
5812 		if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5813 			break;
5814 
5815 		if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5816 		    (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5817 			break;
5818 
5819 		if (kvm_has_bus_lock_exit &&
5820 		    cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5821 			kvm->arch.bus_lock_detection_enabled = true;
5822 		r = 0;
5823 		break;
5824 #ifdef CONFIG_X86_SGX_KVM
5825 	case KVM_CAP_SGX_ATTRIBUTE: {
5826 		unsigned long allowed_attributes = 0;
5827 
5828 		r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5829 		if (r)
5830 			break;
5831 
5832 		/* KVM only supports the PROVISIONKEY privileged attribute. */
5833 		if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5834 		    !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5835 			kvm->arch.sgx_provisioning_allowed = true;
5836 		else
5837 			r = -EINVAL;
5838 		break;
5839 	}
5840 #endif
5841 	case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5842 		r = -EINVAL;
5843 		if (kvm_x86_ops.vm_copy_enc_context_from)
5844 			r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5845 		return r;
5846 	case KVM_CAP_EXIT_HYPERCALL:
5847 		if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5848 			r = -EINVAL;
5849 			break;
5850 		}
5851 		kvm->arch.hypercall_exit_enabled = cap->args[0];
5852 		r = 0;
5853 		break;
5854 	case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5855 		r = -EINVAL;
5856 		if (cap->args[0] & ~1)
5857 			break;
5858 		kvm->arch.exit_on_emulation_error = cap->args[0];
5859 		r = 0;
5860 		break;
5861 	default:
5862 		r = -EINVAL;
5863 		break;
5864 	}
5865 	return r;
5866 }
5867 
kvm_alloc_msr_filter(bool default_allow)5868 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5869 {
5870 	struct kvm_x86_msr_filter *msr_filter;
5871 
5872 	msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5873 	if (!msr_filter)
5874 		return NULL;
5875 
5876 	msr_filter->default_allow = default_allow;
5877 	return msr_filter;
5878 }
5879 
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)5880 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5881 {
5882 	u32 i;
5883 
5884 	if (!msr_filter)
5885 		return;
5886 
5887 	for (i = 0; i < msr_filter->count; i++)
5888 		kfree(msr_filter->ranges[i].bitmap);
5889 
5890 	kfree(msr_filter);
5891 }
5892 
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)5893 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5894 			      struct kvm_msr_filter_range *user_range)
5895 {
5896 	unsigned long *bitmap = NULL;
5897 	size_t bitmap_size;
5898 
5899 	if (!user_range->nmsrs)
5900 		return 0;
5901 
5902 	if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5903 		return -EINVAL;
5904 
5905 	if (!user_range->flags)
5906 		return -EINVAL;
5907 
5908 	bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5909 	if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5910 		return -EINVAL;
5911 
5912 	bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5913 	if (IS_ERR(bitmap))
5914 		return PTR_ERR(bitmap);
5915 
5916 	msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5917 		.flags = user_range->flags,
5918 		.base = user_range->base,
5919 		.nmsrs = user_range->nmsrs,
5920 		.bitmap = bitmap,
5921 	};
5922 
5923 	msr_filter->count++;
5924 	return 0;
5925 }
5926 
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)5927 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
5928 				       struct kvm_msr_filter *filter)
5929 {
5930 	struct kvm_x86_msr_filter *new_filter, *old_filter;
5931 	bool default_allow;
5932 	bool empty = true;
5933 	int r = 0;
5934 	u32 i;
5935 
5936 	if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
5937 		return -EINVAL;
5938 
5939 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
5940 		empty &= !filter->ranges[i].nmsrs;
5941 
5942 	default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
5943 	if (empty && !default_allow)
5944 		return -EINVAL;
5945 
5946 	new_filter = kvm_alloc_msr_filter(default_allow);
5947 	if (!new_filter)
5948 		return -ENOMEM;
5949 
5950 	for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
5951 		r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
5952 		if (r) {
5953 			kvm_free_msr_filter(new_filter);
5954 			return r;
5955 		}
5956 	}
5957 
5958 	mutex_lock(&kvm->lock);
5959 
5960 	/* The per-VM filter is protected by kvm->lock... */
5961 	old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5962 
5963 	rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5964 	synchronize_srcu(&kvm->srcu);
5965 
5966 	kvm_free_msr_filter(old_filter);
5967 
5968 	kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5969 	mutex_unlock(&kvm->lock);
5970 
5971 	return 0;
5972 }
5973 
5974 #ifdef CONFIG_KVM_COMPAT
5975 /* for KVM_X86_SET_MSR_FILTER */
5976 struct kvm_msr_filter_range_compat {
5977 	__u32 flags;
5978 	__u32 nmsrs;
5979 	__u32 base;
5980 	__u32 bitmap;
5981 };
5982 
5983 struct kvm_msr_filter_compat {
5984 	__u32 flags;
5985 	struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
5986 };
5987 
5988 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
5989 
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5990 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5991 			      unsigned long arg)
5992 {
5993 	void __user *argp = (void __user *)arg;
5994 	struct kvm *kvm = filp->private_data;
5995 	long r = -ENOTTY;
5996 
5997 	switch (ioctl) {
5998 	case KVM_X86_SET_MSR_FILTER_COMPAT: {
5999 		struct kvm_msr_filter __user *user_msr_filter = argp;
6000 		struct kvm_msr_filter_compat filter_compat;
6001 		struct kvm_msr_filter filter;
6002 		int i;
6003 
6004 		if (copy_from_user(&filter_compat, user_msr_filter,
6005 				   sizeof(filter_compat)))
6006 			return -EFAULT;
6007 
6008 		filter.flags = filter_compat.flags;
6009 		for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6010 			struct kvm_msr_filter_range_compat *cr;
6011 
6012 			cr = &filter_compat.ranges[i];
6013 			filter.ranges[i] = (struct kvm_msr_filter_range) {
6014 				.flags = cr->flags,
6015 				.nmsrs = cr->nmsrs,
6016 				.base = cr->base,
6017 				.bitmap = (__u8 *)(ulong)cr->bitmap,
6018 			};
6019 		}
6020 
6021 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6022 		break;
6023 	}
6024 	}
6025 
6026 	return r;
6027 }
6028 #endif
6029 
6030 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6031 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6032 {
6033 	struct kvm_vcpu *vcpu;
6034 	int i, ret = 0;
6035 
6036 	mutex_lock(&kvm->lock);
6037 	kvm_for_each_vcpu(i, vcpu, kvm) {
6038 		if (!vcpu->arch.pv_time_enabled)
6039 			continue;
6040 
6041 		ret = kvm_set_guest_paused(vcpu);
6042 		if (ret) {
6043 			kvm_err("Failed to pause guest VCPU%d: %d\n",
6044 				vcpu->vcpu_id, ret);
6045 			break;
6046 		}
6047 	}
6048 	mutex_unlock(&kvm->lock);
6049 
6050 	return ret ? NOTIFY_BAD : NOTIFY_DONE;
6051 }
6052 
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6053 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6054 {
6055 	switch (state) {
6056 	case PM_HIBERNATION_PREPARE:
6057 	case PM_SUSPEND_PREPARE:
6058 		return kvm_arch_suspend_notifier(kvm);
6059 	}
6060 
6061 	return NOTIFY_DONE;
6062 }
6063 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6064 
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6065 long kvm_arch_vm_ioctl(struct file *filp,
6066 		       unsigned int ioctl, unsigned long arg)
6067 {
6068 	struct kvm *kvm = filp->private_data;
6069 	void __user *argp = (void __user *)arg;
6070 	int r = -ENOTTY;
6071 	/*
6072 	 * This union makes it completely explicit to gcc-3.x
6073 	 * that these two variables' stack usage should be
6074 	 * combined, not added together.
6075 	 */
6076 	union {
6077 		struct kvm_pit_state ps;
6078 		struct kvm_pit_state2 ps2;
6079 		struct kvm_pit_config pit_config;
6080 	} u;
6081 
6082 	switch (ioctl) {
6083 	case KVM_SET_TSS_ADDR:
6084 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6085 		break;
6086 	case KVM_SET_IDENTITY_MAP_ADDR: {
6087 		u64 ident_addr;
6088 
6089 		mutex_lock(&kvm->lock);
6090 		r = -EINVAL;
6091 		if (kvm->created_vcpus)
6092 			goto set_identity_unlock;
6093 		r = -EFAULT;
6094 		if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6095 			goto set_identity_unlock;
6096 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6097 set_identity_unlock:
6098 		mutex_unlock(&kvm->lock);
6099 		break;
6100 	}
6101 	case KVM_SET_NR_MMU_PAGES:
6102 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6103 		break;
6104 	case KVM_GET_NR_MMU_PAGES:
6105 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6106 		break;
6107 	case KVM_CREATE_IRQCHIP: {
6108 		mutex_lock(&kvm->lock);
6109 
6110 		r = -EEXIST;
6111 		if (irqchip_in_kernel(kvm))
6112 			goto create_irqchip_unlock;
6113 
6114 		r = -EINVAL;
6115 		if (kvm->created_vcpus)
6116 			goto create_irqchip_unlock;
6117 
6118 		r = kvm_pic_init(kvm);
6119 		if (r)
6120 			goto create_irqchip_unlock;
6121 
6122 		r = kvm_ioapic_init(kvm);
6123 		if (r) {
6124 			kvm_pic_destroy(kvm);
6125 			goto create_irqchip_unlock;
6126 		}
6127 
6128 		r = kvm_setup_default_irq_routing(kvm);
6129 		if (r) {
6130 			kvm_ioapic_destroy(kvm);
6131 			kvm_pic_destroy(kvm);
6132 			goto create_irqchip_unlock;
6133 		}
6134 		/* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6135 		smp_wmb();
6136 		kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6137 	create_irqchip_unlock:
6138 		mutex_unlock(&kvm->lock);
6139 		break;
6140 	}
6141 	case KVM_CREATE_PIT:
6142 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6143 		goto create_pit;
6144 	case KVM_CREATE_PIT2:
6145 		r = -EFAULT;
6146 		if (copy_from_user(&u.pit_config, argp,
6147 				   sizeof(struct kvm_pit_config)))
6148 			goto out;
6149 	create_pit:
6150 		mutex_lock(&kvm->lock);
6151 		r = -EEXIST;
6152 		if (kvm->arch.vpit)
6153 			goto create_pit_unlock;
6154 		r = -ENOMEM;
6155 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6156 		if (kvm->arch.vpit)
6157 			r = 0;
6158 	create_pit_unlock:
6159 		mutex_unlock(&kvm->lock);
6160 		break;
6161 	case KVM_GET_IRQCHIP: {
6162 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6163 		struct kvm_irqchip *chip;
6164 
6165 		chip = memdup_user(argp, sizeof(*chip));
6166 		if (IS_ERR(chip)) {
6167 			r = PTR_ERR(chip);
6168 			goto out;
6169 		}
6170 
6171 		r = -ENXIO;
6172 		if (!irqchip_kernel(kvm))
6173 			goto get_irqchip_out;
6174 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6175 		if (r)
6176 			goto get_irqchip_out;
6177 		r = -EFAULT;
6178 		if (copy_to_user(argp, chip, sizeof(*chip)))
6179 			goto get_irqchip_out;
6180 		r = 0;
6181 	get_irqchip_out:
6182 		kfree(chip);
6183 		break;
6184 	}
6185 	case KVM_SET_IRQCHIP: {
6186 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6187 		struct kvm_irqchip *chip;
6188 
6189 		chip = memdup_user(argp, sizeof(*chip));
6190 		if (IS_ERR(chip)) {
6191 			r = PTR_ERR(chip);
6192 			goto out;
6193 		}
6194 
6195 		r = -ENXIO;
6196 		if (!irqchip_kernel(kvm))
6197 			goto set_irqchip_out;
6198 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6199 	set_irqchip_out:
6200 		kfree(chip);
6201 		break;
6202 	}
6203 	case KVM_GET_PIT: {
6204 		r = -EFAULT;
6205 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6206 			goto out;
6207 		r = -ENXIO;
6208 		if (!kvm->arch.vpit)
6209 			goto out;
6210 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6211 		if (r)
6212 			goto out;
6213 		r = -EFAULT;
6214 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6215 			goto out;
6216 		r = 0;
6217 		break;
6218 	}
6219 	case KVM_SET_PIT: {
6220 		r = -EFAULT;
6221 		if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6222 			goto out;
6223 		mutex_lock(&kvm->lock);
6224 		r = -ENXIO;
6225 		if (!kvm->arch.vpit)
6226 			goto set_pit_out;
6227 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6228 set_pit_out:
6229 		mutex_unlock(&kvm->lock);
6230 		break;
6231 	}
6232 	case KVM_GET_PIT2: {
6233 		r = -ENXIO;
6234 		if (!kvm->arch.vpit)
6235 			goto out;
6236 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6237 		if (r)
6238 			goto out;
6239 		r = -EFAULT;
6240 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6241 			goto out;
6242 		r = 0;
6243 		break;
6244 	}
6245 	case KVM_SET_PIT2: {
6246 		r = -EFAULT;
6247 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6248 			goto out;
6249 		mutex_lock(&kvm->lock);
6250 		r = -ENXIO;
6251 		if (!kvm->arch.vpit)
6252 			goto set_pit2_out;
6253 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6254 set_pit2_out:
6255 		mutex_unlock(&kvm->lock);
6256 		break;
6257 	}
6258 	case KVM_REINJECT_CONTROL: {
6259 		struct kvm_reinject_control control;
6260 		r =  -EFAULT;
6261 		if (copy_from_user(&control, argp, sizeof(control)))
6262 			goto out;
6263 		r = -ENXIO;
6264 		if (!kvm->arch.vpit)
6265 			goto out;
6266 		r = kvm_vm_ioctl_reinject(kvm, &control);
6267 		break;
6268 	}
6269 	case KVM_SET_BOOT_CPU_ID:
6270 		r = 0;
6271 		mutex_lock(&kvm->lock);
6272 		if (kvm->created_vcpus)
6273 			r = -EBUSY;
6274 		else
6275 			kvm->arch.bsp_vcpu_id = arg;
6276 		mutex_unlock(&kvm->lock);
6277 		break;
6278 #ifdef CONFIG_KVM_XEN
6279 	case KVM_XEN_HVM_CONFIG: {
6280 		struct kvm_xen_hvm_config xhc;
6281 		r = -EFAULT;
6282 		if (copy_from_user(&xhc, argp, sizeof(xhc)))
6283 			goto out;
6284 		r = kvm_xen_hvm_config(kvm, &xhc);
6285 		break;
6286 	}
6287 	case KVM_XEN_HVM_GET_ATTR: {
6288 		struct kvm_xen_hvm_attr xha;
6289 
6290 		r = -EFAULT;
6291 		if (copy_from_user(&xha, argp, sizeof(xha)))
6292 			goto out;
6293 		r = kvm_xen_hvm_get_attr(kvm, &xha);
6294 		if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6295 			r = -EFAULT;
6296 		break;
6297 	}
6298 	case KVM_XEN_HVM_SET_ATTR: {
6299 		struct kvm_xen_hvm_attr xha;
6300 
6301 		r = -EFAULT;
6302 		if (copy_from_user(&xha, argp, sizeof(xha)))
6303 			goto out;
6304 		r = kvm_xen_hvm_set_attr(kvm, &xha);
6305 		break;
6306 	}
6307 #endif
6308 	case KVM_SET_CLOCK: {
6309 		struct kvm_arch *ka = &kvm->arch;
6310 		struct kvm_clock_data user_ns;
6311 		u64 now_ns;
6312 
6313 		r = -EFAULT;
6314 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
6315 			goto out;
6316 
6317 		r = -EINVAL;
6318 		if (user_ns.flags)
6319 			goto out;
6320 
6321 		r = 0;
6322 		/*
6323 		 * TODO: userspace has to take care of races with VCPU_RUN, so
6324 		 * kvm_gen_update_masterclock() can be cut down to locked
6325 		 * pvclock_update_vm_gtod_copy().
6326 		 */
6327 		kvm_gen_update_masterclock(kvm);
6328 
6329 		/*
6330 		 * This pairs with kvm_guest_time_update(): when masterclock is
6331 		 * in use, we use master_kernel_ns + kvmclock_offset to set
6332 		 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6333 		 * is slightly ahead) here we risk going negative on unsigned
6334 		 * 'system_time' when 'user_ns.clock' is very small.
6335 		 */
6336 		raw_spin_lock_irq(&ka->pvclock_gtod_sync_lock);
6337 		if (kvm->arch.use_master_clock)
6338 			now_ns = ka->master_kernel_ns;
6339 		else
6340 			now_ns = get_kvmclock_base_ns();
6341 		ka->kvmclock_offset = user_ns.clock - now_ns;
6342 		raw_spin_unlock_irq(&ka->pvclock_gtod_sync_lock);
6343 
6344 		kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
6345 		break;
6346 	}
6347 	case KVM_GET_CLOCK: {
6348 		struct kvm_clock_data user_ns;
6349 		u64 now_ns;
6350 
6351 		now_ns = get_kvmclock_ns(kvm);
6352 		user_ns.clock = now_ns;
6353 		user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
6354 		memset(&user_ns.pad, 0, sizeof(user_ns.pad));
6355 
6356 		r = -EFAULT;
6357 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
6358 			goto out;
6359 		r = 0;
6360 		break;
6361 	}
6362 	case KVM_MEMORY_ENCRYPT_OP: {
6363 		r = -ENOTTY;
6364 		if (kvm_x86_ops.mem_enc_op)
6365 			r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6366 		break;
6367 	}
6368 	case KVM_MEMORY_ENCRYPT_REG_REGION: {
6369 		struct kvm_enc_region region;
6370 
6371 		r = -EFAULT;
6372 		if (copy_from_user(&region, argp, sizeof(region)))
6373 			goto out;
6374 
6375 		r = -ENOTTY;
6376 		if (kvm_x86_ops.mem_enc_reg_region)
6377 			r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6378 		break;
6379 	}
6380 	case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6381 		struct kvm_enc_region region;
6382 
6383 		r = -EFAULT;
6384 		if (copy_from_user(&region, argp, sizeof(region)))
6385 			goto out;
6386 
6387 		r = -ENOTTY;
6388 		if (kvm_x86_ops.mem_enc_unreg_region)
6389 			r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6390 		break;
6391 	}
6392 	case KVM_HYPERV_EVENTFD: {
6393 		struct kvm_hyperv_eventfd hvevfd;
6394 
6395 		r = -EFAULT;
6396 		if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6397 			goto out;
6398 		r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6399 		break;
6400 	}
6401 	case KVM_SET_PMU_EVENT_FILTER:
6402 		r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6403 		break;
6404 	case KVM_X86_SET_MSR_FILTER: {
6405 		struct kvm_msr_filter __user *user_msr_filter = argp;
6406 		struct kvm_msr_filter filter;
6407 
6408 		if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6409 			return -EFAULT;
6410 
6411 		r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6412 		break;
6413 	}
6414 	default:
6415 		r = -ENOTTY;
6416 	}
6417 out:
6418 	return r;
6419 }
6420 
kvm_init_msr_list(void)6421 static void kvm_init_msr_list(void)
6422 {
6423 	struct x86_pmu_capability x86_pmu;
6424 	u32 dummy[2];
6425 	unsigned i;
6426 
6427 	BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6428 			 "Please update the fixed PMCs in msrs_to_saved_all[]");
6429 
6430 	perf_get_x86_pmu_capability(&x86_pmu);
6431 
6432 	num_msrs_to_save = 0;
6433 	num_emulated_msrs = 0;
6434 	num_msr_based_features = 0;
6435 
6436 	for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6437 		if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6438 			continue;
6439 
6440 		/*
6441 		 * Even MSRs that are valid in the host may not be exposed
6442 		 * to the guests in some cases.
6443 		 */
6444 		switch (msrs_to_save_all[i]) {
6445 		case MSR_IA32_BNDCFGS:
6446 			if (!kvm_mpx_supported())
6447 				continue;
6448 			break;
6449 		case MSR_TSC_AUX:
6450 			if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6451 			    !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6452 				continue;
6453 			break;
6454 		case MSR_IA32_UMWAIT_CONTROL:
6455 			if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6456 				continue;
6457 			break;
6458 		case MSR_IA32_RTIT_CTL:
6459 		case MSR_IA32_RTIT_STATUS:
6460 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6461 				continue;
6462 			break;
6463 		case MSR_IA32_RTIT_CR3_MATCH:
6464 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6465 			    !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6466 				continue;
6467 			break;
6468 		case MSR_IA32_RTIT_OUTPUT_BASE:
6469 		case MSR_IA32_RTIT_OUTPUT_MASK:
6470 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6471 				(!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6472 				 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6473 				continue;
6474 			break;
6475 		case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6476 			if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6477 				msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6478 				intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6479 				continue;
6480 			break;
6481 		case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 7:
6482 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6483 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6484 				continue;
6485 			break;
6486 		case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 7:
6487 			if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6488 			    min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6489 				continue;
6490 			break;
6491 		default:
6492 			break;
6493 		}
6494 
6495 		msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6496 	}
6497 
6498 	for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6499 		if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6500 			continue;
6501 
6502 		emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6503 	}
6504 
6505 	for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6506 		struct kvm_msr_entry msr;
6507 
6508 		msr.index = msr_based_features_all[i];
6509 		if (kvm_get_msr_feature(&msr))
6510 			continue;
6511 
6512 		msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6513 	}
6514 }
6515 
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)6516 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6517 			   const void *v)
6518 {
6519 	int handled = 0;
6520 	int n;
6521 
6522 	do {
6523 		n = min(len, 8);
6524 		if (!(lapic_in_kernel(vcpu) &&
6525 		      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6526 		    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6527 			break;
6528 		handled += n;
6529 		addr += n;
6530 		len -= n;
6531 		v += n;
6532 	} while (len);
6533 
6534 	return handled;
6535 }
6536 
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)6537 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6538 {
6539 	int handled = 0;
6540 	int n;
6541 
6542 	do {
6543 		n = min(len, 8);
6544 		if (!(lapic_in_kernel(vcpu) &&
6545 		      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6546 					 addr, n, v))
6547 		    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6548 			break;
6549 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6550 		handled += n;
6551 		addr += n;
6552 		len -= n;
6553 		v += n;
6554 	} while (len);
6555 
6556 	return handled;
6557 }
6558 
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6559 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6560 			struct kvm_segment *var, int seg)
6561 {
6562 	static_call(kvm_x86_set_segment)(vcpu, var, seg);
6563 }
6564 
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)6565 void kvm_get_segment(struct kvm_vcpu *vcpu,
6566 		     struct kvm_segment *var, int seg)
6567 {
6568 	static_call(kvm_x86_get_segment)(vcpu, var, seg);
6569 }
6570 
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)6571 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6572 			   struct x86_exception *exception)
6573 {
6574 	gpa_t t_gpa;
6575 
6576 	BUG_ON(!mmu_is_nested(vcpu));
6577 
6578 	/* NPT walks are always user-walks */
6579 	access |= PFERR_USER_MASK;
6580 	t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6581 
6582 	return t_gpa;
6583 }
6584 
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6585 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6586 			      struct x86_exception *exception)
6587 {
6588 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6589 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6590 }
6591 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6592 
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6593  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6594 				struct x86_exception *exception)
6595 {
6596 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6597 	access |= PFERR_FETCH_MASK;
6598 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6599 }
6600 
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6601 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6602 			       struct x86_exception *exception)
6603 {
6604 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6605 	access |= PFERR_WRITE_MASK;
6606 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6607 }
6608 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6609 
6610 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)6611 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6612 				struct x86_exception *exception)
6613 {
6614 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6615 }
6616 
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6617 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6618 				      struct kvm_vcpu *vcpu, u32 access,
6619 				      struct x86_exception *exception)
6620 {
6621 	void *data = val;
6622 	int r = X86EMUL_CONTINUE;
6623 
6624 	while (bytes) {
6625 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6626 							    exception);
6627 		unsigned offset = addr & (PAGE_SIZE-1);
6628 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6629 		int ret;
6630 
6631 		if (gpa == UNMAPPED_GVA)
6632 			return X86EMUL_PROPAGATE_FAULT;
6633 		ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6634 					       offset, toread);
6635 		if (ret < 0) {
6636 			r = X86EMUL_IO_NEEDED;
6637 			goto out;
6638 		}
6639 
6640 		bytes -= toread;
6641 		data += toread;
6642 		addr += toread;
6643 	}
6644 out:
6645 	return r;
6646 }
6647 
6648 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6649 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6650 				gva_t addr, void *val, unsigned int bytes,
6651 				struct x86_exception *exception)
6652 {
6653 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6654 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6655 	unsigned offset;
6656 	int ret;
6657 
6658 	/* Inline kvm_read_guest_virt_helper for speed.  */
6659 	gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6660 						    exception);
6661 	if (unlikely(gpa == UNMAPPED_GVA))
6662 		return X86EMUL_PROPAGATE_FAULT;
6663 
6664 	offset = addr & (PAGE_SIZE-1);
6665 	if (WARN_ON(offset + bytes > PAGE_SIZE))
6666 		bytes = (unsigned)PAGE_SIZE - offset;
6667 	ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6668 				       offset, bytes);
6669 	if (unlikely(ret < 0))
6670 		return X86EMUL_IO_NEEDED;
6671 
6672 	return X86EMUL_CONTINUE;
6673 }
6674 
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6675 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6676 			       gva_t addr, void *val, unsigned int bytes,
6677 			       struct x86_exception *exception)
6678 {
6679 	u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6680 
6681 	/*
6682 	 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6683 	 * is returned, but our callers are not ready for that and they blindly
6684 	 * call kvm_inject_page_fault.  Ensure that they at least do not leak
6685 	 * uninitialized kernel stack memory into cr2 and error code.
6686 	 */
6687 	memset(exception, 0, sizeof(*exception));
6688 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6689 					  exception);
6690 }
6691 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6692 
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6693 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6694 			     gva_t addr, void *val, unsigned int bytes,
6695 			     struct x86_exception *exception, bool system)
6696 {
6697 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6698 	u32 access = 0;
6699 
6700 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6701 		access |= PFERR_USER_MASK;
6702 
6703 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6704 }
6705 
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)6706 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6707 		unsigned long addr, void *val, unsigned int bytes)
6708 {
6709 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6710 	int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6711 
6712 	return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6713 }
6714 
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u32 access,struct x86_exception * exception)6715 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6716 				      struct kvm_vcpu *vcpu, u32 access,
6717 				      struct x86_exception *exception)
6718 {
6719 	void *data = val;
6720 	int r = X86EMUL_CONTINUE;
6721 
6722 	while (bytes) {
6723 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6724 							     access,
6725 							     exception);
6726 		unsigned offset = addr & (PAGE_SIZE-1);
6727 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6728 		int ret;
6729 
6730 		if (gpa == UNMAPPED_GVA)
6731 			return X86EMUL_PROPAGATE_FAULT;
6732 		ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6733 		if (ret < 0) {
6734 			r = X86EMUL_IO_NEEDED;
6735 			goto out;
6736 		}
6737 
6738 		bytes -= towrite;
6739 		data += towrite;
6740 		addr += towrite;
6741 	}
6742 out:
6743 	return r;
6744 }
6745 
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)6746 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6747 			      unsigned int bytes, struct x86_exception *exception,
6748 			      bool system)
6749 {
6750 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6751 	u32 access = PFERR_WRITE_MASK;
6752 
6753 	if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6754 		access |= PFERR_USER_MASK;
6755 
6756 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6757 					   access, exception);
6758 }
6759 
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)6760 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6761 				unsigned int bytes, struct x86_exception *exception)
6762 {
6763 	/* kvm_write_guest_virt_system can pull in tons of pages. */
6764 	vcpu->arch.l1tf_flush_l1d = true;
6765 
6766 	return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6767 					   PFERR_WRITE_MASK, exception);
6768 }
6769 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6770 
handle_ud(struct kvm_vcpu * vcpu)6771 int handle_ud(struct kvm_vcpu *vcpu)
6772 {
6773 	static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6774 	int emul_type = EMULTYPE_TRAP_UD;
6775 	char sig[5]; /* ud2; .ascii "kvm" */
6776 	struct x86_exception e;
6777 
6778 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6779 		return 1;
6780 
6781 	if (force_emulation_prefix &&
6782 	    kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6783 				sig, sizeof(sig), &e) == 0 &&
6784 	    memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6785 		kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6786 		emul_type = EMULTYPE_TRAP_UD_FORCED;
6787 	}
6788 
6789 	return kvm_emulate_instruction(vcpu, emul_type);
6790 }
6791 EXPORT_SYMBOL_GPL(handle_ud);
6792 
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)6793 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6794 			    gpa_t gpa, bool write)
6795 {
6796 	/* For APIC access vmexit */
6797 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6798 		return 1;
6799 
6800 	if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6801 		trace_vcpu_match_mmio(gva, gpa, write, true);
6802 		return 1;
6803 	}
6804 
6805 	return 0;
6806 }
6807 
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)6808 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6809 				gpa_t *gpa, struct x86_exception *exception,
6810 				bool write)
6811 {
6812 	u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6813 		| (write ? PFERR_WRITE_MASK : 0);
6814 
6815 	/*
6816 	 * currently PKRU is only applied to ept enabled guest so
6817 	 * there is no pkey in EPT page table for L1 guest or EPT
6818 	 * shadow page table for L2 guest.
6819 	 */
6820 	if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6821 	    !permission_fault(vcpu, vcpu->arch.walk_mmu,
6822 			      vcpu->arch.mmio_access, 0, access))) {
6823 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6824 					(gva & (PAGE_SIZE - 1));
6825 		trace_vcpu_match_mmio(gva, *gpa, write, false);
6826 		return 1;
6827 	}
6828 
6829 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6830 
6831 	if (*gpa == UNMAPPED_GVA)
6832 		return -1;
6833 
6834 	return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6835 }
6836 
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)6837 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6838 			const void *val, int bytes)
6839 {
6840 	int ret;
6841 
6842 	ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6843 	if (ret < 0)
6844 		return 0;
6845 	kvm_page_track_write(vcpu, gpa, val, bytes);
6846 	return 1;
6847 }
6848 
6849 struct read_write_emulator_ops {
6850 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6851 				  int bytes);
6852 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6853 				  void *val, int bytes);
6854 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6855 			       int bytes, void *val);
6856 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6857 				    void *val, int bytes);
6858 	bool write;
6859 };
6860 
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)6861 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6862 {
6863 	if (vcpu->mmio_read_completed) {
6864 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6865 			       vcpu->mmio_fragments[0].gpa, val);
6866 		vcpu->mmio_read_completed = 0;
6867 		return 1;
6868 	}
6869 
6870 	return 0;
6871 }
6872 
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6873 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6874 			void *val, int bytes)
6875 {
6876 	return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6877 }
6878 
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6879 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6880 			 void *val, int bytes)
6881 {
6882 	return emulator_write_phys(vcpu, gpa, val, bytes);
6883 }
6884 
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)6885 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6886 {
6887 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6888 	return vcpu_mmio_write(vcpu, gpa, bytes, val);
6889 }
6890 
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6891 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6892 			  void *val, int bytes)
6893 {
6894 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6895 	return X86EMUL_IO_NEEDED;
6896 }
6897 
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)6898 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6899 			   void *val, int bytes)
6900 {
6901 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6902 
6903 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6904 	return X86EMUL_CONTINUE;
6905 }
6906 
6907 static const struct read_write_emulator_ops read_emultor = {
6908 	.read_write_prepare = read_prepare,
6909 	.read_write_emulate = read_emulate,
6910 	.read_write_mmio = vcpu_mmio_read,
6911 	.read_write_exit_mmio = read_exit_mmio,
6912 };
6913 
6914 static const struct read_write_emulator_ops write_emultor = {
6915 	.read_write_emulate = write_emulate,
6916 	.read_write_mmio = write_mmio,
6917 	.read_write_exit_mmio = write_exit_mmio,
6918 	.write = true,
6919 };
6920 
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)6921 static int emulator_read_write_onepage(unsigned long addr, void *val,
6922 				       unsigned int bytes,
6923 				       struct x86_exception *exception,
6924 				       struct kvm_vcpu *vcpu,
6925 				       const struct read_write_emulator_ops *ops)
6926 {
6927 	gpa_t gpa;
6928 	int handled, ret;
6929 	bool write = ops->write;
6930 	struct kvm_mmio_fragment *frag;
6931 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6932 
6933 	/*
6934 	 * If the exit was due to a NPF we may already have a GPA.
6935 	 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6936 	 * Note, this cannot be used on string operations since string
6937 	 * operation using rep will only have the initial GPA from the NPF
6938 	 * occurred.
6939 	 */
6940 	if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6941 	    (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6942 		gpa = ctxt->gpa_val;
6943 		ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6944 	} else {
6945 		ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6946 		if (ret < 0)
6947 			return X86EMUL_PROPAGATE_FAULT;
6948 	}
6949 
6950 	if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6951 		return X86EMUL_CONTINUE;
6952 
6953 	/*
6954 	 * Is this MMIO handled locally?
6955 	 */
6956 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6957 	if (handled == bytes)
6958 		return X86EMUL_CONTINUE;
6959 
6960 	gpa += handled;
6961 	bytes -= handled;
6962 	val += handled;
6963 
6964 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6965 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6966 	frag->gpa = gpa;
6967 	frag->data = val;
6968 	frag->len = bytes;
6969 	return X86EMUL_CONTINUE;
6970 }
6971 
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)6972 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6973 			unsigned long addr,
6974 			void *val, unsigned int bytes,
6975 			struct x86_exception *exception,
6976 			const struct read_write_emulator_ops *ops)
6977 {
6978 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6979 	gpa_t gpa;
6980 	int rc;
6981 
6982 	if (ops->read_write_prepare &&
6983 		  ops->read_write_prepare(vcpu, val, bytes))
6984 		return X86EMUL_CONTINUE;
6985 
6986 	vcpu->mmio_nr_fragments = 0;
6987 
6988 	/* Crossing a page boundary? */
6989 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6990 		int now;
6991 
6992 		now = -addr & ~PAGE_MASK;
6993 		rc = emulator_read_write_onepage(addr, val, now, exception,
6994 						 vcpu, ops);
6995 
6996 		if (rc != X86EMUL_CONTINUE)
6997 			return rc;
6998 		addr += now;
6999 		if (ctxt->mode != X86EMUL_MODE_PROT64)
7000 			addr = (u32)addr;
7001 		val += now;
7002 		bytes -= now;
7003 	}
7004 
7005 	rc = emulator_read_write_onepage(addr, val, bytes, exception,
7006 					 vcpu, ops);
7007 	if (rc != X86EMUL_CONTINUE)
7008 		return rc;
7009 
7010 	if (!vcpu->mmio_nr_fragments)
7011 		return rc;
7012 
7013 	gpa = vcpu->mmio_fragments[0].gpa;
7014 
7015 	vcpu->mmio_needed = 1;
7016 	vcpu->mmio_cur_fragment = 0;
7017 
7018 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7019 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7020 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
7021 	vcpu->run->mmio.phys_addr = gpa;
7022 
7023 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7024 }
7025 
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7026 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7027 				  unsigned long addr,
7028 				  void *val,
7029 				  unsigned int bytes,
7030 				  struct x86_exception *exception)
7031 {
7032 	return emulator_read_write(ctxt, addr, val, bytes,
7033 				   exception, &read_emultor);
7034 }
7035 
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7036 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7037 			    unsigned long addr,
7038 			    const void *val,
7039 			    unsigned int bytes,
7040 			    struct x86_exception *exception)
7041 {
7042 	return emulator_read_write(ctxt, addr, (void *)val, bytes,
7043 				   exception, &write_emultor);
7044 }
7045 
7046 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7047 	(__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7048 
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7049 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7050 				     unsigned long addr,
7051 				     const void *old,
7052 				     const void *new,
7053 				     unsigned int bytes,
7054 				     struct x86_exception *exception)
7055 {
7056 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7057 	u64 page_line_mask;
7058 	unsigned long hva;
7059 	gpa_t gpa;
7060 	int r;
7061 
7062 	/* guests cmpxchg8b have to be emulated atomically */
7063 	if (bytes > 8 || (bytes & (bytes - 1)))
7064 		goto emul_write;
7065 
7066 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7067 
7068 	if (gpa == UNMAPPED_GVA ||
7069 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7070 		goto emul_write;
7071 
7072 	/*
7073 	 * Emulate the atomic as a straight write to avoid #AC if SLD is
7074 	 * enabled in the host and the access splits a cache line.
7075 	 */
7076 	if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7077 		page_line_mask = ~(cache_line_size() - 1);
7078 	else
7079 		page_line_mask = PAGE_MASK;
7080 
7081 	if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7082 		goto emul_write;
7083 
7084 	hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7085 	if (kvm_is_error_hva(hva))
7086 		goto emul_write;
7087 
7088 	hva += offset_in_page(gpa);
7089 
7090 	switch (bytes) {
7091 	case 1:
7092 		r = emulator_try_cmpxchg_user(u8, hva, old, new);
7093 		break;
7094 	case 2:
7095 		r = emulator_try_cmpxchg_user(u16, hva, old, new);
7096 		break;
7097 	case 4:
7098 		r = emulator_try_cmpxchg_user(u32, hva, old, new);
7099 		break;
7100 	case 8:
7101 		r = emulator_try_cmpxchg_user(u64, hva, old, new);
7102 		break;
7103 	default:
7104 		BUG();
7105 	}
7106 
7107 	if (r < 0)
7108 		goto emul_write;
7109 	if (r)
7110 		return X86EMUL_CMPXCHG_FAILED;
7111 
7112 	kvm_page_track_write(vcpu, gpa, new, bytes);
7113 
7114 	return X86EMUL_CONTINUE;
7115 
7116 emul_write:
7117 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7118 
7119 	return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7120 }
7121 
kernel_pio(struct kvm_vcpu * vcpu,void * pd)7122 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7123 {
7124 	int r = 0, i;
7125 
7126 	for (i = 0; i < vcpu->arch.pio.count; i++) {
7127 		if (vcpu->arch.pio.in)
7128 			r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7129 					    vcpu->arch.pio.size, pd);
7130 		else
7131 			r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7132 					     vcpu->arch.pio.port, vcpu->arch.pio.size,
7133 					     pd);
7134 		if (r)
7135 			break;
7136 		pd += vcpu->arch.pio.size;
7137 	}
7138 	return r;
7139 }
7140 
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,unsigned int count,bool in)7141 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7142 			       unsigned short port,
7143 			       unsigned int count, bool in)
7144 {
7145 	vcpu->arch.pio.port = port;
7146 	vcpu->arch.pio.in = in;
7147 	vcpu->arch.pio.count  = count;
7148 	vcpu->arch.pio.size = size;
7149 
7150 	if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7151 		return 1;
7152 
7153 	vcpu->run->exit_reason = KVM_EXIT_IO;
7154 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7155 	vcpu->run->io.size = size;
7156 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7157 	vcpu->run->io.count = count;
7158 	vcpu->run->io.port = port;
7159 
7160 	return 0;
7161 }
7162 
__emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,unsigned int count)7163 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7164 			     unsigned short port, unsigned int count)
7165 {
7166 	WARN_ON(vcpu->arch.pio.count);
7167 	memset(vcpu->arch.pio_data, 0, size * count);
7168 	return emulator_pio_in_out(vcpu, size, port, count, true);
7169 }
7170 
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7171 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7172 {
7173 	int size = vcpu->arch.pio.size;
7174 	unsigned count = vcpu->arch.pio.count;
7175 	memcpy(val, vcpu->arch.pio_data, size * count);
7176 	trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7177 	vcpu->arch.pio.count = 0;
7178 }
7179 
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7180 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7181 			   unsigned short port, void *val, unsigned int count)
7182 {
7183 	if (vcpu->arch.pio.count) {
7184 		/*
7185 		 * Complete a previous iteration that required userspace I/O.
7186 		 * Note, @count isn't guaranteed to match pio.count as userspace
7187 		 * can modify ECX before rerunning the vCPU.  Ignore any such
7188 		 * shenanigans as KVM doesn't support modifying the rep count,
7189 		 * and the emulator ensures @count doesn't overflow the buffer.
7190 		 */
7191 	} else {
7192 		int r = __emulator_pio_in(vcpu, size, port, count);
7193 		if (!r)
7194 			return r;
7195 
7196 		/* Results already available, fall through.  */
7197 	}
7198 
7199 	complete_emulator_pio_in(vcpu, val);
7200 	return 1;
7201 }
7202 
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7203 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7204 				    int size, unsigned short port, void *val,
7205 				    unsigned int count)
7206 {
7207 	return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7208 
7209 }
7210 
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7211 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7212 			    unsigned short port, const void *val,
7213 			    unsigned int count)
7214 {
7215 	int ret;
7216 
7217 	memcpy(vcpu->arch.pio_data, val, size * count);
7218 	trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7219 	ret = emulator_pio_in_out(vcpu, size, port, count, false);
7220 	if (ret)
7221                 vcpu->arch.pio.count = 0;
7222 
7223         return ret;
7224 }
7225 
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7226 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7227 				     int size, unsigned short port,
7228 				     const void *val, unsigned int count)
7229 {
7230 	return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7231 }
7232 
get_segment_base(struct kvm_vcpu * vcpu,int seg)7233 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7234 {
7235 	return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7236 }
7237 
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7238 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7239 {
7240 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7241 }
7242 
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7243 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7244 {
7245 	if (!need_emulate_wbinvd(vcpu))
7246 		return X86EMUL_CONTINUE;
7247 
7248 	if (static_call(kvm_x86_has_wbinvd_exit)()) {
7249 		int cpu = get_cpu();
7250 
7251 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7252 		on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7253 				wbinvd_ipi, NULL, 1);
7254 		put_cpu();
7255 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7256 	} else
7257 		wbinvd();
7258 	return X86EMUL_CONTINUE;
7259 }
7260 
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)7261 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7262 {
7263 	kvm_emulate_wbinvd_noskip(vcpu);
7264 	return kvm_skip_emulated_instruction(vcpu);
7265 }
7266 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7267 
7268 
7269 
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)7270 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7271 {
7272 	kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7273 }
7274 
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)7275 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7276 			    unsigned long *dest)
7277 {
7278 	kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7279 }
7280 
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)7281 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7282 			   unsigned long value)
7283 {
7284 
7285 	return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7286 }
7287 
mk_cr_64(u64 curr_cr,u32 new_val)7288 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7289 {
7290 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7291 }
7292 
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)7293 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7294 {
7295 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7296 	unsigned long value;
7297 
7298 	switch (cr) {
7299 	case 0:
7300 		value = kvm_read_cr0(vcpu);
7301 		break;
7302 	case 2:
7303 		value = vcpu->arch.cr2;
7304 		break;
7305 	case 3:
7306 		value = kvm_read_cr3(vcpu);
7307 		break;
7308 	case 4:
7309 		value = kvm_read_cr4(vcpu);
7310 		break;
7311 	case 8:
7312 		value = kvm_get_cr8(vcpu);
7313 		break;
7314 	default:
7315 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7316 		return 0;
7317 	}
7318 
7319 	return value;
7320 }
7321 
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)7322 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7323 {
7324 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7325 	int res = 0;
7326 
7327 	switch (cr) {
7328 	case 0:
7329 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7330 		break;
7331 	case 2:
7332 		vcpu->arch.cr2 = val;
7333 		break;
7334 	case 3:
7335 		res = kvm_set_cr3(vcpu, val);
7336 		break;
7337 	case 4:
7338 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7339 		break;
7340 	case 8:
7341 		res = kvm_set_cr8(vcpu, val);
7342 		break;
7343 	default:
7344 		kvm_err("%s: unexpected cr %u\n", __func__, cr);
7345 		res = -1;
7346 	}
7347 
7348 	return res;
7349 }
7350 
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)7351 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7352 {
7353 	return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7354 }
7355 
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7356 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7357 {
7358 	static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7359 }
7360 
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7361 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7362 {
7363 	static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7364 }
7365 
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7366 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7367 {
7368 	static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7369 }
7370 
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7371 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7372 {
7373 	static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7374 }
7375 
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)7376 static unsigned long emulator_get_cached_segment_base(
7377 	struct x86_emulate_ctxt *ctxt, int seg)
7378 {
7379 	return get_segment_base(emul_to_vcpu(ctxt), seg);
7380 }
7381 
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)7382 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7383 				 struct desc_struct *desc, u32 *base3,
7384 				 int seg)
7385 {
7386 	struct kvm_segment var;
7387 
7388 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7389 	*selector = var.selector;
7390 
7391 	if (var.unusable) {
7392 		memset(desc, 0, sizeof(*desc));
7393 		if (base3)
7394 			*base3 = 0;
7395 		return false;
7396 	}
7397 
7398 	if (var.g)
7399 		var.limit >>= 12;
7400 	set_desc_limit(desc, var.limit);
7401 	set_desc_base(desc, (unsigned long)var.base);
7402 #ifdef CONFIG_X86_64
7403 	if (base3)
7404 		*base3 = var.base >> 32;
7405 #endif
7406 	desc->type = var.type;
7407 	desc->s = var.s;
7408 	desc->dpl = var.dpl;
7409 	desc->p = var.present;
7410 	desc->avl = var.avl;
7411 	desc->l = var.l;
7412 	desc->d = var.db;
7413 	desc->g = var.g;
7414 
7415 	return true;
7416 }
7417 
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)7418 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7419 				 struct desc_struct *desc, u32 base3,
7420 				 int seg)
7421 {
7422 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7423 	struct kvm_segment var;
7424 
7425 	var.selector = selector;
7426 	var.base = get_desc_base(desc);
7427 #ifdef CONFIG_X86_64
7428 	var.base |= ((u64)base3) << 32;
7429 #endif
7430 	var.limit = get_desc_limit(desc);
7431 	if (desc->g)
7432 		var.limit = (var.limit << 12) | 0xfff;
7433 	var.type = desc->type;
7434 	var.dpl = desc->dpl;
7435 	var.db = desc->d;
7436 	var.s = desc->s;
7437 	var.l = desc->l;
7438 	var.g = desc->g;
7439 	var.avl = desc->avl;
7440 	var.present = desc->p;
7441 	var.unusable = !var.present;
7442 	var.padding = 0;
7443 
7444 	kvm_set_segment(vcpu, &var, seg);
7445 	return;
7446 }
7447 
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)7448 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7449 			    u32 msr_index, u64 *pdata)
7450 {
7451 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7452 	int r;
7453 
7454 	r = kvm_get_msr(vcpu, msr_index, pdata);
7455 
7456 	if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7457 		/* Bounce to user space */
7458 		return X86EMUL_IO_NEEDED;
7459 	}
7460 
7461 	return r;
7462 }
7463 
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)7464 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7465 			    u32 msr_index, u64 data)
7466 {
7467 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7468 	int r;
7469 
7470 	r = kvm_set_msr(vcpu, msr_index, data);
7471 
7472 	if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7473 		/* Bounce to user space */
7474 		return X86EMUL_IO_NEEDED;
7475 	}
7476 
7477 	return r;
7478 }
7479 
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)7480 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7481 {
7482 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7483 
7484 	return vcpu->arch.smbase;
7485 }
7486 
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)7487 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7488 {
7489 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7490 
7491 	vcpu->arch.smbase = smbase;
7492 }
7493 
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)7494 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7495 			      u32 pmc)
7496 {
7497 	return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
7498 }
7499 
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)7500 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7501 			     u32 pmc, u64 *pdata)
7502 {
7503 	return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7504 }
7505 
emulator_halt(struct x86_emulate_ctxt * ctxt)7506 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7507 {
7508 	emul_to_vcpu(ctxt)->arch.halt_request = 1;
7509 }
7510 
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)7511 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7512 			      struct x86_instruction_info *info,
7513 			      enum x86_intercept_stage stage)
7514 {
7515 	return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7516 					    &ctxt->exception);
7517 }
7518 
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)7519 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7520 			      u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7521 			      bool exact_only)
7522 {
7523 	return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7524 }
7525 
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)7526 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7527 {
7528 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7529 }
7530 
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)7531 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7532 {
7533 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7534 }
7535 
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)7536 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7537 {
7538 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7539 }
7540 
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)7541 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
7542 {
7543 	return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
7544 }
7545 
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)7546 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7547 {
7548 	return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7549 }
7550 
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)7551 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7552 {
7553 	kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7554 }
7555 
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)7556 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7557 {
7558 	static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7559 }
7560 
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)7561 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7562 {
7563 	return emul_to_vcpu(ctxt)->arch.hflags;
7564 }
7565 
emulator_exiting_smm(struct x86_emulate_ctxt * ctxt)7566 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7567 {
7568 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7569 
7570 	kvm_smm_changed(vcpu, false);
7571 }
7572 
emulator_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)7573 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7574 				  const char *smstate)
7575 {
7576 	return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7577 }
7578 
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)7579 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7580 {
7581 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7582 }
7583 
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)7584 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7585 {
7586 	return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7587 }
7588 
7589 static const struct x86_emulate_ops emulate_ops = {
7590 	.read_gpr            = emulator_read_gpr,
7591 	.write_gpr           = emulator_write_gpr,
7592 	.read_std            = emulator_read_std,
7593 	.write_std           = emulator_write_std,
7594 	.read_phys           = kvm_read_guest_phys_system,
7595 	.fetch               = kvm_fetch_guest_virt,
7596 	.read_emulated       = emulator_read_emulated,
7597 	.write_emulated      = emulator_write_emulated,
7598 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
7599 	.invlpg              = emulator_invlpg,
7600 	.pio_in_emulated     = emulator_pio_in_emulated,
7601 	.pio_out_emulated    = emulator_pio_out_emulated,
7602 	.get_segment         = emulator_get_segment,
7603 	.set_segment         = emulator_set_segment,
7604 	.get_cached_segment_base = emulator_get_cached_segment_base,
7605 	.get_gdt             = emulator_get_gdt,
7606 	.get_idt	     = emulator_get_idt,
7607 	.set_gdt             = emulator_set_gdt,
7608 	.set_idt	     = emulator_set_idt,
7609 	.get_cr              = emulator_get_cr,
7610 	.set_cr              = emulator_set_cr,
7611 	.cpl                 = emulator_get_cpl,
7612 	.get_dr              = emulator_get_dr,
7613 	.set_dr              = emulator_set_dr,
7614 	.get_smbase          = emulator_get_smbase,
7615 	.set_smbase          = emulator_set_smbase,
7616 	.set_msr             = emulator_set_msr,
7617 	.get_msr             = emulator_get_msr,
7618 	.check_pmc	     = emulator_check_pmc,
7619 	.read_pmc            = emulator_read_pmc,
7620 	.halt                = emulator_halt,
7621 	.wbinvd              = emulator_wbinvd,
7622 	.fix_hypercall       = emulator_fix_hypercall,
7623 	.intercept           = emulator_intercept,
7624 	.get_cpuid           = emulator_get_cpuid,
7625 	.guest_has_long_mode = emulator_guest_has_long_mode,
7626 	.guest_has_movbe     = emulator_guest_has_movbe,
7627 	.guest_has_fxsr      = emulator_guest_has_fxsr,
7628 	.guest_has_rdpid     = emulator_guest_has_rdpid,
7629 	.set_nmi_mask        = emulator_set_nmi_mask,
7630 	.get_hflags          = emulator_get_hflags,
7631 	.exiting_smm         = emulator_exiting_smm,
7632 	.leave_smm           = emulator_leave_smm,
7633 	.triple_fault        = emulator_triple_fault,
7634 	.set_xcr             = emulator_set_xcr,
7635 };
7636 
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)7637 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7638 {
7639 	u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7640 	/*
7641 	 * an sti; sti; sequence only disable interrupts for the first
7642 	 * instruction. So, if the last instruction, be it emulated or
7643 	 * not, left the system with the INT_STI flag enabled, it
7644 	 * means that the last instruction is an sti. We should not
7645 	 * leave the flag on in this case. The same goes for mov ss
7646 	 */
7647 	if (int_shadow & mask)
7648 		mask = 0;
7649 	if (unlikely(int_shadow || mask)) {
7650 		static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7651 		if (!mask)
7652 			kvm_make_request(KVM_REQ_EVENT, vcpu);
7653 	}
7654 }
7655 
inject_emulated_exception(struct kvm_vcpu * vcpu)7656 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7657 {
7658 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7659 	if (ctxt->exception.vector == PF_VECTOR)
7660 		return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7661 
7662 	if (ctxt->exception.error_code_valid)
7663 		kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7664 				      ctxt->exception.error_code);
7665 	else
7666 		kvm_queue_exception(vcpu, ctxt->exception.vector);
7667 	return false;
7668 }
7669 
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)7670 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7671 {
7672 	struct x86_emulate_ctxt *ctxt;
7673 
7674 	ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7675 	if (!ctxt) {
7676 		pr_err("kvm: failed to allocate vcpu's emulator\n");
7677 		return NULL;
7678 	}
7679 
7680 	ctxt->vcpu = vcpu;
7681 	ctxt->ops = &emulate_ops;
7682 	vcpu->arch.emulate_ctxt = ctxt;
7683 
7684 	return ctxt;
7685 }
7686 
init_emulate_ctxt(struct kvm_vcpu * vcpu)7687 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7688 {
7689 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7690 	int cs_db, cs_l;
7691 
7692 	static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7693 
7694 	ctxt->gpa_available = false;
7695 	ctxt->eflags = kvm_get_rflags(vcpu);
7696 	ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7697 
7698 	ctxt->eip = kvm_rip_read(vcpu);
7699 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL :
7700 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 :
7701 		     (cs_l && is_long_mode(vcpu))	? X86EMUL_MODE_PROT64 :
7702 		     cs_db				? X86EMUL_MODE_PROT32 :
7703 							  X86EMUL_MODE_PROT16;
7704 	BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7705 	BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7706 	BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7707 
7708 	ctxt->interruptibility = 0;
7709 	ctxt->have_exception = false;
7710 	ctxt->exception.vector = -1;
7711 	ctxt->perm_ok = false;
7712 
7713 	init_decode_cache(ctxt);
7714 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7715 }
7716 
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)7717 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7718 {
7719 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7720 	int ret;
7721 
7722 	init_emulate_ctxt(vcpu);
7723 
7724 	ctxt->op_bytes = 2;
7725 	ctxt->ad_bytes = 2;
7726 	ctxt->_eip = ctxt->eip + inc_eip;
7727 	ret = emulate_int_real(ctxt, irq);
7728 
7729 	if (ret != X86EMUL_CONTINUE) {
7730 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7731 	} else {
7732 		ctxt->eip = ctxt->_eip;
7733 		kvm_rip_write(vcpu, ctxt->eip);
7734 		kvm_set_rflags(vcpu, ctxt->eflags);
7735 	}
7736 }
7737 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7738 
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)7739 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7740 {
7741 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7742 	u32 insn_size = ctxt->fetch.end - ctxt->fetch.data;
7743 	struct kvm_run *run = vcpu->run;
7744 
7745 	run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7746 	run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7747 	run->emulation_failure.ndata = 0;
7748 	run->emulation_failure.flags = 0;
7749 
7750 	if (insn_size) {
7751 		run->emulation_failure.ndata = 3;
7752 		run->emulation_failure.flags |=
7753 			KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7754 		run->emulation_failure.insn_size = insn_size;
7755 		memset(run->emulation_failure.insn_bytes, 0x90,
7756 		       sizeof(run->emulation_failure.insn_bytes));
7757 		memcpy(run->emulation_failure.insn_bytes,
7758 		       ctxt->fetch.data, insn_size);
7759 	}
7760 }
7761 
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)7762 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7763 {
7764 	struct kvm *kvm = vcpu->kvm;
7765 
7766 	++vcpu->stat.insn_emulation_fail;
7767 	trace_kvm_emulate_insn_failed(vcpu);
7768 
7769 	if (emulation_type & EMULTYPE_VMWARE_GP) {
7770 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7771 		return 1;
7772 	}
7773 
7774 	if (kvm->arch.exit_on_emulation_error ||
7775 	    (emulation_type & EMULTYPE_SKIP)) {
7776 		prepare_emulation_failure_exit(vcpu);
7777 		return 0;
7778 	}
7779 
7780 	kvm_queue_exception(vcpu, UD_VECTOR);
7781 
7782 	if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7783 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7784 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7785 		vcpu->run->internal.ndata = 0;
7786 		return 0;
7787 	}
7788 
7789 	return 1;
7790 }
7791 
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)7792 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7793 				  bool write_fault_to_shadow_pgtable,
7794 				  int emulation_type)
7795 {
7796 	gpa_t gpa = cr2_or_gpa;
7797 	kvm_pfn_t pfn;
7798 
7799 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7800 		return false;
7801 
7802 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7803 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7804 		return false;
7805 
7806 	if (!vcpu->arch.mmu->direct_map) {
7807 		/*
7808 		 * Write permission should be allowed since only
7809 		 * write access need to be emulated.
7810 		 */
7811 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7812 
7813 		/*
7814 		 * If the mapping is invalid in guest, let cpu retry
7815 		 * it to generate fault.
7816 		 */
7817 		if (gpa == UNMAPPED_GVA)
7818 			return true;
7819 	}
7820 
7821 	/*
7822 	 * Do not retry the unhandleable instruction if it faults on the
7823 	 * readonly host memory, otherwise it will goto a infinite loop:
7824 	 * retry instruction -> write #PF -> emulation fail -> retry
7825 	 * instruction -> ...
7826 	 */
7827 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7828 
7829 	/*
7830 	 * If the instruction failed on the error pfn, it can not be fixed,
7831 	 * report the error to userspace.
7832 	 */
7833 	if (is_error_noslot_pfn(pfn))
7834 		return false;
7835 
7836 	kvm_release_pfn_clean(pfn);
7837 
7838 	/* The instructions are well-emulated on direct mmu. */
7839 	if (vcpu->arch.mmu->direct_map) {
7840 		unsigned int indirect_shadow_pages;
7841 
7842 		write_lock(&vcpu->kvm->mmu_lock);
7843 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7844 		write_unlock(&vcpu->kvm->mmu_lock);
7845 
7846 		if (indirect_shadow_pages)
7847 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7848 
7849 		return true;
7850 	}
7851 
7852 	/*
7853 	 * if emulation was due to access to shadowed page table
7854 	 * and it failed try to unshadow page and re-enter the
7855 	 * guest to let CPU execute the instruction.
7856 	 */
7857 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7858 
7859 	/*
7860 	 * If the access faults on its page table, it can not
7861 	 * be fixed by unprotecting shadow page and it should
7862 	 * be reported to userspace.
7863 	 */
7864 	return !write_fault_to_shadow_pgtable;
7865 }
7866 
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)7867 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7868 			      gpa_t cr2_or_gpa,  int emulation_type)
7869 {
7870 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7871 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7872 
7873 	last_retry_eip = vcpu->arch.last_retry_eip;
7874 	last_retry_addr = vcpu->arch.last_retry_addr;
7875 
7876 	/*
7877 	 * If the emulation is caused by #PF and it is non-page_table
7878 	 * writing instruction, it means the VM-EXIT is caused by shadow
7879 	 * page protected, we can zap the shadow page and retry this
7880 	 * instruction directly.
7881 	 *
7882 	 * Note: if the guest uses a non-page-table modifying instruction
7883 	 * on the PDE that points to the instruction, then we will unmap
7884 	 * the instruction and go to an infinite loop. So, we cache the
7885 	 * last retried eip and the last fault address, if we meet the eip
7886 	 * and the address again, we can break out of the potential infinite
7887 	 * loop.
7888 	 */
7889 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7890 
7891 	if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7892 		return false;
7893 
7894 	if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7895 	    WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7896 		return false;
7897 
7898 	if (x86_page_table_writing_insn(ctxt))
7899 		return false;
7900 
7901 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7902 		return false;
7903 
7904 	vcpu->arch.last_retry_eip = ctxt->eip;
7905 	vcpu->arch.last_retry_addr = cr2_or_gpa;
7906 
7907 	if (!vcpu->arch.mmu->direct_map)
7908 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7909 
7910 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7911 
7912 	return true;
7913 }
7914 
7915 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7916 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7917 
kvm_smm_changed(struct kvm_vcpu * vcpu,bool entering_smm)7918 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7919 {
7920 	trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7921 
7922 	if (entering_smm) {
7923 		vcpu->arch.hflags |= HF_SMM_MASK;
7924 	} else {
7925 		vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7926 
7927 		/* Process a latched INIT or SMI, if any.  */
7928 		kvm_make_request(KVM_REQ_EVENT, vcpu);
7929 
7930 		/*
7931 		 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7932 		 * on SMM exit we still need to reload them from
7933 		 * guest memory
7934 		 */
7935 		vcpu->arch.pdptrs_from_userspace = false;
7936 	}
7937 
7938 	kvm_mmu_reset_context(vcpu);
7939 }
7940 
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)7941 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7942 				unsigned long *db)
7943 {
7944 	u32 dr6 = 0;
7945 	int i;
7946 	u32 enable, rwlen;
7947 
7948 	enable = dr7;
7949 	rwlen = dr7 >> 16;
7950 	for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7951 		if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7952 			dr6 |= (1 << i);
7953 	return dr6;
7954 }
7955 
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)7956 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7957 {
7958 	struct kvm_run *kvm_run = vcpu->run;
7959 
7960 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7961 		kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7962 		kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7963 		kvm_run->debug.arch.exception = DB_VECTOR;
7964 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
7965 		return 0;
7966 	}
7967 	kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7968 	return 1;
7969 }
7970 
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)7971 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7972 {
7973 	unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7974 	int r;
7975 
7976 	r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7977 	if (unlikely(!r))
7978 		return 0;
7979 
7980 	/*
7981 	 * rflags is the old, "raw" value of the flags.  The new value has
7982 	 * not been saved yet.
7983 	 *
7984 	 * This is correct even for TF set by the guest, because "the
7985 	 * processor will not generate this exception after the instruction
7986 	 * that sets the TF flag".
7987 	 */
7988 	if (unlikely(rflags & X86_EFLAGS_TF))
7989 		r = kvm_vcpu_do_singlestep(vcpu);
7990 	return r;
7991 }
7992 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7993 
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int * r)7994 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, int *r)
7995 {
7996 	if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7997 	    (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7998 		struct kvm_run *kvm_run = vcpu->run;
7999 		unsigned long eip = kvm_get_linear_rip(vcpu);
8000 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8001 					   vcpu->arch.guest_debug_dr7,
8002 					   vcpu->arch.eff_db);
8003 
8004 		if (dr6 != 0) {
8005 			kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8006 			kvm_run->debug.arch.pc = eip;
8007 			kvm_run->debug.arch.exception = DB_VECTOR;
8008 			kvm_run->exit_reason = KVM_EXIT_DEBUG;
8009 			*r = 0;
8010 			return true;
8011 		}
8012 	}
8013 
8014 	if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8015 	    !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8016 		unsigned long eip = kvm_get_linear_rip(vcpu);
8017 		u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8018 					   vcpu->arch.dr7,
8019 					   vcpu->arch.db);
8020 
8021 		if (dr6 != 0) {
8022 			kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8023 			*r = 1;
8024 			return true;
8025 		}
8026 	}
8027 
8028 	return false;
8029 }
8030 
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8031 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8032 {
8033 	switch (ctxt->opcode_len) {
8034 	case 1:
8035 		switch (ctxt->b) {
8036 		case 0xe4:	/* IN */
8037 		case 0xe5:
8038 		case 0xec:
8039 		case 0xed:
8040 		case 0xe6:	/* OUT */
8041 		case 0xe7:
8042 		case 0xee:
8043 		case 0xef:
8044 		case 0x6c:	/* INS */
8045 		case 0x6d:
8046 		case 0x6e:	/* OUTS */
8047 		case 0x6f:
8048 			return true;
8049 		}
8050 		break;
8051 	case 2:
8052 		switch (ctxt->b) {
8053 		case 0x33:	/* RDPMC */
8054 			return true;
8055 		}
8056 		break;
8057 	}
8058 
8059 	return false;
8060 }
8061 
8062 /*
8063  * Decode an instruction for emulation.  The caller is responsible for handling
8064  * code breakpoints.  Note, manually detecting code breakpoints is unnecessary
8065  * (and wrong) when emulating on an intercepted fault-like exception[*], as
8066  * code breakpoints have higher priority and thus have already been done by
8067  * hardware.
8068  *
8069  * [*] Except #MC, which is higher priority, but KVM should never emulate in
8070  *     response to a machine check.
8071  */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8072 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8073 				    void *insn, int insn_len)
8074 {
8075 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8076 	int r;
8077 
8078 	init_emulate_ctxt(vcpu);
8079 
8080 	r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8081 
8082 	trace_kvm_emulate_insn_start(vcpu);
8083 	++vcpu->stat.insn_emulation;
8084 
8085 	return r;
8086 }
8087 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8088 
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8089 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8090 			    int emulation_type, void *insn, int insn_len)
8091 {
8092 	int r;
8093 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8094 	bool writeback = true;
8095 	bool write_fault_to_spt;
8096 
8097 	if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8098 		return 1;
8099 
8100 	vcpu->arch.l1tf_flush_l1d = true;
8101 
8102 	/*
8103 	 * Clear write_fault_to_shadow_pgtable here to ensure it is
8104 	 * never reused.
8105 	 */
8106 	write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8107 	vcpu->arch.write_fault_to_shadow_pgtable = false;
8108 
8109 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8110 		kvm_clear_exception_queue(vcpu);
8111 
8112 		/*
8113 		 * Return immediately if RIP hits a code breakpoint, such #DBs
8114 		 * are fault-like and are higher priority than any faults on
8115 		 * the code fetch itself.
8116 		 */
8117 		if (!(emulation_type & EMULTYPE_SKIP) &&
8118 		    kvm_vcpu_check_code_breakpoint(vcpu, &r))
8119 			return r;
8120 
8121 		r = x86_decode_emulated_instruction(vcpu, emulation_type,
8122 						    insn, insn_len);
8123 		if (r != EMULATION_OK)  {
8124 			if ((emulation_type & EMULTYPE_TRAP_UD) ||
8125 			    (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8126 				kvm_queue_exception(vcpu, UD_VECTOR);
8127 				return 1;
8128 			}
8129 			if (reexecute_instruction(vcpu, cr2_or_gpa,
8130 						  write_fault_to_spt,
8131 						  emulation_type))
8132 				return 1;
8133 
8134 			if (ctxt->have_exception &&
8135 			    !(emulation_type & EMULTYPE_SKIP)) {
8136 				/*
8137 				 * #UD should result in just EMULATION_FAILED, and trap-like
8138 				 * exception should not be encountered during decode.
8139 				 */
8140 				WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8141 					     exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8142 				inject_emulated_exception(vcpu);
8143 				return 1;
8144 			}
8145 			return handle_emulation_failure(vcpu, emulation_type);
8146 		}
8147 	}
8148 
8149 	if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8150 	    !is_vmware_backdoor_opcode(ctxt)) {
8151 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8152 		return 1;
8153 	}
8154 
8155 	/*
8156 	 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
8157 	 * for kvm_skip_emulated_instruction().  The caller is responsible for
8158 	 * updating interruptibility state and injecting single-step #DBs.
8159 	 */
8160 	if (emulation_type & EMULTYPE_SKIP) {
8161 		if (ctxt->mode != X86EMUL_MODE_PROT64)
8162 			ctxt->eip = (u32)ctxt->_eip;
8163 		else
8164 			ctxt->eip = ctxt->_eip;
8165 
8166 		kvm_rip_write(vcpu, ctxt->eip);
8167 		if (ctxt->eflags & X86_EFLAGS_RF)
8168 			kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8169 		return 1;
8170 	}
8171 
8172 	if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8173 		return 1;
8174 
8175 	/* this is needed for vmware backdoor interface to work since it
8176 	   changes registers values  during IO operation */
8177 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8178 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8179 		emulator_invalidate_register_cache(ctxt);
8180 	}
8181 
8182 restart:
8183 	if (emulation_type & EMULTYPE_PF) {
8184 		/* Save the faulting GPA (cr2) in the address field */
8185 		ctxt->exception.address = cr2_or_gpa;
8186 
8187 		/* With shadow page tables, cr2 contains a GVA or nGPA. */
8188 		if (vcpu->arch.mmu->direct_map) {
8189 			ctxt->gpa_available = true;
8190 			ctxt->gpa_val = cr2_or_gpa;
8191 		}
8192 	} else {
8193 		/* Sanitize the address out of an abundance of paranoia. */
8194 		ctxt->exception.address = 0;
8195 	}
8196 
8197 	r = x86_emulate_insn(ctxt);
8198 
8199 	if (r == EMULATION_INTERCEPTED)
8200 		return 1;
8201 
8202 	if (r == EMULATION_FAILED) {
8203 		if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8204 					emulation_type))
8205 			return 1;
8206 
8207 		return handle_emulation_failure(vcpu, emulation_type);
8208 	}
8209 
8210 	if (ctxt->have_exception) {
8211 		r = 1;
8212 		if (inject_emulated_exception(vcpu))
8213 			return r;
8214 	} else if (vcpu->arch.pio.count) {
8215 		if (!vcpu->arch.pio.in) {
8216 			/* FIXME: return into emulator if single-stepping.  */
8217 			vcpu->arch.pio.count = 0;
8218 		} else {
8219 			writeback = false;
8220 			vcpu->arch.complete_userspace_io = complete_emulated_pio;
8221 		}
8222 		r = 0;
8223 	} else if (vcpu->mmio_needed) {
8224 		++vcpu->stat.mmio_exits;
8225 
8226 		if (!vcpu->mmio_is_write)
8227 			writeback = false;
8228 		r = 0;
8229 		vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8230 	} else if (vcpu->arch.complete_userspace_io) {
8231 		writeback = false;
8232 		r = 0;
8233 	} else if (r == EMULATION_RESTART)
8234 		goto restart;
8235 	else
8236 		r = 1;
8237 
8238 	if (writeback) {
8239 		unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8240 		toggle_interruptibility(vcpu, ctxt->interruptibility);
8241 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8242 
8243 		/*
8244 		 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8245 		 * only supports code breakpoints and general detect #DB, both
8246 		 * of which are fault-like.
8247 		 */
8248 		if (!ctxt->have_exception ||
8249 		    exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8250 			kvm_rip_write(vcpu, ctxt->eip);
8251 			if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8252 				r = kvm_vcpu_do_singlestep(vcpu);
8253 			if (kvm_x86_ops.update_emulated_instruction)
8254 				static_call(kvm_x86_update_emulated_instruction)(vcpu);
8255 			__kvm_set_rflags(vcpu, ctxt->eflags);
8256 		}
8257 
8258 		/*
8259 		 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8260 		 * do nothing, and it will be requested again as soon as
8261 		 * the shadow expires.  But we still need to check here,
8262 		 * because POPF has no interrupt shadow.
8263 		 */
8264 		if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8265 			kvm_make_request(KVM_REQ_EVENT, vcpu);
8266 	} else
8267 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8268 
8269 	return r;
8270 }
8271 
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)8272 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8273 {
8274 	return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8275 }
8276 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8277 
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)8278 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8279 					void *insn, int insn_len)
8280 {
8281 	return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8282 }
8283 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8284 
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)8285 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8286 {
8287 	vcpu->arch.pio.count = 0;
8288 	return 1;
8289 }
8290 
complete_fast_pio_out(struct kvm_vcpu * vcpu)8291 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8292 {
8293 	vcpu->arch.pio.count = 0;
8294 
8295 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8296 		return 1;
8297 
8298 	return kvm_skip_emulated_instruction(vcpu);
8299 }
8300 
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)8301 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8302 			    unsigned short port)
8303 {
8304 	unsigned long val = kvm_rax_read(vcpu);
8305 	int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8306 
8307 	if (ret)
8308 		return ret;
8309 
8310 	/*
8311 	 * Workaround userspace that relies on old KVM behavior of %rip being
8312 	 * incremented prior to exiting to userspace to handle "OUT 0x7e".
8313 	 */
8314 	if (port == 0x7e &&
8315 	    kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8316 		vcpu->arch.complete_userspace_io =
8317 			complete_fast_pio_out_port_0x7e;
8318 		kvm_skip_emulated_instruction(vcpu);
8319 	} else {
8320 		vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8321 		vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8322 	}
8323 	return 0;
8324 }
8325 
complete_fast_pio_in(struct kvm_vcpu * vcpu)8326 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8327 {
8328 	unsigned long val;
8329 
8330 	/* We should only ever be called with arch.pio.count equal to 1 */
8331 	BUG_ON(vcpu->arch.pio.count != 1);
8332 
8333 	if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8334 		vcpu->arch.pio.count = 0;
8335 		return 1;
8336 	}
8337 
8338 	/* For size less than 4 we merge, else we zero extend */
8339 	val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8340 
8341 	/*
8342 	 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8343 	 * the copy and tracing
8344 	 */
8345 	emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8346 	kvm_rax_write(vcpu, val);
8347 
8348 	return kvm_skip_emulated_instruction(vcpu);
8349 }
8350 
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)8351 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8352 			   unsigned short port)
8353 {
8354 	unsigned long val;
8355 	int ret;
8356 
8357 	/* For size less than 4 we merge, else we zero extend */
8358 	val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8359 
8360 	ret = emulator_pio_in(vcpu, size, port, &val, 1);
8361 	if (ret) {
8362 		kvm_rax_write(vcpu, val);
8363 		return ret;
8364 	}
8365 
8366 	vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8367 	vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8368 
8369 	return 0;
8370 }
8371 
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)8372 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8373 {
8374 	int ret;
8375 
8376 	if (in)
8377 		ret = kvm_fast_pio_in(vcpu, size, port);
8378 	else
8379 		ret = kvm_fast_pio_out(vcpu, size, port);
8380 	return ret && kvm_skip_emulated_instruction(vcpu);
8381 }
8382 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8383 
kvmclock_cpu_down_prep(unsigned int cpu)8384 static int kvmclock_cpu_down_prep(unsigned int cpu)
8385 {
8386 	__this_cpu_write(cpu_tsc_khz, 0);
8387 	return 0;
8388 }
8389 
tsc_khz_changed(void * data)8390 static void tsc_khz_changed(void *data)
8391 {
8392 	struct cpufreq_freqs *freq = data;
8393 	unsigned long khz = 0;
8394 
8395 	if (data)
8396 		khz = freq->new;
8397 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8398 		khz = cpufreq_quick_get(raw_smp_processor_id());
8399 	if (!khz)
8400 		khz = tsc_khz;
8401 	__this_cpu_write(cpu_tsc_khz, khz);
8402 }
8403 
8404 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)8405 static void kvm_hyperv_tsc_notifier(void)
8406 {
8407 	struct kvm *kvm;
8408 	struct kvm_vcpu *vcpu;
8409 	int cpu;
8410 	unsigned long flags;
8411 
8412 	mutex_lock(&kvm_lock);
8413 	list_for_each_entry(kvm, &vm_list, vm_list)
8414 		kvm_make_mclock_inprogress_request(kvm);
8415 
8416 	hyperv_stop_tsc_emulation();
8417 
8418 	/* TSC frequency always matches when on Hyper-V */
8419 	for_each_present_cpu(cpu)
8420 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8421 	kvm_max_guest_tsc_khz = tsc_khz;
8422 
8423 	list_for_each_entry(kvm, &vm_list, vm_list) {
8424 		struct kvm_arch *ka = &kvm->arch;
8425 
8426 		raw_spin_lock_irqsave(&ka->pvclock_gtod_sync_lock, flags);
8427 		pvclock_update_vm_gtod_copy(kvm);
8428 		raw_spin_unlock_irqrestore(&ka->pvclock_gtod_sync_lock, flags);
8429 
8430 		kvm_for_each_vcpu(cpu, vcpu, kvm)
8431 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8432 
8433 		kvm_for_each_vcpu(cpu, vcpu, kvm)
8434 			kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
8435 	}
8436 	mutex_unlock(&kvm_lock);
8437 }
8438 #endif
8439 
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)8440 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8441 {
8442 	struct kvm *kvm;
8443 	struct kvm_vcpu *vcpu;
8444 	int i, send_ipi = 0;
8445 
8446 	/*
8447 	 * We allow guests to temporarily run on slowing clocks,
8448 	 * provided we notify them after, or to run on accelerating
8449 	 * clocks, provided we notify them before.  Thus time never
8450 	 * goes backwards.
8451 	 *
8452 	 * However, we have a problem.  We can't atomically update
8453 	 * the frequency of a given CPU from this function; it is
8454 	 * merely a notifier, which can be called from any CPU.
8455 	 * Changing the TSC frequency at arbitrary points in time
8456 	 * requires a recomputation of local variables related to
8457 	 * the TSC for each VCPU.  We must flag these local variables
8458 	 * to be updated and be sure the update takes place with the
8459 	 * new frequency before any guests proceed.
8460 	 *
8461 	 * Unfortunately, the combination of hotplug CPU and frequency
8462 	 * change creates an intractable locking scenario; the order
8463 	 * of when these callouts happen is undefined with respect to
8464 	 * CPU hotplug, and they can race with each other.  As such,
8465 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8466 	 * undefined; you can actually have a CPU frequency change take
8467 	 * place in between the computation of X and the setting of the
8468 	 * variable.  To protect against this problem, all updates of
8469 	 * the per_cpu tsc_khz variable are done in an interrupt
8470 	 * protected IPI, and all callers wishing to update the value
8471 	 * must wait for a synchronous IPI to complete (which is trivial
8472 	 * if the caller is on the CPU already).  This establishes the
8473 	 * necessary total order on variable updates.
8474 	 *
8475 	 * Note that because a guest time update may take place
8476 	 * anytime after the setting of the VCPU's request bit, the
8477 	 * correct TSC value must be set before the request.  However,
8478 	 * to ensure the update actually makes it to any guest which
8479 	 * starts running in hardware virtualization between the set
8480 	 * and the acquisition of the spinlock, we must also ping the
8481 	 * CPU after setting the request bit.
8482 	 *
8483 	 */
8484 
8485 	smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8486 
8487 	mutex_lock(&kvm_lock);
8488 	list_for_each_entry(kvm, &vm_list, vm_list) {
8489 		kvm_for_each_vcpu(i, vcpu, kvm) {
8490 			if (vcpu->cpu != cpu)
8491 				continue;
8492 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8493 			if (vcpu->cpu != raw_smp_processor_id())
8494 				send_ipi = 1;
8495 		}
8496 	}
8497 	mutex_unlock(&kvm_lock);
8498 
8499 	if (freq->old < freq->new && send_ipi) {
8500 		/*
8501 		 * We upscale the frequency.  Must make the guest
8502 		 * doesn't see old kvmclock values while running with
8503 		 * the new frequency, otherwise we risk the guest sees
8504 		 * time go backwards.
8505 		 *
8506 		 * In case we update the frequency for another cpu
8507 		 * (which might be in guest context) send an interrupt
8508 		 * to kick the cpu out of guest context.  Next time
8509 		 * guest context is entered kvmclock will be updated,
8510 		 * so the guest will not see stale values.
8511 		 */
8512 		smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8513 	}
8514 }
8515 
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)8516 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8517 				     void *data)
8518 {
8519 	struct cpufreq_freqs *freq = data;
8520 	int cpu;
8521 
8522 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8523 		return 0;
8524 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8525 		return 0;
8526 
8527 	for_each_cpu(cpu, freq->policy->cpus)
8528 		__kvmclock_cpufreq_notifier(freq, cpu);
8529 
8530 	return 0;
8531 }
8532 
8533 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8534 	.notifier_call  = kvmclock_cpufreq_notifier
8535 };
8536 
kvmclock_cpu_online(unsigned int cpu)8537 static int kvmclock_cpu_online(unsigned int cpu)
8538 {
8539 	tsc_khz_changed(NULL);
8540 	return 0;
8541 }
8542 
kvm_timer_init(void)8543 static void kvm_timer_init(void)
8544 {
8545 	max_tsc_khz = tsc_khz;
8546 
8547 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8548 #ifdef CONFIG_CPU_FREQ
8549 		struct cpufreq_policy *policy;
8550 		int cpu;
8551 
8552 		cpu = get_cpu();
8553 		policy = cpufreq_cpu_get(cpu);
8554 		if (policy) {
8555 			if (policy->cpuinfo.max_freq)
8556 				max_tsc_khz = policy->cpuinfo.max_freq;
8557 			cpufreq_cpu_put(policy);
8558 		}
8559 		put_cpu();
8560 #endif
8561 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8562 					  CPUFREQ_TRANSITION_NOTIFIER);
8563 	}
8564 
8565 	cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8566 			  kvmclock_cpu_online, kvmclock_cpu_down_prep);
8567 }
8568 
8569 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8570 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8571 
kvm_is_in_guest(void)8572 int kvm_is_in_guest(void)
8573 {
8574 	return __this_cpu_read(current_vcpu) != NULL;
8575 }
8576 
kvm_is_user_mode(void)8577 static int kvm_is_user_mode(void)
8578 {
8579 	int user_mode = 3;
8580 
8581 	if (__this_cpu_read(current_vcpu))
8582 		user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8583 
8584 	return user_mode != 0;
8585 }
8586 
kvm_get_guest_ip(void)8587 static unsigned long kvm_get_guest_ip(void)
8588 {
8589 	unsigned long ip = 0;
8590 
8591 	if (__this_cpu_read(current_vcpu))
8592 		ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8593 
8594 	return ip;
8595 }
8596 
kvm_handle_intel_pt_intr(void)8597 static void kvm_handle_intel_pt_intr(void)
8598 {
8599 	struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8600 
8601 	kvm_make_request(KVM_REQ_PMI, vcpu);
8602 	__set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8603 			(unsigned long *)&vcpu->arch.pmu.global_status);
8604 }
8605 
8606 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8607 	.is_in_guest		= kvm_is_in_guest,
8608 	.is_user_mode		= kvm_is_user_mode,
8609 	.get_guest_ip		= kvm_get_guest_ip,
8610 	.handle_intel_pt_intr	= NULL,
8611 };
8612 
8613 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)8614 static void pvclock_gtod_update_fn(struct work_struct *work)
8615 {
8616 	struct kvm *kvm;
8617 
8618 	struct kvm_vcpu *vcpu;
8619 	int i;
8620 
8621 	mutex_lock(&kvm_lock);
8622 	list_for_each_entry(kvm, &vm_list, vm_list)
8623 		kvm_for_each_vcpu(i, vcpu, kvm)
8624 			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8625 	atomic_set(&kvm_guest_has_master_clock, 0);
8626 	mutex_unlock(&kvm_lock);
8627 }
8628 
8629 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8630 
8631 /*
8632  * Indirection to move queue_work() out of the tk_core.seq write held
8633  * region to prevent possible deadlocks against time accessors which
8634  * are invoked with work related locks held.
8635  */
pvclock_irq_work_fn(struct irq_work * w)8636 static void pvclock_irq_work_fn(struct irq_work *w)
8637 {
8638 	queue_work(system_long_wq, &pvclock_gtod_work);
8639 }
8640 
8641 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8642 
8643 /*
8644  * Notification about pvclock gtod data update.
8645  */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)8646 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8647 			       void *priv)
8648 {
8649 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8650 	struct timekeeper *tk = priv;
8651 
8652 	update_pvclock_gtod(tk);
8653 
8654 	/*
8655 	 * Disable master clock if host does not trust, or does not use,
8656 	 * TSC based clocksource. Delegate queue_work() to irq_work as
8657 	 * this is invoked with tk_core.seq write held.
8658 	 */
8659 	if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8660 	    atomic_read(&kvm_guest_has_master_clock) != 0)
8661 		irq_work_queue(&pvclock_irq_work);
8662 	return 0;
8663 }
8664 
8665 static struct notifier_block pvclock_gtod_notifier = {
8666 	.notifier_call = pvclock_gtod_notify,
8667 };
8668 #endif
8669 
kvm_arch_init(void * opaque)8670 int kvm_arch_init(void *opaque)
8671 {
8672 	struct kvm_x86_init_ops *ops = opaque;
8673 	int r;
8674 
8675 	if (kvm_x86_ops.hardware_enable) {
8676 		printk(KERN_ERR "kvm: already loaded the other module\n");
8677 		r = -EEXIST;
8678 		goto out;
8679 	}
8680 
8681 	if (!ops->cpu_has_kvm_support()) {
8682 		pr_err_ratelimited("kvm: no hardware support\n");
8683 		r = -EOPNOTSUPP;
8684 		goto out;
8685 	}
8686 	if (ops->disabled_by_bios()) {
8687 		pr_err_ratelimited("kvm: disabled by bios\n");
8688 		r = -EOPNOTSUPP;
8689 		goto out;
8690 	}
8691 
8692 	/*
8693 	 * KVM explicitly assumes that the guest has an FPU and
8694 	 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8695 	 * vCPU's FPU state as a fxregs_state struct.
8696 	 */
8697 	if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8698 		printk(KERN_ERR "kvm: inadequate fpu\n");
8699 		r = -EOPNOTSUPP;
8700 		goto out;
8701 	}
8702 
8703 	r = -ENOMEM;
8704 	x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
8705 					  __alignof__(struct fpu), SLAB_ACCOUNT,
8706 					  NULL);
8707 	if (!x86_fpu_cache) {
8708 		printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
8709 		goto out;
8710 	}
8711 
8712 	x86_emulator_cache = kvm_alloc_emulator_cache();
8713 	if (!x86_emulator_cache) {
8714 		pr_err("kvm: failed to allocate cache for x86 emulator\n");
8715 		goto out_free_x86_fpu_cache;
8716 	}
8717 
8718 	user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8719 	if (!user_return_msrs) {
8720 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8721 		goto out_free_x86_emulator_cache;
8722 	}
8723 	kvm_nr_uret_msrs = 0;
8724 
8725 	r = kvm_mmu_vendor_module_init();
8726 	if (r)
8727 		goto out_free_percpu;
8728 
8729 	kvm_timer_init();
8730 
8731 	if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8732 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8733 		supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8734 	}
8735 
8736 	if (pi_inject_timer == -1)
8737 		pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8738 #ifdef CONFIG_X86_64
8739 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8740 
8741 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8742 		set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8743 #endif
8744 
8745 	return 0;
8746 
8747 out_free_percpu:
8748 	free_percpu(user_return_msrs);
8749 out_free_x86_emulator_cache:
8750 	kmem_cache_destroy(x86_emulator_cache);
8751 out_free_x86_fpu_cache:
8752 	kmem_cache_destroy(x86_fpu_cache);
8753 out:
8754 	return r;
8755 }
8756 
kvm_arch_exit(void)8757 void kvm_arch_exit(void)
8758 {
8759 #ifdef CONFIG_X86_64
8760 	if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8761 		clear_hv_tscchange_cb();
8762 #endif
8763 	kvm_lapic_exit();
8764 
8765 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8766 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8767 					    CPUFREQ_TRANSITION_NOTIFIER);
8768 	cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8769 #ifdef CONFIG_X86_64
8770 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8771 	irq_work_sync(&pvclock_irq_work);
8772 	cancel_work_sync(&pvclock_gtod_work);
8773 #endif
8774 	kvm_x86_ops.hardware_enable = NULL;
8775 	kvm_mmu_vendor_module_exit();
8776 	free_percpu(user_return_msrs);
8777 	kmem_cache_destroy(x86_emulator_cache);
8778 	kmem_cache_destroy(x86_fpu_cache);
8779 #ifdef CONFIG_KVM_XEN
8780 	static_key_deferred_flush(&kvm_xen_enabled);
8781 	WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8782 #endif
8783 }
8784 
__kvm_vcpu_halt(struct kvm_vcpu * vcpu,int state,int reason)8785 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8786 {
8787 	++vcpu->stat.halt_exits;
8788 	if (lapic_in_kernel(vcpu)) {
8789 		vcpu->arch.mp_state = state;
8790 		return 1;
8791 	} else {
8792 		vcpu->run->exit_reason = reason;
8793 		return 0;
8794 	}
8795 }
8796 
kvm_vcpu_halt(struct kvm_vcpu * vcpu)8797 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8798 {
8799 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8800 }
8801 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8802 
kvm_emulate_halt(struct kvm_vcpu * vcpu)8803 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8804 {
8805 	int ret = kvm_skip_emulated_instruction(vcpu);
8806 	/*
8807 	 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8808 	 * KVM_EXIT_DEBUG here.
8809 	 */
8810 	return kvm_vcpu_halt(vcpu) && ret;
8811 }
8812 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8813 
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)8814 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8815 {
8816 	int ret = kvm_skip_emulated_instruction(vcpu);
8817 
8818 	return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8819 }
8820 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8821 
8822 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)8823 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8824 			        unsigned long clock_type)
8825 {
8826 	struct kvm_clock_pairing clock_pairing;
8827 	struct timespec64 ts;
8828 	u64 cycle;
8829 	int ret;
8830 
8831 	if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8832 		return -KVM_EOPNOTSUPP;
8833 
8834 	/*
8835 	 * When tsc is in permanent catchup mode guests won't be able to use
8836 	 * pvclock_read_retry loop to get consistent view of pvclock
8837 	 */
8838 	if (vcpu->arch.tsc_always_catchup)
8839 		return -KVM_EOPNOTSUPP;
8840 
8841 	if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8842 		return -KVM_EOPNOTSUPP;
8843 
8844 	clock_pairing.sec = ts.tv_sec;
8845 	clock_pairing.nsec = ts.tv_nsec;
8846 	clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8847 	clock_pairing.flags = 0;
8848 	memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8849 
8850 	ret = 0;
8851 	if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8852 			    sizeof(struct kvm_clock_pairing)))
8853 		ret = -KVM_EFAULT;
8854 
8855 	return ret;
8856 }
8857 #endif
8858 
8859 /*
8860  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8861  *
8862  * @apicid - apicid of vcpu to be kicked.
8863  */
kvm_pv_kick_cpu_op(struct kvm * kvm,unsigned long flags,int apicid)8864 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8865 {
8866 	/*
8867 	 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
8868 	 * common code, e.g. for tracing. Defer initialization to the compiler.
8869 	 */
8870 	struct kvm_lapic_irq lapic_irq = {
8871 		.delivery_mode = APIC_DM_REMRD,
8872 		.dest_mode = APIC_DEST_PHYSICAL,
8873 		.shorthand = APIC_DEST_NOSHORT,
8874 		.dest_id = apicid,
8875 	};
8876 
8877 	kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8878 }
8879 
kvm_apicv_activated(struct kvm * kvm)8880 bool kvm_apicv_activated(struct kvm *kvm)
8881 {
8882 	return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8883 }
8884 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8885 
kvm_apicv_init(struct kvm * kvm)8886 static void kvm_apicv_init(struct kvm *kvm)
8887 {
8888 	mutex_init(&kvm->arch.apicv_update_lock);
8889 
8890 	if (enable_apicv)
8891 		clear_bit(APICV_INHIBIT_REASON_DISABLE,
8892 			  &kvm->arch.apicv_inhibit_reasons);
8893 	else
8894 		set_bit(APICV_INHIBIT_REASON_DISABLE,
8895 			&kvm->arch.apicv_inhibit_reasons);
8896 }
8897 
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)8898 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8899 {
8900 	struct kvm_vcpu *target = NULL;
8901 	struct kvm_apic_map *map;
8902 
8903 	vcpu->stat.directed_yield_attempted++;
8904 
8905 	if (single_task_running())
8906 		goto no_yield;
8907 
8908 	rcu_read_lock();
8909 	map = rcu_dereference(vcpu->kvm->arch.apic_map);
8910 
8911 	if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8912 		target = map->phys_map[dest_id]->vcpu;
8913 
8914 	rcu_read_unlock();
8915 
8916 	if (!target || !READ_ONCE(target->ready))
8917 		goto no_yield;
8918 
8919 	/* Ignore requests to yield to self */
8920 	if (vcpu == target)
8921 		goto no_yield;
8922 
8923 	if (kvm_vcpu_yield_to(target) <= 0)
8924 		goto no_yield;
8925 
8926 	vcpu->stat.directed_yield_successful++;
8927 
8928 no_yield:
8929 	return;
8930 }
8931 
complete_hypercall_exit(struct kvm_vcpu * vcpu)8932 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8933 {
8934 	u64 ret = vcpu->run->hypercall.ret;
8935 
8936 	if (!is_64_bit_mode(vcpu))
8937 		ret = (u32)ret;
8938 	kvm_rax_write(vcpu, ret);
8939 	++vcpu->stat.hypercalls;
8940 	return kvm_skip_emulated_instruction(vcpu);
8941 }
8942 
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)8943 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8944 {
8945 	unsigned long nr, a0, a1, a2, a3, ret;
8946 	int op_64_bit;
8947 
8948 	if (kvm_xen_hypercall_enabled(vcpu->kvm))
8949 		return kvm_xen_hypercall(vcpu);
8950 
8951 	if (kvm_hv_hypercall_enabled(vcpu))
8952 		return kvm_hv_hypercall(vcpu);
8953 
8954 	nr = kvm_rax_read(vcpu);
8955 	a0 = kvm_rbx_read(vcpu);
8956 	a1 = kvm_rcx_read(vcpu);
8957 	a2 = kvm_rdx_read(vcpu);
8958 	a3 = kvm_rsi_read(vcpu);
8959 
8960 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
8961 
8962 	op_64_bit = is_64_bit_hypercall(vcpu);
8963 	if (!op_64_bit) {
8964 		nr &= 0xFFFFFFFF;
8965 		a0 &= 0xFFFFFFFF;
8966 		a1 &= 0xFFFFFFFF;
8967 		a2 &= 0xFFFFFFFF;
8968 		a3 &= 0xFFFFFFFF;
8969 	}
8970 
8971 	if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8972 		ret = -KVM_EPERM;
8973 		goto out;
8974 	}
8975 
8976 	ret = -KVM_ENOSYS;
8977 
8978 	switch (nr) {
8979 	case KVM_HC_VAPIC_POLL_IRQ:
8980 		ret = 0;
8981 		break;
8982 	case KVM_HC_KICK_CPU:
8983 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8984 			break;
8985 
8986 		kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8987 		kvm_sched_yield(vcpu, a1);
8988 		ret = 0;
8989 		break;
8990 #ifdef CONFIG_X86_64
8991 	case KVM_HC_CLOCK_PAIRING:
8992 		ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8993 		break;
8994 #endif
8995 	case KVM_HC_SEND_IPI:
8996 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8997 			break;
8998 
8999 		ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9000 		break;
9001 	case KVM_HC_SCHED_YIELD:
9002 		if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9003 			break;
9004 
9005 		kvm_sched_yield(vcpu, a0);
9006 		ret = 0;
9007 		break;
9008 	case KVM_HC_MAP_GPA_RANGE: {
9009 		u64 gpa = a0, npages = a1, attrs = a2;
9010 
9011 		ret = -KVM_ENOSYS;
9012 		if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9013 			break;
9014 
9015 		if (!PAGE_ALIGNED(gpa) || !npages ||
9016 		    gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9017 			ret = -KVM_EINVAL;
9018 			break;
9019 		}
9020 
9021 		vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9022 		vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9023 		vcpu->run->hypercall.args[0]  = gpa;
9024 		vcpu->run->hypercall.args[1]  = npages;
9025 		vcpu->run->hypercall.args[2]  = attrs;
9026 		vcpu->run->hypercall.longmode = op_64_bit;
9027 		vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9028 		return 0;
9029 	}
9030 	default:
9031 		ret = -KVM_ENOSYS;
9032 		break;
9033 	}
9034 out:
9035 	if (!op_64_bit)
9036 		ret = (u32)ret;
9037 	kvm_rax_write(vcpu, ret);
9038 
9039 	++vcpu->stat.hypercalls;
9040 	return kvm_skip_emulated_instruction(vcpu);
9041 }
9042 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9043 
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9044 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9045 {
9046 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9047 	char instruction[3];
9048 	unsigned long rip = kvm_rip_read(vcpu);
9049 
9050 	static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9051 
9052 	return emulator_write_emulated(ctxt, rip, instruction, 3,
9053 		&ctxt->exception);
9054 }
9055 
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9056 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9057 {
9058 	return vcpu->run->request_interrupt_window &&
9059 		likely(!pic_in_kernel(vcpu->kvm));
9060 }
9061 
post_kvm_run_save(struct kvm_vcpu * vcpu)9062 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9063 {
9064 	struct kvm_run *kvm_run = vcpu->run;
9065 
9066 	kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9067 	kvm_run->cr8 = kvm_get_cr8(vcpu);
9068 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
9069 
9070 	/*
9071 	 * The call to kvm_ready_for_interrupt_injection() may end up in
9072 	 * kvm_xen_has_interrupt() which may require the srcu lock to be
9073 	 * held, to protect against changes in the vcpu_info address.
9074 	 */
9075 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9076 	kvm_run->ready_for_interrupt_injection =
9077 		pic_in_kernel(vcpu->kvm) ||
9078 		kvm_vcpu_ready_for_interrupt_injection(vcpu);
9079 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9080 
9081 	if (is_smm(vcpu))
9082 		kvm_run->flags |= KVM_RUN_X86_SMM;
9083 }
9084 
update_cr8_intercept(struct kvm_vcpu * vcpu)9085 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9086 {
9087 	int max_irr, tpr;
9088 
9089 	if (!kvm_x86_ops.update_cr8_intercept)
9090 		return;
9091 
9092 	if (!lapic_in_kernel(vcpu))
9093 		return;
9094 
9095 	if (vcpu->arch.apicv_active)
9096 		return;
9097 
9098 	if (!vcpu->arch.apic->vapic_addr)
9099 		max_irr = kvm_lapic_find_highest_irr(vcpu);
9100 	else
9101 		max_irr = -1;
9102 
9103 	if (max_irr != -1)
9104 		max_irr >>= 4;
9105 
9106 	tpr = kvm_lapic_get_cr8(vcpu);
9107 
9108 	static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9109 }
9110 
9111 
kvm_check_nested_events(struct kvm_vcpu * vcpu)9112 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9113 {
9114 	if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9115 		kvm_x86_ops.nested_ops->triple_fault(vcpu);
9116 		return 1;
9117 	}
9118 
9119 	return kvm_x86_ops.nested_ops->check_events(vcpu);
9120 }
9121 
kvm_inject_exception(struct kvm_vcpu * vcpu)9122 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9123 {
9124 	trace_kvm_inj_exception(vcpu->arch.exception.nr,
9125 				vcpu->arch.exception.has_error_code,
9126 				vcpu->arch.exception.error_code,
9127 				vcpu->arch.exception.injected);
9128 
9129 	if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9130 		vcpu->arch.exception.error_code = false;
9131 	static_call(kvm_x86_queue_exception)(vcpu);
9132 }
9133 
inject_pending_event(struct kvm_vcpu * vcpu,bool * req_immediate_exit)9134 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9135 {
9136 	int r;
9137 	bool can_inject = true;
9138 
9139 	/* try to reinject previous events if any */
9140 
9141 	if (vcpu->arch.exception.injected) {
9142 		kvm_inject_exception(vcpu);
9143 		can_inject = false;
9144 	}
9145 	/*
9146 	 * Do not inject an NMI or interrupt if there is a pending
9147 	 * exception.  Exceptions and interrupts are recognized at
9148 	 * instruction boundaries, i.e. the start of an instruction.
9149 	 * Trap-like exceptions, e.g. #DB, have higher priority than
9150 	 * NMIs and interrupts, i.e. traps are recognized before an
9151 	 * NMI/interrupt that's pending on the same instruction.
9152 	 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9153 	 * priority, but are only generated (pended) during instruction
9154 	 * execution, i.e. a pending fault-like exception means the
9155 	 * fault occurred on the *previous* instruction and must be
9156 	 * serviced prior to recognizing any new events in order to
9157 	 * fully complete the previous instruction.
9158 	 */
9159 	else if (!vcpu->arch.exception.pending) {
9160 		if (vcpu->arch.nmi_injected) {
9161 			static_call(kvm_x86_set_nmi)(vcpu);
9162 			can_inject = false;
9163 		} else if (vcpu->arch.interrupt.injected) {
9164 			static_call(kvm_x86_set_irq)(vcpu);
9165 			can_inject = false;
9166 		}
9167 	}
9168 
9169 	WARN_ON_ONCE(vcpu->arch.exception.injected &&
9170 		     vcpu->arch.exception.pending);
9171 
9172 	/*
9173 	 * Call check_nested_events() even if we reinjected a previous event
9174 	 * in order for caller to determine if it should require immediate-exit
9175 	 * from L2 to L1 due to pending L1 events which require exit
9176 	 * from L2 to L1.
9177 	 */
9178 	if (is_guest_mode(vcpu)) {
9179 		r = kvm_check_nested_events(vcpu);
9180 		if (r < 0)
9181 			goto out;
9182 	}
9183 
9184 	/* try to inject new event if pending */
9185 	if (vcpu->arch.exception.pending) {
9186 		/*
9187 		 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9188 		 * value pushed on the stack.  Trap-like exception and all #DBs
9189 		 * leave RF as-is (KVM follows Intel's behavior in this regard;
9190 		 * AMD states that code breakpoint #DBs excplitly clear RF=0).
9191 		 *
9192 		 * Note, most versions of Intel's SDM and AMD's APM incorrectly
9193 		 * describe the behavior of General Detect #DBs, which are
9194 		 * fault-like.  They do _not_ set RF, a la code breakpoints.
9195 		 */
9196 		if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9197 			__kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9198 					     X86_EFLAGS_RF);
9199 
9200 		if (vcpu->arch.exception.nr == DB_VECTOR) {
9201 			kvm_deliver_exception_payload(vcpu);
9202 			if (vcpu->arch.dr7 & DR7_GD) {
9203 				vcpu->arch.dr7 &= ~DR7_GD;
9204 				kvm_update_dr7(vcpu);
9205 			}
9206 		}
9207 
9208 		kvm_inject_exception(vcpu);
9209 
9210 		vcpu->arch.exception.pending = false;
9211 		vcpu->arch.exception.injected = true;
9212 
9213 		can_inject = false;
9214 	}
9215 
9216 	/* Don't inject interrupts if the user asked to avoid doing so */
9217 	if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9218 		return 0;
9219 
9220 	/*
9221 	 * Finally, inject interrupt events.  If an event cannot be injected
9222 	 * due to architectural conditions (e.g. IF=0) a window-open exit
9223 	 * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9224 	 * and can architecturally be injected, but we cannot do it right now:
9225 	 * an interrupt could have arrived just now and we have to inject it
9226 	 * as a vmexit, or there could already an event in the queue, which is
9227 	 * indicated by can_inject.  In that case we request an immediate exit
9228 	 * in order to make progress and get back here for another iteration.
9229 	 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9230 	 */
9231 	if (vcpu->arch.smi_pending) {
9232 		r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9233 		if (r < 0)
9234 			goto out;
9235 		if (r) {
9236 			vcpu->arch.smi_pending = false;
9237 			++vcpu->arch.smi_count;
9238 			enter_smm(vcpu);
9239 			can_inject = false;
9240 		} else
9241 			static_call(kvm_x86_enable_smi_window)(vcpu);
9242 	}
9243 
9244 	if (vcpu->arch.nmi_pending) {
9245 		r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9246 		if (r < 0)
9247 			goto out;
9248 		if (r) {
9249 			--vcpu->arch.nmi_pending;
9250 			vcpu->arch.nmi_injected = true;
9251 			static_call(kvm_x86_set_nmi)(vcpu);
9252 			can_inject = false;
9253 			WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9254 		}
9255 		if (vcpu->arch.nmi_pending)
9256 			static_call(kvm_x86_enable_nmi_window)(vcpu);
9257 	}
9258 
9259 	if (kvm_cpu_has_injectable_intr(vcpu)) {
9260 		r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9261 		if (r < 0)
9262 			goto out;
9263 		if (r) {
9264 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9265 			static_call(kvm_x86_set_irq)(vcpu);
9266 			WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9267 		}
9268 		if (kvm_cpu_has_injectable_intr(vcpu))
9269 			static_call(kvm_x86_enable_irq_window)(vcpu);
9270 	}
9271 
9272 	if (is_guest_mode(vcpu) &&
9273 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
9274 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9275 		*req_immediate_exit = true;
9276 
9277 	WARN_ON(vcpu->arch.exception.pending);
9278 	return 0;
9279 
9280 out:
9281 	if (r == -EBUSY) {
9282 		*req_immediate_exit = true;
9283 		r = 0;
9284 	}
9285 	return r;
9286 }
9287 
process_nmi(struct kvm_vcpu * vcpu)9288 static void process_nmi(struct kvm_vcpu *vcpu)
9289 {
9290 	unsigned limit = 2;
9291 
9292 	/*
9293 	 * x86 is limited to one NMI running, and one NMI pending after it.
9294 	 * If an NMI is already in progress, limit further NMIs to just one.
9295 	 * Otherwise, allow two (and we'll inject the first one immediately).
9296 	 */
9297 	if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9298 		limit = 1;
9299 
9300 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9301 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9302 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9303 }
9304 
enter_smm_get_segment_flags(struct kvm_segment * seg)9305 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9306 {
9307 	u32 flags = 0;
9308 	flags |= seg->g       << 23;
9309 	flags |= seg->db      << 22;
9310 	flags |= seg->l       << 21;
9311 	flags |= seg->avl     << 20;
9312 	flags |= seg->present << 15;
9313 	flags |= seg->dpl     << 13;
9314 	flags |= seg->s       << 12;
9315 	flags |= seg->type    << 8;
9316 	return flags;
9317 }
9318 
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)9319 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9320 {
9321 	struct kvm_segment seg;
9322 	int offset;
9323 
9324 	kvm_get_segment(vcpu, &seg, n);
9325 	put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9326 
9327 	if (n < 3)
9328 		offset = 0x7f84 + n * 12;
9329 	else
9330 		offset = 0x7f2c + (n - 3) * 12;
9331 
9332 	put_smstate(u32, buf, offset + 8, seg.base);
9333 	put_smstate(u32, buf, offset + 4, seg.limit);
9334 	put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9335 }
9336 
9337 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)9338 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9339 {
9340 	struct kvm_segment seg;
9341 	int offset;
9342 	u16 flags;
9343 
9344 	kvm_get_segment(vcpu, &seg, n);
9345 	offset = 0x7e00 + n * 16;
9346 
9347 	flags = enter_smm_get_segment_flags(&seg) >> 8;
9348 	put_smstate(u16, buf, offset, seg.selector);
9349 	put_smstate(u16, buf, offset + 2, flags);
9350 	put_smstate(u32, buf, offset + 4, seg.limit);
9351 	put_smstate(u64, buf, offset + 8, seg.base);
9352 }
9353 #endif
9354 
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)9355 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9356 {
9357 	struct desc_ptr dt;
9358 	struct kvm_segment seg;
9359 	unsigned long val;
9360 	int i;
9361 
9362 	put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9363 	put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9364 	put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9365 	put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9366 
9367 	for (i = 0; i < 8; i++)
9368 		put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9369 
9370 	kvm_get_dr(vcpu, 6, &val);
9371 	put_smstate(u32, buf, 0x7fcc, (u32)val);
9372 	kvm_get_dr(vcpu, 7, &val);
9373 	put_smstate(u32, buf, 0x7fc8, (u32)val);
9374 
9375 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9376 	put_smstate(u32, buf, 0x7fc4, seg.selector);
9377 	put_smstate(u32, buf, 0x7f64, seg.base);
9378 	put_smstate(u32, buf, 0x7f60, seg.limit);
9379 	put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9380 
9381 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9382 	put_smstate(u32, buf, 0x7fc0, seg.selector);
9383 	put_smstate(u32, buf, 0x7f80, seg.base);
9384 	put_smstate(u32, buf, 0x7f7c, seg.limit);
9385 	put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9386 
9387 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9388 	put_smstate(u32, buf, 0x7f74, dt.address);
9389 	put_smstate(u32, buf, 0x7f70, dt.size);
9390 
9391 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9392 	put_smstate(u32, buf, 0x7f58, dt.address);
9393 	put_smstate(u32, buf, 0x7f54, dt.size);
9394 
9395 	for (i = 0; i < 6; i++)
9396 		enter_smm_save_seg_32(vcpu, buf, i);
9397 
9398 	put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9399 
9400 	/* revision id */
9401 	put_smstate(u32, buf, 0x7efc, 0x00020000);
9402 	put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9403 }
9404 
9405 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)9406 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9407 {
9408 	struct desc_ptr dt;
9409 	struct kvm_segment seg;
9410 	unsigned long val;
9411 	int i;
9412 
9413 	for (i = 0; i < 16; i++)
9414 		put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9415 
9416 	put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9417 	put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9418 
9419 	kvm_get_dr(vcpu, 6, &val);
9420 	put_smstate(u64, buf, 0x7f68, val);
9421 	kvm_get_dr(vcpu, 7, &val);
9422 	put_smstate(u64, buf, 0x7f60, val);
9423 
9424 	put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9425 	put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9426 	put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9427 
9428 	put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9429 
9430 	/* revision id */
9431 	put_smstate(u32, buf, 0x7efc, 0x00020064);
9432 
9433 	put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9434 
9435 	kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9436 	put_smstate(u16, buf, 0x7e90, seg.selector);
9437 	put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9438 	put_smstate(u32, buf, 0x7e94, seg.limit);
9439 	put_smstate(u64, buf, 0x7e98, seg.base);
9440 
9441 	static_call(kvm_x86_get_idt)(vcpu, &dt);
9442 	put_smstate(u32, buf, 0x7e84, dt.size);
9443 	put_smstate(u64, buf, 0x7e88, dt.address);
9444 
9445 	kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9446 	put_smstate(u16, buf, 0x7e70, seg.selector);
9447 	put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9448 	put_smstate(u32, buf, 0x7e74, seg.limit);
9449 	put_smstate(u64, buf, 0x7e78, seg.base);
9450 
9451 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
9452 	put_smstate(u32, buf, 0x7e64, dt.size);
9453 	put_smstate(u64, buf, 0x7e68, dt.address);
9454 
9455 	for (i = 0; i < 6; i++)
9456 		enter_smm_save_seg_64(vcpu, buf, i);
9457 }
9458 #endif
9459 
enter_smm(struct kvm_vcpu * vcpu)9460 static void enter_smm(struct kvm_vcpu *vcpu)
9461 {
9462 	struct kvm_segment cs, ds;
9463 	struct desc_ptr dt;
9464 	unsigned long cr0;
9465 	char buf[512];
9466 
9467 	memset(buf, 0, 512);
9468 #ifdef CONFIG_X86_64
9469 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9470 		enter_smm_save_state_64(vcpu, buf);
9471 	else
9472 #endif
9473 		enter_smm_save_state_32(vcpu, buf);
9474 
9475 	/*
9476 	 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9477 	 * state (e.g. leave guest mode) after we've saved the state into the
9478 	 * SMM state-save area.
9479 	 */
9480 	static_call(kvm_x86_enter_smm)(vcpu, buf);
9481 
9482 	kvm_smm_changed(vcpu, true);
9483 	kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9484 
9485 	if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9486 		vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9487 	else
9488 		static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9489 
9490 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9491 	kvm_rip_write(vcpu, 0x8000);
9492 
9493 	cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9494 	static_call(kvm_x86_set_cr0)(vcpu, cr0);
9495 	vcpu->arch.cr0 = cr0;
9496 
9497 	static_call(kvm_x86_set_cr4)(vcpu, 0);
9498 
9499 	/* Undocumented: IDT limit is set to zero on entry to SMM.  */
9500 	dt.address = dt.size = 0;
9501 	static_call(kvm_x86_set_idt)(vcpu, &dt);
9502 
9503 	kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9504 
9505 	cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9506 	cs.base = vcpu->arch.smbase;
9507 
9508 	ds.selector = 0;
9509 	ds.base = 0;
9510 
9511 	cs.limit    = ds.limit = 0xffffffff;
9512 	cs.type     = ds.type = 0x3;
9513 	cs.dpl      = ds.dpl = 0;
9514 	cs.db       = ds.db = 0;
9515 	cs.s        = ds.s = 1;
9516 	cs.l        = ds.l = 0;
9517 	cs.g        = ds.g = 1;
9518 	cs.avl      = ds.avl = 0;
9519 	cs.present  = ds.present = 1;
9520 	cs.unusable = ds.unusable = 0;
9521 	cs.padding  = ds.padding = 0;
9522 
9523 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9524 	kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9525 	kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9526 	kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9527 	kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9528 	kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9529 
9530 #ifdef CONFIG_X86_64
9531 	if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9532 		static_call(kvm_x86_set_efer)(vcpu, 0);
9533 #endif
9534 
9535 	kvm_update_cpuid_runtime(vcpu);
9536 	kvm_mmu_reset_context(vcpu);
9537 }
9538 
process_smi(struct kvm_vcpu * vcpu)9539 static void process_smi(struct kvm_vcpu *vcpu)
9540 {
9541 	vcpu->arch.smi_pending = true;
9542 	kvm_make_request(KVM_REQ_EVENT, vcpu);
9543 }
9544 
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)9545 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9546 				       unsigned long *vcpu_bitmap)
9547 {
9548 	cpumask_var_t cpus;
9549 
9550 	zalloc_cpumask_var(&cpus, GFP_ATOMIC);
9551 
9552 	kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
9553 				    NULL, vcpu_bitmap, cpus);
9554 
9555 	free_cpumask_var(cpus);
9556 }
9557 
kvm_make_scan_ioapic_request(struct kvm * kvm)9558 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9559 {
9560 	kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9561 }
9562 
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)9563 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9564 {
9565 	bool activate;
9566 
9567 	if (!lapic_in_kernel(vcpu))
9568 		return;
9569 
9570 	mutex_lock(&vcpu->kvm->arch.apicv_update_lock);
9571 
9572 	activate = kvm_apicv_activated(vcpu->kvm);
9573 	if (vcpu->arch.apicv_active == activate)
9574 		goto out;
9575 
9576 	vcpu->arch.apicv_active = activate;
9577 	kvm_apic_update_apicv(vcpu);
9578 	static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9579 
9580 	/*
9581 	 * When APICv gets disabled, we may still have injected interrupts
9582 	 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9583 	 * still active when the interrupt got accepted. Make sure
9584 	 * inject_pending_event() is called to check for that.
9585 	 */
9586 	if (!vcpu->arch.apicv_active)
9587 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9588 
9589 out:
9590 	mutex_unlock(&vcpu->kvm->arch.apicv_update_lock);
9591 }
9592 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9593 
__kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)9594 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9595 {
9596 	unsigned long old, new;
9597 
9598 	if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9599 	    !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9600 		return;
9601 
9602 	old = new = kvm->arch.apicv_inhibit_reasons;
9603 
9604 	if (activate)
9605 		__clear_bit(bit, &new);
9606 	else
9607 		__set_bit(bit, &new);
9608 
9609 	if (!!old != !!new) {
9610 		trace_kvm_apicv_update_request(activate, bit);
9611 		kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9612 		kvm->arch.apicv_inhibit_reasons = new;
9613 		if (new) {
9614 			unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9615 			kvm_zap_gfn_range(kvm, gfn, gfn+1);
9616 		}
9617 	} else
9618 		kvm->arch.apicv_inhibit_reasons = new;
9619 }
9620 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9621 
kvm_request_apicv_update(struct kvm * kvm,bool activate,ulong bit)9622 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9623 {
9624 	mutex_lock(&kvm->arch.apicv_update_lock);
9625 	__kvm_request_apicv_update(kvm, activate, bit);
9626 	mutex_unlock(&kvm->arch.apicv_update_lock);
9627 }
9628 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9629 
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)9630 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9631 {
9632 	if (!kvm_apic_present(vcpu))
9633 		return;
9634 
9635 	bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9636 
9637 	if (irqchip_split(vcpu->kvm))
9638 		kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9639 	else {
9640 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9641 		if (ioapic_in_kernel(vcpu->kvm))
9642 			kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9643 	}
9644 
9645 	if (is_guest_mode(vcpu))
9646 		vcpu->arch.load_eoi_exitmap_pending = true;
9647 	else
9648 		kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9649 }
9650 
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)9651 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9652 {
9653 	u64 eoi_exit_bitmap[4];
9654 
9655 	if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9656 		return;
9657 
9658 	if (to_hv_vcpu(vcpu)) {
9659 		bitmap_or((ulong *)eoi_exit_bitmap,
9660 			  vcpu->arch.ioapic_handled_vectors,
9661 			  to_hv_synic(vcpu)->vec_bitmap, 256);
9662 		static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9663 		return;
9664 	}
9665 
9666 	static_call(kvm_x86_load_eoi_exitmap)(
9667 		vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9668 }
9669 
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)9670 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9671 					    unsigned long start, unsigned long end)
9672 {
9673 	unsigned long apic_address;
9674 
9675 	/*
9676 	 * The physical address of apic access page is stored in the VMCS.
9677 	 * Update it when it becomes invalid.
9678 	 */
9679 	apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9680 	if (start <= apic_address && apic_address < end)
9681 		kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9682 }
9683 
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)9684 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
9685 {
9686 	static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
9687 }
9688 
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)9689 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9690 {
9691 	if (!lapic_in_kernel(vcpu))
9692 		return;
9693 
9694 	if (!kvm_x86_ops.set_apic_access_page_addr)
9695 		return;
9696 
9697 	static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9698 }
9699 
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)9700 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9701 {
9702 	smp_send_reschedule(vcpu->cpu);
9703 }
9704 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9705 
9706 /*
9707  * Returns 1 to let vcpu_run() continue the guest execution loop without
9708  * exiting to the userspace.  Otherwise, the value will be returned to the
9709  * userspace.
9710  */
vcpu_enter_guest(struct kvm_vcpu * vcpu)9711 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9712 {
9713 	int r;
9714 	bool req_int_win =
9715 		dm_request_for_irq_injection(vcpu) &&
9716 		kvm_cpu_accept_dm_intr(vcpu);
9717 	fastpath_t exit_fastpath;
9718 
9719 	bool req_immediate_exit = false;
9720 
9721 	/* Forbid vmenter if vcpu dirty ring is soft-full */
9722 	if (unlikely(vcpu->kvm->dirty_ring_size &&
9723 		     kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9724 		vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9725 		trace_kvm_dirty_ring_exit(vcpu);
9726 		r = 0;
9727 		goto out;
9728 	}
9729 
9730 	if (kvm_request_pending(vcpu)) {
9731 		if (kvm_check_request(KVM_REQ_VM_BUGGED, vcpu)) {
9732 			r = -EIO;
9733 			goto out;
9734 		}
9735 		if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9736 			if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9737 				r = 0;
9738 				goto out;
9739 			}
9740 		}
9741 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9742 			kvm_mmu_unload(vcpu);
9743 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9744 			__kvm_migrate_timers(vcpu);
9745 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9746 			kvm_gen_update_masterclock(vcpu->kvm);
9747 		if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9748 			kvm_gen_kvmclock_update(vcpu);
9749 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9750 			r = kvm_guest_time_update(vcpu);
9751 			if (unlikely(r))
9752 				goto out;
9753 		}
9754 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9755 			kvm_mmu_sync_roots(vcpu);
9756 		if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9757 			kvm_mmu_load_pgd(vcpu);
9758 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9759 			kvm_vcpu_flush_tlb_all(vcpu);
9760 
9761 			/* Flushing all ASIDs flushes the current ASID... */
9762 			kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9763 		}
9764 		kvm_service_local_tlb_flush_requests(vcpu);
9765 
9766 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9767 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9768 			r = 0;
9769 			goto out;
9770 		}
9771 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9772 			if (is_guest_mode(vcpu)) {
9773 				kvm_x86_ops.nested_ops->triple_fault(vcpu);
9774 			} else {
9775 				vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9776 				vcpu->mmio_needed = 0;
9777 				r = 0;
9778 				goto out;
9779 			}
9780 		}
9781 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9782 			/* Page is swapped out. Do synthetic halt */
9783 			vcpu->arch.apf.halted = true;
9784 			r = 1;
9785 			goto out;
9786 		}
9787 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9788 			record_steal_time(vcpu);
9789 		if (kvm_check_request(KVM_REQ_SMI, vcpu))
9790 			process_smi(vcpu);
9791 		if (kvm_check_request(KVM_REQ_NMI, vcpu))
9792 			process_nmi(vcpu);
9793 		if (kvm_check_request(KVM_REQ_PMU, vcpu))
9794 			kvm_pmu_handle_event(vcpu);
9795 		if (kvm_check_request(KVM_REQ_PMI, vcpu))
9796 			kvm_pmu_deliver_pmi(vcpu);
9797 		if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9798 			BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9799 			if (test_bit(vcpu->arch.pending_ioapic_eoi,
9800 				     vcpu->arch.ioapic_handled_vectors)) {
9801 				vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9802 				vcpu->run->eoi.vector =
9803 						vcpu->arch.pending_ioapic_eoi;
9804 				r = 0;
9805 				goto out;
9806 			}
9807 		}
9808 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9809 			vcpu_scan_ioapic(vcpu);
9810 		if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9811 			vcpu_load_eoi_exitmap(vcpu);
9812 		if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9813 			kvm_vcpu_reload_apic_access_page(vcpu);
9814 		if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9815 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9816 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9817 			r = 0;
9818 			goto out;
9819 		}
9820 		if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9821 			vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9822 			vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9823 			r = 0;
9824 			goto out;
9825 		}
9826 		if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9827 			struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9828 
9829 			vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9830 			vcpu->run->hyperv = hv_vcpu->exit;
9831 			r = 0;
9832 			goto out;
9833 		}
9834 
9835 		/*
9836 		 * KVM_REQ_HV_STIMER has to be processed after
9837 		 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9838 		 * depend on the guest clock being up-to-date
9839 		 */
9840 		if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9841 			kvm_hv_process_stimers(vcpu);
9842 		if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9843 			kvm_vcpu_update_apicv(vcpu);
9844 		if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9845 			kvm_check_async_pf_completion(vcpu);
9846 		if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9847 			static_call(kvm_x86_msr_filter_changed)(vcpu);
9848 
9849 		if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9850 			static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9851 	}
9852 
9853 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9854 	    kvm_xen_has_interrupt(vcpu)) {
9855 		++vcpu->stat.req_event;
9856 		r = kvm_apic_accept_events(vcpu);
9857 		if (r < 0) {
9858 			r = 0;
9859 			goto out;
9860 		}
9861 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9862 			r = 1;
9863 			goto out;
9864 		}
9865 
9866 		r = inject_pending_event(vcpu, &req_immediate_exit);
9867 		if (r < 0) {
9868 			r = 0;
9869 			goto out;
9870 		}
9871 		if (req_int_win)
9872 			static_call(kvm_x86_enable_irq_window)(vcpu);
9873 
9874 		if (kvm_lapic_enabled(vcpu)) {
9875 			update_cr8_intercept(vcpu);
9876 			kvm_lapic_sync_to_vapic(vcpu);
9877 		}
9878 	}
9879 
9880 	r = kvm_mmu_reload(vcpu);
9881 	if (unlikely(r)) {
9882 		goto cancel_injection;
9883 	}
9884 
9885 	preempt_disable();
9886 
9887 	static_call(kvm_x86_prepare_guest_switch)(vcpu);
9888 
9889 	/*
9890 	 * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9891 	 * IPI are then delayed after guest entry, which ensures that they
9892 	 * result in virtual interrupt delivery.
9893 	 */
9894 	local_irq_disable();
9895 	vcpu->mode = IN_GUEST_MODE;
9896 
9897 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9898 
9899 	/*
9900 	 * 1) We should set ->mode before checking ->requests.  Please see
9901 	 * the comment in kvm_vcpu_exiting_guest_mode().
9902 	 *
9903 	 * 2) For APICv, we should set ->mode before checking PID.ON. This
9904 	 * pairs with the memory barrier implicit in pi_test_and_set_on
9905 	 * (see vmx_deliver_posted_interrupt).
9906 	 *
9907 	 * 3) This also orders the write to mode from any reads to the page
9908 	 * tables done while the VCPU is running.  Please see the comment
9909 	 * in kvm_flush_remote_tlbs.
9910 	 */
9911 	smp_mb__after_srcu_read_unlock();
9912 
9913 	/*
9914 	 * This handles the case where a posted interrupt was
9915 	 * notified with kvm_vcpu_kick.  Assigned devices can
9916 	 * use the POSTED_INTR_VECTOR even if APICv is disabled,
9917 	 * so do it even if APICv is disabled on this vCPU.
9918 	 */
9919 	if (kvm_lapic_enabled(vcpu))
9920 		static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9921 
9922 	if (kvm_vcpu_exit_request(vcpu)) {
9923 		vcpu->mode = OUTSIDE_GUEST_MODE;
9924 		smp_wmb();
9925 		local_irq_enable();
9926 		preempt_enable();
9927 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9928 		r = 1;
9929 		goto cancel_injection;
9930 	}
9931 
9932 	if (req_immediate_exit) {
9933 		kvm_make_request(KVM_REQ_EVENT, vcpu);
9934 		static_call(kvm_x86_request_immediate_exit)(vcpu);
9935 	}
9936 
9937 	fpregs_assert_state_consistent();
9938 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
9939 		switch_fpu_return();
9940 
9941 	if (unlikely(vcpu->arch.switch_db_regs)) {
9942 		set_debugreg(0, 7);
9943 		set_debugreg(vcpu->arch.eff_db[0], 0);
9944 		set_debugreg(vcpu->arch.eff_db[1], 1);
9945 		set_debugreg(vcpu->arch.eff_db[2], 2);
9946 		set_debugreg(vcpu->arch.eff_db[3], 3);
9947 	} else if (unlikely(hw_breakpoint_active())) {
9948 		set_debugreg(0, 7);
9949 	}
9950 
9951 	for (;;) {
9952 		exit_fastpath = static_call(kvm_x86_run)(vcpu);
9953 		if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9954 			break;
9955 
9956 		if (kvm_lapic_enabled(vcpu))
9957 			static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9958 
9959 		if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9960 			exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9961 			break;
9962 		}
9963 
9964 		/* Note, VM-Exits that go down the "slow" path are accounted below. */
9965 		++vcpu->stat.exits;
9966 	}
9967 
9968 	/*
9969 	 * Do this here before restoring debug registers on the host.  And
9970 	 * since we do this before handling the vmexit, a DR access vmexit
9971 	 * can (a) read the correct value of the debug registers, (b) set
9972 	 * KVM_DEBUGREG_WONT_EXIT again.
9973 	 */
9974 	if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9975 		WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9976 		static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9977 		kvm_update_dr0123(vcpu);
9978 		kvm_update_dr7(vcpu);
9979 	}
9980 
9981 	/*
9982 	 * If the guest has used debug registers, at least dr7
9983 	 * will be disabled while returning to the host.
9984 	 * If we don't have active breakpoints in the host, we don't
9985 	 * care about the messed up debug address registers. But if
9986 	 * we have some of them active, restore the old state.
9987 	 */
9988 	if (hw_breakpoint_active())
9989 		hw_breakpoint_restore();
9990 
9991 	vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9992 	vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9993 
9994 	vcpu->mode = OUTSIDE_GUEST_MODE;
9995 	smp_wmb();
9996 
9997 	static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9998 
9999 	/*
10000 	 * Consume any pending interrupts, including the possible source of
10001 	 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10002 	 * An instruction is required after local_irq_enable() to fully unblock
10003 	 * interrupts on processors that implement an interrupt shadow, the
10004 	 * stat.exits increment will do nicely.
10005 	 */
10006 	kvm_before_interrupt(vcpu);
10007 	local_irq_enable();
10008 	++vcpu->stat.exits;
10009 	local_irq_disable();
10010 	kvm_after_interrupt(vcpu);
10011 
10012 	/*
10013 	 * Wait until after servicing IRQs to account guest time so that any
10014 	 * ticks that occurred while running the guest are properly accounted
10015 	 * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10016 	 * of accounting via context tracking, but the loss of accuracy is
10017 	 * acceptable for all known use cases.
10018 	 */
10019 	vtime_account_guest_exit();
10020 
10021 	if (lapic_in_kernel(vcpu)) {
10022 		s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10023 		if (delta != S64_MIN) {
10024 			trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10025 			vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10026 		}
10027 	}
10028 
10029 	local_irq_enable();
10030 	preempt_enable();
10031 
10032 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10033 
10034 	/*
10035 	 * Profile KVM exit RIPs:
10036 	 */
10037 	if (unlikely(prof_on == KVM_PROFILING)) {
10038 		unsigned long rip = kvm_rip_read(vcpu);
10039 		profile_hit(KVM_PROFILING, (void *)rip);
10040 	}
10041 
10042 	if (unlikely(vcpu->arch.tsc_always_catchup))
10043 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10044 
10045 	if (vcpu->arch.apic_attention)
10046 		kvm_lapic_sync_from_vapic(vcpu);
10047 
10048 	r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10049 	return r;
10050 
10051 cancel_injection:
10052 	if (req_immediate_exit)
10053 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10054 	static_call(kvm_x86_cancel_injection)(vcpu);
10055 	if (unlikely(vcpu->arch.apic_attention))
10056 		kvm_lapic_sync_from_vapic(vcpu);
10057 out:
10058 	return r;
10059 }
10060 
vcpu_block(struct kvm * kvm,struct kvm_vcpu * vcpu)10061 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10062 {
10063 	bool hv_timer;
10064 
10065 	if (!kvm_arch_vcpu_runnable(vcpu) &&
10066 	    (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
10067 		/*
10068 		 * Switch to the software timer before halt-polling/blocking as
10069 		 * the guest's timer may be a break event for the vCPU, and the
10070 		 * hypervisor timer runs only when the CPU is in guest mode.
10071 		 * Switch before halt-polling so that KVM recognizes an expired
10072 		 * timer before blocking.
10073 		 */
10074 		hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10075 		if (hv_timer)
10076 			kvm_lapic_switch_to_sw_timer(vcpu);
10077 
10078 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10079 		kvm_vcpu_block(vcpu);
10080 		vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10081 
10082 		if (hv_timer)
10083 			kvm_lapic_switch_to_hv_timer(vcpu);
10084 
10085 		if (kvm_x86_ops.post_block)
10086 			static_call(kvm_x86_post_block)(vcpu);
10087 
10088 		if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10089 			return 1;
10090 	}
10091 
10092 	if (kvm_apic_accept_events(vcpu) < 0)
10093 		return 0;
10094 	switch(vcpu->arch.mp_state) {
10095 	case KVM_MP_STATE_HALTED:
10096 	case KVM_MP_STATE_AP_RESET_HOLD:
10097 		vcpu->arch.pv.pv_unhalted = false;
10098 		vcpu->arch.mp_state =
10099 			KVM_MP_STATE_RUNNABLE;
10100 		fallthrough;
10101 	case KVM_MP_STATE_RUNNABLE:
10102 		vcpu->arch.apf.halted = false;
10103 		break;
10104 	case KVM_MP_STATE_INIT_RECEIVED:
10105 		break;
10106 	default:
10107 		return -EINTR;
10108 	}
10109 	return 1;
10110 }
10111 
kvm_vcpu_running(struct kvm_vcpu * vcpu)10112 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10113 {
10114 	if (is_guest_mode(vcpu))
10115 		kvm_check_nested_events(vcpu);
10116 
10117 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10118 		!vcpu->arch.apf.halted);
10119 }
10120 
vcpu_run(struct kvm_vcpu * vcpu)10121 static int vcpu_run(struct kvm_vcpu *vcpu)
10122 {
10123 	int r;
10124 	struct kvm *kvm = vcpu->kvm;
10125 
10126 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10127 	vcpu->arch.l1tf_flush_l1d = true;
10128 
10129 	for (;;) {
10130 		/*
10131 		 * If another guest vCPU requests a PV TLB flush in the middle
10132 		 * of instruction emulation, the rest of the emulation could
10133 		 * use a stale page translation. Assume that any code after
10134 		 * this point can start executing an instruction.
10135 		 */
10136 		vcpu->arch.at_instruction_boundary = false;
10137 		if (kvm_vcpu_running(vcpu)) {
10138 			r = vcpu_enter_guest(vcpu);
10139 		} else {
10140 			r = vcpu_block(kvm, vcpu);
10141 		}
10142 
10143 		if (r <= 0)
10144 			break;
10145 
10146 		kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10147 		if (kvm_cpu_has_pending_timer(vcpu))
10148 			kvm_inject_pending_timer_irqs(vcpu);
10149 
10150 		if (dm_request_for_irq_injection(vcpu) &&
10151 			kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10152 			r = 0;
10153 			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10154 			++vcpu->stat.request_irq_exits;
10155 			break;
10156 		}
10157 
10158 		if (__xfer_to_guest_mode_work_pending()) {
10159 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10160 			r = xfer_to_guest_mode_handle_work(vcpu);
10161 			if (r)
10162 				return r;
10163 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10164 		}
10165 	}
10166 
10167 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10168 
10169 	return r;
10170 }
10171 
complete_emulated_io(struct kvm_vcpu * vcpu)10172 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10173 {
10174 	int r;
10175 
10176 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10177 	r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10178 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10179 	return r;
10180 }
10181 
complete_emulated_pio(struct kvm_vcpu * vcpu)10182 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10183 {
10184 	BUG_ON(!vcpu->arch.pio.count);
10185 
10186 	return complete_emulated_io(vcpu);
10187 }
10188 
10189 /*
10190  * Implements the following, as a state machine:
10191  *
10192  * read:
10193  *   for each fragment
10194  *     for each mmio piece in the fragment
10195  *       write gpa, len
10196  *       exit
10197  *       copy data
10198  *   execute insn
10199  *
10200  * write:
10201  *   for each fragment
10202  *     for each mmio piece in the fragment
10203  *       write gpa, len
10204  *       copy data
10205  *       exit
10206  */
complete_emulated_mmio(struct kvm_vcpu * vcpu)10207 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10208 {
10209 	struct kvm_run *run = vcpu->run;
10210 	struct kvm_mmio_fragment *frag;
10211 	unsigned len;
10212 
10213 	BUG_ON(!vcpu->mmio_needed);
10214 
10215 	/* Complete previous fragment */
10216 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10217 	len = min(8u, frag->len);
10218 	if (!vcpu->mmio_is_write)
10219 		memcpy(frag->data, run->mmio.data, len);
10220 
10221 	if (frag->len <= 8) {
10222 		/* Switch to the next fragment. */
10223 		frag++;
10224 		vcpu->mmio_cur_fragment++;
10225 	} else {
10226 		/* Go forward to the next mmio piece. */
10227 		frag->data += len;
10228 		frag->gpa += len;
10229 		frag->len -= len;
10230 	}
10231 
10232 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10233 		vcpu->mmio_needed = 0;
10234 
10235 		/* FIXME: return into emulator if single-stepping.  */
10236 		if (vcpu->mmio_is_write)
10237 			return 1;
10238 		vcpu->mmio_read_completed = 1;
10239 		return complete_emulated_io(vcpu);
10240 	}
10241 
10242 	run->exit_reason = KVM_EXIT_MMIO;
10243 	run->mmio.phys_addr = frag->gpa;
10244 	if (vcpu->mmio_is_write)
10245 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10246 	run->mmio.len = min(8u, frag->len);
10247 	run->mmio.is_write = vcpu->mmio_is_write;
10248 	vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10249 	return 0;
10250 }
10251 
kvm_save_current_fpu(struct fpu * fpu)10252 static void kvm_save_current_fpu(struct fpu *fpu)
10253 {
10254 	/*
10255 	 * If the target FPU state is not resident in the CPU registers, just
10256 	 * memcpy() from current, else save CPU state directly to the target.
10257 	 */
10258 	if (test_thread_flag(TIF_NEED_FPU_LOAD))
10259 		memcpy(&fpu->state, &current->thread.fpu.state,
10260 		       fpu_kernel_xstate_size);
10261 	else
10262 		save_fpregs_to_fpstate(fpu);
10263 }
10264 
10265 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)10266 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10267 {
10268 	fpregs_lock();
10269 
10270 	kvm_save_current_fpu(vcpu->arch.user_fpu);
10271 
10272 	/*
10273 	 * Guests with protected state can't have it set by the hypervisor,
10274 	 * so skip trying to set it.
10275 	 */
10276 	if (vcpu->arch.guest_fpu)
10277 		/* PKRU is separately restored in kvm_x86_ops.run. */
10278 		__restore_fpregs_from_fpstate(&vcpu->arch.guest_fpu->state,
10279 					~XFEATURE_MASK_PKRU);
10280 
10281 	fpregs_mark_activate();
10282 	fpregs_unlock();
10283 
10284 	trace_kvm_fpu(1);
10285 }
10286 
10287 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)10288 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10289 {
10290 	fpregs_lock();
10291 
10292 	/*
10293 	 * Guests with protected state can't have it read by the hypervisor,
10294 	 * so skip trying to save it.
10295 	 */
10296 	if (vcpu->arch.guest_fpu)
10297 		kvm_save_current_fpu(vcpu->arch.guest_fpu);
10298 
10299 	restore_fpregs_from_fpstate(&vcpu->arch.user_fpu->state);
10300 
10301 	fpregs_mark_activate();
10302 	fpregs_unlock();
10303 
10304 	++vcpu->stat.fpu_reload;
10305 	trace_kvm_fpu(0);
10306 }
10307 
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)10308 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10309 {
10310 	struct kvm_run *kvm_run = vcpu->run;
10311 	int r;
10312 
10313 	vcpu_load(vcpu);
10314 	kvm_sigset_activate(vcpu);
10315 	kvm_run->flags = 0;
10316 	kvm_load_guest_fpu(vcpu);
10317 
10318 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10319 		if (kvm_run->immediate_exit) {
10320 			r = -EINTR;
10321 			goto out;
10322 		}
10323 		/*
10324 		 * It should be impossible for the hypervisor timer to be in
10325 		 * use before KVM has ever run the vCPU.
10326 		 */
10327 		WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10328 		kvm_vcpu_block(vcpu);
10329 		if (kvm_apic_accept_events(vcpu) < 0) {
10330 			r = 0;
10331 			goto out;
10332 		}
10333 		kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10334 		r = -EAGAIN;
10335 		if (signal_pending(current)) {
10336 			r = -EINTR;
10337 			kvm_run->exit_reason = KVM_EXIT_INTR;
10338 			++vcpu->stat.signal_exits;
10339 		}
10340 		goto out;
10341 	}
10342 
10343 	if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10344 	    (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10345 		r = -EINVAL;
10346 		goto out;
10347 	}
10348 
10349 	if (kvm_run->kvm_dirty_regs) {
10350 		r = sync_regs(vcpu);
10351 		if (r != 0)
10352 			goto out;
10353 	}
10354 
10355 	/* re-sync apic's tpr */
10356 	if (!lapic_in_kernel(vcpu)) {
10357 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10358 			r = -EINVAL;
10359 			goto out;
10360 		}
10361 	}
10362 
10363 	if (unlikely(vcpu->arch.complete_userspace_io)) {
10364 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10365 		vcpu->arch.complete_userspace_io = NULL;
10366 		r = cui(vcpu);
10367 		if (r <= 0)
10368 			goto out;
10369 	} else
10370 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10371 
10372 	if (kvm_run->immediate_exit)
10373 		r = -EINTR;
10374 	else
10375 		r = vcpu_run(vcpu);
10376 
10377 out:
10378 	kvm_put_guest_fpu(vcpu);
10379 	if (kvm_run->kvm_valid_regs)
10380 		store_regs(vcpu);
10381 	post_kvm_run_save(vcpu);
10382 	kvm_sigset_deactivate(vcpu);
10383 
10384 	vcpu_put(vcpu);
10385 	return r;
10386 }
10387 
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10388 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10389 {
10390 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10391 		/*
10392 		 * We are here if userspace calls get_regs() in the middle of
10393 		 * instruction emulation. Registers state needs to be copied
10394 		 * back from emulation context to vcpu. Userspace shouldn't do
10395 		 * that usually, but some bad designed PV devices (vmware
10396 		 * backdoor interface) need this to work
10397 		 */
10398 		emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10399 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10400 	}
10401 	regs->rax = kvm_rax_read(vcpu);
10402 	regs->rbx = kvm_rbx_read(vcpu);
10403 	regs->rcx = kvm_rcx_read(vcpu);
10404 	regs->rdx = kvm_rdx_read(vcpu);
10405 	regs->rsi = kvm_rsi_read(vcpu);
10406 	regs->rdi = kvm_rdi_read(vcpu);
10407 	regs->rsp = kvm_rsp_read(vcpu);
10408 	regs->rbp = kvm_rbp_read(vcpu);
10409 #ifdef CONFIG_X86_64
10410 	regs->r8 = kvm_r8_read(vcpu);
10411 	regs->r9 = kvm_r9_read(vcpu);
10412 	regs->r10 = kvm_r10_read(vcpu);
10413 	regs->r11 = kvm_r11_read(vcpu);
10414 	regs->r12 = kvm_r12_read(vcpu);
10415 	regs->r13 = kvm_r13_read(vcpu);
10416 	regs->r14 = kvm_r14_read(vcpu);
10417 	regs->r15 = kvm_r15_read(vcpu);
10418 #endif
10419 
10420 	regs->rip = kvm_rip_read(vcpu);
10421 	regs->rflags = kvm_get_rflags(vcpu);
10422 }
10423 
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10424 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10425 {
10426 	vcpu_load(vcpu);
10427 	__get_regs(vcpu, regs);
10428 	vcpu_put(vcpu);
10429 	return 0;
10430 }
10431 
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10432 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10433 {
10434 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10435 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10436 
10437 	kvm_rax_write(vcpu, regs->rax);
10438 	kvm_rbx_write(vcpu, regs->rbx);
10439 	kvm_rcx_write(vcpu, regs->rcx);
10440 	kvm_rdx_write(vcpu, regs->rdx);
10441 	kvm_rsi_write(vcpu, regs->rsi);
10442 	kvm_rdi_write(vcpu, regs->rdi);
10443 	kvm_rsp_write(vcpu, regs->rsp);
10444 	kvm_rbp_write(vcpu, regs->rbp);
10445 #ifdef CONFIG_X86_64
10446 	kvm_r8_write(vcpu, regs->r8);
10447 	kvm_r9_write(vcpu, regs->r9);
10448 	kvm_r10_write(vcpu, regs->r10);
10449 	kvm_r11_write(vcpu, regs->r11);
10450 	kvm_r12_write(vcpu, regs->r12);
10451 	kvm_r13_write(vcpu, regs->r13);
10452 	kvm_r14_write(vcpu, regs->r14);
10453 	kvm_r15_write(vcpu, regs->r15);
10454 #endif
10455 
10456 	kvm_rip_write(vcpu, regs->rip);
10457 	kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10458 
10459 	vcpu->arch.exception.pending = false;
10460 
10461 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10462 }
10463 
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)10464 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10465 {
10466 	vcpu_load(vcpu);
10467 	__set_regs(vcpu, regs);
10468 	vcpu_put(vcpu);
10469 	return 0;
10470 }
10471 
kvm_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)10472 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10473 {
10474 	struct kvm_segment cs;
10475 
10476 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10477 	*db = cs.db;
10478 	*l = cs.l;
10479 }
10480 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10481 
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10482 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10483 {
10484 	struct desc_ptr dt;
10485 
10486 	if (vcpu->arch.guest_state_protected)
10487 		goto skip_protected_regs;
10488 
10489 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10490 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10491 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10492 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10493 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10494 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10495 
10496 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10497 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10498 
10499 	static_call(kvm_x86_get_idt)(vcpu, &dt);
10500 	sregs->idt.limit = dt.size;
10501 	sregs->idt.base = dt.address;
10502 	static_call(kvm_x86_get_gdt)(vcpu, &dt);
10503 	sregs->gdt.limit = dt.size;
10504 	sregs->gdt.base = dt.address;
10505 
10506 	sregs->cr2 = vcpu->arch.cr2;
10507 	sregs->cr3 = kvm_read_cr3(vcpu);
10508 
10509 skip_protected_regs:
10510 	sregs->cr0 = kvm_read_cr0(vcpu);
10511 	sregs->cr4 = kvm_read_cr4(vcpu);
10512 	sregs->cr8 = kvm_get_cr8(vcpu);
10513 	sregs->efer = vcpu->arch.efer;
10514 	sregs->apic_base = kvm_get_apic_base(vcpu);
10515 }
10516 
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10517 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10518 {
10519 	__get_sregs_common(vcpu, sregs);
10520 
10521 	if (vcpu->arch.guest_state_protected)
10522 		return;
10523 
10524 	if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10525 		set_bit(vcpu->arch.interrupt.nr,
10526 			(unsigned long *)sregs->interrupt_bitmap);
10527 }
10528 
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)10529 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10530 {
10531 	int i;
10532 
10533 	__get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10534 
10535 	if (vcpu->arch.guest_state_protected)
10536 		return;
10537 
10538 	if (is_pae_paging(vcpu)) {
10539 		for (i = 0 ; i < 4 ; i++)
10540 			sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10541 		sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10542 	}
10543 }
10544 
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10545 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10546 				  struct kvm_sregs *sregs)
10547 {
10548 	vcpu_load(vcpu);
10549 	__get_sregs(vcpu, sregs);
10550 	vcpu_put(vcpu);
10551 	return 0;
10552 }
10553 
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)10554 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10555 				    struct kvm_mp_state *mp_state)
10556 {
10557 	int r;
10558 
10559 	vcpu_load(vcpu);
10560 	if (kvm_mpx_supported())
10561 		kvm_load_guest_fpu(vcpu);
10562 
10563 	r = kvm_apic_accept_events(vcpu);
10564 	if (r < 0)
10565 		goto out;
10566 	r = 0;
10567 
10568 	if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10569 	     vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10570 	    vcpu->arch.pv.pv_unhalted)
10571 		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10572 	else
10573 		mp_state->mp_state = vcpu->arch.mp_state;
10574 
10575 out:
10576 	if (kvm_mpx_supported())
10577 		kvm_put_guest_fpu(vcpu);
10578 	vcpu_put(vcpu);
10579 	return r;
10580 }
10581 
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)10582 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10583 				    struct kvm_mp_state *mp_state)
10584 {
10585 	int ret = -EINVAL;
10586 
10587 	vcpu_load(vcpu);
10588 
10589 	if (!lapic_in_kernel(vcpu) &&
10590 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10591 		goto out;
10592 
10593 	/*
10594 	 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10595 	 * INIT state; latched init should be reported using
10596 	 * KVM_SET_VCPU_EVENTS, so reject it here.
10597 	 */
10598 	if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10599 	    (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10600 	     mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10601 		goto out;
10602 
10603 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10604 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10605 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10606 	} else
10607 		vcpu->arch.mp_state = mp_state->mp_state;
10608 	kvm_make_request(KVM_REQ_EVENT, vcpu);
10609 
10610 	ret = 0;
10611 out:
10612 	vcpu_put(vcpu);
10613 	return ret;
10614 }
10615 
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)10616 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10617 		    int reason, bool has_error_code, u32 error_code)
10618 {
10619 	struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10620 	int ret;
10621 
10622 	init_emulate_ctxt(vcpu);
10623 
10624 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10625 				   has_error_code, error_code);
10626 	if (ret) {
10627 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10628 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10629 		vcpu->run->internal.ndata = 0;
10630 		return 0;
10631 	}
10632 
10633 	kvm_rip_write(vcpu, ctxt->eip);
10634 	kvm_set_rflags(vcpu, ctxt->eflags);
10635 	return 1;
10636 }
10637 EXPORT_SYMBOL_GPL(kvm_task_switch);
10638 
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10639 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10640 {
10641 	if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10642 		/*
10643 		 * When EFER.LME and CR0.PG are set, the processor is in
10644 		 * 64-bit mode (though maybe in a 32-bit code segment).
10645 		 * CR4.PAE and EFER.LMA must be set.
10646 		 */
10647 		if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10648 			return false;
10649 		if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10650 			return false;
10651 	} else {
10652 		/*
10653 		 * Not in 64-bit mode: EFER.LMA is clear and the code
10654 		 * segment cannot be 64-bit.
10655 		 */
10656 		if (sregs->efer & EFER_LMA || sregs->cs.l)
10657 			return false;
10658 	}
10659 
10660 	return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
10661 	       kvm_is_valid_cr0(vcpu, sregs->cr0);
10662 }
10663 
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)10664 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10665 		int *mmu_reset_needed, bool update_pdptrs)
10666 {
10667 	struct msr_data apic_base_msr;
10668 	int idx;
10669 	struct desc_ptr dt;
10670 
10671 	if (!kvm_is_valid_sregs(vcpu, sregs))
10672 		return -EINVAL;
10673 
10674 	apic_base_msr.data = sregs->apic_base;
10675 	apic_base_msr.host_initiated = true;
10676 	if (kvm_set_apic_base(vcpu, &apic_base_msr))
10677 		return -EINVAL;
10678 
10679 	if (vcpu->arch.guest_state_protected)
10680 		return 0;
10681 
10682 	dt.size = sregs->idt.limit;
10683 	dt.address = sregs->idt.base;
10684 	static_call(kvm_x86_set_idt)(vcpu, &dt);
10685 	dt.size = sregs->gdt.limit;
10686 	dt.address = sregs->gdt.base;
10687 	static_call(kvm_x86_set_gdt)(vcpu, &dt);
10688 
10689 	vcpu->arch.cr2 = sregs->cr2;
10690 	*mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10691 	vcpu->arch.cr3 = sregs->cr3;
10692 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10693 
10694 	kvm_set_cr8(vcpu, sregs->cr8);
10695 
10696 	*mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10697 	static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10698 
10699 	*mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10700 	static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10701 	vcpu->arch.cr0 = sregs->cr0;
10702 
10703 	*mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10704 	static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10705 
10706 	if (update_pdptrs) {
10707 		idx = srcu_read_lock(&vcpu->kvm->srcu);
10708 		if (is_pae_paging(vcpu)) {
10709 			load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10710 			*mmu_reset_needed = 1;
10711 		}
10712 		srcu_read_unlock(&vcpu->kvm->srcu, idx);
10713 	}
10714 
10715 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10716 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10717 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10718 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10719 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10720 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10721 
10722 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10723 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10724 
10725 	update_cr8_intercept(vcpu);
10726 
10727 	/* Older userspace won't unhalt the vcpu on reset. */
10728 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10729 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10730 	    !is_protmode(vcpu))
10731 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10732 
10733 	return 0;
10734 }
10735 
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10736 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10737 {
10738 	int pending_vec, max_bits;
10739 	int mmu_reset_needed = 0;
10740 	int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10741 
10742 	if (ret)
10743 		return ret;
10744 
10745 	if (mmu_reset_needed)
10746 		kvm_mmu_reset_context(vcpu);
10747 
10748 	max_bits = KVM_NR_INTERRUPTS;
10749 	pending_vec = find_first_bit(
10750 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
10751 
10752 	if (pending_vec < max_bits) {
10753 		kvm_queue_interrupt(vcpu, pending_vec, false);
10754 		pr_debug("Set back pending irq %d\n", pending_vec);
10755 		kvm_make_request(KVM_REQ_EVENT, vcpu);
10756 	}
10757 	return 0;
10758 }
10759 
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)10760 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10761 {
10762 	int mmu_reset_needed = 0;
10763 	bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10764 	bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10765 		!(sregs2->efer & EFER_LMA);
10766 	int i, ret;
10767 
10768 	if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10769 		return -EINVAL;
10770 
10771 	if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10772 		return -EINVAL;
10773 
10774 	ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10775 				 &mmu_reset_needed, !valid_pdptrs);
10776 	if (ret)
10777 		return ret;
10778 
10779 	if (valid_pdptrs) {
10780 		for (i = 0; i < 4 ; i++)
10781 			kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10782 
10783 		kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10784 		mmu_reset_needed = 1;
10785 		vcpu->arch.pdptrs_from_userspace = true;
10786 	}
10787 	if (mmu_reset_needed)
10788 		kvm_mmu_reset_context(vcpu);
10789 	return 0;
10790 }
10791 
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)10792 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10793 				  struct kvm_sregs *sregs)
10794 {
10795 	int ret;
10796 
10797 	vcpu_load(vcpu);
10798 	ret = __set_sregs(vcpu, sregs);
10799 	vcpu_put(vcpu);
10800 	return ret;
10801 }
10802 
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)10803 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10804 					struct kvm_guest_debug *dbg)
10805 {
10806 	unsigned long rflags;
10807 	int i, r;
10808 
10809 	if (vcpu->arch.guest_state_protected)
10810 		return -EINVAL;
10811 
10812 	vcpu_load(vcpu);
10813 
10814 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10815 		r = -EBUSY;
10816 		if (vcpu->arch.exception.pending)
10817 			goto out;
10818 		if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10819 			kvm_queue_exception(vcpu, DB_VECTOR);
10820 		else
10821 			kvm_queue_exception(vcpu, BP_VECTOR);
10822 	}
10823 
10824 	/*
10825 	 * Read rflags as long as potentially injected trace flags are still
10826 	 * filtered out.
10827 	 */
10828 	rflags = kvm_get_rflags(vcpu);
10829 
10830 	vcpu->guest_debug = dbg->control;
10831 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10832 		vcpu->guest_debug = 0;
10833 
10834 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10835 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
10836 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10837 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10838 	} else {
10839 		for (i = 0; i < KVM_NR_DB_REGS; i++)
10840 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10841 	}
10842 	kvm_update_dr7(vcpu);
10843 
10844 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10845 		vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10846 
10847 	/*
10848 	 * Trigger an rflags update that will inject or remove the trace
10849 	 * flags.
10850 	 */
10851 	kvm_set_rflags(vcpu, rflags);
10852 
10853 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
10854 
10855 	r = 0;
10856 
10857 out:
10858 	vcpu_put(vcpu);
10859 	return r;
10860 }
10861 
10862 /*
10863  * Translate a guest virtual address to a guest physical address.
10864  */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)10865 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10866 				    struct kvm_translation *tr)
10867 {
10868 	unsigned long vaddr = tr->linear_address;
10869 	gpa_t gpa;
10870 	int idx;
10871 
10872 	vcpu_load(vcpu);
10873 
10874 	idx = srcu_read_lock(&vcpu->kvm->srcu);
10875 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10876 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10877 	tr->physical_address = gpa;
10878 	tr->valid = gpa != UNMAPPED_GVA;
10879 	tr->writeable = 1;
10880 	tr->usermode = 0;
10881 
10882 	vcpu_put(vcpu);
10883 	return 0;
10884 }
10885 
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10886 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10887 {
10888 	struct fxregs_state *fxsave;
10889 
10890 	if (!vcpu->arch.guest_fpu)
10891 		return 0;
10892 
10893 	vcpu_load(vcpu);
10894 
10895 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10896 	memcpy(fpu->fpr, fxsave->st_space, 128);
10897 	fpu->fcw = fxsave->cwd;
10898 	fpu->fsw = fxsave->swd;
10899 	fpu->ftwx = fxsave->twd;
10900 	fpu->last_opcode = fxsave->fop;
10901 	fpu->last_ip = fxsave->rip;
10902 	fpu->last_dp = fxsave->rdp;
10903 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10904 
10905 	vcpu_put(vcpu);
10906 	return 0;
10907 }
10908 
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)10909 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10910 {
10911 	struct fxregs_state *fxsave;
10912 
10913 	if (!vcpu->arch.guest_fpu)
10914 		return 0;
10915 
10916 	vcpu_load(vcpu);
10917 
10918 	fxsave = &vcpu->arch.guest_fpu->state.fxsave;
10919 
10920 	memcpy(fxsave->st_space, fpu->fpr, 128);
10921 	fxsave->cwd = fpu->fcw;
10922 	fxsave->swd = fpu->fsw;
10923 	fxsave->twd = fpu->ftwx;
10924 	fxsave->fop = fpu->last_opcode;
10925 	fxsave->rip = fpu->last_ip;
10926 	fxsave->rdp = fpu->last_dp;
10927 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10928 
10929 	vcpu_put(vcpu);
10930 	return 0;
10931 }
10932 
store_regs(struct kvm_vcpu * vcpu)10933 static void store_regs(struct kvm_vcpu *vcpu)
10934 {
10935 	BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10936 
10937 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10938 		__get_regs(vcpu, &vcpu->run->s.regs.regs);
10939 
10940 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10941 		__get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10942 
10943 	if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10944 		kvm_vcpu_ioctl_x86_get_vcpu_events(
10945 				vcpu, &vcpu->run->s.regs.events);
10946 }
10947 
sync_regs(struct kvm_vcpu * vcpu)10948 static int sync_regs(struct kvm_vcpu *vcpu)
10949 {
10950 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10951 		__set_regs(vcpu, &vcpu->run->s.regs.regs);
10952 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10953 	}
10954 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10955 		if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10956 			return -EINVAL;
10957 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10958 	}
10959 	if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10960 		if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10961 				vcpu, &vcpu->run->s.regs.events))
10962 			return -EINVAL;
10963 		vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10964 	}
10965 
10966 	return 0;
10967 }
10968 
fx_init(struct kvm_vcpu * vcpu)10969 static void fx_init(struct kvm_vcpu *vcpu)
10970 {
10971 	if (!vcpu->arch.guest_fpu)
10972 		return;
10973 
10974 	fpstate_init(&vcpu->arch.guest_fpu->state);
10975 	if (boot_cpu_has(X86_FEATURE_XSAVES))
10976 		vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
10977 			host_xcr0 | XSTATE_COMPACTION_ENABLED;
10978 
10979 	/*
10980 	 * Ensure guest xcr0 is valid for loading
10981 	 */
10982 	vcpu->arch.xcr0 = XFEATURE_MASK_FP;
10983 
10984 	vcpu->arch.cr0 |= X86_CR0_ET;
10985 }
10986 
kvm_free_guest_fpu(struct kvm_vcpu * vcpu)10987 void kvm_free_guest_fpu(struct kvm_vcpu *vcpu)
10988 {
10989 	if (vcpu->arch.guest_fpu) {
10990 		kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
10991 		vcpu->arch.guest_fpu = NULL;
10992 	}
10993 }
10994 EXPORT_SYMBOL_GPL(kvm_free_guest_fpu);
10995 
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)10996 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10997 {
10998 	if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10999 		pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11000 			     "guest TSC will not be reliable\n");
11001 
11002 	return 0;
11003 }
11004 
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11005 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11006 {
11007 	struct page *page;
11008 	int r;
11009 
11010 	vcpu->arch.last_vmentry_cpu = -1;
11011 	vcpu->arch.regs_avail = ~0;
11012 	vcpu->arch.regs_dirty = ~0;
11013 
11014 	if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11015 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11016 	else
11017 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11018 
11019 	r = kvm_mmu_create(vcpu);
11020 	if (r < 0)
11021 		return r;
11022 
11023 	if (irqchip_in_kernel(vcpu->kvm)) {
11024 		r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11025 		if (r < 0)
11026 			goto fail_mmu_destroy;
11027 
11028 		/*
11029 		 * Defer evaluating inhibits until the vCPU is first run, as
11030 		 * this vCPU will not get notified of any changes until this
11031 		 * vCPU is visible to other vCPUs (marked online and added to
11032 		 * the set of vCPUs).  Opportunistically mark APICv active as
11033 		 * VMX in particularly is highly unlikely to have inhibits.
11034 		 * Ignore the current per-VM APICv state so that vCPU creation
11035 		 * is guaranteed to run with a deterministic value, the request
11036 		 * will ensure the vCPU gets the correct state before VM-Entry.
11037 		 */
11038 		if (enable_apicv) {
11039 			vcpu->arch.apicv_active = true;
11040 			kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11041 		}
11042 	} else
11043 		static_branch_inc(&kvm_has_noapic_vcpu);
11044 
11045 	r = -ENOMEM;
11046 
11047 	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11048 	if (!page)
11049 		goto fail_free_lapic;
11050 	vcpu->arch.pio_data = page_address(page);
11051 
11052 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11053 				       GFP_KERNEL_ACCOUNT);
11054 	if (!vcpu->arch.mce_banks)
11055 		goto fail_free_pio_data;
11056 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11057 
11058 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11059 				GFP_KERNEL_ACCOUNT))
11060 		goto fail_free_mce_banks;
11061 
11062 	if (!alloc_emulate_ctxt(vcpu))
11063 		goto free_wbinvd_dirty_mask;
11064 
11065 	vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
11066 						GFP_KERNEL_ACCOUNT);
11067 	if (!vcpu->arch.user_fpu) {
11068 		pr_err("kvm: failed to allocate userspace's fpu\n");
11069 		goto free_emulate_ctxt;
11070 	}
11071 
11072 	vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
11073 						 GFP_KERNEL_ACCOUNT);
11074 	if (!vcpu->arch.guest_fpu) {
11075 		pr_err("kvm: failed to allocate vcpu's fpu\n");
11076 		goto free_user_fpu;
11077 	}
11078 	fx_init(vcpu);
11079 
11080 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11081 	vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11082 
11083 	vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11084 
11085 	kvm_async_pf_hash_reset(vcpu);
11086 	kvm_pmu_init(vcpu);
11087 
11088 	vcpu->arch.pending_external_vector = -1;
11089 	vcpu->arch.preempted_in_kernel = false;
11090 
11091 #if IS_ENABLED(CONFIG_HYPERV)
11092 	vcpu->arch.hv_root_tdp = INVALID_PAGE;
11093 #endif
11094 
11095 	r = static_call(kvm_x86_vcpu_create)(vcpu);
11096 	if (r)
11097 		goto free_guest_fpu;
11098 
11099 	vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11100 	vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11101 	kvm_vcpu_mtrr_init(vcpu);
11102 	vcpu_load(vcpu);
11103 	kvm_set_tsc_khz(vcpu, max_tsc_khz);
11104 	kvm_vcpu_reset(vcpu, false);
11105 	kvm_init_mmu(vcpu);
11106 	vcpu_put(vcpu);
11107 	return 0;
11108 
11109 free_guest_fpu:
11110 	kvm_free_guest_fpu(vcpu);
11111 free_user_fpu:
11112 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
11113 free_emulate_ctxt:
11114 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11115 free_wbinvd_dirty_mask:
11116 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11117 fail_free_mce_banks:
11118 	kfree(vcpu->arch.mce_banks);
11119 fail_free_pio_data:
11120 	free_page((unsigned long)vcpu->arch.pio_data);
11121 fail_free_lapic:
11122 	kvm_free_lapic(vcpu);
11123 fail_mmu_destroy:
11124 	kvm_mmu_destroy(vcpu);
11125 	return r;
11126 }
11127 
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11128 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11129 {
11130 	struct kvm *kvm = vcpu->kvm;
11131 
11132 	if (mutex_lock_killable(&vcpu->mutex))
11133 		return;
11134 	vcpu_load(vcpu);
11135 	kvm_synchronize_tsc(vcpu, 0);
11136 	vcpu_put(vcpu);
11137 
11138 	/* poll control enabled by default */
11139 	vcpu->arch.msr_kvm_poll_control = 1;
11140 
11141 	mutex_unlock(&vcpu->mutex);
11142 
11143 	if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11144 		schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11145 						KVMCLOCK_SYNC_PERIOD);
11146 }
11147 
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)11148 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11149 {
11150 	int idx;
11151 
11152 	kvmclock_reset(vcpu);
11153 
11154 	static_call(kvm_x86_vcpu_free)(vcpu);
11155 
11156 	kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11157 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11158 	kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
11159 	kvm_free_guest_fpu(vcpu);
11160 
11161 	kvm_hv_vcpu_uninit(vcpu);
11162 	kvm_pmu_destroy(vcpu);
11163 	kfree(vcpu->arch.mce_banks);
11164 	kvm_free_lapic(vcpu);
11165 	idx = srcu_read_lock(&vcpu->kvm->srcu);
11166 	kvm_mmu_destroy(vcpu);
11167 	srcu_read_unlock(&vcpu->kvm->srcu, idx);
11168 	free_page((unsigned long)vcpu->arch.pio_data);
11169 	kvfree(vcpu->arch.cpuid_entries);
11170 	if (!lapic_in_kernel(vcpu))
11171 		static_branch_dec(&kvm_has_noapic_vcpu);
11172 }
11173 
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)11174 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11175 {
11176 	unsigned long old_cr0 = kvm_read_cr0(vcpu);
11177 	unsigned long new_cr0;
11178 	u32 eax, dummy;
11179 
11180 	/*
11181 	 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
11182 	 * possible to INIT the vCPU while L2 is active.  Force the vCPU back
11183 	 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
11184 	 * bits), i.e. virtualization is disabled.
11185 	 */
11186 	if (is_guest_mode(vcpu))
11187 		kvm_leave_nested(vcpu);
11188 
11189 	kvm_lapic_reset(vcpu, init_event);
11190 
11191 	WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
11192 	vcpu->arch.hflags = 0;
11193 
11194 	vcpu->arch.smi_pending = 0;
11195 	vcpu->arch.smi_count = 0;
11196 	atomic_set(&vcpu->arch.nmi_queued, 0);
11197 	vcpu->arch.nmi_pending = 0;
11198 	vcpu->arch.nmi_injected = false;
11199 	kvm_clear_interrupt_queue(vcpu);
11200 	kvm_clear_exception_queue(vcpu);
11201 
11202 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11203 	kvm_update_dr0123(vcpu);
11204 	vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11205 	vcpu->arch.dr7 = DR7_FIXED_1;
11206 	kvm_update_dr7(vcpu);
11207 
11208 	vcpu->arch.cr2 = 0;
11209 
11210 	kvm_make_request(KVM_REQ_EVENT, vcpu);
11211 	vcpu->arch.apf.msr_en_val = 0;
11212 	vcpu->arch.apf.msr_int_val = 0;
11213 	vcpu->arch.st.msr_val = 0;
11214 
11215 	kvmclock_reset(vcpu);
11216 
11217 	kvm_clear_async_pf_completion_queue(vcpu);
11218 	kvm_async_pf_hash_reset(vcpu);
11219 	vcpu->arch.apf.halted = false;
11220 
11221 	if (vcpu->arch.guest_fpu && kvm_mpx_supported()) {
11222 		void *mpx_state_buffer;
11223 
11224 		/*
11225 		 * To avoid have the INIT path from kvm_apic_has_events() that be
11226 		 * called with loaded FPU and does not let userspace fix the state.
11227 		 */
11228 		if (init_event)
11229 			kvm_put_guest_fpu(vcpu);
11230 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
11231 					XFEATURE_BNDREGS);
11232 		if (mpx_state_buffer)
11233 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
11234 		mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
11235 					XFEATURE_BNDCSR);
11236 		if (mpx_state_buffer)
11237 			memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
11238 		if (init_event)
11239 			kvm_load_guest_fpu(vcpu);
11240 	}
11241 
11242 	if (!init_event) {
11243 		kvm_pmu_reset(vcpu);
11244 		vcpu->arch.smbase = 0x30000;
11245 
11246 		vcpu->arch.msr_misc_features_enables = 0;
11247 
11248 		__kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11249 		__kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11250 	}
11251 
11252 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11253 	vcpu->arch.regs_avail = ~0;
11254 	vcpu->arch.regs_dirty = ~0;
11255 
11256 	/*
11257 	 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11258 	 * if no CPUID match is found.  Note, it's impossible to get a match at
11259 	 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11260 	 * i.e. it'simpossible for kvm_cpuid() to find a valid entry on RESET.
11261 	 * But, go through the motions in case that's ever remedied.
11262 	 */
11263 	eax = 1;
11264 	if (!kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true))
11265 		eax = 0x600;
11266 	kvm_rdx_write(vcpu, eax);
11267 
11268 	static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11269 
11270 	kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11271 	kvm_rip_write(vcpu, 0xfff0);
11272 
11273 	vcpu->arch.cr3 = 0;
11274 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11275 
11276 	/*
11277 	 * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11278 	 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11279 	 * (or qualify) that with a footnote stating that CD/NW are preserved.
11280 	 */
11281 	new_cr0 = X86_CR0_ET;
11282 	if (init_event)
11283 		new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11284 	else
11285 		new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11286 
11287 	static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11288 	static_call(kvm_x86_set_cr4)(vcpu, 0);
11289 	static_call(kvm_x86_set_efer)(vcpu, 0);
11290 	static_call(kvm_x86_update_exception_bitmap)(vcpu);
11291 
11292 	/*
11293 	 * Reset the MMU context if paging was enabled prior to INIT (which is
11294 	 * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11295 	 * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11296 	 * checked because it is unconditionally cleared on INIT and all other
11297 	 * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11298 	 * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11299 	 */
11300 	if (old_cr0 & X86_CR0_PG)
11301 		kvm_mmu_reset_context(vcpu);
11302 
11303 	/*
11304 	 * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11305 	 * APM states the TLBs are untouched by INIT, but it also states that
11306 	 * the TLBs are flushed on "External initialization of the processor."
11307 	 * Flush the guest TLB regardless of vendor, there is no meaningful
11308 	 * benefit in relying on the guest to flush the TLB immediately after
11309 	 * INIT.  A spurious TLB flush is benign and likely negligible from a
11310 	 * performance perspective.
11311 	 */
11312 	if (init_event)
11313 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11314 }
11315 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11316 
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)11317 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11318 {
11319 	struct kvm_segment cs;
11320 
11321 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11322 	cs.selector = vector << 8;
11323 	cs.base = vector << 12;
11324 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11325 	kvm_rip_write(vcpu, 0);
11326 }
11327 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11328 
kvm_arch_hardware_enable(void)11329 int kvm_arch_hardware_enable(void)
11330 {
11331 	struct kvm *kvm;
11332 	struct kvm_vcpu *vcpu;
11333 	int i;
11334 	int ret;
11335 	u64 local_tsc;
11336 	u64 max_tsc = 0;
11337 	bool stable, backwards_tsc = false;
11338 
11339 	kvm_user_return_msr_cpu_online();
11340 	ret = static_call(kvm_x86_hardware_enable)();
11341 	if (ret != 0)
11342 		return ret;
11343 
11344 	local_tsc = rdtsc();
11345 	stable = !kvm_check_tsc_unstable();
11346 	list_for_each_entry(kvm, &vm_list, vm_list) {
11347 		kvm_for_each_vcpu(i, vcpu, kvm) {
11348 			if (!stable && vcpu->cpu == smp_processor_id())
11349 				kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11350 			if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11351 				backwards_tsc = true;
11352 				if (vcpu->arch.last_host_tsc > max_tsc)
11353 					max_tsc = vcpu->arch.last_host_tsc;
11354 			}
11355 		}
11356 	}
11357 
11358 	/*
11359 	 * Sometimes, even reliable TSCs go backwards.  This happens on
11360 	 * platforms that reset TSC during suspend or hibernate actions, but
11361 	 * maintain synchronization.  We must compensate.  Fortunately, we can
11362 	 * detect that condition here, which happens early in CPU bringup,
11363 	 * before any KVM threads can be running.  Unfortunately, we can't
11364 	 * bring the TSCs fully up to date with real time, as we aren't yet far
11365 	 * enough into CPU bringup that we know how much real time has actually
11366 	 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11367 	 * variables that haven't been updated yet.
11368 	 *
11369 	 * So we simply find the maximum observed TSC above, then record the
11370 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11371 	 * the adjustment will be applied.  Note that we accumulate
11372 	 * adjustments, in case multiple suspend cycles happen before some VCPU
11373 	 * gets a chance to run again.  In the event that no KVM threads get a
11374 	 * chance to run, we will miss the entire elapsed period, as we'll have
11375 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11376 	 * loose cycle time.  This isn't too big a deal, since the loss will be
11377 	 * uniform across all VCPUs (not to mention the scenario is extremely
11378 	 * unlikely). It is possible that a second hibernate recovery happens
11379 	 * much faster than a first, causing the observed TSC here to be
11380 	 * smaller; this would require additional padding adjustment, which is
11381 	 * why we set last_host_tsc to the local tsc observed here.
11382 	 *
11383 	 * N.B. - this code below runs only on platforms with reliable TSC,
11384 	 * as that is the only way backwards_tsc is set above.  Also note
11385 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11386 	 * have the same delta_cyc adjustment applied if backwards_tsc
11387 	 * is detected.  Note further, this adjustment is only done once,
11388 	 * as we reset last_host_tsc on all VCPUs to stop this from being
11389 	 * called multiple times (one for each physical CPU bringup).
11390 	 *
11391 	 * Platforms with unreliable TSCs don't have to deal with this, they
11392 	 * will be compensated by the logic in vcpu_load, which sets the TSC to
11393 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot
11394 	 * guarantee that they stay in perfect synchronization.
11395 	 */
11396 	if (backwards_tsc) {
11397 		u64 delta_cyc = max_tsc - local_tsc;
11398 		list_for_each_entry(kvm, &vm_list, vm_list) {
11399 			kvm->arch.backwards_tsc_observed = true;
11400 			kvm_for_each_vcpu(i, vcpu, kvm) {
11401 				vcpu->arch.tsc_offset_adjustment += delta_cyc;
11402 				vcpu->arch.last_host_tsc = local_tsc;
11403 				kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11404 			}
11405 
11406 			/*
11407 			 * We have to disable TSC offset matching.. if you were
11408 			 * booting a VM while issuing an S4 host suspend....
11409 			 * you may have some problem.  Solving this issue is
11410 			 * left as an exercise to the reader.
11411 			 */
11412 			kvm->arch.last_tsc_nsec = 0;
11413 			kvm->arch.last_tsc_write = 0;
11414 		}
11415 
11416 	}
11417 	return 0;
11418 }
11419 
kvm_arch_hardware_disable(void)11420 void kvm_arch_hardware_disable(void)
11421 {
11422 	static_call(kvm_x86_hardware_disable)();
11423 	drop_user_return_notifiers();
11424 }
11425 
kvm_arch_hardware_setup(void * opaque)11426 int kvm_arch_hardware_setup(void *opaque)
11427 {
11428 	struct kvm_x86_init_ops *ops = opaque;
11429 	int r;
11430 
11431 	rdmsrl_safe(MSR_EFER, &host_efer);
11432 
11433 	if (boot_cpu_has(X86_FEATURE_XSAVES))
11434 		rdmsrl(MSR_IA32_XSS, host_xss);
11435 
11436 	r = ops->hardware_setup();
11437 	if (r != 0)
11438 		return r;
11439 
11440 	memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11441 	kvm_ops_static_call_update();
11442 
11443 	if (ops->intel_pt_intr_in_guest && ops->intel_pt_intr_in_guest())
11444 		kvm_guest_cbs.handle_intel_pt_intr = kvm_handle_intel_pt_intr;
11445 	perf_register_guest_info_callbacks(&kvm_guest_cbs);
11446 
11447 	if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11448 		supported_xss = 0;
11449 
11450 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11451 	cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11452 #undef __kvm_cpu_cap_has
11453 
11454 	if (kvm_has_tsc_control) {
11455 		/*
11456 		 * Make sure the user can only configure tsc_khz values that
11457 		 * fit into a signed integer.
11458 		 * A min value is not calculated because it will always
11459 		 * be 1 on all machines.
11460 		 */
11461 		u64 max = min(0x7fffffffULL,
11462 			      __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11463 		kvm_max_guest_tsc_khz = max;
11464 
11465 		kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11466 	}
11467 
11468 	kvm_init_msr_list();
11469 	return 0;
11470 }
11471 
kvm_arch_hardware_unsetup(void)11472 void kvm_arch_hardware_unsetup(void)
11473 {
11474 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
11475 	kvm_guest_cbs.handle_intel_pt_intr = NULL;
11476 
11477 	static_call(kvm_x86_hardware_unsetup)();
11478 }
11479 
kvm_arch_check_processor_compat(void * opaque)11480 int kvm_arch_check_processor_compat(void *opaque)
11481 {
11482 	struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11483 	struct kvm_x86_init_ops *ops = opaque;
11484 
11485 	WARN_ON(!irqs_disabled());
11486 
11487 	if (__cr4_reserved_bits(cpu_has, c) !=
11488 	    __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11489 		return -EIO;
11490 
11491 	return ops->check_processor_compatibility();
11492 }
11493 
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)11494 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11495 {
11496 	return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11497 }
11498 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11499 
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)11500 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11501 {
11502 	return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11503 }
11504 
11505 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11506 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11507 
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)11508 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11509 {
11510 	struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11511 
11512 	vcpu->arch.l1tf_flush_l1d = true;
11513 	if (pmu->version && unlikely(pmu->event_count)) {
11514 		pmu->need_cleanup = true;
11515 		kvm_make_request(KVM_REQ_PMU, vcpu);
11516 	}
11517 	static_call(kvm_x86_sched_in)(vcpu, cpu);
11518 }
11519 
kvm_arch_free_vm(struct kvm * kvm)11520 void kvm_arch_free_vm(struct kvm *kvm)
11521 {
11522 	kfree(to_kvm_hv(kvm)->hv_pa_pg);
11523 	vfree(kvm);
11524 }
11525 
11526 
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)11527 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11528 {
11529 	int ret;
11530 
11531 	if (type)
11532 		return -EINVAL;
11533 
11534 	ret = kvm_page_track_init(kvm);
11535 	if (ret)
11536 		return ret;
11537 
11538 	INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11539 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11540 	INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11541 	INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11542 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11543 	atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11544 
11545 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11546 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11547 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11548 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11549 		&kvm->arch.irq_sources_bitmap);
11550 
11551 	raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11552 	mutex_init(&kvm->arch.apic_map_lock);
11553 	raw_spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
11554 
11555 	kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11556 	pvclock_update_vm_gtod_copy(kvm);
11557 
11558 	kvm->arch.guest_can_read_msr_platform_info = true;
11559 
11560 #if IS_ENABLED(CONFIG_HYPERV)
11561 	spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11562 	kvm->arch.hv_root_tdp = INVALID_PAGE;
11563 #endif
11564 
11565 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11566 	INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11567 
11568 	kvm_apicv_init(kvm);
11569 	kvm_hv_init_vm(kvm);
11570 	kvm_mmu_init_vm(kvm);
11571 	kvm_xen_init_vm(kvm);
11572 
11573 	return static_call(kvm_x86_vm_init)(kvm);
11574 }
11575 
kvm_arch_post_init_vm(struct kvm * kvm)11576 int kvm_arch_post_init_vm(struct kvm *kvm)
11577 {
11578 	return kvm_mmu_post_init_vm(kvm);
11579 }
11580 
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)11581 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11582 {
11583 	vcpu_load(vcpu);
11584 	kvm_mmu_unload(vcpu);
11585 	vcpu_put(vcpu);
11586 }
11587 
kvm_free_vcpus(struct kvm * kvm)11588 static void kvm_free_vcpus(struct kvm *kvm)
11589 {
11590 	unsigned int i;
11591 	struct kvm_vcpu *vcpu;
11592 
11593 	/*
11594 	 * Unpin any mmu pages first.
11595 	 */
11596 	kvm_for_each_vcpu(i, vcpu, kvm) {
11597 		kvm_clear_async_pf_completion_queue(vcpu);
11598 		kvm_unload_vcpu_mmu(vcpu);
11599 	}
11600 	kvm_for_each_vcpu(i, vcpu, kvm)
11601 		kvm_vcpu_destroy(vcpu);
11602 
11603 	mutex_lock(&kvm->lock);
11604 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11605 		kvm->vcpus[i] = NULL;
11606 
11607 	atomic_set(&kvm->online_vcpus, 0);
11608 	mutex_unlock(&kvm->lock);
11609 }
11610 
kvm_arch_sync_events(struct kvm * kvm)11611 void kvm_arch_sync_events(struct kvm *kvm)
11612 {
11613 	cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11614 	cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11615 	kvm_free_pit(kvm);
11616 }
11617 
11618 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11619 
11620 /**
11621  * __x86_set_memory_region: Setup KVM internal memory slot
11622  *
11623  * @kvm: the kvm pointer to the VM.
11624  * @id: the slot ID to setup.
11625  * @gpa: the GPA to install the slot (unused when @size == 0).
11626  * @size: the size of the slot. Set to zero to uninstall a slot.
11627  *
11628  * This function helps to setup a KVM internal memory slot.  Specify
11629  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11630  * slot.  The return code can be one of the following:
11631  *
11632  *   HVA:           on success (uninstall will return a bogus HVA)
11633  *   -errno:        on error
11634  *
11635  * The caller should always use IS_ERR() to check the return value
11636  * before use.  Note, the KVM internal memory slots are guaranteed to
11637  * remain valid and unchanged until the VM is destroyed, i.e., the
11638  * GPA->HVA translation will not change.  However, the HVA is a user
11639  * address, i.e. its accessibility is not guaranteed, and must be
11640  * accessed via __copy_{to,from}_user().
11641  */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)11642 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11643 				      u32 size)
11644 {
11645 	int i, r;
11646 	unsigned long hva, old_npages;
11647 	struct kvm_memslots *slots = kvm_memslots(kvm);
11648 	struct kvm_memory_slot *slot;
11649 
11650 	/* Called with kvm->slots_lock held.  */
11651 	if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11652 		return ERR_PTR_USR(-EINVAL);
11653 
11654 	slot = id_to_memslot(slots, id);
11655 	if (size) {
11656 		if (slot && slot->npages)
11657 			return ERR_PTR_USR(-EEXIST);
11658 
11659 		/*
11660 		 * MAP_SHARED to prevent internal slot pages from being moved
11661 		 * by fork()/COW.
11662 		 */
11663 		hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11664 			      MAP_SHARED | MAP_ANONYMOUS, 0);
11665 		if (IS_ERR((void *)hva))
11666 			return (void __user *)hva;
11667 	} else {
11668 		if (!slot || !slot->npages)
11669 			return NULL;
11670 
11671 		old_npages = slot->npages;
11672 		hva = slot->userspace_addr;
11673 	}
11674 
11675 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11676 		struct kvm_userspace_memory_region m;
11677 
11678 		m.slot = id | (i << 16);
11679 		m.flags = 0;
11680 		m.guest_phys_addr = gpa;
11681 		m.userspace_addr = hva;
11682 		m.memory_size = size;
11683 		r = __kvm_set_memory_region(kvm, &m);
11684 		if (r < 0)
11685 			return ERR_PTR_USR(r);
11686 	}
11687 
11688 	if (!size)
11689 		vm_munmap(hva, old_npages * PAGE_SIZE);
11690 
11691 	return (void __user *)hva;
11692 }
11693 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11694 
kvm_arch_pre_destroy_vm(struct kvm * kvm)11695 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11696 {
11697 	kvm_mmu_pre_destroy_vm(kvm);
11698 }
11699 
kvm_arch_destroy_vm(struct kvm * kvm)11700 void kvm_arch_destroy_vm(struct kvm *kvm)
11701 {
11702 	if (current->mm == kvm->mm) {
11703 		/*
11704 		 * Free memory regions allocated on behalf of userspace,
11705 		 * unless the the memory map has changed due to process exit
11706 		 * or fd copying.
11707 		 */
11708 		mutex_lock(&kvm->slots_lock);
11709 		__x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11710 					0, 0);
11711 		__x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11712 					0, 0);
11713 		__x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11714 		mutex_unlock(&kvm->slots_lock);
11715 	}
11716 	static_call_cond(kvm_x86_vm_destroy)(kvm);
11717 	kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11718 	kvm_pic_destroy(kvm);
11719 	kvm_ioapic_destroy(kvm);
11720 	kvm_free_vcpus(kvm);
11721 	kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11722 	kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11723 	kvm_mmu_uninit_vm(kvm);
11724 	kvm_page_track_cleanup(kvm);
11725 	kvm_xen_destroy_vm(kvm);
11726 	kvm_hv_destroy_vm(kvm);
11727 }
11728 
memslot_rmap_free(struct kvm_memory_slot * slot)11729 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11730 {
11731 	int i;
11732 
11733 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11734 		kvfree(slot->arch.rmap[i]);
11735 		slot->arch.rmap[i] = NULL;
11736 	}
11737 }
11738 
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)11739 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11740 {
11741 	int i;
11742 
11743 	memslot_rmap_free(slot);
11744 
11745 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11746 		kvfree(slot->arch.lpage_info[i - 1]);
11747 		slot->arch.lpage_info[i - 1] = NULL;
11748 	}
11749 
11750 	kvm_page_track_free_memslot(slot);
11751 }
11752 
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)11753 static int memslot_rmap_alloc(struct kvm_memory_slot *slot,
11754 			      unsigned long npages)
11755 {
11756 	const int sz = sizeof(*slot->arch.rmap[0]);
11757 	int i;
11758 
11759 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11760 		int level = i + 1;
11761 		int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11762 
11763 		if (slot->arch.rmap[i])
11764 			continue;
11765 
11766 		slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11767 		if (!slot->arch.rmap[i]) {
11768 			memslot_rmap_free(slot);
11769 			return -ENOMEM;
11770 		}
11771 	}
11772 
11773 	return 0;
11774 }
11775 
alloc_all_memslots_rmaps(struct kvm * kvm)11776 int alloc_all_memslots_rmaps(struct kvm *kvm)
11777 {
11778 	struct kvm_memslots *slots;
11779 	struct kvm_memory_slot *slot;
11780 	int r, i;
11781 
11782 	/*
11783 	 * Check if memslots alreday have rmaps early before acquiring
11784 	 * the slots_arch_lock below.
11785 	 */
11786 	if (kvm_memslots_have_rmaps(kvm))
11787 		return 0;
11788 
11789 	mutex_lock(&kvm->slots_arch_lock);
11790 
11791 	/*
11792 	 * Read memslots_have_rmaps again, under the slots arch lock,
11793 	 * before allocating the rmaps
11794 	 */
11795 	if (kvm_memslots_have_rmaps(kvm)) {
11796 		mutex_unlock(&kvm->slots_arch_lock);
11797 		return 0;
11798 	}
11799 
11800 	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11801 		slots = __kvm_memslots(kvm, i);
11802 		kvm_for_each_memslot(slot, slots) {
11803 			r = memslot_rmap_alloc(slot, slot->npages);
11804 			if (r) {
11805 				mutex_unlock(&kvm->slots_arch_lock);
11806 				return r;
11807 			}
11808 		}
11809 	}
11810 
11811 	/*
11812 	 * Ensure that memslots_have_rmaps becomes true strictly after
11813 	 * all the rmap pointers are set.
11814 	 */
11815 	smp_store_release(&kvm->arch.memslots_have_rmaps, true);
11816 	mutex_unlock(&kvm->slots_arch_lock);
11817 	return 0;
11818 }
11819 
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot,unsigned long npages)11820 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11821 				      struct kvm_memory_slot *slot,
11822 				      unsigned long npages)
11823 {
11824 	int i, r;
11825 
11826 	/*
11827 	 * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11828 	 * old arrays will be freed by __kvm_set_memory_region() if installing
11829 	 * the new memslot is successful.
11830 	 */
11831 	memset(&slot->arch, 0, sizeof(slot->arch));
11832 
11833 	if (kvm_memslots_have_rmaps(kvm)) {
11834 		r = memslot_rmap_alloc(slot, npages);
11835 		if (r)
11836 			return r;
11837 	}
11838 
11839 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11840 		struct kvm_lpage_info *linfo;
11841 		unsigned long ugfn;
11842 		int lpages;
11843 		int level = i + 1;
11844 
11845 		lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11846 
11847 		linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11848 		if (!linfo)
11849 			goto out_free;
11850 
11851 		slot->arch.lpage_info[i - 1] = linfo;
11852 
11853 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11854 			linfo[0].disallow_lpage = 1;
11855 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11856 			linfo[lpages - 1].disallow_lpage = 1;
11857 		ugfn = slot->userspace_addr >> PAGE_SHIFT;
11858 		/*
11859 		 * If the gfn and userspace address are not aligned wrt each
11860 		 * other, disable large page support for this slot.
11861 		 */
11862 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11863 			unsigned long j;
11864 
11865 			for (j = 0; j < lpages; ++j)
11866 				linfo[j].disallow_lpage = 1;
11867 		}
11868 	}
11869 
11870 	if (kvm_page_track_create_memslot(slot, npages))
11871 		goto out_free;
11872 
11873 	return 0;
11874 
11875 out_free:
11876 	memslot_rmap_free(slot);
11877 
11878 	for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11879 		kvfree(slot->arch.lpage_info[i - 1]);
11880 		slot->arch.lpage_info[i - 1] = NULL;
11881 	}
11882 	return -ENOMEM;
11883 }
11884 
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)11885 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11886 {
11887 	struct kvm_vcpu *vcpu;
11888 	int i;
11889 
11890 	/*
11891 	 * memslots->generation has been incremented.
11892 	 * mmio generation may have reached its maximum value.
11893 	 */
11894 	kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11895 
11896 	/* Force re-initialization of steal_time cache */
11897 	kvm_for_each_vcpu(i, vcpu, kvm)
11898 		kvm_vcpu_kick(vcpu);
11899 }
11900 
kvm_arch_prepare_memory_region(struct kvm * kvm,struct kvm_memory_slot * memslot,const struct kvm_userspace_memory_region * mem,enum kvm_mr_change change)11901 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11902 				struct kvm_memory_slot *memslot,
11903 				const struct kvm_userspace_memory_region *mem,
11904 				enum kvm_mr_change change)
11905 {
11906 	if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11907 		return kvm_alloc_memslot_metadata(kvm, memslot,
11908 						  mem->memory_size >> PAGE_SHIFT);
11909 	return 0;
11910 }
11911 
11912 
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)11913 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11914 {
11915 	struct kvm_arch *ka = &kvm->arch;
11916 
11917 	if (!kvm_x86_ops.cpu_dirty_log_size)
11918 		return;
11919 
11920 	if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11921 	    (!enable && --ka->cpu_dirty_logging_count == 0))
11922 		kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11923 
11924 	WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11925 }
11926 
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)11927 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11928 				     struct kvm_memory_slot *old,
11929 				     const struct kvm_memory_slot *new,
11930 				     enum kvm_mr_change change)
11931 {
11932 	bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11933 
11934 	/*
11935 	 * Update CPU dirty logging if dirty logging is being toggled.  This
11936 	 * applies to all operations.
11937 	 */
11938 	if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11939 		kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11940 
11941 	/*
11942 	 * Nothing more to do for RO slots (which can't be dirtied and can't be
11943 	 * made writable) or CREATE/MOVE/DELETE of a slot.
11944 	 *
11945 	 * For a memslot with dirty logging disabled:
11946 	 * CREATE:      No dirty mappings will already exist.
11947 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11948 	 *		kvm_arch_flush_shadow_memslot()
11949 	 *
11950 	 * For a memslot with dirty logging enabled:
11951 	 * CREATE:      No shadow pages exist, thus nothing to write-protect
11952 	 *		and no dirty bits to clear.
11953 	 * MOVE/DELETE: The old mappings will already have been cleaned up by
11954 	 *		kvm_arch_flush_shadow_memslot().
11955 	 */
11956 	if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11957 		return;
11958 
11959 	/*
11960 	 * READONLY and non-flags changes were filtered out above, and the only
11961 	 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11962 	 * logging isn't being toggled on or off.
11963 	 */
11964 	if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11965 		return;
11966 
11967 	if (!log_dirty_pages) {
11968 		/*
11969 		 * Dirty logging tracks sptes in 4k granularity, meaning that
11970 		 * large sptes have to be split.  If live migration succeeds,
11971 		 * the guest in the source machine will be destroyed and large
11972 		 * sptes will be created in the destination.  However, if the
11973 		 * guest continues to run in the source machine (for example if
11974 		 * live migration fails), small sptes will remain around and
11975 		 * cause bad performance.
11976 		 *
11977 		 * Scan sptes if dirty logging has been stopped, dropping those
11978 		 * which can be collapsed into a single large-page spte.  Later
11979 		 * page faults will create the large-page sptes.
11980 		 */
11981 		kvm_mmu_zap_collapsible_sptes(kvm, new);
11982 	} else {
11983 		/*
11984 		 * Initially-all-set does not require write protecting any page,
11985 		 * because they're all assumed to be dirty.
11986 		 */
11987 		if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11988 			return;
11989 
11990 		if (kvm_x86_ops.cpu_dirty_log_size) {
11991 			kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11992 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11993 		} else {
11994 			kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11995 		}
11996 	}
11997 }
11998 
kvm_arch_commit_memory_region(struct kvm * kvm,const struct kvm_userspace_memory_region * mem,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)11999 void kvm_arch_commit_memory_region(struct kvm *kvm,
12000 				const struct kvm_userspace_memory_region *mem,
12001 				struct kvm_memory_slot *old,
12002 				const struct kvm_memory_slot *new,
12003 				enum kvm_mr_change change)
12004 {
12005 	if (!kvm->arch.n_requested_mmu_pages)
12006 		kvm_mmu_change_mmu_pages(kvm,
12007 				kvm_mmu_calculate_default_mmu_pages(kvm));
12008 
12009 	kvm_mmu_slot_apply_flags(kvm, old, new, change);
12010 
12011 	/* Free the arrays associated with the old memslot. */
12012 	if (change == KVM_MR_MOVE)
12013 		kvm_arch_free_memslot(kvm, old);
12014 }
12015 
kvm_arch_flush_shadow_all(struct kvm * kvm)12016 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12017 {
12018 	kvm_mmu_zap_all(kvm);
12019 }
12020 
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12021 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12022 				   struct kvm_memory_slot *slot)
12023 {
12024 	kvm_page_track_flush_slot(kvm, slot);
12025 }
12026 
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12027 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12028 {
12029 	return (is_guest_mode(vcpu) &&
12030 			kvm_x86_ops.guest_apic_has_interrupt &&
12031 			static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12032 }
12033 
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12034 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12035 {
12036 	if (!list_empty_careful(&vcpu->async_pf.done))
12037 		return true;
12038 
12039 	if (kvm_apic_has_events(vcpu))
12040 		return true;
12041 
12042 	if (vcpu->arch.pv.pv_unhalted)
12043 		return true;
12044 
12045 	if (vcpu->arch.exception.pending)
12046 		return true;
12047 
12048 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12049 	    (vcpu->arch.nmi_pending &&
12050 	     static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12051 		return true;
12052 
12053 	if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12054 	    (vcpu->arch.smi_pending &&
12055 	     static_call(kvm_x86_smi_allowed)(vcpu, false)))
12056 		return true;
12057 
12058 	if (kvm_arch_interrupt_allowed(vcpu) &&
12059 	    (kvm_cpu_has_interrupt(vcpu) ||
12060 	    kvm_guest_apic_has_interrupt(vcpu)))
12061 		return true;
12062 
12063 	if (kvm_hv_has_stimer_pending(vcpu))
12064 		return true;
12065 
12066 	if (is_guest_mode(vcpu) &&
12067 	    kvm_x86_ops.nested_ops->hv_timer_pending &&
12068 	    kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12069 		return true;
12070 
12071 	return false;
12072 }
12073 
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12074 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12075 {
12076 	return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12077 }
12078 
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12079 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12080 {
12081 	if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12082 		return true;
12083 
12084 	return false;
12085 }
12086 
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12087 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12088 {
12089 	if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12090 		return true;
12091 
12092 	if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12093 		kvm_test_request(KVM_REQ_SMI, vcpu) ||
12094 		 kvm_test_request(KVM_REQ_EVENT, vcpu))
12095 		return true;
12096 
12097 	return kvm_arch_dy_has_pending_interrupt(vcpu);
12098 }
12099 
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12100 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12101 {
12102 	if (vcpu->arch.guest_state_protected)
12103 		return true;
12104 
12105 	return vcpu->arch.preempted_in_kernel;
12106 }
12107 
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12108 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12109 {
12110 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12111 }
12112 
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12113 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12114 {
12115 	return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12116 }
12117 
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12118 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12119 {
12120 	/* Can't read the RIP when guest state is protected, just return 0 */
12121 	if (vcpu->arch.guest_state_protected)
12122 		return 0;
12123 
12124 	if (is_64_bit_mode(vcpu))
12125 		return kvm_rip_read(vcpu);
12126 	return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12127 		     kvm_rip_read(vcpu));
12128 }
12129 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12130 
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12131 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12132 {
12133 	return kvm_get_linear_rip(vcpu) == linear_rip;
12134 }
12135 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12136 
kvm_get_rflags(struct kvm_vcpu * vcpu)12137 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12138 {
12139 	unsigned long rflags;
12140 
12141 	rflags = static_call(kvm_x86_get_rflags)(vcpu);
12142 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12143 		rflags &= ~X86_EFLAGS_TF;
12144 	return rflags;
12145 }
12146 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12147 
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12148 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12149 {
12150 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12151 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12152 		rflags |= X86_EFLAGS_TF;
12153 	static_call(kvm_x86_set_rflags)(vcpu, rflags);
12154 }
12155 
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)12156 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12157 {
12158 	__kvm_set_rflags(vcpu, rflags);
12159 	kvm_make_request(KVM_REQ_EVENT, vcpu);
12160 }
12161 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12162 
kvm_arch_async_page_ready(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12163 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12164 {
12165 	int r;
12166 
12167 	if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12168 	      work->wakeup_all)
12169 		return;
12170 
12171 	r = kvm_mmu_reload(vcpu);
12172 	if (unlikely(r))
12173 		return;
12174 
12175 	if (!vcpu->arch.mmu->direct_map &&
12176 	      work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12177 		return;
12178 
12179 	kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12180 }
12181 
kvm_async_pf_hash_fn(gfn_t gfn)12182 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12183 {
12184 	BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12185 
12186 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12187 }
12188 
kvm_async_pf_next_probe(u32 key)12189 static inline u32 kvm_async_pf_next_probe(u32 key)
12190 {
12191 	return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12192 }
12193 
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12194 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12195 {
12196 	u32 key = kvm_async_pf_hash_fn(gfn);
12197 
12198 	while (vcpu->arch.apf.gfns[key] != ~0)
12199 		key = kvm_async_pf_next_probe(key);
12200 
12201 	vcpu->arch.apf.gfns[key] = gfn;
12202 }
12203 
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)12204 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12205 {
12206 	int i;
12207 	u32 key = kvm_async_pf_hash_fn(gfn);
12208 
12209 	for (i = 0; i < ASYNC_PF_PER_VCPU &&
12210 		     (vcpu->arch.apf.gfns[key] != gfn &&
12211 		      vcpu->arch.apf.gfns[key] != ~0); i++)
12212 		key = kvm_async_pf_next_probe(key);
12213 
12214 	return key;
12215 }
12216 
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12217 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12218 {
12219 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12220 }
12221 
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)12222 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12223 {
12224 	u32 i, j, k;
12225 
12226 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12227 
12228 	if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12229 		return;
12230 
12231 	while (true) {
12232 		vcpu->arch.apf.gfns[i] = ~0;
12233 		do {
12234 			j = kvm_async_pf_next_probe(j);
12235 			if (vcpu->arch.apf.gfns[j] == ~0)
12236 				return;
12237 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12238 			/*
12239 			 * k lies cyclically in ]i,j]
12240 			 * |    i.k.j |
12241 			 * |....j i.k.| or  |.k..j i...|
12242 			 */
12243 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12244 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12245 		i = j;
12246 	}
12247 }
12248 
apf_put_user_notpresent(struct kvm_vcpu * vcpu)12249 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12250 {
12251 	u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12252 
12253 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12254 				      sizeof(reason));
12255 }
12256 
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)12257 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12258 {
12259 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12260 
12261 	return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12262 					     &token, offset, sizeof(token));
12263 }
12264 
apf_pageready_slot_free(struct kvm_vcpu * vcpu)12265 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12266 {
12267 	unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12268 	u32 val;
12269 
12270 	if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12271 					 &val, offset, sizeof(val)))
12272 		return false;
12273 
12274 	return !val;
12275 }
12276 
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)12277 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12278 {
12279 	if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12280 		return false;
12281 
12282 	if (!kvm_pv_async_pf_enabled(vcpu) ||
12283 	    (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12284 		return false;
12285 
12286 	return true;
12287 }
12288 
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)12289 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12290 {
12291 	if (unlikely(!lapic_in_kernel(vcpu) ||
12292 		     kvm_event_needs_reinjection(vcpu) ||
12293 		     vcpu->arch.exception.pending))
12294 		return false;
12295 
12296 	if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12297 		return false;
12298 
12299 	/*
12300 	 * If interrupts are off we cannot even use an artificial
12301 	 * halt state.
12302 	 */
12303 	return kvm_arch_interrupt_allowed(vcpu);
12304 }
12305 
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12306 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12307 				     struct kvm_async_pf *work)
12308 {
12309 	struct x86_exception fault;
12310 
12311 	trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12312 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12313 
12314 	if (kvm_can_deliver_async_pf(vcpu) &&
12315 	    !apf_put_user_notpresent(vcpu)) {
12316 		fault.vector = PF_VECTOR;
12317 		fault.error_code_valid = true;
12318 		fault.error_code = 0;
12319 		fault.nested_page_fault = false;
12320 		fault.address = work->arch.token;
12321 		fault.async_page_fault = true;
12322 		kvm_inject_page_fault(vcpu, &fault);
12323 		return true;
12324 	} else {
12325 		/*
12326 		 * It is not possible to deliver a paravirtualized asynchronous
12327 		 * page fault, but putting the guest in an artificial halt state
12328 		 * can be beneficial nevertheless: if an interrupt arrives, we
12329 		 * can deliver it timely and perhaps the guest will schedule
12330 		 * another process.  When the instruction that triggered a page
12331 		 * fault is retried, hopefully the page will be ready in the host.
12332 		 */
12333 		kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12334 		return false;
12335 	}
12336 }
12337 
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)12338 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12339 				 struct kvm_async_pf *work)
12340 {
12341 	struct kvm_lapic_irq irq = {
12342 		.delivery_mode = APIC_DM_FIXED,
12343 		.vector = vcpu->arch.apf.vec
12344 	};
12345 
12346 	if (work->wakeup_all)
12347 		work->arch.token = ~0; /* broadcast wakeup */
12348 	else
12349 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12350 	trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12351 
12352 	if ((work->wakeup_all || work->notpresent_injected) &&
12353 	    kvm_pv_async_pf_enabled(vcpu) &&
12354 	    !apf_put_user_ready(vcpu, work->arch.token)) {
12355 		vcpu->arch.apf.pageready_pending = true;
12356 		kvm_apic_set_irq(vcpu, &irq, NULL);
12357 	}
12358 
12359 	vcpu->arch.apf.halted = false;
12360 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12361 }
12362 
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)12363 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12364 {
12365 	kvm_make_request(KVM_REQ_APF_READY, vcpu);
12366 	if (!vcpu->arch.apf.pageready_pending)
12367 		kvm_vcpu_kick(vcpu);
12368 }
12369 
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)12370 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12371 {
12372 	if (!kvm_pv_async_pf_enabled(vcpu))
12373 		return true;
12374 	else
12375 		return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12376 }
12377 
kvm_arch_start_assignment(struct kvm * kvm)12378 void kvm_arch_start_assignment(struct kvm *kvm)
12379 {
12380 	if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12381 		static_call_cond(kvm_x86_start_assignment)(kvm);
12382 }
12383 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12384 
kvm_arch_end_assignment(struct kvm * kvm)12385 void kvm_arch_end_assignment(struct kvm *kvm)
12386 {
12387 	atomic_dec(&kvm->arch.assigned_device_count);
12388 }
12389 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12390 
kvm_arch_has_assigned_device(struct kvm * kvm)12391 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
12392 {
12393 	return arch_atomic_read(&kvm->arch.assigned_device_count);
12394 }
12395 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12396 
kvm_arch_register_noncoherent_dma(struct kvm * kvm)12397 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12398 {
12399 	atomic_inc(&kvm->arch.noncoherent_dma_count);
12400 }
12401 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12402 
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)12403 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12404 {
12405 	atomic_dec(&kvm->arch.noncoherent_dma_count);
12406 }
12407 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12408 
kvm_arch_has_noncoherent_dma(struct kvm * kvm)12409 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12410 {
12411 	return atomic_read(&kvm->arch.noncoherent_dma_count);
12412 }
12413 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12414 
kvm_arch_has_irq_bypass(void)12415 bool kvm_arch_has_irq_bypass(void)
12416 {
12417 	return true;
12418 }
12419 
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)12420 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12421 				      struct irq_bypass_producer *prod)
12422 {
12423 	struct kvm_kernel_irqfd *irqfd =
12424 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12425 	int ret;
12426 
12427 	irqfd->producer = prod;
12428 	kvm_arch_start_assignment(irqfd->kvm);
12429 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12430 					 prod->irq, irqfd->gsi, 1);
12431 
12432 	if (ret)
12433 		kvm_arch_end_assignment(irqfd->kvm);
12434 
12435 	return ret;
12436 }
12437 
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)12438 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12439 				      struct irq_bypass_producer *prod)
12440 {
12441 	int ret;
12442 	struct kvm_kernel_irqfd *irqfd =
12443 		container_of(cons, struct kvm_kernel_irqfd, consumer);
12444 
12445 	WARN_ON(irqfd->producer != prod);
12446 	irqfd->producer = NULL;
12447 
12448 	/*
12449 	 * When producer of consumer is unregistered, we change back to
12450 	 * remapped mode, so we can re-use the current implementation
12451 	 * when the irq is masked/disabled or the consumer side (KVM
12452 	 * int this case doesn't want to receive the interrupts.
12453 	*/
12454 	ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12455 	if (ret)
12456 		printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12457 		       " fails: %d\n", irqfd->consumer.token, ret);
12458 
12459 	kvm_arch_end_assignment(irqfd->kvm);
12460 }
12461 
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)12462 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12463 				   uint32_t guest_irq, bool set)
12464 {
12465 	return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12466 }
12467 
kvm_vector_hashing_enabled(void)12468 bool kvm_vector_hashing_enabled(void)
12469 {
12470 	return vector_hashing;
12471 }
12472 
kvm_arch_no_poll(struct kvm_vcpu * vcpu)12473 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12474 {
12475 	return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12476 }
12477 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12478 
12479 
kvm_spec_ctrl_test_value(u64 value)12480 int kvm_spec_ctrl_test_value(u64 value)
12481 {
12482 	/*
12483 	 * test that setting IA32_SPEC_CTRL to given value
12484 	 * is allowed by the host processor
12485 	 */
12486 
12487 	u64 saved_value;
12488 	unsigned long flags;
12489 	int ret = 0;
12490 
12491 	local_irq_save(flags);
12492 
12493 	if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12494 		ret = 1;
12495 	else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12496 		ret = 1;
12497 	else
12498 		wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12499 
12500 	local_irq_restore(flags);
12501 
12502 	return ret;
12503 }
12504 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12505 
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)12506 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12507 {
12508 	struct x86_exception fault;
12509 	u32 access = error_code &
12510 		(PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12511 
12512 	if (!(error_code & PFERR_PRESENT_MASK) ||
12513 	    vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12514 		/*
12515 		 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12516 		 * tables probably do not match the TLB.  Just proceed
12517 		 * with the error code that the processor gave.
12518 		 */
12519 		fault.vector = PF_VECTOR;
12520 		fault.error_code_valid = true;
12521 		fault.error_code = error_code;
12522 		fault.nested_page_fault = false;
12523 		fault.address = gva;
12524 	}
12525 	vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12526 }
12527 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12528 
12529 /*
12530  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12531  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12532  * indicates whether exit to userspace is needed.
12533  */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)12534 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12535 			      struct x86_exception *e)
12536 {
12537 	if (r == X86EMUL_PROPAGATE_FAULT) {
12538 		kvm_inject_emulated_page_fault(vcpu, e);
12539 		return 1;
12540 	}
12541 
12542 	/*
12543 	 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12544 	 * while handling a VMX instruction KVM could've handled the request
12545 	 * correctly by exiting to userspace and performing I/O but there
12546 	 * doesn't seem to be a real use-case behind such requests, just return
12547 	 * KVM_EXIT_INTERNAL_ERROR for now.
12548 	 */
12549 	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
12550 	vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
12551 	vcpu->run->internal.ndata = 0;
12552 
12553 	return 0;
12554 }
12555 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12556 
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)12557 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12558 {
12559 	bool pcid_enabled;
12560 	struct x86_exception e;
12561 	struct {
12562 		u64 pcid;
12563 		u64 gla;
12564 	} operand;
12565 	int r;
12566 
12567 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12568 	if (r != X86EMUL_CONTINUE)
12569 		return kvm_handle_memory_failure(vcpu, r, &e);
12570 
12571 	if (operand.pcid >> 12 != 0) {
12572 		kvm_inject_gp(vcpu, 0);
12573 		return 1;
12574 	}
12575 
12576 	pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12577 
12578 	switch (type) {
12579 	case INVPCID_TYPE_INDIV_ADDR:
12580 		if ((!pcid_enabled && (operand.pcid != 0)) ||
12581 		    is_noncanonical_address(operand.gla, vcpu)) {
12582 			kvm_inject_gp(vcpu, 0);
12583 			return 1;
12584 		}
12585 		kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12586 		return kvm_skip_emulated_instruction(vcpu);
12587 
12588 	case INVPCID_TYPE_SINGLE_CTXT:
12589 		if (!pcid_enabled && (operand.pcid != 0)) {
12590 			kvm_inject_gp(vcpu, 0);
12591 			return 1;
12592 		}
12593 
12594 		kvm_invalidate_pcid(vcpu, operand.pcid);
12595 		return kvm_skip_emulated_instruction(vcpu);
12596 
12597 	case INVPCID_TYPE_ALL_NON_GLOBAL:
12598 		/*
12599 		 * Currently, KVM doesn't mark global entries in the shadow
12600 		 * page tables, so a non-global flush just degenerates to a
12601 		 * global flush. If needed, we could optimize this later by
12602 		 * keeping track of global entries in shadow page tables.
12603 		 */
12604 
12605 		fallthrough;
12606 	case INVPCID_TYPE_ALL_INCL_GLOBAL:
12607 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12608 		return kvm_skip_emulated_instruction(vcpu);
12609 
12610 	default:
12611 		BUG(); /* We have already checked above that type <= 3 */
12612 	}
12613 }
12614 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12615 
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)12616 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12617 {
12618 	struct kvm_run *run = vcpu->run;
12619 	struct kvm_mmio_fragment *frag;
12620 	unsigned int len;
12621 
12622 	BUG_ON(!vcpu->mmio_needed);
12623 
12624 	/* Complete previous fragment */
12625 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12626 	len = min(8u, frag->len);
12627 	if (!vcpu->mmio_is_write)
12628 		memcpy(frag->data, run->mmio.data, len);
12629 
12630 	if (frag->len <= 8) {
12631 		/* Switch to the next fragment. */
12632 		frag++;
12633 		vcpu->mmio_cur_fragment++;
12634 	} else {
12635 		/* Go forward to the next mmio piece. */
12636 		frag->data += len;
12637 		frag->gpa += len;
12638 		frag->len -= len;
12639 	}
12640 
12641 	if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12642 		vcpu->mmio_needed = 0;
12643 
12644 		// VMG change, at this point, we're always done
12645 		// RIP has already been advanced
12646 		return 1;
12647 	}
12648 
12649 	// More MMIO is needed
12650 	run->mmio.phys_addr = frag->gpa;
12651 	run->mmio.len = min(8u, frag->len);
12652 	run->mmio.is_write = vcpu->mmio_is_write;
12653 	if (run->mmio.is_write)
12654 		memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12655 	run->exit_reason = KVM_EXIT_MMIO;
12656 
12657 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12658 
12659 	return 0;
12660 }
12661 
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)12662 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12663 			  void *data)
12664 {
12665 	int handled;
12666 	struct kvm_mmio_fragment *frag;
12667 
12668 	if (!data)
12669 		return -EINVAL;
12670 
12671 	handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12672 	if (handled == bytes)
12673 		return 1;
12674 
12675 	bytes -= handled;
12676 	gpa += handled;
12677 	data += handled;
12678 
12679 	/*TODO: Check if need to increment number of frags */
12680 	frag = vcpu->mmio_fragments;
12681 	vcpu->mmio_nr_fragments = 1;
12682 	frag->len = bytes;
12683 	frag->gpa = gpa;
12684 	frag->data = data;
12685 
12686 	vcpu->mmio_needed = 1;
12687 	vcpu->mmio_cur_fragment = 0;
12688 
12689 	vcpu->run->mmio.phys_addr = gpa;
12690 	vcpu->run->mmio.len = min(8u, frag->len);
12691 	vcpu->run->mmio.is_write = 1;
12692 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12693 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12694 
12695 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12696 
12697 	return 0;
12698 }
12699 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12700 
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)12701 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12702 			 void *data)
12703 {
12704 	int handled;
12705 	struct kvm_mmio_fragment *frag;
12706 
12707 	if (!data)
12708 		return -EINVAL;
12709 
12710 	handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12711 	if (handled == bytes)
12712 		return 1;
12713 
12714 	bytes -= handled;
12715 	gpa += handled;
12716 	data += handled;
12717 
12718 	/*TODO: Check if need to increment number of frags */
12719 	frag = vcpu->mmio_fragments;
12720 	vcpu->mmio_nr_fragments = 1;
12721 	frag->len = bytes;
12722 	frag->gpa = gpa;
12723 	frag->data = data;
12724 
12725 	vcpu->mmio_needed = 1;
12726 	vcpu->mmio_cur_fragment = 0;
12727 
12728 	vcpu->run->mmio.phys_addr = gpa;
12729 	vcpu->run->mmio.len = min(8u, frag->len);
12730 	vcpu->run->mmio.is_write = 0;
12731 	vcpu->run->exit_reason = KVM_EXIT_MMIO;
12732 
12733 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12734 
12735 	return 0;
12736 }
12737 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12738 
12739 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12740 			   unsigned int port);
12741 
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)12742 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12743 {
12744 	int size = vcpu->arch.pio.size;
12745 	int port = vcpu->arch.pio.port;
12746 
12747 	vcpu->arch.pio.count = 0;
12748 	if (vcpu->arch.sev_pio_count)
12749 		return kvm_sev_es_outs(vcpu, size, port);
12750 	return 1;
12751 }
12752 
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)12753 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12754 			   unsigned int port)
12755 {
12756 	for (;;) {
12757 		unsigned int count =
12758 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12759 		int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12760 
12761 		/* memcpy done already by emulator_pio_out.  */
12762 		vcpu->arch.sev_pio_count -= count;
12763 		vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12764 		if (!ret)
12765 			break;
12766 
12767 		/* Emulation done by the kernel.  */
12768 		if (!vcpu->arch.sev_pio_count)
12769 			return 1;
12770 	}
12771 
12772 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12773 	return 0;
12774 }
12775 
12776 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12777 			  unsigned int port);
12778 
advance_sev_es_emulated_ins(struct kvm_vcpu * vcpu)12779 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12780 {
12781 	unsigned count = vcpu->arch.pio.count;
12782 	complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12783 	vcpu->arch.sev_pio_count -= count;
12784 	vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12785 }
12786 
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)12787 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12788 {
12789 	int size = vcpu->arch.pio.size;
12790 	int port = vcpu->arch.pio.port;
12791 
12792 	advance_sev_es_emulated_ins(vcpu);
12793 	if (vcpu->arch.sev_pio_count)
12794 		return kvm_sev_es_ins(vcpu, size, port);
12795 	return 1;
12796 }
12797 
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)12798 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12799 			  unsigned int port)
12800 {
12801 	for (;;) {
12802 		unsigned int count =
12803 			min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12804 		if (!__emulator_pio_in(vcpu, size, port, count))
12805 			break;
12806 
12807 		/* Emulation done by the kernel.  */
12808 		advance_sev_es_emulated_ins(vcpu);
12809 		if (!vcpu->arch.sev_pio_count)
12810 			return 1;
12811 	}
12812 
12813 	vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12814 	return 0;
12815 }
12816 
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)12817 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12818 			 unsigned int port, void *data,  unsigned int count,
12819 			 int in)
12820 {
12821 	vcpu->arch.sev_pio_data = data;
12822 	vcpu->arch.sev_pio_count = count;
12823 	return in ? kvm_sev_es_ins(vcpu, size, port)
12824 		  : kvm_sev_es_outs(vcpu, size, port);
12825 }
12826 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12827 
12828 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12829 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12830 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12831 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12832 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12833 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12834 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12835 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12836 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12837 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12838 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12839 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12840 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12841 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12842 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12843 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12844 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12845 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12846 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12847 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12848 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12849 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12850 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12851 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12852 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12853 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12854 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
12855 
kvm_x86_init(void)12856 static int __init kvm_x86_init(void)
12857 {
12858 	kvm_mmu_x86_module_init();
12859 	mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
12860 	return 0;
12861 }
12862 module_init(kvm_x86_init);
12863 
kvm_x86_exit(void)12864 static void __exit kvm_x86_exit(void)
12865 {
12866 	/*
12867 	 * If module_init() is implemented, module_exit() must also be
12868 	 * implemented to allow module unload.
12869 	 */
12870 }
12871 module_exit(kvm_x86_exit);
12872