1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/net/sunrpc/svc_xprt.c
4 *
5 * Author: Tom Tucker <tom@opengridcomputing.com>
6 */
7
8 #include <linux/sched.h>
9 #include <linux/errno.h>
10 #include <linux/freezer.h>
11 #include <linux/kthread.h>
12 #include <linux/slab.h>
13 #include <net/sock.h>
14 #include <linux/sunrpc/addr.h>
15 #include <linux/sunrpc/stats.h>
16 #include <linux/sunrpc/svc_xprt.h>
17 #include <linux/sunrpc/svcsock.h>
18 #include <linux/sunrpc/xprt.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <trace/events/sunrpc.h>
22
23 #define RPCDBG_FACILITY RPCDBG_SVCXPRT
24
25 static unsigned int svc_rpc_per_connection_limit __read_mostly;
26 module_param(svc_rpc_per_connection_limit, uint, 0644);
27
28
29 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt);
30 static int svc_deferred_recv(struct svc_rqst *rqstp);
31 static struct cache_deferred_req *svc_defer(struct cache_req *req);
32 static void svc_age_temp_xprts(struct timer_list *t);
33 static void svc_delete_xprt(struct svc_xprt *xprt);
34
35 /* apparently the "standard" is that clients close
36 * idle connections after 5 minutes, servers after
37 * 6 minutes
38 * http://nfsv4bat.org/Documents/ConnectAThon/1996/nfstcp.pdf
39 */
40 static int svc_conn_age_period = 6*60;
41
42 /* List of registered transport classes */
43 static DEFINE_SPINLOCK(svc_xprt_class_lock);
44 static LIST_HEAD(svc_xprt_class_list);
45
46 /* SMP locking strategy:
47 *
48 * svc_pool->sp_lock protects most of the fields of that pool.
49 * svc_serv->sv_lock protects sv_tempsocks, sv_permsocks, sv_tmpcnt.
50 * when both need to be taken (rare), svc_serv->sv_lock is first.
51 * The "service mutex" protects svc_serv->sv_nrthread.
52 * svc_sock->sk_lock protects the svc_sock->sk_deferred list
53 * and the ->sk_info_authunix cache.
54 *
55 * The XPT_BUSY bit in xprt->xpt_flags prevents a transport being
56 * enqueued multiply. During normal transport processing this bit
57 * is set by svc_xprt_enqueue and cleared by svc_xprt_received.
58 * Providers should not manipulate this bit directly.
59 *
60 * Some flags can be set to certain values at any time
61 * providing that certain rules are followed:
62 *
63 * XPT_CONN, XPT_DATA:
64 * - Can be set or cleared at any time.
65 * - After a set, svc_xprt_enqueue must be called to enqueue
66 * the transport for processing.
67 * - After a clear, the transport must be read/accepted.
68 * If this succeeds, it must be set again.
69 * XPT_CLOSE:
70 * - Can set at any time. It is never cleared.
71 * XPT_DEAD:
72 * - Can only be set while XPT_BUSY is held which ensures
73 * that no other thread will be using the transport or will
74 * try to set XPT_DEAD.
75 */
svc_reg_xprt_class(struct svc_xprt_class * xcl)76 int svc_reg_xprt_class(struct svc_xprt_class *xcl)
77 {
78 struct svc_xprt_class *cl;
79 int res = -EEXIST;
80
81 dprintk("svc: Adding svc transport class '%s'\n", xcl->xcl_name);
82
83 INIT_LIST_HEAD(&xcl->xcl_list);
84 spin_lock(&svc_xprt_class_lock);
85 /* Make sure there isn't already a class with the same name */
86 list_for_each_entry(cl, &svc_xprt_class_list, xcl_list) {
87 if (strcmp(xcl->xcl_name, cl->xcl_name) == 0)
88 goto out;
89 }
90 list_add_tail(&xcl->xcl_list, &svc_xprt_class_list);
91 res = 0;
92 out:
93 spin_unlock(&svc_xprt_class_lock);
94 return res;
95 }
96 EXPORT_SYMBOL_GPL(svc_reg_xprt_class);
97
svc_unreg_xprt_class(struct svc_xprt_class * xcl)98 void svc_unreg_xprt_class(struct svc_xprt_class *xcl)
99 {
100 dprintk("svc: Removing svc transport class '%s'\n", xcl->xcl_name);
101 spin_lock(&svc_xprt_class_lock);
102 list_del_init(&xcl->xcl_list);
103 spin_unlock(&svc_xprt_class_lock);
104 }
105 EXPORT_SYMBOL_GPL(svc_unreg_xprt_class);
106
107 /**
108 * svc_print_xprts - Format the transport list for printing
109 * @buf: target buffer for formatted address
110 * @maxlen: length of target buffer
111 *
112 * Fills in @buf with a string containing a list of transport names, each name
113 * terminated with '\n'. If the buffer is too small, some entries may be
114 * missing, but it is guaranteed that all lines in the output buffer are
115 * complete.
116 *
117 * Returns positive length of the filled-in string.
118 */
svc_print_xprts(char * buf,int maxlen)119 int svc_print_xprts(char *buf, int maxlen)
120 {
121 struct svc_xprt_class *xcl;
122 char tmpstr[80];
123 int len = 0;
124 buf[0] = '\0';
125
126 spin_lock(&svc_xprt_class_lock);
127 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
128 int slen;
129
130 slen = snprintf(tmpstr, sizeof(tmpstr), "%s %d\n",
131 xcl->xcl_name, xcl->xcl_max_payload);
132 if (slen >= sizeof(tmpstr) || len + slen >= maxlen)
133 break;
134 len += slen;
135 strcat(buf, tmpstr);
136 }
137 spin_unlock(&svc_xprt_class_lock);
138
139 return len;
140 }
141
142 /**
143 * svc_xprt_deferred_close - Close a transport
144 * @xprt: transport instance
145 *
146 * Used in contexts that need to defer the work of shutting down
147 * the transport to an nfsd thread.
148 */
svc_xprt_deferred_close(struct svc_xprt * xprt)149 void svc_xprt_deferred_close(struct svc_xprt *xprt)
150 {
151 if (!test_and_set_bit(XPT_CLOSE, &xprt->xpt_flags))
152 svc_xprt_enqueue(xprt);
153 }
154 EXPORT_SYMBOL_GPL(svc_xprt_deferred_close);
155
svc_xprt_free(struct kref * kref)156 static void svc_xprt_free(struct kref *kref)
157 {
158 struct svc_xprt *xprt =
159 container_of(kref, struct svc_xprt, xpt_ref);
160 struct module *owner = xprt->xpt_class->xcl_owner;
161 if (test_bit(XPT_CACHE_AUTH, &xprt->xpt_flags))
162 svcauth_unix_info_release(xprt);
163 put_cred(xprt->xpt_cred);
164 put_net(xprt->xpt_net);
165 /* See comment on corresponding get in xs_setup_bc_tcp(): */
166 if (xprt->xpt_bc_xprt)
167 xprt_put(xprt->xpt_bc_xprt);
168 if (xprt->xpt_bc_xps)
169 xprt_switch_put(xprt->xpt_bc_xps);
170 trace_svc_xprt_free(xprt);
171 xprt->xpt_ops->xpo_free(xprt);
172 module_put(owner);
173 }
174
svc_xprt_put(struct svc_xprt * xprt)175 void svc_xprt_put(struct svc_xprt *xprt)
176 {
177 kref_put(&xprt->xpt_ref, svc_xprt_free);
178 }
179 EXPORT_SYMBOL_GPL(svc_xprt_put);
180
181 /*
182 * Called by transport drivers to initialize the transport independent
183 * portion of the transport instance.
184 */
svc_xprt_init(struct net * net,struct svc_xprt_class * xcl,struct svc_xprt * xprt,struct svc_serv * serv)185 void svc_xprt_init(struct net *net, struct svc_xprt_class *xcl,
186 struct svc_xprt *xprt, struct svc_serv *serv)
187 {
188 memset(xprt, 0, sizeof(*xprt));
189 xprt->xpt_class = xcl;
190 xprt->xpt_ops = xcl->xcl_ops;
191 kref_init(&xprt->xpt_ref);
192 xprt->xpt_server = serv;
193 INIT_LIST_HEAD(&xprt->xpt_list);
194 INIT_LIST_HEAD(&xprt->xpt_ready);
195 INIT_LIST_HEAD(&xprt->xpt_deferred);
196 INIT_LIST_HEAD(&xprt->xpt_users);
197 mutex_init(&xprt->xpt_mutex);
198 spin_lock_init(&xprt->xpt_lock);
199 set_bit(XPT_BUSY, &xprt->xpt_flags);
200 xprt->xpt_net = get_net(net);
201 strcpy(xprt->xpt_remotebuf, "uninitialized");
202 }
203 EXPORT_SYMBOL_GPL(svc_xprt_init);
204
__svc_xpo_create(struct svc_xprt_class * xcl,struct svc_serv * serv,struct net * net,const int family,const unsigned short port,int flags)205 static struct svc_xprt *__svc_xpo_create(struct svc_xprt_class *xcl,
206 struct svc_serv *serv,
207 struct net *net,
208 const int family,
209 const unsigned short port,
210 int flags)
211 {
212 struct sockaddr_in sin = {
213 .sin_family = AF_INET,
214 .sin_addr.s_addr = htonl(INADDR_ANY),
215 .sin_port = htons(port),
216 };
217 #if IS_ENABLED(CONFIG_IPV6)
218 struct sockaddr_in6 sin6 = {
219 .sin6_family = AF_INET6,
220 .sin6_addr = IN6ADDR_ANY_INIT,
221 .sin6_port = htons(port),
222 };
223 #endif
224 struct svc_xprt *xprt;
225 struct sockaddr *sap;
226 size_t len;
227
228 switch (family) {
229 case PF_INET:
230 sap = (struct sockaddr *)&sin;
231 len = sizeof(sin);
232 break;
233 #if IS_ENABLED(CONFIG_IPV6)
234 case PF_INET6:
235 sap = (struct sockaddr *)&sin6;
236 len = sizeof(sin6);
237 break;
238 #endif
239 default:
240 return ERR_PTR(-EAFNOSUPPORT);
241 }
242
243 xprt = xcl->xcl_ops->xpo_create(serv, net, sap, len, flags);
244 if (IS_ERR(xprt))
245 trace_svc_xprt_create_err(serv->sv_program->pg_name,
246 xcl->xcl_name, sap, len, xprt);
247 return xprt;
248 }
249
250 /**
251 * svc_xprt_received - start next receiver thread
252 * @xprt: controlling transport
253 *
254 * The caller must hold the XPT_BUSY bit and must
255 * not thereafter touch transport data.
256 *
257 * Note: XPT_DATA only gets cleared when a read-attempt finds no (or
258 * insufficient) data.
259 */
svc_xprt_received(struct svc_xprt * xprt)260 void svc_xprt_received(struct svc_xprt *xprt)
261 {
262 if (!test_bit(XPT_BUSY, &xprt->xpt_flags)) {
263 WARN_ONCE(1, "xprt=0x%p already busy!", xprt);
264 return;
265 }
266
267 trace_svc_xprt_received(xprt);
268
269 /* As soon as we clear busy, the xprt could be closed and
270 * 'put', so we need a reference to call svc_enqueue_xprt with:
271 */
272 svc_xprt_get(xprt);
273 smp_mb__before_atomic();
274 clear_bit(XPT_BUSY, &xprt->xpt_flags);
275 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
276 svc_xprt_put(xprt);
277 }
278 EXPORT_SYMBOL_GPL(svc_xprt_received);
279
svc_add_new_perm_xprt(struct svc_serv * serv,struct svc_xprt * new)280 void svc_add_new_perm_xprt(struct svc_serv *serv, struct svc_xprt *new)
281 {
282 clear_bit(XPT_TEMP, &new->xpt_flags);
283 spin_lock_bh(&serv->sv_lock);
284 list_add(&new->xpt_list, &serv->sv_permsocks);
285 spin_unlock_bh(&serv->sv_lock);
286 svc_xprt_received(new);
287 }
288
_svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)289 static int _svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
290 struct net *net, const int family,
291 const unsigned short port, int flags,
292 const struct cred *cred)
293 {
294 struct svc_xprt_class *xcl;
295
296 spin_lock(&svc_xprt_class_lock);
297 list_for_each_entry(xcl, &svc_xprt_class_list, xcl_list) {
298 struct svc_xprt *newxprt;
299 unsigned short newport;
300
301 if (strcmp(xprt_name, xcl->xcl_name))
302 continue;
303
304 if (!try_module_get(xcl->xcl_owner))
305 goto err;
306
307 spin_unlock(&svc_xprt_class_lock);
308 newxprt = __svc_xpo_create(xcl, serv, net, family, port, flags);
309 if (IS_ERR(newxprt)) {
310 module_put(xcl->xcl_owner);
311 return PTR_ERR(newxprt);
312 }
313 newxprt->xpt_cred = get_cred(cred);
314 svc_add_new_perm_xprt(serv, newxprt);
315 newport = svc_xprt_local_port(newxprt);
316 return newport;
317 }
318 err:
319 spin_unlock(&svc_xprt_class_lock);
320 /* This errno is exposed to user space. Provide a reasonable
321 * perror msg for a bad transport. */
322 return -EPROTONOSUPPORT;
323 }
324
svc_create_xprt(struct svc_serv * serv,const char * xprt_name,struct net * net,const int family,const unsigned short port,int flags,const struct cred * cred)325 int svc_create_xprt(struct svc_serv *serv, const char *xprt_name,
326 struct net *net, const int family,
327 const unsigned short port, int flags,
328 const struct cred *cred)
329 {
330 int err;
331
332 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
333 if (err == -EPROTONOSUPPORT) {
334 request_module("svc%s", xprt_name);
335 err = _svc_create_xprt(serv, xprt_name, net, family, port, flags, cred);
336 }
337 return err;
338 }
339 EXPORT_SYMBOL_GPL(svc_create_xprt);
340
341 /*
342 * Copy the local and remote xprt addresses to the rqstp structure
343 */
svc_xprt_copy_addrs(struct svc_rqst * rqstp,struct svc_xprt * xprt)344 void svc_xprt_copy_addrs(struct svc_rqst *rqstp, struct svc_xprt *xprt)
345 {
346 memcpy(&rqstp->rq_addr, &xprt->xpt_remote, xprt->xpt_remotelen);
347 rqstp->rq_addrlen = xprt->xpt_remotelen;
348
349 /*
350 * Destination address in request is needed for binding the
351 * source address in RPC replies/callbacks later.
352 */
353 memcpy(&rqstp->rq_daddr, &xprt->xpt_local, xprt->xpt_locallen);
354 rqstp->rq_daddrlen = xprt->xpt_locallen;
355 }
356 EXPORT_SYMBOL_GPL(svc_xprt_copy_addrs);
357
358 /**
359 * svc_print_addr - Format rq_addr field for printing
360 * @rqstp: svc_rqst struct containing address to print
361 * @buf: target buffer for formatted address
362 * @len: length of target buffer
363 *
364 */
svc_print_addr(struct svc_rqst * rqstp,char * buf,size_t len)365 char *svc_print_addr(struct svc_rqst *rqstp, char *buf, size_t len)
366 {
367 return __svc_print_addr(svc_addr(rqstp), buf, len);
368 }
369 EXPORT_SYMBOL_GPL(svc_print_addr);
370
svc_xprt_slots_in_range(struct svc_xprt * xprt)371 static bool svc_xprt_slots_in_range(struct svc_xprt *xprt)
372 {
373 unsigned int limit = svc_rpc_per_connection_limit;
374 int nrqsts = atomic_read(&xprt->xpt_nr_rqsts);
375
376 return limit == 0 || (nrqsts >= 0 && nrqsts < limit);
377 }
378
svc_xprt_reserve_slot(struct svc_rqst * rqstp,struct svc_xprt * xprt)379 static bool svc_xprt_reserve_slot(struct svc_rqst *rqstp, struct svc_xprt *xprt)
380 {
381 if (!test_bit(RQ_DATA, &rqstp->rq_flags)) {
382 if (!svc_xprt_slots_in_range(xprt))
383 return false;
384 atomic_inc(&xprt->xpt_nr_rqsts);
385 set_bit(RQ_DATA, &rqstp->rq_flags);
386 }
387 return true;
388 }
389
svc_xprt_release_slot(struct svc_rqst * rqstp)390 static void svc_xprt_release_slot(struct svc_rqst *rqstp)
391 {
392 struct svc_xprt *xprt = rqstp->rq_xprt;
393 if (test_and_clear_bit(RQ_DATA, &rqstp->rq_flags)) {
394 atomic_dec(&xprt->xpt_nr_rqsts);
395 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
396 svc_xprt_enqueue(xprt);
397 }
398 }
399
svc_xprt_ready(struct svc_xprt * xprt)400 static bool svc_xprt_ready(struct svc_xprt *xprt)
401 {
402 unsigned long xpt_flags;
403
404 /*
405 * If another cpu has recently updated xpt_flags,
406 * sk_sock->flags, xpt_reserved, or xpt_nr_rqsts, we need to
407 * know about it; otherwise it's possible that both that cpu and
408 * this one could call svc_xprt_enqueue() without either
409 * svc_xprt_enqueue() recognizing that the conditions below
410 * are satisfied, and we could stall indefinitely:
411 */
412 smp_rmb();
413 xpt_flags = READ_ONCE(xprt->xpt_flags);
414
415 if (xpt_flags & (BIT(XPT_CONN) | BIT(XPT_CLOSE)))
416 return true;
417 if (xpt_flags & (BIT(XPT_DATA) | BIT(XPT_DEFERRED))) {
418 if (xprt->xpt_ops->xpo_has_wspace(xprt) &&
419 svc_xprt_slots_in_range(xprt))
420 return true;
421 trace_svc_xprt_no_write_space(xprt);
422 return false;
423 }
424 return false;
425 }
426
svc_xprt_do_enqueue(struct svc_xprt * xprt)427 void svc_xprt_do_enqueue(struct svc_xprt *xprt)
428 {
429 struct svc_pool *pool;
430 struct svc_rqst *rqstp = NULL;
431 int cpu;
432
433 if (!svc_xprt_ready(xprt))
434 return;
435
436 /* Mark transport as busy. It will remain in this state until
437 * the provider calls svc_xprt_received. We update XPT_BUSY
438 * atomically because it also guards against trying to enqueue
439 * the transport twice.
440 */
441 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
442 return;
443
444 cpu = get_cpu();
445 pool = svc_pool_for_cpu(xprt->xpt_server, cpu);
446
447 atomic_long_inc(&pool->sp_stats.packets);
448
449 spin_lock_bh(&pool->sp_lock);
450 list_add_tail(&xprt->xpt_ready, &pool->sp_sockets);
451 pool->sp_stats.sockets_queued++;
452 spin_unlock_bh(&pool->sp_lock);
453
454 /* find a thread for this xprt */
455 rcu_read_lock();
456 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
457 if (test_and_set_bit(RQ_BUSY, &rqstp->rq_flags))
458 continue;
459 atomic_long_inc(&pool->sp_stats.threads_woken);
460 rqstp->rq_qtime = ktime_get();
461 wake_up_process(rqstp->rq_task);
462 goto out_unlock;
463 }
464 set_bit(SP_CONGESTED, &pool->sp_flags);
465 rqstp = NULL;
466 out_unlock:
467 rcu_read_unlock();
468 put_cpu();
469 trace_svc_xprt_do_enqueue(xprt, rqstp);
470 }
471 EXPORT_SYMBOL_GPL(svc_xprt_do_enqueue);
472
473 /*
474 * Queue up a transport with data pending. If there are idle nfsd
475 * processes, wake 'em up.
476 *
477 */
svc_xprt_enqueue(struct svc_xprt * xprt)478 void svc_xprt_enqueue(struct svc_xprt *xprt)
479 {
480 if (test_bit(XPT_BUSY, &xprt->xpt_flags))
481 return;
482 xprt->xpt_server->sv_ops->svo_enqueue_xprt(xprt);
483 }
484 EXPORT_SYMBOL_GPL(svc_xprt_enqueue);
485
486 /*
487 * Dequeue the first transport, if there is one.
488 */
svc_xprt_dequeue(struct svc_pool * pool)489 static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool)
490 {
491 struct svc_xprt *xprt = NULL;
492
493 if (list_empty(&pool->sp_sockets))
494 goto out;
495
496 spin_lock_bh(&pool->sp_lock);
497 if (likely(!list_empty(&pool->sp_sockets))) {
498 xprt = list_first_entry(&pool->sp_sockets,
499 struct svc_xprt, xpt_ready);
500 list_del_init(&xprt->xpt_ready);
501 svc_xprt_get(xprt);
502 }
503 spin_unlock_bh(&pool->sp_lock);
504 out:
505 return xprt;
506 }
507
508 /**
509 * svc_reserve - change the space reserved for the reply to a request.
510 * @rqstp: The request in question
511 * @space: new max space to reserve
512 *
513 * Each request reserves some space on the output queue of the transport
514 * to make sure the reply fits. This function reduces that reserved
515 * space to be the amount of space used already, plus @space.
516 *
517 */
svc_reserve(struct svc_rqst * rqstp,int space)518 void svc_reserve(struct svc_rqst *rqstp, int space)
519 {
520 struct svc_xprt *xprt = rqstp->rq_xprt;
521
522 space += rqstp->rq_res.head[0].iov_len;
523
524 if (xprt && space < rqstp->rq_reserved) {
525 atomic_sub((rqstp->rq_reserved - space), &xprt->xpt_reserved);
526 rqstp->rq_reserved = space;
527 smp_wmb(); /* See smp_rmb() in svc_xprt_ready() */
528 svc_xprt_enqueue(xprt);
529 }
530 }
531 EXPORT_SYMBOL_GPL(svc_reserve);
532
free_deferred(struct svc_xprt * xprt,struct svc_deferred_req * dr)533 static void free_deferred(struct svc_xprt *xprt, struct svc_deferred_req *dr)
534 {
535 if (!dr)
536 return;
537
538 xprt->xpt_ops->xpo_release_ctxt(xprt, dr->xprt_ctxt);
539 kfree(dr);
540 }
541
svc_xprt_release(struct svc_rqst * rqstp)542 static void svc_xprt_release(struct svc_rqst *rqstp)
543 {
544 struct svc_xprt *xprt = rqstp->rq_xprt;
545
546 xprt->xpt_ops->xpo_release_ctxt(xprt, rqstp->rq_xprt_ctxt);
547 rqstp->rq_xprt_ctxt = NULL;
548
549 free_deferred(xprt, rqstp->rq_deferred);
550 rqstp->rq_deferred = NULL;
551
552 pagevec_release(&rqstp->rq_pvec);
553 svc_free_res_pages(rqstp);
554 rqstp->rq_res.page_len = 0;
555 rqstp->rq_res.page_base = 0;
556
557 /* Reset response buffer and release
558 * the reservation.
559 * But first, check that enough space was reserved
560 * for the reply, otherwise we have a bug!
561 */
562 if ((rqstp->rq_res.len) > rqstp->rq_reserved)
563 printk(KERN_ERR "RPC request reserved %d but used %d\n",
564 rqstp->rq_reserved,
565 rqstp->rq_res.len);
566
567 rqstp->rq_res.head[0].iov_len = 0;
568 svc_reserve(rqstp, 0);
569 svc_xprt_release_slot(rqstp);
570 rqstp->rq_xprt = NULL;
571 svc_xprt_put(xprt);
572 }
573
574 /*
575 * Some svc_serv's will have occasional work to do, even when a xprt is not
576 * waiting to be serviced. This function is there to "kick" a task in one of
577 * those services so that it can wake up and do that work. Note that we only
578 * bother with pool 0 as we don't need to wake up more than one thread for
579 * this purpose.
580 */
svc_wake_up(struct svc_serv * serv)581 void svc_wake_up(struct svc_serv *serv)
582 {
583 struct svc_rqst *rqstp;
584 struct svc_pool *pool;
585
586 pool = &serv->sv_pools[0];
587
588 rcu_read_lock();
589 list_for_each_entry_rcu(rqstp, &pool->sp_all_threads, rq_all) {
590 /* skip any that aren't queued */
591 if (test_bit(RQ_BUSY, &rqstp->rq_flags))
592 continue;
593 rcu_read_unlock();
594 wake_up_process(rqstp->rq_task);
595 trace_svc_wake_up(rqstp->rq_task->pid);
596 return;
597 }
598 rcu_read_unlock();
599
600 /* No free entries available */
601 set_bit(SP_TASK_PENDING, &pool->sp_flags);
602 smp_wmb();
603 trace_svc_wake_up(0);
604 }
605 EXPORT_SYMBOL_GPL(svc_wake_up);
606
svc_port_is_privileged(struct sockaddr * sin)607 int svc_port_is_privileged(struct sockaddr *sin)
608 {
609 switch (sin->sa_family) {
610 case AF_INET:
611 return ntohs(((struct sockaddr_in *)sin)->sin_port)
612 < PROT_SOCK;
613 case AF_INET6:
614 return ntohs(((struct sockaddr_in6 *)sin)->sin6_port)
615 < PROT_SOCK;
616 default:
617 return 0;
618 }
619 }
620
621 /*
622 * Make sure that we don't have too many active connections. If we have,
623 * something must be dropped. It's not clear what will happen if we allow
624 * "too many" connections, but when dealing with network-facing software,
625 * we have to code defensively. Here we do that by imposing hard limits.
626 *
627 * There's no point in trying to do random drop here for DoS
628 * prevention. The NFS clients does 1 reconnect in 15 seconds. An
629 * attacker can easily beat that.
630 *
631 * The only somewhat efficient mechanism would be if drop old
632 * connections from the same IP first. But right now we don't even
633 * record the client IP in svc_sock.
634 *
635 * single-threaded services that expect a lot of clients will probably
636 * need to set sv_maxconn to override the default value which is based
637 * on the number of threads
638 */
svc_check_conn_limits(struct svc_serv * serv)639 static void svc_check_conn_limits(struct svc_serv *serv)
640 {
641 unsigned int limit = serv->sv_maxconn ? serv->sv_maxconn :
642 (serv->sv_nrthreads+3) * 20;
643
644 if (serv->sv_tmpcnt > limit) {
645 struct svc_xprt *xprt = NULL;
646 spin_lock_bh(&serv->sv_lock);
647 if (!list_empty(&serv->sv_tempsocks)) {
648 /* Try to help the admin */
649 net_notice_ratelimited("%s: too many open connections, consider increasing the %s\n",
650 serv->sv_name, serv->sv_maxconn ?
651 "max number of connections" :
652 "number of threads");
653 /*
654 * Always select the oldest connection. It's not fair,
655 * but so is life
656 */
657 xprt = list_entry(serv->sv_tempsocks.prev,
658 struct svc_xprt,
659 xpt_list);
660 set_bit(XPT_CLOSE, &xprt->xpt_flags);
661 svc_xprt_get(xprt);
662 }
663 spin_unlock_bh(&serv->sv_lock);
664
665 if (xprt) {
666 svc_xprt_enqueue(xprt);
667 svc_xprt_put(xprt);
668 }
669 }
670 }
671
svc_alloc_arg(struct svc_rqst * rqstp)672 static int svc_alloc_arg(struct svc_rqst *rqstp)
673 {
674 struct svc_serv *serv = rqstp->rq_server;
675 struct xdr_buf *arg = &rqstp->rq_arg;
676 unsigned long pages, filled, ret;
677
678 pagevec_init(&rqstp->rq_pvec);
679
680 pages = (serv->sv_max_mesg + 2 * PAGE_SIZE) >> PAGE_SHIFT;
681 if (pages > RPCSVC_MAXPAGES) {
682 pr_warn_once("svc: warning: pages=%lu > RPCSVC_MAXPAGES=%lu\n",
683 pages, RPCSVC_MAXPAGES);
684 /* use as many pages as possible */
685 pages = RPCSVC_MAXPAGES;
686 }
687
688 for (filled = 0; filled < pages; filled = ret) {
689 ret = alloc_pages_bulk_array(GFP_KERNEL, pages,
690 rqstp->rq_pages);
691 if (ret > filled)
692 /* Made progress, don't sleep yet */
693 continue;
694
695 set_current_state(TASK_INTERRUPTIBLE);
696 if (signalled() || kthread_should_stop()) {
697 set_current_state(TASK_RUNNING);
698 return -EINTR;
699 }
700 schedule_timeout(msecs_to_jiffies(500));
701 }
702 rqstp->rq_page_end = &rqstp->rq_pages[pages];
703 rqstp->rq_pages[pages] = NULL; /* this might be seen in nfsd_splice_actor() */
704
705 /* Make arg->head point to first page and arg->pages point to rest */
706 arg->head[0].iov_base = page_address(rqstp->rq_pages[0]);
707 arg->head[0].iov_len = PAGE_SIZE;
708 arg->pages = rqstp->rq_pages + 1;
709 arg->page_base = 0;
710 /* save at least one page for response */
711 arg->page_len = (pages-2)*PAGE_SIZE;
712 arg->len = (pages-1)*PAGE_SIZE;
713 arg->tail[0].iov_len = 0;
714 return 0;
715 }
716
717 static bool
rqst_should_sleep(struct svc_rqst * rqstp)718 rqst_should_sleep(struct svc_rqst *rqstp)
719 {
720 struct svc_pool *pool = rqstp->rq_pool;
721
722 /* did someone call svc_wake_up? */
723 if (test_and_clear_bit(SP_TASK_PENDING, &pool->sp_flags))
724 return false;
725
726 /* was a socket queued? */
727 if (!list_empty(&pool->sp_sockets))
728 return false;
729
730 /* are we shutting down? */
731 if (signalled() || kthread_should_stop())
732 return false;
733
734 /* are we freezing? */
735 if (freezing(current))
736 return false;
737
738 return true;
739 }
740
svc_get_next_xprt(struct svc_rqst * rqstp,long timeout)741 static struct svc_xprt *svc_get_next_xprt(struct svc_rqst *rqstp, long timeout)
742 {
743 struct svc_pool *pool = rqstp->rq_pool;
744 long time_left = 0;
745
746 /* rq_xprt should be clear on entry */
747 WARN_ON_ONCE(rqstp->rq_xprt);
748
749 rqstp->rq_xprt = svc_xprt_dequeue(pool);
750 if (rqstp->rq_xprt)
751 goto out_found;
752
753 /*
754 * We have to be able to interrupt this wait
755 * to bring down the daemons ...
756 */
757 set_current_state(TASK_INTERRUPTIBLE);
758 smp_mb__before_atomic();
759 clear_bit(SP_CONGESTED, &pool->sp_flags);
760 clear_bit(RQ_BUSY, &rqstp->rq_flags);
761 smp_mb__after_atomic();
762
763 if (likely(rqst_should_sleep(rqstp)))
764 time_left = schedule_timeout(timeout);
765 else
766 __set_current_state(TASK_RUNNING);
767
768 try_to_freeze();
769
770 set_bit(RQ_BUSY, &rqstp->rq_flags);
771 smp_mb__after_atomic();
772 rqstp->rq_xprt = svc_xprt_dequeue(pool);
773 if (rqstp->rq_xprt)
774 goto out_found;
775
776 if (!time_left)
777 atomic_long_inc(&pool->sp_stats.threads_timedout);
778
779 if (signalled() || kthread_should_stop())
780 return ERR_PTR(-EINTR);
781 return ERR_PTR(-EAGAIN);
782 out_found:
783 /* Normally we will wait up to 5 seconds for any required
784 * cache information to be provided.
785 */
786 if (!test_bit(SP_CONGESTED, &pool->sp_flags))
787 rqstp->rq_chandle.thread_wait = 5*HZ;
788 else
789 rqstp->rq_chandle.thread_wait = 1*HZ;
790 trace_svc_xprt_dequeue(rqstp);
791 return rqstp->rq_xprt;
792 }
793
svc_add_new_temp_xprt(struct svc_serv * serv,struct svc_xprt * newxpt)794 static void svc_add_new_temp_xprt(struct svc_serv *serv, struct svc_xprt *newxpt)
795 {
796 spin_lock_bh(&serv->sv_lock);
797 set_bit(XPT_TEMP, &newxpt->xpt_flags);
798 list_add(&newxpt->xpt_list, &serv->sv_tempsocks);
799 serv->sv_tmpcnt++;
800 if (serv->sv_temptimer.function == NULL) {
801 /* setup timer to age temp transports */
802 serv->sv_temptimer.function = svc_age_temp_xprts;
803 mod_timer(&serv->sv_temptimer,
804 jiffies + svc_conn_age_period * HZ);
805 }
806 spin_unlock_bh(&serv->sv_lock);
807 svc_xprt_received(newxpt);
808 }
809
svc_handle_xprt(struct svc_rqst * rqstp,struct svc_xprt * xprt)810 static int svc_handle_xprt(struct svc_rqst *rqstp, struct svc_xprt *xprt)
811 {
812 struct svc_serv *serv = rqstp->rq_server;
813 int len = 0;
814
815 if (test_bit(XPT_CLOSE, &xprt->xpt_flags)) {
816 if (test_and_clear_bit(XPT_KILL_TEMP, &xprt->xpt_flags))
817 xprt->xpt_ops->xpo_kill_temp_xprt(xprt);
818 svc_delete_xprt(xprt);
819 /* Leave XPT_BUSY set on the dead xprt: */
820 goto out;
821 }
822 if (test_bit(XPT_LISTENER, &xprt->xpt_flags)) {
823 struct svc_xprt *newxpt;
824 /*
825 * We know this module_get will succeed because the
826 * listener holds a reference too
827 */
828 __module_get(xprt->xpt_class->xcl_owner);
829 svc_check_conn_limits(xprt->xpt_server);
830 newxpt = xprt->xpt_ops->xpo_accept(xprt);
831 if (newxpt) {
832 newxpt->xpt_cred = get_cred(xprt->xpt_cred);
833 svc_add_new_temp_xprt(serv, newxpt);
834 trace_svc_xprt_accept(newxpt, serv->sv_name);
835 } else {
836 module_put(xprt->xpt_class->xcl_owner);
837 }
838 svc_xprt_received(xprt);
839 } else if (svc_xprt_reserve_slot(rqstp, xprt)) {
840 /* XPT_DATA|XPT_DEFERRED case: */
841 dprintk("svc: server %p, pool %u, transport %p, inuse=%d\n",
842 rqstp, rqstp->rq_pool->sp_id, xprt,
843 kref_read(&xprt->xpt_ref));
844 rqstp->rq_deferred = svc_deferred_dequeue(xprt);
845 if (rqstp->rq_deferred)
846 len = svc_deferred_recv(rqstp);
847 else
848 len = xprt->xpt_ops->xpo_recvfrom(rqstp);
849 rqstp->rq_stime = ktime_get();
850 rqstp->rq_reserved = serv->sv_max_mesg;
851 atomic_add(rqstp->rq_reserved, &xprt->xpt_reserved);
852 } else
853 svc_xprt_received(xprt);
854 out:
855 trace_svc_handle_xprt(xprt, len);
856 return len;
857 }
858
859 /*
860 * Receive the next request on any transport. This code is carefully
861 * organised not to touch any cachelines in the shared svc_serv
862 * structure, only cachelines in the local svc_pool.
863 */
svc_recv(struct svc_rqst * rqstp,long timeout)864 int svc_recv(struct svc_rqst *rqstp, long timeout)
865 {
866 struct svc_xprt *xprt = NULL;
867 struct svc_serv *serv = rqstp->rq_server;
868 int len, err;
869
870 err = svc_alloc_arg(rqstp);
871 if (err)
872 goto out;
873
874 try_to_freeze();
875 cond_resched();
876 err = -EINTR;
877 if (signalled() || kthread_should_stop())
878 goto out;
879
880 xprt = svc_get_next_xprt(rqstp, timeout);
881 if (IS_ERR(xprt)) {
882 err = PTR_ERR(xprt);
883 goto out;
884 }
885
886 len = svc_handle_xprt(rqstp, xprt);
887
888 /* No data, incomplete (TCP) read, or accept() */
889 err = -EAGAIN;
890 if (len <= 0)
891 goto out_release;
892 trace_svc_xdr_recvfrom(&rqstp->rq_arg);
893
894 clear_bit(XPT_OLD, &xprt->xpt_flags);
895
896 xprt->xpt_ops->xpo_secure_port(rqstp);
897 rqstp->rq_chandle.defer = svc_defer;
898 rqstp->rq_xid = svc_getu32(&rqstp->rq_arg.head[0]);
899
900 if (serv->sv_stats)
901 serv->sv_stats->netcnt++;
902 return len;
903 out_release:
904 rqstp->rq_res.len = 0;
905 svc_xprt_release(rqstp);
906 out:
907 return err;
908 }
909 EXPORT_SYMBOL_GPL(svc_recv);
910
911 /*
912 * Drop request
913 */
svc_drop(struct svc_rqst * rqstp)914 void svc_drop(struct svc_rqst *rqstp)
915 {
916 trace_svc_drop(rqstp);
917 svc_xprt_release(rqstp);
918 }
919 EXPORT_SYMBOL_GPL(svc_drop);
920
921 /*
922 * Return reply to client.
923 */
svc_send(struct svc_rqst * rqstp)924 int svc_send(struct svc_rqst *rqstp)
925 {
926 struct svc_xprt *xprt;
927 int len = -EFAULT;
928 struct xdr_buf *xb;
929
930 xprt = rqstp->rq_xprt;
931 if (!xprt)
932 goto out;
933
934 /* calculate over-all length */
935 xb = &rqstp->rq_res;
936 xb->len = xb->head[0].iov_len +
937 xb->page_len +
938 xb->tail[0].iov_len;
939 trace_svc_xdr_sendto(rqstp->rq_xid, xb);
940 trace_svc_stats_latency(rqstp);
941
942 len = xprt->xpt_ops->xpo_sendto(rqstp);
943
944 trace_svc_send(rqstp, len);
945 svc_xprt_release(rqstp);
946
947 if (len == -ECONNREFUSED || len == -ENOTCONN || len == -EAGAIN)
948 len = 0;
949 out:
950 return len;
951 }
952
953 /*
954 * Timer function to close old temporary transports, using
955 * a mark-and-sweep algorithm.
956 */
svc_age_temp_xprts(struct timer_list * t)957 static void svc_age_temp_xprts(struct timer_list *t)
958 {
959 struct svc_serv *serv = from_timer(serv, t, sv_temptimer);
960 struct svc_xprt *xprt;
961 struct list_head *le, *next;
962
963 dprintk("svc_age_temp_xprts\n");
964
965 if (!spin_trylock_bh(&serv->sv_lock)) {
966 /* busy, try again 1 sec later */
967 dprintk("svc_age_temp_xprts: busy\n");
968 mod_timer(&serv->sv_temptimer, jiffies + HZ);
969 return;
970 }
971
972 list_for_each_safe(le, next, &serv->sv_tempsocks) {
973 xprt = list_entry(le, struct svc_xprt, xpt_list);
974
975 /* First time through, just mark it OLD. Second time
976 * through, close it. */
977 if (!test_and_set_bit(XPT_OLD, &xprt->xpt_flags))
978 continue;
979 if (kref_read(&xprt->xpt_ref) > 1 ||
980 test_bit(XPT_BUSY, &xprt->xpt_flags))
981 continue;
982 list_del_init(le);
983 set_bit(XPT_CLOSE, &xprt->xpt_flags);
984 dprintk("queuing xprt %p for closing\n", xprt);
985
986 /* a thread will dequeue and close it soon */
987 svc_xprt_enqueue(xprt);
988 }
989 spin_unlock_bh(&serv->sv_lock);
990
991 mod_timer(&serv->sv_temptimer, jiffies + svc_conn_age_period * HZ);
992 }
993
994 /* Close temporary transports whose xpt_local matches server_addr immediately
995 * instead of waiting for them to be picked up by the timer.
996 *
997 * This is meant to be called from a notifier_block that runs when an ip
998 * address is deleted.
999 */
svc_age_temp_xprts_now(struct svc_serv * serv,struct sockaddr * server_addr)1000 void svc_age_temp_xprts_now(struct svc_serv *serv, struct sockaddr *server_addr)
1001 {
1002 struct svc_xprt *xprt;
1003 struct list_head *le, *next;
1004 LIST_HEAD(to_be_closed);
1005
1006 spin_lock_bh(&serv->sv_lock);
1007 list_for_each_safe(le, next, &serv->sv_tempsocks) {
1008 xprt = list_entry(le, struct svc_xprt, xpt_list);
1009 if (rpc_cmp_addr(server_addr, (struct sockaddr *)
1010 &xprt->xpt_local)) {
1011 dprintk("svc_age_temp_xprts_now: found %p\n", xprt);
1012 list_move(le, &to_be_closed);
1013 }
1014 }
1015 spin_unlock_bh(&serv->sv_lock);
1016
1017 while (!list_empty(&to_be_closed)) {
1018 le = to_be_closed.next;
1019 list_del_init(le);
1020 xprt = list_entry(le, struct svc_xprt, xpt_list);
1021 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1022 set_bit(XPT_KILL_TEMP, &xprt->xpt_flags);
1023 dprintk("svc_age_temp_xprts_now: queuing xprt %p for closing\n",
1024 xprt);
1025 svc_xprt_enqueue(xprt);
1026 }
1027 }
1028 EXPORT_SYMBOL_GPL(svc_age_temp_xprts_now);
1029
call_xpt_users(struct svc_xprt * xprt)1030 static void call_xpt_users(struct svc_xprt *xprt)
1031 {
1032 struct svc_xpt_user *u;
1033
1034 spin_lock(&xprt->xpt_lock);
1035 while (!list_empty(&xprt->xpt_users)) {
1036 u = list_first_entry(&xprt->xpt_users, struct svc_xpt_user, list);
1037 list_del_init(&u->list);
1038 u->callback(u);
1039 }
1040 spin_unlock(&xprt->xpt_lock);
1041 }
1042
1043 /*
1044 * Remove a dead transport
1045 */
svc_delete_xprt(struct svc_xprt * xprt)1046 static void svc_delete_xprt(struct svc_xprt *xprt)
1047 {
1048 struct svc_serv *serv = xprt->xpt_server;
1049 struct svc_deferred_req *dr;
1050
1051 if (test_and_set_bit(XPT_DEAD, &xprt->xpt_flags))
1052 return;
1053
1054 trace_svc_xprt_detach(xprt);
1055 xprt->xpt_ops->xpo_detach(xprt);
1056 if (xprt->xpt_bc_xprt)
1057 xprt->xpt_bc_xprt->ops->close(xprt->xpt_bc_xprt);
1058
1059 spin_lock_bh(&serv->sv_lock);
1060 list_del_init(&xprt->xpt_list);
1061 WARN_ON_ONCE(!list_empty(&xprt->xpt_ready));
1062 if (test_bit(XPT_TEMP, &xprt->xpt_flags))
1063 serv->sv_tmpcnt--;
1064 spin_unlock_bh(&serv->sv_lock);
1065
1066 while ((dr = svc_deferred_dequeue(xprt)) != NULL)
1067 free_deferred(xprt, dr);
1068
1069 call_xpt_users(xprt);
1070 svc_xprt_put(xprt);
1071 }
1072
svc_close_xprt(struct svc_xprt * xprt)1073 void svc_close_xprt(struct svc_xprt *xprt)
1074 {
1075 trace_svc_xprt_close(xprt);
1076 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1077 if (test_and_set_bit(XPT_BUSY, &xprt->xpt_flags))
1078 /* someone else will have to effect the close */
1079 return;
1080 /*
1081 * We expect svc_close_xprt() to work even when no threads are
1082 * running (e.g., while configuring the server before starting
1083 * any threads), so if the transport isn't busy, we delete
1084 * it ourself:
1085 */
1086 svc_delete_xprt(xprt);
1087 }
1088 EXPORT_SYMBOL_GPL(svc_close_xprt);
1089
svc_close_list(struct svc_serv * serv,struct list_head * xprt_list,struct net * net)1090 static int svc_close_list(struct svc_serv *serv, struct list_head *xprt_list, struct net *net)
1091 {
1092 struct svc_xprt *xprt;
1093 int ret = 0;
1094
1095 spin_lock_bh(&serv->sv_lock);
1096 list_for_each_entry(xprt, xprt_list, xpt_list) {
1097 if (xprt->xpt_net != net)
1098 continue;
1099 ret++;
1100 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1101 svc_xprt_enqueue(xprt);
1102 }
1103 spin_unlock_bh(&serv->sv_lock);
1104 return ret;
1105 }
1106
svc_dequeue_net(struct svc_serv * serv,struct net * net)1107 static struct svc_xprt *svc_dequeue_net(struct svc_serv *serv, struct net *net)
1108 {
1109 struct svc_pool *pool;
1110 struct svc_xprt *xprt;
1111 struct svc_xprt *tmp;
1112 int i;
1113
1114 for (i = 0; i < serv->sv_nrpools; i++) {
1115 pool = &serv->sv_pools[i];
1116
1117 spin_lock_bh(&pool->sp_lock);
1118 list_for_each_entry_safe(xprt, tmp, &pool->sp_sockets, xpt_ready) {
1119 if (xprt->xpt_net != net)
1120 continue;
1121 list_del_init(&xprt->xpt_ready);
1122 spin_unlock_bh(&pool->sp_lock);
1123 return xprt;
1124 }
1125 spin_unlock_bh(&pool->sp_lock);
1126 }
1127 return NULL;
1128 }
1129
svc_clean_up_xprts(struct svc_serv * serv,struct net * net)1130 static void svc_clean_up_xprts(struct svc_serv *serv, struct net *net)
1131 {
1132 struct svc_xprt *xprt;
1133
1134 while ((xprt = svc_dequeue_net(serv, net))) {
1135 set_bit(XPT_CLOSE, &xprt->xpt_flags);
1136 svc_delete_xprt(xprt);
1137 }
1138 }
1139
1140 /*
1141 * Server threads may still be running (especially in the case where the
1142 * service is still running in other network namespaces).
1143 *
1144 * So we shut down sockets the same way we would on a running server, by
1145 * setting XPT_CLOSE, enqueuing, and letting a thread pick it up to do
1146 * the close. In the case there are no such other threads,
1147 * threads running, svc_clean_up_xprts() does a simple version of a
1148 * server's main event loop, and in the case where there are other
1149 * threads, we may need to wait a little while and then check again to
1150 * see if they're done.
1151 */
svc_close_net(struct svc_serv * serv,struct net * net)1152 void svc_close_net(struct svc_serv *serv, struct net *net)
1153 {
1154 int delay = 0;
1155
1156 while (svc_close_list(serv, &serv->sv_permsocks, net) +
1157 svc_close_list(serv, &serv->sv_tempsocks, net)) {
1158
1159 svc_clean_up_xprts(serv, net);
1160 msleep(delay++);
1161 }
1162 }
1163
1164 /*
1165 * Handle defer and revisit of requests
1166 */
1167
svc_revisit(struct cache_deferred_req * dreq,int too_many)1168 static void svc_revisit(struct cache_deferred_req *dreq, int too_many)
1169 {
1170 struct svc_deferred_req *dr =
1171 container_of(dreq, struct svc_deferred_req, handle);
1172 struct svc_xprt *xprt = dr->xprt;
1173
1174 spin_lock(&xprt->xpt_lock);
1175 set_bit(XPT_DEFERRED, &xprt->xpt_flags);
1176 if (too_many || test_bit(XPT_DEAD, &xprt->xpt_flags)) {
1177 spin_unlock(&xprt->xpt_lock);
1178 trace_svc_defer_drop(dr);
1179 free_deferred(xprt, dr);
1180 svc_xprt_put(xprt);
1181 return;
1182 }
1183 dr->xprt = NULL;
1184 list_add(&dr->handle.recent, &xprt->xpt_deferred);
1185 spin_unlock(&xprt->xpt_lock);
1186 trace_svc_defer_queue(dr);
1187 svc_xprt_enqueue(xprt);
1188 svc_xprt_put(xprt);
1189 }
1190
1191 /*
1192 * Save the request off for later processing. The request buffer looks
1193 * like this:
1194 *
1195 * <xprt-header><rpc-header><rpc-pagelist><rpc-tail>
1196 *
1197 * This code can only handle requests that consist of an xprt-header
1198 * and rpc-header.
1199 */
svc_defer(struct cache_req * req)1200 static struct cache_deferred_req *svc_defer(struct cache_req *req)
1201 {
1202 struct svc_rqst *rqstp = container_of(req, struct svc_rqst, rq_chandle);
1203 struct svc_deferred_req *dr;
1204
1205 if (rqstp->rq_arg.page_len || !test_bit(RQ_USEDEFERRAL, &rqstp->rq_flags))
1206 return NULL; /* if more than a page, give up FIXME */
1207 if (rqstp->rq_deferred) {
1208 dr = rqstp->rq_deferred;
1209 rqstp->rq_deferred = NULL;
1210 } else {
1211 size_t skip;
1212 size_t size;
1213 /* FIXME maybe discard if size too large */
1214 size = sizeof(struct svc_deferred_req) + rqstp->rq_arg.len;
1215 dr = kmalloc(size, GFP_KERNEL);
1216 if (dr == NULL)
1217 return NULL;
1218
1219 dr->handle.owner = rqstp->rq_server;
1220 dr->prot = rqstp->rq_prot;
1221 memcpy(&dr->addr, &rqstp->rq_addr, rqstp->rq_addrlen);
1222 dr->addrlen = rqstp->rq_addrlen;
1223 dr->daddr = rqstp->rq_daddr;
1224 dr->argslen = rqstp->rq_arg.len >> 2;
1225
1226 /* back up head to the start of the buffer and copy */
1227 skip = rqstp->rq_arg.len - rqstp->rq_arg.head[0].iov_len;
1228 memcpy(dr->args, rqstp->rq_arg.head[0].iov_base - skip,
1229 dr->argslen << 2);
1230 }
1231 dr->xprt_ctxt = rqstp->rq_xprt_ctxt;
1232 rqstp->rq_xprt_ctxt = NULL;
1233 trace_svc_defer(rqstp);
1234 svc_xprt_get(rqstp->rq_xprt);
1235 dr->xprt = rqstp->rq_xprt;
1236 set_bit(RQ_DROPME, &rqstp->rq_flags);
1237
1238 dr->handle.revisit = svc_revisit;
1239 return &dr->handle;
1240 }
1241
1242 /*
1243 * recv data from a deferred request into an active one
1244 */
svc_deferred_recv(struct svc_rqst * rqstp)1245 static noinline int svc_deferred_recv(struct svc_rqst *rqstp)
1246 {
1247 struct svc_deferred_req *dr = rqstp->rq_deferred;
1248
1249 trace_svc_defer_recv(dr);
1250
1251 /* setup iov_base past transport header */
1252 rqstp->rq_arg.head[0].iov_base = dr->args;
1253 /* The iov_len does not include the transport header bytes */
1254 rqstp->rq_arg.head[0].iov_len = dr->argslen << 2;
1255 rqstp->rq_arg.page_len = 0;
1256 /* The rq_arg.len includes the transport header bytes */
1257 rqstp->rq_arg.len = dr->argslen << 2;
1258 rqstp->rq_prot = dr->prot;
1259 memcpy(&rqstp->rq_addr, &dr->addr, dr->addrlen);
1260 rqstp->rq_addrlen = dr->addrlen;
1261 /* Save off transport header len in case we get deferred again */
1262 rqstp->rq_daddr = dr->daddr;
1263 rqstp->rq_respages = rqstp->rq_pages;
1264 rqstp->rq_xprt_ctxt = dr->xprt_ctxt;
1265
1266 dr->xprt_ctxt = NULL;
1267 svc_xprt_received(rqstp->rq_xprt);
1268 return dr->argslen << 2;
1269 }
1270
1271
svc_deferred_dequeue(struct svc_xprt * xprt)1272 static struct svc_deferred_req *svc_deferred_dequeue(struct svc_xprt *xprt)
1273 {
1274 struct svc_deferred_req *dr = NULL;
1275
1276 if (!test_bit(XPT_DEFERRED, &xprt->xpt_flags))
1277 return NULL;
1278 spin_lock(&xprt->xpt_lock);
1279 if (!list_empty(&xprt->xpt_deferred)) {
1280 dr = list_entry(xprt->xpt_deferred.next,
1281 struct svc_deferred_req,
1282 handle.recent);
1283 list_del_init(&dr->handle.recent);
1284 } else
1285 clear_bit(XPT_DEFERRED, &xprt->xpt_flags);
1286 spin_unlock(&xprt->xpt_lock);
1287 return dr;
1288 }
1289
1290 /**
1291 * svc_find_xprt - find an RPC transport instance
1292 * @serv: pointer to svc_serv to search
1293 * @xcl_name: C string containing transport's class name
1294 * @net: owner net pointer
1295 * @af: Address family of transport's local address
1296 * @port: transport's IP port number
1297 *
1298 * Return the transport instance pointer for the endpoint accepting
1299 * connections/peer traffic from the specified transport class,
1300 * address family and port.
1301 *
1302 * Specifying 0 for the address family or port is effectively a
1303 * wild-card, and will result in matching the first transport in the
1304 * service's list that has a matching class name.
1305 */
svc_find_xprt(struct svc_serv * serv,const char * xcl_name,struct net * net,const sa_family_t af,const unsigned short port)1306 struct svc_xprt *svc_find_xprt(struct svc_serv *serv, const char *xcl_name,
1307 struct net *net, const sa_family_t af,
1308 const unsigned short port)
1309 {
1310 struct svc_xprt *xprt;
1311 struct svc_xprt *found = NULL;
1312
1313 /* Sanity check the args */
1314 if (serv == NULL || xcl_name == NULL)
1315 return found;
1316
1317 spin_lock_bh(&serv->sv_lock);
1318 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1319 if (xprt->xpt_net != net)
1320 continue;
1321 if (strcmp(xprt->xpt_class->xcl_name, xcl_name))
1322 continue;
1323 if (af != AF_UNSPEC && af != xprt->xpt_local.ss_family)
1324 continue;
1325 if (port != 0 && port != svc_xprt_local_port(xprt))
1326 continue;
1327 found = xprt;
1328 svc_xprt_get(xprt);
1329 break;
1330 }
1331 spin_unlock_bh(&serv->sv_lock);
1332 return found;
1333 }
1334 EXPORT_SYMBOL_GPL(svc_find_xprt);
1335
svc_one_xprt_name(const struct svc_xprt * xprt,char * pos,int remaining)1336 static int svc_one_xprt_name(const struct svc_xprt *xprt,
1337 char *pos, int remaining)
1338 {
1339 int len;
1340
1341 len = snprintf(pos, remaining, "%s %u\n",
1342 xprt->xpt_class->xcl_name,
1343 svc_xprt_local_port(xprt));
1344 if (len >= remaining)
1345 return -ENAMETOOLONG;
1346 return len;
1347 }
1348
1349 /**
1350 * svc_xprt_names - format a buffer with a list of transport names
1351 * @serv: pointer to an RPC service
1352 * @buf: pointer to a buffer to be filled in
1353 * @buflen: length of buffer to be filled in
1354 *
1355 * Fills in @buf with a string containing a list of transport names,
1356 * each name terminated with '\n'.
1357 *
1358 * Returns positive length of the filled-in string on success; otherwise
1359 * a negative errno value is returned if an error occurs.
1360 */
svc_xprt_names(struct svc_serv * serv,char * buf,const int buflen)1361 int svc_xprt_names(struct svc_serv *serv, char *buf, const int buflen)
1362 {
1363 struct svc_xprt *xprt;
1364 int len, totlen;
1365 char *pos;
1366
1367 /* Sanity check args */
1368 if (!serv)
1369 return 0;
1370
1371 spin_lock_bh(&serv->sv_lock);
1372
1373 pos = buf;
1374 totlen = 0;
1375 list_for_each_entry(xprt, &serv->sv_permsocks, xpt_list) {
1376 len = svc_one_xprt_name(xprt, pos, buflen - totlen);
1377 if (len < 0) {
1378 *buf = '\0';
1379 totlen = len;
1380 }
1381 if (len <= 0)
1382 break;
1383
1384 pos += len;
1385 totlen += len;
1386 }
1387
1388 spin_unlock_bh(&serv->sv_lock);
1389 return totlen;
1390 }
1391 EXPORT_SYMBOL_GPL(svc_xprt_names);
1392
1393
1394 /*----------------------------------------------------------------------------*/
1395
svc_pool_stats_start(struct seq_file * m,loff_t * pos)1396 static void *svc_pool_stats_start(struct seq_file *m, loff_t *pos)
1397 {
1398 unsigned int pidx = (unsigned int)*pos;
1399 struct svc_serv *serv = m->private;
1400
1401 dprintk("svc_pool_stats_start, *pidx=%u\n", pidx);
1402
1403 if (!pidx)
1404 return SEQ_START_TOKEN;
1405 return (pidx > serv->sv_nrpools ? NULL : &serv->sv_pools[pidx-1]);
1406 }
1407
svc_pool_stats_next(struct seq_file * m,void * p,loff_t * pos)1408 static void *svc_pool_stats_next(struct seq_file *m, void *p, loff_t *pos)
1409 {
1410 struct svc_pool *pool = p;
1411 struct svc_serv *serv = m->private;
1412
1413 dprintk("svc_pool_stats_next, *pos=%llu\n", *pos);
1414
1415 if (p == SEQ_START_TOKEN) {
1416 pool = &serv->sv_pools[0];
1417 } else {
1418 unsigned int pidx = (pool - &serv->sv_pools[0]);
1419 if (pidx < serv->sv_nrpools-1)
1420 pool = &serv->sv_pools[pidx+1];
1421 else
1422 pool = NULL;
1423 }
1424 ++*pos;
1425 return pool;
1426 }
1427
svc_pool_stats_stop(struct seq_file * m,void * p)1428 static void svc_pool_stats_stop(struct seq_file *m, void *p)
1429 {
1430 }
1431
svc_pool_stats_show(struct seq_file * m,void * p)1432 static int svc_pool_stats_show(struct seq_file *m, void *p)
1433 {
1434 struct svc_pool *pool = p;
1435
1436 if (p == SEQ_START_TOKEN) {
1437 seq_puts(m, "# pool packets-arrived sockets-enqueued threads-woken threads-timedout\n");
1438 return 0;
1439 }
1440
1441 seq_printf(m, "%u %lu %lu %lu %lu\n",
1442 pool->sp_id,
1443 (unsigned long)atomic_long_read(&pool->sp_stats.packets),
1444 pool->sp_stats.sockets_queued,
1445 (unsigned long)atomic_long_read(&pool->sp_stats.threads_woken),
1446 (unsigned long)atomic_long_read(&pool->sp_stats.threads_timedout));
1447
1448 return 0;
1449 }
1450
1451 static const struct seq_operations svc_pool_stats_seq_ops = {
1452 .start = svc_pool_stats_start,
1453 .next = svc_pool_stats_next,
1454 .stop = svc_pool_stats_stop,
1455 .show = svc_pool_stats_show,
1456 };
1457
svc_pool_stats_open(struct svc_serv * serv,struct file * file)1458 int svc_pool_stats_open(struct svc_serv *serv, struct file *file)
1459 {
1460 int err;
1461
1462 err = seq_open(file, &svc_pool_stats_seq_ops);
1463 if (!err)
1464 ((struct seq_file *) file->private_data)->private = serv;
1465 return err;
1466 }
1467 EXPORT_SYMBOL(svc_pool_stats_open);
1468
1469 /*----------------------------------------------------------------------------*/
1470