1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Simple CPU accounting cgroup controller
4 */
5 #include <linux/cpufreq_times.h>
6 #include "sched.h"
7 #include <trace/hooks/sched.h>
8
9 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
10
11 /*
12 * There are no locks covering percpu hardirq/softirq time.
13 * They are only modified in vtime_account, on corresponding CPU
14 * with interrupts disabled. So, writes are safe.
15 * They are read and saved off onto struct rq in update_rq_clock().
16 * This may result in other CPU reading this CPU's irq time and can
17 * race with irq/vtime_account on this CPU. We would either get old
18 * or new value with a side effect of accounting a slice of irq time to wrong
19 * task when irq is in progress while we read rq->clock. That is a worthy
20 * compromise in place of having locks on each irq in account_system_time.
21 */
22 DEFINE_PER_CPU(struct irqtime, cpu_irqtime);
23 EXPORT_PER_CPU_SYMBOL_GPL(cpu_irqtime);
24
25 static int sched_clock_irqtime;
26
enable_sched_clock_irqtime(void)27 void enable_sched_clock_irqtime(void)
28 {
29 sched_clock_irqtime = 1;
30 }
31
disable_sched_clock_irqtime(void)32 void disable_sched_clock_irqtime(void)
33 {
34 sched_clock_irqtime = 0;
35 }
36
irqtime_account_delta(struct irqtime * irqtime,u64 delta,enum cpu_usage_stat idx)37 static void irqtime_account_delta(struct irqtime *irqtime, u64 delta,
38 enum cpu_usage_stat idx)
39 {
40 u64 *cpustat = kcpustat_this_cpu->cpustat;
41
42 u64_stats_update_begin(&irqtime->sync);
43 cpustat[idx] += delta;
44 irqtime->total += delta;
45 irqtime->tick_delta += delta;
46 u64_stats_update_end(&irqtime->sync);
47 }
48
49 /*
50 * Called after incrementing preempt_count on {soft,}irq_enter
51 * and before decrementing preempt_count on {soft,}irq_exit.
52 */
irqtime_account_irq(struct task_struct * curr,unsigned int offset)53 void irqtime_account_irq(struct task_struct *curr, unsigned int offset)
54 {
55 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
56 unsigned int pc;
57 s64 delta;
58 int cpu;
59 bool irq_start = true;
60
61 if (!sched_clock_irqtime)
62 return;
63
64 cpu = smp_processor_id();
65 delta = sched_clock_cpu(cpu) - irqtime->irq_start_time;
66 irqtime->irq_start_time += delta;
67 pc = irq_count() - offset;
68
69 /*
70 * We do not account for softirq time from ksoftirqd here.
71 * We want to continue accounting softirq time to ksoftirqd thread
72 * in that case, so as not to confuse scheduler with a special task
73 * that do not consume any time, but still wants to run.
74 */
75 if (pc & HARDIRQ_MASK) {
76 irqtime_account_delta(irqtime, delta, CPUTIME_IRQ);
77 irq_start = false;
78 } else if ((pc & SOFTIRQ_OFFSET) && curr != this_cpu_ksoftirqd()) {
79 irqtime_account_delta(irqtime, delta, CPUTIME_SOFTIRQ);
80 irq_start = false;
81 }
82
83 trace_android_rvh_account_irq(curr, cpu, delta);
84
85 if (irq_start)
86 trace_android_rvh_account_irq_start(curr, cpu, delta);
87 else
88 trace_android_rvh_account_irq_end(curr, cpu, delta);
89 }
90
irqtime_tick_accounted(u64 maxtime)91 static u64 irqtime_tick_accounted(u64 maxtime)
92 {
93 struct irqtime *irqtime = this_cpu_ptr(&cpu_irqtime);
94 u64 delta;
95
96 delta = min(irqtime->tick_delta, maxtime);
97 irqtime->tick_delta -= delta;
98
99 return delta;
100 }
101
102 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
103
104 #define sched_clock_irqtime (0)
105
irqtime_tick_accounted(u64 dummy)106 static u64 irqtime_tick_accounted(u64 dummy)
107 {
108 return 0;
109 }
110
111 #endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
112
task_group_account_field(struct task_struct * p,int index,u64 tmp)113 static inline void task_group_account_field(struct task_struct *p, int index,
114 u64 tmp)
115 {
116 /*
117 * Since all updates are sure to touch the root cgroup, we
118 * get ourselves ahead and touch it first. If the root cgroup
119 * is the only cgroup, then nothing else should be necessary.
120 *
121 */
122 __this_cpu_add(kernel_cpustat.cpustat[index], tmp);
123
124 cgroup_account_cputime_field(p, index, tmp);
125 }
126
127 /*
128 * Account user CPU time to a process.
129 * @p: the process that the CPU time gets accounted to
130 * @cputime: the CPU time spent in user space since the last update
131 */
account_user_time(struct task_struct * p,u64 cputime)132 void account_user_time(struct task_struct *p, u64 cputime)
133 {
134 int index;
135
136 /* Add user time to process. */
137 p->utime += cputime;
138 account_group_user_time(p, cputime);
139
140 index = (task_nice(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
141
142 /* Add user time to cpustat. */
143 task_group_account_field(p, index, cputime);
144
145 /* Account for user time used */
146 acct_account_cputime(p);
147
148 /* Account power usage for user time */
149 cpufreq_acct_update_power(p, cputime);
150 }
151
152 /*
153 * Account guest CPU time to a process.
154 * @p: the process that the CPU time gets accounted to
155 * @cputime: the CPU time spent in virtual machine since the last update
156 */
account_guest_time(struct task_struct * p,u64 cputime)157 void account_guest_time(struct task_struct *p, u64 cputime)
158 {
159 u64 *cpustat = kcpustat_this_cpu->cpustat;
160
161 /* Add guest time to process. */
162 p->utime += cputime;
163 account_group_user_time(p, cputime);
164 p->gtime += cputime;
165
166 /* Add guest time to cpustat. */
167 if (task_nice(p) > 0) {
168 task_group_account_field(p, CPUTIME_NICE, cputime);
169 cpustat[CPUTIME_GUEST_NICE] += cputime;
170 } else {
171 task_group_account_field(p, CPUTIME_USER, cputime);
172 cpustat[CPUTIME_GUEST] += cputime;
173 }
174 }
175
176 /*
177 * Account system CPU time to a process and desired cpustat field
178 * @p: the process that the CPU time gets accounted to
179 * @cputime: the CPU time spent in kernel space since the last update
180 * @index: pointer to cpustat field that has to be updated
181 */
account_system_index_time(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)182 void account_system_index_time(struct task_struct *p,
183 u64 cputime, enum cpu_usage_stat index)
184 {
185 /* Add system time to process. */
186 p->stime += cputime;
187 account_group_system_time(p, cputime);
188
189 /* Add system time to cpustat. */
190 task_group_account_field(p, index, cputime);
191
192 /* Account for system time used */
193 acct_account_cputime(p);
194
195 /* Account power usage for system time */
196 cpufreq_acct_update_power(p, cputime);
197 }
198
199 /*
200 * Account system CPU time to a process.
201 * @p: the process that the CPU time gets accounted to
202 * @hardirq_offset: the offset to subtract from hardirq_count()
203 * @cputime: the CPU time spent in kernel space since the last update
204 */
account_system_time(struct task_struct * p,int hardirq_offset,u64 cputime)205 void account_system_time(struct task_struct *p, int hardirq_offset, u64 cputime)
206 {
207 int index;
208
209 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
210 account_guest_time(p, cputime);
211 return;
212 }
213
214 if (hardirq_count() - hardirq_offset)
215 index = CPUTIME_IRQ;
216 else if (in_serving_softirq())
217 index = CPUTIME_SOFTIRQ;
218 else
219 index = CPUTIME_SYSTEM;
220
221 account_system_index_time(p, cputime, index);
222 }
223
224 /*
225 * Account for involuntary wait time.
226 * @cputime: the CPU time spent in involuntary wait
227 */
account_steal_time(u64 cputime)228 void account_steal_time(u64 cputime)
229 {
230 u64 *cpustat = kcpustat_this_cpu->cpustat;
231
232 cpustat[CPUTIME_STEAL] += cputime;
233 }
234
235 /*
236 * Account for idle time.
237 * @cputime: the CPU time spent in idle wait
238 */
account_idle_time(u64 cputime)239 void account_idle_time(u64 cputime)
240 {
241 u64 *cpustat = kcpustat_this_cpu->cpustat;
242 struct rq *rq = this_rq();
243
244 if (atomic_read(&rq->nr_iowait) > 0)
245 cpustat[CPUTIME_IOWAIT] += cputime;
246 else
247 cpustat[CPUTIME_IDLE] += cputime;
248 }
249
250 /*
251 * When a guest is interrupted for a longer amount of time, missed clock
252 * ticks are not redelivered later. Due to that, this function may on
253 * occasion account more time than the calling functions think elapsed.
254 */
steal_account_process_time(u64 maxtime)255 static __always_inline u64 steal_account_process_time(u64 maxtime)
256 {
257 #ifdef CONFIG_PARAVIRT
258 if (static_key_false(¶virt_steal_enabled)) {
259 u64 steal;
260
261 steal = paravirt_steal_clock(smp_processor_id());
262 steal -= this_rq()->prev_steal_time;
263 steal = min(steal, maxtime);
264 account_steal_time(steal);
265 this_rq()->prev_steal_time += steal;
266
267 return steal;
268 }
269 #endif
270 return 0;
271 }
272
273 /*
274 * Account how much elapsed time was spent in steal, irq, or softirq time.
275 */
account_other_time(u64 max)276 static inline u64 account_other_time(u64 max)
277 {
278 u64 accounted;
279
280 lockdep_assert_irqs_disabled();
281
282 accounted = steal_account_process_time(max);
283
284 if (accounted < max)
285 accounted += irqtime_tick_accounted(max - accounted);
286
287 return accounted;
288 }
289
290 #ifdef CONFIG_64BIT
read_sum_exec_runtime(struct task_struct * t)291 static inline u64 read_sum_exec_runtime(struct task_struct *t)
292 {
293 return t->se.sum_exec_runtime;
294 }
295 #else
read_sum_exec_runtime(struct task_struct * t)296 static u64 read_sum_exec_runtime(struct task_struct *t)
297 {
298 u64 ns;
299 struct rq_flags rf;
300 struct rq *rq;
301
302 rq = task_rq_lock(t, &rf);
303 ns = t->se.sum_exec_runtime;
304 task_rq_unlock(rq, t, &rf);
305
306 return ns;
307 }
308 #endif
309
310 /*
311 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
312 * tasks (sum on group iteration) belonging to @tsk's group.
313 */
thread_group_cputime(struct task_struct * tsk,struct task_cputime * times)314 void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
315 {
316 struct signal_struct *sig = tsk->signal;
317 u64 utime, stime;
318 struct task_struct *t;
319 unsigned int seq, nextseq;
320 unsigned long flags;
321
322 /*
323 * Update current task runtime to account pending time since last
324 * scheduler action or thread_group_cputime() call. This thread group
325 * might have other running tasks on different CPUs, but updating
326 * their runtime can affect syscall performance, so we skip account
327 * those pending times and rely only on values updated on tick or
328 * other scheduler action.
329 */
330 if (same_thread_group(current, tsk))
331 (void) task_sched_runtime(current);
332
333 rcu_read_lock();
334 /* Attempt a lockless read on the first round. */
335 nextseq = 0;
336 do {
337 seq = nextseq;
338 flags = read_seqbegin_or_lock_irqsave(&sig->stats_lock, &seq);
339 times->utime = sig->utime;
340 times->stime = sig->stime;
341 times->sum_exec_runtime = sig->sum_sched_runtime;
342
343 for_each_thread(tsk, t) {
344 task_cputime(t, &utime, &stime);
345 times->utime += utime;
346 times->stime += stime;
347 times->sum_exec_runtime += read_sum_exec_runtime(t);
348 }
349 /* If lockless access failed, take the lock. */
350 nextseq = 1;
351 } while (need_seqretry(&sig->stats_lock, seq));
352 done_seqretry_irqrestore(&sig->stats_lock, seq, flags);
353 rcu_read_unlock();
354 }
355
356 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
357 /*
358 * Account a tick to a process and cpustat
359 * @p: the process that the CPU time gets accounted to
360 * @user_tick: is the tick from userspace
361 * @rq: the pointer to rq
362 *
363 * Tick demultiplexing follows the order
364 * - pending hardirq update
365 * - pending softirq update
366 * - user_time
367 * - idle_time
368 * - system time
369 * - check for guest_time
370 * - else account as system_time
371 *
372 * Check for hardirq is done both for system and user time as there is
373 * no timer going off while we are on hardirq and hence we may never get an
374 * opportunity to update it solely in system time.
375 * p->stime and friends are only updated on system time and not on irq
376 * softirq as those do not count in task exec_runtime any more.
377 */
irqtime_account_process_tick(struct task_struct * p,int user_tick,int ticks)378 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
379 int ticks)
380 {
381 u64 other, cputime = TICK_NSEC * ticks;
382
383 /*
384 * When returning from idle, many ticks can get accounted at
385 * once, including some ticks of steal, irq, and softirq time.
386 * Subtract those ticks from the amount of time accounted to
387 * idle, or potentially user or system time. Due to rounding,
388 * other time can exceed ticks occasionally.
389 */
390 other = account_other_time(ULONG_MAX);
391 if (other >= cputime)
392 return;
393
394 cputime -= other;
395
396 if (this_cpu_ksoftirqd() == p) {
397 /*
398 * ksoftirqd time do not get accounted in cpu_softirq_time.
399 * So, we have to handle it separately here.
400 * Also, p->stime needs to be updated for ksoftirqd.
401 */
402 account_system_index_time(p, cputime, CPUTIME_SOFTIRQ);
403 } else if (user_tick) {
404 account_user_time(p, cputime);
405 } else if (p == this_rq()->idle) {
406 account_idle_time(cputime);
407 } else if (p->flags & PF_VCPU) { /* System time or guest time */
408 account_guest_time(p, cputime);
409 } else {
410 account_system_index_time(p, cputime, CPUTIME_SYSTEM);
411 }
412 trace_android_vh_irqtime_account_process_tick(p, this_rq(), user_tick, ticks);
413 }
414
irqtime_account_idle_ticks(int ticks)415 static void irqtime_account_idle_ticks(int ticks)
416 {
417 irqtime_account_process_tick(current, 0, ticks);
418 }
419 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
irqtime_account_idle_ticks(int ticks)420 static inline void irqtime_account_idle_ticks(int ticks) { }
irqtime_account_process_tick(struct task_struct * p,int user_tick,int nr_ticks)421 static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
422 int nr_ticks) { }
423 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
424
425 /*
426 * Use precise platform statistics if available:
427 */
428 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
429
430 # ifndef __ARCH_HAS_VTIME_TASK_SWITCH
vtime_task_switch(struct task_struct * prev)431 void vtime_task_switch(struct task_struct *prev)
432 {
433 if (is_idle_task(prev))
434 vtime_account_idle(prev);
435 else
436 vtime_account_kernel(prev);
437
438 vtime_flush(prev);
439 arch_vtime_task_switch(prev);
440 }
441 # endif
442
vtime_account_irq(struct task_struct * tsk,unsigned int offset)443 void vtime_account_irq(struct task_struct *tsk, unsigned int offset)
444 {
445 unsigned int pc = irq_count() - offset;
446
447 if (pc & HARDIRQ_OFFSET) {
448 vtime_account_hardirq(tsk);
449 } else if (pc & SOFTIRQ_OFFSET) {
450 vtime_account_softirq(tsk);
451 } else if (!IS_ENABLED(CONFIG_HAVE_VIRT_CPU_ACCOUNTING_IDLE) &&
452 is_idle_task(tsk)) {
453 vtime_account_idle(tsk);
454 } else {
455 vtime_account_kernel(tsk);
456 }
457 }
458
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)459 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
460 u64 *ut, u64 *st)
461 {
462 *ut = curr->utime;
463 *st = curr->stime;
464 }
465
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)466 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
467 {
468 *ut = p->utime;
469 *st = p->stime;
470 }
471 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
472
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)473 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
474 {
475 struct task_cputime cputime;
476
477 thread_group_cputime(p, &cputime);
478
479 *ut = cputime.utime;
480 *st = cputime.stime;
481 }
482 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
483
484 #else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE: */
485
486 /*
487 * Account a single tick of CPU time.
488 * @p: the process that the CPU time gets accounted to
489 * @user_tick: indicates if the tick is a user or a system tick
490 */
account_process_tick(struct task_struct * p,int user_tick)491 void account_process_tick(struct task_struct *p, int user_tick)
492 {
493 u64 cputime, steal;
494
495 if (vtime_accounting_enabled_this_cpu())
496 return;
497 trace_android_vh_account_task_time(p, this_rq(), user_tick);
498
499 if (sched_clock_irqtime) {
500 irqtime_account_process_tick(p, user_tick, 1);
501 return;
502 }
503
504 cputime = TICK_NSEC;
505 steal = steal_account_process_time(ULONG_MAX);
506
507 if (steal >= cputime)
508 return;
509
510 cputime -= steal;
511
512 if (user_tick)
513 account_user_time(p, cputime);
514 else if ((p != this_rq()->idle) || (irq_count() != HARDIRQ_OFFSET))
515 account_system_time(p, HARDIRQ_OFFSET, cputime);
516 else
517 account_idle_time(cputime);
518 }
519
520 /*
521 * Account multiple ticks of idle time.
522 * @ticks: number of stolen ticks
523 */
account_idle_ticks(unsigned long ticks)524 void account_idle_ticks(unsigned long ticks)
525 {
526 u64 cputime, steal;
527
528 if (sched_clock_irqtime) {
529 irqtime_account_idle_ticks(ticks);
530 return;
531 }
532
533 cputime = ticks * TICK_NSEC;
534 steal = steal_account_process_time(ULONG_MAX);
535
536 if (steal >= cputime)
537 return;
538
539 cputime -= steal;
540 account_idle_time(cputime);
541 }
542
543 /*
544 * Adjust tick based cputime random precision against scheduler runtime
545 * accounting.
546 *
547 * Tick based cputime accounting depend on random scheduling timeslices of a
548 * task to be interrupted or not by the timer. Depending on these
549 * circumstances, the number of these interrupts may be over or
550 * under-optimistic, matching the real user and system cputime with a variable
551 * precision.
552 *
553 * Fix this by scaling these tick based values against the total runtime
554 * accounted by the CFS scheduler.
555 *
556 * This code provides the following guarantees:
557 *
558 * stime + utime == rtime
559 * stime_i+1 >= stime_i, utime_i+1 >= utime_i
560 *
561 * Assuming that rtime_i+1 >= rtime_i.
562 */
cputime_adjust(struct task_cputime * curr,struct prev_cputime * prev,u64 * ut,u64 * st)563 void cputime_adjust(struct task_cputime *curr, struct prev_cputime *prev,
564 u64 *ut, u64 *st)
565 {
566 u64 rtime, stime, utime;
567 unsigned long flags;
568
569 /* Serialize concurrent callers such that we can honour our guarantees */
570 raw_spin_lock_irqsave(&prev->lock, flags);
571 rtime = curr->sum_exec_runtime;
572
573 /*
574 * This is possible under two circumstances:
575 * - rtime isn't monotonic after all (a bug);
576 * - we got reordered by the lock.
577 *
578 * In both cases this acts as a filter such that the rest of the code
579 * can assume it is monotonic regardless of anything else.
580 */
581 if (prev->stime + prev->utime >= rtime)
582 goto out;
583
584 stime = curr->stime;
585 utime = curr->utime;
586
587 /*
588 * If either stime or utime are 0, assume all runtime is userspace.
589 * Once a task gets some ticks, the monotonicity code at 'update:'
590 * will ensure things converge to the observed ratio.
591 */
592 if (stime == 0) {
593 utime = rtime;
594 goto update;
595 }
596
597 if (utime == 0) {
598 stime = rtime;
599 goto update;
600 }
601
602 stime = mul_u64_u64_div_u64(stime, rtime, stime + utime);
603
604 update:
605 /*
606 * Make sure stime doesn't go backwards; this preserves monotonicity
607 * for utime because rtime is monotonic.
608 *
609 * utime_i+1 = rtime_i+1 - stime_i
610 * = rtime_i+1 - (rtime_i - utime_i)
611 * = (rtime_i+1 - rtime_i) + utime_i
612 * >= utime_i
613 */
614 if (stime < prev->stime)
615 stime = prev->stime;
616 utime = rtime - stime;
617
618 /*
619 * Make sure utime doesn't go backwards; this still preserves
620 * monotonicity for stime, analogous argument to above.
621 */
622 if (utime < prev->utime) {
623 utime = prev->utime;
624 stime = rtime - utime;
625 }
626
627 prev->stime = stime;
628 prev->utime = utime;
629 out:
630 *ut = prev->utime;
631 *st = prev->stime;
632 raw_spin_unlock_irqrestore(&prev->lock, flags);
633 }
634
task_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)635 void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
636 {
637 struct task_cputime cputime = {
638 .sum_exec_runtime = p->se.sum_exec_runtime,
639 };
640
641 task_cputime(p, &cputime.utime, &cputime.stime);
642 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
643 }
644 EXPORT_SYMBOL_GPL(task_cputime_adjusted);
645
thread_group_cputime_adjusted(struct task_struct * p,u64 * ut,u64 * st)646 void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st)
647 {
648 struct task_cputime cputime;
649
650 thread_group_cputime(p, &cputime);
651 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
652 }
653 EXPORT_SYMBOL_GPL(thread_group_cputime_adjusted);
654
655 #endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
656
657 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
vtime_delta(struct vtime * vtime)658 static u64 vtime_delta(struct vtime *vtime)
659 {
660 unsigned long long clock;
661
662 clock = sched_clock();
663 if (clock < vtime->starttime)
664 return 0;
665
666 return clock - vtime->starttime;
667 }
668
get_vtime_delta(struct vtime * vtime)669 static u64 get_vtime_delta(struct vtime *vtime)
670 {
671 u64 delta = vtime_delta(vtime);
672 u64 other;
673
674 /*
675 * Unlike tick based timing, vtime based timing never has lost
676 * ticks, and no need for steal time accounting to make up for
677 * lost ticks. Vtime accounts a rounded version of actual
678 * elapsed time. Limit account_other_time to prevent rounding
679 * errors from causing elapsed vtime to go negative.
680 */
681 other = account_other_time(delta);
682 WARN_ON_ONCE(vtime->state == VTIME_INACTIVE);
683 vtime->starttime += delta;
684
685 return delta - other;
686 }
687
vtime_account_system(struct task_struct * tsk,struct vtime * vtime)688 static void vtime_account_system(struct task_struct *tsk,
689 struct vtime *vtime)
690 {
691 vtime->stime += get_vtime_delta(vtime);
692 if (vtime->stime >= TICK_NSEC) {
693 account_system_time(tsk, irq_count(), vtime->stime);
694 vtime->stime = 0;
695 }
696 }
697
vtime_account_guest(struct task_struct * tsk,struct vtime * vtime)698 static void vtime_account_guest(struct task_struct *tsk,
699 struct vtime *vtime)
700 {
701 vtime->gtime += get_vtime_delta(vtime);
702 if (vtime->gtime >= TICK_NSEC) {
703 account_guest_time(tsk, vtime->gtime);
704 vtime->gtime = 0;
705 }
706 }
707
__vtime_account_kernel(struct task_struct * tsk,struct vtime * vtime)708 static void __vtime_account_kernel(struct task_struct *tsk,
709 struct vtime *vtime)
710 {
711 /* We might have scheduled out from guest path */
712 if (vtime->state == VTIME_GUEST)
713 vtime_account_guest(tsk, vtime);
714 else
715 vtime_account_system(tsk, vtime);
716 }
717
vtime_account_kernel(struct task_struct * tsk)718 void vtime_account_kernel(struct task_struct *tsk)
719 {
720 struct vtime *vtime = &tsk->vtime;
721
722 if (!vtime_delta(vtime))
723 return;
724
725 write_seqcount_begin(&vtime->seqcount);
726 __vtime_account_kernel(tsk, vtime);
727 write_seqcount_end(&vtime->seqcount);
728 }
729
vtime_user_enter(struct task_struct * tsk)730 void vtime_user_enter(struct task_struct *tsk)
731 {
732 struct vtime *vtime = &tsk->vtime;
733
734 write_seqcount_begin(&vtime->seqcount);
735 vtime_account_system(tsk, vtime);
736 vtime->state = VTIME_USER;
737 write_seqcount_end(&vtime->seqcount);
738 }
739
vtime_user_exit(struct task_struct * tsk)740 void vtime_user_exit(struct task_struct *tsk)
741 {
742 struct vtime *vtime = &tsk->vtime;
743
744 write_seqcount_begin(&vtime->seqcount);
745 vtime->utime += get_vtime_delta(vtime);
746 if (vtime->utime >= TICK_NSEC) {
747 account_user_time(tsk, vtime->utime);
748 vtime->utime = 0;
749 }
750 vtime->state = VTIME_SYS;
751 write_seqcount_end(&vtime->seqcount);
752 }
753
vtime_guest_enter(struct task_struct * tsk)754 void vtime_guest_enter(struct task_struct *tsk)
755 {
756 struct vtime *vtime = &tsk->vtime;
757 /*
758 * The flags must be updated under the lock with
759 * the vtime_starttime flush and update.
760 * That enforces a right ordering and update sequence
761 * synchronization against the reader (task_gtime())
762 * that can thus safely catch up with a tickless delta.
763 */
764 write_seqcount_begin(&vtime->seqcount);
765 vtime_account_system(tsk, vtime);
766 tsk->flags |= PF_VCPU;
767 vtime->state = VTIME_GUEST;
768 write_seqcount_end(&vtime->seqcount);
769 }
770 EXPORT_SYMBOL_GPL(vtime_guest_enter);
771
vtime_guest_exit(struct task_struct * tsk)772 void vtime_guest_exit(struct task_struct *tsk)
773 {
774 struct vtime *vtime = &tsk->vtime;
775
776 write_seqcount_begin(&vtime->seqcount);
777 vtime_account_guest(tsk, vtime);
778 tsk->flags &= ~PF_VCPU;
779 vtime->state = VTIME_SYS;
780 write_seqcount_end(&vtime->seqcount);
781 }
782 EXPORT_SYMBOL_GPL(vtime_guest_exit);
783
vtime_account_idle(struct task_struct * tsk)784 void vtime_account_idle(struct task_struct *tsk)
785 {
786 account_idle_time(get_vtime_delta(&tsk->vtime));
787 }
788
vtime_task_switch_generic(struct task_struct * prev)789 void vtime_task_switch_generic(struct task_struct *prev)
790 {
791 struct vtime *vtime = &prev->vtime;
792
793 write_seqcount_begin(&vtime->seqcount);
794 if (vtime->state == VTIME_IDLE)
795 vtime_account_idle(prev);
796 else
797 __vtime_account_kernel(prev, vtime);
798 vtime->state = VTIME_INACTIVE;
799 vtime->cpu = -1;
800 write_seqcount_end(&vtime->seqcount);
801
802 vtime = ¤t->vtime;
803
804 write_seqcount_begin(&vtime->seqcount);
805 if (is_idle_task(current))
806 vtime->state = VTIME_IDLE;
807 else if (current->flags & PF_VCPU)
808 vtime->state = VTIME_GUEST;
809 else
810 vtime->state = VTIME_SYS;
811 vtime->starttime = sched_clock();
812 vtime->cpu = smp_processor_id();
813 write_seqcount_end(&vtime->seqcount);
814 }
815
vtime_init_idle(struct task_struct * t,int cpu)816 void vtime_init_idle(struct task_struct *t, int cpu)
817 {
818 struct vtime *vtime = &t->vtime;
819 unsigned long flags;
820
821 local_irq_save(flags);
822 write_seqcount_begin(&vtime->seqcount);
823 vtime->state = VTIME_IDLE;
824 vtime->starttime = sched_clock();
825 vtime->cpu = cpu;
826 write_seqcount_end(&vtime->seqcount);
827 local_irq_restore(flags);
828 }
829
task_gtime(struct task_struct * t)830 u64 task_gtime(struct task_struct *t)
831 {
832 struct vtime *vtime = &t->vtime;
833 unsigned int seq;
834 u64 gtime;
835
836 if (!vtime_accounting_enabled())
837 return t->gtime;
838
839 do {
840 seq = read_seqcount_begin(&vtime->seqcount);
841
842 gtime = t->gtime;
843 if (vtime->state == VTIME_GUEST)
844 gtime += vtime->gtime + vtime_delta(vtime);
845
846 } while (read_seqcount_retry(&vtime->seqcount, seq));
847
848 return gtime;
849 }
850
851 /*
852 * Fetch cputime raw values from fields of task_struct and
853 * add up the pending nohz execution time since the last
854 * cputime snapshot.
855 */
task_cputime(struct task_struct * t,u64 * utime,u64 * stime)856 void task_cputime(struct task_struct *t, u64 *utime, u64 *stime)
857 {
858 struct vtime *vtime = &t->vtime;
859 unsigned int seq;
860 u64 delta;
861
862 if (!vtime_accounting_enabled()) {
863 *utime = t->utime;
864 *stime = t->stime;
865 return;
866 }
867
868 do {
869 seq = read_seqcount_begin(&vtime->seqcount);
870
871 *utime = t->utime;
872 *stime = t->stime;
873
874 /* Task is sleeping or idle, nothing to add */
875 if (vtime->state < VTIME_SYS)
876 continue;
877
878 delta = vtime_delta(vtime);
879
880 /*
881 * Task runs either in user (including guest) or kernel space,
882 * add pending nohz time to the right place.
883 */
884 if (vtime->state == VTIME_SYS)
885 *stime += vtime->stime + delta;
886 else
887 *utime += vtime->utime + delta;
888 } while (read_seqcount_retry(&vtime->seqcount, seq));
889 }
890
vtime_state_fetch(struct vtime * vtime,int cpu)891 static int vtime_state_fetch(struct vtime *vtime, int cpu)
892 {
893 int state = READ_ONCE(vtime->state);
894
895 /*
896 * We raced against a context switch, fetch the
897 * kcpustat task again.
898 */
899 if (vtime->cpu != cpu && vtime->cpu != -1)
900 return -EAGAIN;
901
902 /*
903 * Two possible things here:
904 * 1) We are seeing the scheduling out task (prev) or any past one.
905 * 2) We are seeing the scheduling in task (next) but it hasn't
906 * passed though vtime_task_switch() yet so the pending
907 * cputime of the prev task may not be flushed yet.
908 *
909 * Case 1) is ok but 2) is not. So wait for a safe VTIME state.
910 */
911 if (state == VTIME_INACTIVE)
912 return -EAGAIN;
913
914 return state;
915 }
916
kcpustat_user_vtime(struct vtime * vtime)917 static u64 kcpustat_user_vtime(struct vtime *vtime)
918 {
919 if (vtime->state == VTIME_USER)
920 return vtime->utime + vtime_delta(vtime);
921 else if (vtime->state == VTIME_GUEST)
922 return vtime->gtime + vtime_delta(vtime);
923 return 0;
924 }
925
kcpustat_field_vtime(u64 * cpustat,struct task_struct * tsk,enum cpu_usage_stat usage,int cpu,u64 * val)926 static int kcpustat_field_vtime(u64 *cpustat,
927 struct task_struct *tsk,
928 enum cpu_usage_stat usage,
929 int cpu, u64 *val)
930 {
931 struct vtime *vtime = &tsk->vtime;
932 unsigned int seq;
933
934 do {
935 int state;
936
937 seq = read_seqcount_begin(&vtime->seqcount);
938
939 state = vtime_state_fetch(vtime, cpu);
940 if (state < 0)
941 return state;
942
943 *val = cpustat[usage];
944
945 /*
946 * Nice VS unnice cputime accounting may be inaccurate if
947 * the nice value has changed since the last vtime update.
948 * But proper fix would involve interrupting target on nice
949 * updates which is a no go on nohz_full (although the scheduler
950 * may still interrupt the target if rescheduling is needed...)
951 */
952 switch (usage) {
953 case CPUTIME_SYSTEM:
954 if (state == VTIME_SYS)
955 *val += vtime->stime + vtime_delta(vtime);
956 break;
957 case CPUTIME_USER:
958 if (task_nice(tsk) <= 0)
959 *val += kcpustat_user_vtime(vtime);
960 break;
961 case CPUTIME_NICE:
962 if (task_nice(tsk) > 0)
963 *val += kcpustat_user_vtime(vtime);
964 break;
965 case CPUTIME_GUEST:
966 if (state == VTIME_GUEST && task_nice(tsk) <= 0)
967 *val += vtime->gtime + vtime_delta(vtime);
968 break;
969 case CPUTIME_GUEST_NICE:
970 if (state == VTIME_GUEST && task_nice(tsk) > 0)
971 *val += vtime->gtime + vtime_delta(vtime);
972 break;
973 default:
974 break;
975 }
976 } while (read_seqcount_retry(&vtime->seqcount, seq));
977
978 return 0;
979 }
980
kcpustat_field(struct kernel_cpustat * kcpustat,enum cpu_usage_stat usage,int cpu)981 u64 kcpustat_field(struct kernel_cpustat *kcpustat,
982 enum cpu_usage_stat usage, int cpu)
983 {
984 u64 *cpustat = kcpustat->cpustat;
985 u64 val = cpustat[usage];
986 struct rq *rq;
987 int err;
988
989 if (!vtime_accounting_enabled_cpu(cpu))
990 return val;
991
992 rq = cpu_rq(cpu);
993
994 for (;;) {
995 struct task_struct *curr;
996
997 rcu_read_lock();
998 curr = rcu_dereference(rq->curr);
999 if (WARN_ON_ONCE(!curr)) {
1000 rcu_read_unlock();
1001 return cpustat[usage];
1002 }
1003
1004 err = kcpustat_field_vtime(cpustat, curr, usage, cpu, &val);
1005 rcu_read_unlock();
1006
1007 if (!err)
1008 return val;
1009
1010 cpu_relax();
1011 }
1012 }
1013 EXPORT_SYMBOL_GPL(kcpustat_field);
1014
kcpustat_cpu_fetch_vtime(struct kernel_cpustat * dst,const struct kernel_cpustat * src,struct task_struct * tsk,int cpu)1015 static int kcpustat_cpu_fetch_vtime(struct kernel_cpustat *dst,
1016 const struct kernel_cpustat *src,
1017 struct task_struct *tsk, int cpu)
1018 {
1019 struct vtime *vtime = &tsk->vtime;
1020 unsigned int seq;
1021
1022 do {
1023 u64 *cpustat;
1024 u64 delta;
1025 int state;
1026
1027 seq = read_seqcount_begin(&vtime->seqcount);
1028
1029 state = vtime_state_fetch(vtime, cpu);
1030 if (state < 0)
1031 return state;
1032
1033 *dst = *src;
1034 cpustat = dst->cpustat;
1035
1036 /* Task is sleeping, dead or idle, nothing to add */
1037 if (state < VTIME_SYS)
1038 continue;
1039
1040 delta = vtime_delta(vtime);
1041
1042 /*
1043 * Task runs either in user (including guest) or kernel space,
1044 * add pending nohz time to the right place.
1045 */
1046 if (state == VTIME_SYS) {
1047 cpustat[CPUTIME_SYSTEM] += vtime->stime + delta;
1048 } else if (state == VTIME_USER) {
1049 if (task_nice(tsk) > 0)
1050 cpustat[CPUTIME_NICE] += vtime->utime + delta;
1051 else
1052 cpustat[CPUTIME_USER] += vtime->utime + delta;
1053 } else {
1054 WARN_ON_ONCE(state != VTIME_GUEST);
1055 if (task_nice(tsk) > 0) {
1056 cpustat[CPUTIME_GUEST_NICE] += vtime->gtime + delta;
1057 cpustat[CPUTIME_NICE] += vtime->gtime + delta;
1058 } else {
1059 cpustat[CPUTIME_GUEST] += vtime->gtime + delta;
1060 cpustat[CPUTIME_USER] += vtime->gtime + delta;
1061 }
1062 }
1063 } while (read_seqcount_retry(&vtime->seqcount, seq));
1064
1065 return 0;
1066 }
1067
kcpustat_cpu_fetch(struct kernel_cpustat * dst,int cpu)1068 void kcpustat_cpu_fetch(struct kernel_cpustat *dst, int cpu)
1069 {
1070 const struct kernel_cpustat *src = &kcpustat_cpu(cpu);
1071 struct rq *rq;
1072 int err;
1073
1074 if (!vtime_accounting_enabled_cpu(cpu)) {
1075 *dst = *src;
1076 return;
1077 }
1078
1079 rq = cpu_rq(cpu);
1080
1081 for (;;) {
1082 struct task_struct *curr;
1083
1084 rcu_read_lock();
1085 curr = rcu_dereference(rq->curr);
1086 if (WARN_ON_ONCE(!curr)) {
1087 rcu_read_unlock();
1088 *dst = *src;
1089 return;
1090 }
1091
1092 err = kcpustat_cpu_fetch_vtime(dst, src, curr, cpu);
1093 rcu_read_unlock();
1094
1095 if (!err)
1096 return;
1097
1098 cpu_relax();
1099 }
1100 }
1101 EXPORT_SYMBOL_GPL(kcpustat_cpu_fetch);
1102
1103 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */
1104