1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Thunderbolt driver - switch/port utility functions
4 *
5 * Copyright (c) 2014 Andreas Noever <andreas.noever@gmail.com>
6 * Copyright (C) 2018, Intel Corporation
7 */
8
9 #include <linux/delay.h>
10 #include <linux/idr.h>
11 #include <linux/nvmem-provider.h>
12 #include <linux/pm_runtime.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sizes.h>
15 #include <linux/slab.h>
16
17 #include "tb.h"
18
19 /* Switch NVM support */
20
21 #define NVM_CSS 0x10
22
23 struct nvm_auth_status {
24 struct list_head list;
25 uuid_t uuid;
26 u32 status;
27 };
28
29 /*
30 * Hold NVM authentication failure status per switch This information
31 * needs to stay around even when the switch gets power cycled so we
32 * keep it separately.
33 */
34 static LIST_HEAD(nvm_auth_status_cache);
35 static DEFINE_MUTEX(nvm_auth_status_lock);
36
__nvm_get_auth_status(const struct tb_switch * sw)37 static struct nvm_auth_status *__nvm_get_auth_status(const struct tb_switch *sw)
38 {
39 struct nvm_auth_status *st;
40
41 list_for_each_entry(st, &nvm_auth_status_cache, list) {
42 if (uuid_equal(&st->uuid, sw->uuid))
43 return st;
44 }
45
46 return NULL;
47 }
48
nvm_get_auth_status(const struct tb_switch * sw,u32 * status)49 static void nvm_get_auth_status(const struct tb_switch *sw, u32 *status)
50 {
51 struct nvm_auth_status *st;
52
53 mutex_lock(&nvm_auth_status_lock);
54 st = __nvm_get_auth_status(sw);
55 mutex_unlock(&nvm_auth_status_lock);
56
57 *status = st ? st->status : 0;
58 }
59
nvm_set_auth_status(const struct tb_switch * sw,u32 status)60 static void nvm_set_auth_status(const struct tb_switch *sw, u32 status)
61 {
62 struct nvm_auth_status *st;
63
64 if (WARN_ON(!sw->uuid))
65 return;
66
67 mutex_lock(&nvm_auth_status_lock);
68 st = __nvm_get_auth_status(sw);
69
70 if (!st) {
71 st = kzalloc(sizeof(*st), GFP_KERNEL);
72 if (!st)
73 goto unlock;
74
75 memcpy(&st->uuid, sw->uuid, sizeof(st->uuid));
76 INIT_LIST_HEAD(&st->list);
77 list_add_tail(&st->list, &nvm_auth_status_cache);
78 }
79
80 st->status = status;
81 unlock:
82 mutex_unlock(&nvm_auth_status_lock);
83 }
84
nvm_clear_auth_status(const struct tb_switch * sw)85 static void nvm_clear_auth_status(const struct tb_switch *sw)
86 {
87 struct nvm_auth_status *st;
88
89 mutex_lock(&nvm_auth_status_lock);
90 st = __nvm_get_auth_status(sw);
91 if (st) {
92 list_del(&st->list);
93 kfree(st);
94 }
95 mutex_unlock(&nvm_auth_status_lock);
96 }
97
nvm_validate_and_write(struct tb_switch * sw)98 static int nvm_validate_and_write(struct tb_switch *sw)
99 {
100 unsigned int image_size, hdr_size;
101 const u8 *buf = sw->nvm->buf;
102 u16 ds_size;
103 int ret;
104
105 if (!buf)
106 return -EINVAL;
107
108 image_size = sw->nvm->buf_data_size;
109 if (image_size < NVM_MIN_SIZE || image_size > NVM_MAX_SIZE)
110 return -EINVAL;
111
112 /*
113 * FARB pointer must point inside the image and must at least
114 * contain parts of the digital section we will be reading here.
115 */
116 hdr_size = (*(u32 *)buf) & 0xffffff;
117 if (hdr_size + NVM_DEVID + 2 >= image_size)
118 return -EINVAL;
119
120 /* Digital section start should be aligned to 4k page */
121 if (!IS_ALIGNED(hdr_size, SZ_4K))
122 return -EINVAL;
123
124 /*
125 * Read digital section size and check that it also fits inside
126 * the image.
127 */
128 ds_size = *(u16 *)(buf + hdr_size);
129 if (ds_size >= image_size)
130 return -EINVAL;
131
132 if (!sw->safe_mode) {
133 u16 device_id;
134
135 /*
136 * Make sure the device ID in the image matches the one
137 * we read from the switch config space.
138 */
139 device_id = *(u16 *)(buf + hdr_size + NVM_DEVID);
140 if (device_id != sw->config.device_id)
141 return -EINVAL;
142
143 if (sw->generation < 3) {
144 /* Write CSS headers first */
145 ret = dma_port_flash_write(sw->dma_port,
146 DMA_PORT_CSS_ADDRESS, buf + NVM_CSS,
147 DMA_PORT_CSS_MAX_SIZE);
148 if (ret)
149 return ret;
150 }
151
152 /* Skip headers in the image */
153 buf += hdr_size;
154 image_size -= hdr_size;
155 }
156
157 if (tb_switch_is_usb4(sw))
158 ret = usb4_switch_nvm_write(sw, 0, buf, image_size);
159 else
160 ret = dma_port_flash_write(sw->dma_port, 0, buf, image_size);
161 if (!ret)
162 sw->nvm->flushed = true;
163 return ret;
164 }
165
nvm_authenticate_host_dma_port(struct tb_switch * sw)166 static int nvm_authenticate_host_dma_port(struct tb_switch *sw)
167 {
168 int ret = 0;
169
170 /*
171 * Root switch NVM upgrade requires that we disconnect the
172 * existing paths first (in case it is not in safe mode
173 * already).
174 */
175 if (!sw->safe_mode) {
176 u32 status;
177
178 ret = tb_domain_disconnect_all_paths(sw->tb);
179 if (ret)
180 return ret;
181 /*
182 * The host controller goes away pretty soon after this if
183 * everything goes well so getting timeout is expected.
184 */
185 ret = dma_port_flash_update_auth(sw->dma_port);
186 if (!ret || ret == -ETIMEDOUT)
187 return 0;
188
189 /*
190 * Any error from update auth operation requires power
191 * cycling of the host router.
192 */
193 tb_sw_warn(sw, "failed to authenticate NVM, power cycling\n");
194 if (dma_port_flash_update_auth_status(sw->dma_port, &status) > 0)
195 nvm_set_auth_status(sw, status);
196 }
197
198 /*
199 * From safe mode we can get out by just power cycling the
200 * switch.
201 */
202 dma_port_power_cycle(sw->dma_port);
203 return ret;
204 }
205
nvm_authenticate_device_dma_port(struct tb_switch * sw)206 static int nvm_authenticate_device_dma_port(struct tb_switch *sw)
207 {
208 int ret, retries = 10;
209
210 ret = dma_port_flash_update_auth(sw->dma_port);
211 switch (ret) {
212 case 0:
213 case -ETIMEDOUT:
214 case -EACCES:
215 case -EINVAL:
216 /* Power cycle is required */
217 break;
218 default:
219 return ret;
220 }
221
222 /*
223 * Poll here for the authentication status. It takes some time
224 * for the device to respond (we get timeout for a while). Once
225 * we get response the device needs to be power cycled in order
226 * to the new NVM to be taken into use.
227 */
228 do {
229 u32 status;
230
231 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
232 if (ret < 0 && ret != -ETIMEDOUT)
233 return ret;
234 if (ret > 0) {
235 if (status) {
236 tb_sw_warn(sw, "failed to authenticate NVM\n");
237 nvm_set_auth_status(sw, status);
238 }
239
240 tb_sw_info(sw, "power cycling the switch now\n");
241 dma_port_power_cycle(sw->dma_port);
242 return 0;
243 }
244
245 msleep(500);
246 } while (--retries);
247
248 return -ETIMEDOUT;
249 }
250
nvm_authenticate_start_dma_port(struct tb_switch * sw)251 static void nvm_authenticate_start_dma_port(struct tb_switch *sw)
252 {
253 struct pci_dev *root_port;
254
255 /*
256 * During host router NVM upgrade we should not allow root port to
257 * go into D3cold because some root ports cannot trigger PME
258 * itself. To be on the safe side keep the root port in D0 during
259 * the whole upgrade process.
260 */
261 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
262 if (root_port)
263 pm_runtime_get_noresume(&root_port->dev);
264 }
265
nvm_authenticate_complete_dma_port(struct tb_switch * sw)266 static void nvm_authenticate_complete_dma_port(struct tb_switch *sw)
267 {
268 struct pci_dev *root_port;
269
270 root_port = pcie_find_root_port(sw->tb->nhi->pdev);
271 if (root_port)
272 pm_runtime_put(&root_port->dev);
273 }
274
nvm_readable(struct tb_switch * sw)275 static inline bool nvm_readable(struct tb_switch *sw)
276 {
277 if (tb_switch_is_usb4(sw)) {
278 /*
279 * USB4 devices must support NVM operations but it is
280 * optional for hosts. Therefore we query the NVM sector
281 * size here and if it is supported assume NVM
282 * operations are implemented.
283 */
284 return usb4_switch_nvm_sector_size(sw) > 0;
285 }
286
287 /* Thunderbolt 2 and 3 devices support NVM through DMA port */
288 return !!sw->dma_port;
289 }
290
nvm_upgradeable(struct tb_switch * sw)291 static inline bool nvm_upgradeable(struct tb_switch *sw)
292 {
293 if (sw->no_nvm_upgrade)
294 return false;
295 return nvm_readable(sw);
296 }
297
nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)298 static inline int nvm_read(struct tb_switch *sw, unsigned int address,
299 void *buf, size_t size)
300 {
301 if (tb_switch_is_usb4(sw))
302 return usb4_switch_nvm_read(sw, address, buf, size);
303 return dma_port_flash_read(sw->dma_port, address, buf, size);
304 }
305
nvm_authenticate(struct tb_switch * sw,bool auth_only)306 static int nvm_authenticate(struct tb_switch *sw, bool auth_only)
307 {
308 int ret;
309
310 if (tb_switch_is_usb4(sw)) {
311 if (auth_only) {
312 ret = usb4_switch_nvm_set_offset(sw, 0);
313 if (ret)
314 return ret;
315 }
316 sw->nvm->authenticating = true;
317 return usb4_switch_nvm_authenticate(sw);
318 } else if (auth_only) {
319 return -EOPNOTSUPP;
320 }
321
322 sw->nvm->authenticating = true;
323 if (!tb_route(sw)) {
324 nvm_authenticate_start_dma_port(sw);
325 ret = nvm_authenticate_host_dma_port(sw);
326 } else {
327 ret = nvm_authenticate_device_dma_port(sw);
328 }
329
330 return ret;
331 }
332
tb_switch_nvm_read(void * priv,unsigned int offset,void * val,size_t bytes)333 static int tb_switch_nvm_read(void *priv, unsigned int offset, void *val,
334 size_t bytes)
335 {
336 struct tb_nvm *nvm = priv;
337 struct tb_switch *sw = tb_to_switch(nvm->dev);
338 int ret;
339
340 pm_runtime_get_sync(&sw->dev);
341
342 if (!mutex_trylock(&sw->tb->lock)) {
343 ret = restart_syscall();
344 goto out;
345 }
346
347 ret = nvm_read(sw, offset, val, bytes);
348 mutex_unlock(&sw->tb->lock);
349
350 out:
351 pm_runtime_mark_last_busy(&sw->dev);
352 pm_runtime_put_autosuspend(&sw->dev);
353
354 return ret;
355 }
356
tb_switch_nvm_write(void * priv,unsigned int offset,void * val,size_t bytes)357 static int tb_switch_nvm_write(void *priv, unsigned int offset, void *val,
358 size_t bytes)
359 {
360 struct tb_nvm *nvm = priv;
361 struct tb_switch *sw = tb_to_switch(nvm->dev);
362 int ret;
363
364 if (!mutex_trylock(&sw->tb->lock))
365 return restart_syscall();
366
367 /*
368 * Since writing the NVM image might require some special steps,
369 * for example when CSS headers are written, we cache the image
370 * locally here and handle the special cases when the user asks
371 * us to authenticate the image.
372 */
373 ret = tb_nvm_write_buf(nvm, offset, val, bytes);
374 mutex_unlock(&sw->tb->lock);
375
376 return ret;
377 }
378
tb_switch_nvm_add(struct tb_switch * sw)379 static int tb_switch_nvm_add(struct tb_switch *sw)
380 {
381 struct tb_nvm *nvm;
382 u32 val;
383 int ret;
384
385 if (!nvm_readable(sw))
386 return 0;
387
388 /*
389 * The NVM format of non-Intel hardware is not known so
390 * currently restrict NVM upgrade for Intel hardware. We may
391 * relax this in the future when we learn other NVM formats.
392 */
393 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL &&
394 sw->config.vendor_id != 0x8087) {
395 dev_info(&sw->dev,
396 "NVM format of vendor %#x is not known, disabling NVM upgrade\n",
397 sw->config.vendor_id);
398 return 0;
399 }
400
401 nvm = tb_nvm_alloc(&sw->dev);
402 if (IS_ERR(nvm))
403 return PTR_ERR(nvm);
404
405 /*
406 * If the switch is in safe-mode the only accessible portion of
407 * the NVM is the non-active one where userspace is expected to
408 * write new functional NVM.
409 */
410 if (!sw->safe_mode) {
411 u32 nvm_size, hdr_size;
412
413 ret = nvm_read(sw, NVM_FLASH_SIZE, &val, sizeof(val));
414 if (ret)
415 goto err_nvm;
416
417 hdr_size = sw->generation < 3 ? SZ_8K : SZ_16K;
418 nvm_size = (SZ_1M << (val & 7)) / 8;
419 nvm_size = (nvm_size - hdr_size) / 2;
420
421 ret = nvm_read(sw, NVM_VERSION, &val, sizeof(val));
422 if (ret)
423 goto err_nvm;
424
425 nvm->major = val >> 16;
426 nvm->minor = val >> 8;
427
428 ret = tb_nvm_add_active(nvm, nvm_size, tb_switch_nvm_read);
429 if (ret)
430 goto err_nvm;
431 }
432
433 if (!sw->no_nvm_upgrade) {
434 ret = tb_nvm_add_non_active(nvm, NVM_MAX_SIZE,
435 tb_switch_nvm_write);
436 if (ret)
437 goto err_nvm;
438 }
439
440 sw->nvm = nvm;
441 return 0;
442
443 err_nvm:
444 tb_nvm_free(nvm);
445 return ret;
446 }
447
tb_switch_nvm_remove(struct tb_switch * sw)448 static void tb_switch_nvm_remove(struct tb_switch *sw)
449 {
450 struct tb_nvm *nvm;
451
452 nvm = sw->nvm;
453 sw->nvm = NULL;
454
455 if (!nvm)
456 return;
457
458 /* Remove authentication status in case the switch is unplugged */
459 if (!nvm->authenticating)
460 nvm_clear_auth_status(sw);
461
462 tb_nvm_free(nvm);
463 }
464
465 /* port utility functions */
466
tb_port_type(const struct tb_regs_port_header * port)467 static const char *tb_port_type(const struct tb_regs_port_header *port)
468 {
469 switch (port->type >> 16) {
470 case 0:
471 switch ((u8) port->type) {
472 case 0:
473 return "Inactive";
474 case 1:
475 return "Port";
476 case 2:
477 return "NHI";
478 default:
479 return "unknown";
480 }
481 case 0x2:
482 return "Ethernet";
483 case 0x8:
484 return "SATA";
485 case 0xe:
486 return "DP/HDMI";
487 case 0x10:
488 return "PCIe";
489 case 0x20:
490 return "USB";
491 default:
492 return "unknown";
493 }
494 }
495
tb_dump_port(struct tb * tb,const struct tb_port * port)496 static void tb_dump_port(struct tb *tb, const struct tb_port *port)
497 {
498 const struct tb_regs_port_header *regs = &port->config;
499
500 tb_dbg(tb,
501 " Port %d: %x:%x (Revision: %d, TB Version: %d, Type: %s (%#x))\n",
502 regs->port_number, regs->vendor_id, regs->device_id,
503 regs->revision, regs->thunderbolt_version, tb_port_type(regs),
504 regs->type);
505 tb_dbg(tb, " Max hop id (in/out): %d/%d\n",
506 regs->max_in_hop_id, regs->max_out_hop_id);
507 tb_dbg(tb, " Max counters: %d\n", regs->max_counters);
508 tb_dbg(tb, " NFC Credits: %#x\n", regs->nfc_credits);
509 tb_dbg(tb, " Credits (total/control): %u/%u\n", port->total_credits,
510 port->ctl_credits);
511 }
512
513 /**
514 * tb_port_state() - get connectedness state of a port
515 * @port: the port to check
516 *
517 * The port must have a TB_CAP_PHY (i.e. it should be a real port).
518 *
519 * Return: Returns an enum tb_port_state on success or an error code on failure.
520 */
tb_port_state(struct tb_port * port)521 int tb_port_state(struct tb_port *port)
522 {
523 struct tb_cap_phy phy;
524 int res;
525 if (port->cap_phy == 0) {
526 tb_port_WARN(port, "does not have a PHY\n");
527 return -EINVAL;
528 }
529 res = tb_port_read(port, &phy, TB_CFG_PORT, port->cap_phy, 2);
530 if (res)
531 return res;
532 return phy.state;
533 }
534
535 /**
536 * tb_wait_for_port() - wait for a port to become ready
537 * @port: Port to wait
538 * @wait_if_unplugged: Wait also when port is unplugged
539 *
540 * Wait up to 1 second for a port to reach state TB_PORT_UP. If
541 * wait_if_unplugged is set then we also wait if the port is in state
542 * TB_PORT_UNPLUGGED (it takes a while for the device to be registered after
543 * switch resume). Otherwise we only wait if a device is registered but the link
544 * has not yet been established.
545 *
546 * Return: Returns an error code on failure. Returns 0 if the port is not
547 * connected or failed to reach state TB_PORT_UP within one second. Returns 1
548 * if the port is connected and in state TB_PORT_UP.
549 */
tb_wait_for_port(struct tb_port * port,bool wait_if_unplugged)550 int tb_wait_for_port(struct tb_port *port, bool wait_if_unplugged)
551 {
552 int retries = 10;
553 int state;
554 if (!port->cap_phy) {
555 tb_port_WARN(port, "does not have PHY\n");
556 return -EINVAL;
557 }
558 if (tb_is_upstream_port(port)) {
559 tb_port_WARN(port, "is the upstream port\n");
560 return -EINVAL;
561 }
562
563 while (retries--) {
564 state = tb_port_state(port);
565 if (state < 0)
566 return state;
567 if (state == TB_PORT_DISABLED) {
568 tb_port_dbg(port, "is disabled (state: 0)\n");
569 return 0;
570 }
571 if (state == TB_PORT_UNPLUGGED) {
572 if (wait_if_unplugged) {
573 /* used during resume */
574 tb_port_dbg(port,
575 "is unplugged (state: 7), retrying...\n");
576 msleep(100);
577 continue;
578 }
579 tb_port_dbg(port, "is unplugged (state: 7)\n");
580 return 0;
581 }
582 if (state == TB_PORT_UP) {
583 tb_port_dbg(port, "is connected, link is up (state: 2)\n");
584 return 1;
585 }
586
587 /*
588 * After plug-in the state is TB_PORT_CONNECTING. Give it some
589 * time.
590 */
591 tb_port_dbg(port,
592 "is connected, link is not up (state: %d), retrying...\n",
593 state);
594 msleep(100);
595 }
596 tb_port_warn(port,
597 "failed to reach state TB_PORT_UP. Ignoring port...\n");
598 return 0;
599 }
600
601 /**
602 * tb_port_add_nfc_credits() - add/remove non flow controlled credits to port
603 * @port: Port to add/remove NFC credits
604 * @credits: Credits to add/remove
605 *
606 * Change the number of NFC credits allocated to @port by @credits. To remove
607 * NFC credits pass a negative amount of credits.
608 *
609 * Return: Returns 0 on success or an error code on failure.
610 */
tb_port_add_nfc_credits(struct tb_port * port,int credits)611 int tb_port_add_nfc_credits(struct tb_port *port, int credits)
612 {
613 u32 nfc_credits;
614
615 if (credits == 0 || port->sw->is_unplugged)
616 return 0;
617
618 /*
619 * USB4 restricts programming NFC buffers to lane adapters only
620 * so skip other ports.
621 */
622 if (tb_switch_is_usb4(port->sw) && !tb_port_is_null(port))
623 return 0;
624
625 nfc_credits = port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK;
626 nfc_credits += credits;
627
628 tb_port_dbg(port, "adding %d NFC credits to %lu", credits,
629 port->config.nfc_credits & ADP_CS_4_NFC_BUFFERS_MASK);
630
631 port->config.nfc_credits &= ~ADP_CS_4_NFC_BUFFERS_MASK;
632 port->config.nfc_credits |= nfc_credits;
633
634 return tb_port_write(port, &port->config.nfc_credits,
635 TB_CFG_PORT, ADP_CS_4, 1);
636 }
637
638 /**
639 * tb_port_clear_counter() - clear a counter in TB_CFG_COUNTER
640 * @port: Port whose counters to clear
641 * @counter: Counter index to clear
642 *
643 * Return: Returns 0 on success or an error code on failure.
644 */
tb_port_clear_counter(struct tb_port * port,int counter)645 int tb_port_clear_counter(struct tb_port *port, int counter)
646 {
647 u32 zero[3] = { 0, 0, 0 };
648 tb_port_dbg(port, "clearing counter %d\n", counter);
649 return tb_port_write(port, zero, TB_CFG_COUNTERS, 3 * counter, 3);
650 }
651
652 /**
653 * tb_port_unlock() - Unlock downstream port
654 * @port: Port to unlock
655 *
656 * Needed for USB4 but can be called for any CIO/USB4 ports. Makes the
657 * downstream router accessible for CM.
658 */
tb_port_unlock(struct tb_port * port)659 int tb_port_unlock(struct tb_port *port)
660 {
661 if (tb_switch_is_icm(port->sw))
662 return 0;
663 if (!tb_port_is_null(port))
664 return -EINVAL;
665 if (tb_switch_is_usb4(port->sw))
666 return usb4_port_unlock(port);
667 return 0;
668 }
669
__tb_port_enable(struct tb_port * port,bool enable)670 static int __tb_port_enable(struct tb_port *port, bool enable)
671 {
672 int ret;
673 u32 phy;
674
675 if (!tb_port_is_null(port))
676 return -EINVAL;
677
678 ret = tb_port_read(port, &phy, TB_CFG_PORT,
679 port->cap_phy + LANE_ADP_CS_1, 1);
680 if (ret)
681 return ret;
682
683 if (enable)
684 phy &= ~LANE_ADP_CS_1_LD;
685 else
686 phy |= LANE_ADP_CS_1_LD;
687
688 return tb_port_write(port, &phy, TB_CFG_PORT,
689 port->cap_phy + LANE_ADP_CS_1, 1);
690 }
691
692 /**
693 * tb_port_enable() - Enable lane adapter
694 * @port: Port to enable (can be %NULL)
695 *
696 * This is used for lane 0 and 1 adapters to enable it.
697 */
tb_port_enable(struct tb_port * port)698 int tb_port_enable(struct tb_port *port)
699 {
700 return __tb_port_enable(port, true);
701 }
702
703 /**
704 * tb_port_disable() - Disable lane adapter
705 * @port: Port to disable (can be %NULL)
706 *
707 * This is used for lane 0 and 1 adapters to disable it.
708 */
tb_port_disable(struct tb_port * port)709 int tb_port_disable(struct tb_port *port)
710 {
711 return __tb_port_enable(port, false);
712 }
713
714 /*
715 * tb_init_port() - initialize a port
716 *
717 * This is a helper method for tb_switch_alloc. Does not check or initialize
718 * any downstream switches.
719 *
720 * Return: Returns 0 on success or an error code on failure.
721 */
tb_init_port(struct tb_port * port)722 static int tb_init_port(struct tb_port *port)
723 {
724 int res;
725 int cap;
726
727 INIT_LIST_HEAD(&port->list);
728
729 /* Control adapter does not have configuration space */
730 if (!port->port)
731 return 0;
732
733 res = tb_port_read(port, &port->config, TB_CFG_PORT, 0, 8);
734 if (res) {
735 if (res == -ENODEV) {
736 tb_dbg(port->sw->tb, " Port %d: not implemented\n",
737 port->port);
738 port->disabled = true;
739 return 0;
740 }
741 return res;
742 }
743
744 /* Port 0 is the switch itself and has no PHY. */
745 if (port->config.type == TB_TYPE_PORT) {
746 cap = tb_port_find_cap(port, TB_PORT_CAP_PHY);
747
748 if (cap > 0)
749 port->cap_phy = cap;
750 else
751 tb_port_WARN(port, "non switch port without a PHY\n");
752
753 cap = tb_port_find_cap(port, TB_PORT_CAP_USB4);
754 if (cap > 0)
755 port->cap_usb4 = cap;
756
757 /*
758 * USB4 ports the buffers allocated for the control path
759 * can be read from the path config space. Legacy
760 * devices we use hard-coded value.
761 */
762 if (tb_switch_is_usb4(port->sw)) {
763 struct tb_regs_hop hop;
764
765 if (!tb_port_read(port, &hop, TB_CFG_HOPS, 0, 2))
766 port->ctl_credits = hop.initial_credits;
767 }
768 if (!port->ctl_credits)
769 port->ctl_credits = 2;
770
771 } else {
772 cap = tb_port_find_cap(port, TB_PORT_CAP_ADAP);
773 if (cap > 0)
774 port->cap_adap = cap;
775 }
776
777 port->total_credits =
778 (port->config.nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
779 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
780
781 tb_dump_port(port->sw->tb, port);
782 return 0;
783 }
784
tb_port_alloc_hopid(struct tb_port * port,bool in,int min_hopid,int max_hopid)785 static int tb_port_alloc_hopid(struct tb_port *port, bool in, int min_hopid,
786 int max_hopid)
787 {
788 int port_max_hopid;
789 struct ida *ida;
790
791 if (in) {
792 port_max_hopid = port->config.max_in_hop_id;
793 ida = &port->in_hopids;
794 } else {
795 port_max_hopid = port->config.max_out_hop_id;
796 ida = &port->out_hopids;
797 }
798
799 /*
800 * NHI can use HopIDs 1-max for other adapters HopIDs 0-7 are
801 * reserved.
802 */
803 if (!tb_port_is_nhi(port) && min_hopid < TB_PATH_MIN_HOPID)
804 min_hopid = TB_PATH_MIN_HOPID;
805
806 if (max_hopid < 0 || max_hopid > port_max_hopid)
807 max_hopid = port_max_hopid;
808
809 return ida_simple_get(ida, min_hopid, max_hopid + 1, GFP_KERNEL);
810 }
811
812 /**
813 * tb_port_alloc_in_hopid() - Allocate input HopID from port
814 * @port: Port to allocate HopID for
815 * @min_hopid: Minimum acceptable input HopID
816 * @max_hopid: Maximum acceptable input HopID
817 *
818 * Return: HopID between @min_hopid and @max_hopid or negative errno in
819 * case of error.
820 */
tb_port_alloc_in_hopid(struct tb_port * port,int min_hopid,int max_hopid)821 int tb_port_alloc_in_hopid(struct tb_port *port, int min_hopid, int max_hopid)
822 {
823 return tb_port_alloc_hopid(port, true, min_hopid, max_hopid);
824 }
825
826 /**
827 * tb_port_alloc_out_hopid() - Allocate output HopID from port
828 * @port: Port to allocate HopID for
829 * @min_hopid: Minimum acceptable output HopID
830 * @max_hopid: Maximum acceptable output HopID
831 *
832 * Return: HopID between @min_hopid and @max_hopid or negative errno in
833 * case of error.
834 */
tb_port_alloc_out_hopid(struct tb_port * port,int min_hopid,int max_hopid)835 int tb_port_alloc_out_hopid(struct tb_port *port, int min_hopid, int max_hopid)
836 {
837 return tb_port_alloc_hopid(port, false, min_hopid, max_hopid);
838 }
839
840 /**
841 * tb_port_release_in_hopid() - Release allocated input HopID from port
842 * @port: Port whose HopID to release
843 * @hopid: HopID to release
844 */
tb_port_release_in_hopid(struct tb_port * port,int hopid)845 void tb_port_release_in_hopid(struct tb_port *port, int hopid)
846 {
847 ida_simple_remove(&port->in_hopids, hopid);
848 }
849
850 /**
851 * tb_port_release_out_hopid() - Release allocated output HopID from port
852 * @port: Port whose HopID to release
853 * @hopid: HopID to release
854 */
tb_port_release_out_hopid(struct tb_port * port,int hopid)855 void tb_port_release_out_hopid(struct tb_port *port, int hopid)
856 {
857 ida_simple_remove(&port->out_hopids, hopid);
858 }
859
tb_switch_is_reachable(const struct tb_switch * parent,const struct tb_switch * sw)860 static inline bool tb_switch_is_reachable(const struct tb_switch *parent,
861 const struct tb_switch *sw)
862 {
863 u64 mask = (1ULL << parent->config.depth * 8) - 1;
864 return (tb_route(parent) & mask) == (tb_route(sw) & mask);
865 }
866
867 /**
868 * tb_next_port_on_path() - Return next port for given port on a path
869 * @start: Start port of the walk
870 * @end: End port of the walk
871 * @prev: Previous port (%NULL if this is the first)
872 *
873 * This function can be used to walk from one port to another if they
874 * are connected through zero or more switches. If the @prev is dual
875 * link port, the function follows that link and returns another end on
876 * that same link.
877 *
878 * If the @end port has been reached, return %NULL.
879 *
880 * Domain tb->lock must be held when this function is called.
881 */
tb_next_port_on_path(struct tb_port * start,struct tb_port * end,struct tb_port * prev)882 struct tb_port *tb_next_port_on_path(struct tb_port *start, struct tb_port *end,
883 struct tb_port *prev)
884 {
885 struct tb_port *next;
886
887 if (!prev)
888 return start;
889
890 if (prev->sw == end->sw) {
891 if (prev == end)
892 return NULL;
893 return end;
894 }
895
896 if (tb_switch_is_reachable(prev->sw, end->sw)) {
897 next = tb_port_at(tb_route(end->sw), prev->sw);
898 /* Walk down the topology if next == prev */
899 if (prev->remote &&
900 (next == prev || next->dual_link_port == prev))
901 next = prev->remote;
902 } else {
903 if (tb_is_upstream_port(prev)) {
904 next = prev->remote;
905 } else {
906 next = tb_upstream_port(prev->sw);
907 /*
908 * Keep the same link if prev and next are both
909 * dual link ports.
910 */
911 if (next->dual_link_port &&
912 next->link_nr != prev->link_nr) {
913 next = next->dual_link_port;
914 }
915 }
916 }
917
918 return next != prev ? next : NULL;
919 }
920
921 /**
922 * tb_port_get_link_speed() - Get current link speed
923 * @port: Port to check (USB4 or CIO)
924 *
925 * Returns link speed in Gb/s or negative errno in case of failure.
926 */
tb_port_get_link_speed(struct tb_port * port)927 int tb_port_get_link_speed(struct tb_port *port)
928 {
929 u32 val, speed;
930 int ret;
931
932 if (!port->cap_phy)
933 return -EINVAL;
934
935 ret = tb_port_read(port, &val, TB_CFG_PORT,
936 port->cap_phy + LANE_ADP_CS_1, 1);
937 if (ret)
938 return ret;
939
940 speed = (val & LANE_ADP_CS_1_CURRENT_SPEED_MASK) >>
941 LANE_ADP_CS_1_CURRENT_SPEED_SHIFT;
942 return speed == LANE_ADP_CS_1_CURRENT_SPEED_GEN3 ? 20 : 10;
943 }
944
945 /**
946 * tb_port_get_link_width() - Get current link width
947 * @port: Port to check (USB4 or CIO)
948 *
949 * Returns link width. Return values can be 1 (Single-Lane), 2 (Dual-Lane)
950 * or negative errno in case of failure.
951 */
tb_port_get_link_width(struct tb_port * port)952 int tb_port_get_link_width(struct tb_port *port)
953 {
954 u32 val;
955 int ret;
956
957 if (!port->cap_phy)
958 return -EINVAL;
959
960 ret = tb_port_read(port, &val, TB_CFG_PORT,
961 port->cap_phy + LANE_ADP_CS_1, 1);
962 if (ret)
963 return ret;
964
965 return (val & LANE_ADP_CS_1_CURRENT_WIDTH_MASK) >>
966 LANE_ADP_CS_1_CURRENT_WIDTH_SHIFT;
967 }
968
tb_port_is_width_supported(struct tb_port * port,int width)969 static bool tb_port_is_width_supported(struct tb_port *port, int width)
970 {
971 u32 phy, widths;
972 int ret;
973
974 if (!port->cap_phy)
975 return false;
976
977 ret = tb_port_read(port, &phy, TB_CFG_PORT,
978 port->cap_phy + LANE_ADP_CS_0, 1);
979 if (ret)
980 return false;
981
982 widths = (phy & LANE_ADP_CS_0_SUPPORTED_WIDTH_MASK) >>
983 LANE_ADP_CS_0_SUPPORTED_WIDTH_SHIFT;
984
985 return !!(widths & width);
986 }
987
tb_port_set_link_width(struct tb_port * port,unsigned int width)988 static int tb_port_set_link_width(struct tb_port *port, unsigned int width)
989 {
990 u32 val;
991 int ret;
992
993 if (!port->cap_phy)
994 return -EINVAL;
995
996 ret = tb_port_read(port, &val, TB_CFG_PORT,
997 port->cap_phy + LANE_ADP_CS_1, 1);
998 if (ret)
999 return ret;
1000
1001 val &= ~LANE_ADP_CS_1_TARGET_WIDTH_MASK;
1002 switch (width) {
1003 case 1:
1004 val |= LANE_ADP_CS_1_TARGET_WIDTH_SINGLE <<
1005 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1006 break;
1007 case 2:
1008 val |= LANE_ADP_CS_1_TARGET_WIDTH_DUAL <<
1009 LANE_ADP_CS_1_TARGET_WIDTH_SHIFT;
1010 break;
1011 default:
1012 return -EINVAL;
1013 }
1014
1015 val |= LANE_ADP_CS_1_LB;
1016
1017 return tb_port_write(port, &val, TB_CFG_PORT,
1018 port->cap_phy + LANE_ADP_CS_1, 1);
1019 }
1020
1021 /**
1022 * tb_port_lane_bonding_enable() - Enable bonding on port
1023 * @port: port to enable
1024 *
1025 * Enable bonding by setting the link width of the port and the other
1026 * port in case of dual link port. Does not wait for the link to
1027 * actually reach the bonded state so caller needs to call
1028 * tb_port_wait_for_link_width() before enabling any paths through the
1029 * link to make sure the link is in expected state.
1030 *
1031 * Return: %0 in case of success and negative errno in case of error
1032 */
tb_port_lane_bonding_enable(struct tb_port * port)1033 int tb_port_lane_bonding_enable(struct tb_port *port)
1034 {
1035 int ret;
1036
1037 /*
1038 * Enable lane bonding for both links if not already enabled by
1039 * for example the boot firmware.
1040 */
1041 ret = tb_port_get_link_width(port);
1042 if (ret == 1) {
1043 ret = tb_port_set_link_width(port, 2);
1044 if (ret)
1045 return ret;
1046 }
1047
1048 ret = tb_port_get_link_width(port->dual_link_port);
1049 if (ret == 1) {
1050 ret = tb_port_set_link_width(port->dual_link_port, 2);
1051 if (ret) {
1052 tb_port_set_link_width(port, 1);
1053 return ret;
1054 }
1055 }
1056
1057 port->bonded = true;
1058 port->dual_link_port->bonded = true;
1059
1060 return 0;
1061 }
1062
1063 /**
1064 * tb_port_lane_bonding_disable() - Disable bonding on port
1065 * @port: port to disable
1066 *
1067 * Disable bonding by setting the link width of the port and the
1068 * other port in case of dual link port.
1069 *
1070 */
tb_port_lane_bonding_disable(struct tb_port * port)1071 void tb_port_lane_bonding_disable(struct tb_port *port)
1072 {
1073 port->dual_link_port->bonded = false;
1074 port->bonded = false;
1075
1076 tb_port_set_link_width(port->dual_link_port, 1);
1077 tb_port_set_link_width(port, 1);
1078 }
1079
1080 /**
1081 * tb_port_wait_for_link_width() - Wait until link reaches specific width
1082 * @port: Port to wait for
1083 * @width: Expected link width (%1 or %2)
1084 * @timeout_msec: Timeout in ms how long to wait
1085 *
1086 * Should be used after both ends of the link have been bonded (or
1087 * bonding has been disabled) to wait until the link actually reaches
1088 * the expected state. Returns %-ETIMEDOUT if the @width was not reached
1089 * within the given timeout, %0 if it did.
1090 */
tb_port_wait_for_link_width(struct tb_port * port,int width,int timeout_msec)1091 int tb_port_wait_for_link_width(struct tb_port *port, int width,
1092 int timeout_msec)
1093 {
1094 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1095 int ret;
1096
1097 do {
1098 ret = tb_port_get_link_width(port);
1099 if (ret < 0)
1100 return ret;
1101 else if (ret == width)
1102 return 0;
1103
1104 usleep_range(1000, 2000);
1105 } while (ktime_before(ktime_get(), timeout));
1106
1107 return -ETIMEDOUT;
1108 }
1109
tb_port_do_update_credits(struct tb_port * port)1110 static int tb_port_do_update_credits(struct tb_port *port)
1111 {
1112 u32 nfc_credits;
1113 int ret;
1114
1115 ret = tb_port_read(port, &nfc_credits, TB_CFG_PORT, ADP_CS_4, 1);
1116 if (ret)
1117 return ret;
1118
1119 if (nfc_credits != port->config.nfc_credits) {
1120 u32 total;
1121
1122 total = (nfc_credits & ADP_CS_4_TOTAL_BUFFERS_MASK) >>
1123 ADP_CS_4_TOTAL_BUFFERS_SHIFT;
1124
1125 tb_port_dbg(port, "total credits changed %u -> %u\n",
1126 port->total_credits, total);
1127
1128 port->config.nfc_credits = nfc_credits;
1129 port->total_credits = total;
1130 }
1131
1132 return 0;
1133 }
1134
1135 /**
1136 * tb_port_update_credits() - Re-read port total credits
1137 * @port: Port to update
1138 *
1139 * After the link is bonded (or bonding was disabled) the port total
1140 * credits may change, so this function needs to be called to re-read
1141 * the credits. Updates also the second lane adapter.
1142 */
tb_port_update_credits(struct tb_port * port)1143 int tb_port_update_credits(struct tb_port *port)
1144 {
1145 int ret;
1146
1147 ret = tb_port_do_update_credits(port);
1148 if (ret)
1149 return ret;
1150 return tb_port_do_update_credits(port->dual_link_port);
1151 }
1152
tb_port_start_lane_initialization(struct tb_port * port)1153 static int tb_port_start_lane_initialization(struct tb_port *port)
1154 {
1155 int ret;
1156
1157 if (tb_switch_is_usb4(port->sw))
1158 return 0;
1159
1160 ret = tb_lc_start_lane_initialization(port);
1161 return ret == -EINVAL ? 0 : ret;
1162 }
1163
1164 /*
1165 * Returns true if the port had something (router, XDomain) connected
1166 * before suspend.
1167 */
tb_port_resume(struct tb_port * port)1168 static bool tb_port_resume(struct tb_port *port)
1169 {
1170 bool has_remote = tb_port_has_remote(port);
1171
1172 if (port->usb4) {
1173 usb4_port_device_resume(port->usb4);
1174 } else if (!has_remote) {
1175 /*
1176 * For disconnected downstream lane adapters start lane
1177 * initialization now so we detect future connects.
1178 *
1179 * For XDomain start the lane initialzation now so the
1180 * link gets re-established.
1181 *
1182 * This is only needed for non-USB4 ports.
1183 */
1184 if (!tb_is_upstream_port(port) || port->xdomain)
1185 tb_port_start_lane_initialization(port);
1186 }
1187
1188 return has_remote || port->xdomain;
1189 }
1190
1191 /**
1192 * tb_port_is_enabled() - Is the adapter port enabled
1193 * @port: Port to check
1194 */
tb_port_is_enabled(struct tb_port * port)1195 bool tb_port_is_enabled(struct tb_port *port)
1196 {
1197 switch (port->config.type) {
1198 case TB_TYPE_PCIE_UP:
1199 case TB_TYPE_PCIE_DOWN:
1200 return tb_pci_port_is_enabled(port);
1201
1202 case TB_TYPE_DP_HDMI_IN:
1203 case TB_TYPE_DP_HDMI_OUT:
1204 return tb_dp_port_is_enabled(port);
1205
1206 case TB_TYPE_USB3_UP:
1207 case TB_TYPE_USB3_DOWN:
1208 return tb_usb3_port_is_enabled(port);
1209
1210 default:
1211 return false;
1212 }
1213 }
1214
1215 /**
1216 * tb_usb3_port_is_enabled() - Is the USB3 adapter port enabled
1217 * @port: USB3 adapter port to check
1218 */
tb_usb3_port_is_enabled(struct tb_port * port)1219 bool tb_usb3_port_is_enabled(struct tb_port *port)
1220 {
1221 u32 data;
1222
1223 if (tb_port_read(port, &data, TB_CFG_PORT,
1224 port->cap_adap + ADP_USB3_CS_0, 1))
1225 return false;
1226
1227 return !!(data & ADP_USB3_CS_0_PE);
1228 }
1229
1230 /**
1231 * tb_usb3_port_enable() - Enable USB3 adapter port
1232 * @port: USB3 adapter port to enable
1233 * @enable: Enable/disable the USB3 adapter
1234 */
tb_usb3_port_enable(struct tb_port * port,bool enable)1235 int tb_usb3_port_enable(struct tb_port *port, bool enable)
1236 {
1237 u32 word = enable ? (ADP_USB3_CS_0_PE | ADP_USB3_CS_0_V)
1238 : ADP_USB3_CS_0_V;
1239
1240 if (!port->cap_adap)
1241 return -ENXIO;
1242 return tb_port_write(port, &word, TB_CFG_PORT,
1243 port->cap_adap + ADP_USB3_CS_0, 1);
1244 }
1245
1246 /**
1247 * tb_pci_port_is_enabled() - Is the PCIe adapter port enabled
1248 * @port: PCIe port to check
1249 */
tb_pci_port_is_enabled(struct tb_port * port)1250 bool tb_pci_port_is_enabled(struct tb_port *port)
1251 {
1252 u32 data;
1253
1254 if (tb_port_read(port, &data, TB_CFG_PORT,
1255 port->cap_adap + ADP_PCIE_CS_0, 1))
1256 return false;
1257
1258 return !!(data & ADP_PCIE_CS_0_PE);
1259 }
1260
1261 /**
1262 * tb_pci_port_enable() - Enable PCIe adapter port
1263 * @port: PCIe port to enable
1264 * @enable: Enable/disable the PCIe adapter
1265 */
tb_pci_port_enable(struct tb_port * port,bool enable)1266 int tb_pci_port_enable(struct tb_port *port, bool enable)
1267 {
1268 u32 word = enable ? ADP_PCIE_CS_0_PE : 0x0;
1269 if (!port->cap_adap)
1270 return -ENXIO;
1271 return tb_port_write(port, &word, TB_CFG_PORT,
1272 port->cap_adap + ADP_PCIE_CS_0, 1);
1273 }
1274
1275 /**
1276 * tb_dp_port_hpd_is_active() - Is HPD already active
1277 * @port: DP out port to check
1278 *
1279 * Checks if the DP OUT adapter port has HDP bit already set.
1280 */
tb_dp_port_hpd_is_active(struct tb_port * port)1281 int tb_dp_port_hpd_is_active(struct tb_port *port)
1282 {
1283 u32 data;
1284 int ret;
1285
1286 ret = tb_port_read(port, &data, TB_CFG_PORT,
1287 port->cap_adap + ADP_DP_CS_2, 1);
1288 if (ret)
1289 return ret;
1290
1291 return !!(data & ADP_DP_CS_2_HDP);
1292 }
1293
1294 /**
1295 * tb_dp_port_hpd_clear() - Clear HPD from DP IN port
1296 * @port: Port to clear HPD
1297 *
1298 * If the DP IN port has HDP set, this function can be used to clear it.
1299 */
tb_dp_port_hpd_clear(struct tb_port * port)1300 int tb_dp_port_hpd_clear(struct tb_port *port)
1301 {
1302 u32 data;
1303 int ret;
1304
1305 ret = tb_port_read(port, &data, TB_CFG_PORT,
1306 port->cap_adap + ADP_DP_CS_3, 1);
1307 if (ret)
1308 return ret;
1309
1310 data |= ADP_DP_CS_3_HDPC;
1311 return tb_port_write(port, &data, TB_CFG_PORT,
1312 port->cap_adap + ADP_DP_CS_3, 1);
1313 }
1314
1315 /**
1316 * tb_dp_port_set_hops() - Set video/aux Hop IDs for DP port
1317 * @port: DP IN/OUT port to set hops
1318 * @video: Video Hop ID
1319 * @aux_tx: AUX TX Hop ID
1320 * @aux_rx: AUX RX Hop ID
1321 *
1322 * Programs specified Hop IDs for DP IN/OUT port.
1323 */
tb_dp_port_set_hops(struct tb_port * port,unsigned int video,unsigned int aux_tx,unsigned int aux_rx)1324 int tb_dp_port_set_hops(struct tb_port *port, unsigned int video,
1325 unsigned int aux_tx, unsigned int aux_rx)
1326 {
1327 u32 data[2];
1328 int ret;
1329
1330 ret = tb_port_read(port, data, TB_CFG_PORT,
1331 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1332 if (ret)
1333 return ret;
1334
1335 data[0] &= ~ADP_DP_CS_0_VIDEO_HOPID_MASK;
1336 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1337 data[1] &= ~ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1338
1339 data[0] |= (video << ADP_DP_CS_0_VIDEO_HOPID_SHIFT) &
1340 ADP_DP_CS_0_VIDEO_HOPID_MASK;
1341 data[1] |= aux_tx & ADP_DP_CS_1_AUX_TX_HOPID_MASK;
1342 data[1] |= (aux_rx << ADP_DP_CS_1_AUX_RX_HOPID_SHIFT) &
1343 ADP_DP_CS_1_AUX_RX_HOPID_MASK;
1344
1345 return tb_port_write(port, data, TB_CFG_PORT,
1346 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1347 }
1348
1349 /**
1350 * tb_dp_port_is_enabled() - Is DP adapter port enabled
1351 * @port: DP adapter port to check
1352 */
tb_dp_port_is_enabled(struct tb_port * port)1353 bool tb_dp_port_is_enabled(struct tb_port *port)
1354 {
1355 u32 data[2];
1356
1357 if (tb_port_read(port, data, TB_CFG_PORT, port->cap_adap + ADP_DP_CS_0,
1358 ARRAY_SIZE(data)))
1359 return false;
1360
1361 return !!(data[0] & (ADP_DP_CS_0_VE | ADP_DP_CS_0_AE));
1362 }
1363
1364 /**
1365 * tb_dp_port_enable() - Enables/disables DP paths of a port
1366 * @port: DP IN/OUT port
1367 * @enable: Enable/disable DP path
1368 *
1369 * Once Hop IDs are programmed DP paths can be enabled or disabled by
1370 * calling this function.
1371 */
tb_dp_port_enable(struct tb_port * port,bool enable)1372 int tb_dp_port_enable(struct tb_port *port, bool enable)
1373 {
1374 u32 data[2];
1375 int ret;
1376
1377 ret = tb_port_read(port, data, TB_CFG_PORT,
1378 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1379 if (ret)
1380 return ret;
1381
1382 if (enable)
1383 data[0] |= ADP_DP_CS_0_VE | ADP_DP_CS_0_AE;
1384 else
1385 data[0] &= ~(ADP_DP_CS_0_VE | ADP_DP_CS_0_AE);
1386
1387 return tb_port_write(port, data, TB_CFG_PORT,
1388 port->cap_adap + ADP_DP_CS_0, ARRAY_SIZE(data));
1389 }
1390
1391 /* switch utility functions */
1392
tb_switch_generation_name(const struct tb_switch * sw)1393 static const char *tb_switch_generation_name(const struct tb_switch *sw)
1394 {
1395 switch (sw->generation) {
1396 case 1:
1397 return "Thunderbolt 1";
1398 case 2:
1399 return "Thunderbolt 2";
1400 case 3:
1401 return "Thunderbolt 3";
1402 case 4:
1403 return "USB4";
1404 default:
1405 return "Unknown";
1406 }
1407 }
1408
tb_dump_switch(const struct tb * tb,const struct tb_switch * sw)1409 static void tb_dump_switch(const struct tb *tb, const struct tb_switch *sw)
1410 {
1411 const struct tb_regs_switch_header *regs = &sw->config;
1412
1413 tb_dbg(tb, " %s Switch: %x:%x (Revision: %d, TB Version: %d)\n",
1414 tb_switch_generation_name(sw), regs->vendor_id, regs->device_id,
1415 regs->revision, regs->thunderbolt_version);
1416 tb_dbg(tb, " Max Port Number: %d\n", regs->max_port_number);
1417 tb_dbg(tb, " Config:\n");
1418 tb_dbg(tb,
1419 " Upstream Port Number: %d Depth: %d Route String: %#llx Enabled: %d, PlugEventsDelay: %dms\n",
1420 regs->upstream_port_number, regs->depth,
1421 (((u64) regs->route_hi) << 32) | regs->route_lo,
1422 regs->enabled, regs->plug_events_delay);
1423 tb_dbg(tb, " unknown1: %#x unknown4: %#x\n",
1424 regs->__unknown1, regs->__unknown4);
1425 }
1426
1427 /**
1428 * tb_switch_reset() - reconfigure route, enable and send TB_CFG_PKG_RESET
1429 * @sw: Switch to reset
1430 *
1431 * Return: Returns 0 on success or an error code on failure.
1432 */
tb_switch_reset(struct tb_switch * sw)1433 int tb_switch_reset(struct tb_switch *sw)
1434 {
1435 struct tb_cfg_result res;
1436
1437 if (sw->generation > 1)
1438 return 0;
1439
1440 tb_sw_dbg(sw, "resetting switch\n");
1441
1442 res.err = tb_sw_write(sw, ((u32 *) &sw->config) + 2,
1443 TB_CFG_SWITCH, 2, 2);
1444 if (res.err)
1445 return res.err;
1446 res = tb_cfg_reset(sw->tb->ctl, tb_route(sw));
1447 if (res.err > 0)
1448 return -EIO;
1449 return res.err;
1450 }
1451
1452 /*
1453 * tb_plug_events_active() - enable/disable plug events on a switch
1454 *
1455 * Also configures a sane plug_events_delay of 255ms.
1456 *
1457 * Return: Returns 0 on success or an error code on failure.
1458 */
tb_plug_events_active(struct tb_switch * sw,bool active)1459 static int tb_plug_events_active(struct tb_switch *sw, bool active)
1460 {
1461 u32 data;
1462 int res;
1463
1464 if (tb_switch_is_icm(sw) || tb_switch_is_usb4(sw))
1465 return 0;
1466
1467 sw->config.plug_events_delay = 0xff;
1468 res = tb_sw_write(sw, ((u32 *) &sw->config) + 4, TB_CFG_SWITCH, 4, 1);
1469 if (res)
1470 return res;
1471
1472 res = tb_sw_read(sw, &data, TB_CFG_SWITCH, sw->cap_plug_events + 1, 1);
1473 if (res)
1474 return res;
1475
1476 if (active) {
1477 data = data & 0xFFFFFF83;
1478 switch (sw->config.device_id) {
1479 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
1480 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
1481 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
1482 break;
1483 default:
1484 data |= 4;
1485 }
1486 } else {
1487 data = data | 0x7c;
1488 }
1489 return tb_sw_write(sw, &data, TB_CFG_SWITCH,
1490 sw->cap_plug_events + 1, 1);
1491 }
1492
authorized_show(struct device * dev,struct device_attribute * attr,char * buf)1493 static ssize_t authorized_show(struct device *dev,
1494 struct device_attribute *attr,
1495 char *buf)
1496 {
1497 struct tb_switch *sw = tb_to_switch(dev);
1498
1499 return sprintf(buf, "%u\n", sw->authorized);
1500 }
1501
disapprove_switch(struct device * dev,void * not_used)1502 static int disapprove_switch(struct device *dev, void *not_used)
1503 {
1504 char *envp[] = { "AUTHORIZED=0", NULL };
1505 struct tb_switch *sw;
1506
1507 sw = tb_to_switch(dev);
1508 if (sw && sw->authorized) {
1509 int ret;
1510
1511 /* First children */
1512 ret = device_for_each_child_reverse(&sw->dev, NULL, disapprove_switch);
1513 if (ret)
1514 return ret;
1515
1516 ret = tb_domain_disapprove_switch(sw->tb, sw);
1517 if (ret)
1518 return ret;
1519
1520 sw->authorized = 0;
1521 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1522 }
1523
1524 return 0;
1525 }
1526
tb_switch_set_authorized(struct tb_switch * sw,unsigned int val)1527 static int tb_switch_set_authorized(struct tb_switch *sw, unsigned int val)
1528 {
1529 char envp_string[13];
1530 int ret = -EINVAL;
1531 char *envp[] = { envp_string, NULL };
1532
1533 if (!mutex_trylock(&sw->tb->lock))
1534 return restart_syscall();
1535
1536 if (!!sw->authorized == !!val)
1537 goto unlock;
1538
1539 switch (val) {
1540 /* Disapprove switch */
1541 case 0:
1542 if (tb_route(sw)) {
1543 ret = disapprove_switch(&sw->dev, NULL);
1544 goto unlock;
1545 }
1546 break;
1547
1548 /* Approve switch */
1549 case 1:
1550 if (sw->key)
1551 ret = tb_domain_approve_switch_key(sw->tb, sw);
1552 else
1553 ret = tb_domain_approve_switch(sw->tb, sw);
1554 break;
1555
1556 /* Challenge switch */
1557 case 2:
1558 if (sw->key)
1559 ret = tb_domain_challenge_switch_key(sw->tb, sw);
1560 break;
1561
1562 default:
1563 break;
1564 }
1565
1566 if (!ret) {
1567 sw->authorized = val;
1568 /*
1569 * Notify status change to the userspace, informing the new
1570 * value of /sys/bus/thunderbolt/devices/.../authorized.
1571 */
1572 sprintf(envp_string, "AUTHORIZED=%u", sw->authorized);
1573 kobject_uevent_env(&sw->dev.kobj, KOBJ_CHANGE, envp);
1574 }
1575
1576 unlock:
1577 mutex_unlock(&sw->tb->lock);
1578 return ret;
1579 }
1580
authorized_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1581 static ssize_t authorized_store(struct device *dev,
1582 struct device_attribute *attr,
1583 const char *buf, size_t count)
1584 {
1585 struct tb_switch *sw = tb_to_switch(dev);
1586 unsigned int val;
1587 ssize_t ret;
1588
1589 ret = kstrtouint(buf, 0, &val);
1590 if (ret)
1591 return ret;
1592 if (val > 2)
1593 return -EINVAL;
1594
1595 pm_runtime_get_sync(&sw->dev);
1596 ret = tb_switch_set_authorized(sw, val);
1597 pm_runtime_mark_last_busy(&sw->dev);
1598 pm_runtime_put_autosuspend(&sw->dev);
1599
1600 return ret ? ret : count;
1601 }
1602 static DEVICE_ATTR_RW(authorized);
1603
boot_show(struct device * dev,struct device_attribute * attr,char * buf)1604 static ssize_t boot_show(struct device *dev, struct device_attribute *attr,
1605 char *buf)
1606 {
1607 struct tb_switch *sw = tb_to_switch(dev);
1608
1609 return sprintf(buf, "%u\n", sw->boot);
1610 }
1611 static DEVICE_ATTR_RO(boot);
1612
device_show(struct device * dev,struct device_attribute * attr,char * buf)1613 static ssize_t device_show(struct device *dev, struct device_attribute *attr,
1614 char *buf)
1615 {
1616 struct tb_switch *sw = tb_to_switch(dev);
1617
1618 return sprintf(buf, "%#x\n", sw->device);
1619 }
1620 static DEVICE_ATTR_RO(device);
1621
1622 static ssize_t
device_name_show(struct device * dev,struct device_attribute * attr,char * buf)1623 device_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1624 {
1625 struct tb_switch *sw = tb_to_switch(dev);
1626
1627 return sprintf(buf, "%s\n", sw->device_name ? sw->device_name : "");
1628 }
1629 static DEVICE_ATTR_RO(device_name);
1630
1631 static ssize_t
generation_show(struct device * dev,struct device_attribute * attr,char * buf)1632 generation_show(struct device *dev, struct device_attribute *attr, char *buf)
1633 {
1634 struct tb_switch *sw = tb_to_switch(dev);
1635
1636 return sprintf(buf, "%u\n", sw->generation);
1637 }
1638 static DEVICE_ATTR_RO(generation);
1639
key_show(struct device * dev,struct device_attribute * attr,char * buf)1640 static ssize_t key_show(struct device *dev, struct device_attribute *attr,
1641 char *buf)
1642 {
1643 struct tb_switch *sw = tb_to_switch(dev);
1644 ssize_t ret;
1645
1646 if (!mutex_trylock(&sw->tb->lock))
1647 return restart_syscall();
1648
1649 if (sw->key)
1650 ret = sprintf(buf, "%*phN\n", TB_SWITCH_KEY_SIZE, sw->key);
1651 else
1652 ret = sprintf(buf, "\n");
1653
1654 mutex_unlock(&sw->tb->lock);
1655 return ret;
1656 }
1657
key_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1658 static ssize_t key_store(struct device *dev, struct device_attribute *attr,
1659 const char *buf, size_t count)
1660 {
1661 struct tb_switch *sw = tb_to_switch(dev);
1662 u8 key[TB_SWITCH_KEY_SIZE];
1663 ssize_t ret = count;
1664 bool clear = false;
1665
1666 if (!strcmp(buf, "\n"))
1667 clear = true;
1668 else if (hex2bin(key, buf, sizeof(key)))
1669 return -EINVAL;
1670
1671 if (!mutex_trylock(&sw->tb->lock))
1672 return restart_syscall();
1673
1674 if (sw->authorized) {
1675 ret = -EBUSY;
1676 } else {
1677 kfree(sw->key);
1678 if (clear) {
1679 sw->key = NULL;
1680 } else {
1681 sw->key = kmemdup(key, sizeof(key), GFP_KERNEL);
1682 if (!sw->key)
1683 ret = -ENOMEM;
1684 }
1685 }
1686
1687 mutex_unlock(&sw->tb->lock);
1688 return ret;
1689 }
1690 static DEVICE_ATTR(key, 0600, key_show, key_store);
1691
speed_show(struct device * dev,struct device_attribute * attr,char * buf)1692 static ssize_t speed_show(struct device *dev, struct device_attribute *attr,
1693 char *buf)
1694 {
1695 struct tb_switch *sw = tb_to_switch(dev);
1696
1697 return sprintf(buf, "%u.0 Gb/s\n", sw->link_speed);
1698 }
1699
1700 /*
1701 * Currently all lanes must run at the same speed but we expose here
1702 * both directions to allow possible asymmetric links in the future.
1703 */
1704 static DEVICE_ATTR(rx_speed, 0444, speed_show, NULL);
1705 static DEVICE_ATTR(tx_speed, 0444, speed_show, NULL);
1706
lanes_show(struct device * dev,struct device_attribute * attr,char * buf)1707 static ssize_t lanes_show(struct device *dev, struct device_attribute *attr,
1708 char *buf)
1709 {
1710 struct tb_switch *sw = tb_to_switch(dev);
1711
1712 return sprintf(buf, "%u\n", sw->link_width);
1713 }
1714
1715 /*
1716 * Currently link has same amount of lanes both directions (1 or 2) but
1717 * expose them separately to allow possible asymmetric links in the future.
1718 */
1719 static DEVICE_ATTR(rx_lanes, 0444, lanes_show, NULL);
1720 static DEVICE_ATTR(tx_lanes, 0444, lanes_show, NULL);
1721
nvm_authenticate_show(struct device * dev,struct device_attribute * attr,char * buf)1722 static ssize_t nvm_authenticate_show(struct device *dev,
1723 struct device_attribute *attr, char *buf)
1724 {
1725 struct tb_switch *sw = tb_to_switch(dev);
1726 u32 status;
1727
1728 nvm_get_auth_status(sw, &status);
1729 return sprintf(buf, "%#x\n", status);
1730 }
1731
nvm_authenticate_sysfs(struct device * dev,const char * buf,bool disconnect)1732 static ssize_t nvm_authenticate_sysfs(struct device *dev, const char *buf,
1733 bool disconnect)
1734 {
1735 struct tb_switch *sw = tb_to_switch(dev);
1736 int val, ret;
1737
1738 pm_runtime_get_sync(&sw->dev);
1739
1740 if (!mutex_trylock(&sw->tb->lock)) {
1741 ret = restart_syscall();
1742 goto exit_rpm;
1743 }
1744
1745 /* If NVMem devices are not yet added */
1746 if (!sw->nvm) {
1747 ret = -EAGAIN;
1748 goto exit_unlock;
1749 }
1750
1751 ret = kstrtoint(buf, 10, &val);
1752 if (ret)
1753 goto exit_unlock;
1754
1755 /* Always clear the authentication status */
1756 nvm_clear_auth_status(sw);
1757
1758 if (val > 0) {
1759 if (val == AUTHENTICATE_ONLY) {
1760 if (disconnect)
1761 ret = -EINVAL;
1762 else
1763 ret = nvm_authenticate(sw, true);
1764 } else {
1765 if (!sw->nvm->flushed) {
1766 if (!sw->nvm->buf) {
1767 ret = -EINVAL;
1768 goto exit_unlock;
1769 }
1770
1771 ret = nvm_validate_and_write(sw);
1772 if (ret || val == WRITE_ONLY)
1773 goto exit_unlock;
1774 }
1775 if (val == WRITE_AND_AUTHENTICATE) {
1776 if (disconnect)
1777 ret = tb_lc_force_power(sw);
1778 else
1779 ret = nvm_authenticate(sw, false);
1780 }
1781 }
1782 }
1783
1784 exit_unlock:
1785 mutex_unlock(&sw->tb->lock);
1786 exit_rpm:
1787 pm_runtime_mark_last_busy(&sw->dev);
1788 pm_runtime_put_autosuspend(&sw->dev);
1789
1790 return ret;
1791 }
1792
nvm_authenticate_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1793 static ssize_t nvm_authenticate_store(struct device *dev,
1794 struct device_attribute *attr, const char *buf, size_t count)
1795 {
1796 int ret = nvm_authenticate_sysfs(dev, buf, false);
1797 if (ret)
1798 return ret;
1799 return count;
1800 }
1801 static DEVICE_ATTR_RW(nvm_authenticate);
1802
nvm_authenticate_on_disconnect_show(struct device * dev,struct device_attribute * attr,char * buf)1803 static ssize_t nvm_authenticate_on_disconnect_show(struct device *dev,
1804 struct device_attribute *attr, char *buf)
1805 {
1806 return nvm_authenticate_show(dev, attr, buf);
1807 }
1808
nvm_authenticate_on_disconnect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1809 static ssize_t nvm_authenticate_on_disconnect_store(struct device *dev,
1810 struct device_attribute *attr, const char *buf, size_t count)
1811 {
1812 int ret;
1813
1814 ret = nvm_authenticate_sysfs(dev, buf, true);
1815 return ret ? ret : count;
1816 }
1817 static DEVICE_ATTR_RW(nvm_authenticate_on_disconnect);
1818
nvm_version_show(struct device * dev,struct device_attribute * attr,char * buf)1819 static ssize_t nvm_version_show(struct device *dev,
1820 struct device_attribute *attr, char *buf)
1821 {
1822 struct tb_switch *sw = tb_to_switch(dev);
1823 int ret;
1824
1825 if (!mutex_trylock(&sw->tb->lock))
1826 return restart_syscall();
1827
1828 if (sw->safe_mode)
1829 ret = -ENODATA;
1830 else if (!sw->nvm)
1831 ret = -EAGAIN;
1832 else
1833 ret = sprintf(buf, "%x.%x\n", sw->nvm->major, sw->nvm->minor);
1834
1835 mutex_unlock(&sw->tb->lock);
1836
1837 return ret;
1838 }
1839 static DEVICE_ATTR_RO(nvm_version);
1840
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1841 static ssize_t vendor_show(struct device *dev, struct device_attribute *attr,
1842 char *buf)
1843 {
1844 struct tb_switch *sw = tb_to_switch(dev);
1845
1846 return sprintf(buf, "%#x\n", sw->vendor);
1847 }
1848 static DEVICE_ATTR_RO(vendor);
1849
1850 static ssize_t
vendor_name_show(struct device * dev,struct device_attribute * attr,char * buf)1851 vendor_name_show(struct device *dev, struct device_attribute *attr, char *buf)
1852 {
1853 struct tb_switch *sw = tb_to_switch(dev);
1854
1855 return sprintf(buf, "%s\n", sw->vendor_name ? sw->vendor_name : "");
1856 }
1857 static DEVICE_ATTR_RO(vendor_name);
1858
unique_id_show(struct device * dev,struct device_attribute * attr,char * buf)1859 static ssize_t unique_id_show(struct device *dev, struct device_attribute *attr,
1860 char *buf)
1861 {
1862 struct tb_switch *sw = tb_to_switch(dev);
1863
1864 return sprintf(buf, "%pUb\n", sw->uuid);
1865 }
1866 static DEVICE_ATTR_RO(unique_id);
1867
1868 static struct attribute *switch_attrs[] = {
1869 &dev_attr_authorized.attr,
1870 &dev_attr_boot.attr,
1871 &dev_attr_device.attr,
1872 &dev_attr_device_name.attr,
1873 &dev_attr_generation.attr,
1874 &dev_attr_key.attr,
1875 &dev_attr_nvm_authenticate.attr,
1876 &dev_attr_nvm_authenticate_on_disconnect.attr,
1877 &dev_attr_nvm_version.attr,
1878 &dev_attr_rx_speed.attr,
1879 &dev_attr_rx_lanes.attr,
1880 &dev_attr_tx_speed.attr,
1881 &dev_attr_tx_lanes.attr,
1882 &dev_attr_vendor.attr,
1883 &dev_attr_vendor_name.attr,
1884 &dev_attr_unique_id.attr,
1885 NULL,
1886 };
1887
switch_attr_is_visible(struct kobject * kobj,struct attribute * attr,int n)1888 static umode_t switch_attr_is_visible(struct kobject *kobj,
1889 struct attribute *attr, int n)
1890 {
1891 struct device *dev = kobj_to_dev(kobj);
1892 struct tb_switch *sw = tb_to_switch(dev);
1893
1894 if (attr == &dev_attr_authorized.attr) {
1895 if (sw->tb->security_level == TB_SECURITY_NOPCIE ||
1896 sw->tb->security_level == TB_SECURITY_DPONLY)
1897 return 0;
1898 } else if (attr == &dev_attr_device.attr) {
1899 if (!sw->device)
1900 return 0;
1901 } else if (attr == &dev_attr_device_name.attr) {
1902 if (!sw->device_name)
1903 return 0;
1904 } else if (attr == &dev_attr_vendor.attr) {
1905 if (!sw->vendor)
1906 return 0;
1907 } else if (attr == &dev_attr_vendor_name.attr) {
1908 if (!sw->vendor_name)
1909 return 0;
1910 } else if (attr == &dev_attr_key.attr) {
1911 if (tb_route(sw) &&
1912 sw->tb->security_level == TB_SECURITY_SECURE &&
1913 sw->security_level == TB_SECURITY_SECURE)
1914 return attr->mode;
1915 return 0;
1916 } else if (attr == &dev_attr_rx_speed.attr ||
1917 attr == &dev_attr_rx_lanes.attr ||
1918 attr == &dev_attr_tx_speed.attr ||
1919 attr == &dev_attr_tx_lanes.attr) {
1920 if (tb_route(sw))
1921 return attr->mode;
1922 return 0;
1923 } else if (attr == &dev_attr_nvm_authenticate.attr) {
1924 if (nvm_upgradeable(sw))
1925 return attr->mode;
1926 return 0;
1927 } else if (attr == &dev_attr_nvm_version.attr) {
1928 if (nvm_readable(sw))
1929 return attr->mode;
1930 return 0;
1931 } else if (attr == &dev_attr_boot.attr) {
1932 if (tb_route(sw))
1933 return attr->mode;
1934 return 0;
1935 } else if (attr == &dev_attr_nvm_authenticate_on_disconnect.attr) {
1936 if (sw->quirks & QUIRK_FORCE_POWER_LINK_CONTROLLER)
1937 return attr->mode;
1938 return 0;
1939 }
1940
1941 return sw->safe_mode ? 0 : attr->mode;
1942 }
1943
1944 static const struct attribute_group switch_group = {
1945 .is_visible = switch_attr_is_visible,
1946 .attrs = switch_attrs,
1947 };
1948
1949 static const struct attribute_group *switch_groups[] = {
1950 &switch_group,
1951 NULL,
1952 };
1953
tb_switch_release(struct device * dev)1954 static void tb_switch_release(struct device *dev)
1955 {
1956 struct tb_switch *sw = tb_to_switch(dev);
1957 struct tb_port *port;
1958
1959 dma_port_free(sw->dma_port);
1960
1961 tb_switch_for_each_port(sw, port) {
1962 ida_destroy(&port->in_hopids);
1963 ida_destroy(&port->out_hopids);
1964 }
1965
1966 kfree(sw->uuid);
1967 kfree(sw->device_name);
1968 kfree(sw->vendor_name);
1969 kfree(sw->ports);
1970 kfree(sw->drom);
1971 kfree(sw->key);
1972 kfree(sw);
1973 }
1974
tb_switch_uevent(struct device * dev,struct kobj_uevent_env * env)1975 static int tb_switch_uevent(struct device *dev, struct kobj_uevent_env *env)
1976 {
1977 struct tb_switch *sw = tb_to_switch(dev);
1978 const char *type;
1979
1980 if (sw->config.thunderbolt_version == USB4_VERSION_1_0) {
1981 if (add_uevent_var(env, "USB4_VERSION=1.0"))
1982 return -ENOMEM;
1983 }
1984
1985 if (!tb_route(sw)) {
1986 type = "host";
1987 } else {
1988 const struct tb_port *port;
1989 bool hub = false;
1990
1991 /* Device is hub if it has any downstream ports */
1992 tb_switch_for_each_port(sw, port) {
1993 if (!port->disabled && !tb_is_upstream_port(port) &&
1994 tb_port_is_null(port)) {
1995 hub = true;
1996 break;
1997 }
1998 }
1999
2000 type = hub ? "hub" : "device";
2001 }
2002
2003 if (add_uevent_var(env, "USB4_TYPE=%s", type))
2004 return -ENOMEM;
2005 return 0;
2006 }
2007
2008 /*
2009 * Currently only need to provide the callbacks. Everything else is handled
2010 * in the connection manager.
2011 */
tb_switch_runtime_suspend(struct device * dev)2012 static int __maybe_unused tb_switch_runtime_suspend(struct device *dev)
2013 {
2014 struct tb_switch *sw = tb_to_switch(dev);
2015 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2016
2017 if (cm_ops->runtime_suspend_switch)
2018 return cm_ops->runtime_suspend_switch(sw);
2019
2020 return 0;
2021 }
2022
tb_switch_runtime_resume(struct device * dev)2023 static int __maybe_unused tb_switch_runtime_resume(struct device *dev)
2024 {
2025 struct tb_switch *sw = tb_to_switch(dev);
2026 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
2027
2028 if (cm_ops->runtime_resume_switch)
2029 return cm_ops->runtime_resume_switch(sw);
2030 return 0;
2031 }
2032
2033 static const struct dev_pm_ops tb_switch_pm_ops = {
2034 SET_RUNTIME_PM_OPS(tb_switch_runtime_suspend, tb_switch_runtime_resume,
2035 NULL)
2036 };
2037
2038 struct device_type tb_switch_type = {
2039 .name = "thunderbolt_device",
2040 .release = tb_switch_release,
2041 .uevent = tb_switch_uevent,
2042 .pm = &tb_switch_pm_ops,
2043 };
2044
tb_switch_get_generation(struct tb_switch * sw)2045 static int tb_switch_get_generation(struct tb_switch *sw)
2046 {
2047 switch (sw->config.device_id) {
2048 case PCI_DEVICE_ID_INTEL_LIGHT_RIDGE:
2049 case PCI_DEVICE_ID_INTEL_EAGLE_RIDGE:
2050 case PCI_DEVICE_ID_INTEL_LIGHT_PEAK:
2051 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_2C:
2052 case PCI_DEVICE_ID_INTEL_CACTUS_RIDGE_4C:
2053 case PCI_DEVICE_ID_INTEL_PORT_RIDGE:
2054 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_2C_BRIDGE:
2055 case PCI_DEVICE_ID_INTEL_REDWOOD_RIDGE_4C_BRIDGE:
2056 return 1;
2057
2058 case PCI_DEVICE_ID_INTEL_WIN_RIDGE_2C_BRIDGE:
2059 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_2C_BRIDGE:
2060 case PCI_DEVICE_ID_INTEL_FALCON_RIDGE_4C_BRIDGE:
2061 return 2;
2062
2063 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_LP_BRIDGE:
2064 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_2C_BRIDGE:
2065 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_4C_BRIDGE:
2066 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_2C_BRIDGE:
2067 case PCI_DEVICE_ID_INTEL_ALPINE_RIDGE_C_4C_BRIDGE:
2068 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_2C_BRIDGE:
2069 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_4C_BRIDGE:
2070 case PCI_DEVICE_ID_INTEL_TITAN_RIDGE_DD_BRIDGE:
2071 case PCI_DEVICE_ID_INTEL_ICL_NHI0:
2072 case PCI_DEVICE_ID_INTEL_ICL_NHI1:
2073 return 3;
2074
2075 default:
2076 if (tb_switch_is_usb4(sw))
2077 return 4;
2078
2079 /*
2080 * For unknown switches assume generation to be 1 to be
2081 * on the safe side.
2082 */
2083 tb_sw_warn(sw, "unsupported switch device id %#x\n",
2084 sw->config.device_id);
2085 return 1;
2086 }
2087 }
2088
tb_switch_exceeds_max_depth(const struct tb_switch * sw,int depth)2089 static bool tb_switch_exceeds_max_depth(const struct tb_switch *sw, int depth)
2090 {
2091 int max_depth;
2092
2093 if (tb_switch_is_usb4(sw) ||
2094 (sw->tb->root_switch && tb_switch_is_usb4(sw->tb->root_switch)))
2095 max_depth = USB4_SWITCH_MAX_DEPTH;
2096 else
2097 max_depth = TB_SWITCH_MAX_DEPTH;
2098
2099 return depth > max_depth;
2100 }
2101
2102 /**
2103 * tb_switch_alloc() - allocate a switch
2104 * @tb: Pointer to the owning domain
2105 * @parent: Parent device for this switch
2106 * @route: Route string for this switch
2107 *
2108 * Allocates and initializes a switch. Will not upload configuration to
2109 * the switch. For that you need to call tb_switch_configure()
2110 * separately. The returned switch should be released by calling
2111 * tb_switch_put().
2112 *
2113 * Return: Pointer to the allocated switch or ERR_PTR() in case of
2114 * failure.
2115 */
tb_switch_alloc(struct tb * tb,struct device * parent,u64 route)2116 struct tb_switch *tb_switch_alloc(struct tb *tb, struct device *parent,
2117 u64 route)
2118 {
2119 struct tb_switch *sw;
2120 int upstream_port;
2121 int i, ret, depth;
2122
2123 /* Unlock the downstream port so we can access the switch below */
2124 if (route) {
2125 struct tb_switch *parent_sw = tb_to_switch(parent);
2126 struct tb_port *down;
2127
2128 down = tb_port_at(route, parent_sw);
2129 tb_port_unlock(down);
2130 }
2131
2132 depth = tb_route_length(route);
2133
2134 upstream_port = tb_cfg_get_upstream_port(tb->ctl, route);
2135 if (upstream_port < 0)
2136 return ERR_PTR(upstream_port);
2137
2138 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2139 if (!sw)
2140 return ERR_PTR(-ENOMEM);
2141
2142 sw->tb = tb;
2143 ret = tb_cfg_read(tb->ctl, &sw->config, route, 0, TB_CFG_SWITCH, 0, 5);
2144 if (ret)
2145 goto err_free_sw_ports;
2146
2147 sw->generation = tb_switch_get_generation(sw);
2148
2149 tb_dbg(tb, "current switch config:\n");
2150 tb_dump_switch(tb, sw);
2151
2152 /* configure switch */
2153 sw->config.upstream_port_number = upstream_port;
2154 sw->config.depth = depth;
2155 sw->config.route_hi = upper_32_bits(route);
2156 sw->config.route_lo = lower_32_bits(route);
2157 sw->config.enabled = 0;
2158
2159 /* Make sure we do not exceed maximum topology limit */
2160 if (tb_switch_exceeds_max_depth(sw, depth)) {
2161 ret = -EADDRNOTAVAIL;
2162 goto err_free_sw_ports;
2163 }
2164
2165 /* initialize ports */
2166 sw->ports = kcalloc(sw->config.max_port_number + 1, sizeof(*sw->ports),
2167 GFP_KERNEL);
2168 if (!sw->ports) {
2169 ret = -ENOMEM;
2170 goto err_free_sw_ports;
2171 }
2172
2173 for (i = 0; i <= sw->config.max_port_number; i++) {
2174 /* minimum setup for tb_find_cap and tb_drom_read to work */
2175 sw->ports[i].sw = sw;
2176 sw->ports[i].port = i;
2177
2178 /* Control port does not need HopID allocation */
2179 if (i) {
2180 ida_init(&sw->ports[i].in_hopids);
2181 ida_init(&sw->ports[i].out_hopids);
2182 }
2183 }
2184
2185 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_PLUG_EVENTS);
2186 if (ret > 0)
2187 sw->cap_plug_events = ret;
2188
2189 ret = tb_switch_find_vse_cap(sw, TB_VSE_CAP_LINK_CONTROLLER);
2190 if (ret > 0)
2191 sw->cap_lc = ret;
2192
2193 /* Root switch is always authorized */
2194 if (!route)
2195 sw->authorized = true;
2196
2197 device_initialize(&sw->dev);
2198 sw->dev.parent = parent;
2199 sw->dev.bus = &tb_bus_type;
2200 sw->dev.type = &tb_switch_type;
2201 sw->dev.groups = switch_groups;
2202 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2203
2204 return sw;
2205
2206 err_free_sw_ports:
2207 kfree(sw->ports);
2208 kfree(sw);
2209
2210 return ERR_PTR(ret);
2211 }
2212
2213 /**
2214 * tb_switch_alloc_safe_mode() - allocate a switch that is in safe mode
2215 * @tb: Pointer to the owning domain
2216 * @parent: Parent device for this switch
2217 * @route: Route string for this switch
2218 *
2219 * This creates a switch in safe mode. This means the switch pretty much
2220 * lacks all capabilities except DMA configuration port before it is
2221 * flashed with a valid NVM firmware.
2222 *
2223 * The returned switch must be released by calling tb_switch_put().
2224 *
2225 * Return: Pointer to the allocated switch or ERR_PTR() in case of failure
2226 */
2227 struct tb_switch *
tb_switch_alloc_safe_mode(struct tb * tb,struct device * parent,u64 route)2228 tb_switch_alloc_safe_mode(struct tb *tb, struct device *parent, u64 route)
2229 {
2230 struct tb_switch *sw;
2231
2232 sw = kzalloc(sizeof(*sw), GFP_KERNEL);
2233 if (!sw)
2234 return ERR_PTR(-ENOMEM);
2235
2236 sw->tb = tb;
2237 sw->config.depth = tb_route_length(route);
2238 sw->config.route_hi = upper_32_bits(route);
2239 sw->config.route_lo = lower_32_bits(route);
2240 sw->safe_mode = true;
2241
2242 device_initialize(&sw->dev);
2243 sw->dev.parent = parent;
2244 sw->dev.bus = &tb_bus_type;
2245 sw->dev.type = &tb_switch_type;
2246 sw->dev.groups = switch_groups;
2247 dev_set_name(&sw->dev, "%u-%llx", tb->index, tb_route(sw));
2248
2249 return sw;
2250 }
2251
2252 /**
2253 * tb_switch_configure() - Uploads configuration to the switch
2254 * @sw: Switch to configure
2255 *
2256 * Call this function before the switch is added to the system. It will
2257 * upload configuration to the switch and makes it available for the
2258 * connection manager to use. Can be called to the switch again after
2259 * resume from low power states to re-initialize it.
2260 *
2261 * Return: %0 in case of success and negative errno in case of failure
2262 */
tb_switch_configure(struct tb_switch * sw)2263 int tb_switch_configure(struct tb_switch *sw)
2264 {
2265 struct tb *tb = sw->tb;
2266 u64 route;
2267 int ret;
2268
2269 route = tb_route(sw);
2270
2271 tb_dbg(tb, "%s Switch at %#llx (depth: %d, up port: %d)\n",
2272 sw->config.enabled ? "restoring" : "initializing", route,
2273 tb_route_length(route), sw->config.upstream_port_number);
2274
2275 sw->config.enabled = 1;
2276
2277 if (tb_switch_is_usb4(sw)) {
2278 /*
2279 * For USB4 devices, we need to program the CM version
2280 * accordingly so that it knows to expose all the
2281 * additional capabilities.
2282 */
2283 sw->config.cmuv = USB4_VERSION_1_0;
2284 sw->config.plug_events_delay = 0xa;
2285
2286 /* Enumerate the switch */
2287 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2288 ROUTER_CS_1, 4);
2289 if (ret)
2290 return ret;
2291
2292 ret = usb4_switch_setup(sw);
2293 } else {
2294 if (sw->config.vendor_id != PCI_VENDOR_ID_INTEL)
2295 tb_sw_warn(sw, "unknown switch vendor id %#x\n",
2296 sw->config.vendor_id);
2297
2298 if (!sw->cap_plug_events) {
2299 tb_sw_warn(sw, "cannot find TB_VSE_CAP_PLUG_EVENTS aborting\n");
2300 return -ENODEV;
2301 }
2302
2303 /* Enumerate the switch */
2304 ret = tb_sw_write(sw, (u32 *)&sw->config + 1, TB_CFG_SWITCH,
2305 ROUTER_CS_1, 3);
2306 }
2307 if (ret)
2308 return ret;
2309
2310 return tb_plug_events_active(sw, true);
2311 }
2312
tb_switch_set_uuid(struct tb_switch * sw)2313 static int tb_switch_set_uuid(struct tb_switch *sw)
2314 {
2315 bool uid = false;
2316 u32 uuid[4];
2317 int ret;
2318
2319 if (sw->uuid)
2320 return 0;
2321
2322 if (tb_switch_is_usb4(sw)) {
2323 ret = usb4_switch_read_uid(sw, &sw->uid);
2324 if (ret)
2325 return ret;
2326 uid = true;
2327 } else {
2328 /*
2329 * The newer controllers include fused UUID as part of
2330 * link controller specific registers
2331 */
2332 ret = tb_lc_read_uuid(sw, uuid);
2333 if (ret) {
2334 if (ret != -EINVAL)
2335 return ret;
2336 uid = true;
2337 }
2338 }
2339
2340 if (uid) {
2341 /*
2342 * ICM generates UUID based on UID and fills the upper
2343 * two words with ones. This is not strictly following
2344 * UUID format but we want to be compatible with it so
2345 * we do the same here.
2346 */
2347 uuid[0] = sw->uid & 0xffffffff;
2348 uuid[1] = (sw->uid >> 32) & 0xffffffff;
2349 uuid[2] = 0xffffffff;
2350 uuid[3] = 0xffffffff;
2351 }
2352
2353 sw->uuid = kmemdup(uuid, sizeof(uuid), GFP_KERNEL);
2354 if (!sw->uuid)
2355 return -ENOMEM;
2356 return 0;
2357 }
2358
tb_switch_add_dma_port(struct tb_switch * sw)2359 static int tb_switch_add_dma_port(struct tb_switch *sw)
2360 {
2361 u32 status;
2362 int ret;
2363
2364 switch (sw->generation) {
2365 case 2:
2366 /* Only root switch can be upgraded */
2367 if (tb_route(sw))
2368 return 0;
2369
2370 fallthrough;
2371 case 3:
2372 case 4:
2373 ret = tb_switch_set_uuid(sw);
2374 if (ret)
2375 return ret;
2376 break;
2377
2378 default:
2379 /*
2380 * DMA port is the only thing available when the switch
2381 * is in safe mode.
2382 */
2383 if (!sw->safe_mode)
2384 return 0;
2385 break;
2386 }
2387
2388 if (sw->no_nvm_upgrade)
2389 return 0;
2390
2391 if (tb_switch_is_usb4(sw)) {
2392 ret = usb4_switch_nvm_authenticate_status(sw, &status);
2393 if (ret)
2394 return ret;
2395
2396 if (status) {
2397 tb_sw_info(sw, "switch flash authentication failed\n");
2398 nvm_set_auth_status(sw, status);
2399 }
2400
2401 return 0;
2402 }
2403
2404 /* Root switch DMA port requires running firmware */
2405 if (!tb_route(sw) && !tb_switch_is_icm(sw))
2406 return 0;
2407
2408 sw->dma_port = dma_port_alloc(sw);
2409 if (!sw->dma_port)
2410 return 0;
2411
2412 /*
2413 * If there is status already set then authentication failed
2414 * when the dma_port_flash_update_auth() returned. Power cycling
2415 * is not needed (it was done already) so only thing we do here
2416 * is to unblock runtime PM of the root port.
2417 */
2418 nvm_get_auth_status(sw, &status);
2419 if (status) {
2420 if (!tb_route(sw))
2421 nvm_authenticate_complete_dma_port(sw);
2422 return 0;
2423 }
2424
2425 /*
2426 * Check status of the previous flash authentication. If there
2427 * is one we need to power cycle the switch in any case to make
2428 * it functional again.
2429 */
2430 ret = dma_port_flash_update_auth_status(sw->dma_port, &status);
2431 if (ret <= 0)
2432 return ret;
2433
2434 /* Now we can allow root port to suspend again */
2435 if (!tb_route(sw))
2436 nvm_authenticate_complete_dma_port(sw);
2437
2438 if (status) {
2439 tb_sw_info(sw, "switch flash authentication failed\n");
2440 nvm_set_auth_status(sw, status);
2441 }
2442
2443 tb_sw_info(sw, "power cycling the switch now\n");
2444 dma_port_power_cycle(sw->dma_port);
2445
2446 /*
2447 * We return error here which causes the switch adding failure.
2448 * It should appear back after power cycle is complete.
2449 */
2450 return -ESHUTDOWN;
2451 }
2452
tb_switch_default_link_ports(struct tb_switch * sw)2453 static void tb_switch_default_link_ports(struct tb_switch *sw)
2454 {
2455 int i;
2456
2457 for (i = 1; i <= sw->config.max_port_number; i++) {
2458 struct tb_port *port = &sw->ports[i];
2459 struct tb_port *subordinate;
2460
2461 if (!tb_port_is_null(port))
2462 continue;
2463
2464 /* Check for the subordinate port */
2465 if (i == sw->config.max_port_number ||
2466 !tb_port_is_null(&sw->ports[i + 1]))
2467 continue;
2468
2469 /* Link them if not already done so (by DROM) */
2470 subordinate = &sw->ports[i + 1];
2471 if (!port->dual_link_port && !subordinate->dual_link_port) {
2472 port->link_nr = 0;
2473 port->dual_link_port = subordinate;
2474 subordinate->link_nr = 1;
2475 subordinate->dual_link_port = port;
2476
2477 tb_sw_dbg(sw, "linked ports %d <-> %d\n",
2478 port->port, subordinate->port);
2479 }
2480 }
2481 }
2482
tb_switch_lane_bonding_possible(struct tb_switch * sw)2483 static bool tb_switch_lane_bonding_possible(struct tb_switch *sw)
2484 {
2485 const struct tb_port *up = tb_upstream_port(sw);
2486
2487 if (!up->dual_link_port || !up->dual_link_port->remote)
2488 return false;
2489
2490 if (tb_switch_is_usb4(sw))
2491 return usb4_switch_lane_bonding_possible(sw);
2492 return tb_lc_lane_bonding_possible(sw);
2493 }
2494
tb_switch_update_link_attributes(struct tb_switch * sw)2495 static int tb_switch_update_link_attributes(struct tb_switch *sw)
2496 {
2497 struct tb_port *up;
2498 bool change = false;
2499 int ret;
2500
2501 if (!tb_route(sw) || tb_switch_is_icm(sw))
2502 return 0;
2503
2504 up = tb_upstream_port(sw);
2505
2506 ret = tb_port_get_link_speed(up);
2507 if (ret < 0)
2508 return ret;
2509 if (sw->link_speed != ret)
2510 change = true;
2511 sw->link_speed = ret;
2512
2513 ret = tb_port_get_link_width(up);
2514 if (ret < 0)
2515 return ret;
2516 if (sw->link_width != ret)
2517 change = true;
2518 sw->link_width = ret;
2519
2520 /* Notify userspace that there is possible link attribute change */
2521 if (device_is_registered(&sw->dev) && change)
2522 kobject_uevent(&sw->dev.kobj, KOBJ_CHANGE);
2523
2524 return 0;
2525 }
2526
2527 /**
2528 * tb_switch_lane_bonding_enable() - Enable lane bonding
2529 * @sw: Switch to enable lane bonding
2530 *
2531 * Connection manager can call this function to enable lane bonding of a
2532 * switch. If conditions are correct and both switches support the feature,
2533 * lanes are bonded. It is safe to call this to any switch.
2534 */
tb_switch_lane_bonding_enable(struct tb_switch * sw)2535 int tb_switch_lane_bonding_enable(struct tb_switch *sw)
2536 {
2537 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2538 struct tb_port *up, *down;
2539 u64 route = tb_route(sw);
2540 int ret;
2541
2542 if (!route)
2543 return 0;
2544
2545 if (!tb_switch_lane_bonding_possible(sw))
2546 return 0;
2547
2548 up = tb_upstream_port(sw);
2549 down = tb_port_at(route, parent);
2550
2551 if (!tb_port_is_width_supported(up, 2) ||
2552 !tb_port_is_width_supported(down, 2))
2553 return 0;
2554
2555 /*
2556 * Both lanes need to be in CL0. Here we assume lane 0 already be in
2557 * CL0 and check just for lane 1.
2558 */
2559 if (tb_wait_for_port(down->dual_link_port, false) <= 0)
2560 return -ENOTCONN;
2561
2562 ret = tb_port_lane_bonding_enable(up);
2563 if (ret) {
2564 tb_port_warn(up, "failed to enable lane bonding\n");
2565 return ret;
2566 }
2567
2568 ret = tb_port_lane_bonding_enable(down);
2569 if (ret) {
2570 tb_port_warn(down, "failed to enable lane bonding\n");
2571 tb_port_lane_bonding_disable(up);
2572 return ret;
2573 }
2574
2575 ret = tb_port_wait_for_link_width(down, 2, 100);
2576 if (ret) {
2577 tb_port_warn(down, "timeout enabling lane bonding\n");
2578 return ret;
2579 }
2580
2581 tb_port_update_credits(down);
2582 tb_port_update_credits(up);
2583 tb_switch_update_link_attributes(sw);
2584
2585 tb_sw_dbg(sw, "lane bonding enabled\n");
2586 return ret;
2587 }
2588
2589 /**
2590 * tb_switch_lane_bonding_disable() - Disable lane bonding
2591 * @sw: Switch whose lane bonding to disable
2592 *
2593 * Disables lane bonding between @sw and parent. This can be called even
2594 * if lanes were not bonded originally.
2595 */
tb_switch_lane_bonding_disable(struct tb_switch * sw)2596 void tb_switch_lane_bonding_disable(struct tb_switch *sw)
2597 {
2598 struct tb_switch *parent = tb_to_switch(sw->dev.parent);
2599 struct tb_port *up, *down;
2600
2601 if (!tb_route(sw))
2602 return;
2603
2604 up = tb_upstream_port(sw);
2605 if (!up->bonded)
2606 return;
2607
2608 down = tb_port_at(tb_route(sw), parent);
2609
2610 tb_port_lane_bonding_disable(up);
2611 tb_port_lane_bonding_disable(down);
2612
2613 /*
2614 * It is fine if we get other errors as the router might have
2615 * been unplugged.
2616 */
2617 if (tb_port_wait_for_link_width(down, 1, 100) == -ETIMEDOUT)
2618 tb_sw_warn(sw, "timeout disabling lane bonding\n");
2619
2620 tb_port_update_credits(down);
2621 tb_port_update_credits(up);
2622 tb_switch_update_link_attributes(sw);
2623
2624 tb_sw_dbg(sw, "lane bonding disabled\n");
2625 }
2626
2627 /**
2628 * tb_switch_configure_link() - Set link configured
2629 * @sw: Switch whose link is configured
2630 *
2631 * Sets the link upstream from @sw configured (from both ends) so that
2632 * it will not be disconnected when the domain exits sleep. Can be
2633 * called for any switch.
2634 *
2635 * It is recommended that this is called after lane bonding is enabled.
2636 *
2637 * Returns %0 on success and negative errno in case of error.
2638 */
tb_switch_configure_link(struct tb_switch * sw)2639 int tb_switch_configure_link(struct tb_switch *sw)
2640 {
2641 struct tb_port *up, *down;
2642 int ret;
2643
2644 if (!tb_route(sw) || tb_switch_is_icm(sw))
2645 return 0;
2646
2647 up = tb_upstream_port(sw);
2648 if (tb_switch_is_usb4(up->sw))
2649 ret = usb4_port_configure(up);
2650 else
2651 ret = tb_lc_configure_port(up);
2652 if (ret)
2653 return ret;
2654
2655 down = up->remote;
2656 if (tb_switch_is_usb4(down->sw))
2657 return usb4_port_configure(down);
2658 return tb_lc_configure_port(down);
2659 }
2660
2661 /**
2662 * tb_switch_unconfigure_link() - Unconfigure link
2663 * @sw: Switch whose link is unconfigured
2664 *
2665 * Sets the link unconfigured so the @sw will be disconnected if the
2666 * domain exists sleep.
2667 */
tb_switch_unconfigure_link(struct tb_switch * sw)2668 void tb_switch_unconfigure_link(struct tb_switch *sw)
2669 {
2670 struct tb_port *up, *down;
2671
2672 if (sw->is_unplugged)
2673 return;
2674 if (!tb_route(sw) || tb_switch_is_icm(sw))
2675 return;
2676
2677 up = tb_upstream_port(sw);
2678 if (tb_switch_is_usb4(up->sw))
2679 usb4_port_unconfigure(up);
2680 else
2681 tb_lc_unconfigure_port(up);
2682
2683 down = up->remote;
2684 if (tb_switch_is_usb4(down->sw))
2685 usb4_port_unconfigure(down);
2686 else
2687 tb_lc_unconfigure_port(down);
2688 }
2689
tb_switch_credits_init(struct tb_switch * sw)2690 static void tb_switch_credits_init(struct tb_switch *sw)
2691 {
2692 if (tb_switch_is_icm(sw))
2693 return;
2694 if (!tb_switch_is_usb4(sw))
2695 return;
2696 if (usb4_switch_credits_init(sw))
2697 tb_sw_info(sw, "failed to determine preferred buffer allocation, using defaults\n");
2698 }
2699
tb_switch_port_hotplug_enable(struct tb_switch * sw)2700 static int tb_switch_port_hotplug_enable(struct tb_switch *sw)
2701 {
2702 struct tb_port *port;
2703
2704 if (tb_switch_is_icm(sw))
2705 return 0;
2706
2707 tb_switch_for_each_port(sw, port) {
2708 int res;
2709
2710 if (!port->cap_usb4)
2711 continue;
2712
2713 res = usb4_port_hotplug_enable(port);
2714 if (res)
2715 return res;
2716 }
2717 return 0;
2718 }
2719
2720 /**
2721 * tb_switch_add() - Add a switch to the domain
2722 * @sw: Switch to add
2723 *
2724 * This is the last step in adding switch to the domain. It will read
2725 * identification information from DROM and initializes ports so that
2726 * they can be used to connect other switches. The switch will be
2727 * exposed to the userspace when this function successfully returns. To
2728 * remove and release the switch, call tb_switch_remove().
2729 *
2730 * Return: %0 in case of success and negative errno in case of failure
2731 */
tb_switch_add(struct tb_switch * sw)2732 int tb_switch_add(struct tb_switch *sw)
2733 {
2734 int i, ret;
2735
2736 /*
2737 * Initialize DMA control port now before we read DROM. Recent
2738 * host controllers have more complete DROM on NVM that includes
2739 * vendor and model identification strings which we then expose
2740 * to the userspace. NVM can be accessed through DMA
2741 * configuration based mailbox.
2742 */
2743 ret = tb_switch_add_dma_port(sw);
2744 if (ret) {
2745 dev_err(&sw->dev, "failed to add DMA port\n");
2746 return ret;
2747 }
2748
2749 if (!sw->safe_mode) {
2750 tb_switch_credits_init(sw);
2751
2752 /* read drom */
2753 ret = tb_drom_read(sw);
2754 if (ret) {
2755 dev_err(&sw->dev, "reading DROM failed\n");
2756 return ret;
2757 }
2758 tb_sw_dbg(sw, "uid: %#llx\n", sw->uid);
2759
2760 ret = tb_switch_set_uuid(sw);
2761 if (ret) {
2762 dev_err(&sw->dev, "failed to set UUID\n");
2763 return ret;
2764 }
2765
2766 for (i = 0; i <= sw->config.max_port_number; i++) {
2767 if (sw->ports[i].disabled) {
2768 tb_port_dbg(&sw->ports[i], "disabled by eeprom\n");
2769 continue;
2770 }
2771 ret = tb_init_port(&sw->ports[i]);
2772 if (ret) {
2773 dev_err(&sw->dev, "failed to initialize port %d\n", i);
2774 return ret;
2775 }
2776 }
2777
2778 tb_check_quirks(sw);
2779
2780 tb_switch_default_link_ports(sw);
2781
2782 ret = tb_switch_update_link_attributes(sw);
2783 if (ret)
2784 return ret;
2785
2786 ret = tb_switch_tmu_init(sw);
2787 if (ret)
2788 return ret;
2789 }
2790
2791 ret = tb_switch_port_hotplug_enable(sw);
2792 if (ret)
2793 return ret;
2794
2795 ret = device_add(&sw->dev);
2796 if (ret) {
2797 dev_err(&sw->dev, "failed to add device: %d\n", ret);
2798 return ret;
2799 }
2800
2801 if (tb_route(sw)) {
2802 dev_info(&sw->dev, "new device found, vendor=%#x device=%#x\n",
2803 sw->vendor, sw->device);
2804 if (sw->vendor_name && sw->device_name)
2805 dev_info(&sw->dev, "%s %s\n", sw->vendor_name,
2806 sw->device_name);
2807 }
2808
2809 ret = usb4_switch_add_ports(sw);
2810 if (ret) {
2811 dev_err(&sw->dev, "failed to add USB4 ports\n");
2812 goto err_del;
2813 }
2814
2815 ret = tb_switch_nvm_add(sw);
2816 if (ret) {
2817 dev_err(&sw->dev, "failed to add NVM devices\n");
2818 goto err_ports;
2819 }
2820
2821 /*
2822 * Thunderbolt routers do not generate wakeups themselves but
2823 * they forward wakeups from tunneled protocols, so enable it
2824 * here.
2825 */
2826 device_init_wakeup(&sw->dev, true);
2827
2828 pm_runtime_set_active(&sw->dev);
2829 if (sw->rpm) {
2830 pm_runtime_set_autosuspend_delay(&sw->dev, TB_AUTOSUSPEND_DELAY);
2831 pm_runtime_use_autosuspend(&sw->dev);
2832 pm_runtime_mark_last_busy(&sw->dev);
2833 pm_runtime_enable(&sw->dev);
2834 pm_request_autosuspend(&sw->dev);
2835 }
2836
2837 tb_switch_debugfs_init(sw);
2838 return 0;
2839
2840 err_ports:
2841 usb4_switch_remove_ports(sw);
2842 err_del:
2843 device_del(&sw->dev);
2844
2845 return ret;
2846 }
2847
2848 /**
2849 * tb_switch_remove() - Remove and release a switch
2850 * @sw: Switch to remove
2851 *
2852 * This will remove the switch from the domain and release it after last
2853 * reference count drops to zero. If there are switches connected below
2854 * this switch, they will be removed as well.
2855 */
tb_switch_remove(struct tb_switch * sw)2856 void tb_switch_remove(struct tb_switch *sw)
2857 {
2858 struct tb_port *port;
2859
2860 tb_switch_debugfs_remove(sw);
2861
2862 if (sw->rpm) {
2863 pm_runtime_get_sync(&sw->dev);
2864 pm_runtime_disable(&sw->dev);
2865 }
2866
2867 /* port 0 is the switch itself and never has a remote */
2868 tb_switch_for_each_port(sw, port) {
2869 if (tb_port_has_remote(port)) {
2870 tb_switch_remove(port->remote->sw);
2871 port->remote = NULL;
2872 } else if (port->xdomain) {
2873 tb_xdomain_remove(port->xdomain);
2874 port->xdomain = NULL;
2875 }
2876
2877 /* Remove any downstream retimers */
2878 tb_retimer_remove_all(port);
2879 }
2880
2881 if (!sw->is_unplugged)
2882 tb_plug_events_active(sw, false);
2883
2884 tb_switch_nvm_remove(sw);
2885 usb4_switch_remove_ports(sw);
2886
2887 if (tb_route(sw))
2888 dev_info(&sw->dev, "device disconnected\n");
2889 device_unregister(&sw->dev);
2890 }
2891
2892 /**
2893 * tb_sw_set_unplugged() - set is_unplugged on switch and downstream switches
2894 * @sw: Router to mark unplugged
2895 */
tb_sw_set_unplugged(struct tb_switch * sw)2896 void tb_sw_set_unplugged(struct tb_switch *sw)
2897 {
2898 struct tb_port *port;
2899
2900 if (sw == sw->tb->root_switch) {
2901 tb_sw_WARN(sw, "cannot unplug root switch\n");
2902 return;
2903 }
2904 if (sw->is_unplugged) {
2905 tb_sw_WARN(sw, "is_unplugged already set\n");
2906 return;
2907 }
2908 sw->is_unplugged = true;
2909 tb_switch_for_each_port(sw, port) {
2910 if (tb_port_has_remote(port))
2911 tb_sw_set_unplugged(port->remote->sw);
2912 else if (port->xdomain)
2913 port->xdomain->is_unplugged = true;
2914 }
2915 }
2916
tb_switch_set_wake(struct tb_switch * sw,unsigned int flags)2917 static int tb_switch_set_wake(struct tb_switch *sw, unsigned int flags)
2918 {
2919 if (flags)
2920 tb_sw_dbg(sw, "enabling wakeup: %#x\n", flags);
2921 else
2922 tb_sw_dbg(sw, "disabling wakeup\n");
2923
2924 if (tb_switch_is_usb4(sw))
2925 return usb4_switch_set_wake(sw, flags);
2926 return tb_lc_set_wake(sw, flags);
2927 }
2928
tb_switch_resume(struct tb_switch * sw)2929 int tb_switch_resume(struct tb_switch *sw)
2930 {
2931 struct tb_port *port;
2932 int err;
2933
2934 tb_sw_dbg(sw, "resuming switch\n");
2935
2936 /*
2937 * Check for UID of the connected switches except for root
2938 * switch which we assume cannot be removed.
2939 */
2940 if (tb_route(sw)) {
2941 u64 uid;
2942
2943 /*
2944 * Check first that we can still read the switch config
2945 * space. It may be that there is now another domain
2946 * connected.
2947 */
2948 err = tb_cfg_get_upstream_port(sw->tb->ctl, tb_route(sw));
2949 if (err < 0) {
2950 tb_sw_info(sw, "switch not present anymore\n");
2951 return err;
2952 }
2953
2954 if (tb_switch_is_usb4(sw))
2955 err = usb4_switch_read_uid(sw, &uid);
2956 else
2957 err = tb_drom_read_uid_only(sw, &uid);
2958 if (err) {
2959 tb_sw_warn(sw, "uid read failed\n");
2960 return err;
2961 }
2962 if (sw->uid != uid) {
2963 tb_sw_info(sw,
2964 "changed while suspended (uid %#llx -> %#llx)\n",
2965 sw->uid, uid);
2966 return -ENODEV;
2967 }
2968 }
2969
2970 err = tb_switch_configure(sw);
2971 if (err)
2972 return err;
2973
2974 /* Disable wakes */
2975 tb_switch_set_wake(sw, 0);
2976
2977 err = tb_switch_tmu_init(sw);
2978 if (err)
2979 return err;
2980
2981 /* check for surviving downstream switches */
2982 tb_switch_for_each_port(sw, port) {
2983 if (!tb_port_is_null(port))
2984 continue;
2985
2986 if (!tb_port_resume(port))
2987 continue;
2988
2989 if (tb_wait_for_port(port, true) <= 0) {
2990 tb_port_warn(port,
2991 "lost during suspend, disconnecting\n");
2992 if (tb_port_has_remote(port))
2993 tb_sw_set_unplugged(port->remote->sw);
2994 else if (port->xdomain)
2995 port->xdomain->is_unplugged = true;
2996 } else {
2997 /*
2998 * Always unlock the port so the downstream
2999 * switch/domain is accessible.
3000 */
3001 if (tb_port_unlock(port))
3002 tb_port_warn(port, "failed to unlock port\n");
3003 if (port->remote && tb_switch_resume(port->remote->sw)) {
3004 tb_port_warn(port,
3005 "lost during suspend, disconnecting\n");
3006 tb_sw_set_unplugged(port->remote->sw);
3007 }
3008 }
3009 }
3010 return 0;
3011 }
3012
3013 /**
3014 * tb_switch_suspend() - Put a switch to sleep
3015 * @sw: Switch to suspend
3016 * @runtime: Is this runtime suspend or system sleep
3017 *
3018 * Suspends router and all its children. Enables wakes according to
3019 * value of @runtime and then sets sleep bit for the router. If @sw is
3020 * host router the domain is ready to go to sleep once this function
3021 * returns.
3022 */
tb_switch_suspend(struct tb_switch * sw,bool runtime)3023 void tb_switch_suspend(struct tb_switch *sw, bool runtime)
3024 {
3025 unsigned int flags = 0;
3026 struct tb_port *port;
3027 int err;
3028
3029 tb_sw_dbg(sw, "suspending switch\n");
3030
3031 err = tb_plug_events_active(sw, false);
3032 if (err)
3033 return;
3034
3035 tb_switch_for_each_port(sw, port) {
3036 if (tb_port_has_remote(port))
3037 tb_switch_suspend(port->remote->sw, runtime);
3038 }
3039
3040 if (runtime) {
3041 /* Trigger wake when something is plugged in/out */
3042 flags |= TB_WAKE_ON_CONNECT | TB_WAKE_ON_DISCONNECT;
3043 flags |= TB_WAKE_ON_USB4;
3044 flags |= TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE | TB_WAKE_ON_DP;
3045 } else if (device_may_wakeup(&sw->dev)) {
3046 flags |= TB_WAKE_ON_USB4 | TB_WAKE_ON_USB3 | TB_WAKE_ON_PCIE;
3047 }
3048
3049 tb_switch_set_wake(sw, flags);
3050
3051 if (tb_switch_is_usb4(sw))
3052 usb4_switch_set_sleep(sw);
3053 else
3054 tb_lc_set_sleep(sw);
3055 }
3056
3057 /**
3058 * tb_switch_query_dp_resource() - Query availability of DP resource
3059 * @sw: Switch whose DP resource is queried
3060 * @in: DP IN port
3061 *
3062 * Queries availability of DP resource for DP tunneling using switch
3063 * specific means. Returns %true if resource is available.
3064 */
tb_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)3065 bool tb_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
3066 {
3067 if (tb_switch_is_usb4(sw))
3068 return usb4_switch_query_dp_resource(sw, in);
3069 return tb_lc_dp_sink_query(sw, in);
3070 }
3071
3072 /**
3073 * tb_switch_alloc_dp_resource() - Allocate available DP resource
3074 * @sw: Switch whose DP resource is allocated
3075 * @in: DP IN port
3076 *
3077 * Allocates DP resource for DP tunneling. The resource must be
3078 * available for this to succeed (see tb_switch_query_dp_resource()).
3079 * Returns %0 in success and negative errno otherwise.
3080 */
tb_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3081 int tb_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3082 {
3083 if (tb_switch_is_usb4(sw))
3084 return usb4_switch_alloc_dp_resource(sw, in);
3085 return tb_lc_dp_sink_alloc(sw, in);
3086 }
3087
3088 /**
3089 * tb_switch_dealloc_dp_resource() - De-allocate DP resource
3090 * @sw: Switch whose DP resource is de-allocated
3091 * @in: DP IN port
3092 *
3093 * De-allocates DP resource that was previously allocated for DP
3094 * tunneling.
3095 */
tb_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)3096 void tb_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
3097 {
3098 int ret;
3099
3100 if (tb_switch_is_usb4(sw))
3101 ret = usb4_switch_dealloc_dp_resource(sw, in);
3102 else
3103 ret = tb_lc_dp_sink_dealloc(sw, in);
3104
3105 if (ret)
3106 tb_sw_warn(sw, "failed to de-allocate DP resource for port %d\n",
3107 in->port);
3108 }
3109
3110 struct tb_sw_lookup {
3111 struct tb *tb;
3112 u8 link;
3113 u8 depth;
3114 const uuid_t *uuid;
3115 u64 route;
3116 };
3117
tb_switch_match(struct device * dev,const void * data)3118 static int tb_switch_match(struct device *dev, const void *data)
3119 {
3120 struct tb_switch *sw = tb_to_switch(dev);
3121 const struct tb_sw_lookup *lookup = data;
3122
3123 if (!sw)
3124 return 0;
3125 if (sw->tb != lookup->tb)
3126 return 0;
3127
3128 if (lookup->uuid)
3129 return !memcmp(sw->uuid, lookup->uuid, sizeof(*lookup->uuid));
3130
3131 if (lookup->route) {
3132 return sw->config.route_lo == lower_32_bits(lookup->route) &&
3133 sw->config.route_hi == upper_32_bits(lookup->route);
3134 }
3135
3136 /* Root switch is matched only by depth */
3137 if (!lookup->depth)
3138 return !sw->depth;
3139
3140 return sw->link == lookup->link && sw->depth == lookup->depth;
3141 }
3142
3143 /**
3144 * tb_switch_find_by_link_depth() - Find switch by link and depth
3145 * @tb: Domain the switch belongs
3146 * @link: Link number the switch is connected
3147 * @depth: Depth of the switch in link
3148 *
3149 * Returned switch has reference count increased so the caller needs to
3150 * call tb_switch_put() when done with the switch.
3151 */
tb_switch_find_by_link_depth(struct tb * tb,u8 link,u8 depth)3152 struct tb_switch *tb_switch_find_by_link_depth(struct tb *tb, u8 link, u8 depth)
3153 {
3154 struct tb_sw_lookup lookup;
3155 struct device *dev;
3156
3157 memset(&lookup, 0, sizeof(lookup));
3158 lookup.tb = tb;
3159 lookup.link = link;
3160 lookup.depth = depth;
3161
3162 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3163 if (dev)
3164 return tb_to_switch(dev);
3165
3166 return NULL;
3167 }
3168
3169 /**
3170 * tb_switch_find_by_uuid() - Find switch by UUID
3171 * @tb: Domain the switch belongs
3172 * @uuid: UUID to look for
3173 *
3174 * Returned switch has reference count increased so the caller needs to
3175 * call tb_switch_put() when done with the switch.
3176 */
tb_switch_find_by_uuid(struct tb * tb,const uuid_t * uuid)3177 struct tb_switch *tb_switch_find_by_uuid(struct tb *tb, const uuid_t *uuid)
3178 {
3179 struct tb_sw_lookup lookup;
3180 struct device *dev;
3181
3182 memset(&lookup, 0, sizeof(lookup));
3183 lookup.tb = tb;
3184 lookup.uuid = uuid;
3185
3186 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3187 if (dev)
3188 return tb_to_switch(dev);
3189
3190 return NULL;
3191 }
3192
3193 /**
3194 * tb_switch_find_by_route() - Find switch by route string
3195 * @tb: Domain the switch belongs
3196 * @route: Route string to look for
3197 *
3198 * Returned switch has reference count increased so the caller needs to
3199 * call tb_switch_put() when done with the switch.
3200 */
tb_switch_find_by_route(struct tb * tb,u64 route)3201 struct tb_switch *tb_switch_find_by_route(struct tb *tb, u64 route)
3202 {
3203 struct tb_sw_lookup lookup;
3204 struct device *dev;
3205
3206 if (!route)
3207 return tb_switch_get(tb->root_switch);
3208
3209 memset(&lookup, 0, sizeof(lookup));
3210 lookup.tb = tb;
3211 lookup.route = route;
3212
3213 dev = bus_find_device(&tb_bus_type, NULL, &lookup, tb_switch_match);
3214 if (dev)
3215 return tb_to_switch(dev);
3216
3217 return NULL;
3218 }
3219
3220 /**
3221 * tb_switch_find_port() - return the first port of @type on @sw or NULL
3222 * @sw: Switch to find the port from
3223 * @type: Port type to look for
3224 */
tb_switch_find_port(struct tb_switch * sw,enum tb_port_type type)3225 struct tb_port *tb_switch_find_port(struct tb_switch *sw,
3226 enum tb_port_type type)
3227 {
3228 struct tb_port *port;
3229
3230 tb_switch_for_each_port(sw, port) {
3231 if (port->config.type == type)
3232 return port;
3233 }
3234
3235 return NULL;
3236 }
3237