1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes: Pedro Roque : Retransmit queue handled by TCP.
24 * : Fragmentation on mtu decrease
25 * : Segment collapse on retransmit
26 * : AF independence
27 *
28 * Linus Torvalds : send_delayed_ack
29 * David S. Miller : Charge memory using the right skb
30 * during syn/ack processing.
31 * David S. Miller : Output engine completely rewritten.
32 * Andrea Arcangeli: SYNACK carry ts_recent in tsecr.
33 * Cacophonix Gaul : draft-minshall-nagle-01
34 * J Hadi Salim : ECN support
35 *
36 */
37
38 #define pr_fmt(fmt) "TCP: " fmt
39
40 #include <net/tcp.h>
41 #include <net/mptcp.h>
42
43 #include <linux/compiler.h>
44 #include <linux/gfp.h>
45 #include <linux/module.h>
46 #include <linux/static_key.h>
47
48 #include <trace/events/tcp.h>
49
50 /* Refresh clocks of a TCP socket,
51 * ensuring monotically increasing values.
52 */
tcp_mstamp_refresh(struct tcp_sock * tp)53 void tcp_mstamp_refresh(struct tcp_sock *tp)
54 {
55 u64 val = tcp_clock_ns();
56
57 tp->tcp_clock_cache = val;
58 tp->tcp_mstamp = div_u64(val, NSEC_PER_USEC);
59 }
60
61 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
62 int push_one, gfp_t gfp);
63
64 /* Account for new data that has been sent to the network. */
tcp_event_new_data_sent(struct sock * sk,struct sk_buff * skb)65 static void tcp_event_new_data_sent(struct sock *sk, struct sk_buff *skb)
66 {
67 struct inet_connection_sock *icsk = inet_csk(sk);
68 struct tcp_sock *tp = tcp_sk(sk);
69 unsigned int prior_packets = tp->packets_out;
70
71 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(skb)->end_seq);
72
73 __skb_unlink(skb, &sk->sk_write_queue);
74 tcp_rbtree_insert(&sk->tcp_rtx_queue, skb);
75
76 if (tp->highest_sack == NULL)
77 tp->highest_sack = skb;
78
79 tp->packets_out += tcp_skb_pcount(skb);
80 if (!prior_packets || icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
81 tcp_rearm_rto(sk);
82
83 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT,
84 tcp_skb_pcount(skb));
85 tcp_check_space(sk);
86 }
87
88 /* SND.NXT, if window was not shrunk or the amount of shrunk was less than one
89 * window scaling factor due to loss of precision.
90 * If window has been shrunk, what should we make? It is not clear at all.
91 * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-(
92 * Anything in between SND.UNA...SND.UNA+SND.WND also can be already
93 * invalid. OK, let's make this for now:
94 */
tcp_acceptable_seq(const struct sock * sk)95 static inline __u32 tcp_acceptable_seq(const struct sock *sk)
96 {
97 const struct tcp_sock *tp = tcp_sk(sk);
98
99 if (!before(tcp_wnd_end(tp), tp->snd_nxt) ||
100 (tp->rx_opt.wscale_ok &&
101 ((tp->snd_nxt - tcp_wnd_end(tp)) < (1 << tp->rx_opt.rcv_wscale))))
102 return tp->snd_nxt;
103 else
104 return tcp_wnd_end(tp);
105 }
106
107 /* Calculate mss to advertise in SYN segment.
108 * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that:
109 *
110 * 1. It is independent of path mtu.
111 * 2. Ideally, it is maximal possible segment size i.e. 65535-40.
112 * 3. For IPv4 it is reasonable to calculate it from maximal MTU of
113 * attached devices, because some buggy hosts are confused by
114 * large MSS.
115 * 4. We do not make 3, we advertise MSS, calculated from first
116 * hop device mtu, but allow to raise it to ip_rt_min_advmss.
117 * This may be overridden via information stored in routing table.
118 * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible,
119 * probably even Jumbo".
120 */
tcp_advertise_mss(struct sock * sk)121 static __u16 tcp_advertise_mss(struct sock *sk)
122 {
123 struct tcp_sock *tp = tcp_sk(sk);
124 const struct dst_entry *dst = __sk_dst_get(sk);
125 int mss = tp->advmss;
126
127 if (dst) {
128 unsigned int metric = dst_metric_advmss(dst);
129
130 if (metric < mss) {
131 mss = metric;
132 tp->advmss = mss;
133 }
134 }
135
136 return (__u16)mss;
137 }
138
139 /* RFC2861. Reset CWND after idle period longer RTO to "restart window".
140 * This is the first part of cwnd validation mechanism.
141 */
tcp_cwnd_restart(struct sock * sk,s32 delta)142 void tcp_cwnd_restart(struct sock *sk, s32 delta)
143 {
144 struct tcp_sock *tp = tcp_sk(sk);
145 u32 restart_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
146 u32 cwnd = tcp_snd_cwnd(tp);
147
148 tcp_ca_event(sk, CA_EVENT_CWND_RESTART);
149
150 tp->snd_ssthresh = tcp_current_ssthresh(sk);
151 restart_cwnd = min(restart_cwnd, cwnd);
152
153 while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd)
154 cwnd >>= 1;
155 tcp_snd_cwnd_set(tp, max(cwnd, restart_cwnd));
156 tp->snd_cwnd_stamp = tcp_jiffies32;
157 tp->snd_cwnd_used = 0;
158 }
159
160 /* Congestion state accounting after a packet has been sent. */
tcp_event_data_sent(struct tcp_sock * tp,struct sock * sk)161 static void tcp_event_data_sent(struct tcp_sock *tp,
162 struct sock *sk)
163 {
164 struct inet_connection_sock *icsk = inet_csk(sk);
165 const u32 now = tcp_jiffies32;
166
167 if (tcp_packets_in_flight(tp) == 0)
168 tcp_ca_event(sk, CA_EVENT_TX_START);
169
170 tp->lsndtime = now;
171
172 /* If it is a reply for ato after last received
173 * packet, enter pingpong mode.
174 */
175 if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato)
176 inet_csk_enter_pingpong_mode(sk);
177 }
178
179 /* Account for an ACK we sent. */
tcp_event_ack_sent(struct sock * sk,u32 rcv_nxt)180 static inline void tcp_event_ack_sent(struct sock *sk, u32 rcv_nxt)
181 {
182 struct tcp_sock *tp = tcp_sk(sk);
183
184 if (unlikely(tp->compressed_ack)) {
185 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
186 tp->compressed_ack);
187 tp->compressed_ack = 0;
188 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
189 __sock_put(sk);
190 }
191
192 if (unlikely(rcv_nxt != tp->rcv_nxt))
193 return; /* Special ACK sent by DCTCP to reflect ECN */
194 tcp_dec_quickack_mode(sk);
195 inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK);
196 }
197
198 /* Determine a window scaling and initial window to offer.
199 * Based on the assumption that the given amount of space
200 * will be offered. Store the results in the tp structure.
201 * NOTE: for smooth operation initial space offering should
202 * be a multiple of mss if possible. We assume here that mss >= 1.
203 * This MUST be enforced by all callers.
204 */
tcp_select_initial_window(const struct sock * sk,int __space,__u32 mss,__u32 * rcv_wnd,__u32 * window_clamp,int wscale_ok,__u8 * rcv_wscale,__u32 init_rcv_wnd)205 void tcp_select_initial_window(const struct sock *sk, int __space, __u32 mss,
206 __u32 *rcv_wnd, __u32 *window_clamp,
207 int wscale_ok, __u8 *rcv_wscale,
208 __u32 init_rcv_wnd)
209 {
210 unsigned int space = (__space < 0 ? 0 : __space);
211
212 /* If no clamp set the clamp to the max possible scaled window */
213 if (*window_clamp == 0)
214 (*window_clamp) = (U16_MAX << TCP_MAX_WSCALE);
215 space = min(*window_clamp, space);
216
217 /* Quantize space offering to a multiple of mss if possible. */
218 if (space > mss)
219 space = rounddown(space, mss);
220
221 /* NOTE: offering an initial window larger than 32767
222 * will break some buggy TCP stacks. If the admin tells us
223 * it is likely we could be speaking with such a buggy stack
224 * we will truncate our initial window offering to 32K-1
225 * unless the remote has sent us a window scaling option,
226 * which we interpret as a sign the remote TCP is not
227 * misinterpreting the window field as a signed quantity.
228 */
229 if (sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
230 (*rcv_wnd) = min(space, MAX_TCP_WINDOW);
231 else
232 (*rcv_wnd) = min_t(u32, space, U16_MAX);
233
234 if (init_rcv_wnd)
235 *rcv_wnd = min(*rcv_wnd, init_rcv_wnd * mss);
236
237 *rcv_wscale = 0;
238 if (wscale_ok) {
239 /* Set window scaling on max possible window */
240 space = max_t(u32, space, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
241 space = max_t(u32, space, READ_ONCE(sysctl_rmem_max));
242 space = min_t(u32, space, *window_clamp);
243 *rcv_wscale = clamp_t(int, ilog2(space) - 15,
244 0, TCP_MAX_WSCALE);
245 }
246 /* Set the clamp no higher than max representable value */
247 (*window_clamp) = min_t(__u32, U16_MAX << (*rcv_wscale), *window_clamp);
248 }
249 EXPORT_SYMBOL(tcp_select_initial_window);
250
251 /* Chose a new window to advertise, update state in tcp_sock for the
252 * socket, and return result with RFC1323 scaling applied. The return
253 * value can be stuffed directly into th->window for an outgoing
254 * frame.
255 */
tcp_select_window(struct sock * sk)256 static u16 tcp_select_window(struct sock *sk)
257 {
258 struct tcp_sock *tp = tcp_sk(sk);
259 u32 old_win = tp->rcv_wnd;
260 u32 cur_win = tcp_receive_window(tp);
261 u32 new_win = __tcp_select_window(sk);
262
263 /* Never shrink the offered window */
264 if (new_win < cur_win) {
265 /* Danger Will Robinson!
266 * Don't update rcv_wup/rcv_wnd here or else
267 * we will not be able to advertise a zero
268 * window in time. --DaveM
269 *
270 * Relax Will Robinson.
271 */
272 if (new_win == 0)
273 NET_INC_STATS(sock_net(sk),
274 LINUX_MIB_TCPWANTZEROWINDOWADV);
275 new_win = ALIGN(cur_win, 1 << tp->rx_opt.rcv_wscale);
276 }
277 tp->rcv_wnd = new_win;
278 tp->rcv_wup = tp->rcv_nxt;
279
280 /* Make sure we do not exceed the maximum possible
281 * scaled window.
282 */
283 if (!tp->rx_opt.rcv_wscale &&
284 sock_net(sk)->ipv4.sysctl_tcp_workaround_signed_windows)
285 new_win = min(new_win, MAX_TCP_WINDOW);
286 else
287 new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale));
288
289 /* RFC1323 scaling applied */
290 new_win >>= tp->rx_opt.rcv_wscale;
291
292 /* If we advertise zero window, disable fast path. */
293 if (new_win == 0) {
294 tp->pred_flags = 0;
295 if (old_win)
296 NET_INC_STATS(sock_net(sk),
297 LINUX_MIB_TCPTOZEROWINDOWADV);
298 } else if (old_win == 0) {
299 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFROMZEROWINDOWADV);
300 }
301
302 return new_win;
303 }
304
305 /* Packet ECN state for a SYN-ACK */
tcp_ecn_send_synack(struct sock * sk,struct sk_buff * skb)306 static void tcp_ecn_send_synack(struct sock *sk, struct sk_buff *skb)
307 {
308 const struct tcp_sock *tp = tcp_sk(sk);
309
310 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_CWR;
311 if (!(tp->ecn_flags & TCP_ECN_OK))
312 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_ECE;
313 else if (tcp_ca_needs_ecn(sk) ||
314 tcp_bpf_ca_needs_ecn(sk))
315 INET_ECN_xmit(sk);
316 }
317
318 /* Packet ECN state for a SYN. */
tcp_ecn_send_syn(struct sock * sk,struct sk_buff * skb)319 static void tcp_ecn_send_syn(struct sock *sk, struct sk_buff *skb)
320 {
321 struct tcp_sock *tp = tcp_sk(sk);
322 bool bpf_needs_ecn = tcp_bpf_ca_needs_ecn(sk);
323 bool use_ecn = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn) == 1 ||
324 tcp_ca_needs_ecn(sk) || bpf_needs_ecn;
325
326 if (!use_ecn) {
327 const struct dst_entry *dst = __sk_dst_get(sk);
328
329 if (dst && dst_feature(dst, RTAX_FEATURE_ECN))
330 use_ecn = true;
331 }
332
333 tp->ecn_flags = 0;
334
335 if (use_ecn) {
336 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ECE | TCPHDR_CWR;
337 tp->ecn_flags = TCP_ECN_OK;
338 if (tcp_ca_needs_ecn(sk) || bpf_needs_ecn)
339 INET_ECN_xmit(sk);
340 }
341 }
342
tcp_ecn_clear_syn(struct sock * sk,struct sk_buff * skb)343 static void tcp_ecn_clear_syn(struct sock *sk, struct sk_buff *skb)
344 {
345 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_ecn_fallback))
346 /* tp->ecn_flags are cleared at a later point in time when
347 * SYN ACK is ultimatively being received.
348 */
349 TCP_SKB_CB(skb)->tcp_flags &= ~(TCPHDR_ECE | TCPHDR_CWR);
350 }
351
352 static void
tcp_ecn_make_synack(const struct request_sock * req,struct tcphdr * th)353 tcp_ecn_make_synack(const struct request_sock *req, struct tcphdr *th)
354 {
355 if (inet_rsk(req)->ecn_ok)
356 th->ece = 1;
357 }
358
359 /* Set up ECN state for a packet on a ESTABLISHED socket that is about to
360 * be sent.
361 */
tcp_ecn_send(struct sock * sk,struct sk_buff * skb,struct tcphdr * th,int tcp_header_len)362 static void tcp_ecn_send(struct sock *sk, struct sk_buff *skb,
363 struct tcphdr *th, int tcp_header_len)
364 {
365 struct tcp_sock *tp = tcp_sk(sk);
366
367 if (tp->ecn_flags & TCP_ECN_OK) {
368 /* Not-retransmitted data segment: set ECT and inject CWR. */
369 if (skb->len != tcp_header_len &&
370 !before(TCP_SKB_CB(skb)->seq, tp->snd_nxt)) {
371 INET_ECN_xmit(sk);
372 if (tp->ecn_flags & TCP_ECN_QUEUE_CWR) {
373 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
374 th->cwr = 1;
375 skb_shinfo(skb)->gso_type |= SKB_GSO_TCP_ECN;
376 }
377 } else if (!tcp_ca_needs_ecn(sk)) {
378 /* ACK or retransmitted segment: clear ECT|CE */
379 INET_ECN_dontxmit(sk);
380 }
381 if (tp->ecn_flags & TCP_ECN_DEMAND_CWR)
382 th->ece = 1;
383 }
384 }
385
386 /* Constructs common control bits of non-data skb. If SYN/FIN is present,
387 * auto increment end seqno.
388 */
tcp_init_nondata_skb(struct sk_buff * skb,u32 seq,u8 flags)389 static void tcp_init_nondata_skb(struct sk_buff *skb, u32 seq, u8 flags)
390 {
391 skb->ip_summed = CHECKSUM_PARTIAL;
392
393 TCP_SKB_CB(skb)->tcp_flags = flags;
394 TCP_SKB_CB(skb)->sacked = 0;
395
396 tcp_skb_pcount_set(skb, 1);
397
398 TCP_SKB_CB(skb)->seq = seq;
399 if (flags & (TCPHDR_SYN | TCPHDR_FIN))
400 seq++;
401 TCP_SKB_CB(skb)->end_seq = seq;
402 }
403
tcp_urg_mode(const struct tcp_sock * tp)404 static inline bool tcp_urg_mode(const struct tcp_sock *tp)
405 {
406 return tp->snd_una != tp->snd_up;
407 }
408
409 #define OPTION_SACK_ADVERTISE (1 << 0)
410 #define OPTION_TS (1 << 1)
411 #define OPTION_MD5 (1 << 2)
412 #define OPTION_WSCALE (1 << 3)
413 #define OPTION_FAST_OPEN_COOKIE (1 << 8)
414 #define OPTION_SMC (1 << 9)
415 #define OPTION_MPTCP (1 << 10)
416
smc_options_write(__be32 * ptr,u16 * options)417 static void smc_options_write(__be32 *ptr, u16 *options)
418 {
419 #if IS_ENABLED(CONFIG_SMC)
420 if (static_branch_unlikely(&tcp_have_smc)) {
421 if (unlikely(OPTION_SMC & *options)) {
422 *ptr++ = htonl((TCPOPT_NOP << 24) |
423 (TCPOPT_NOP << 16) |
424 (TCPOPT_EXP << 8) |
425 (TCPOLEN_EXP_SMC_BASE));
426 *ptr++ = htonl(TCPOPT_SMC_MAGIC);
427 }
428 }
429 #endif
430 }
431
432 struct tcp_out_options {
433 u16 options; /* bit field of OPTION_* */
434 u16 mss; /* 0 to disable */
435 u8 ws; /* window scale, 0 to disable */
436 u8 num_sack_blocks; /* number of SACK blocks to include */
437 u8 hash_size; /* bytes in hash_location */
438 u8 bpf_opt_len; /* length of BPF hdr option */
439 __u8 *hash_location; /* temporary pointer, overloaded */
440 __u32 tsval, tsecr; /* need to include OPTION_TS */
441 struct tcp_fastopen_cookie *fastopen_cookie; /* Fast open cookie */
442 struct mptcp_out_options mptcp;
443 };
444
mptcp_options_write(__be32 * ptr,const struct tcp_sock * tp,struct tcp_out_options * opts)445 static void mptcp_options_write(__be32 *ptr, const struct tcp_sock *tp,
446 struct tcp_out_options *opts)
447 {
448 #if IS_ENABLED(CONFIG_MPTCP)
449 if (unlikely(OPTION_MPTCP & opts->options))
450 mptcp_write_options(ptr, tp, &opts->mptcp);
451 #endif
452 }
453
454 #ifdef CONFIG_CGROUP_BPF
bpf_skops_write_hdr_opt_arg0(struct sk_buff * skb,enum tcp_synack_type synack_type)455 static int bpf_skops_write_hdr_opt_arg0(struct sk_buff *skb,
456 enum tcp_synack_type synack_type)
457 {
458 if (unlikely(!skb))
459 return BPF_WRITE_HDR_TCP_CURRENT_MSS;
460
461 if (unlikely(synack_type == TCP_SYNACK_COOKIE))
462 return BPF_WRITE_HDR_TCP_SYNACK_COOKIE;
463
464 return 0;
465 }
466
467 /* req, syn_skb and synack_type are used when writing synack */
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)468 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
469 struct request_sock *req,
470 struct sk_buff *syn_skb,
471 enum tcp_synack_type synack_type,
472 struct tcp_out_options *opts,
473 unsigned int *remaining)
474 {
475 struct bpf_sock_ops_kern sock_ops;
476 int err;
477
478 if (likely(!BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
479 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG)) ||
480 !*remaining)
481 return;
482
483 /* *remaining has already been aligned to 4 bytes, so *remaining >= 4 */
484
485 /* init sock_ops */
486 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
487
488 sock_ops.op = BPF_SOCK_OPS_HDR_OPT_LEN_CB;
489
490 if (req) {
491 /* The listen "sk" cannot be passed here because
492 * it is not locked. It would not make too much
493 * sense to do bpf_setsockopt(listen_sk) based
494 * on individual connection request also.
495 *
496 * Thus, "req" is passed here and the cgroup-bpf-progs
497 * of the listen "sk" will be run.
498 *
499 * "req" is also used here for fastopen even the "sk" here is
500 * a fullsock "child" sk. It is to keep the behavior
501 * consistent between fastopen and non-fastopen on
502 * the bpf programming side.
503 */
504 sock_ops.sk = (struct sock *)req;
505 sock_ops.syn_skb = syn_skb;
506 } else {
507 sock_owned_by_me(sk);
508
509 sock_ops.is_fullsock = 1;
510 sock_ops.sk = sk;
511 }
512
513 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
514 sock_ops.remaining_opt_len = *remaining;
515 /* tcp_current_mss() does not pass a skb */
516 if (skb)
517 bpf_skops_init_skb(&sock_ops, skb, 0);
518
519 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
520
521 if (err || sock_ops.remaining_opt_len == *remaining)
522 return;
523
524 opts->bpf_opt_len = *remaining - sock_ops.remaining_opt_len;
525 /* round up to 4 bytes */
526 opts->bpf_opt_len = (opts->bpf_opt_len + 3) & ~3;
527
528 *remaining -= opts->bpf_opt_len;
529 }
530
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)531 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
532 struct request_sock *req,
533 struct sk_buff *syn_skb,
534 enum tcp_synack_type synack_type,
535 struct tcp_out_options *opts)
536 {
537 u8 first_opt_off, nr_written, max_opt_len = opts->bpf_opt_len;
538 struct bpf_sock_ops_kern sock_ops;
539 int err;
540
541 if (likely(!max_opt_len))
542 return;
543
544 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
545
546 sock_ops.op = BPF_SOCK_OPS_WRITE_HDR_OPT_CB;
547
548 if (req) {
549 sock_ops.sk = (struct sock *)req;
550 sock_ops.syn_skb = syn_skb;
551 } else {
552 sock_owned_by_me(sk);
553
554 sock_ops.is_fullsock = 1;
555 sock_ops.sk = sk;
556 }
557
558 sock_ops.args[0] = bpf_skops_write_hdr_opt_arg0(skb, synack_type);
559 sock_ops.remaining_opt_len = max_opt_len;
560 first_opt_off = tcp_hdrlen(skb) - max_opt_len;
561 bpf_skops_init_skb(&sock_ops, skb, first_opt_off);
562
563 err = BPF_CGROUP_RUN_PROG_SOCK_OPS_SK(&sock_ops, sk);
564
565 if (err)
566 nr_written = 0;
567 else
568 nr_written = max_opt_len - sock_ops.remaining_opt_len;
569
570 if (nr_written < max_opt_len)
571 memset(skb->data + first_opt_off + nr_written, TCPOPT_NOP,
572 max_opt_len - nr_written);
573 }
574 #else
bpf_skops_hdr_opt_len(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts,unsigned int * remaining)575 static void bpf_skops_hdr_opt_len(struct sock *sk, struct sk_buff *skb,
576 struct request_sock *req,
577 struct sk_buff *syn_skb,
578 enum tcp_synack_type synack_type,
579 struct tcp_out_options *opts,
580 unsigned int *remaining)
581 {
582 }
583
bpf_skops_write_hdr_opt(struct sock * sk,struct sk_buff * skb,struct request_sock * req,struct sk_buff * syn_skb,enum tcp_synack_type synack_type,struct tcp_out_options * opts)584 static void bpf_skops_write_hdr_opt(struct sock *sk, struct sk_buff *skb,
585 struct request_sock *req,
586 struct sk_buff *syn_skb,
587 enum tcp_synack_type synack_type,
588 struct tcp_out_options *opts)
589 {
590 }
591 #endif
592
593 /* Write previously computed TCP options to the packet.
594 *
595 * Beware: Something in the Internet is very sensitive to the ordering of
596 * TCP options, we learned this through the hard way, so be careful here.
597 * Luckily we can at least blame others for their non-compliance but from
598 * inter-operability perspective it seems that we're somewhat stuck with
599 * the ordering which we have been using if we want to keep working with
600 * those broken things (not that it currently hurts anybody as there isn't
601 * particular reason why the ordering would need to be changed).
602 *
603 * At least SACK_PERM as the first option is known to lead to a disaster
604 * (but it may well be that other scenarios fail similarly).
605 */
tcp_options_write(__be32 * ptr,struct tcp_sock * tp,struct tcp_out_options * opts)606 static void tcp_options_write(__be32 *ptr, struct tcp_sock *tp,
607 struct tcp_out_options *opts)
608 {
609 u16 options = opts->options; /* mungable copy */
610
611 if (unlikely(OPTION_MD5 & options)) {
612 *ptr++ = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) |
613 (TCPOPT_MD5SIG << 8) | TCPOLEN_MD5SIG);
614 /* overload cookie hash location */
615 opts->hash_location = (__u8 *)ptr;
616 ptr += 4;
617 }
618
619 if (unlikely(opts->mss)) {
620 *ptr++ = htonl((TCPOPT_MSS << 24) |
621 (TCPOLEN_MSS << 16) |
622 opts->mss);
623 }
624
625 if (likely(OPTION_TS & options)) {
626 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
627 *ptr++ = htonl((TCPOPT_SACK_PERM << 24) |
628 (TCPOLEN_SACK_PERM << 16) |
629 (TCPOPT_TIMESTAMP << 8) |
630 TCPOLEN_TIMESTAMP);
631 options &= ~OPTION_SACK_ADVERTISE;
632 } else {
633 *ptr++ = htonl((TCPOPT_NOP << 24) |
634 (TCPOPT_NOP << 16) |
635 (TCPOPT_TIMESTAMP << 8) |
636 TCPOLEN_TIMESTAMP);
637 }
638 *ptr++ = htonl(opts->tsval);
639 *ptr++ = htonl(opts->tsecr);
640 }
641
642 if (unlikely(OPTION_SACK_ADVERTISE & options)) {
643 *ptr++ = htonl((TCPOPT_NOP << 24) |
644 (TCPOPT_NOP << 16) |
645 (TCPOPT_SACK_PERM << 8) |
646 TCPOLEN_SACK_PERM);
647 }
648
649 if (unlikely(OPTION_WSCALE & options)) {
650 *ptr++ = htonl((TCPOPT_NOP << 24) |
651 (TCPOPT_WINDOW << 16) |
652 (TCPOLEN_WINDOW << 8) |
653 opts->ws);
654 }
655
656 if (unlikely(opts->num_sack_blocks)) {
657 struct tcp_sack_block *sp = tp->rx_opt.dsack ?
658 tp->duplicate_sack : tp->selective_acks;
659 int this_sack;
660
661 *ptr++ = htonl((TCPOPT_NOP << 24) |
662 (TCPOPT_NOP << 16) |
663 (TCPOPT_SACK << 8) |
664 (TCPOLEN_SACK_BASE + (opts->num_sack_blocks *
665 TCPOLEN_SACK_PERBLOCK)));
666
667 for (this_sack = 0; this_sack < opts->num_sack_blocks;
668 ++this_sack) {
669 *ptr++ = htonl(sp[this_sack].start_seq);
670 *ptr++ = htonl(sp[this_sack].end_seq);
671 }
672
673 tp->rx_opt.dsack = 0;
674 }
675
676 if (unlikely(OPTION_FAST_OPEN_COOKIE & options)) {
677 struct tcp_fastopen_cookie *foc = opts->fastopen_cookie;
678 u8 *p = (u8 *)ptr;
679 u32 len; /* Fast Open option length */
680
681 if (foc->exp) {
682 len = TCPOLEN_EXP_FASTOPEN_BASE + foc->len;
683 *ptr = htonl((TCPOPT_EXP << 24) | (len << 16) |
684 TCPOPT_FASTOPEN_MAGIC);
685 p += TCPOLEN_EXP_FASTOPEN_BASE;
686 } else {
687 len = TCPOLEN_FASTOPEN_BASE + foc->len;
688 *p++ = TCPOPT_FASTOPEN;
689 *p++ = len;
690 }
691
692 memcpy(p, foc->val, foc->len);
693 if ((len & 3) == 2) {
694 p[foc->len] = TCPOPT_NOP;
695 p[foc->len + 1] = TCPOPT_NOP;
696 }
697 ptr += (len + 3) >> 2;
698 }
699
700 smc_options_write(ptr, &options);
701
702 mptcp_options_write(ptr, tp, opts);
703 }
704
smc_set_option(const struct tcp_sock * tp,struct tcp_out_options * opts,unsigned int * remaining)705 static void smc_set_option(const struct tcp_sock *tp,
706 struct tcp_out_options *opts,
707 unsigned int *remaining)
708 {
709 #if IS_ENABLED(CONFIG_SMC)
710 if (static_branch_unlikely(&tcp_have_smc)) {
711 if (tp->syn_smc) {
712 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
713 opts->options |= OPTION_SMC;
714 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
715 }
716 }
717 }
718 #endif
719 }
720
smc_set_option_cond(const struct tcp_sock * tp,const struct inet_request_sock * ireq,struct tcp_out_options * opts,unsigned int * remaining)721 static void smc_set_option_cond(const struct tcp_sock *tp,
722 const struct inet_request_sock *ireq,
723 struct tcp_out_options *opts,
724 unsigned int *remaining)
725 {
726 #if IS_ENABLED(CONFIG_SMC)
727 if (static_branch_unlikely(&tcp_have_smc)) {
728 if (tp->syn_smc && ireq->smc_ok) {
729 if (*remaining >= TCPOLEN_EXP_SMC_BASE_ALIGNED) {
730 opts->options |= OPTION_SMC;
731 *remaining -= TCPOLEN_EXP_SMC_BASE_ALIGNED;
732 }
733 }
734 }
735 #endif
736 }
737
mptcp_set_option_cond(const struct request_sock * req,struct tcp_out_options * opts,unsigned int * remaining)738 static void mptcp_set_option_cond(const struct request_sock *req,
739 struct tcp_out_options *opts,
740 unsigned int *remaining)
741 {
742 if (rsk_is_mptcp(req)) {
743 unsigned int size;
744
745 if (mptcp_synack_options(req, &size, &opts->mptcp)) {
746 if (*remaining >= size) {
747 opts->options |= OPTION_MPTCP;
748 *remaining -= size;
749 }
750 }
751 }
752 }
753
754 /* Compute TCP options for SYN packets. This is not the final
755 * network wire format yet.
756 */
tcp_syn_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)757 static unsigned int tcp_syn_options(struct sock *sk, struct sk_buff *skb,
758 struct tcp_out_options *opts,
759 struct tcp_md5sig_key **md5)
760 {
761 struct tcp_sock *tp = tcp_sk(sk);
762 unsigned int remaining = MAX_TCP_OPTION_SPACE;
763 struct tcp_fastopen_request *fastopen = tp->fastopen_req;
764
765 *md5 = NULL;
766 #ifdef CONFIG_TCP_MD5SIG
767 if (static_branch_unlikely(&tcp_md5_needed) &&
768 rcu_access_pointer(tp->md5sig_info)) {
769 *md5 = tp->af_specific->md5_lookup(sk, sk);
770 if (*md5) {
771 opts->options |= OPTION_MD5;
772 remaining -= TCPOLEN_MD5SIG_ALIGNED;
773 }
774 }
775 #endif
776
777 /* We always get an MSS option. The option bytes which will be seen in
778 * normal data packets should timestamps be used, must be in the MSS
779 * advertised. But we subtract them from tp->mss_cache so that
780 * calculations in tcp_sendmsg are simpler etc. So account for this
781 * fact here if necessary. If we don't do this correctly, as a
782 * receiver we won't recognize data packets as being full sized when we
783 * should, and thus we won't abide by the delayed ACK rules correctly.
784 * SACKs don't matter, we never delay an ACK when we have any of those
785 * going out. */
786 opts->mss = tcp_advertise_mss(sk);
787 remaining -= TCPOLEN_MSS_ALIGNED;
788
789 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps) && !*md5)) {
790 opts->options |= OPTION_TS;
791 opts->tsval = tcp_skb_timestamp(skb) + tp->tsoffset;
792 opts->tsecr = tp->rx_opt.ts_recent;
793 remaining -= TCPOLEN_TSTAMP_ALIGNED;
794 }
795 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling))) {
796 opts->ws = tp->rx_opt.rcv_wscale;
797 opts->options |= OPTION_WSCALE;
798 remaining -= TCPOLEN_WSCALE_ALIGNED;
799 }
800 if (likely(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_sack))) {
801 opts->options |= OPTION_SACK_ADVERTISE;
802 if (unlikely(!(OPTION_TS & opts->options)))
803 remaining -= TCPOLEN_SACKPERM_ALIGNED;
804 }
805
806 if (fastopen && fastopen->cookie.len >= 0) {
807 u32 need = fastopen->cookie.len;
808
809 need += fastopen->cookie.exp ? TCPOLEN_EXP_FASTOPEN_BASE :
810 TCPOLEN_FASTOPEN_BASE;
811 need = (need + 3) & ~3U; /* Align to 32 bits */
812 if (remaining >= need) {
813 opts->options |= OPTION_FAST_OPEN_COOKIE;
814 opts->fastopen_cookie = &fastopen->cookie;
815 remaining -= need;
816 tp->syn_fastopen = 1;
817 tp->syn_fastopen_exp = fastopen->cookie.exp ? 1 : 0;
818 }
819 }
820
821 smc_set_option(tp, opts, &remaining);
822
823 if (sk_is_mptcp(sk)) {
824 unsigned int size;
825
826 if (mptcp_syn_options(sk, skb, &size, &opts->mptcp)) {
827 opts->options |= OPTION_MPTCP;
828 remaining -= size;
829 }
830 }
831
832 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
833
834 return MAX_TCP_OPTION_SPACE - remaining;
835 }
836
837 /* Set up TCP options for SYN-ACKs. */
tcp_synack_options(const struct sock * sk,struct request_sock * req,unsigned int mss,struct sk_buff * skb,struct tcp_out_options * opts,const struct tcp_md5sig_key * md5,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)838 static unsigned int tcp_synack_options(const struct sock *sk,
839 struct request_sock *req,
840 unsigned int mss, struct sk_buff *skb,
841 struct tcp_out_options *opts,
842 const struct tcp_md5sig_key *md5,
843 struct tcp_fastopen_cookie *foc,
844 enum tcp_synack_type synack_type,
845 struct sk_buff *syn_skb)
846 {
847 struct inet_request_sock *ireq = inet_rsk(req);
848 unsigned int remaining = MAX_TCP_OPTION_SPACE;
849
850 #ifdef CONFIG_TCP_MD5SIG
851 if (md5) {
852 opts->options |= OPTION_MD5;
853 remaining -= TCPOLEN_MD5SIG_ALIGNED;
854
855 /* We can't fit any SACK blocks in a packet with MD5 + TS
856 * options. There was discussion about disabling SACK
857 * rather than TS in order to fit in better with old,
858 * buggy kernels, but that was deemed to be unnecessary.
859 */
860 if (synack_type != TCP_SYNACK_COOKIE)
861 ireq->tstamp_ok &= !ireq->sack_ok;
862 }
863 #endif
864
865 /* We always send an MSS option. */
866 opts->mss = mss;
867 remaining -= TCPOLEN_MSS_ALIGNED;
868
869 if (likely(ireq->wscale_ok)) {
870 opts->ws = ireq->rcv_wscale;
871 opts->options |= OPTION_WSCALE;
872 remaining -= TCPOLEN_WSCALE_ALIGNED;
873 }
874 if (likely(ireq->tstamp_ok)) {
875 opts->options |= OPTION_TS;
876 opts->tsval = tcp_skb_timestamp(skb) + tcp_rsk(req)->ts_off;
877 opts->tsecr = READ_ONCE(req->ts_recent);
878 remaining -= TCPOLEN_TSTAMP_ALIGNED;
879 }
880 if (likely(ireq->sack_ok)) {
881 opts->options |= OPTION_SACK_ADVERTISE;
882 if (unlikely(!ireq->tstamp_ok))
883 remaining -= TCPOLEN_SACKPERM_ALIGNED;
884 }
885 if (foc != NULL && foc->len >= 0) {
886 u32 need = foc->len;
887
888 need += foc->exp ? TCPOLEN_EXP_FASTOPEN_BASE :
889 TCPOLEN_FASTOPEN_BASE;
890 need = (need + 3) & ~3U; /* Align to 32 bits */
891 if (remaining >= need) {
892 opts->options |= OPTION_FAST_OPEN_COOKIE;
893 opts->fastopen_cookie = foc;
894 remaining -= need;
895 }
896 }
897
898 mptcp_set_option_cond(req, opts, &remaining);
899
900 smc_set_option_cond(tcp_sk(sk), ireq, opts, &remaining);
901
902 bpf_skops_hdr_opt_len((struct sock *)sk, skb, req, syn_skb,
903 synack_type, opts, &remaining);
904
905 return MAX_TCP_OPTION_SPACE - remaining;
906 }
907
908 /* Compute TCP options for ESTABLISHED sockets. This is not the
909 * final wire format yet.
910 */
tcp_established_options(struct sock * sk,struct sk_buff * skb,struct tcp_out_options * opts,struct tcp_md5sig_key ** md5)911 static unsigned int tcp_established_options(struct sock *sk, struct sk_buff *skb,
912 struct tcp_out_options *opts,
913 struct tcp_md5sig_key **md5)
914 {
915 struct tcp_sock *tp = tcp_sk(sk);
916 unsigned int size = 0;
917 unsigned int eff_sacks;
918
919 opts->options = 0;
920
921 *md5 = NULL;
922 #ifdef CONFIG_TCP_MD5SIG
923 if (static_branch_unlikely(&tcp_md5_needed) &&
924 rcu_access_pointer(tp->md5sig_info)) {
925 *md5 = tp->af_specific->md5_lookup(sk, sk);
926 if (*md5) {
927 opts->options |= OPTION_MD5;
928 size += TCPOLEN_MD5SIG_ALIGNED;
929 }
930 }
931 #endif
932
933 if (likely(tp->rx_opt.tstamp_ok)) {
934 opts->options |= OPTION_TS;
935 opts->tsval = skb ? tcp_skb_timestamp(skb) + tp->tsoffset : 0;
936 opts->tsecr = tp->rx_opt.ts_recent;
937 size += TCPOLEN_TSTAMP_ALIGNED;
938 }
939
940 /* MPTCP options have precedence over SACK for the limited TCP
941 * option space because a MPTCP connection would be forced to
942 * fall back to regular TCP if a required multipath option is
943 * missing. SACK still gets a chance to use whatever space is
944 * left.
945 */
946 if (sk_is_mptcp(sk)) {
947 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
948 unsigned int opt_size = 0;
949
950 if (mptcp_established_options(sk, skb, &opt_size, remaining,
951 &opts->mptcp)) {
952 opts->options |= OPTION_MPTCP;
953 size += opt_size;
954 }
955 }
956
957 eff_sacks = tp->rx_opt.num_sacks + tp->rx_opt.dsack;
958 if (unlikely(eff_sacks)) {
959 const unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
960 if (unlikely(remaining < TCPOLEN_SACK_BASE_ALIGNED +
961 TCPOLEN_SACK_PERBLOCK))
962 return size;
963
964 opts->num_sack_blocks =
965 min_t(unsigned int, eff_sacks,
966 (remaining - TCPOLEN_SACK_BASE_ALIGNED) /
967 TCPOLEN_SACK_PERBLOCK);
968
969 size += TCPOLEN_SACK_BASE_ALIGNED +
970 opts->num_sack_blocks * TCPOLEN_SACK_PERBLOCK;
971 }
972
973 if (unlikely(BPF_SOCK_OPS_TEST_FLAG(tp,
974 BPF_SOCK_OPS_WRITE_HDR_OPT_CB_FLAG))) {
975 unsigned int remaining = MAX_TCP_OPTION_SPACE - size;
976
977 bpf_skops_hdr_opt_len(sk, skb, NULL, NULL, 0, opts, &remaining);
978
979 size = MAX_TCP_OPTION_SPACE - remaining;
980 }
981
982 return size;
983 }
984
985
986 /* TCP SMALL QUEUES (TSQ)
987 *
988 * TSQ goal is to keep small amount of skbs per tcp flow in tx queues (qdisc+dev)
989 * to reduce RTT and bufferbloat.
990 * We do this using a special skb destructor (tcp_wfree).
991 *
992 * Its important tcp_wfree() can be replaced by sock_wfree() in the event skb
993 * needs to be reallocated in a driver.
994 * The invariant being skb->truesize subtracted from sk->sk_wmem_alloc
995 *
996 * Since transmit from skb destructor is forbidden, we use a tasklet
997 * to process all sockets that eventually need to send more skbs.
998 * We use one tasklet per cpu, with its own queue of sockets.
999 */
1000 struct tsq_tasklet {
1001 struct tasklet_struct tasklet;
1002 struct list_head head; /* queue of tcp sockets */
1003 };
1004 static DEFINE_PER_CPU(struct tsq_tasklet, tsq_tasklet);
1005
tcp_tsq_write(struct sock * sk)1006 static void tcp_tsq_write(struct sock *sk)
1007 {
1008 if ((1 << sk->sk_state) &
1009 (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_CLOSING |
1010 TCPF_CLOSE_WAIT | TCPF_LAST_ACK)) {
1011 struct tcp_sock *tp = tcp_sk(sk);
1012
1013 if (tp->lost_out > tp->retrans_out &&
1014 tcp_snd_cwnd(tp) > tcp_packets_in_flight(tp)) {
1015 tcp_mstamp_refresh(tp);
1016 tcp_xmit_retransmit_queue(sk);
1017 }
1018
1019 tcp_write_xmit(sk, tcp_current_mss(sk), tp->nonagle,
1020 0, GFP_ATOMIC);
1021 }
1022 }
1023
tcp_tsq_handler(struct sock * sk)1024 static void tcp_tsq_handler(struct sock *sk)
1025 {
1026 bh_lock_sock(sk);
1027 if (!sock_owned_by_user(sk))
1028 tcp_tsq_write(sk);
1029 else if (!test_and_set_bit(TCP_TSQ_DEFERRED, &sk->sk_tsq_flags))
1030 sock_hold(sk);
1031 bh_unlock_sock(sk);
1032 }
1033 /*
1034 * One tasklet per cpu tries to send more skbs.
1035 * We run in tasklet context but need to disable irqs when
1036 * transferring tsq->head because tcp_wfree() might
1037 * interrupt us (non NAPI drivers)
1038 */
tcp_tasklet_func(struct tasklet_struct * t)1039 static void tcp_tasklet_func(struct tasklet_struct *t)
1040 {
1041 struct tsq_tasklet *tsq = from_tasklet(tsq, t, tasklet);
1042 LIST_HEAD(list);
1043 unsigned long flags;
1044 struct list_head *q, *n;
1045 struct tcp_sock *tp;
1046 struct sock *sk;
1047
1048 local_irq_save(flags);
1049 list_splice_init(&tsq->head, &list);
1050 local_irq_restore(flags);
1051
1052 list_for_each_safe(q, n, &list) {
1053 tp = list_entry(q, struct tcp_sock, tsq_node);
1054 list_del(&tp->tsq_node);
1055
1056 sk = (struct sock *)tp;
1057 smp_mb__before_atomic();
1058 clear_bit(TSQ_QUEUED, &sk->sk_tsq_flags);
1059
1060 tcp_tsq_handler(sk);
1061 sk_free(sk);
1062 }
1063 }
1064
1065 #define TCP_DEFERRED_ALL (TCPF_TSQ_DEFERRED | \
1066 TCPF_WRITE_TIMER_DEFERRED | \
1067 TCPF_DELACK_TIMER_DEFERRED | \
1068 TCPF_MTU_REDUCED_DEFERRED)
1069 /**
1070 * tcp_release_cb - tcp release_sock() callback
1071 * @sk: socket
1072 *
1073 * called from release_sock() to perform protocol dependent
1074 * actions before socket release.
1075 */
tcp_release_cb(struct sock * sk)1076 void tcp_release_cb(struct sock *sk)
1077 {
1078 unsigned long flags, nflags;
1079
1080 /* perform an atomic operation only if at least one flag is set */
1081 do {
1082 flags = sk->sk_tsq_flags;
1083 if (!(flags & TCP_DEFERRED_ALL))
1084 return;
1085 nflags = flags & ~TCP_DEFERRED_ALL;
1086 } while (cmpxchg(&sk->sk_tsq_flags, flags, nflags) != flags);
1087
1088 if (flags & TCPF_TSQ_DEFERRED) {
1089 tcp_tsq_write(sk);
1090 __sock_put(sk);
1091 }
1092 /* Here begins the tricky part :
1093 * We are called from release_sock() with :
1094 * 1) BH disabled
1095 * 2) sk_lock.slock spinlock held
1096 * 3) socket owned by us (sk->sk_lock.owned == 1)
1097 *
1098 * But following code is meant to be called from BH handlers,
1099 * so we should keep BH disabled, but early release socket ownership
1100 */
1101 sock_release_ownership(sk);
1102
1103 if (flags & TCPF_WRITE_TIMER_DEFERRED) {
1104 tcp_write_timer_handler(sk);
1105 __sock_put(sk);
1106 }
1107 if (flags & TCPF_DELACK_TIMER_DEFERRED) {
1108 tcp_delack_timer_handler(sk);
1109 __sock_put(sk);
1110 }
1111 if (flags & TCPF_MTU_REDUCED_DEFERRED) {
1112 inet_csk(sk)->icsk_af_ops->mtu_reduced(sk);
1113 __sock_put(sk);
1114 }
1115 }
1116 EXPORT_SYMBOL(tcp_release_cb);
1117
tcp_tasklet_init(void)1118 void __init tcp_tasklet_init(void)
1119 {
1120 int i;
1121
1122 for_each_possible_cpu(i) {
1123 struct tsq_tasklet *tsq = &per_cpu(tsq_tasklet, i);
1124
1125 INIT_LIST_HEAD(&tsq->head);
1126 tasklet_setup(&tsq->tasklet, tcp_tasklet_func);
1127 }
1128 }
1129
1130 /*
1131 * Write buffer destructor automatically called from kfree_skb.
1132 * We can't xmit new skbs from this context, as we might already
1133 * hold qdisc lock.
1134 */
tcp_wfree(struct sk_buff * skb)1135 void tcp_wfree(struct sk_buff *skb)
1136 {
1137 struct sock *sk = skb->sk;
1138 struct tcp_sock *tp = tcp_sk(sk);
1139 unsigned long flags, nval, oval;
1140
1141 /* Keep one reference on sk_wmem_alloc.
1142 * Will be released by sk_free() from here or tcp_tasklet_func()
1143 */
1144 WARN_ON(refcount_sub_and_test(skb->truesize - 1, &sk->sk_wmem_alloc));
1145
1146 /* If this softirq is serviced by ksoftirqd, we are likely under stress.
1147 * Wait until our queues (qdisc + devices) are drained.
1148 * This gives :
1149 * - less callbacks to tcp_write_xmit(), reducing stress (batches)
1150 * - chance for incoming ACK (processed by another cpu maybe)
1151 * to migrate this flow (skb->ooo_okay will be eventually set)
1152 */
1153 if (refcount_read(&sk->sk_wmem_alloc) >= SKB_TRUESIZE(1) && this_cpu_ksoftirqd() == current)
1154 goto out;
1155
1156 for (oval = READ_ONCE(sk->sk_tsq_flags);; oval = nval) {
1157 struct tsq_tasklet *tsq;
1158 bool empty;
1159
1160 if (!(oval & TSQF_THROTTLED) || (oval & TSQF_QUEUED))
1161 goto out;
1162
1163 nval = (oval & ~TSQF_THROTTLED) | TSQF_QUEUED;
1164 nval = cmpxchg(&sk->sk_tsq_flags, oval, nval);
1165 if (nval != oval)
1166 continue;
1167
1168 /* queue this socket to tasklet queue */
1169 local_irq_save(flags);
1170 tsq = this_cpu_ptr(&tsq_tasklet);
1171 empty = list_empty(&tsq->head);
1172 list_add(&tp->tsq_node, &tsq->head);
1173 if (empty)
1174 tasklet_schedule(&tsq->tasklet);
1175 local_irq_restore(flags);
1176 return;
1177 }
1178 out:
1179 sk_free(sk);
1180 }
1181
1182 /* Note: Called under soft irq.
1183 * We can call TCP stack right away, unless socket is owned by user.
1184 */
tcp_pace_kick(struct hrtimer * timer)1185 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer)
1186 {
1187 struct tcp_sock *tp = container_of(timer, struct tcp_sock, pacing_timer);
1188 struct sock *sk = (struct sock *)tp;
1189
1190 tcp_tsq_handler(sk);
1191 sock_put(sk);
1192
1193 return HRTIMER_NORESTART;
1194 }
1195
tcp_update_skb_after_send(struct sock * sk,struct sk_buff * skb,u64 prior_wstamp)1196 static void tcp_update_skb_after_send(struct sock *sk, struct sk_buff *skb,
1197 u64 prior_wstamp)
1198 {
1199 struct tcp_sock *tp = tcp_sk(sk);
1200
1201 if (sk->sk_pacing_status != SK_PACING_NONE) {
1202 unsigned long rate = sk->sk_pacing_rate;
1203
1204 /* Original sch_fq does not pace first 10 MSS
1205 * Note that tp->data_segs_out overflows after 2^32 packets,
1206 * this is a minor annoyance.
1207 */
1208 if (rate != ~0UL && rate && tp->data_segs_out >= 10) {
1209 u64 len_ns = div64_ul((u64)skb->len * NSEC_PER_SEC, rate);
1210 u64 credit = tp->tcp_wstamp_ns - prior_wstamp;
1211
1212 /* take into account OS jitter */
1213 len_ns -= min_t(u64, len_ns / 2, credit);
1214 tp->tcp_wstamp_ns += len_ns;
1215 }
1216 }
1217 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
1218 }
1219
1220 INDIRECT_CALLABLE_DECLARE(int ip_queue_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1221 INDIRECT_CALLABLE_DECLARE(int inet6_csk_xmit(struct sock *sk, struct sk_buff *skb, struct flowi *fl));
1222 INDIRECT_CALLABLE_DECLARE(void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb));
1223
1224 /* This routine actually transmits TCP packets queued in by
1225 * tcp_do_sendmsg(). This is used by both the initial
1226 * transmission and possible later retransmissions.
1227 * All SKB's seen here are completely headerless. It is our
1228 * job to build the TCP header, and pass the packet down to
1229 * IP so it can do the same plus pass the packet off to the
1230 * device.
1231 *
1232 * We are working here with either a clone of the original
1233 * SKB, or a fresh unique copy made by the retransmit engine.
1234 */
__tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask,u32 rcv_nxt)1235 static int __tcp_transmit_skb(struct sock *sk, struct sk_buff *skb,
1236 int clone_it, gfp_t gfp_mask, u32 rcv_nxt)
1237 {
1238 const struct inet_connection_sock *icsk = inet_csk(sk);
1239 struct inet_sock *inet;
1240 struct tcp_sock *tp;
1241 struct tcp_skb_cb *tcb;
1242 struct tcp_out_options opts;
1243 unsigned int tcp_options_size, tcp_header_size;
1244 struct sk_buff *oskb = NULL;
1245 struct tcp_md5sig_key *md5;
1246 struct tcphdr *th;
1247 u64 prior_wstamp;
1248 int err;
1249
1250 BUG_ON(!skb || !tcp_skb_pcount(skb));
1251 tp = tcp_sk(sk);
1252 prior_wstamp = tp->tcp_wstamp_ns;
1253 tp->tcp_wstamp_ns = max(tp->tcp_wstamp_ns, tp->tcp_clock_cache);
1254 skb->skb_mstamp_ns = tp->tcp_wstamp_ns;
1255 if (clone_it) {
1256 TCP_SKB_CB(skb)->tx.in_flight = TCP_SKB_CB(skb)->end_seq
1257 - tp->snd_una;
1258 oskb = skb;
1259
1260 tcp_skb_tsorted_save(oskb) {
1261 if (unlikely(skb_cloned(oskb)))
1262 skb = pskb_copy(oskb, gfp_mask);
1263 else
1264 skb = skb_clone(oskb, gfp_mask);
1265 } tcp_skb_tsorted_restore(oskb);
1266
1267 if (unlikely(!skb))
1268 return -ENOBUFS;
1269 /* retransmit skbs might have a non zero value in skb->dev
1270 * because skb->dev is aliased with skb->rbnode.rb_left
1271 */
1272 skb->dev = NULL;
1273 }
1274
1275 inet = inet_sk(sk);
1276 tcb = TCP_SKB_CB(skb);
1277 memset(&opts, 0, sizeof(opts));
1278
1279 if (unlikely(tcb->tcp_flags & TCPHDR_SYN)) {
1280 tcp_options_size = tcp_syn_options(sk, skb, &opts, &md5);
1281 } else {
1282 tcp_options_size = tcp_established_options(sk, skb, &opts,
1283 &md5);
1284 /* Force a PSH flag on all (GSO) packets to expedite GRO flush
1285 * at receiver : This slightly improve GRO performance.
1286 * Note that we do not force the PSH flag for non GSO packets,
1287 * because they might be sent under high congestion events,
1288 * and in this case it is better to delay the delivery of 1-MSS
1289 * packets and thus the corresponding ACK packet that would
1290 * release the following packet.
1291 */
1292 if (tcp_skb_pcount(skb) > 1)
1293 tcb->tcp_flags |= TCPHDR_PSH;
1294 }
1295 tcp_header_size = tcp_options_size + sizeof(struct tcphdr);
1296
1297 /* if no packet is in qdisc/device queue, then allow XPS to select
1298 * another queue. We can be called from tcp_tsq_handler()
1299 * which holds one reference to sk.
1300 *
1301 * TODO: Ideally, in-flight pure ACK packets should not matter here.
1302 * One way to get this would be to set skb->truesize = 2 on them.
1303 */
1304 skb->ooo_okay = sk_wmem_alloc_get(sk) < SKB_TRUESIZE(1);
1305
1306 /* If we had to use memory reserve to allocate this skb,
1307 * this might cause drops if packet is looped back :
1308 * Other socket might not have SOCK_MEMALLOC.
1309 * Packets not looped back do not care about pfmemalloc.
1310 */
1311 skb->pfmemalloc = 0;
1312
1313 skb_push(skb, tcp_header_size);
1314 skb_reset_transport_header(skb);
1315
1316 skb_orphan(skb);
1317 skb->sk = sk;
1318 skb->destructor = skb_is_tcp_pure_ack(skb) ? __sock_wfree : tcp_wfree;
1319 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
1320
1321 skb_set_dst_pending_confirm(skb, READ_ONCE(sk->sk_dst_pending_confirm));
1322
1323 /* Build TCP header and checksum it. */
1324 th = (struct tcphdr *)skb->data;
1325 th->source = inet->inet_sport;
1326 th->dest = inet->inet_dport;
1327 th->seq = htonl(tcb->seq);
1328 th->ack_seq = htonl(rcv_nxt);
1329 *(((__be16 *)th) + 6) = htons(((tcp_header_size >> 2) << 12) |
1330 tcb->tcp_flags);
1331
1332 th->check = 0;
1333 th->urg_ptr = 0;
1334
1335 /* The urg_mode check is necessary during a below snd_una win probe */
1336 if (unlikely(tcp_urg_mode(tp) && before(tcb->seq, tp->snd_up))) {
1337 if (before(tp->snd_up, tcb->seq + 0x10000)) {
1338 th->urg_ptr = htons(tp->snd_up - tcb->seq);
1339 th->urg = 1;
1340 } else if (after(tcb->seq + 0xFFFF, tp->snd_nxt)) {
1341 th->urg_ptr = htons(0xFFFF);
1342 th->urg = 1;
1343 }
1344 }
1345
1346 skb_shinfo(skb)->gso_type = sk->sk_gso_type;
1347 if (likely(!(tcb->tcp_flags & TCPHDR_SYN))) {
1348 th->window = htons(tcp_select_window(sk));
1349 tcp_ecn_send(sk, skb, th, tcp_header_size);
1350 } else {
1351 /* RFC1323: The window in SYN & SYN/ACK segments
1352 * is never scaled.
1353 */
1354 th->window = htons(min(tp->rcv_wnd, 65535U));
1355 }
1356
1357 tcp_options_write((__be32 *)(th + 1), tp, &opts);
1358
1359 #ifdef CONFIG_TCP_MD5SIG
1360 /* Calculate the MD5 hash, as we have all we need now */
1361 if (md5) {
1362 sk_nocaps_add(sk, NETIF_F_GSO_MASK);
1363 tp->af_specific->calc_md5_hash(opts.hash_location,
1364 md5, sk, skb);
1365 }
1366 #endif
1367
1368 /* BPF prog is the last one writing header option */
1369 bpf_skops_write_hdr_opt(sk, skb, NULL, NULL, 0, &opts);
1370
1371 INDIRECT_CALL_INET(icsk->icsk_af_ops->send_check,
1372 tcp_v6_send_check, tcp_v4_send_check,
1373 sk, skb);
1374
1375 if (likely(tcb->tcp_flags & TCPHDR_ACK))
1376 tcp_event_ack_sent(sk, rcv_nxt);
1377
1378 if (skb->len != tcp_header_size) {
1379 tcp_event_data_sent(tp, sk);
1380 tp->data_segs_out += tcp_skb_pcount(skb);
1381 tp->bytes_sent += skb->len - tcp_header_size;
1382 }
1383
1384 if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq)
1385 TCP_ADD_STATS(sock_net(sk), TCP_MIB_OUTSEGS,
1386 tcp_skb_pcount(skb));
1387
1388 tp->segs_out += tcp_skb_pcount(skb);
1389 skb_set_hash_from_sk(skb, sk);
1390 /* OK, its time to fill skb_shinfo(skb)->gso_{segs|size} */
1391 skb_shinfo(skb)->gso_segs = tcp_skb_pcount(skb);
1392 skb_shinfo(skb)->gso_size = tcp_skb_mss(skb);
1393
1394 /* Leave earliest departure time in skb->tstamp (skb->skb_mstamp_ns) */
1395
1396 /* Cleanup our debris for IP stacks */
1397 memset(skb->cb, 0, max(sizeof(struct inet_skb_parm),
1398 sizeof(struct inet6_skb_parm)));
1399
1400 tcp_add_tx_delay(skb, tp);
1401
1402 err = INDIRECT_CALL_INET(icsk->icsk_af_ops->queue_xmit,
1403 inet6_csk_xmit, ip_queue_xmit,
1404 sk, skb, &inet->cork.fl);
1405
1406 if (unlikely(err > 0)) {
1407 tcp_enter_cwr(sk);
1408 err = net_xmit_eval(err);
1409 }
1410 if (!err && oskb) {
1411 tcp_update_skb_after_send(sk, oskb, prior_wstamp);
1412 tcp_rate_skb_sent(sk, oskb);
1413 }
1414 return err;
1415 }
1416
tcp_transmit_skb(struct sock * sk,struct sk_buff * skb,int clone_it,gfp_t gfp_mask)1417 static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it,
1418 gfp_t gfp_mask)
1419 {
1420 return __tcp_transmit_skb(sk, skb, clone_it, gfp_mask,
1421 tcp_sk(sk)->rcv_nxt);
1422 }
1423
1424 /* This routine just queues the buffer for sending.
1425 *
1426 * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames,
1427 * otherwise socket can stall.
1428 */
tcp_queue_skb(struct sock * sk,struct sk_buff * skb)1429 static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb)
1430 {
1431 struct tcp_sock *tp = tcp_sk(sk);
1432
1433 /* Advance write_seq and place onto the write_queue. */
1434 WRITE_ONCE(tp->write_seq, TCP_SKB_CB(skb)->end_seq);
1435 __skb_header_release(skb);
1436 tcp_add_write_queue_tail(sk, skb);
1437 sk_wmem_queued_add(sk, skb->truesize);
1438 sk_mem_charge(sk, skb->truesize);
1439 }
1440
1441 /* Initialize TSO segments for a packet. */
tcp_set_skb_tso_segs(struct sk_buff * skb,unsigned int mss_now)1442 static void tcp_set_skb_tso_segs(struct sk_buff *skb, unsigned int mss_now)
1443 {
1444 if (skb->len <= mss_now) {
1445 /* Avoid the costly divide in the normal
1446 * non-TSO case.
1447 */
1448 tcp_skb_pcount_set(skb, 1);
1449 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1450 } else {
1451 tcp_skb_pcount_set(skb, DIV_ROUND_UP(skb->len, mss_now));
1452 TCP_SKB_CB(skb)->tcp_gso_size = mss_now;
1453 }
1454 }
1455
1456 /* Pcount in the middle of the write queue got changed, we need to do various
1457 * tweaks to fix counters
1458 */
tcp_adjust_pcount(struct sock * sk,const struct sk_buff * skb,int decr)1459 static void tcp_adjust_pcount(struct sock *sk, const struct sk_buff *skb, int decr)
1460 {
1461 struct tcp_sock *tp = tcp_sk(sk);
1462
1463 tp->packets_out -= decr;
1464
1465 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1466 tp->sacked_out -= decr;
1467 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1468 tp->retrans_out -= decr;
1469 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
1470 tp->lost_out -= decr;
1471
1472 /* Reno case is special. Sigh... */
1473 if (tcp_is_reno(tp) && decr > 0)
1474 tp->sacked_out -= min_t(u32, tp->sacked_out, decr);
1475
1476 if (tp->lost_skb_hint &&
1477 before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(tp->lost_skb_hint)->seq) &&
1478 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
1479 tp->lost_cnt_hint -= decr;
1480
1481 tcp_verify_left_out(tp);
1482 }
1483
tcp_has_tx_tstamp(const struct sk_buff * skb)1484 static bool tcp_has_tx_tstamp(const struct sk_buff *skb)
1485 {
1486 return TCP_SKB_CB(skb)->txstamp_ack ||
1487 (skb_shinfo(skb)->tx_flags & SKBTX_ANY_TSTAMP);
1488 }
1489
tcp_fragment_tstamp(struct sk_buff * skb,struct sk_buff * skb2)1490 static void tcp_fragment_tstamp(struct sk_buff *skb, struct sk_buff *skb2)
1491 {
1492 struct skb_shared_info *shinfo = skb_shinfo(skb);
1493
1494 if (unlikely(tcp_has_tx_tstamp(skb)) &&
1495 !before(shinfo->tskey, TCP_SKB_CB(skb2)->seq)) {
1496 struct skb_shared_info *shinfo2 = skb_shinfo(skb2);
1497 u8 tsflags = shinfo->tx_flags & SKBTX_ANY_TSTAMP;
1498
1499 shinfo->tx_flags &= ~tsflags;
1500 shinfo2->tx_flags |= tsflags;
1501 swap(shinfo->tskey, shinfo2->tskey);
1502 TCP_SKB_CB(skb2)->txstamp_ack = TCP_SKB_CB(skb)->txstamp_ack;
1503 TCP_SKB_CB(skb)->txstamp_ack = 0;
1504 }
1505 }
1506
tcp_skb_fragment_eor(struct sk_buff * skb,struct sk_buff * skb2)1507 static void tcp_skb_fragment_eor(struct sk_buff *skb, struct sk_buff *skb2)
1508 {
1509 TCP_SKB_CB(skb2)->eor = TCP_SKB_CB(skb)->eor;
1510 TCP_SKB_CB(skb)->eor = 0;
1511 }
1512
1513 /* Insert buff after skb on the write or rtx queue of sk. */
tcp_insert_write_queue_after(struct sk_buff * skb,struct sk_buff * buff,struct sock * sk,enum tcp_queue tcp_queue)1514 static void tcp_insert_write_queue_after(struct sk_buff *skb,
1515 struct sk_buff *buff,
1516 struct sock *sk,
1517 enum tcp_queue tcp_queue)
1518 {
1519 if (tcp_queue == TCP_FRAG_IN_WRITE_QUEUE)
1520 __skb_queue_after(&sk->sk_write_queue, skb, buff);
1521 else
1522 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
1523 }
1524
1525 /* Function to create two new TCP segments. Shrinks the given segment
1526 * to the specified size and appends a new segment with the rest of the
1527 * packet to the list. This won't be called frequently, I hope.
1528 * Remember, these are still headerless SKBs at this point.
1529 */
tcp_fragment(struct sock * sk,enum tcp_queue tcp_queue,struct sk_buff * skb,u32 len,unsigned int mss_now,gfp_t gfp)1530 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
1531 struct sk_buff *skb, u32 len,
1532 unsigned int mss_now, gfp_t gfp)
1533 {
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *buff;
1536 int nsize, old_factor;
1537 long limit;
1538 int nlen;
1539 u8 flags;
1540
1541 if (WARN_ON(len > skb->len))
1542 return -EINVAL;
1543
1544 nsize = skb_headlen(skb) - len;
1545 if (nsize < 0)
1546 nsize = 0;
1547
1548 /* tcp_sendmsg() can overshoot sk_wmem_queued by one full size skb.
1549 * We need some allowance to not penalize applications setting small
1550 * SO_SNDBUF values.
1551 * Also allow first and last skb in retransmit queue to be split.
1552 */
1553 limit = sk->sk_sndbuf + 2 * SKB_TRUESIZE(GSO_MAX_SIZE);
1554 if (unlikely((sk->sk_wmem_queued >> 1) > limit &&
1555 tcp_queue != TCP_FRAG_IN_WRITE_QUEUE &&
1556 skb != tcp_rtx_queue_head(sk) &&
1557 skb != tcp_rtx_queue_tail(sk))) {
1558 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPWQUEUETOOBIG);
1559 return -ENOMEM;
1560 }
1561
1562 if (skb_unclone_keeptruesize(skb, gfp))
1563 return -ENOMEM;
1564
1565 /* Get a new skb... force flag on. */
1566 buff = sk_stream_alloc_skb(sk, nsize, gfp, true);
1567 if (!buff)
1568 return -ENOMEM; /* We'll just try again later. */
1569 skb_copy_decrypted(buff, skb);
1570 mptcp_skb_ext_copy(buff, skb);
1571
1572 sk_wmem_queued_add(sk, buff->truesize);
1573 sk_mem_charge(sk, buff->truesize);
1574 nlen = skb->len - len - nsize;
1575 buff->truesize += nlen;
1576 skb->truesize -= nlen;
1577
1578 /* Correct the sequence numbers. */
1579 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
1580 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
1581 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
1582
1583 /* PSH and FIN should only be set in the second packet. */
1584 flags = TCP_SKB_CB(skb)->tcp_flags;
1585 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
1586 TCP_SKB_CB(buff)->tcp_flags = flags;
1587 TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked;
1588 tcp_skb_fragment_eor(skb, buff);
1589
1590 skb_split(skb, buff, len);
1591
1592 buff->ip_summed = CHECKSUM_PARTIAL;
1593
1594 buff->tstamp = skb->tstamp;
1595 tcp_fragment_tstamp(skb, buff);
1596
1597 old_factor = tcp_skb_pcount(skb);
1598
1599 /* Fix up tso_factor for both original and new SKB. */
1600 tcp_set_skb_tso_segs(skb, mss_now);
1601 tcp_set_skb_tso_segs(buff, mss_now);
1602
1603 /* Update delivered info for the new segment */
1604 TCP_SKB_CB(buff)->tx = TCP_SKB_CB(skb)->tx;
1605
1606 /* If this packet has been sent out already, we must
1607 * adjust the various packet counters.
1608 */
1609 if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) {
1610 int diff = old_factor - tcp_skb_pcount(skb) -
1611 tcp_skb_pcount(buff);
1612
1613 if (diff)
1614 tcp_adjust_pcount(sk, skb, diff);
1615 }
1616
1617 /* Link BUFF into the send queue. */
1618 __skb_header_release(buff);
1619 tcp_insert_write_queue_after(skb, buff, sk, tcp_queue);
1620 if (tcp_queue == TCP_FRAG_IN_RTX_QUEUE)
1621 list_add(&buff->tcp_tsorted_anchor, &skb->tcp_tsorted_anchor);
1622
1623 return 0;
1624 }
1625
1626 /* This is similar to __pskb_pull_tail(). The difference is that pulled
1627 * data is not copied, but immediately discarded.
1628 */
__pskb_trim_head(struct sk_buff * skb,int len)1629 static int __pskb_trim_head(struct sk_buff *skb, int len)
1630 {
1631 struct skb_shared_info *shinfo;
1632 int i, k, eat;
1633
1634 eat = min_t(int, len, skb_headlen(skb));
1635 if (eat) {
1636 __skb_pull(skb, eat);
1637 len -= eat;
1638 if (!len)
1639 return 0;
1640 }
1641 eat = len;
1642 k = 0;
1643 shinfo = skb_shinfo(skb);
1644 for (i = 0; i < shinfo->nr_frags; i++) {
1645 int size = skb_frag_size(&shinfo->frags[i]);
1646
1647 if (size <= eat) {
1648 skb_frag_unref(skb, i);
1649 eat -= size;
1650 } else {
1651 shinfo->frags[k] = shinfo->frags[i];
1652 if (eat) {
1653 skb_frag_off_add(&shinfo->frags[k], eat);
1654 skb_frag_size_sub(&shinfo->frags[k], eat);
1655 eat = 0;
1656 }
1657 k++;
1658 }
1659 }
1660 shinfo->nr_frags = k;
1661
1662 skb->data_len -= len;
1663 skb->len = skb->data_len;
1664 return len;
1665 }
1666
1667 /* Remove acked data from a packet in the transmit queue. */
tcp_trim_head(struct sock * sk,struct sk_buff * skb,u32 len)1668 int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len)
1669 {
1670 u32 delta_truesize;
1671
1672 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
1673 return -ENOMEM;
1674
1675 delta_truesize = __pskb_trim_head(skb, len);
1676
1677 TCP_SKB_CB(skb)->seq += len;
1678 skb->ip_summed = CHECKSUM_PARTIAL;
1679
1680 if (delta_truesize) {
1681 skb->truesize -= delta_truesize;
1682 sk_wmem_queued_add(sk, -delta_truesize);
1683 sk_mem_uncharge(sk, delta_truesize);
1684 }
1685
1686 /* Any change of skb->len requires recalculation of tso factor. */
1687 if (tcp_skb_pcount(skb) > 1)
1688 tcp_set_skb_tso_segs(skb, tcp_skb_mss(skb));
1689
1690 return 0;
1691 }
1692
1693 /* Calculate MSS not accounting any TCP options. */
__tcp_mtu_to_mss(struct sock * sk,int pmtu)1694 static inline int __tcp_mtu_to_mss(struct sock *sk, int pmtu)
1695 {
1696 const struct tcp_sock *tp = tcp_sk(sk);
1697 const struct inet_connection_sock *icsk = inet_csk(sk);
1698 int mss_now;
1699
1700 /* Calculate base mss without TCP options:
1701 It is MMS_S - sizeof(tcphdr) of rfc1122
1702 */
1703 mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr);
1704
1705 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1706 if (icsk->icsk_af_ops->net_frag_header_len) {
1707 const struct dst_entry *dst = __sk_dst_get(sk);
1708
1709 if (dst && dst_allfrag(dst))
1710 mss_now -= icsk->icsk_af_ops->net_frag_header_len;
1711 }
1712
1713 /* Clamp it (mss_clamp does not include tcp options) */
1714 if (mss_now > tp->rx_opt.mss_clamp)
1715 mss_now = tp->rx_opt.mss_clamp;
1716
1717 /* Now subtract optional transport overhead */
1718 mss_now -= icsk->icsk_ext_hdr_len;
1719
1720 /* Then reserve room for full set of TCP options and 8 bytes of data */
1721 mss_now = max(mss_now,
1722 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_snd_mss));
1723 return mss_now;
1724 }
1725
1726 /* Calculate MSS. Not accounting for SACKs here. */
tcp_mtu_to_mss(struct sock * sk,int pmtu)1727 int tcp_mtu_to_mss(struct sock *sk, int pmtu)
1728 {
1729 /* Subtract TCP options size, not including SACKs */
1730 return __tcp_mtu_to_mss(sk, pmtu) -
1731 (tcp_sk(sk)->tcp_header_len - sizeof(struct tcphdr));
1732 }
1733 EXPORT_SYMBOL(tcp_mtu_to_mss);
1734
1735 /* Inverse of above */
tcp_mss_to_mtu(struct sock * sk,int mss)1736 int tcp_mss_to_mtu(struct sock *sk, int mss)
1737 {
1738 const struct tcp_sock *tp = tcp_sk(sk);
1739 const struct inet_connection_sock *icsk = inet_csk(sk);
1740 int mtu;
1741
1742 mtu = mss +
1743 tp->tcp_header_len +
1744 icsk->icsk_ext_hdr_len +
1745 icsk->icsk_af_ops->net_header_len;
1746
1747 /* IPv6 adds a frag_hdr in case RTAX_FEATURE_ALLFRAG is set */
1748 if (icsk->icsk_af_ops->net_frag_header_len) {
1749 const struct dst_entry *dst = __sk_dst_get(sk);
1750
1751 if (dst && dst_allfrag(dst))
1752 mtu += icsk->icsk_af_ops->net_frag_header_len;
1753 }
1754 return mtu;
1755 }
1756 EXPORT_SYMBOL(tcp_mss_to_mtu);
1757
1758 /* MTU probing init per socket */
tcp_mtup_init(struct sock * sk)1759 void tcp_mtup_init(struct sock *sk)
1760 {
1761 struct tcp_sock *tp = tcp_sk(sk);
1762 struct inet_connection_sock *icsk = inet_csk(sk);
1763 struct net *net = sock_net(sk);
1764
1765 icsk->icsk_mtup.enabled = READ_ONCE(net->ipv4.sysctl_tcp_mtu_probing) > 1;
1766 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) +
1767 icsk->icsk_af_ops->net_header_len;
1768 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, READ_ONCE(net->ipv4.sysctl_tcp_base_mss));
1769 icsk->icsk_mtup.probe_size = 0;
1770 if (icsk->icsk_mtup.enabled)
1771 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
1772 }
1773 EXPORT_SYMBOL(tcp_mtup_init);
1774
1775 /* This function synchronize snd mss to current pmtu/exthdr set.
1776
1777 tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts
1778 for TCP options, but includes only bare TCP header.
1779
1780 tp->rx_opt.mss_clamp is mss negotiated at connection setup.
1781 It is minimum of user_mss and mss received with SYN.
1782 It also does not include TCP options.
1783
1784 inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function.
1785
1786 tp->mss_cache is current effective sending mss, including
1787 all tcp options except for SACKs. It is evaluated,
1788 taking into account current pmtu, but never exceeds
1789 tp->rx_opt.mss_clamp.
1790
1791 NOTE1. rfc1122 clearly states that advertised MSS
1792 DOES NOT include either tcp or ip options.
1793
1794 NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache
1795 are READ ONLY outside this function. --ANK (980731)
1796 */
tcp_sync_mss(struct sock * sk,u32 pmtu)1797 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu)
1798 {
1799 struct tcp_sock *tp = tcp_sk(sk);
1800 struct inet_connection_sock *icsk = inet_csk(sk);
1801 int mss_now;
1802
1803 if (icsk->icsk_mtup.search_high > pmtu)
1804 icsk->icsk_mtup.search_high = pmtu;
1805
1806 mss_now = tcp_mtu_to_mss(sk, pmtu);
1807 mss_now = tcp_bound_to_half_wnd(tp, mss_now);
1808
1809 /* And store cached results */
1810 icsk->icsk_pmtu_cookie = pmtu;
1811 if (icsk->icsk_mtup.enabled)
1812 mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low));
1813 tp->mss_cache = mss_now;
1814
1815 return mss_now;
1816 }
1817 EXPORT_SYMBOL(tcp_sync_mss);
1818
1819 /* Compute the current effective MSS, taking SACKs and IP options,
1820 * and even PMTU discovery events into account.
1821 */
tcp_current_mss(struct sock * sk)1822 unsigned int tcp_current_mss(struct sock *sk)
1823 {
1824 const struct tcp_sock *tp = tcp_sk(sk);
1825 const struct dst_entry *dst = __sk_dst_get(sk);
1826 u32 mss_now;
1827 unsigned int header_len;
1828 struct tcp_out_options opts;
1829 struct tcp_md5sig_key *md5;
1830
1831 mss_now = tp->mss_cache;
1832
1833 if (dst) {
1834 u32 mtu = dst_mtu(dst);
1835 if (mtu != inet_csk(sk)->icsk_pmtu_cookie)
1836 mss_now = tcp_sync_mss(sk, mtu);
1837 }
1838
1839 header_len = tcp_established_options(sk, NULL, &opts, &md5) +
1840 sizeof(struct tcphdr);
1841 /* The mss_cache is sized based on tp->tcp_header_len, which assumes
1842 * some common options. If this is an odd packet (because we have SACK
1843 * blocks etc) then our calculated header_len will be different, and
1844 * we have to adjust mss_now correspondingly */
1845 if (header_len != tp->tcp_header_len) {
1846 int delta = (int) header_len - tp->tcp_header_len;
1847 mss_now -= delta;
1848 }
1849
1850 return mss_now;
1851 }
1852
1853 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
1854 * As additional protections, we do not touch cwnd in retransmission phases,
1855 * and if application hit its sndbuf limit recently.
1856 */
tcp_cwnd_application_limited(struct sock * sk)1857 static void tcp_cwnd_application_limited(struct sock *sk)
1858 {
1859 struct tcp_sock *tp = tcp_sk(sk);
1860
1861 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1862 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1863 /* Limited by application or receiver window. */
1864 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
1865 u32 win_used = max(tp->snd_cwnd_used, init_win);
1866 if (win_used < tcp_snd_cwnd(tp)) {
1867 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1868 tcp_snd_cwnd_set(tp, (tcp_snd_cwnd(tp) + win_used) >> 1);
1869 }
1870 tp->snd_cwnd_used = 0;
1871 }
1872 tp->snd_cwnd_stamp = tcp_jiffies32;
1873 }
1874
tcp_cwnd_validate(struct sock * sk,bool is_cwnd_limited)1875 static void tcp_cwnd_validate(struct sock *sk, bool is_cwnd_limited)
1876 {
1877 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1878 struct tcp_sock *tp = tcp_sk(sk);
1879
1880 /* Track the strongest available signal of the degree to which the cwnd
1881 * is fully utilized. If cwnd-limited then remember that fact for the
1882 * current window. If not cwnd-limited then track the maximum number of
1883 * outstanding packets in the current window. (If cwnd-limited then we
1884 * chose to not update tp->max_packets_out to avoid an extra else
1885 * clause with no functional impact.)
1886 */
1887 if (!before(tp->snd_una, tp->max_packets_seq) ||
1888 is_cwnd_limited ||
1889 (!tp->is_cwnd_limited &&
1890 tp->packets_out > tp->max_packets_out)) {
1891 tp->is_cwnd_limited = is_cwnd_limited;
1892 tp->max_packets_out = tp->packets_out;
1893 tp->max_packets_seq= tp->snd_nxt;
1894 }
1895
1896 if (tcp_is_cwnd_limited(sk)) {
1897 /* Network is feed fully. */
1898 tp->snd_cwnd_used = 0;
1899 tp->snd_cwnd_stamp = tcp_jiffies32;
1900 } else {
1901 /* Network starves. */
1902 if (tp->packets_out > tp->snd_cwnd_used)
1903 tp->snd_cwnd_used = tp->packets_out;
1904
1905 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) &&
1906 (s32)(tcp_jiffies32 - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto &&
1907 !ca_ops->cong_control)
1908 tcp_cwnd_application_limited(sk);
1909
1910 /* The following conditions together indicate the starvation
1911 * is caused by insufficient sender buffer:
1912 * 1) just sent some data (see tcp_write_xmit)
1913 * 2) not cwnd limited (this else condition)
1914 * 3) no more data to send (tcp_write_queue_empty())
1915 * 4) application is hitting buffer limit (SOCK_NOSPACE)
1916 */
1917 if (tcp_write_queue_empty(sk) && sk->sk_socket &&
1918 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags) &&
1919 (1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT))
1920 tcp_chrono_start(sk, TCP_CHRONO_SNDBUF_LIMITED);
1921 }
1922 }
1923
1924 /* Minshall's variant of the Nagle send check. */
tcp_minshall_check(const struct tcp_sock * tp)1925 static bool tcp_minshall_check(const struct tcp_sock *tp)
1926 {
1927 return after(tp->snd_sml, tp->snd_una) &&
1928 !after(tp->snd_sml, tp->snd_nxt);
1929 }
1930
1931 /* Update snd_sml if this skb is under mss
1932 * Note that a TSO packet might end with a sub-mss segment
1933 * The test is really :
1934 * if ((skb->len % mss) != 0)
1935 * tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1936 * But we can avoid doing the divide again given we already have
1937 * skb_pcount = skb->len / mss_now
1938 */
tcp_minshall_update(struct tcp_sock * tp,unsigned int mss_now,const struct sk_buff * skb)1939 static void tcp_minshall_update(struct tcp_sock *tp, unsigned int mss_now,
1940 const struct sk_buff *skb)
1941 {
1942 if (skb->len < tcp_skb_pcount(skb) * mss_now)
1943 tp->snd_sml = TCP_SKB_CB(skb)->end_seq;
1944 }
1945
1946 /* Return false, if packet can be sent now without violation Nagle's rules:
1947 * 1. It is full sized. (provided by caller in %partial bool)
1948 * 2. Or it contains FIN. (already checked by caller)
1949 * 3. Or TCP_CORK is not set, and TCP_NODELAY is set.
1950 * 4. Or TCP_CORK is not set, and all sent packets are ACKed.
1951 * With Minshall's modification: all sent small packets are ACKed.
1952 */
tcp_nagle_check(bool partial,const struct tcp_sock * tp,int nonagle)1953 static bool tcp_nagle_check(bool partial, const struct tcp_sock *tp,
1954 int nonagle)
1955 {
1956 return partial &&
1957 ((nonagle & TCP_NAGLE_CORK) ||
1958 (!nonagle && tp->packets_out && tcp_minshall_check(tp)));
1959 }
1960
1961 /* Return how many segs we'd like on a TSO packet,
1962 * to send one TSO packet per ms
1963 */
tcp_tso_autosize(const struct sock * sk,unsigned int mss_now,int min_tso_segs)1964 static u32 tcp_tso_autosize(const struct sock *sk, unsigned int mss_now,
1965 int min_tso_segs)
1966 {
1967 u32 bytes, segs;
1968
1969 bytes = min_t(unsigned long,
1970 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift),
1971 sk->sk_gso_max_size - 1 - MAX_TCP_HEADER);
1972
1973 /* Goal is to send at least one packet per ms,
1974 * not one big TSO packet every 100 ms.
1975 * This preserves ACK clocking and is consistent
1976 * with tcp_tso_should_defer() heuristic.
1977 */
1978 segs = max_t(u32, bytes / mss_now, min_tso_segs);
1979
1980 return segs;
1981 }
1982
1983 /* Return the number of segments we want in the skb we are transmitting.
1984 * See if congestion control module wants to decide; otherwise, autosize.
1985 */
tcp_tso_segs(struct sock * sk,unsigned int mss_now)1986 static u32 tcp_tso_segs(struct sock *sk, unsigned int mss_now)
1987 {
1988 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1989 u32 min_tso, tso_segs;
1990
1991 min_tso = ca_ops->min_tso_segs ?
1992 ca_ops->min_tso_segs(sk) :
1993 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_tso_segs);
1994
1995 tso_segs = tcp_tso_autosize(sk, mss_now, min_tso);
1996 return min_t(u32, tso_segs, sk->sk_gso_max_segs);
1997 }
1998
1999 /* Returns the portion of skb which can be sent right away */
tcp_mss_split_point(const struct sock * sk,const struct sk_buff * skb,unsigned int mss_now,unsigned int max_segs,int nonagle)2000 static unsigned int tcp_mss_split_point(const struct sock *sk,
2001 const struct sk_buff *skb,
2002 unsigned int mss_now,
2003 unsigned int max_segs,
2004 int nonagle)
2005 {
2006 const struct tcp_sock *tp = tcp_sk(sk);
2007 u32 partial, needed, window, max_len;
2008
2009 window = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2010 max_len = mss_now * max_segs;
2011
2012 if (likely(max_len <= window && skb != tcp_write_queue_tail(sk)))
2013 return max_len;
2014
2015 needed = min(skb->len, window);
2016
2017 if (max_len <= needed)
2018 return max_len;
2019
2020 partial = needed % mss_now;
2021 /* If last segment is not a full MSS, check if Nagle rules allow us
2022 * to include this last segment in this skb.
2023 * Otherwise, we'll split the skb at last MSS boundary
2024 */
2025 if (tcp_nagle_check(partial != 0, tp, nonagle))
2026 return needed - partial;
2027
2028 return needed;
2029 }
2030
2031 /* Can at least one segment of SKB be sent right now, according to the
2032 * congestion window rules? If so, return how many segments are allowed.
2033 */
tcp_cwnd_test(const struct tcp_sock * tp,const struct sk_buff * skb)2034 static inline unsigned int tcp_cwnd_test(const struct tcp_sock *tp,
2035 const struct sk_buff *skb)
2036 {
2037 u32 in_flight, cwnd, halfcwnd;
2038
2039 /* Don't be strict about the congestion window for the final FIN. */
2040 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) &&
2041 tcp_skb_pcount(skb) == 1)
2042 return 1;
2043
2044 in_flight = tcp_packets_in_flight(tp);
2045 cwnd = tcp_snd_cwnd(tp);
2046 if (in_flight >= cwnd)
2047 return 0;
2048
2049 /* For better scheduling, ensure we have at least
2050 * 2 GSO packets in flight.
2051 */
2052 halfcwnd = max(cwnd >> 1, 1U);
2053 return min(halfcwnd, cwnd - in_flight);
2054 }
2055
2056 /* Initialize TSO state of a skb.
2057 * This must be invoked the first time we consider transmitting
2058 * SKB onto the wire.
2059 */
tcp_init_tso_segs(struct sk_buff * skb,unsigned int mss_now)2060 static int tcp_init_tso_segs(struct sk_buff *skb, unsigned int mss_now)
2061 {
2062 int tso_segs = tcp_skb_pcount(skb);
2063
2064 if (!tso_segs || (tso_segs > 1 && tcp_skb_mss(skb) != mss_now)) {
2065 tcp_set_skb_tso_segs(skb, mss_now);
2066 tso_segs = tcp_skb_pcount(skb);
2067 }
2068 return tso_segs;
2069 }
2070
2071
2072 /* Return true if the Nagle test allows this packet to be
2073 * sent now.
2074 */
tcp_nagle_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss,int nonagle)2075 static inline bool tcp_nagle_test(const struct tcp_sock *tp, const struct sk_buff *skb,
2076 unsigned int cur_mss, int nonagle)
2077 {
2078 /* Nagle rule does not apply to frames, which sit in the middle of the
2079 * write_queue (they have no chances to get new data).
2080 *
2081 * This is implemented in the callers, where they modify the 'nonagle'
2082 * argument based upon the location of SKB in the send queue.
2083 */
2084 if (nonagle & TCP_NAGLE_PUSH)
2085 return true;
2086
2087 /* Don't use the nagle rule for urgent data (or for the final FIN). */
2088 if (tcp_urg_mode(tp) || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN))
2089 return true;
2090
2091 if (!tcp_nagle_check(skb->len < cur_mss, tp, nonagle))
2092 return true;
2093
2094 return false;
2095 }
2096
2097 /* Does at least the first segment of SKB fit into the send window? */
tcp_snd_wnd_test(const struct tcp_sock * tp,const struct sk_buff * skb,unsigned int cur_mss)2098 static bool tcp_snd_wnd_test(const struct tcp_sock *tp,
2099 const struct sk_buff *skb,
2100 unsigned int cur_mss)
2101 {
2102 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
2103
2104 if (skb->len > cur_mss)
2105 end_seq = TCP_SKB_CB(skb)->seq + cur_mss;
2106
2107 return !after(end_seq, tcp_wnd_end(tp));
2108 }
2109
2110 /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet
2111 * which is put after SKB on the list. It is very much like
2112 * tcp_fragment() except that it may make several kinds of assumptions
2113 * in order to speed up the splitting operation. In particular, we
2114 * know that all the data is in scatter-gather pages, and that the
2115 * packet has never been sent out before (and thus is not cloned).
2116 */
tso_fragment(struct sock * sk,struct sk_buff * skb,unsigned int len,unsigned int mss_now,gfp_t gfp)2117 static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len,
2118 unsigned int mss_now, gfp_t gfp)
2119 {
2120 int nlen = skb->len - len;
2121 struct sk_buff *buff;
2122 u8 flags;
2123
2124 /* All of a TSO frame must be composed of paged data. */
2125 if (skb->len != skb->data_len)
2126 return tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
2127 skb, len, mss_now, gfp);
2128
2129 buff = sk_stream_alloc_skb(sk, 0, gfp, true);
2130 if (unlikely(!buff))
2131 return -ENOMEM;
2132 skb_copy_decrypted(buff, skb);
2133 mptcp_skb_ext_copy(buff, skb);
2134
2135 sk_wmem_queued_add(sk, buff->truesize);
2136 sk_mem_charge(sk, buff->truesize);
2137 buff->truesize += nlen;
2138 skb->truesize -= nlen;
2139
2140 /* Correct the sequence numbers. */
2141 TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len;
2142 TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq;
2143 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq;
2144
2145 /* PSH and FIN should only be set in the second packet. */
2146 flags = TCP_SKB_CB(skb)->tcp_flags;
2147 TCP_SKB_CB(skb)->tcp_flags = flags & ~(TCPHDR_FIN | TCPHDR_PSH);
2148 TCP_SKB_CB(buff)->tcp_flags = flags;
2149
2150 /* This packet was never sent out yet, so no SACK bits. */
2151 TCP_SKB_CB(buff)->sacked = 0;
2152
2153 tcp_skb_fragment_eor(skb, buff);
2154
2155 buff->ip_summed = CHECKSUM_PARTIAL;
2156 skb_split(skb, buff, len);
2157 tcp_fragment_tstamp(skb, buff);
2158
2159 /* Fix up tso_factor for both original and new SKB. */
2160 tcp_set_skb_tso_segs(skb, mss_now);
2161 tcp_set_skb_tso_segs(buff, mss_now);
2162
2163 /* Link BUFF into the send queue. */
2164 __skb_header_release(buff);
2165 tcp_insert_write_queue_after(skb, buff, sk, TCP_FRAG_IN_WRITE_QUEUE);
2166
2167 return 0;
2168 }
2169
2170 /* Try to defer sending, if possible, in order to minimize the amount
2171 * of TSO splitting we do. View it as a kind of TSO Nagle test.
2172 *
2173 * This algorithm is from John Heffner.
2174 */
tcp_tso_should_defer(struct sock * sk,struct sk_buff * skb,bool * is_cwnd_limited,bool * is_rwnd_limited,u32 max_segs)2175 static bool tcp_tso_should_defer(struct sock *sk, struct sk_buff *skb,
2176 bool *is_cwnd_limited,
2177 bool *is_rwnd_limited,
2178 u32 max_segs)
2179 {
2180 const struct inet_connection_sock *icsk = inet_csk(sk);
2181 u32 send_win, cong_win, limit, in_flight;
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 struct sk_buff *head;
2184 int win_divisor;
2185 s64 delta;
2186
2187 if (icsk->icsk_ca_state >= TCP_CA_Recovery)
2188 goto send_now;
2189
2190 /* Avoid bursty behavior by allowing defer
2191 * only if the last write was recent (1 ms).
2192 * Note that tp->tcp_wstamp_ns can be in the future if we have
2193 * packets waiting in a qdisc or device for EDT delivery.
2194 */
2195 delta = tp->tcp_clock_cache - tp->tcp_wstamp_ns - NSEC_PER_MSEC;
2196 if (delta > 0)
2197 goto send_now;
2198
2199 in_flight = tcp_packets_in_flight(tp);
2200
2201 BUG_ON(tcp_skb_pcount(skb) <= 1);
2202 BUG_ON(tcp_snd_cwnd(tp) <= in_flight);
2203
2204 send_win = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
2205
2206 /* From in_flight test above, we know that cwnd > in_flight. */
2207 cong_win = (tcp_snd_cwnd(tp) - in_flight) * tp->mss_cache;
2208
2209 limit = min(send_win, cong_win);
2210
2211 /* If a full-sized TSO skb can be sent, do it. */
2212 if (limit >= max_segs * tp->mss_cache)
2213 goto send_now;
2214
2215 /* Middle in queue won't get any more data, full sendable already? */
2216 if ((skb != tcp_write_queue_tail(sk)) && (limit >= skb->len))
2217 goto send_now;
2218
2219 win_divisor = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_tso_win_divisor);
2220 if (win_divisor) {
2221 u32 chunk = min(tp->snd_wnd, tcp_snd_cwnd(tp) * tp->mss_cache);
2222
2223 /* If at least some fraction of a window is available,
2224 * just use it.
2225 */
2226 chunk /= win_divisor;
2227 if (limit >= chunk)
2228 goto send_now;
2229 } else {
2230 /* Different approach, try not to defer past a single
2231 * ACK. Receiver should ACK every other full sized
2232 * frame, so if we have space for more than 3 frames
2233 * then send now.
2234 */
2235 if (limit > tcp_max_tso_deferred_mss(tp) * tp->mss_cache)
2236 goto send_now;
2237 }
2238
2239 /* TODO : use tsorted_sent_queue ? */
2240 head = tcp_rtx_queue_head(sk);
2241 if (!head)
2242 goto send_now;
2243 delta = tp->tcp_clock_cache - head->tstamp;
2244 /* If next ACK is likely to come too late (half srtt), do not defer */
2245 if ((s64)(delta - (u64)NSEC_PER_USEC * (tp->srtt_us >> 4)) < 0)
2246 goto send_now;
2247
2248 /* Ok, it looks like it is advisable to defer.
2249 * Three cases are tracked :
2250 * 1) We are cwnd-limited
2251 * 2) We are rwnd-limited
2252 * 3) We are application limited.
2253 */
2254 if (cong_win < send_win) {
2255 if (cong_win <= skb->len) {
2256 *is_cwnd_limited = true;
2257 return true;
2258 }
2259 } else {
2260 if (send_win <= skb->len) {
2261 *is_rwnd_limited = true;
2262 return true;
2263 }
2264 }
2265
2266 /* If this packet won't get more data, do not wait. */
2267 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) ||
2268 TCP_SKB_CB(skb)->eor)
2269 goto send_now;
2270
2271 return true;
2272
2273 send_now:
2274 return false;
2275 }
2276
tcp_mtu_check_reprobe(struct sock * sk)2277 static inline void tcp_mtu_check_reprobe(struct sock *sk)
2278 {
2279 struct inet_connection_sock *icsk = inet_csk(sk);
2280 struct tcp_sock *tp = tcp_sk(sk);
2281 struct net *net = sock_net(sk);
2282 u32 interval;
2283 s32 delta;
2284
2285 interval = READ_ONCE(net->ipv4.sysctl_tcp_probe_interval);
2286 delta = tcp_jiffies32 - icsk->icsk_mtup.probe_timestamp;
2287 if (unlikely(delta >= interval * HZ)) {
2288 int mss = tcp_current_mss(sk);
2289
2290 /* Update current search range */
2291 icsk->icsk_mtup.probe_size = 0;
2292 icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp +
2293 sizeof(struct tcphdr) +
2294 icsk->icsk_af_ops->net_header_len;
2295 icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
2296
2297 /* Update probe time stamp */
2298 icsk->icsk_mtup.probe_timestamp = tcp_jiffies32;
2299 }
2300 }
2301
tcp_can_coalesce_send_queue_head(struct sock * sk,int len)2302 static bool tcp_can_coalesce_send_queue_head(struct sock *sk, int len)
2303 {
2304 struct sk_buff *skb, *next;
2305
2306 skb = tcp_send_head(sk);
2307 tcp_for_write_queue_from_safe(skb, next, sk) {
2308 if (len <= skb->len)
2309 break;
2310
2311 if (unlikely(TCP_SKB_CB(skb)->eor) || tcp_has_tx_tstamp(skb))
2312 return false;
2313
2314 len -= skb->len;
2315 }
2316
2317 return true;
2318 }
2319
2320 /* Create a new MTU probe if we are ready.
2321 * MTU probe is regularly attempting to increase the path MTU by
2322 * deliberately sending larger packets. This discovers routing
2323 * changes resulting in larger path MTUs.
2324 *
2325 * Returns 0 if we should wait to probe (no cwnd available),
2326 * 1 if a probe was sent,
2327 * -1 otherwise
2328 */
tcp_mtu_probe(struct sock * sk)2329 static int tcp_mtu_probe(struct sock *sk)
2330 {
2331 struct inet_connection_sock *icsk = inet_csk(sk);
2332 struct tcp_sock *tp = tcp_sk(sk);
2333 struct sk_buff *skb, *nskb, *next;
2334 struct net *net = sock_net(sk);
2335 int probe_size;
2336 int size_needed;
2337 int copy, len;
2338 int mss_now;
2339 int interval;
2340
2341 /* Not currently probing/verifying,
2342 * not in recovery,
2343 * have enough cwnd, and
2344 * not SACKing (the variable headers throw things off)
2345 */
2346 if (likely(!icsk->icsk_mtup.enabled ||
2347 icsk->icsk_mtup.probe_size ||
2348 inet_csk(sk)->icsk_ca_state != TCP_CA_Open ||
2349 tcp_snd_cwnd(tp) < 11 ||
2350 tp->rx_opt.num_sacks || tp->rx_opt.dsack))
2351 return -1;
2352
2353 /* Use binary search for probe_size between tcp_mss_base,
2354 * and current mss_clamp. if (search_high - search_low)
2355 * smaller than a threshold, backoff from probing.
2356 */
2357 mss_now = tcp_current_mss(sk);
2358 probe_size = tcp_mtu_to_mss(sk, (icsk->icsk_mtup.search_high +
2359 icsk->icsk_mtup.search_low) >> 1);
2360 size_needed = probe_size + (tp->reordering + 1) * tp->mss_cache;
2361 interval = icsk->icsk_mtup.search_high - icsk->icsk_mtup.search_low;
2362 /* When misfortune happens, we are reprobing actively,
2363 * and then reprobe timer has expired. We stick with current
2364 * probing process by not resetting search range to its orignal.
2365 */
2366 if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high) ||
2367 interval < READ_ONCE(net->ipv4.sysctl_tcp_probe_threshold)) {
2368 /* Check whether enough time has elaplased for
2369 * another round of probing.
2370 */
2371 tcp_mtu_check_reprobe(sk);
2372 return -1;
2373 }
2374
2375 /* Have enough data in the send queue to probe? */
2376 if (tp->write_seq - tp->snd_nxt < size_needed)
2377 return -1;
2378
2379 if (tp->snd_wnd < size_needed)
2380 return -1;
2381 if (after(tp->snd_nxt + size_needed, tcp_wnd_end(tp)))
2382 return 0;
2383
2384 /* Do we need to wait to drain cwnd? With none in flight, don't stall */
2385 if (tcp_packets_in_flight(tp) + 2 > tcp_snd_cwnd(tp)) {
2386 if (!tcp_packets_in_flight(tp))
2387 return -1;
2388 else
2389 return 0;
2390 }
2391
2392 if (!tcp_can_coalesce_send_queue_head(sk, probe_size))
2393 return -1;
2394
2395 /* We're allowed to probe. Build it now. */
2396 nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC, false);
2397 if (!nskb)
2398 return -1;
2399 sk_wmem_queued_add(sk, nskb->truesize);
2400 sk_mem_charge(sk, nskb->truesize);
2401
2402 skb = tcp_send_head(sk);
2403 skb_copy_decrypted(nskb, skb);
2404 mptcp_skb_ext_copy(nskb, skb);
2405
2406 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq;
2407 TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size;
2408 TCP_SKB_CB(nskb)->tcp_flags = TCPHDR_ACK;
2409 TCP_SKB_CB(nskb)->sacked = 0;
2410 nskb->csum = 0;
2411 nskb->ip_summed = CHECKSUM_PARTIAL;
2412
2413 tcp_insert_write_queue_before(nskb, skb, sk);
2414 tcp_highest_sack_replace(sk, skb, nskb);
2415
2416 len = 0;
2417 tcp_for_write_queue_from_safe(skb, next, sk) {
2418 copy = min_t(int, skb->len, probe_size - len);
2419 skb_copy_bits(skb, 0, skb_put(nskb, copy), copy);
2420
2421 if (skb->len <= copy) {
2422 /* We've eaten all the data from this skb.
2423 * Throw it away. */
2424 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
2425 /* If this is the last SKB we copy and eor is set
2426 * we need to propagate it to the new skb.
2427 */
2428 TCP_SKB_CB(nskb)->eor = TCP_SKB_CB(skb)->eor;
2429 tcp_skb_collapse_tstamp(nskb, skb);
2430 tcp_unlink_write_queue(skb, sk);
2431 sk_wmem_free_skb(sk, skb);
2432 } else {
2433 TCP_SKB_CB(nskb)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags &
2434 ~(TCPHDR_FIN|TCPHDR_PSH);
2435 if (!skb_shinfo(skb)->nr_frags) {
2436 skb_pull(skb, copy);
2437 } else {
2438 __pskb_trim_head(skb, copy);
2439 tcp_set_skb_tso_segs(skb, mss_now);
2440 }
2441 TCP_SKB_CB(skb)->seq += copy;
2442 }
2443
2444 len += copy;
2445
2446 if (len >= probe_size)
2447 break;
2448 }
2449 tcp_init_tso_segs(nskb, nskb->len);
2450
2451 /* We're ready to send. If this fails, the probe will
2452 * be resegmented into mss-sized pieces by tcp_write_xmit().
2453 */
2454 if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) {
2455 /* Decrement cwnd here because we are sending
2456 * effectively two packets. */
2457 tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) - 1);
2458 tcp_event_new_data_sent(sk, nskb);
2459
2460 icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len);
2461 tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq;
2462 tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq;
2463
2464 return 1;
2465 }
2466
2467 return -1;
2468 }
2469
tcp_pacing_check(struct sock * sk)2470 static bool tcp_pacing_check(struct sock *sk)
2471 {
2472 struct tcp_sock *tp = tcp_sk(sk);
2473
2474 if (!tcp_needs_internal_pacing(sk))
2475 return false;
2476
2477 if (tp->tcp_wstamp_ns <= tp->tcp_clock_cache)
2478 return false;
2479
2480 if (!hrtimer_is_queued(&tp->pacing_timer)) {
2481 hrtimer_start(&tp->pacing_timer,
2482 ns_to_ktime(tp->tcp_wstamp_ns),
2483 HRTIMER_MODE_ABS_PINNED_SOFT);
2484 sock_hold(sk);
2485 }
2486 return true;
2487 }
2488
tcp_rtx_queue_empty_or_single_skb(const struct sock * sk)2489 static bool tcp_rtx_queue_empty_or_single_skb(const struct sock *sk)
2490 {
2491 const struct rb_node *node = sk->tcp_rtx_queue.rb_node;
2492
2493 /* No skb in the rtx queue. */
2494 if (!node)
2495 return true;
2496
2497 /* Only one skb in rtx queue. */
2498 return !node->rb_left && !node->rb_right;
2499 }
2500
2501 /* TCP Small Queues :
2502 * Control number of packets in qdisc/devices to two packets / or ~1 ms.
2503 * (These limits are doubled for retransmits)
2504 * This allows for :
2505 * - better RTT estimation and ACK scheduling
2506 * - faster recovery
2507 * - high rates
2508 * Alas, some drivers / subsystems require a fair amount
2509 * of queued bytes to ensure line rate.
2510 * One example is wifi aggregation (802.11 AMPDU)
2511 */
tcp_small_queue_check(struct sock * sk,const struct sk_buff * skb,unsigned int factor)2512 static bool tcp_small_queue_check(struct sock *sk, const struct sk_buff *skb,
2513 unsigned int factor)
2514 {
2515 unsigned long limit;
2516
2517 limit = max_t(unsigned long,
2518 2 * skb->truesize,
2519 sk->sk_pacing_rate >> READ_ONCE(sk->sk_pacing_shift));
2520 if (sk->sk_pacing_status == SK_PACING_NONE)
2521 limit = min_t(unsigned long, limit,
2522 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_limit_output_bytes));
2523 limit <<= factor;
2524
2525 if (static_branch_unlikely(&tcp_tx_delay_enabled) &&
2526 tcp_sk(sk)->tcp_tx_delay) {
2527 u64 extra_bytes = (u64)sk->sk_pacing_rate * tcp_sk(sk)->tcp_tx_delay;
2528
2529 /* TSQ is based on skb truesize sum (sk_wmem_alloc), so we
2530 * approximate our needs assuming an ~100% skb->truesize overhead.
2531 * USEC_PER_SEC is approximated by 2^20.
2532 * do_div(extra_bytes, USEC_PER_SEC/2) is replaced by a right shift.
2533 */
2534 extra_bytes >>= (20 - 1);
2535 limit += extra_bytes;
2536 }
2537 if (refcount_read(&sk->sk_wmem_alloc) > limit) {
2538 /* Always send skb if rtx queue is empty or has one skb.
2539 * No need to wait for TX completion to call us back,
2540 * after softirq/tasklet schedule.
2541 * This helps when TX completions are delayed too much.
2542 */
2543 if (tcp_rtx_queue_empty_or_single_skb(sk))
2544 return false;
2545
2546 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2547 /* It is possible TX completion already happened
2548 * before we set TSQ_THROTTLED, so we must
2549 * test again the condition.
2550 */
2551 smp_mb__after_atomic();
2552 if (refcount_read(&sk->sk_wmem_alloc) > limit)
2553 return true;
2554 }
2555 return false;
2556 }
2557
tcp_chrono_set(struct tcp_sock * tp,const enum tcp_chrono new)2558 static void tcp_chrono_set(struct tcp_sock *tp, const enum tcp_chrono new)
2559 {
2560 const u32 now = tcp_jiffies32;
2561 enum tcp_chrono old = tp->chrono_type;
2562
2563 if (old > TCP_CHRONO_UNSPEC)
2564 tp->chrono_stat[old - 1] += now - tp->chrono_start;
2565 tp->chrono_start = now;
2566 tp->chrono_type = new;
2567 }
2568
tcp_chrono_start(struct sock * sk,const enum tcp_chrono type)2569 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type)
2570 {
2571 struct tcp_sock *tp = tcp_sk(sk);
2572
2573 /* If there are multiple conditions worthy of tracking in a
2574 * chronograph then the highest priority enum takes precedence
2575 * over the other conditions. So that if something "more interesting"
2576 * starts happening, stop the previous chrono and start a new one.
2577 */
2578 if (type > tp->chrono_type)
2579 tcp_chrono_set(tp, type);
2580 }
2581
tcp_chrono_stop(struct sock * sk,const enum tcp_chrono type)2582 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type)
2583 {
2584 struct tcp_sock *tp = tcp_sk(sk);
2585
2586
2587 /* There are multiple conditions worthy of tracking in a
2588 * chronograph, so that the highest priority enum takes
2589 * precedence over the other conditions (see tcp_chrono_start).
2590 * If a condition stops, we only stop chrono tracking if
2591 * it's the "most interesting" or current chrono we are
2592 * tracking and starts busy chrono if we have pending data.
2593 */
2594 if (tcp_rtx_and_write_queues_empty(sk))
2595 tcp_chrono_set(tp, TCP_CHRONO_UNSPEC);
2596 else if (type == tp->chrono_type)
2597 tcp_chrono_set(tp, TCP_CHRONO_BUSY);
2598 }
2599
2600 /* This routine writes packets to the network. It advances the
2601 * send_head. This happens as incoming acks open up the remote
2602 * window for us.
2603 *
2604 * LARGESEND note: !tcp_urg_mode is overkill, only frames between
2605 * snd_up-64k-mss .. snd_up cannot be large. However, taking into
2606 * account rare use of URG, this is not a big flaw.
2607 *
2608 * Send at most one packet when push_one > 0. Temporarily ignore
2609 * cwnd limit to force at most one packet out when push_one == 2.
2610
2611 * Returns true, if no segments are in flight and we have queued segments,
2612 * but cannot send anything now because of SWS or another problem.
2613 */
tcp_write_xmit(struct sock * sk,unsigned int mss_now,int nonagle,int push_one,gfp_t gfp)2614 static bool tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle,
2615 int push_one, gfp_t gfp)
2616 {
2617 struct tcp_sock *tp = tcp_sk(sk);
2618 struct sk_buff *skb;
2619 unsigned int tso_segs, sent_pkts;
2620 int cwnd_quota;
2621 int result;
2622 bool is_cwnd_limited = false, is_rwnd_limited = false;
2623 u32 max_segs;
2624
2625 sent_pkts = 0;
2626
2627 tcp_mstamp_refresh(tp);
2628 if (!push_one) {
2629 /* Do MTU probing. */
2630 result = tcp_mtu_probe(sk);
2631 if (!result) {
2632 return false;
2633 } else if (result > 0) {
2634 sent_pkts = 1;
2635 }
2636 }
2637
2638 max_segs = tcp_tso_segs(sk, mss_now);
2639 while ((skb = tcp_send_head(sk))) {
2640 unsigned int limit;
2641
2642 if (unlikely(tp->repair) && tp->repair_queue == TCP_SEND_QUEUE) {
2643 /* "skb_mstamp_ns" is used as a start point for the retransmit timer */
2644 skb->skb_mstamp_ns = tp->tcp_wstamp_ns = tp->tcp_clock_cache;
2645 list_move_tail(&skb->tcp_tsorted_anchor, &tp->tsorted_sent_queue);
2646 tcp_init_tso_segs(skb, mss_now);
2647 goto repair; /* Skip network transmission */
2648 }
2649
2650 if (tcp_pacing_check(sk))
2651 break;
2652
2653 tso_segs = tcp_init_tso_segs(skb, mss_now);
2654 BUG_ON(!tso_segs);
2655
2656 cwnd_quota = tcp_cwnd_test(tp, skb);
2657 if (!cwnd_quota) {
2658 if (push_one == 2)
2659 /* Force out a loss probe pkt. */
2660 cwnd_quota = 1;
2661 else
2662 break;
2663 }
2664
2665 if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) {
2666 is_rwnd_limited = true;
2667 break;
2668 }
2669
2670 if (tso_segs == 1) {
2671 if (unlikely(!tcp_nagle_test(tp, skb, mss_now,
2672 (tcp_skb_is_last(sk, skb) ?
2673 nonagle : TCP_NAGLE_PUSH))))
2674 break;
2675 } else {
2676 if (!push_one &&
2677 tcp_tso_should_defer(sk, skb, &is_cwnd_limited,
2678 &is_rwnd_limited, max_segs))
2679 break;
2680 }
2681
2682 limit = mss_now;
2683 if (tso_segs > 1 && !tcp_urg_mode(tp))
2684 limit = tcp_mss_split_point(sk, skb, mss_now,
2685 min_t(unsigned int,
2686 cwnd_quota,
2687 max_segs),
2688 nonagle);
2689
2690 if (skb->len > limit &&
2691 unlikely(tso_fragment(sk, skb, limit, mss_now, gfp)))
2692 break;
2693
2694 if (tcp_small_queue_check(sk, skb, 0))
2695 break;
2696
2697 /* Argh, we hit an empty skb(), presumably a thread
2698 * is sleeping in sendmsg()/sk_stream_wait_memory().
2699 * We do not want to send a pure-ack packet and have
2700 * a strange looking rtx queue with empty packet(s).
2701 */
2702 if (TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq)
2703 break;
2704
2705 if (unlikely(tcp_transmit_skb(sk, skb, 1, gfp)))
2706 break;
2707
2708 repair:
2709 /* Advance the send_head. This one is sent out.
2710 * This call will increment packets_out.
2711 */
2712 tcp_event_new_data_sent(sk, skb);
2713
2714 tcp_minshall_update(tp, mss_now, skb);
2715 sent_pkts += tcp_skb_pcount(skb);
2716
2717 if (push_one)
2718 break;
2719 }
2720
2721 if (is_rwnd_limited)
2722 tcp_chrono_start(sk, TCP_CHRONO_RWND_LIMITED);
2723 else
2724 tcp_chrono_stop(sk, TCP_CHRONO_RWND_LIMITED);
2725
2726 is_cwnd_limited |= (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp));
2727 if (likely(sent_pkts || is_cwnd_limited))
2728 tcp_cwnd_validate(sk, is_cwnd_limited);
2729
2730 if (likely(sent_pkts)) {
2731 if (tcp_in_cwnd_reduction(sk))
2732 tp->prr_out += sent_pkts;
2733
2734 /* Send one loss probe per tail loss episode. */
2735 if (push_one != 2)
2736 tcp_schedule_loss_probe(sk, false);
2737 return false;
2738 }
2739 return !tp->packets_out && !tcp_write_queue_empty(sk);
2740 }
2741
tcp_schedule_loss_probe(struct sock * sk,bool advancing_rto)2742 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto)
2743 {
2744 struct inet_connection_sock *icsk = inet_csk(sk);
2745 struct tcp_sock *tp = tcp_sk(sk);
2746 u32 timeout, timeout_us, rto_delta_us;
2747 int early_retrans;
2748
2749 /* Don't do any loss probe on a Fast Open connection before 3WHS
2750 * finishes.
2751 */
2752 if (rcu_access_pointer(tp->fastopen_rsk))
2753 return false;
2754
2755 early_retrans = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_early_retrans);
2756 /* Schedule a loss probe in 2*RTT for SACK capable connections
2757 * not in loss recovery, that are either limited by cwnd or application.
2758 */
2759 if ((early_retrans != 3 && early_retrans != 4) ||
2760 !tp->packets_out || !tcp_is_sack(tp) ||
2761 (icsk->icsk_ca_state != TCP_CA_Open &&
2762 icsk->icsk_ca_state != TCP_CA_CWR))
2763 return false;
2764
2765 /* Probe timeout is 2*rtt. Add minimum RTO to account
2766 * for delayed ack when there's one outstanding packet. If no RTT
2767 * sample is available then probe after TCP_TIMEOUT_INIT.
2768 */
2769 if (tp->srtt_us) {
2770 timeout_us = tp->srtt_us >> 2;
2771 if (tp->packets_out == 1)
2772 timeout_us += tcp_rto_min_us(sk);
2773 else
2774 timeout_us += TCP_TIMEOUT_MIN_US;
2775 timeout = usecs_to_jiffies(timeout_us);
2776 } else {
2777 timeout = TCP_TIMEOUT_INIT;
2778 }
2779
2780 /* If the RTO formula yields an earlier time, then use that time. */
2781 rto_delta_us = advancing_rto ?
2782 jiffies_to_usecs(inet_csk(sk)->icsk_rto) :
2783 tcp_rto_delta_us(sk); /* How far in future is RTO? */
2784 if (rto_delta_us > 0)
2785 timeout = min_t(u32, timeout, usecs_to_jiffies(rto_delta_us));
2786
2787 tcp_reset_xmit_timer(sk, ICSK_TIME_LOSS_PROBE, timeout, TCP_RTO_MAX);
2788 return true;
2789 }
2790
2791 /* Thanks to skb fast clones, we can detect if a prior transmit of
2792 * a packet is still in a qdisc or driver queue.
2793 * In this case, there is very little point doing a retransmit !
2794 */
skb_still_in_host_queue(struct sock * sk,const struct sk_buff * skb)2795 static bool skb_still_in_host_queue(struct sock *sk,
2796 const struct sk_buff *skb)
2797 {
2798 if (unlikely(skb_fclone_busy(sk, skb))) {
2799 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
2800 smp_mb__after_atomic();
2801 if (skb_fclone_busy(sk, skb)) {
2802 NET_INC_STATS(sock_net(sk),
2803 LINUX_MIB_TCPSPURIOUS_RTX_HOSTQUEUES);
2804 return true;
2805 }
2806 }
2807 return false;
2808 }
2809
2810 /* When probe timeout (PTO) fires, try send a new segment if possible, else
2811 * retransmit the last segment.
2812 */
tcp_send_loss_probe(struct sock * sk)2813 void tcp_send_loss_probe(struct sock *sk)
2814 {
2815 struct tcp_sock *tp = tcp_sk(sk);
2816 struct sk_buff *skb;
2817 int pcount;
2818 int mss = tcp_current_mss(sk);
2819
2820 /* At most one outstanding TLP */
2821 if (tp->tlp_high_seq)
2822 goto rearm_timer;
2823
2824 tp->tlp_retrans = 0;
2825 skb = tcp_send_head(sk);
2826 if (skb && tcp_snd_wnd_test(tp, skb, mss)) {
2827 pcount = tp->packets_out;
2828 tcp_write_xmit(sk, mss, TCP_NAGLE_OFF, 2, GFP_ATOMIC);
2829 if (tp->packets_out > pcount)
2830 goto probe_sent;
2831 goto rearm_timer;
2832 }
2833 skb = skb_rb_last(&sk->tcp_rtx_queue);
2834 if (unlikely(!skb)) {
2835 WARN_ONCE(tp->packets_out,
2836 "invalid inflight: %u state %u cwnd %u mss %d\n",
2837 tp->packets_out, sk->sk_state, tcp_snd_cwnd(tp), mss);
2838 inet_csk(sk)->icsk_pending = 0;
2839 return;
2840 }
2841
2842 if (skb_still_in_host_queue(sk, skb))
2843 goto rearm_timer;
2844
2845 pcount = tcp_skb_pcount(skb);
2846 if (WARN_ON(!pcount))
2847 goto rearm_timer;
2848
2849 if ((pcount > 1) && (skb->len > (pcount - 1) * mss)) {
2850 if (unlikely(tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
2851 (pcount - 1) * mss, mss,
2852 GFP_ATOMIC)))
2853 goto rearm_timer;
2854 skb = skb_rb_next(skb);
2855 }
2856
2857 if (WARN_ON(!skb || !tcp_skb_pcount(skb)))
2858 goto rearm_timer;
2859
2860 if (__tcp_retransmit_skb(sk, skb, 1))
2861 goto rearm_timer;
2862
2863 tp->tlp_retrans = 1;
2864
2865 probe_sent:
2866 /* Record snd_nxt for loss detection. */
2867 tp->tlp_high_seq = tp->snd_nxt;
2868
2869 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSPROBES);
2870 /* Reset s.t. tcp_rearm_rto will restart timer from now */
2871 inet_csk(sk)->icsk_pending = 0;
2872 rearm_timer:
2873 tcp_rearm_rto(sk);
2874 }
2875
2876 /* Push out any pending frames which were held back due to
2877 * TCP_CORK or attempt at coalescing tiny packets.
2878 * The socket must be locked by the caller.
2879 */
__tcp_push_pending_frames(struct sock * sk,unsigned int cur_mss,int nonagle)2880 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
2881 int nonagle)
2882 {
2883 /* If we are closed, the bytes will have to remain here.
2884 * In time closedown will finish, we empty the write queue and
2885 * all will be happy.
2886 */
2887 if (unlikely(sk->sk_state == TCP_CLOSE))
2888 return;
2889
2890 if (tcp_write_xmit(sk, cur_mss, nonagle, 0,
2891 sk_gfp_mask(sk, GFP_ATOMIC)))
2892 tcp_check_probe_timer(sk);
2893 }
2894
2895 /* Send _single_ skb sitting at the send head. This function requires
2896 * true push pending frames to setup probe timer etc.
2897 */
tcp_push_one(struct sock * sk,unsigned int mss_now)2898 void tcp_push_one(struct sock *sk, unsigned int mss_now)
2899 {
2900 struct sk_buff *skb = tcp_send_head(sk);
2901
2902 BUG_ON(!skb || skb->len < mss_now);
2903
2904 tcp_write_xmit(sk, mss_now, TCP_NAGLE_PUSH, 1, sk->sk_allocation);
2905 }
2906
2907 /* This function returns the amount that we can raise the
2908 * usable window based on the following constraints
2909 *
2910 * 1. The window can never be shrunk once it is offered (RFC 793)
2911 * 2. We limit memory per socket
2912 *
2913 * RFC 1122:
2914 * "the suggested [SWS] avoidance algorithm for the receiver is to keep
2915 * RECV.NEXT + RCV.WIN fixed until:
2916 * RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)"
2917 *
2918 * i.e. don't raise the right edge of the window until you can raise
2919 * it at least MSS bytes.
2920 *
2921 * Unfortunately, the recommended algorithm breaks header prediction,
2922 * since header prediction assumes th->window stays fixed.
2923 *
2924 * Strictly speaking, keeping th->window fixed violates the receiver
2925 * side SWS prevention criteria. The problem is that under this rule
2926 * a stream of single byte packets will cause the right side of the
2927 * window to always advance by a single byte.
2928 *
2929 * Of course, if the sender implements sender side SWS prevention
2930 * then this will not be a problem.
2931 *
2932 * BSD seems to make the following compromise:
2933 *
2934 * If the free space is less than the 1/4 of the maximum
2935 * space available and the free space is less than 1/2 mss,
2936 * then set the window to 0.
2937 * [ Actually, bsd uses MSS and 1/4 of maximal _window_ ]
2938 * Otherwise, just prevent the window from shrinking
2939 * and from being larger than the largest representable value.
2940 *
2941 * This prevents incremental opening of the window in the regime
2942 * where TCP is limited by the speed of the reader side taking
2943 * data out of the TCP receive queue. It does nothing about
2944 * those cases where the window is constrained on the sender side
2945 * because the pipeline is full.
2946 *
2947 * BSD also seems to "accidentally" limit itself to windows that are a
2948 * multiple of MSS, at least until the free space gets quite small.
2949 * This would appear to be a side effect of the mbuf implementation.
2950 * Combining these two algorithms results in the observed behavior
2951 * of having a fixed window size at almost all times.
2952 *
2953 * Below we obtain similar behavior by forcing the offered window to
2954 * a multiple of the mss when it is feasible to do so.
2955 *
2956 * Note, we don't "adjust" for TIMESTAMP or SACK option bytes.
2957 * Regular options like TIMESTAMP are taken into account.
2958 */
__tcp_select_window(struct sock * sk)2959 u32 __tcp_select_window(struct sock *sk)
2960 {
2961 struct inet_connection_sock *icsk = inet_csk(sk);
2962 struct tcp_sock *tp = tcp_sk(sk);
2963 /* MSS for the peer's data. Previous versions used mss_clamp
2964 * here. I don't know if the value based on our guesses
2965 * of peer's MSS is better for the performance. It's more correct
2966 * but may be worse for the performance because of rcv_mss
2967 * fluctuations. --SAW 1998/11/1
2968 */
2969 int mss = icsk->icsk_ack.rcv_mss;
2970 int free_space = tcp_space(sk);
2971 int allowed_space = tcp_full_space(sk);
2972 int full_space, window;
2973
2974 if (sk_is_mptcp(sk))
2975 mptcp_space(sk, &free_space, &allowed_space);
2976
2977 full_space = min_t(int, tp->window_clamp, allowed_space);
2978
2979 if (unlikely(mss > full_space)) {
2980 mss = full_space;
2981 if (mss <= 0)
2982 return 0;
2983 }
2984 if (free_space < (full_space >> 1)) {
2985 icsk->icsk_ack.quick = 0;
2986
2987 if (tcp_under_memory_pressure(sk))
2988 tp->rcv_ssthresh = min(tp->rcv_ssthresh,
2989 4U * tp->advmss);
2990
2991 /* free_space might become our new window, make sure we don't
2992 * increase it due to wscale.
2993 */
2994 free_space = round_down(free_space, 1 << tp->rx_opt.rcv_wscale);
2995
2996 /* if free space is less than mss estimate, or is below 1/16th
2997 * of the maximum allowed, try to move to zero-window, else
2998 * tcp_clamp_window() will grow rcv buf up to tcp_rmem[2], and
2999 * new incoming data is dropped due to memory limits.
3000 * With large window, mss test triggers way too late in order
3001 * to announce zero window in time before rmem limit kicks in.
3002 */
3003 if (free_space < (allowed_space >> 4) || free_space < mss)
3004 return 0;
3005 }
3006
3007 if (free_space > tp->rcv_ssthresh)
3008 free_space = tp->rcv_ssthresh;
3009
3010 /* Don't do rounding if we are using window scaling, since the
3011 * scaled window will not line up with the MSS boundary anyway.
3012 */
3013 if (tp->rx_opt.rcv_wscale) {
3014 window = free_space;
3015
3016 /* Advertise enough space so that it won't get scaled away.
3017 * Import case: prevent zero window announcement if
3018 * 1<<rcv_wscale > mss.
3019 */
3020 window = ALIGN(window, (1 << tp->rx_opt.rcv_wscale));
3021 } else {
3022 window = tp->rcv_wnd;
3023 /* Get the largest window that is a nice multiple of mss.
3024 * Window clamp already applied above.
3025 * If our current window offering is within 1 mss of the
3026 * free space we just keep it. This prevents the divide
3027 * and multiply from happening most of the time.
3028 * We also don't do any window rounding when the free space
3029 * is too small.
3030 */
3031 if (window <= free_space - mss || window > free_space)
3032 window = rounddown(free_space, mss);
3033 else if (mss == full_space &&
3034 free_space > window + (full_space >> 1))
3035 window = free_space;
3036 }
3037
3038 return window;
3039 }
3040
tcp_skb_collapse_tstamp(struct sk_buff * skb,const struct sk_buff * next_skb)3041 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
3042 const struct sk_buff *next_skb)
3043 {
3044 if (unlikely(tcp_has_tx_tstamp(next_skb))) {
3045 const struct skb_shared_info *next_shinfo =
3046 skb_shinfo(next_skb);
3047 struct skb_shared_info *shinfo = skb_shinfo(skb);
3048
3049 shinfo->tx_flags |= next_shinfo->tx_flags & SKBTX_ANY_TSTAMP;
3050 shinfo->tskey = next_shinfo->tskey;
3051 TCP_SKB_CB(skb)->txstamp_ack |=
3052 TCP_SKB_CB(next_skb)->txstamp_ack;
3053 }
3054 }
3055
3056 /* Collapses two adjacent SKB's during retransmission. */
tcp_collapse_retrans(struct sock * sk,struct sk_buff * skb)3057 static bool tcp_collapse_retrans(struct sock *sk, struct sk_buff *skb)
3058 {
3059 struct tcp_sock *tp = tcp_sk(sk);
3060 struct sk_buff *next_skb = skb_rb_next(skb);
3061 int next_skb_size;
3062
3063 next_skb_size = next_skb->len;
3064
3065 BUG_ON(tcp_skb_pcount(skb) != 1 || tcp_skb_pcount(next_skb) != 1);
3066
3067 if (next_skb_size) {
3068 if (next_skb_size <= skb_availroom(skb))
3069 skb_copy_bits(next_skb, 0, skb_put(skb, next_skb_size),
3070 next_skb_size);
3071 else if (!tcp_skb_shift(skb, next_skb, 1, next_skb_size))
3072 return false;
3073 }
3074 tcp_highest_sack_replace(sk, next_skb, skb);
3075
3076 /* Update sequence range on original skb. */
3077 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq;
3078
3079 /* Merge over control information. This moves PSH/FIN etc. over */
3080 TCP_SKB_CB(skb)->tcp_flags |= TCP_SKB_CB(next_skb)->tcp_flags;
3081
3082 /* All done, get rid of second SKB and account for it so
3083 * packet counting does not break.
3084 */
3085 TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked & TCPCB_EVER_RETRANS;
3086 TCP_SKB_CB(skb)->eor = TCP_SKB_CB(next_skb)->eor;
3087
3088 /* changed transmit queue under us so clear hints */
3089 tcp_clear_retrans_hints_partial(tp);
3090 if (next_skb == tp->retransmit_skb_hint)
3091 tp->retransmit_skb_hint = skb;
3092
3093 tcp_adjust_pcount(sk, next_skb, tcp_skb_pcount(next_skb));
3094
3095 tcp_skb_collapse_tstamp(skb, next_skb);
3096
3097 tcp_rtx_queue_unlink_and_free(next_skb, sk);
3098 return true;
3099 }
3100
3101 /* Check if coalescing SKBs is legal. */
tcp_can_collapse(const struct sock * sk,const struct sk_buff * skb)3102 static bool tcp_can_collapse(const struct sock *sk, const struct sk_buff *skb)
3103 {
3104 if (tcp_skb_pcount(skb) > 1)
3105 return false;
3106 if (skb_cloned(skb))
3107 return false;
3108 /* Some heuristics for collapsing over SACK'd could be invented */
3109 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3110 return false;
3111
3112 return true;
3113 }
3114
3115 /* Collapse packets in the retransmit queue to make to create
3116 * less packets on the wire. This is only done on retransmission.
3117 */
tcp_retrans_try_collapse(struct sock * sk,struct sk_buff * to,int space)3118 static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *to,
3119 int space)
3120 {
3121 struct tcp_sock *tp = tcp_sk(sk);
3122 struct sk_buff *skb = to, *tmp;
3123 bool first = true;
3124
3125 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retrans_collapse))
3126 return;
3127 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3128 return;
3129
3130 skb_rbtree_walk_from_safe(skb, tmp) {
3131 if (!tcp_can_collapse(sk, skb))
3132 break;
3133
3134 if (!tcp_skb_can_collapse(to, skb))
3135 break;
3136
3137 space -= skb->len;
3138
3139 if (first) {
3140 first = false;
3141 continue;
3142 }
3143
3144 if (space < 0)
3145 break;
3146
3147 if (after(TCP_SKB_CB(skb)->end_seq, tcp_wnd_end(tp)))
3148 break;
3149
3150 if (!tcp_collapse_retrans(sk, to))
3151 break;
3152 }
3153 }
3154
3155 /* This retransmits one SKB. Policy decisions and retransmit queue
3156 * state updates are done by the caller. Returns non-zero if an
3157 * error occurred which prevented the send.
3158 */
__tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3159 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3160 {
3161 struct inet_connection_sock *icsk = inet_csk(sk);
3162 struct tcp_sock *tp = tcp_sk(sk);
3163 unsigned int cur_mss;
3164 int diff, len, err;
3165 int avail_wnd;
3166
3167 /* Inconclusive MTU probe */
3168 if (icsk->icsk_mtup.probe_size)
3169 icsk->icsk_mtup.probe_size = 0;
3170
3171 if (skb_still_in_host_queue(sk, skb))
3172 return -EBUSY;
3173
3174 start:
3175 if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) {
3176 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3177 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN;
3178 TCP_SKB_CB(skb)->seq++;
3179 goto start;
3180 }
3181 if (unlikely(before(TCP_SKB_CB(skb)->end_seq, tp->snd_una))) {
3182 WARN_ON_ONCE(1);
3183 return -EINVAL;
3184 }
3185 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3186 return -ENOMEM;
3187 }
3188
3189 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3190 return -EHOSTUNREACH; /* Routing failure or similar. */
3191
3192 cur_mss = tcp_current_mss(sk);
3193 avail_wnd = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
3194
3195 /* If receiver has shrunk his window, and skb is out of
3196 * new window, do not retransmit it. The exception is the
3197 * case, when window is shrunk to zero. In this case
3198 * our retransmit of one segment serves as a zero window probe.
3199 */
3200 if (avail_wnd <= 0) {
3201 if (TCP_SKB_CB(skb)->seq != tp->snd_una)
3202 return -EAGAIN;
3203 avail_wnd = cur_mss;
3204 }
3205
3206 len = cur_mss * segs;
3207 if (len > avail_wnd) {
3208 len = rounddown(avail_wnd, cur_mss);
3209 if (!len)
3210 len = avail_wnd;
3211 }
3212 if (skb->len > len) {
3213 if (tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb, len,
3214 cur_mss, GFP_ATOMIC))
3215 return -ENOMEM; /* We'll try again later. */
3216 } else {
3217 if (skb_unclone_keeptruesize(skb, GFP_ATOMIC))
3218 return -ENOMEM;
3219
3220 diff = tcp_skb_pcount(skb);
3221 tcp_set_skb_tso_segs(skb, cur_mss);
3222 diff -= tcp_skb_pcount(skb);
3223 if (diff)
3224 tcp_adjust_pcount(sk, skb, diff);
3225 avail_wnd = min_t(int, avail_wnd, cur_mss);
3226 if (skb->len < avail_wnd)
3227 tcp_retrans_try_collapse(sk, skb, avail_wnd);
3228 }
3229
3230 /* RFC3168, section 6.1.1.1. ECN fallback */
3231 if ((TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN_ECN) == TCPHDR_SYN_ECN)
3232 tcp_ecn_clear_syn(sk, skb);
3233
3234 /* Update global and local TCP statistics. */
3235 segs = tcp_skb_pcount(skb);
3236 TCP_ADD_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS, segs);
3237 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)
3238 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
3239 tp->total_retrans += segs;
3240 tp->bytes_retrans += skb->len;
3241
3242 /* make sure skb->data is aligned on arches that require it
3243 * and check if ack-trimming & collapsing extended the headroom
3244 * beyond what csum_start can cover.
3245 */
3246 if (unlikely((NET_IP_ALIGN && ((unsigned long)skb->data & 3)) ||
3247 skb_headroom(skb) >= 0xFFFF)) {
3248 struct sk_buff *nskb;
3249
3250 tcp_skb_tsorted_save(skb) {
3251 nskb = __pskb_copy(skb, MAX_TCP_HEADER, GFP_ATOMIC);
3252 if (nskb) {
3253 nskb->dev = NULL;
3254 err = tcp_transmit_skb(sk, nskb, 0, GFP_ATOMIC);
3255 } else {
3256 err = -ENOBUFS;
3257 }
3258 } tcp_skb_tsorted_restore(skb);
3259
3260 if (!err) {
3261 tcp_update_skb_after_send(sk, skb, tp->tcp_wstamp_ns);
3262 tcp_rate_skb_sent(sk, skb);
3263 }
3264 } else {
3265 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3266 }
3267
3268 /* To avoid taking spuriously low RTT samples based on a timestamp
3269 * for a transmit that never happened, always mark EVER_RETRANS
3270 */
3271 TCP_SKB_CB(skb)->sacked |= TCPCB_EVER_RETRANS;
3272
3273 if (BPF_SOCK_OPS_TEST_FLAG(tp, BPF_SOCK_OPS_RETRANS_CB_FLAG))
3274 tcp_call_bpf_3arg(sk, BPF_SOCK_OPS_RETRANS_CB,
3275 TCP_SKB_CB(skb)->seq, segs, err);
3276
3277 if (likely(!err)) {
3278 trace_tcp_retransmit_skb(sk, skb);
3279 } else if (err != -EBUSY) {
3280 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPRETRANSFAIL, segs);
3281 }
3282 return err;
3283 }
3284
tcp_retransmit_skb(struct sock * sk,struct sk_buff * skb,int segs)3285 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs)
3286 {
3287 struct tcp_sock *tp = tcp_sk(sk);
3288 int err = __tcp_retransmit_skb(sk, skb, segs);
3289
3290 if (err == 0) {
3291 #if FASTRETRANS_DEBUG > 0
3292 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
3293 net_dbg_ratelimited("retrans_out leaked\n");
3294 }
3295 #endif
3296 TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS;
3297 tp->retrans_out += tcp_skb_pcount(skb);
3298 }
3299
3300 /* Save stamp of the first (attempted) retransmit. */
3301 if (!tp->retrans_stamp)
3302 tp->retrans_stamp = tcp_skb_timestamp(skb);
3303
3304 if (tp->undo_retrans < 0)
3305 tp->undo_retrans = 0;
3306 tp->undo_retrans += tcp_skb_pcount(skb);
3307 return err;
3308 }
3309
3310 /* This gets called after a retransmit timeout, and the initially
3311 * retransmitted data is acknowledged. It tries to continue
3312 * resending the rest of the retransmit queue, until either
3313 * we've sent it all or the congestion window limit is reached.
3314 */
tcp_xmit_retransmit_queue(struct sock * sk)3315 void tcp_xmit_retransmit_queue(struct sock *sk)
3316 {
3317 const struct inet_connection_sock *icsk = inet_csk(sk);
3318 struct sk_buff *skb, *rtx_head, *hole = NULL;
3319 struct tcp_sock *tp = tcp_sk(sk);
3320 bool rearm_timer = false;
3321 u32 max_segs;
3322 int mib_idx;
3323
3324 if (!tp->packets_out)
3325 return;
3326
3327 rtx_head = tcp_rtx_queue_head(sk);
3328 skb = tp->retransmit_skb_hint ?: rtx_head;
3329 max_segs = tcp_tso_segs(sk, tcp_current_mss(sk));
3330 skb_rbtree_walk_from(skb) {
3331 __u8 sacked;
3332 int segs;
3333
3334 if (tcp_pacing_check(sk))
3335 break;
3336
3337 /* we could do better than to assign each time */
3338 if (!hole)
3339 tp->retransmit_skb_hint = skb;
3340
3341 segs = tcp_snd_cwnd(tp) - tcp_packets_in_flight(tp);
3342 if (segs <= 0)
3343 break;
3344 sacked = TCP_SKB_CB(skb)->sacked;
3345 /* In case tcp_shift_skb_data() have aggregated large skbs,
3346 * we need to make sure not sending too bigs TSO packets
3347 */
3348 segs = min_t(int, segs, max_segs);
3349
3350 if (tp->retrans_out >= tp->lost_out) {
3351 break;
3352 } else if (!(sacked & TCPCB_LOST)) {
3353 if (!hole && !(sacked & (TCPCB_SACKED_RETRANS|TCPCB_SACKED_ACKED)))
3354 hole = skb;
3355 continue;
3356
3357 } else {
3358 if (icsk->icsk_ca_state != TCP_CA_Loss)
3359 mib_idx = LINUX_MIB_TCPFASTRETRANS;
3360 else
3361 mib_idx = LINUX_MIB_TCPSLOWSTARTRETRANS;
3362 }
3363
3364 if (sacked & (TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))
3365 continue;
3366
3367 if (tcp_small_queue_check(sk, skb, 1))
3368 break;
3369
3370 if (tcp_retransmit_skb(sk, skb, segs))
3371 break;
3372
3373 NET_ADD_STATS(sock_net(sk), mib_idx, tcp_skb_pcount(skb));
3374
3375 if (tcp_in_cwnd_reduction(sk))
3376 tp->prr_out += tcp_skb_pcount(skb);
3377
3378 if (skb == rtx_head &&
3379 icsk->icsk_pending != ICSK_TIME_REO_TIMEOUT)
3380 rearm_timer = true;
3381
3382 }
3383 if (rearm_timer)
3384 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3385 inet_csk(sk)->icsk_rto,
3386 TCP_RTO_MAX);
3387 }
3388
3389 /* We allow to exceed memory limits for FIN packets to expedite
3390 * connection tear down and (memory) recovery.
3391 * Otherwise tcp_send_fin() could be tempted to either delay FIN
3392 * or even be forced to close flow without any FIN.
3393 * In general, we want to allow one skb per socket to avoid hangs
3394 * with edge trigger epoll()
3395 */
sk_forced_mem_schedule(struct sock * sk,int size)3396 void sk_forced_mem_schedule(struct sock *sk, int size)
3397 {
3398 int delta, amt;
3399
3400 delta = size - sk->sk_forward_alloc;
3401 if (delta <= 0)
3402 return;
3403 amt = sk_mem_pages(delta);
3404 sk->sk_forward_alloc += amt * SK_MEM_QUANTUM;
3405 sk_memory_allocated_add(sk, amt);
3406
3407 if (mem_cgroup_sockets_enabled && sk->sk_memcg)
3408 mem_cgroup_charge_skmem(sk->sk_memcg, amt,
3409 gfp_memcg_charge() | __GFP_NOFAIL);
3410 }
3411
3412 /* Send a FIN. The caller locks the socket for us.
3413 * We should try to send a FIN packet really hard, but eventually give up.
3414 */
tcp_send_fin(struct sock * sk)3415 void tcp_send_fin(struct sock *sk)
3416 {
3417 struct sk_buff *skb, *tskb, *tail = tcp_write_queue_tail(sk);
3418 struct tcp_sock *tp = tcp_sk(sk);
3419
3420 /* Optimization, tack on the FIN if we have one skb in write queue and
3421 * this skb was not yet sent, or we are under memory pressure.
3422 * Note: in the latter case, FIN packet will be sent after a timeout,
3423 * as TCP stack thinks it has already been transmitted.
3424 */
3425 tskb = tail;
3426 if (!tskb && tcp_under_memory_pressure(sk))
3427 tskb = skb_rb_last(&sk->tcp_rtx_queue);
3428
3429 if (tskb) {
3430 TCP_SKB_CB(tskb)->tcp_flags |= TCPHDR_FIN;
3431 TCP_SKB_CB(tskb)->end_seq++;
3432 tp->write_seq++;
3433 if (!tail) {
3434 /* This means tskb was already sent.
3435 * Pretend we included the FIN on previous transmit.
3436 * We need to set tp->snd_nxt to the value it would have
3437 * if FIN had been sent. This is because retransmit path
3438 * does not change tp->snd_nxt.
3439 */
3440 WRITE_ONCE(tp->snd_nxt, tp->snd_nxt + 1);
3441 return;
3442 }
3443 } else {
3444 skb = alloc_skb_fclone(MAX_TCP_HEADER, sk->sk_allocation);
3445 if (unlikely(!skb))
3446 return;
3447
3448 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
3449 skb_reserve(skb, MAX_TCP_HEADER);
3450 sk_forced_mem_schedule(sk, skb->truesize);
3451 /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */
3452 tcp_init_nondata_skb(skb, tp->write_seq,
3453 TCPHDR_ACK | TCPHDR_FIN);
3454 tcp_queue_skb(sk, skb);
3455 }
3456 __tcp_push_pending_frames(sk, tcp_current_mss(sk), TCP_NAGLE_OFF);
3457 }
3458
3459 /* We get here when a process closes a file descriptor (either due to
3460 * an explicit close() or as a byproduct of exit()'ing) and there
3461 * was unread data in the receive queue. This behavior is recommended
3462 * by RFC 2525, section 2.17. -DaveM
3463 */
tcp_send_active_reset(struct sock * sk,gfp_t priority)3464 void tcp_send_active_reset(struct sock *sk, gfp_t priority)
3465 {
3466 struct sk_buff *skb;
3467
3468 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTRSTS);
3469
3470 /* NOTE: No TCP options attached and we never retransmit this. */
3471 skb = alloc_skb(MAX_TCP_HEADER, priority);
3472 if (!skb) {
3473 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3474 return;
3475 }
3476
3477 /* Reserve space for headers and prepare control bits. */
3478 skb_reserve(skb, MAX_TCP_HEADER);
3479 tcp_init_nondata_skb(skb, tcp_acceptable_seq(sk),
3480 TCPHDR_ACK | TCPHDR_RST);
3481 tcp_mstamp_refresh(tcp_sk(sk));
3482 /* Send it off. */
3483 if (tcp_transmit_skb(sk, skb, 0, priority))
3484 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTFAILED);
3485
3486 /* skb of trace_tcp_send_reset() keeps the skb that caused RST,
3487 * skb here is different to the troublesome skb, so use NULL
3488 */
3489 trace_tcp_send_reset(sk, NULL);
3490 }
3491
3492 /* Send a crossed SYN-ACK during socket establishment.
3493 * WARNING: This routine must only be called when we have already sent
3494 * a SYN packet that crossed the incoming SYN that caused this routine
3495 * to get called. If this assumption fails then the initial rcv_wnd
3496 * and rcv_wscale values will not be correct.
3497 */
tcp_send_synack(struct sock * sk)3498 int tcp_send_synack(struct sock *sk)
3499 {
3500 struct sk_buff *skb;
3501
3502 skb = tcp_rtx_queue_head(sk);
3503 if (!skb || !(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
3504 pr_err("%s: wrong queue state\n", __func__);
3505 return -EFAULT;
3506 }
3507 if (!(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_ACK)) {
3508 if (skb_cloned(skb)) {
3509 struct sk_buff *nskb;
3510
3511 tcp_skb_tsorted_save(skb) {
3512 nskb = skb_copy(skb, GFP_ATOMIC);
3513 } tcp_skb_tsorted_restore(skb);
3514 if (!nskb)
3515 return -ENOMEM;
3516 INIT_LIST_HEAD(&nskb->tcp_tsorted_anchor);
3517 tcp_highest_sack_replace(sk, skb, nskb);
3518 tcp_rtx_queue_unlink_and_free(skb, sk);
3519 __skb_header_release(nskb);
3520 tcp_rbtree_insert(&sk->tcp_rtx_queue, nskb);
3521 sk_wmem_queued_add(sk, nskb->truesize);
3522 sk_mem_charge(sk, nskb->truesize);
3523 skb = nskb;
3524 }
3525
3526 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_ACK;
3527 tcp_ecn_send_synack(sk, skb);
3528 }
3529 return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
3530 }
3531
3532 /**
3533 * tcp_make_synack - Allocate one skb and build a SYNACK packet.
3534 * @sk: listener socket
3535 * @dst: dst entry attached to the SYNACK. It is consumed and caller
3536 * should not use it again.
3537 * @req: request_sock pointer
3538 * @foc: cookie for tcp fast open
3539 * @synack_type: Type of synack to prepare
3540 * @syn_skb: SYN packet just received. It could be NULL for rtx case.
3541 */
tcp_make_synack(const struct sock * sk,struct dst_entry * dst,struct request_sock * req,struct tcp_fastopen_cookie * foc,enum tcp_synack_type synack_type,struct sk_buff * syn_skb)3542 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
3543 struct request_sock *req,
3544 struct tcp_fastopen_cookie *foc,
3545 enum tcp_synack_type synack_type,
3546 struct sk_buff *syn_skb)
3547 {
3548 struct inet_request_sock *ireq = inet_rsk(req);
3549 const struct tcp_sock *tp = tcp_sk(sk);
3550 struct tcp_md5sig_key *md5 = NULL;
3551 struct tcp_out_options opts;
3552 struct sk_buff *skb;
3553 int tcp_header_size;
3554 struct tcphdr *th;
3555 int mss;
3556 u64 now;
3557
3558 skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
3559 if (unlikely(!skb)) {
3560 dst_release(dst);
3561 return NULL;
3562 }
3563 /* Reserve space for headers. */
3564 skb_reserve(skb, MAX_TCP_HEADER);
3565
3566 switch (synack_type) {
3567 case TCP_SYNACK_NORMAL:
3568 skb_set_owner_w(skb, req_to_sk(req));
3569 break;
3570 case TCP_SYNACK_COOKIE:
3571 /* Under synflood, we do not attach skb to a socket,
3572 * to avoid false sharing.
3573 */
3574 break;
3575 case TCP_SYNACK_FASTOPEN:
3576 /* sk is a const pointer, because we want to express multiple
3577 * cpu might call us concurrently.
3578 * sk->sk_wmem_alloc in an atomic, we can promote to rw.
3579 */
3580 skb_set_owner_w(skb, (struct sock *)sk);
3581 break;
3582 }
3583 skb_dst_set(skb, dst);
3584
3585 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3586
3587 memset(&opts, 0, sizeof(opts));
3588 now = tcp_clock_ns();
3589 #ifdef CONFIG_SYN_COOKIES
3590 if (unlikely(synack_type == TCP_SYNACK_COOKIE && ireq->tstamp_ok))
3591 skb->skb_mstamp_ns = cookie_init_timestamp(req, now);
3592 else
3593 #endif
3594 {
3595 skb->skb_mstamp_ns = now;
3596 if (!tcp_rsk(req)->snt_synack) /* Timestamp first SYNACK */
3597 tcp_rsk(req)->snt_synack = tcp_skb_timestamp_us(skb);
3598 }
3599
3600 #ifdef CONFIG_TCP_MD5SIG
3601 rcu_read_lock();
3602 md5 = tcp_rsk(req)->af_specific->req_md5_lookup(sk, req_to_sk(req));
3603 #endif
3604 skb_set_hash(skb, tcp_rsk(req)->txhash, PKT_HASH_TYPE_L4);
3605 /* bpf program will be interested in the tcp_flags */
3606 TCP_SKB_CB(skb)->tcp_flags = TCPHDR_SYN | TCPHDR_ACK;
3607 tcp_header_size = tcp_synack_options(sk, req, mss, skb, &opts, md5,
3608 foc, synack_type,
3609 syn_skb) + sizeof(*th);
3610
3611 skb_push(skb, tcp_header_size);
3612 skb_reset_transport_header(skb);
3613
3614 th = (struct tcphdr *)skb->data;
3615 memset(th, 0, sizeof(struct tcphdr));
3616 th->syn = 1;
3617 th->ack = 1;
3618 tcp_ecn_make_synack(req, th);
3619 th->source = htons(ireq->ir_num);
3620 th->dest = ireq->ir_rmt_port;
3621 skb->mark = ireq->ir_mark;
3622 skb->ip_summed = CHECKSUM_PARTIAL;
3623 th->seq = htonl(tcp_rsk(req)->snt_isn);
3624 /* XXX data is queued and acked as is. No buffer/window check */
3625 th->ack_seq = htonl(tcp_rsk(req)->rcv_nxt);
3626
3627 /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */
3628 th->window = htons(min(req->rsk_rcv_wnd, 65535U));
3629 tcp_options_write((__be32 *)(th + 1), NULL, &opts);
3630 th->doff = (tcp_header_size >> 2);
3631 TCP_INC_STATS(sock_net(sk), TCP_MIB_OUTSEGS);
3632
3633 #ifdef CONFIG_TCP_MD5SIG
3634 /* Okay, we have all we need - do the md5 hash if needed */
3635 if (md5)
3636 tcp_rsk(req)->af_specific->calc_md5_hash(opts.hash_location,
3637 md5, req_to_sk(req), skb);
3638 rcu_read_unlock();
3639 #endif
3640
3641 bpf_skops_write_hdr_opt((struct sock *)sk, skb, req, syn_skb,
3642 synack_type, &opts);
3643
3644 skb->skb_mstamp_ns = now;
3645 tcp_add_tx_delay(skb, tp);
3646
3647 return skb;
3648 }
3649 EXPORT_SYMBOL(tcp_make_synack);
3650
tcp_ca_dst_init(struct sock * sk,const struct dst_entry * dst)3651 static void tcp_ca_dst_init(struct sock *sk, const struct dst_entry *dst)
3652 {
3653 struct inet_connection_sock *icsk = inet_csk(sk);
3654 const struct tcp_congestion_ops *ca;
3655 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
3656
3657 if (ca_key == TCP_CA_UNSPEC)
3658 return;
3659
3660 rcu_read_lock();
3661 ca = tcp_ca_find_key(ca_key);
3662 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
3663 bpf_module_put(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner);
3664 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
3665 icsk->icsk_ca_ops = ca;
3666 }
3667 rcu_read_unlock();
3668 }
3669
3670 /* Do all connect socket setups that can be done AF independent. */
tcp_connect_init(struct sock * sk)3671 static void tcp_connect_init(struct sock *sk)
3672 {
3673 const struct dst_entry *dst = __sk_dst_get(sk);
3674 struct tcp_sock *tp = tcp_sk(sk);
3675 __u8 rcv_wscale;
3676 u32 rcv_wnd;
3677
3678 /* We'll fix this up when we get a response from the other end.
3679 * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT.
3680 */
3681 tp->tcp_header_len = sizeof(struct tcphdr);
3682 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_timestamps))
3683 tp->tcp_header_len += TCPOLEN_TSTAMP_ALIGNED;
3684
3685 #ifdef CONFIG_TCP_MD5SIG
3686 if (tp->af_specific->md5_lookup(sk, sk))
3687 tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
3688 #endif
3689
3690 /* If user gave his TCP_MAXSEG, record it to clamp */
3691 if (tp->rx_opt.user_mss)
3692 tp->rx_opt.mss_clamp = tp->rx_opt.user_mss;
3693 tp->max_window = 0;
3694 tcp_mtup_init(sk);
3695 tcp_sync_mss(sk, dst_mtu(dst));
3696
3697 tcp_ca_dst_init(sk, dst);
3698
3699 if (!tp->window_clamp)
3700 tp->window_clamp = dst_metric(dst, RTAX_WINDOW);
3701 tp->advmss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
3702
3703 tcp_initialize_rcv_mss(sk);
3704
3705 /* limit the window selection if the user enforce a smaller rx buffer */
3706 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
3707 (tp->window_clamp > tcp_full_space(sk) || tp->window_clamp == 0))
3708 tp->window_clamp = tcp_full_space(sk);
3709
3710 rcv_wnd = tcp_rwnd_init_bpf(sk);
3711 if (rcv_wnd == 0)
3712 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
3713
3714 tcp_select_initial_window(sk, tcp_full_space(sk),
3715 tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0),
3716 &tp->rcv_wnd,
3717 &tp->window_clamp,
3718 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_window_scaling),
3719 &rcv_wscale,
3720 rcv_wnd);
3721
3722 tp->rx_opt.rcv_wscale = rcv_wscale;
3723 tp->rcv_ssthresh = tp->rcv_wnd;
3724
3725 sk->sk_err = 0;
3726 sock_reset_flag(sk, SOCK_DONE);
3727 tp->snd_wnd = 0;
3728 tcp_init_wl(tp, 0);
3729 tcp_write_queue_purge(sk);
3730 tp->snd_una = tp->write_seq;
3731 tp->snd_sml = tp->write_seq;
3732 tp->snd_up = tp->write_seq;
3733 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3734
3735 if (likely(!tp->repair))
3736 tp->rcv_nxt = 0;
3737 else
3738 tp->rcv_tstamp = tcp_jiffies32;
3739 tp->rcv_wup = tp->rcv_nxt;
3740 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3741
3742 inet_csk(sk)->icsk_rto = tcp_timeout_init(sk);
3743 inet_csk(sk)->icsk_retransmits = 0;
3744 tcp_clear_retrans(tp);
3745 }
3746
tcp_connect_queue_skb(struct sock * sk,struct sk_buff * skb)3747 static void tcp_connect_queue_skb(struct sock *sk, struct sk_buff *skb)
3748 {
3749 struct tcp_sock *tp = tcp_sk(sk);
3750 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
3751
3752 tcb->end_seq += skb->len;
3753 __skb_header_release(skb);
3754 sk_wmem_queued_add(sk, skb->truesize);
3755 sk_mem_charge(sk, skb->truesize);
3756 WRITE_ONCE(tp->write_seq, tcb->end_seq);
3757 tp->packets_out += tcp_skb_pcount(skb);
3758 }
3759
3760 /* Build and send a SYN with data and (cached) Fast Open cookie. However,
3761 * queue a data-only packet after the regular SYN, such that regular SYNs
3762 * are retransmitted on timeouts. Also if the remote SYN-ACK acknowledges
3763 * only the SYN sequence, the data are retransmitted in the first ACK.
3764 * If cookie is not cached or other error occurs, falls back to send a
3765 * regular SYN with Fast Open cookie request option.
3766 */
tcp_send_syn_data(struct sock * sk,struct sk_buff * syn)3767 static int tcp_send_syn_data(struct sock *sk, struct sk_buff *syn)
3768 {
3769 struct inet_connection_sock *icsk = inet_csk(sk);
3770 struct tcp_sock *tp = tcp_sk(sk);
3771 struct tcp_fastopen_request *fo = tp->fastopen_req;
3772 int space, err = 0;
3773 struct sk_buff *syn_data;
3774
3775 tp->rx_opt.mss_clamp = tp->advmss; /* If MSS is not cached */
3776 if (!tcp_fastopen_cookie_check(sk, &tp->rx_opt.mss_clamp, &fo->cookie))
3777 goto fallback;
3778
3779 /* MSS for SYN-data is based on cached MSS and bounded by PMTU and
3780 * user-MSS. Reserve maximum option space for middleboxes that add
3781 * private TCP options. The cost is reduced data space in SYN :(
3782 */
3783 tp->rx_opt.mss_clamp = tcp_mss_clamp(tp, tp->rx_opt.mss_clamp);
3784 /* Sync mss_cache after updating the mss_clamp */
3785 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
3786
3787 space = __tcp_mtu_to_mss(sk, icsk->icsk_pmtu_cookie) -
3788 MAX_TCP_OPTION_SPACE;
3789
3790 space = min_t(size_t, space, fo->size);
3791
3792 /* limit to order-0 allocations */
3793 space = min_t(size_t, space, SKB_MAX_HEAD(MAX_TCP_HEADER));
3794
3795 syn_data = sk_stream_alloc_skb(sk, space, sk->sk_allocation, false);
3796 if (!syn_data)
3797 goto fallback;
3798 syn_data->ip_summed = CHECKSUM_PARTIAL;
3799 memcpy(syn_data->cb, syn->cb, sizeof(syn->cb));
3800 if (space) {
3801 int copied = copy_from_iter(skb_put(syn_data, space), space,
3802 &fo->data->msg_iter);
3803 if (unlikely(!copied)) {
3804 tcp_skb_tsorted_anchor_cleanup(syn_data);
3805 kfree_skb(syn_data);
3806 goto fallback;
3807 }
3808 if (copied != space) {
3809 skb_trim(syn_data, copied);
3810 space = copied;
3811 }
3812 skb_zcopy_set(syn_data, fo->uarg, NULL);
3813 }
3814 /* No more data pending in inet_wait_for_connect() */
3815 if (space == fo->size)
3816 fo->data = NULL;
3817 fo->copied = space;
3818
3819 tcp_connect_queue_skb(sk, syn_data);
3820 if (syn_data->len)
3821 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
3822
3823 err = tcp_transmit_skb(sk, syn_data, 1, sk->sk_allocation);
3824
3825 syn->skb_mstamp_ns = syn_data->skb_mstamp_ns;
3826
3827 /* Now full SYN+DATA was cloned and sent (or not),
3828 * remove the SYN from the original skb (syn_data)
3829 * we keep in write queue in case of a retransmit, as we
3830 * also have the SYN packet (with no data) in the same queue.
3831 */
3832 TCP_SKB_CB(syn_data)->seq++;
3833 TCP_SKB_CB(syn_data)->tcp_flags = TCPHDR_ACK | TCPHDR_PSH;
3834 if (!err) {
3835 tp->syn_data = (fo->copied > 0);
3836 tcp_rbtree_insert(&sk->tcp_rtx_queue, syn_data);
3837 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPORIGDATASENT);
3838 goto done;
3839 }
3840
3841 /* data was not sent, put it in write_queue */
3842 __skb_queue_tail(&sk->sk_write_queue, syn_data);
3843 tp->packets_out -= tcp_skb_pcount(syn_data);
3844
3845 fallback:
3846 /* Send a regular SYN with Fast Open cookie request option */
3847 if (fo->cookie.len > 0)
3848 fo->cookie.len = 0;
3849 err = tcp_transmit_skb(sk, syn, 1, sk->sk_allocation);
3850 if (err)
3851 tp->syn_fastopen = 0;
3852 done:
3853 fo->cookie.len = -1; /* Exclude Fast Open option for SYN retries */
3854 return err;
3855 }
3856
3857 /* Build a SYN and send it off. */
tcp_connect(struct sock * sk)3858 int tcp_connect(struct sock *sk)
3859 {
3860 struct tcp_sock *tp = tcp_sk(sk);
3861 struct sk_buff *buff;
3862 int err;
3863
3864 tcp_call_bpf(sk, BPF_SOCK_OPS_TCP_CONNECT_CB, 0, NULL);
3865
3866 if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk))
3867 return -EHOSTUNREACH; /* Routing failure or similar. */
3868
3869 tcp_connect_init(sk);
3870
3871 if (unlikely(tp->repair)) {
3872 tcp_finish_connect(sk, NULL);
3873 return 0;
3874 }
3875
3876 buff = sk_stream_alloc_skb(sk, 0, sk->sk_allocation, true);
3877 if (unlikely(!buff))
3878 return -ENOBUFS;
3879
3880 tcp_init_nondata_skb(buff, tp->write_seq++, TCPHDR_SYN);
3881 tcp_mstamp_refresh(tp);
3882 tp->retrans_stamp = tcp_time_stamp(tp);
3883 tcp_connect_queue_skb(sk, buff);
3884 tcp_ecn_send_syn(sk, buff);
3885 tcp_rbtree_insert(&sk->tcp_rtx_queue, buff);
3886
3887 /* Send off SYN; include data in Fast Open. */
3888 err = tp->fastopen_req ? tcp_send_syn_data(sk, buff) :
3889 tcp_transmit_skb(sk, buff, 1, sk->sk_allocation);
3890 if (err == -ECONNREFUSED)
3891 return err;
3892
3893 /* We change tp->snd_nxt after the tcp_transmit_skb() call
3894 * in order to make this packet get counted in tcpOutSegs.
3895 */
3896 WRITE_ONCE(tp->snd_nxt, tp->write_seq);
3897 tp->pushed_seq = tp->write_seq;
3898 buff = tcp_send_head(sk);
3899 if (unlikely(buff)) {
3900 WRITE_ONCE(tp->snd_nxt, TCP_SKB_CB(buff)->seq);
3901 tp->pushed_seq = TCP_SKB_CB(buff)->seq;
3902 }
3903 TCP_INC_STATS(sock_net(sk), TCP_MIB_ACTIVEOPENS);
3904
3905 /* Timer for repeating the SYN until an answer. */
3906 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3907 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3908 return 0;
3909 }
3910 EXPORT_SYMBOL(tcp_connect);
3911
3912 /* Send out a delayed ack, the caller does the policy checking
3913 * to see if we should even be here. See tcp_input.c:tcp_ack_snd_check()
3914 * for details.
3915 */
tcp_send_delayed_ack(struct sock * sk)3916 void tcp_send_delayed_ack(struct sock *sk)
3917 {
3918 struct inet_connection_sock *icsk = inet_csk(sk);
3919 int ato = icsk->icsk_ack.ato;
3920 unsigned long timeout;
3921
3922 if (ato > TCP_DELACK_MIN) {
3923 const struct tcp_sock *tp = tcp_sk(sk);
3924 int max_ato = HZ / 2;
3925
3926 if (inet_csk_in_pingpong_mode(sk) ||
3927 (icsk->icsk_ack.pending & ICSK_ACK_PUSHED))
3928 max_ato = TCP_DELACK_MAX;
3929
3930 /* Slow path, intersegment interval is "high". */
3931
3932 /* If some rtt estimate is known, use it to bound delayed ack.
3933 * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements
3934 * directly.
3935 */
3936 if (tp->srtt_us) {
3937 int rtt = max_t(int, usecs_to_jiffies(tp->srtt_us >> 3),
3938 TCP_DELACK_MIN);
3939
3940 if (rtt < max_ato)
3941 max_ato = rtt;
3942 }
3943
3944 ato = min(ato, max_ato);
3945 }
3946
3947 ato = min_t(u32, ato, inet_csk(sk)->icsk_delack_max);
3948
3949 /* Stay within the limit we were given */
3950 timeout = jiffies + ato;
3951
3952 /* Use new timeout only if there wasn't a older one earlier. */
3953 if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) {
3954 /* If delack timer is about to expire, send ACK now. */
3955 if (time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) {
3956 tcp_send_ack(sk);
3957 return;
3958 }
3959
3960 if (!time_before(timeout, icsk->icsk_ack.timeout))
3961 timeout = icsk->icsk_ack.timeout;
3962 }
3963 icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
3964 icsk->icsk_ack.timeout = timeout;
3965 sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout);
3966 }
3967
3968 /* This routine sends an ack and also updates the window. */
__tcp_send_ack(struct sock * sk,u32 rcv_nxt)3969 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt)
3970 {
3971 struct sk_buff *buff;
3972
3973 /* If we have been reset, we may not send again. */
3974 if (sk->sk_state == TCP_CLOSE)
3975 return;
3976
3977 /* We are not putting this on the write queue, so
3978 * tcp_transmit_skb() will set the ownership to this
3979 * sock.
3980 */
3981 buff = alloc_skb(MAX_TCP_HEADER,
3982 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
3983 if (unlikely(!buff)) {
3984 struct inet_connection_sock *icsk = inet_csk(sk);
3985 unsigned long delay;
3986
3987 delay = TCP_DELACK_MAX << icsk->icsk_ack.retry;
3988 if (delay < TCP_RTO_MAX)
3989 icsk->icsk_ack.retry++;
3990 inet_csk_schedule_ack(sk);
3991 icsk->icsk_ack.ato = TCP_ATO_MIN;
3992 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, delay, TCP_RTO_MAX);
3993 return;
3994 }
3995
3996 /* Reserve space for headers and prepare control bits. */
3997 skb_reserve(buff, MAX_TCP_HEADER);
3998 tcp_init_nondata_skb(buff, tcp_acceptable_seq(sk), TCPHDR_ACK);
3999
4000 /* We do not want pure acks influencing TCP Small Queues or fq/pacing
4001 * too much.
4002 * SKB_TRUESIZE(max(1 .. 66, MAX_TCP_HEADER)) is unfortunately ~784
4003 */
4004 skb_set_tcp_pure_ack(buff);
4005
4006 /* Send it off, this clears delayed acks for us. */
4007 __tcp_transmit_skb(sk, buff, 0, (__force gfp_t)0, rcv_nxt);
4008 }
4009 EXPORT_SYMBOL_GPL(__tcp_send_ack);
4010
tcp_send_ack(struct sock * sk)4011 void tcp_send_ack(struct sock *sk)
4012 {
4013 __tcp_send_ack(sk, tcp_sk(sk)->rcv_nxt);
4014 }
4015
4016 /* This routine sends a packet with an out of date sequence
4017 * number. It assumes the other end will try to ack it.
4018 *
4019 * Question: what should we make while urgent mode?
4020 * 4.4BSD forces sending single byte of data. We cannot send
4021 * out of window data, because we have SND.NXT==SND.MAX...
4022 *
4023 * Current solution: to send TWO zero-length segments in urgent mode:
4024 * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is
4025 * out-of-date with SND.UNA-1 to probe window.
4026 */
tcp_xmit_probe_skb(struct sock * sk,int urgent,int mib)4027 static int tcp_xmit_probe_skb(struct sock *sk, int urgent, int mib)
4028 {
4029 struct tcp_sock *tp = tcp_sk(sk);
4030 struct sk_buff *skb;
4031
4032 /* We don't queue it, tcp_transmit_skb() sets ownership. */
4033 skb = alloc_skb(MAX_TCP_HEADER,
4034 sk_gfp_mask(sk, GFP_ATOMIC | __GFP_NOWARN));
4035 if (!skb)
4036 return -1;
4037
4038 /* Reserve space for headers and set control bits. */
4039 skb_reserve(skb, MAX_TCP_HEADER);
4040 /* Use a previous sequence. This should cause the other
4041 * end to send an ack. Don't queue or clone SKB, just
4042 * send it.
4043 */
4044 tcp_init_nondata_skb(skb, tp->snd_una - !urgent, TCPHDR_ACK);
4045 NET_INC_STATS(sock_net(sk), mib);
4046 return tcp_transmit_skb(sk, skb, 0, (__force gfp_t)0);
4047 }
4048
4049 /* Called from setsockopt( ... TCP_REPAIR ) */
tcp_send_window_probe(struct sock * sk)4050 void tcp_send_window_probe(struct sock *sk)
4051 {
4052 if (sk->sk_state == TCP_ESTABLISHED) {
4053 tcp_sk(sk)->snd_wl1 = tcp_sk(sk)->rcv_nxt - 1;
4054 tcp_mstamp_refresh(tcp_sk(sk));
4055 tcp_xmit_probe_skb(sk, 0, LINUX_MIB_TCPWINPROBE);
4056 }
4057 }
4058
4059 /* Initiate keepalive or window probe from timer. */
tcp_write_wakeup(struct sock * sk,int mib)4060 int tcp_write_wakeup(struct sock *sk, int mib)
4061 {
4062 struct tcp_sock *tp = tcp_sk(sk);
4063 struct sk_buff *skb;
4064
4065 if (sk->sk_state == TCP_CLOSE)
4066 return -1;
4067
4068 skb = tcp_send_head(sk);
4069 if (skb && before(TCP_SKB_CB(skb)->seq, tcp_wnd_end(tp))) {
4070 int err;
4071 unsigned int mss = tcp_current_mss(sk);
4072 unsigned int seg_size = tcp_wnd_end(tp) - TCP_SKB_CB(skb)->seq;
4073
4074 if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq))
4075 tp->pushed_seq = TCP_SKB_CB(skb)->end_seq;
4076
4077 /* We are probing the opening of a window
4078 * but the window size is != 0
4079 * must have been a result SWS avoidance ( sender )
4080 */
4081 if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq ||
4082 skb->len > mss) {
4083 seg_size = min(seg_size, mss);
4084 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4085 if (tcp_fragment(sk, TCP_FRAG_IN_WRITE_QUEUE,
4086 skb, seg_size, mss, GFP_ATOMIC))
4087 return -1;
4088 } else if (!tcp_skb_pcount(skb))
4089 tcp_set_skb_tso_segs(skb, mss);
4090
4091 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
4092 err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC);
4093 if (!err)
4094 tcp_event_new_data_sent(sk, skb);
4095 return err;
4096 } else {
4097 if (between(tp->snd_up, tp->snd_una + 1, tp->snd_una + 0xFFFF))
4098 tcp_xmit_probe_skb(sk, 1, mib);
4099 return tcp_xmit_probe_skb(sk, 0, mib);
4100 }
4101 }
4102
4103 /* A window probe timeout has occurred. If window is not closed send
4104 * a partial packet else a zero probe.
4105 */
tcp_send_probe0(struct sock * sk)4106 void tcp_send_probe0(struct sock *sk)
4107 {
4108 struct inet_connection_sock *icsk = inet_csk(sk);
4109 struct tcp_sock *tp = tcp_sk(sk);
4110 struct net *net = sock_net(sk);
4111 unsigned long timeout;
4112 int err;
4113
4114 err = tcp_write_wakeup(sk, LINUX_MIB_TCPWINPROBE);
4115
4116 if (tp->packets_out || tcp_write_queue_empty(sk)) {
4117 /* Cancel probe timer, if it is not required. */
4118 icsk->icsk_probes_out = 0;
4119 icsk->icsk_backoff = 0;
4120 icsk->icsk_probes_tstamp = 0;
4121 return;
4122 }
4123
4124 icsk->icsk_probes_out++;
4125 if (err <= 0) {
4126 if (icsk->icsk_backoff < READ_ONCE(net->ipv4.sysctl_tcp_retries2))
4127 icsk->icsk_backoff++;
4128 timeout = tcp_probe0_when(sk, TCP_RTO_MAX);
4129 } else {
4130 /* If packet was not sent due to local congestion,
4131 * Let senders fight for local resources conservatively.
4132 */
4133 timeout = TCP_RESOURCE_PROBE_INTERVAL;
4134 }
4135
4136 timeout = tcp_clamp_probe0_to_user_timeout(sk, timeout);
4137 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, timeout, TCP_RTO_MAX);
4138 }
4139
tcp_rtx_synack(const struct sock * sk,struct request_sock * req)4140 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req)
4141 {
4142 const struct tcp_request_sock_ops *af_ops = tcp_rsk(req)->af_specific;
4143 struct flowi fl;
4144 int res;
4145
4146 tcp_rsk(req)->txhash = net_tx_rndhash();
4147 res = af_ops->send_synack(sk, NULL, &fl, req, NULL, TCP_SYNACK_NORMAL,
4148 NULL);
4149 if (!res) {
4150 TCP_INC_STATS(sock_net(sk), TCP_MIB_RETRANSSEGS);
4151 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNRETRANS);
4152 if (unlikely(tcp_passive_fastopen(sk)))
4153 tcp_sk(sk)->total_retrans++;
4154 trace_tcp_retransmit_synack(sk, req);
4155 }
4156 return res;
4157 }
4158 EXPORT_SYMBOL(tcp_rtx_synack);
4159