1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
6 *
7 * No idle tick implementation for low and high resolution timers
8 *
9 * Started by: Thomas Gleixner and Ingo Molnar
10 */
11 #include <linux/cpu.h>
12 #include <linux/err.h>
13 #include <linux/hrtimer.h>
14 #include <linux/interrupt.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/percpu.h>
17 #include <linux/nmi.h>
18 #include <linux/profile.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/clock.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/nohz.h>
23 #include <linux/sched/loadavg.h>
24 #include <linux/module.h>
25 #include <linux/irq_work.h>
26 #include <linux/posix-timers.h>
27 #include <linux/context_tracking.h>
28 #include <linux/mm.h>
29 #include <trace/hooks/sched.h>
30
31 #include <asm/irq_regs.h>
32
33 #include "tick-internal.h"
34
35 #include <trace/events/timer.h>
36
37 /*
38 * Per-CPU nohz control structure
39 */
40 static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
41
tick_get_tick_sched(int cpu)42 struct tick_sched *tick_get_tick_sched(int cpu)
43 {
44 return &per_cpu(tick_cpu_sched, cpu);
45 }
46
47 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
48 /*
49 * The time, when the last jiffy update happened. Write access must hold
50 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
51 * consistent view of jiffies and last_jiffies_update.
52 */
53 static ktime_t last_jiffies_update;
54
55 /*
56 * Must be called with interrupts disabled !
57 */
tick_do_update_jiffies64(ktime_t now)58 static void tick_do_update_jiffies64(ktime_t now)
59 {
60 unsigned long ticks = 1;
61 ktime_t delta, nextp;
62
63 /*
64 * 64bit can do a quick check without holding jiffies lock and
65 * without looking at the sequence count. The smp_load_acquire()
66 * pairs with the update done later in this function.
67 *
68 * 32bit cannot do that because the store of tick_next_period
69 * consists of two 32bit stores and the first store could move it
70 * to a random point in the future.
71 */
72 if (IS_ENABLED(CONFIG_64BIT)) {
73 if (ktime_before(now, smp_load_acquire(&tick_next_period)))
74 return;
75 } else {
76 unsigned int seq;
77
78 /*
79 * Avoid contention on jiffies_lock and protect the quick
80 * check with the sequence count.
81 */
82 do {
83 seq = read_seqcount_begin(&jiffies_seq);
84 nextp = tick_next_period;
85 } while (read_seqcount_retry(&jiffies_seq, seq));
86
87 if (ktime_before(now, nextp))
88 return;
89 }
90
91 /* Quick check failed, i.e. update is required. */
92 raw_spin_lock(&jiffies_lock);
93 /*
94 * Reevaluate with the lock held. Another CPU might have done the
95 * update already.
96 */
97 if (ktime_before(now, tick_next_period)) {
98 raw_spin_unlock(&jiffies_lock);
99 return;
100 }
101
102 write_seqcount_begin(&jiffies_seq);
103
104 delta = ktime_sub(now, tick_next_period);
105 if (unlikely(delta >= TICK_NSEC)) {
106 /* Slow path for long idle sleep times */
107 s64 incr = TICK_NSEC;
108
109 ticks += ktime_divns(delta, incr);
110
111 last_jiffies_update = ktime_add_ns(last_jiffies_update,
112 incr * ticks);
113 } else {
114 last_jiffies_update = ktime_add_ns(last_jiffies_update,
115 TICK_NSEC);
116 }
117
118 /* Advance jiffies to complete the jiffies_seq protected job */
119 jiffies_64 += ticks;
120
121 /*
122 * Keep the tick_next_period variable up to date.
123 */
124 nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
125
126 if (IS_ENABLED(CONFIG_64BIT)) {
127 /*
128 * Pairs with smp_load_acquire() in the lockless quick
129 * check above and ensures that the update to jiffies_64 is
130 * not reordered vs. the store to tick_next_period, neither
131 * by the compiler nor by the CPU.
132 */
133 smp_store_release(&tick_next_period, nextp);
134 } else {
135 /*
136 * A plain store is good enough on 32bit as the quick check
137 * above is protected by the sequence count.
138 */
139 tick_next_period = nextp;
140 }
141
142 /*
143 * Release the sequence count. calc_global_load() below is not
144 * protected by it, but jiffies_lock needs to be held to prevent
145 * concurrent invocations.
146 */
147 write_seqcount_end(&jiffies_seq);
148
149 calc_global_load();
150
151 raw_spin_unlock(&jiffies_lock);
152 update_wall_time();
153 }
154
155 /*
156 * Initialize and return retrieve the jiffies update.
157 */
tick_init_jiffy_update(void)158 static ktime_t tick_init_jiffy_update(void)
159 {
160 ktime_t period;
161
162 raw_spin_lock(&jiffies_lock);
163 write_seqcount_begin(&jiffies_seq);
164 /* Did we start the jiffies update yet ? */
165 if (last_jiffies_update == 0) {
166 u32 rem;
167
168 /*
169 * Ensure that the tick is aligned to a multiple of
170 * TICK_NSEC.
171 */
172 div_u64_rem(tick_next_period, TICK_NSEC, &rem);
173 if (rem)
174 tick_next_period += TICK_NSEC - rem;
175
176 last_jiffies_update = tick_next_period;
177 }
178 period = last_jiffies_update;
179 write_seqcount_end(&jiffies_seq);
180 raw_spin_unlock(&jiffies_lock);
181 return period;
182 }
183
184 #define MAX_STALLED_JIFFIES 5
185
tick_sched_do_timer(struct tick_sched * ts,ktime_t now)186 static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
187 {
188 int cpu = smp_processor_id();
189
190 #ifdef CONFIG_NO_HZ_COMMON
191 /*
192 * Check if the do_timer duty was dropped. We don't care about
193 * concurrency: This happens only when the CPU in charge went
194 * into a long sleep. If two CPUs happen to assign themselves to
195 * this duty, then the jiffies update is still serialized by
196 * jiffies_lock.
197 *
198 * If nohz_full is enabled, this should not happen because the
199 * tick_do_timer_cpu never relinquishes.
200 */
201 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
202 #ifdef CONFIG_NO_HZ_FULL
203 WARN_ON_ONCE(tick_nohz_full_running);
204 #endif
205 tick_do_timer_cpu = cpu;
206 }
207 #endif
208
209 /* Check, if the jiffies need an update */
210 if (tick_do_timer_cpu == cpu) {
211 tick_do_update_jiffies64(now);
212 trace_android_vh_jiffies_update(NULL);
213 }
214
215 /*
216 * If jiffies update stalled for too long (timekeeper in stop_machine()
217 * or VMEXIT'ed for several msecs), force an update.
218 */
219 if (ts->last_tick_jiffies != jiffies) {
220 ts->stalled_jiffies = 0;
221 ts->last_tick_jiffies = READ_ONCE(jiffies);
222 } else {
223 if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
224 tick_do_update_jiffies64(now);
225 ts->stalled_jiffies = 0;
226 ts->last_tick_jiffies = READ_ONCE(jiffies);
227 }
228 }
229
230 if (ts->inidle)
231 ts->got_idle_tick = 1;
232 }
233
tick_sched_handle(struct tick_sched * ts,struct pt_regs * regs)234 static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
235 {
236 #ifdef CONFIG_NO_HZ_COMMON
237 /*
238 * When we are idle and the tick is stopped, we have to touch
239 * the watchdog as we might not schedule for a really long
240 * time. This happens on complete idle SMP systems while
241 * waiting on the login prompt. We also increment the "start of
242 * idle" jiffy stamp so the idle accounting adjustment we do
243 * when we go busy again does not account too much ticks.
244 */
245 if (ts->tick_stopped) {
246 touch_softlockup_watchdog_sched();
247 if (is_idle_task(current))
248 ts->idle_jiffies++;
249 /*
250 * In case the current tick fired too early past its expected
251 * expiration, make sure we don't bypass the next clock reprogramming
252 * to the same deadline.
253 */
254 ts->next_tick = 0;
255 }
256 #endif
257 update_process_times(user_mode(regs));
258 profile_tick(CPU_PROFILING);
259 }
260 #endif
261
262 #ifdef CONFIG_NO_HZ_FULL
263 cpumask_var_t tick_nohz_full_mask;
264 EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
265 bool tick_nohz_full_running;
266 EXPORT_SYMBOL_GPL(tick_nohz_full_running);
267 static atomic_t tick_dep_mask;
268
check_tick_dependency(atomic_t * dep)269 static bool check_tick_dependency(atomic_t *dep)
270 {
271 int val = atomic_read(dep);
272
273 if (val & TICK_DEP_MASK_POSIX_TIMER) {
274 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
275 return true;
276 }
277
278 if (val & TICK_DEP_MASK_PERF_EVENTS) {
279 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
280 return true;
281 }
282
283 if (val & TICK_DEP_MASK_SCHED) {
284 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
285 return true;
286 }
287
288 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
289 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
290 return true;
291 }
292
293 if (val & TICK_DEP_MASK_RCU) {
294 trace_tick_stop(0, TICK_DEP_MASK_RCU);
295 return true;
296 }
297
298 if (val & TICK_DEP_MASK_RCU_EXP) {
299 trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
300 return true;
301 }
302
303 return false;
304 }
305
can_stop_full_tick(int cpu,struct tick_sched * ts)306 static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
307 {
308 lockdep_assert_irqs_disabled();
309
310 if (unlikely(!cpu_online(cpu)))
311 return false;
312
313 if (check_tick_dependency(&tick_dep_mask))
314 return false;
315
316 if (check_tick_dependency(&ts->tick_dep_mask))
317 return false;
318
319 if (check_tick_dependency(¤t->tick_dep_mask))
320 return false;
321
322 if (check_tick_dependency(¤t->signal->tick_dep_mask))
323 return false;
324
325 return true;
326 }
327
nohz_full_kick_func(struct irq_work * work)328 static void nohz_full_kick_func(struct irq_work *work)
329 {
330 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
331 }
332
333 static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
334 IRQ_WORK_INIT_HARD(nohz_full_kick_func);
335
336 /*
337 * Kick this CPU if it's full dynticks in order to force it to
338 * re-evaluate its dependency on the tick and restart it if necessary.
339 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
340 * is NMI safe.
341 */
tick_nohz_full_kick(void)342 static void tick_nohz_full_kick(void)
343 {
344 if (!tick_nohz_full_cpu(smp_processor_id()))
345 return;
346
347 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
348 }
349
350 /*
351 * Kick the CPU if it's full dynticks in order to force it to
352 * re-evaluate its dependency on the tick and restart it if necessary.
353 */
tick_nohz_full_kick_cpu(int cpu)354 void tick_nohz_full_kick_cpu(int cpu)
355 {
356 if (!tick_nohz_full_cpu(cpu))
357 return;
358
359 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
360 }
361
tick_nohz_kick_task(struct task_struct * tsk)362 static void tick_nohz_kick_task(struct task_struct *tsk)
363 {
364 int cpu;
365
366 /*
367 * If the task is not running, run_posix_cpu_timers()
368 * has nothing to elapse, IPI can then be spared.
369 *
370 * activate_task() STORE p->tick_dep_mask
371 * STORE p->on_rq
372 * __schedule() (switch to task 'p') smp_mb() (atomic_fetch_or())
373 * LOCK rq->lock LOAD p->on_rq
374 * smp_mb__after_spin_lock()
375 * tick_nohz_task_switch()
376 * LOAD p->tick_dep_mask
377 */
378 if (!sched_task_on_rq(tsk))
379 return;
380
381 /*
382 * If the task concurrently migrates to another CPU,
383 * we guarantee it sees the new tick dependency upon
384 * schedule.
385 *
386 * set_task_cpu(p, cpu);
387 * STORE p->cpu = @cpu
388 * __schedule() (switch to task 'p')
389 * LOCK rq->lock
390 * smp_mb__after_spin_lock() STORE p->tick_dep_mask
391 * tick_nohz_task_switch() smp_mb() (atomic_fetch_or())
392 * LOAD p->tick_dep_mask LOAD p->cpu
393 */
394 cpu = task_cpu(tsk);
395
396 preempt_disable();
397 if (cpu_online(cpu))
398 tick_nohz_full_kick_cpu(cpu);
399 preempt_enable();
400 }
401
402 /*
403 * Kick all full dynticks CPUs in order to force these to re-evaluate
404 * their dependency on the tick and restart it if necessary.
405 */
tick_nohz_full_kick_all(void)406 static void tick_nohz_full_kick_all(void)
407 {
408 int cpu;
409
410 if (!tick_nohz_full_running)
411 return;
412
413 preempt_disable();
414 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
415 tick_nohz_full_kick_cpu(cpu);
416 preempt_enable();
417 }
418
tick_nohz_dep_set_all(atomic_t * dep,enum tick_dep_bits bit)419 static void tick_nohz_dep_set_all(atomic_t *dep,
420 enum tick_dep_bits bit)
421 {
422 int prev;
423
424 prev = atomic_fetch_or(BIT(bit), dep);
425 if (!prev)
426 tick_nohz_full_kick_all();
427 }
428
429 /*
430 * Set a global tick dependency. Used by perf events that rely on freq and
431 * by unstable clock.
432 */
tick_nohz_dep_set(enum tick_dep_bits bit)433 void tick_nohz_dep_set(enum tick_dep_bits bit)
434 {
435 tick_nohz_dep_set_all(&tick_dep_mask, bit);
436 }
437
tick_nohz_dep_clear(enum tick_dep_bits bit)438 void tick_nohz_dep_clear(enum tick_dep_bits bit)
439 {
440 atomic_andnot(BIT(bit), &tick_dep_mask);
441 }
442
443 /*
444 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
445 * manage events throttling.
446 */
tick_nohz_dep_set_cpu(int cpu,enum tick_dep_bits bit)447 void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
448 {
449 int prev;
450 struct tick_sched *ts;
451
452 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
453
454 prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
455 if (!prev) {
456 preempt_disable();
457 /* Perf needs local kick that is NMI safe */
458 if (cpu == smp_processor_id()) {
459 tick_nohz_full_kick();
460 } else {
461 /* Remote irq work not NMI-safe */
462 if (!WARN_ON_ONCE(in_nmi()))
463 tick_nohz_full_kick_cpu(cpu);
464 }
465 preempt_enable();
466 }
467 }
468 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
469
tick_nohz_dep_clear_cpu(int cpu,enum tick_dep_bits bit)470 void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
471 {
472 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
473
474 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
475 }
476 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
477
478 /*
479 * Set a per-task tick dependency. RCU need this. Also posix CPU timers
480 * in order to elapse per task timers.
481 */
tick_nohz_dep_set_task(struct task_struct * tsk,enum tick_dep_bits bit)482 void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
483 {
484 if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
485 tick_nohz_kick_task(tsk);
486 }
487 EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
488
tick_nohz_dep_clear_task(struct task_struct * tsk,enum tick_dep_bits bit)489 void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
490 {
491 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
492 }
493 EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
494
495 /*
496 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
497 * per process timers.
498 */
tick_nohz_dep_set_signal(struct task_struct * tsk,enum tick_dep_bits bit)499 void tick_nohz_dep_set_signal(struct task_struct *tsk,
500 enum tick_dep_bits bit)
501 {
502 int prev;
503 struct signal_struct *sig = tsk->signal;
504
505 prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
506 if (!prev) {
507 struct task_struct *t;
508
509 lockdep_assert_held(&tsk->sighand->siglock);
510 __for_each_thread(sig, t)
511 tick_nohz_kick_task(t);
512 }
513 }
514
tick_nohz_dep_clear_signal(struct signal_struct * sig,enum tick_dep_bits bit)515 void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
516 {
517 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
518 }
519
520 /*
521 * Re-evaluate the need for the tick as we switch the current task.
522 * It might need the tick due to per task/process properties:
523 * perf events, posix CPU timers, ...
524 */
__tick_nohz_task_switch(void)525 void __tick_nohz_task_switch(void)
526 {
527 struct tick_sched *ts;
528
529 if (!tick_nohz_full_cpu(smp_processor_id()))
530 return;
531
532 ts = this_cpu_ptr(&tick_cpu_sched);
533
534 if (ts->tick_stopped) {
535 if (atomic_read(¤t->tick_dep_mask) ||
536 atomic_read(¤t->signal->tick_dep_mask))
537 tick_nohz_full_kick();
538 }
539 }
540
541 /* Get the boot-time nohz CPU list from the kernel parameters. */
tick_nohz_full_setup(cpumask_var_t cpumask)542 void __init tick_nohz_full_setup(cpumask_var_t cpumask)
543 {
544 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
545 cpumask_copy(tick_nohz_full_mask, cpumask);
546 tick_nohz_full_running = true;
547 }
548
tick_nohz_cpu_hotpluggable(unsigned int cpu)549 bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
550 {
551 /*
552 * The tick_do_timer_cpu CPU handles housekeeping duty (unbound
553 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
554 * CPUs. It must remain online when nohz full is enabled.
555 */
556 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
557 return false;
558 return true;
559 }
560
tick_nohz_cpu_down(unsigned int cpu)561 static int tick_nohz_cpu_down(unsigned int cpu)
562 {
563 return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
564 }
565
tick_nohz_init(void)566 void __init tick_nohz_init(void)
567 {
568 int cpu, ret;
569
570 if (!tick_nohz_full_running)
571 return;
572
573 /*
574 * Full dynticks uses irq work to drive the tick rescheduling on safe
575 * locking contexts. But then we need irq work to raise its own
576 * interrupts to avoid circular dependency on the tick
577 */
578 if (!arch_irq_work_has_interrupt()) {
579 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
580 cpumask_clear(tick_nohz_full_mask);
581 tick_nohz_full_running = false;
582 return;
583 }
584
585 if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
586 !IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
587 cpu = smp_processor_id();
588
589 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
590 pr_warn("NO_HZ: Clearing %d from nohz_full range "
591 "for timekeeping\n", cpu);
592 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
593 }
594 }
595
596 for_each_cpu(cpu, tick_nohz_full_mask)
597 context_tracking_cpu_set(cpu);
598
599 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
600 "kernel/nohz:predown", NULL,
601 tick_nohz_cpu_down);
602 WARN_ON(ret < 0);
603 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
604 cpumask_pr_args(tick_nohz_full_mask));
605 }
606 #endif
607
608 /*
609 * NOHZ - aka dynamic tick functionality
610 */
611 #ifdef CONFIG_NO_HZ_COMMON
612 /*
613 * NO HZ enabled ?
614 */
615 bool tick_nohz_enabled __read_mostly = true;
616 unsigned long tick_nohz_active __read_mostly;
617 /*
618 * Enable / Disable tickless mode
619 */
setup_tick_nohz(char * str)620 static int __init setup_tick_nohz(char *str)
621 {
622 return (kstrtobool(str, &tick_nohz_enabled) == 0);
623 }
624
625 __setup("nohz=", setup_tick_nohz);
626
tick_nohz_tick_stopped(void)627 bool tick_nohz_tick_stopped(void)
628 {
629 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
630
631 return ts->tick_stopped;
632 }
633
tick_nohz_tick_stopped_cpu(int cpu)634 bool tick_nohz_tick_stopped_cpu(int cpu)
635 {
636 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
637
638 return ts->tick_stopped;
639 }
640
641 /**
642 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
643 *
644 * Called from interrupt entry when the CPU was idle
645 *
646 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
647 * must be updated. Otherwise an interrupt handler could use a stale jiffy
648 * value. We do this unconditionally on any CPU, as we don't know whether the
649 * CPU, which has the update task assigned is in a long sleep.
650 */
tick_nohz_update_jiffies(ktime_t now)651 static void tick_nohz_update_jiffies(ktime_t now)
652 {
653 unsigned long flags;
654
655 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
656
657 local_irq_save(flags);
658 tick_do_update_jiffies64(now);
659 local_irq_restore(flags);
660
661 touch_softlockup_watchdog_sched();
662 }
663
664 /*
665 * Updates the per-CPU time idle statistics counters
666 */
667 static void
update_ts_time_stats(int cpu,struct tick_sched * ts,ktime_t now,u64 * last_update_time)668 update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
669 {
670 ktime_t delta;
671
672 if (ts->idle_active) {
673 delta = ktime_sub(now, ts->idle_entrytime);
674 if (nr_iowait_cpu(cpu) > 0)
675 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
676 else
677 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
678 ts->idle_entrytime = now;
679 }
680
681 if (last_update_time)
682 *last_update_time = ktime_to_us(now);
683
684 }
685
tick_nohz_stop_idle(struct tick_sched * ts,ktime_t now)686 static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
687 {
688 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
689 ts->idle_active = 0;
690
691 sched_clock_idle_wakeup_event();
692 }
693
tick_nohz_start_idle(struct tick_sched * ts)694 static void tick_nohz_start_idle(struct tick_sched *ts)
695 {
696 ts->idle_entrytime = ktime_get();
697 ts->idle_active = 1;
698 sched_clock_idle_sleep_event();
699 }
700
701 /**
702 * get_cpu_idle_time_us - get the total idle time of a CPU
703 * @cpu: CPU number to query
704 * @last_update_time: variable to store update time in. Do not update
705 * counters if NULL.
706 *
707 * Return the cumulative idle time (since boot) for a given
708 * CPU, in microseconds.
709 *
710 * This time is measured via accounting rather than sampling,
711 * and is as accurate as ktime_get() is.
712 *
713 * This function returns -1 if NOHZ is not enabled.
714 */
get_cpu_idle_time_us(int cpu,u64 * last_update_time)715 u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
716 {
717 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
718 ktime_t now, idle;
719
720 if (!tick_nohz_active)
721 return -1;
722
723 now = ktime_get();
724 if (last_update_time) {
725 update_ts_time_stats(cpu, ts, now, last_update_time);
726 idle = ts->idle_sleeptime;
727 } else {
728 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
729 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
730
731 idle = ktime_add(ts->idle_sleeptime, delta);
732 } else {
733 idle = ts->idle_sleeptime;
734 }
735 }
736
737 return ktime_to_us(idle);
738
739 }
740 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
741
742 /**
743 * get_cpu_iowait_time_us - get the total iowait time of a CPU
744 * @cpu: CPU number to query
745 * @last_update_time: variable to store update time in. Do not update
746 * counters if NULL.
747 *
748 * Return the cumulative iowait time (since boot) for a given
749 * CPU, in microseconds.
750 *
751 * This time is measured via accounting rather than sampling,
752 * and is as accurate as ktime_get() is.
753 *
754 * This function returns -1 if NOHZ is not enabled.
755 */
get_cpu_iowait_time_us(int cpu,u64 * last_update_time)756 u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
757 {
758 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
759 ktime_t now, iowait;
760
761 if (!tick_nohz_active)
762 return -1;
763
764 now = ktime_get();
765 if (last_update_time) {
766 update_ts_time_stats(cpu, ts, now, last_update_time);
767 iowait = ts->iowait_sleeptime;
768 } else {
769 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
770 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
771
772 iowait = ktime_add(ts->iowait_sleeptime, delta);
773 } else {
774 iowait = ts->iowait_sleeptime;
775 }
776 }
777
778 return ktime_to_us(iowait);
779 }
780 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
781
tick_nohz_restart(struct tick_sched * ts,ktime_t now)782 static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
783 {
784 hrtimer_cancel(&ts->sched_timer);
785 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
786
787 /* Forward the time to expire in the future */
788 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
789
790 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
791 hrtimer_start_expires(&ts->sched_timer,
792 HRTIMER_MODE_ABS_PINNED_HARD);
793 } else {
794 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
795 }
796
797 /*
798 * Reset to make sure next tick stop doesn't get fooled by past
799 * cached clock deadline.
800 */
801 ts->next_tick = 0;
802 }
803
local_timer_softirq_pending(void)804 static inline bool local_timer_softirq_pending(void)
805 {
806 return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
807 }
808
tick_nohz_next_event(struct tick_sched * ts,int cpu)809 static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
810 {
811 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
812 unsigned long basejiff;
813 unsigned int seq;
814
815 /* Read jiffies and the time when jiffies were updated last */
816 do {
817 seq = read_seqcount_begin(&jiffies_seq);
818 basemono = last_jiffies_update;
819 basejiff = jiffies;
820 } while (read_seqcount_retry(&jiffies_seq, seq));
821 ts->last_jiffies = basejiff;
822 ts->timer_expires_base = basemono;
823
824 /*
825 * Keep the periodic tick, when RCU, architecture or irq_work
826 * requests it.
827 * Aside of that check whether the local timer softirq is
828 * pending. If so its a bad idea to call get_next_timer_interrupt()
829 * because there is an already expired timer, so it will request
830 * immediate expiry, which rearms the hardware timer with a
831 * minimal delta which brings us back to this place
832 * immediately. Lather, rinse and repeat...
833 */
834 if (rcu_needs_cpu(basemono, &next_rcu) || arch_needs_cpu() ||
835 irq_work_needs_cpu() || local_timer_softirq_pending()) {
836 next_tick = basemono + TICK_NSEC;
837 } else {
838 /*
839 * Get the next pending timer. If high resolution
840 * timers are enabled this only takes the timer wheel
841 * timers into account. If high resolution timers are
842 * disabled this also looks at the next expiring
843 * hrtimer.
844 */
845 next_tmr = get_next_timer_interrupt(basejiff, basemono);
846 ts->next_timer = next_tmr;
847 /* Take the next rcu event into account */
848 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
849 }
850
851 /*
852 * If the tick is due in the next period, keep it ticking or
853 * force prod the timer.
854 */
855 delta = next_tick - basemono;
856 if (delta <= (u64)TICK_NSEC) {
857 /*
858 * Tell the timer code that the base is not idle, i.e. undo
859 * the effect of get_next_timer_interrupt():
860 */
861 timer_clear_idle();
862 /*
863 * We've not stopped the tick yet, and there's a timer in the
864 * next period, so no point in stopping it either, bail.
865 */
866 if (!ts->tick_stopped) {
867 ts->timer_expires = 0;
868 goto out;
869 }
870 }
871
872 /*
873 * If this CPU is the one which had the do_timer() duty last, we limit
874 * the sleep time to the timekeeping max_deferment value.
875 * Otherwise we can sleep as long as we want.
876 */
877 delta = timekeeping_max_deferment();
878 if (cpu != tick_do_timer_cpu &&
879 (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
880 delta = KTIME_MAX;
881
882 /* Calculate the next expiry time */
883 if (delta < (KTIME_MAX - basemono))
884 expires = basemono + delta;
885 else
886 expires = KTIME_MAX;
887
888 ts->timer_expires = min_t(u64, expires, next_tick);
889
890 out:
891 return ts->timer_expires;
892 }
893
tick_nohz_stop_tick(struct tick_sched * ts,int cpu)894 static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
895 {
896 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
897 u64 basemono = ts->timer_expires_base;
898 u64 expires = ts->timer_expires;
899 ktime_t tick = expires;
900
901 /* Make sure we won't be trying to stop it twice in a row. */
902 ts->timer_expires_base = 0;
903
904 /*
905 * If this CPU is the one which updates jiffies, then give up
906 * the assignment and let it be taken by the CPU which runs
907 * the tick timer next, which might be this CPU as well. If we
908 * don't drop this here the jiffies might be stale and
909 * do_timer() never invoked. Keep track of the fact that it
910 * was the one which had the do_timer() duty last.
911 */
912 if (cpu == tick_do_timer_cpu) {
913 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
914 ts->do_timer_last = 1;
915 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
916 ts->do_timer_last = 0;
917 }
918
919 /* Skip reprogram of event if its not changed */
920 if (ts->tick_stopped && (expires == ts->next_tick)) {
921 /* Sanity check: make sure clockevent is actually programmed */
922 if (tick == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
923 return;
924
925 WARN_ON_ONCE(1);
926 printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
927 basemono, ts->next_tick, dev->next_event,
928 hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
929 }
930
931 /*
932 * nohz_stop_sched_tick can be called several times before
933 * the nohz_restart_sched_tick is called. This happens when
934 * interrupts arrive which do not cause a reschedule. In the
935 * first call we save the current tick time, so we can restart
936 * the scheduler tick in nohz_restart_sched_tick.
937 */
938 if (!ts->tick_stopped) {
939 calc_load_nohz_start();
940 quiet_vmstat();
941
942 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
943 ts->tick_stopped = 1;
944 trace_tick_stop(1, TICK_DEP_MASK_NONE);
945 }
946
947 ts->next_tick = tick;
948
949 /*
950 * If the expiration time == KTIME_MAX, then we simply stop
951 * the tick timer.
952 */
953 if (unlikely(expires == KTIME_MAX)) {
954 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
955 hrtimer_cancel(&ts->sched_timer);
956 else
957 tick_program_event(KTIME_MAX, 1);
958 return;
959 }
960
961 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
962 hrtimer_start(&ts->sched_timer, tick,
963 HRTIMER_MODE_ABS_PINNED_HARD);
964 } else {
965 hrtimer_set_expires(&ts->sched_timer, tick);
966 tick_program_event(tick, 1);
967 }
968 }
969
tick_nohz_retain_tick(struct tick_sched * ts)970 static void tick_nohz_retain_tick(struct tick_sched *ts)
971 {
972 ts->timer_expires_base = 0;
973 }
974
975 #ifdef CONFIG_NO_HZ_FULL
tick_nohz_stop_sched_tick(struct tick_sched * ts,int cpu)976 static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
977 {
978 if (tick_nohz_next_event(ts, cpu))
979 tick_nohz_stop_tick(ts, cpu);
980 else
981 tick_nohz_retain_tick(ts);
982 }
983 #endif /* CONFIG_NO_HZ_FULL */
984
tick_nohz_restart_sched_tick(struct tick_sched * ts,ktime_t now)985 static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
986 {
987 /* Update jiffies first */
988 tick_do_update_jiffies64(now);
989
990 /*
991 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
992 * the clock forward checks in the enqueue path:
993 */
994 timer_clear_idle();
995
996 calc_load_nohz_stop();
997 touch_softlockup_watchdog_sched();
998 /*
999 * Cancel the scheduled timer and restore the tick
1000 */
1001 ts->tick_stopped = 0;
1002 tick_nohz_restart(ts, now);
1003 }
1004
__tick_nohz_full_update_tick(struct tick_sched * ts,ktime_t now)1005 static void __tick_nohz_full_update_tick(struct tick_sched *ts,
1006 ktime_t now)
1007 {
1008 #ifdef CONFIG_NO_HZ_FULL
1009 int cpu = smp_processor_id();
1010
1011 if (can_stop_full_tick(cpu, ts))
1012 tick_nohz_stop_sched_tick(ts, cpu);
1013 else if (ts->tick_stopped)
1014 tick_nohz_restart_sched_tick(ts, now);
1015 #endif
1016 }
1017
tick_nohz_full_update_tick(struct tick_sched * ts)1018 static void tick_nohz_full_update_tick(struct tick_sched *ts)
1019 {
1020 if (!tick_nohz_full_cpu(smp_processor_id()))
1021 return;
1022
1023 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
1024 return;
1025
1026 __tick_nohz_full_update_tick(ts, ktime_get());
1027 }
1028
can_stop_idle_tick(int cpu,struct tick_sched * ts)1029 static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1030 {
1031 /*
1032 * If this CPU is offline and it is the one which updates
1033 * jiffies, then give up the assignment and let it be taken by
1034 * the CPU which runs the tick timer next. If we don't drop
1035 * this here the jiffies might be stale and do_timer() never
1036 * invoked.
1037 */
1038 if (unlikely(!cpu_online(cpu))) {
1039 if (cpu == tick_do_timer_cpu)
1040 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1041 /*
1042 * Make sure the CPU doesn't get fooled by obsolete tick
1043 * deadline if it comes back online later.
1044 */
1045 ts->next_tick = 0;
1046 return false;
1047 }
1048
1049 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
1050 return false;
1051
1052 if (need_resched())
1053 return false;
1054
1055 if (unlikely(local_softirq_pending())) {
1056 static int ratelimit;
1057
1058 if (ratelimit < 10 && !local_bh_blocked() &&
1059 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
1060 pr_warn("NOHZ tick-stop error: Non-RCU local softirq work is pending, handler #%02x!!!\n",
1061 (unsigned int) local_softirq_pending());
1062 ratelimit++;
1063 }
1064 return false;
1065 }
1066
1067 if (tick_nohz_full_enabled()) {
1068 /*
1069 * Keep the tick alive to guarantee timekeeping progression
1070 * if there are full dynticks CPUs around
1071 */
1072 if (tick_do_timer_cpu == cpu)
1073 return false;
1074
1075 /* Should not happen for nohz-full */
1076 if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
1077 return false;
1078 }
1079
1080 return true;
1081 }
1082
__tick_nohz_idle_stop_tick(struct tick_sched * ts)1083 static void __tick_nohz_idle_stop_tick(struct tick_sched *ts)
1084 {
1085 ktime_t expires;
1086 int cpu = smp_processor_id();
1087
1088 /*
1089 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1090 * tick timer expiration time is known already.
1091 */
1092 if (ts->timer_expires_base)
1093 expires = ts->timer_expires;
1094 else if (can_stop_idle_tick(cpu, ts))
1095 expires = tick_nohz_next_event(ts, cpu);
1096 else
1097 return;
1098
1099 ts->idle_calls++;
1100
1101 if (expires > 0LL) {
1102 int was_stopped = ts->tick_stopped;
1103
1104 tick_nohz_stop_tick(ts, cpu);
1105
1106 ts->idle_sleeps++;
1107 ts->idle_expires = expires;
1108
1109 if (!was_stopped && ts->tick_stopped) {
1110 ts->idle_jiffies = ts->last_jiffies;
1111 nohz_balance_enter_idle(cpu);
1112 }
1113 } else {
1114 tick_nohz_retain_tick(ts);
1115 }
1116 }
1117
1118 /**
1119 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1120 *
1121 * When the next event is more than a tick into the future, stop the idle tick
1122 */
tick_nohz_idle_stop_tick(void)1123 void tick_nohz_idle_stop_tick(void)
1124 {
1125 __tick_nohz_idle_stop_tick(this_cpu_ptr(&tick_cpu_sched));
1126 }
1127
tick_nohz_idle_retain_tick(void)1128 void tick_nohz_idle_retain_tick(void)
1129 {
1130 tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1131 /*
1132 * Undo the effect of get_next_timer_interrupt() called from
1133 * tick_nohz_next_event().
1134 */
1135 timer_clear_idle();
1136 }
1137
1138 /**
1139 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1140 *
1141 * Called when we start the idle loop.
1142 */
tick_nohz_idle_enter(void)1143 void tick_nohz_idle_enter(void)
1144 {
1145 struct tick_sched *ts;
1146
1147 lockdep_assert_irqs_enabled();
1148
1149 local_irq_disable();
1150
1151 ts = this_cpu_ptr(&tick_cpu_sched);
1152
1153 WARN_ON_ONCE(ts->timer_expires_base);
1154
1155 ts->inidle = 1;
1156 tick_nohz_start_idle(ts);
1157
1158 local_irq_enable();
1159 }
1160
1161 /**
1162 * tick_nohz_irq_exit - update next tick event from interrupt exit
1163 *
1164 * When an interrupt fires while we are idle and it doesn't cause
1165 * a reschedule, it may still add, modify or delete a timer, enqueue
1166 * an RCU callback, etc...
1167 * So we need to re-calculate and reprogram the next tick event.
1168 */
tick_nohz_irq_exit(void)1169 void tick_nohz_irq_exit(void)
1170 {
1171 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1172
1173 if (ts->inidle)
1174 tick_nohz_start_idle(ts);
1175 else
1176 tick_nohz_full_update_tick(ts);
1177 }
1178
1179 /**
1180 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
1181 */
tick_nohz_idle_got_tick(void)1182 bool tick_nohz_idle_got_tick(void)
1183 {
1184 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1185
1186 if (ts->got_idle_tick) {
1187 ts->got_idle_tick = 0;
1188 return true;
1189 }
1190 return false;
1191 }
1192
1193 /**
1194 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1195 * or the tick, whatever that expires first. Note that, if the tick has been
1196 * stopped, it returns the next hrtimer.
1197 *
1198 * Called from power state control code with interrupts disabled
1199 */
tick_nohz_get_next_hrtimer(void)1200 ktime_t tick_nohz_get_next_hrtimer(void)
1201 {
1202 return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
1203 }
1204
1205 /**
1206 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1207 * @delta_next: duration until the next event if the tick cannot be stopped
1208 *
1209 * Called from power state control code with interrupts disabled.
1210 *
1211 * The return value of this function and/or the value returned by it through the
1212 * @delta_next pointer can be negative which must be taken into account by its
1213 * callers.
1214 */
tick_nohz_get_sleep_length(ktime_t * delta_next)1215 ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1216 {
1217 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1218 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1219 int cpu = smp_processor_id();
1220 /*
1221 * The idle entry time is expected to be a sufficient approximation of
1222 * the current time at this point.
1223 */
1224 ktime_t now = ts->idle_entrytime;
1225 ktime_t next_event;
1226
1227 WARN_ON_ONCE(!ts->inidle);
1228
1229 *delta_next = ktime_sub(dev->next_event, now);
1230
1231 if (!can_stop_idle_tick(cpu, ts))
1232 return *delta_next;
1233
1234 next_event = tick_nohz_next_event(ts, cpu);
1235 if (!next_event)
1236 return *delta_next;
1237
1238 /*
1239 * If the next highres timer to expire is earlier than next_event, the
1240 * idle governor needs to know that.
1241 */
1242 next_event = min_t(u64, next_event,
1243 hrtimer_next_event_without(&ts->sched_timer));
1244
1245 return ktime_sub(next_event, now);
1246 }
1247 EXPORT_SYMBOL_GPL(tick_nohz_get_sleep_length);
1248
1249 /**
1250 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1251 * for a particular CPU.
1252 *
1253 * Called from the schedutil frequency scaling governor in scheduler context.
1254 */
tick_nohz_get_idle_calls_cpu(int cpu)1255 unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1256 {
1257 struct tick_sched *ts = tick_get_tick_sched(cpu);
1258
1259 return ts->idle_calls;
1260 }
1261 EXPORT_SYMBOL_GPL(tick_nohz_get_idle_calls_cpu);
1262
1263 /**
1264 * tick_nohz_get_idle_calls - return the current idle calls counter value
1265 *
1266 * Called from the schedutil frequency scaling governor in scheduler context.
1267 */
tick_nohz_get_idle_calls(void)1268 unsigned long tick_nohz_get_idle_calls(void)
1269 {
1270 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1271
1272 return ts->idle_calls;
1273 }
1274
tick_nohz_account_idle_time(struct tick_sched * ts,ktime_t now)1275 static void tick_nohz_account_idle_time(struct tick_sched *ts,
1276 ktime_t now)
1277 {
1278 unsigned long ticks;
1279
1280 ts->idle_exittime = now;
1281
1282 if (vtime_accounting_enabled_this_cpu())
1283 return;
1284 /*
1285 * We stopped the tick in idle. Update process times would miss the
1286 * time we slept as update_process_times does only a 1 tick
1287 * accounting. Enforce that this is accounted to idle !
1288 */
1289 ticks = jiffies - ts->idle_jiffies;
1290 /*
1291 * We might be one off. Do not randomly account a huge number of ticks!
1292 */
1293 if (ticks && ticks < LONG_MAX)
1294 account_idle_ticks(ticks);
1295 }
1296
tick_nohz_idle_restart_tick(void)1297 void tick_nohz_idle_restart_tick(void)
1298 {
1299 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1300
1301 if (ts->tick_stopped) {
1302 ktime_t now = ktime_get();
1303 tick_nohz_restart_sched_tick(ts, now);
1304 tick_nohz_account_idle_time(ts, now);
1305 }
1306 }
1307
tick_nohz_idle_update_tick(struct tick_sched * ts,ktime_t now)1308 static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1309 {
1310 if (tick_nohz_full_cpu(smp_processor_id()))
1311 __tick_nohz_full_update_tick(ts, now);
1312 else
1313 tick_nohz_restart_sched_tick(ts, now);
1314
1315 tick_nohz_account_idle_time(ts, now);
1316 }
1317
1318 /**
1319 * tick_nohz_idle_exit - restart the idle tick from the idle task
1320 *
1321 * Restart the idle tick when the CPU is woken up from idle
1322 * This also exit the RCU extended quiescent state. The CPU
1323 * can use RCU again after this function is called.
1324 */
tick_nohz_idle_exit(void)1325 void tick_nohz_idle_exit(void)
1326 {
1327 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328 bool idle_active, tick_stopped;
1329 ktime_t now;
1330
1331 local_irq_disable();
1332
1333 WARN_ON_ONCE(!ts->inidle);
1334 WARN_ON_ONCE(ts->timer_expires_base);
1335
1336 ts->inidle = 0;
1337 idle_active = ts->idle_active;
1338 tick_stopped = ts->tick_stopped;
1339
1340 if (idle_active || tick_stopped)
1341 now = ktime_get();
1342
1343 if (idle_active)
1344 tick_nohz_stop_idle(ts, now);
1345
1346 if (tick_stopped)
1347 tick_nohz_idle_update_tick(ts, now);
1348
1349 local_irq_enable();
1350 }
1351
1352 /*
1353 * The nohz low res interrupt handler
1354 */
tick_nohz_handler(struct clock_event_device * dev)1355 static void tick_nohz_handler(struct clock_event_device *dev)
1356 {
1357 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1358 struct pt_regs *regs = get_irq_regs();
1359 ktime_t now = ktime_get();
1360
1361 dev->next_event = KTIME_MAX;
1362
1363 tick_sched_do_timer(ts, now);
1364 tick_sched_handle(ts, regs);
1365
1366 if (unlikely(ts->tick_stopped)) {
1367 /*
1368 * The clockevent device is not reprogrammed, so change the
1369 * clock event device to ONESHOT_STOPPED to avoid spurious
1370 * interrupts on devices which might not be truly one shot.
1371 */
1372 tick_program_event(KTIME_MAX, 1);
1373 return;
1374 }
1375
1376 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1377 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1378 }
1379
tick_nohz_activate(struct tick_sched * ts,int mode)1380 static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1381 {
1382 if (!tick_nohz_enabled)
1383 return;
1384 ts->nohz_mode = mode;
1385 /* One update is enough */
1386 if (!test_and_set_bit(0, &tick_nohz_active))
1387 timers_update_nohz();
1388 }
1389
1390 /**
1391 * tick_nohz_switch_to_nohz - switch to nohz mode
1392 */
tick_nohz_switch_to_nohz(void)1393 static void tick_nohz_switch_to_nohz(void)
1394 {
1395 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1396 ktime_t next;
1397
1398 if (!tick_nohz_enabled)
1399 return;
1400
1401 if (tick_switch_to_oneshot(tick_nohz_handler))
1402 return;
1403
1404 /*
1405 * Recycle the hrtimer in ts, so we can share the
1406 * hrtimer_forward with the highres code.
1407 */
1408 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1409 /* Get the next period */
1410 next = tick_init_jiffy_update();
1411
1412 hrtimer_set_expires(&ts->sched_timer, next);
1413 hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1414 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1415 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1416 }
1417
tick_nohz_irq_enter(void)1418 static inline void tick_nohz_irq_enter(void)
1419 {
1420 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1421 ktime_t now;
1422
1423 if (!ts->idle_active && !ts->tick_stopped)
1424 return;
1425 now = ktime_get();
1426 if (ts->idle_active)
1427 tick_nohz_stop_idle(ts, now);
1428 /*
1429 * If all CPUs are idle. We may need to update a stale jiffies value.
1430 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1431 * alive but it might be busy looping with interrupts disabled in some
1432 * rare case (typically stop machine). So we must make sure we have a
1433 * last resort.
1434 */
1435 if (ts->tick_stopped)
1436 tick_nohz_update_jiffies(now);
1437 }
1438
1439 #else
1440
tick_nohz_switch_to_nohz(void)1441 static inline void tick_nohz_switch_to_nohz(void) { }
tick_nohz_irq_enter(void)1442 static inline void tick_nohz_irq_enter(void) { }
tick_nohz_activate(struct tick_sched * ts,int mode)1443 static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1444
1445 #endif /* CONFIG_NO_HZ_COMMON */
1446
1447 /*
1448 * Called from irq_enter to notify about the possible interruption of idle()
1449 */
tick_irq_enter(void)1450 void tick_irq_enter(void)
1451 {
1452 tick_check_oneshot_broadcast_this_cpu();
1453 tick_nohz_irq_enter();
1454 }
1455
1456 /*
1457 * High resolution timer specific code
1458 */
1459 #ifdef CONFIG_HIGH_RES_TIMERS
1460 /*
1461 * We rearm the timer until we get disabled by the idle code.
1462 * Called with interrupts disabled.
1463 */
tick_sched_timer(struct hrtimer * timer)1464 static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1465 {
1466 struct tick_sched *ts =
1467 container_of(timer, struct tick_sched, sched_timer);
1468 struct pt_regs *regs = get_irq_regs();
1469 ktime_t now = ktime_get();
1470
1471 tick_sched_do_timer(ts, now);
1472
1473 /*
1474 * Do not call, when we are not in irq context and have
1475 * no valid regs pointer
1476 */
1477 if (regs)
1478 tick_sched_handle(ts, regs);
1479 else
1480 ts->next_tick = 0;
1481
1482 /* No need to reprogram if we are in idle or full dynticks mode */
1483 if (unlikely(ts->tick_stopped))
1484 return HRTIMER_NORESTART;
1485
1486 hrtimer_forward(timer, now, TICK_NSEC);
1487
1488 return HRTIMER_RESTART;
1489 }
1490
1491 static int sched_skew_tick;
1492
skew_tick(char * str)1493 static int __init skew_tick(char *str)
1494 {
1495 get_option(&str, &sched_skew_tick);
1496
1497 return 0;
1498 }
1499 early_param("skew_tick", skew_tick);
1500
1501 /**
1502 * tick_setup_sched_timer - setup the tick emulation timer
1503 */
tick_setup_sched_timer(void)1504 void tick_setup_sched_timer(void)
1505 {
1506 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1507 ktime_t now = ktime_get();
1508
1509 /*
1510 * Emulate tick processing via per-CPU hrtimers:
1511 */
1512 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1513 ts->sched_timer.function = tick_sched_timer;
1514
1515 /* Get the next period (per-CPU) */
1516 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1517
1518 /* Offset the tick to avert jiffies_lock contention. */
1519 if (sched_skew_tick) {
1520 u64 offset = TICK_NSEC >> 1;
1521 do_div(offset, num_possible_cpus());
1522 offset *= smp_processor_id();
1523 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1524 }
1525
1526 hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1527 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1528 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1529 }
1530 #endif /* HIGH_RES_TIMERS */
1531
1532 #if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
tick_cancel_sched_timer(int cpu)1533 void tick_cancel_sched_timer(int cpu)
1534 {
1535 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1536 ktime_t idle_sleeptime, iowait_sleeptime;
1537 unsigned long idle_calls, idle_sleeps;
1538
1539 # ifdef CONFIG_HIGH_RES_TIMERS
1540 if (ts->sched_timer.base)
1541 hrtimer_cancel(&ts->sched_timer);
1542 # endif
1543
1544 idle_sleeptime = ts->idle_sleeptime;
1545 iowait_sleeptime = ts->iowait_sleeptime;
1546 idle_calls = ts->idle_calls;
1547 idle_sleeps = ts->idle_sleeps;
1548 memset(ts, 0, sizeof(*ts));
1549 ts->idle_sleeptime = idle_sleeptime;
1550 ts->iowait_sleeptime = iowait_sleeptime;
1551 ts->idle_calls = idle_calls;
1552 ts->idle_sleeps = idle_sleeps;
1553 }
1554 #endif
1555
1556 /**
1557 * Async notification about clocksource changes
1558 */
tick_clock_notify(void)1559 void tick_clock_notify(void)
1560 {
1561 int cpu;
1562
1563 for_each_possible_cpu(cpu)
1564 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1565 }
1566
1567 /*
1568 * Async notification about clock event changes
1569 */
tick_oneshot_notify(void)1570 void tick_oneshot_notify(void)
1571 {
1572 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1573
1574 set_bit(0, &ts->check_clocks);
1575 }
1576
1577 /**
1578 * Check, if a change happened, which makes oneshot possible.
1579 *
1580 * Called cyclic from the hrtimer softirq (driven by the timer
1581 * softirq) allow_nohz signals, that we can switch into low-res nohz
1582 * mode, because high resolution timers are disabled (either compile
1583 * or runtime). Called with interrupts disabled.
1584 */
tick_check_oneshot_change(int allow_nohz)1585 int tick_check_oneshot_change(int allow_nohz)
1586 {
1587 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1588
1589 if (!test_and_clear_bit(0, &ts->check_clocks))
1590 return 0;
1591
1592 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1593 return 0;
1594
1595 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1596 return 0;
1597
1598 if (!allow_nohz)
1599 return 1;
1600
1601 tick_nohz_switch_to_nohz();
1602 return 0;
1603 }
1604