1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * fs/f2fs/f2fs.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/buffer_head.h>
15 #include <linux/slab.h>
16 #include <linux/crc32.h>
17 #include <linux/magic.h>
18 #include <linux/kobject.h>
19 #include <linux/sched.h>
20 #include <linux/cred.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <crypto/hash.h>
27
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30
31 #ifdef CONFIG_F2FS_CHECK_FS
32 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
33 #else
34 #define f2fs_bug_on(sbi, condition) \
35 do { \
36 if (WARN_ON(condition)) \
37 set_sbi_flag(sbi, SBI_NEED_FSCK); \
38 } while (0)
39 #endif
40
41 enum {
42 FAULT_KMALLOC,
43 FAULT_KVMALLOC,
44 FAULT_PAGE_ALLOC,
45 FAULT_PAGE_GET,
46 FAULT_ALLOC_BIO, /* it's obsolete due to bio_alloc() will never fail */
47 FAULT_ALLOC_NID,
48 FAULT_ORPHAN,
49 FAULT_BLOCK,
50 FAULT_DIR_DEPTH,
51 FAULT_EVICT_INODE,
52 FAULT_TRUNCATE,
53 FAULT_READ_IO,
54 FAULT_CHECKPOINT,
55 FAULT_DISCARD,
56 FAULT_WRITE_IO,
57 FAULT_SLAB_ALLOC,
58 FAULT_DQUOT_INIT,
59 FAULT_LOCK_OP,
60 FAULT_MAX,
61 };
62
63 #ifdef CONFIG_F2FS_FAULT_INJECTION
64 #define F2FS_ALL_FAULT_TYPE ((1 << FAULT_MAX) - 1)
65
66 struct f2fs_fault_info {
67 atomic_t inject_ops;
68 unsigned int inject_rate;
69 unsigned int inject_type;
70 };
71
72 extern const char *f2fs_fault_name[FAULT_MAX];
73 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
74 #endif
75
76 /*
77 * For mount options
78 */
79 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
80 #define F2FS_MOUNT_DISCARD 0x00000004
81 #define F2FS_MOUNT_NOHEAP 0x00000008
82 #define F2FS_MOUNT_XATTR_USER 0x00000010
83 #define F2FS_MOUNT_POSIX_ACL 0x00000020
84 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
85 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
86 #define F2FS_MOUNT_INLINE_DATA 0x00000100
87 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
88 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
89 #define F2FS_MOUNT_NOBARRIER 0x00000800
90 #define F2FS_MOUNT_FASTBOOT 0x00001000
91 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
92 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
93 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
94 #define F2FS_MOUNT_USRQUOTA 0x00080000
95 #define F2FS_MOUNT_GRPQUOTA 0x00100000
96 #define F2FS_MOUNT_PRJQUOTA 0x00200000
97 #define F2FS_MOUNT_QUOTA 0x00400000
98 #define F2FS_MOUNT_INLINE_XATTR_SIZE 0x00800000
99 #define F2FS_MOUNT_RESERVE_ROOT 0x01000000
100 #define F2FS_MOUNT_DISABLE_CHECKPOINT 0x02000000
101 #define F2FS_MOUNT_NORECOVERY 0x04000000
102 #define F2FS_MOUNT_ATGC 0x08000000
103 #define F2FS_MOUNT_MERGE_CHECKPOINT 0x10000000
104 #define F2FS_MOUNT_GC_MERGE 0x20000000
105 #define F2FS_MOUNT_COMPRESS_CACHE 0x40000000
106
107 #define F2FS_OPTION(sbi) ((sbi)->mount_opt)
108 #define clear_opt(sbi, option) (F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
109 #define set_opt(sbi, option) (F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
110 #define test_opt(sbi, option) (F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
111
112 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
113 typecheck(unsigned long long, b) && \
114 ((long long)((a) - (b)) > 0))
115
116 typedef u32 block_t; /*
117 * should not change u32, since it is the on-disk block
118 * address format, __le32.
119 */
120 typedef u32 nid_t;
121
122 #define COMPRESS_EXT_NUM 16
123
124 /*
125 * An implementation of an rwsem that is explicitly unfair to readers. This
126 * prevents priority inversion when a low-priority reader acquires the read lock
127 * while sleeping on the write lock but the write lock is needed by
128 * higher-priority clients.
129 */
130
131 struct f2fs_rwsem {
132 struct rw_semaphore internal_rwsem;
133 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
134 wait_queue_head_t read_waiters;
135 #endif
136 };
137
138 struct f2fs_mount_info {
139 unsigned int opt;
140 int write_io_size_bits; /* Write IO size bits */
141 block_t root_reserved_blocks; /* root reserved blocks */
142 kuid_t s_resuid; /* reserved blocks for uid */
143 kgid_t s_resgid; /* reserved blocks for gid */
144 int active_logs; /* # of active logs */
145 int inline_xattr_size; /* inline xattr size */
146 #ifdef CONFIG_F2FS_FAULT_INJECTION
147 struct f2fs_fault_info fault_info; /* For fault injection */
148 #endif
149 #ifdef CONFIG_QUOTA
150 /* Names of quota files with journalled quota */
151 char *s_qf_names[MAXQUOTAS];
152 int s_jquota_fmt; /* Format of quota to use */
153 #endif
154 /* For which write hints are passed down to block layer */
155 int whint_mode;
156 int alloc_mode; /* segment allocation policy */
157 int fsync_mode; /* fsync policy */
158 int fs_mode; /* fs mode: LFS or ADAPTIVE */
159 int bggc_mode; /* bggc mode: off, on or sync */
160 int memory_mode; /* memory mode */
161 int discard_unit; /*
162 * discard command's offset/size should
163 * be aligned to this unit: block,
164 * segment or section
165 */
166 struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
167 block_t unusable_cap_perc; /* percentage for cap */
168 block_t unusable_cap; /* Amount of space allowed to be
169 * unusable when disabling checkpoint
170 */
171
172 /* For compression */
173 unsigned char compress_algorithm; /* algorithm type */
174 unsigned char compress_log_size; /* cluster log size */
175 unsigned char compress_level; /* compress level */
176 bool compress_chksum; /* compressed data chksum */
177 unsigned char compress_ext_cnt; /* extension count */
178 unsigned char nocompress_ext_cnt; /* nocompress extension count */
179 int compress_mode; /* compression mode */
180 unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
181 unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
182 };
183
184 #define F2FS_FEATURE_ENCRYPT 0x0001
185 #define F2FS_FEATURE_BLKZONED 0x0002
186 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
187 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
188 #define F2FS_FEATURE_PRJQUOTA 0x0010
189 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
190 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR 0x0040
191 #define F2FS_FEATURE_QUOTA_INO 0x0080
192 #define F2FS_FEATURE_INODE_CRTIME 0x0100
193 #define F2FS_FEATURE_LOST_FOUND 0x0200
194 #define F2FS_FEATURE_VERITY 0x0400
195 #define F2FS_FEATURE_SB_CHKSUM 0x0800
196 #define F2FS_FEATURE_CASEFOLD 0x1000
197 #define F2FS_FEATURE_COMPRESSION 0x2000
198 #define F2FS_FEATURE_RO 0x4000
199
200 #define __F2FS_HAS_FEATURE(raw_super, mask) \
201 ((raw_super->feature & cpu_to_le32(mask)) != 0)
202 #define F2FS_HAS_FEATURE(sbi, mask) __F2FS_HAS_FEATURE(sbi->raw_super, mask)
203 #define F2FS_SET_FEATURE(sbi, mask) \
204 (sbi->raw_super->feature |= cpu_to_le32(mask))
205 #define F2FS_CLEAR_FEATURE(sbi, mask) \
206 (sbi->raw_super->feature &= ~cpu_to_le32(mask))
207
208 /*
209 * Default values for user and/or group using reserved blocks
210 */
211 #define F2FS_DEF_RESUID 0
212 #define F2FS_DEF_RESGID 0
213
214 /*
215 * For checkpoint manager
216 */
217 enum {
218 NAT_BITMAP,
219 SIT_BITMAP
220 };
221
222 #define CP_UMOUNT 0x00000001
223 #define CP_FASTBOOT 0x00000002
224 #define CP_SYNC 0x00000004
225 #define CP_RECOVERY 0x00000008
226 #define CP_DISCARD 0x00000010
227 #define CP_TRIMMED 0x00000020
228 #define CP_PAUSE 0x00000040
229 #define CP_RESIZE 0x00000080
230
231 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
232 #define DEF_MAX_DISCARD_REQUEST 8 /* issue 8 discards per round */
233 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
234 #define DEF_MID_DISCARD_ISSUE_TIME 500 /* 500 ms, if device busy */
235 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
236 #define DEF_DISCARD_URGENT_UTIL 80 /* do more discard over 80% */
237 #define DEF_CP_INTERVAL 60 /* 60 secs */
238 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
239 #define DEF_DISABLE_INTERVAL 5 /* 5 secs */
240 #define DEF_DISABLE_QUICK_INTERVAL 1 /* 1 secs */
241 #define DEF_UMOUNT_DISCARD_TIMEOUT 5 /* 5 secs */
242
243 struct cp_control {
244 int reason;
245 __u64 trim_start;
246 __u64 trim_end;
247 __u64 trim_minlen;
248 };
249
250 /*
251 * indicate meta/data type
252 */
253 enum {
254 META_CP,
255 META_NAT,
256 META_SIT,
257 META_SSA,
258 META_MAX,
259 META_POR,
260 DATA_GENERIC, /* check range only */
261 DATA_GENERIC_ENHANCE, /* strong check on range and segment bitmap */
262 DATA_GENERIC_ENHANCE_READ, /*
263 * strong check on range and segment
264 * bitmap but no warning due to race
265 * condition of read on truncated area
266 * by extent_cache
267 */
268 DATA_GENERIC_ENHANCE_UPDATE, /*
269 * strong check on range and segment
270 * bitmap for update case
271 */
272 META_GENERIC,
273 };
274
275 /* for the list of ino */
276 enum {
277 ORPHAN_INO, /* for orphan ino list */
278 APPEND_INO, /* for append ino list */
279 UPDATE_INO, /* for update ino list */
280 TRANS_DIR_INO, /* for trasactions dir ino list */
281 FLUSH_INO, /* for multiple device flushing */
282 MAX_INO_ENTRY, /* max. list */
283 };
284
285 struct ino_entry {
286 struct list_head list; /* list head */
287 nid_t ino; /* inode number */
288 unsigned int dirty_device; /* dirty device bitmap */
289 };
290
291 /* for the list of inodes to be GCed */
292 struct inode_entry {
293 struct list_head list; /* list head */
294 struct inode *inode; /* vfs inode pointer */
295 };
296
297 struct fsync_node_entry {
298 struct list_head list; /* list head */
299 struct page *page; /* warm node page pointer */
300 unsigned int seq_id; /* sequence id */
301 };
302
303 struct ckpt_req {
304 struct completion wait; /* completion for checkpoint done */
305 struct llist_node llnode; /* llist_node to be linked in wait queue */
306 int ret; /* return code of checkpoint */
307 ktime_t queue_time; /* request queued time */
308 };
309
310 struct ckpt_req_control {
311 struct task_struct *f2fs_issue_ckpt; /* checkpoint task */
312 int ckpt_thread_ioprio; /* checkpoint merge thread ioprio */
313 wait_queue_head_t ckpt_wait_queue; /* waiting queue for wake-up */
314 atomic_t issued_ckpt; /* # of actually issued ckpts */
315 atomic_t total_ckpt; /* # of total ckpts */
316 atomic_t queued_ckpt; /* # of queued ckpts */
317 struct llist_head issue_list; /* list for command issue */
318 spinlock_t stat_lock; /* lock for below checkpoint time stats */
319 unsigned int cur_time; /* cur wait time in msec for currently issued checkpoint */
320 unsigned int peak_time; /* peak wait time in msec until now */
321 };
322
323 /* for the bitmap indicate blocks to be discarded */
324 struct discard_entry {
325 struct list_head list; /* list head */
326 block_t start_blkaddr; /* start blockaddr of current segment */
327 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
328 };
329
330 /* default discard granularity of inner discard thread, unit: block count */
331 #define DEFAULT_DISCARD_GRANULARITY 16
332
333 /* max discard pend list number */
334 #define MAX_PLIST_NUM 512
335 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
336 (MAX_PLIST_NUM - 1) : ((blk_num) - 1))
337
338 enum {
339 D_PREP, /* initial */
340 D_PARTIAL, /* partially submitted */
341 D_SUBMIT, /* all submitted */
342 D_DONE, /* finished */
343 };
344
345 struct discard_info {
346 block_t lstart; /* logical start address */
347 block_t len; /* length */
348 block_t start; /* actual start address in dev */
349 };
350
351 struct discard_cmd {
352 struct rb_node rb_node; /* rb node located in rb-tree */
353 union {
354 struct {
355 block_t lstart; /* logical start address */
356 block_t len; /* length */
357 block_t start; /* actual start address in dev */
358 };
359 struct discard_info di; /* discard info */
360
361 };
362 struct list_head list; /* command list */
363 struct completion wait; /* compleation */
364 struct block_device *bdev; /* bdev */
365 unsigned short ref; /* reference count */
366 unsigned char state; /* state */
367 unsigned char queued; /* queued discard */
368 int error; /* bio error */
369 spinlock_t lock; /* for state/bio_ref updating */
370 unsigned short bio_ref; /* bio reference count */
371 };
372
373 enum {
374 DPOLICY_BG,
375 DPOLICY_FORCE,
376 DPOLICY_FSTRIM,
377 DPOLICY_UMOUNT,
378 MAX_DPOLICY,
379 };
380
381 struct discard_policy {
382 int type; /* type of discard */
383 unsigned int min_interval; /* used for candidates exist */
384 unsigned int mid_interval; /* used for device busy */
385 unsigned int max_interval; /* used for candidates not exist */
386 unsigned int max_requests; /* # of discards issued per round */
387 unsigned int io_aware_gran; /* minimum granularity discard not be aware of I/O */
388 bool io_aware; /* issue discard in idle time */
389 bool sync; /* submit discard with REQ_SYNC flag */
390 bool ordered; /* issue discard by lba order */
391 bool timeout; /* discard timeout for put_super */
392 unsigned int granularity; /* discard granularity */
393 };
394
395 struct discard_cmd_control {
396 struct task_struct *f2fs_issue_discard; /* discard thread */
397 struct list_head entry_list; /* 4KB discard entry list */
398 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
399 struct list_head wait_list; /* store on-flushing entries */
400 struct list_head fstrim_list; /* in-flight discard from fstrim */
401 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
402 unsigned int discard_wake; /* to wake up discard thread */
403 struct mutex cmd_lock;
404 unsigned int nr_discards; /* # of discards in the list */
405 unsigned int max_discards; /* max. discards to be issued */
406 unsigned int max_discard_request; /* max. discard request per round */
407 unsigned int min_discard_issue_time; /* min. interval between discard issue */
408 unsigned int mid_discard_issue_time; /* mid. interval between discard issue */
409 unsigned int max_discard_issue_time; /* max. interval between discard issue */
410 unsigned int discard_granularity; /* discard granularity */
411 unsigned int undiscard_blks; /* # of undiscard blocks */
412 unsigned int next_pos; /* next discard position */
413 atomic_t issued_discard; /* # of issued discard */
414 atomic_t queued_discard; /* # of queued discard */
415 atomic_t discard_cmd_cnt; /* # of cached cmd count */
416 struct rb_root_cached root; /* root of discard rb-tree */
417 bool rbtree_check; /* config for consistence check */
418 };
419
420 /* for the list of fsync inodes, used only during recovery */
421 struct fsync_inode_entry {
422 struct list_head list; /* list head */
423 struct inode *inode; /* vfs inode pointer */
424 block_t blkaddr; /* block address locating the last fsync */
425 block_t last_dentry; /* block address locating the last dentry */
426 };
427
428 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
429 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
430
431 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
432 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
433 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
434 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
435
436 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
437 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
438
update_nats_in_cursum(struct f2fs_journal * journal,int i)439 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
440 {
441 int before = nats_in_cursum(journal);
442
443 journal->n_nats = cpu_to_le16(before + i);
444 return before;
445 }
446
update_sits_in_cursum(struct f2fs_journal * journal,int i)447 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
448 {
449 int before = sits_in_cursum(journal);
450
451 journal->n_sits = cpu_to_le16(before + i);
452 return before;
453 }
454
__has_cursum_space(struct f2fs_journal * journal,int size,int type)455 static inline bool __has_cursum_space(struct f2fs_journal *journal,
456 int size, int type)
457 {
458 if (type == NAT_JOURNAL)
459 return size <= MAX_NAT_JENTRIES(journal);
460 return size <= MAX_SIT_JENTRIES(journal);
461 }
462
463 /* for inline stuff */
464 #define DEF_INLINE_RESERVED_SIZE 1
465 static inline int get_extra_isize(struct inode *inode);
466 static inline int get_inline_xattr_addrs(struct inode *inode);
467 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
468 (CUR_ADDRS_PER_INODE(inode) - \
469 get_inline_xattr_addrs(inode) - \
470 DEF_INLINE_RESERVED_SIZE))
471
472 /* for inline dir */
473 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
474 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
475 BITS_PER_BYTE + 1))
476 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
477 DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
478 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
479 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
480 NR_INLINE_DENTRY(inode) + \
481 INLINE_DENTRY_BITMAP_SIZE(inode)))
482
483 /*
484 * For INODE and NODE manager
485 */
486 /* for directory operations */
487
488 struct f2fs_filename {
489 /*
490 * The filename the user specified. This is NULL for some
491 * filesystem-internal operations, e.g. converting an inline directory
492 * to a non-inline one, or roll-forward recovering an encrypted dentry.
493 */
494 const struct qstr *usr_fname;
495
496 /*
497 * The on-disk filename. For encrypted directories, this is encrypted.
498 * This may be NULL for lookups in an encrypted dir without the key.
499 */
500 struct fscrypt_str disk_name;
501
502 /* The dirhash of this filename */
503 f2fs_hash_t hash;
504
505 #ifdef CONFIG_FS_ENCRYPTION
506 /*
507 * For lookups in encrypted directories: either the buffer backing
508 * disk_name, or a buffer that holds the decoded no-key name.
509 */
510 struct fscrypt_str crypto_buf;
511 #endif
512 #ifdef CONFIG_UNICODE
513 /*
514 * For casefolded directories: the casefolded name, but it's left NULL
515 * if the original name is not valid Unicode, if the original name is
516 * "." or "..", if the directory is both casefolded and encrypted and
517 * its encryption key is unavailable, or if the filesystem is doing an
518 * internal operation where usr_fname is also NULL. In all these cases
519 * we fall back to treating the name as an opaque byte sequence.
520 */
521 struct fscrypt_str cf_name;
522 #endif
523 };
524
525 struct f2fs_dentry_ptr {
526 struct inode *inode;
527 void *bitmap;
528 struct f2fs_dir_entry *dentry;
529 __u8 (*filename)[F2FS_SLOT_LEN];
530 int max;
531 int nr_bitmap;
532 };
533
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)534 static inline void make_dentry_ptr_block(struct inode *inode,
535 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
536 {
537 d->inode = inode;
538 d->max = NR_DENTRY_IN_BLOCK;
539 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
540 d->bitmap = t->dentry_bitmap;
541 d->dentry = t->dentry;
542 d->filename = t->filename;
543 }
544
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)545 static inline void make_dentry_ptr_inline(struct inode *inode,
546 struct f2fs_dentry_ptr *d, void *t)
547 {
548 int entry_cnt = NR_INLINE_DENTRY(inode);
549 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
550 int reserved_size = INLINE_RESERVED_SIZE(inode);
551
552 d->inode = inode;
553 d->max = entry_cnt;
554 d->nr_bitmap = bitmap_size;
555 d->bitmap = t;
556 d->dentry = t + bitmap_size + reserved_size;
557 d->filename = t + bitmap_size + reserved_size +
558 SIZE_OF_DIR_ENTRY * entry_cnt;
559 }
560
561 /*
562 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
563 * as its node offset to distinguish from index node blocks.
564 * But some bits are used to mark the node block.
565 */
566 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
567 >> OFFSET_BIT_SHIFT)
568 enum {
569 ALLOC_NODE, /* allocate a new node page if needed */
570 LOOKUP_NODE, /* look up a node without readahead */
571 LOOKUP_NODE_RA, /*
572 * look up a node with readahead called
573 * by get_data_block.
574 */
575 };
576
577 #define DEFAULT_RETRY_IO_COUNT 8 /* maximum retry read IO or flush count */
578
579 /* congestion wait timeout value, default: 20ms */
580 #define DEFAULT_IO_TIMEOUT (msecs_to_jiffies(20))
581
582 /* maximum retry quota flush count */
583 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT 8
584
585 /* maximum retry of EIO'ed page */
586 #define MAX_RETRY_PAGE_EIO 100
587
588 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
589
590 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
591
592 /* dirty segments threshold for triggering CP */
593 #define DEFAULT_DIRTY_THRESHOLD 4
594
595 /* for in-memory extent cache entry */
596 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
597
598 /* number of extent info in extent cache we try to shrink */
599 #define EXTENT_CACHE_SHRINK_NUMBER 128
600
601 #define RECOVERY_MAX_RA_BLOCKS BIO_MAX_VECS
602 #define RECOVERY_MIN_RA_BLOCKS 1
603
604 struct rb_entry {
605 struct rb_node rb_node; /* rb node located in rb-tree */
606 union {
607 struct {
608 unsigned int ofs; /* start offset of the entry */
609 unsigned int len; /* length of the entry */
610 };
611 unsigned long long key; /* 64-bits key */
612 } __packed;
613 };
614
615 struct extent_info {
616 unsigned int fofs; /* start offset in a file */
617 unsigned int len; /* length of the extent */
618 u32 blk; /* start block address of the extent */
619 #ifdef CONFIG_F2FS_FS_COMPRESSION
620 unsigned int c_len; /* physical extent length of compressed blocks */
621 #endif
622 };
623
624 struct extent_node {
625 struct rb_node rb_node; /* rb node located in rb-tree */
626 struct extent_info ei; /* extent info */
627 struct list_head list; /* node in global extent list of sbi */
628 struct extent_tree *et; /* extent tree pointer */
629 };
630
631 struct extent_tree {
632 nid_t ino; /* inode number */
633 struct rb_root_cached root; /* root of extent info rb-tree */
634 struct extent_node *cached_en; /* recently accessed extent node */
635 struct extent_info largest; /* largested extent info */
636 struct list_head list; /* to be used by sbi->zombie_list */
637 rwlock_t lock; /* protect extent info rb-tree */
638 atomic_t node_cnt; /* # of extent node in rb-tree*/
639 bool largest_updated; /* largest extent updated */
640 };
641
642 /*
643 * This structure is taken from ext4_map_blocks.
644 *
645 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
646 */
647 #define F2FS_MAP_NEW (1 << BH_New)
648 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
649 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
650 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
651 F2FS_MAP_UNWRITTEN)
652
653 struct f2fs_map_blocks {
654 struct block_device *m_bdev; /* for multi-device dio */
655 block_t m_pblk;
656 block_t m_lblk;
657 unsigned int m_len;
658 unsigned int m_flags;
659 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
660 pgoff_t *m_next_extent; /* point to next possible extent */
661 int m_seg_type;
662 bool m_may_create; /* indicate it is from write path */
663 bool m_multidev_dio; /* indicate it allows multi-device dio */
664 };
665
666 /* for flag in get_data_block */
667 enum {
668 F2FS_GET_BLOCK_DEFAULT,
669 F2FS_GET_BLOCK_FIEMAP,
670 F2FS_GET_BLOCK_BMAP,
671 F2FS_GET_BLOCK_DIO,
672 F2FS_GET_BLOCK_PRE_DIO,
673 F2FS_GET_BLOCK_PRE_AIO,
674 F2FS_GET_BLOCK_PRECACHE,
675 };
676
677 /*
678 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
679 */
680 #define FADVISE_COLD_BIT 0x01
681 #define FADVISE_LOST_PINO_BIT 0x02
682 #define FADVISE_ENCRYPT_BIT 0x04
683 #define FADVISE_ENC_NAME_BIT 0x08
684 #define FADVISE_KEEP_SIZE_BIT 0x10
685 #define FADVISE_HOT_BIT 0x20
686 #define FADVISE_VERITY_BIT 0x40
687 #define FADVISE_TRUNC_BIT 0x80
688
689 #define FADVISE_MODIFIABLE_BITS (FADVISE_COLD_BIT | FADVISE_HOT_BIT)
690
691 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
692 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
693 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
694
695 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
696 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
697 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
698
699 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
700 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
701
702 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
703 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
704
705 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
706 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
707
708 #define file_is_hot(inode) is_file(inode, FADVISE_HOT_BIT)
709 #define file_set_hot(inode) set_file(inode, FADVISE_HOT_BIT)
710 #define file_clear_hot(inode) clear_file(inode, FADVISE_HOT_BIT)
711
712 #define file_is_verity(inode) is_file(inode, FADVISE_VERITY_BIT)
713 #define file_set_verity(inode) set_file(inode, FADVISE_VERITY_BIT)
714
715 #define file_should_truncate(inode) is_file(inode, FADVISE_TRUNC_BIT)
716 #define file_need_truncate(inode) set_file(inode, FADVISE_TRUNC_BIT)
717 #define file_dont_truncate(inode) clear_file(inode, FADVISE_TRUNC_BIT)
718
719 #define DEF_DIR_LEVEL 0
720
721 enum {
722 GC_FAILURE_PIN,
723 MAX_GC_FAILURE
724 };
725
726 /* used for f2fs_inode_info->flags */
727 enum {
728 FI_NEW_INODE, /* indicate newly allocated inode */
729 FI_DIRTY_INODE, /* indicate inode is dirty or not */
730 FI_AUTO_RECOVER, /* indicate inode is recoverable */
731 FI_DIRTY_DIR, /* indicate directory has dirty pages */
732 FI_INC_LINK, /* need to increment i_nlink */
733 FI_ACL_MODE, /* indicate acl mode */
734 FI_NO_ALLOC, /* should not allocate any blocks */
735 FI_FREE_NID, /* free allocated nide */
736 FI_NO_EXTENT, /* not to use the extent cache */
737 FI_INLINE_XATTR, /* used for inline xattr */
738 FI_INLINE_DATA, /* used for inline data*/
739 FI_INLINE_DENTRY, /* used for inline dentry */
740 FI_APPEND_WRITE, /* inode has appended data */
741 FI_UPDATE_WRITE, /* inode has in-place-update data */
742 FI_NEED_IPU, /* used for ipu per file */
743 FI_ATOMIC_FILE, /* indicate atomic file */
744 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
745 FI_DROP_CACHE, /* drop dirty page cache */
746 FI_DATA_EXIST, /* indicate data exists */
747 FI_INLINE_DOTS, /* indicate inline dot dentries */
748 FI_SKIP_WRITES, /* should skip data page writeback */
749 FI_OPU_WRITE, /* used for opu per file */
750 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
751 FI_PREALLOCATED_ALL, /* all blocks for write were preallocated */
752 FI_HOT_DATA, /* indicate file is hot */
753 FI_EXTRA_ATTR, /* indicate file has extra attribute */
754 FI_PROJ_INHERIT, /* indicate file inherits projectid */
755 FI_PIN_FILE, /* indicate file should not be gced */
756 FI_VERITY_IN_PROGRESS, /* building fs-verity Merkle tree */
757 FI_COMPRESSED_FILE, /* indicate file's data can be compressed */
758 FI_COMPRESS_CORRUPT, /* indicate compressed cluster is corrupted */
759 FI_MMAP_FILE, /* indicate file was mmapped */
760 FI_ENABLE_COMPRESS, /* enable compression in "user" compression mode */
761 FI_COMPRESS_RELEASED, /* compressed blocks were released */
762 FI_ALIGNED_WRITE, /* enable aligned write */
763 FI_COW_FILE, /* indicate COW file */
764 FI_ATOMIC_COMMITTED, /* indicate atomic commit completed except disk sync */
765 FI_ATOMIC_REPLACE, /* indicate atomic replace */
766 FI_MAX, /* max flag, never be used */
767 };
768
769 struct f2fs_inode_info {
770 struct inode vfs_inode; /* serve a vfs inode */
771 unsigned long i_flags; /* keep an inode flags for ioctl */
772 unsigned char i_advise; /* use to give file attribute hints */
773 unsigned char i_dir_level; /* use for dentry level for large dir */
774 unsigned int i_current_depth; /* only for directory depth */
775 /* for gc failure statistic */
776 unsigned int i_gc_failures[MAX_GC_FAILURE];
777 unsigned int i_pino; /* parent inode number */
778 umode_t i_acl_mode; /* keep file acl mode temporarily */
779
780 /* Use below internally in f2fs*/
781 unsigned long flags[BITS_TO_LONGS(FI_MAX)]; /* use to pass per-file flags */
782 struct f2fs_rwsem i_sem; /* protect fi info */
783 atomic_t dirty_pages; /* # of dirty pages */
784 f2fs_hash_t chash; /* hash value of given file name */
785 unsigned int clevel; /* maximum level of given file name */
786 struct task_struct *task; /* lookup and create consistency */
787 struct task_struct *cp_task; /* separate cp/wb IO stats*/
788 struct task_struct *wb_task; /* indicate inode is in context of writeback */
789 nid_t i_xattr_nid; /* node id that contains xattrs */
790 loff_t last_disk_size; /* lastly written file size */
791 spinlock_t i_size_lock; /* protect last_disk_size */
792
793 #ifdef CONFIG_QUOTA
794 struct dquot *i_dquot[MAXQUOTAS];
795
796 /* quota space reservation, managed internally by quota code */
797 qsize_t i_reserved_quota;
798 #endif
799 struct list_head dirty_list; /* dirty list for dirs and files */
800 struct list_head gdirty_list; /* linked in global dirty list */
801 struct task_struct *atomic_write_task; /* store atomic write task */
802 struct extent_tree *extent_tree; /* cached extent_tree entry */
803 struct inode *cow_inode; /* copy-on-write inode for atomic write */
804
805 /* avoid racing between foreground op and gc */
806 struct f2fs_rwsem i_gc_rwsem[2];
807 struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
808
809 int i_extra_isize; /* size of extra space located in i_addr */
810 kprojid_t i_projid; /* id for project quota */
811 int i_inline_xattr_size; /* inline xattr size */
812 struct timespec64 i_crtime; /* inode creation time */
813 struct timespec64 i_disk_time[4];/* inode disk times */
814
815 /* for file compress */
816 atomic_t i_compr_blocks; /* # of compressed blocks */
817 unsigned char i_compress_algorithm; /* algorithm type */
818 unsigned char i_log_cluster_size; /* log of cluster size */
819 unsigned char i_compress_level; /* compress level (lz4hc,zstd) */
820 unsigned short i_compress_flag; /* compress flag */
821 unsigned int i_cluster_size; /* cluster size */
822
823 unsigned int atomic_write_cnt;
824 loff_t original_i_size; /* original i_size before atomic write */
825 };
826
get_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)827 static inline void get_extent_info(struct extent_info *ext,
828 struct f2fs_extent *i_ext)
829 {
830 ext->fofs = le32_to_cpu(i_ext->fofs);
831 ext->blk = le32_to_cpu(i_ext->blk);
832 ext->len = le32_to_cpu(i_ext->len);
833 }
834
set_raw_extent(struct extent_info * ext,struct f2fs_extent * i_ext)835 static inline void set_raw_extent(struct extent_info *ext,
836 struct f2fs_extent *i_ext)
837 {
838 i_ext->fofs = cpu_to_le32(ext->fofs);
839 i_ext->blk = cpu_to_le32(ext->blk);
840 i_ext->len = cpu_to_le32(ext->len);
841 }
842
set_extent_info(struct extent_info * ei,unsigned int fofs,u32 blk,unsigned int len)843 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
844 u32 blk, unsigned int len)
845 {
846 ei->fofs = fofs;
847 ei->blk = blk;
848 ei->len = len;
849 #ifdef CONFIG_F2FS_FS_COMPRESSION
850 ei->c_len = 0;
851 #endif
852 }
853
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)854 static inline bool __is_discard_mergeable(struct discard_info *back,
855 struct discard_info *front, unsigned int max_len)
856 {
857 return (back->lstart + back->len == front->lstart) &&
858 (back->len + front->len <= max_len);
859 }
860
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)861 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
862 struct discard_info *back, unsigned int max_len)
863 {
864 return __is_discard_mergeable(back, cur, max_len);
865 }
866
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)867 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
868 struct discard_info *front, unsigned int max_len)
869 {
870 return __is_discard_mergeable(cur, front, max_len);
871 }
872
__is_extent_mergeable(struct extent_info * back,struct extent_info * front)873 static inline bool __is_extent_mergeable(struct extent_info *back,
874 struct extent_info *front)
875 {
876 #ifdef CONFIG_F2FS_FS_COMPRESSION
877 if (back->c_len && back->len != back->c_len)
878 return false;
879 if (front->c_len && front->len != front->c_len)
880 return false;
881 #endif
882 return (back->fofs + back->len == front->fofs &&
883 back->blk + back->len == front->blk);
884 }
885
__is_back_mergeable(struct extent_info * cur,struct extent_info * back)886 static inline bool __is_back_mergeable(struct extent_info *cur,
887 struct extent_info *back)
888 {
889 return __is_extent_mergeable(back, cur);
890 }
891
__is_front_mergeable(struct extent_info * cur,struct extent_info * front)892 static inline bool __is_front_mergeable(struct extent_info *cur,
893 struct extent_info *front)
894 {
895 return __is_extent_mergeable(cur, front);
896 }
897
898 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
__try_update_largest_extent(struct extent_tree * et,struct extent_node * en)899 static inline void __try_update_largest_extent(struct extent_tree *et,
900 struct extent_node *en)
901 {
902 if (en->ei.len > et->largest.len) {
903 et->largest = en->ei;
904 et->largest_updated = true;
905 }
906 }
907
908 /*
909 * For free nid management
910 */
911 enum nid_state {
912 FREE_NID, /* newly added to free nid list */
913 PREALLOC_NID, /* it is preallocated */
914 MAX_NID_STATE,
915 };
916
917 enum nat_state {
918 TOTAL_NAT,
919 DIRTY_NAT,
920 RECLAIMABLE_NAT,
921 MAX_NAT_STATE,
922 };
923
924 struct f2fs_nm_info {
925 block_t nat_blkaddr; /* base disk address of NAT */
926 nid_t max_nid; /* maximum possible node ids */
927 nid_t available_nids; /* # of available node ids */
928 nid_t next_scan_nid; /* the next nid to be scanned */
929 nid_t max_rf_node_blocks; /* max # of nodes for recovery */
930 unsigned int ram_thresh; /* control the memory footprint */
931 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
932 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
933
934 /* NAT cache management */
935 struct radix_tree_root nat_root;/* root of the nat entry cache */
936 struct radix_tree_root nat_set_root;/* root of the nat set cache */
937 struct f2fs_rwsem nat_tree_lock; /* protect nat entry tree */
938 struct list_head nat_entries; /* cached nat entry list (clean) */
939 spinlock_t nat_list_lock; /* protect clean nat entry list */
940 unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
941 unsigned int nat_blocks; /* # of nat blocks */
942
943 /* free node ids management */
944 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
945 struct list_head free_nid_list; /* list for free nids excluding preallocated nids */
946 unsigned int nid_cnt[MAX_NID_STATE]; /* the number of free node id */
947 spinlock_t nid_list_lock; /* protect nid lists ops */
948 struct mutex build_lock; /* lock for build free nids */
949 unsigned char **free_nid_bitmap;
950 unsigned char *nat_block_bitmap;
951 unsigned short *free_nid_count; /* free nid count of NAT block */
952
953 /* for checkpoint */
954 char *nat_bitmap; /* NAT bitmap pointer */
955
956 unsigned int nat_bits_blocks; /* # of nat bits blocks */
957 unsigned char *nat_bits; /* NAT bits blocks */
958 unsigned char *full_nat_bits; /* full NAT pages */
959 unsigned char *empty_nat_bits; /* empty NAT pages */
960 #ifdef CONFIG_F2FS_CHECK_FS
961 char *nat_bitmap_mir; /* NAT bitmap mirror */
962 #endif
963 int bitmap_size; /* bitmap size */
964 };
965
966 /*
967 * this structure is used as one of function parameters.
968 * all the information are dedicated to a given direct node block determined
969 * by the data offset in a file.
970 */
971 struct dnode_of_data {
972 struct inode *inode; /* vfs inode pointer */
973 struct page *inode_page; /* its inode page, NULL is possible */
974 struct page *node_page; /* cached direct node page */
975 nid_t nid; /* node id of the direct node block */
976 unsigned int ofs_in_node; /* data offset in the node page */
977 bool inode_page_locked; /* inode page is locked or not */
978 bool node_changed; /* is node block changed */
979 char cur_level; /* level of hole node page */
980 char max_level; /* level of current page located */
981 block_t data_blkaddr; /* block address of the node block */
982 };
983
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)984 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
985 struct page *ipage, struct page *npage, nid_t nid)
986 {
987 memset(dn, 0, sizeof(*dn));
988 dn->inode = inode;
989 dn->inode_page = ipage;
990 dn->node_page = npage;
991 dn->nid = nid;
992 }
993
994 /*
995 * For SIT manager
996 *
997 * By default, there are 6 active log areas across the whole main area.
998 * When considering hot and cold data separation to reduce cleaning overhead,
999 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1000 * respectively.
1001 * In the current design, you should not change the numbers intentionally.
1002 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1003 * logs individually according to the underlying devices. (default: 6)
1004 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1005 * data and 8 for node logs.
1006 */
1007 #define NR_CURSEG_DATA_TYPE (3)
1008 #define NR_CURSEG_NODE_TYPE (3)
1009 #define NR_CURSEG_INMEM_TYPE (2)
1010 #define NR_CURSEG_RO_TYPE (2)
1011 #define NR_CURSEG_PERSIST_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1012 #define NR_CURSEG_TYPE (NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1013
1014 enum {
1015 CURSEG_HOT_DATA = 0, /* directory entry blocks */
1016 CURSEG_WARM_DATA, /* data blocks */
1017 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
1018 CURSEG_HOT_NODE, /* direct node blocks of directory files */
1019 CURSEG_WARM_NODE, /* direct node blocks of normal files */
1020 CURSEG_COLD_NODE, /* indirect node blocks */
1021 NR_PERSISTENT_LOG, /* number of persistent log */
1022 CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1023 /* pinned file that needs consecutive block address */
1024 CURSEG_ALL_DATA_ATGC, /* SSR alloctor in hot/warm/cold data area */
1025 NO_CHECK_TYPE, /* number of persistent & inmem log */
1026 };
1027
1028 struct flush_cmd {
1029 struct completion wait;
1030 struct llist_node llnode;
1031 nid_t ino;
1032 int ret;
1033 };
1034
1035 struct flush_cmd_control {
1036 struct task_struct *f2fs_issue_flush; /* flush thread */
1037 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
1038 atomic_t issued_flush; /* # of issued flushes */
1039 atomic_t queued_flush; /* # of queued flushes */
1040 struct llist_head issue_list; /* list for command issue */
1041 struct llist_node *dispatch_list; /* list for command dispatch */
1042 };
1043
1044 struct f2fs_sm_info {
1045 struct sit_info *sit_info; /* whole segment information */
1046 struct free_segmap_info *free_info; /* free segment information */
1047 struct dirty_seglist_info *dirty_info; /* dirty segment information */
1048 struct curseg_info *curseg_array; /* active segment information */
1049
1050 struct f2fs_rwsem curseg_lock; /* for preventing curseg change */
1051
1052 block_t seg0_blkaddr; /* block address of 0'th segment */
1053 block_t main_blkaddr; /* start block address of main area */
1054 block_t ssa_blkaddr; /* start block address of SSA area */
1055
1056 unsigned int segment_count; /* total # of segments */
1057 unsigned int main_segments; /* # of segments in main area */
1058 unsigned int reserved_segments; /* # of reserved segments */
1059 unsigned int additional_reserved_segments;/* reserved segs for IO align feature */
1060 unsigned int ovp_segments; /* # of overprovision segments */
1061
1062 /* a threshold to reclaim prefree segments */
1063 unsigned int rec_prefree_segments;
1064
1065 /* for batched trimming */
1066 unsigned int trim_sections; /* # of sections to trim */
1067
1068 struct list_head sit_entry_set; /* sit entry set list */
1069
1070 unsigned int ipu_policy; /* in-place-update policy */
1071 unsigned int min_ipu_util; /* in-place-update threshold */
1072 unsigned int min_fsync_blocks; /* threshold for fsync */
1073 unsigned int min_seq_blocks; /* threshold for sequential blocks */
1074 unsigned int min_hot_blocks; /* threshold for hot block allocation */
1075 unsigned int min_ssr_sections; /* threshold to trigger SSR allocation */
1076
1077 /* for flush command control */
1078 struct flush_cmd_control *fcc_info;
1079
1080 /* for discard command control */
1081 struct discard_cmd_control *dcc_info;
1082 };
1083
1084 /*
1085 * For superblock
1086 */
1087 /*
1088 * COUNT_TYPE for monitoring
1089 *
1090 * f2fs monitors the number of several block types such as on-writeback,
1091 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1092 */
1093 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1094 enum count_type {
1095 F2FS_DIRTY_DENTS,
1096 F2FS_DIRTY_DATA,
1097 F2FS_DIRTY_QDATA,
1098 F2FS_DIRTY_NODES,
1099 F2FS_DIRTY_META,
1100 F2FS_DIRTY_IMETA,
1101 F2FS_WB_CP_DATA,
1102 F2FS_WB_DATA,
1103 F2FS_RD_DATA,
1104 F2FS_RD_NODE,
1105 F2FS_RD_META,
1106 F2FS_DIO_WRITE,
1107 F2FS_DIO_READ,
1108 NR_COUNT_TYPE,
1109 };
1110
1111 /*
1112 * The below are the page types of bios used in submit_bio().
1113 * The available types are:
1114 * DATA User data pages. It operates as async mode.
1115 * NODE Node pages. It operates as async mode.
1116 * META FS metadata pages such as SIT, NAT, CP.
1117 * NR_PAGE_TYPE The number of page types.
1118 * META_FLUSH Make sure the previous pages are written
1119 * with waiting the bio's completion
1120 * ... Only can be used with META.
1121 */
1122 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
1123 enum page_type {
1124 DATA = 0,
1125 NODE = 1, /* should not change this */
1126 META,
1127 NR_PAGE_TYPE,
1128 META_FLUSH,
1129 IPU, /* the below types are used by tracepoints only. */
1130 OPU,
1131 };
1132
1133 enum temp_type {
1134 HOT = 0, /* must be zero for meta bio */
1135 WARM,
1136 COLD,
1137 NR_TEMP_TYPE,
1138 };
1139
1140 enum need_lock_type {
1141 LOCK_REQ = 0,
1142 LOCK_DONE,
1143 LOCK_RETRY,
1144 };
1145
1146 enum cp_reason_type {
1147 CP_NO_NEEDED,
1148 CP_NON_REGULAR,
1149 CP_COMPRESSED,
1150 CP_HARDLINK,
1151 CP_SB_NEED_CP,
1152 CP_WRONG_PINO,
1153 CP_NO_SPC_ROLL,
1154 CP_NODE_NEED_CP,
1155 CP_FASTBOOT_MODE,
1156 CP_SPEC_LOG_NUM,
1157 CP_RECOVER_DIR,
1158 };
1159
1160 enum iostat_type {
1161 /* WRITE IO */
1162 APP_DIRECT_IO, /* app direct write IOs */
1163 APP_BUFFERED_IO, /* app buffered write IOs */
1164 APP_WRITE_IO, /* app write IOs */
1165 APP_MAPPED_IO, /* app mapped IOs */
1166 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
1167 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
1168 FS_META_IO, /* meta IOs from kworker/reclaimer */
1169 FS_GC_DATA_IO, /* data IOs from forground gc */
1170 FS_GC_NODE_IO, /* node IOs from forground gc */
1171 FS_CP_DATA_IO, /* data IOs from checkpoint */
1172 FS_CP_NODE_IO, /* node IOs from checkpoint */
1173 FS_CP_META_IO, /* meta IOs from checkpoint */
1174
1175 /* READ IO */
1176 APP_DIRECT_READ_IO, /* app direct read IOs */
1177 APP_BUFFERED_READ_IO, /* app buffered read IOs */
1178 APP_READ_IO, /* app read IOs */
1179 APP_MAPPED_READ_IO, /* app mapped read IOs */
1180 FS_DATA_READ_IO, /* data read IOs */
1181 FS_GDATA_READ_IO, /* data read IOs from background gc */
1182 FS_CDATA_READ_IO, /* compressed data read IOs */
1183 FS_NODE_READ_IO, /* node read IOs */
1184 FS_META_READ_IO, /* meta read IOs */
1185
1186 /* other */
1187 FS_DISCARD, /* discard */
1188 NR_IO_TYPE,
1189 };
1190
1191 struct f2fs_io_info {
1192 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
1193 nid_t ino; /* inode number */
1194 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
1195 enum temp_type temp; /* contains HOT/WARM/COLD */
1196 int op; /* contains REQ_OP_ */
1197 int op_flags; /* req_flag_bits */
1198 block_t new_blkaddr; /* new block address to be written */
1199 block_t old_blkaddr; /* old block address before Cow */
1200 struct page *page; /* page to be written */
1201 struct page *encrypted_page; /* encrypted page */
1202 struct page *compressed_page; /* compressed page */
1203 struct list_head list; /* serialize IOs */
1204 bool submitted; /* indicate IO submission */
1205 int need_lock; /* indicate we need to lock cp_rwsem */
1206 bool in_list; /* indicate fio is in io_list */
1207 bool is_por; /* indicate IO is from recovery or not */
1208 bool retry; /* need to reallocate block address */
1209 int compr_blocks; /* # of compressed block addresses */
1210 bool encrypted; /* indicate file is encrypted */
1211 bool post_read; /* require post read */
1212 enum iostat_type io_type; /* io type */
1213 struct writeback_control *io_wbc; /* writeback control */
1214 struct bio **bio; /* bio for ipu */
1215 sector_t *last_block; /* last block number in bio */
1216 unsigned char version; /* version of the node */
1217 };
1218
1219 struct bio_entry {
1220 struct bio *bio;
1221 struct list_head list;
1222 };
1223
1224 #define is_read_io(rw) ((rw) == READ)
1225 struct f2fs_bio_info {
1226 struct f2fs_sb_info *sbi; /* f2fs superblock */
1227 struct bio *bio; /* bios to merge */
1228 sector_t last_block_in_bio; /* last block number */
1229 struct f2fs_io_info fio; /* store buffered io info. */
1230 struct f2fs_rwsem io_rwsem; /* blocking op for bio */
1231 spinlock_t io_lock; /* serialize DATA/NODE IOs */
1232 struct list_head io_list; /* track fios */
1233 struct list_head bio_list; /* bio entry list head */
1234 struct f2fs_rwsem bio_list_lock; /* lock to protect bio entry list */
1235 };
1236
1237 #define FDEV(i) (sbi->devs[i])
1238 #define RDEV(i) (raw_super->devs[i])
1239 struct f2fs_dev_info {
1240 struct block_device *bdev;
1241 char path[MAX_PATH_LEN];
1242 unsigned int total_segments;
1243 block_t start_blk;
1244 block_t end_blk;
1245 #ifdef CONFIG_BLK_DEV_ZONED
1246 unsigned int nr_blkz; /* Total number of zones */
1247 unsigned long *blkz_seq; /* Bitmap indicating sequential zones */
1248 #endif
1249 };
1250
1251 enum inode_type {
1252 DIR_INODE, /* for dirty dir inode */
1253 FILE_INODE, /* for dirty regular/symlink inode */
1254 DIRTY_META, /* for all dirtied inode metadata */
1255 NR_INODE_TYPE,
1256 };
1257
1258 /* for inner inode cache management */
1259 struct inode_management {
1260 struct radix_tree_root ino_root; /* ino entry array */
1261 spinlock_t ino_lock; /* for ino entry lock */
1262 struct list_head ino_list; /* inode list head */
1263 unsigned long ino_num; /* number of entries */
1264 };
1265
1266 /* for GC_AT */
1267 struct atgc_management {
1268 bool atgc_enabled; /* ATGC is enabled or not */
1269 struct rb_root_cached root; /* root of victim rb-tree */
1270 struct list_head victim_list; /* linked with all victim entries */
1271 unsigned int victim_count; /* victim count in rb-tree */
1272 unsigned int candidate_ratio; /* candidate ratio */
1273 unsigned int max_candidate_count; /* max candidate count */
1274 unsigned int age_weight; /* age weight, vblock_weight = 100 - age_weight */
1275 unsigned long long age_threshold; /* age threshold */
1276 };
1277
1278 /* For s_flag in struct f2fs_sb_info */
1279 enum {
1280 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1281 SBI_IS_CLOSE, /* specify unmounting */
1282 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1283 SBI_POR_DOING, /* recovery is doing or not */
1284 SBI_NEED_SB_WRITE, /* need to recover superblock */
1285 SBI_NEED_CP, /* need to checkpoint */
1286 SBI_IS_SHUTDOWN, /* shutdown by ioctl */
1287 SBI_IS_RECOVERED, /* recovered orphan/data */
1288 SBI_CP_DISABLED, /* CP was disabled last mount */
1289 SBI_CP_DISABLED_QUICK, /* CP was disabled quickly */
1290 SBI_QUOTA_NEED_FLUSH, /* need to flush quota info in CP */
1291 SBI_QUOTA_SKIP_FLUSH, /* skip flushing quota in current CP */
1292 SBI_QUOTA_NEED_REPAIR, /* quota file may be corrupted */
1293 SBI_IS_RESIZEFS, /* resizefs is in process */
1294 SBI_IS_FREEZING, /* freezefs is in process */
1295 };
1296
1297 enum {
1298 CP_TIME,
1299 REQ_TIME,
1300 DISCARD_TIME,
1301 GC_TIME,
1302 DISABLE_TIME,
1303 UMOUNT_DISCARD_TIMEOUT,
1304 MAX_TIME,
1305 };
1306
1307 enum {
1308 GC_NORMAL,
1309 GC_IDLE_CB,
1310 GC_IDLE_GREEDY,
1311 GC_IDLE_AT,
1312 GC_URGENT_HIGH,
1313 GC_URGENT_LOW,
1314 GC_URGENT_MID,
1315 MAX_GC_MODE,
1316 };
1317
1318 enum {
1319 BGGC_MODE_ON, /* background gc is on */
1320 BGGC_MODE_OFF, /* background gc is off */
1321 BGGC_MODE_SYNC, /*
1322 * background gc is on, migrating blocks
1323 * like foreground gc
1324 */
1325 };
1326
1327 enum {
1328 FS_MODE_ADAPTIVE, /* use both lfs/ssr allocation */
1329 FS_MODE_LFS, /* use lfs allocation only */
1330 FS_MODE_FRAGMENT_SEG, /* segment fragmentation mode */
1331 FS_MODE_FRAGMENT_BLK, /* block fragmentation mode */
1332 };
1333
1334 enum {
1335 WHINT_MODE_OFF, /* not pass down write hints */
1336 WHINT_MODE_USER, /* try to pass down hints given by users */
1337 WHINT_MODE_FS, /* pass down hints with F2FS policy */
1338 };
1339
1340 enum {
1341 ALLOC_MODE_DEFAULT, /* stay default */
1342 ALLOC_MODE_REUSE, /* reuse segments as much as possible */
1343 };
1344
1345 enum fsync_mode {
1346 FSYNC_MODE_POSIX, /* fsync follows posix semantics */
1347 FSYNC_MODE_STRICT, /* fsync behaves in line with ext4 */
1348 FSYNC_MODE_NOBARRIER, /* fsync behaves nobarrier based on posix */
1349 };
1350
1351 enum {
1352 COMPR_MODE_FS, /*
1353 * automatically compress compression
1354 * enabled files
1355 */
1356 COMPR_MODE_USER, /*
1357 * automatical compression is disabled.
1358 * user can control the file compression
1359 * using ioctls
1360 */
1361 };
1362
1363 enum {
1364 DISCARD_UNIT_BLOCK, /* basic discard unit is block */
1365 DISCARD_UNIT_SEGMENT, /* basic discard unit is segment */
1366 DISCARD_UNIT_SECTION, /* basic discard unit is section */
1367 };
1368
1369 enum {
1370 MEMORY_MODE_NORMAL, /* memory mode for normal devices */
1371 MEMORY_MODE_LOW, /* memory mode for low memry devices */
1372 };
1373
1374
1375
1376 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1377 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1378 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1379
1380 /*
1381 * Layout of f2fs page.private:
1382 *
1383 * Layout A: lowest bit should be 1
1384 * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1385 * bit 0 PAGE_PRIVATE_NOT_POINTER
1386 * bit 1 PAGE_PRIVATE_ATOMIC_WRITE
1387 * bit 2 PAGE_PRIVATE_DUMMY_WRITE
1388 * bit 3 PAGE_PRIVATE_ONGOING_MIGRATION
1389 * bit 4 PAGE_PRIVATE_INLINE_INODE
1390 * bit 5 PAGE_PRIVATE_REF_RESOURCE
1391 * bit 6- f2fs private data
1392 *
1393 * Layout B: lowest bit should be 0
1394 * page.private is a wrapped pointer.
1395 */
1396 enum {
1397 PAGE_PRIVATE_NOT_POINTER, /* private contains non-pointer data */
1398 PAGE_PRIVATE_ATOMIC_WRITE, /* data page from atomic write path */
1399 PAGE_PRIVATE_DUMMY_WRITE, /* data page for padding aligned IO */
1400 PAGE_PRIVATE_ONGOING_MIGRATION, /* data page which is on-going migrating */
1401 PAGE_PRIVATE_INLINE_INODE, /* inode page contains inline data */
1402 PAGE_PRIVATE_REF_RESOURCE, /* dirty page has referenced resources */
1403 PAGE_PRIVATE_MAX
1404 };
1405
1406 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
1407 static inline bool page_private_##name(struct page *page) \
1408 { \
1409 return PagePrivate(page) && \
1410 test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
1411 test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1412 }
1413
1414 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
1415 static inline void set_page_private_##name(struct page *page) \
1416 { \
1417 if (!PagePrivate(page)) { \
1418 get_page(page); \
1419 SetPagePrivate(page); \
1420 set_page_private(page, 0); \
1421 } \
1422 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
1423 set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1424 }
1425
1426 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
1427 static inline void clear_page_private_##name(struct page *page) \
1428 { \
1429 clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
1430 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) { \
1431 set_page_private(page, 0); \
1432 if (PagePrivate(page)) { \
1433 ClearPagePrivate(page); \
1434 put_page(page); \
1435 }\
1436 } \
1437 }
1438
1439 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
1440 PAGE_PRIVATE_GET_FUNC(reference, REF_RESOURCE);
1441 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
1442 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
1443 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
1444 PAGE_PRIVATE_GET_FUNC(dummy, DUMMY_WRITE);
1445
1446 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
1447 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
1448 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
1449 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
1450 PAGE_PRIVATE_SET_FUNC(dummy, DUMMY_WRITE);
1451
1452 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
1453 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
1454 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
1455 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
1456 PAGE_PRIVATE_CLEAR_FUNC(dummy, DUMMY_WRITE);
1457
get_page_private_data(struct page * page)1458 static inline unsigned long get_page_private_data(struct page *page)
1459 {
1460 unsigned long data = page_private(page);
1461
1462 if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
1463 return 0;
1464 return data >> PAGE_PRIVATE_MAX;
1465 }
1466
set_page_private_data(struct page * page,unsigned long data)1467 static inline void set_page_private_data(struct page *page, unsigned long data)
1468 {
1469 if (!PagePrivate(page)) {
1470 get_page(page);
1471 SetPagePrivate(page);
1472 set_page_private(page, 0);
1473 }
1474 set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
1475 page_private(page) |= data << PAGE_PRIVATE_MAX;
1476 }
1477
clear_page_private_data(struct page * page)1478 static inline void clear_page_private_data(struct page *page)
1479 {
1480 page_private(page) &= (1 << PAGE_PRIVATE_MAX) - 1;
1481 if (page_private(page) == 1 << PAGE_PRIVATE_NOT_POINTER) {
1482 set_page_private(page, 0);
1483 if (PagePrivate(page)) {
1484 ClearPagePrivate(page);
1485 put_page(page);
1486 }
1487 }
1488 }
1489
1490 /* For compression */
1491 enum compress_algorithm_type {
1492 COMPRESS_LZO,
1493 COMPRESS_LZ4,
1494 COMPRESS_ZSTD,
1495 COMPRESS_LZORLE,
1496 COMPRESS_MAX,
1497 };
1498
1499 enum compress_flag {
1500 COMPRESS_CHKSUM,
1501 COMPRESS_MAX_FLAG,
1502 };
1503
1504 #define COMPRESS_WATERMARK 20
1505 #define COMPRESS_PERCENT 20
1506
1507 #define COMPRESS_DATA_RESERVED_SIZE 4
1508 struct compress_data {
1509 __le32 clen; /* compressed data size */
1510 __le32 chksum; /* compressed data chksum */
1511 __le32 reserved[COMPRESS_DATA_RESERVED_SIZE]; /* reserved */
1512 u8 cdata[]; /* compressed data */
1513 };
1514
1515 #define COMPRESS_HEADER_SIZE (sizeof(struct compress_data))
1516
1517 #define F2FS_COMPRESSED_PAGE_MAGIC 0xF5F2C000
1518
1519 #define COMPRESS_LEVEL_OFFSET 8
1520
1521 /* compress context */
1522 struct compress_ctx {
1523 struct inode *inode; /* inode the context belong to */
1524 pgoff_t cluster_idx; /* cluster index number */
1525 unsigned int cluster_size; /* page count in cluster */
1526 unsigned int log_cluster_size; /* log of cluster size */
1527 struct page **rpages; /* pages store raw data in cluster */
1528 unsigned int nr_rpages; /* total page number in rpages */
1529 struct page **cpages; /* pages store compressed data in cluster */
1530 unsigned int nr_cpages; /* total page number in cpages */
1531 unsigned int valid_nr_cpages; /* valid page number in cpages */
1532 void *rbuf; /* virtual mapped address on rpages */
1533 struct compress_data *cbuf; /* virtual mapped address on cpages */
1534 size_t rlen; /* valid data length in rbuf */
1535 size_t clen; /* valid data length in cbuf */
1536 void *private; /* payload buffer for specified compression algorithm */
1537 void *private2; /* extra payload buffer */
1538 };
1539
1540 /* compress context for write IO path */
1541 struct compress_io_ctx {
1542 u32 magic; /* magic number to indicate page is compressed */
1543 struct inode *inode; /* inode the context belong to */
1544 struct page **rpages; /* pages store raw data in cluster */
1545 unsigned int nr_rpages; /* total page number in rpages */
1546 atomic_t pending_pages; /* in-flight compressed page count */
1547 };
1548
1549 /* Context for decompressing one cluster on the read IO path */
1550 struct decompress_io_ctx {
1551 u32 magic; /* magic number to indicate page is compressed */
1552 struct inode *inode; /* inode the context belong to */
1553 pgoff_t cluster_idx; /* cluster index number */
1554 unsigned int cluster_size; /* page count in cluster */
1555 unsigned int log_cluster_size; /* log of cluster size */
1556 struct page **rpages; /* pages store raw data in cluster */
1557 unsigned int nr_rpages; /* total page number in rpages */
1558 struct page **cpages; /* pages store compressed data in cluster */
1559 unsigned int nr_cpages; /* total page number in cpages */
1560 struct page **tpages; /* temp pages to pad holes in cluster */
1561 void *rbuf; /* virtual mapped address on rpages */
1562 struct compress_data *cbuf; /* virtual mapped address on cpages */
1563 size_t rlen; /* valid data length in rbuf */
1564 size_t clen; /* valid data length in cbuf */
1565
1566 /*
1567 * The number of compressed pages remaining to be read in this cluster.
1568 * This is initially nr_cpages. It is decremented by 1 each time a page
1569 * has been read (or failed to be read). When it reaches 0, the cluster
1570 * is decompressed (or an error is reported).
1571 *
1572 * If an error occurs before all the pages have been submitted for I/O,
1573 * then this will never reach 0. In this case the I/O submitter is
1574 * responsible for calling f2fs_decompress_end_io() instead.
1575 */
1576 atomic_t remaining_pages;
1577
1578 /*
1579 * Number of references to this decompress_io_ctx.
1580 *
1581 * One reference is held for I/O completion. This reference is dropped
1582 * after the pagecache pages are updated and unlocked -- either after
1583 * decompression (and verity if enabled), or after an error.
1584 *
1585 * In addition, each compressed page holds a reference while it is in a
1586 * bio. These references are necessary prevent compressed pages from
1587 * being freed while they are still in a bio.
1588 */
1589 refcount_t refcnt;
1590
1591 bool failed; /* IO error occurred before decompression? */
1592 bool need_verity; /* need fs-verity verification after decompression? */
1593 void *private; /* payload buffer for specified decompression algorithm */
1594 void *private2; /* extra payload buffer */
1595 struct work_struct verity_work; /* work to verify the decompressed pages */
1596 struct work_struct free_work; /* work for late free this structure itself */
1597 };
1598
1599 #define NULL_CLUSTER ((unsigned int)(~0))
1600 #define MIN_COMPRESS_LOG_SIZE 2
1601 #define MAX_COMPRESS_LOG_SIZE 8
1602 #define MAX_COMPRESS_WINDOW_SIZE(log_size) ((PAGE_SIZE) << (log_size))
1603
1604 struct f2fs_sb_info {
1605 struct super_block *sb; /* pointer to VFS super block */
1606 struct proc_dir_entry *s_proc; /* proc entry */
1607 struct f2fs_super_block *raw_super; /* raw super block pointer */
1608 struct f2fs_rwsem sb_lock; /* lock for raw super block */
1609 int valid_super_block; /* valid super block no */
1610 unsigned long s_flag; /* flags for sbi */
1611 struct mutex writepages; /* mutex for writepages() */
1612
1613 #ifdef CONFIG_BLK_DEV_ZONED
1614 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1615 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1616 #endif
1617
1618 /* for node-related operations */
1619 struct f2fs_nm_info *nm_info; /* node manager */
1620 struct inode *node_inode; /* cache node blocks */
1621
1622 /* for segment-related operations */
1623 struct f2fs_sm_info *sm_info; /* segment manager */
1624
1625 /* for bio operations */
1626 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1627 /* keep migration IO order for LFS mode */
1628 struct f2fs_rwsem io_order_lock;
1629 mempool_t *write_io_dummy; /* Dummy pages */
1630 pgoff_t page_eio_ofs[NR_PAGE_TYPE]; /* EIO page offset */
1631 int page_eio_cnt[NR_PAGE_TYPE]; /* EIO count */
1632
1633 /* for checkpoint */
1634 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1635 int cur_cp_pack; /* remain current cp pack */
1636 spinlock_t cp_lock; /* for flag in ckpt */
1637 struct inode *meta_inode; /* cache meta blocks */
1638 struct f2fs_rwsem cp_global_sem; /* checkpoint procedure lock */
1639 struct f2fs_rwsem cp_rwsem; /* blocking FS operations */
1640 struct f2fs_rwsem node_write; /* locking node writes */
1641 struct f2fs_rwsem node_change; /* locking node change */
1642 wait_queue_head_t cp_wait;
1643 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1644 long interval_time[MAX_TIME]; /* to store thresholds */
1645 struct ckpt_req_control cprc_info; /* for checkpoint request control */
1646
1647 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1648
1649 spinlock_t fsync_node_lock; /* for node entry lock */
1650 struct list_head fsync_node_list; /* node list head */
1651 unsigned int fsync_seg_id; /* sequence id */
1652 unsigned int fsync_node_num; /* number of node entries */
1653
1654 /* for orphan inode, use 0'th array */
1655 unsigned int max_orphans; /* max orphan inodes */
1656
1657 /* for inode management */
1658 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1659 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1660 struct mutex flush_lock; /* for flush exclusion */
1661
1662 /* for extent tree cache */
1663 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1664 struct mutex extent_tree_lock; /* locking extent radix tree */
1665 struct list_head extent_list; /* lru list for shrinker */
1666 spinlock_t extent_lock; /* locking extent lru list */
1667 atomic_t total_ext_tree; /* extent tree count */
1668 struct list_head zombie_list; /* extent zombie tree list */
1669 atomic_t total_zombie_tree; /* extent zombie tree count */
1670 atomic_t total_ext_node; /* extent info count */
1671
1672 /* basic filesystem units */
1673 unsigned int log_sectors_per_block; /* log2 sectors per block */
1674 unsigned int log_blocksize; /* log2 block size */
1675 unsigned int blocksize; /* block size */
1676 unsigned int root_ino_num; /* root inode number*/
1677 unsigned int node_ino_num; /* node inode number*/
1678 unsigned int meta_ino_num; /* meta inode number*/
1679 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1680 unsigned int blocks_per_seg; /* blocks per segment */
1681 unsigned int unusable_blocks_per_sec; /* unusable blocks per section */
1682 unsigned int segs_per_sec; /* segments per section */
1683 unsigned int secs_per_zone; /* sections per zone */
1684 unsigned int total_sections; /* total section count */
1685 unsigned int total_node_count; /* total node block count */
1686 unsigned int total_valid_node_count; /* valid node block count */
1687 int dir_level; /* directory level */
1688 int readdir_ra; /* readahead inode in readdir */
1689 u64 max_io_bytes; /* max io bytes to merge IOs */
1690
1691 block_t user_block_count; /* # of user blocks */
1692 block_t total_valid_block_count; /* # of valid blocks */
1693 block_t discard_blks; /* discard command candidats */
1694 block_t last_valid_block_count; /* for recovery */
1695 block_t reserved_blocks; /* configurable reserved blocks */
1696 block_t current_reserved_blocks; /* current reserved blocks */
1697
1698 /* Additional tracking for no checkpoint mode */
1699 block_t unusable_block_count; /* # of blocks saved by last cp */
1700
1701 unsigned int nquota_files; /* # of quota sysfile */
1702 struct f2fs_rwsem quota_sem; /* blocking cp for flags */
1703
1704 /* # of pages, see count_type */
1705 atomic_t nr_pages[NR_COUNT_TYPE];
1706 /* # of allocated blocks */
1707 struct percpu_counter alloc_valid_block_count;
1708 /* # of node block writes as roll forward recovery */
1709 struct percpu_counter rf_node_block_count;
1710
1711 /* writeback control */
1712 atomic_t wb_sync_req[META]; /* count # of WB_SYNC threads */
1713
1714 /* valid inode count */
1715 struct percpu_counter total_valid_inode_count;
1716
1717 struct f2fs_mount_info mount_opt; /* mount options */
1718
1719 /* for cleaning operations */
1720 struct f2fs_rwsem gc_lock; /*
1721 * semaphore for GC, avoid
1722 * race between GC and GC or CP
1723 */
1724 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1725 struct atgc_management am; /* atgc management */
1726 unsigned int cur_victim_sec; /* current victim section num */
1727 unsigned int gc_mode; /* current GC state */
1728 unsigned int next_victim_seg[2]; /* next segment in victim section */
1729 spinlock_t gc_urgent_high_lock;
1730 unsigned int gc_urgent_high_remaining; /* remaining trial count for GC_URGENT_HIGH */
1731
1732 /* for skip statistic */
1733 unsigned long long skipped_gc_rwsem; /* FG_GC only */
1734
1735 /* threshold for gc trials on pinned files */
1736 u64 gc_pin_file_threshold;
1737 struct f2fs_rwsem pin_sem;
1738
1739 /* maximum # of trials to find a victim segment for SSR and GC */
1740 unsigned int max_victim_search;
1741 /* migration granularity of garbage collection, unit: segment */
1742 unsigned int migration_granularity;
1743
1744 /*
1745 * for stat information.
1746 * one is for the LFS mode, and the other is for the SSR mode.
1747 */
1748 #ifdef CONFIG_F2FS_STAT_FS
1749 struct f2fs_stat_info *stat_info; /* FS status information */
1750 atomic_t meta_count[META_MAX]; /* # of meta blocks */
1751 unsigned int segment_count[2]; /* # of allocated segments */
1752 unsigned int block_count[2]; /* # of allocated blocks */
1753 atomic_t inplace_count; /* # of inplace update */
1754 atomic64_t total_hit_ext; /* # of lookup extent cache */
1755 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1756 atomic64_t read_hit_largest; /* # of hit largest extent node */
1757 atomic64_t read_hit_cached; /* # of hit cached extent node */
1758 atomic_t inline_xattr; /* # of inline_xattr inodes */
1759 atomic_t inline_inode; /* # of inline_data inodes */
1760 atomic_t inline_dir; /* # of inline_dentry inodes */
1761 atomic_t compr_inode; /* # of compressed inodes */
1762 atomic64_t compr_blocks; /* # of compressed blocks */
1763 atomic_t atomic_files; /* # of opened atomic file */
1764 atomic_t max_aw_cnt; /* max # of atomic writes */
1765 unsigned int io_skip_bggc; /* skip background gc for in-flight IO */
1766 unsigned int other_skip_bggc; /* skip background gc for other reasons */
1767 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1768 #endif
1769 spinlock_t stat_lock; /* lock for stat operations */
1770
1771 /* to attach REQ_META|REQ_FUA flags */
1772 unsigned int data_io_flag;
1773 unsigned int node_io_flag;
1774
1775 /* For sysfs suppport */
1776 struct kobject s_kobj; /* /sys/fs/f2fs/<devname> */
1777 struct completion s_kobj_unregister;
1778
1779 struct kobject s_stat_kobj; /* /sys/fs/f2fs/<devname>/stat */
1780 struct completion s_stat_kobj_unregister;
1781
1782 struct kobject s_feature_list_kobj; /* /sys/fs/f2fs/<devname>/feature_list */
1783 struct completion s_feature_list_kobj_unregister;
1784
1785 /* For shrinker support */
1786 struct list_head s_list;
1787 struct mutex umount_mutex;
1788 unsigned int shrinker_run_no;
1789
1790 /* For multi devices */
1791 int s_ndevs; /* number of devices */
1792 struct f2fs_dev_info *devs; /* for device list */
1793 unsigned int dirty_device; /* for checkpoint data flush */
1794 spinlock_t dev_lock; /* protect dirty_device */
1795 bool aligned_blksize; /* all devices has the same logical blksize */
1796
1797 /* For write statistics */
1798 u64 sectors_written_start;
1799 u64 kbytes_written;
1800
1801 /* Reference to checksum algorithm driver via cryptoapi */
1802 struct crypto_shash *s_chksum_driver;
1803
1804 /* Precomputed FS UUID checksum for seeding other checksums */
1805 __u32 s_chksum_seed;
1806
1807 struct workqueue_struct *post_read_wq; /* post read workqueue */
1808
1809 struct kmem_cache *inline_xattr_slab; /* inline xattr entry */
1810 unsigned int inline_xattr_slab_size; /* default inline xattr slab size */
1811
1812 /* For reclaimed segs statistics per each GC mode */
1813 unsigned int gc_segment_mode; /* GC state for reclaimed segments */
1814 unsigned int gc_reclaimed_segs[MAX_GC_MODE]; /* Reclaimed segs for each mode */
1815
1816 unsigned long seq_file_ra_mul; /* multiplier for ra_pages of seq. files in fadvise */
1817
1818 int max_fragment_chunk; /* max chunk size for block fragmentation mode */
1819 int max_fragment_hole; /* max hole size for block fragmentation mode */
1820
1821 /* For atomic write statistics */
1822 atomic64_t current_atomic_write;
1823 s64 peak_atomic_write;
1824 u64 committed_atomic_block;
1825 u64 revoked_atomic_block;
1826
1827 #ifdef CONFIG_F2FS_FS_COMPRESSION
1828 struct kmem_cache *page_array_slab; /* page array entry */
1829 unsigned int page_array_slab_size; /* default page array slab size */
1830
1831 /* For runtime compression statistics */
1832 u64 compr_written_block;
1833 u64 compr_saved_block;
1834 u32 compr_new_inode;
1835
1836 /* For compressed block cache */
1837 struct inode *compress_inode; /* cache compressed blocks */
1838 unsigned int compress_percent; /* cache page percentage */
1839 unsigned int compress_watermark; /* cache page watermark */
1840 atomic_t compress_page_hit; /* cache hit count */
1841 #endif
1842
1843 #ifdef CONFIG_F2FS_IOSTAT
1844 /* For app/fs IO statistics */
1845 spinlock_t iostat_lock;
1846 unsigned long long rw_iostat[NR_IO_TYPE];
1847 unsigned long long prev_rw_iostat[NR_IO_TYPE];
1848 bool iostat_enable;
1849 unsigned long iostat_next_period;
1850 unsigned int iostat_period_ms;
1851
1852 /* For io latency related statistics info in one iostat period */
1853 spinlock_t iostat_lat_lock;
1854 struct iostat_lat_info *iostat_io_lat;
1855 #endif
1856 };
1857
1858 #ifdef CONFIG_F2FS_FAULT_INJECTION
1859 #define f2fs_show_injection_info(sbi, type) \
1860 printk_ratelimited("%sF2FS-fs (%s) : inject %s in %s of %pS\n", \
1861 KERN_INFO, sbi->sb->s_id, \
1862 f2fs_fault_name[type], \
1863 __func__, __builtin_return_address(0))
time_to_inject(struct f2fs_sb_info * sbi,int type)1864 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1865 {
1866 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1867
1868 if (!ffi->inject_rate)
1869 return false;
1870
1871 if (!IS_FAULT_SET(ffi, type))
1872 return false;
1873
1874 atomic_inc(&ffi->inject_ops);
1875 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1876 atomic_set(&ffi->inject_ops, 0);
1877 return true;
1878 }
1879 return false;
1880 }
1881 #else
1882 #define f2fs_show_injection_info(sbi, type) do { } while (0)
time_to_inject(struct f2fs_sb_info * sbi,int type)1883 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1884 {
1885 return false;
1886 }
1887 #endif
1888
1889 /*
1890 * Test if the mounted volume is a multi-device volume.
1891 * - For a single regular disk volume, sbi->s_ndevs is 0.
1892 * - For a single zoned disk volume, sbi->s_ndevs is 1.
1893 * - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1894 */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1895 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1896 {
1897 return sbi->s_ndevs > 1;
1898 }
1899
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1900 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1901 {
1902 unsigned long now = jiffies;
1903
1904 sbi->last_time[type] = now;
1905
1906 /* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1907 if (type == REQ_TIME) {
1908 sbi->last_time[DISCARD_TIME] = now;
1909 sbi->last_time[GC_TIME] = now;
1910 }
1911 }
1912
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1913 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1914 {
1915 unsigned long interval = sbi->interval_time[type] * HZ;
1916
1917 return time_after(jiffies, sbi->last_time[type] + interval);
1918 }
1919
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1920 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1921 int type)
1922 {
1923 unsigned long interval = sbi->interval_time[type] * HZ;
1924 unsigned int wait_ms = 0;
1925 long delta;
1926
1927 delta = (sbi->last_time[type] + interval) - jiffies;
1928 if (delta > 0)
1929 wait_ms = jiffies_to_msecs(delta);
1930
1931 return wait_ms;
1932 }
1933
1934 /*
1935 * Inline functions
1936 */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1937 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1938 const void *address, unsigned int length)
1939 {
1940 struct {
1941 struct shash_desc shash;
1942 char ctx[4];
1943 } desc;
1944 int err;
1945
1946 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1947
1948 desc.shash.tfm = sbi->s_chksum_driver;
1949 *(u32 *)desc.ctx = crc;
1950
1951 err = crypto_shash_update(&desc.shash, address, length);
1952 BUG_ON(err);
1953
1954 return *(u32 *)desc.ctx;
1955 }
1956
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1957 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1958 unsigned int length)
1959 {
1960 return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1961 }
1962
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1963 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1964 void *buf, size_t buf_size)
1965 {
1966 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1967 }
1968
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1969 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1970 const void *address, unsigned int length)
1971 {
1972 return __f2fs_crc32(sbi, crc, address, length);
1973 }
1974
F2FS_I(struct inode * inode)1975 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1976 {
1977 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1978 }
1979
F2FS_SB(struct super_block * sb)1980 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1981 {
1982 return sb->s_fs_info;
1983 }
1984
F2FS_I_SB(struct inode * inode)1985 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1986 {
1987 return F2FS_SB(inode->i_sb);
1988 }
1989
F2FS_M_SB(struct address_space * mapping)1990 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1991 {
1992 return F2FS_I_SB(mapping->host);
1993 }
1994
F2FS_P_SB(struct page * page)1995 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1996 {
1997 return F2FS_M_SB(page_file_mapping(page));
1998 }
1999
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2000 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2001 {
2002 return (struct f2fs_super_block *)(sbi->raw_super);
2003 }
2004
F2FS_CKPT(struct f2fs_sb_info * sbi)2005 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2006 {
2007 return (struct f2fs_checkpoint *)(sbi->ckpt);
2008 }
2009
F2FS_NODE(struct page * page)2010 static inline struct f2fs_node *F2FS_NODE(struct page *page)
2011 {
2012 return (struct f2fs_node *)page_address(page);
2013 }
2014
F2FS_INODE(struct page * page)2015 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2016 {
2017 return &((struct f2fs_node *)page_address(page))->i;
2018 }
2019
NM_I(struct f2fs_sb_info * sbi)2020 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2021 {
2022 return (struct f2fs_nm_info *)(sbi->nm_info);
2023 }
2024
SM_I(struct f2fs_sb_info * sbi)2025 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2026 {
2027 return (struct f2fs_sm_info *)(sbi->sm_info);
2028 }
2029
SIT_I(struct f2fs_sb_info * sbi)2030 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2031 {
2032 return (struct sit_info *)(SM_I(sbi)->sit_info);
2033 }
2034
FREE_I(struct f2fs_sb_info * sbi)2035 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2036 {
2037 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2038 }
2039
DIRTY_I(struct f2fs_sb_info * sbi)2040 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2041 {
2042 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2043 }
2044
META_MAPPING(struct f2fs_sb_info * sbi)2045 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2046 {
2047 return sbi->meta_inode->i_mapping;
2048 }
2049
NODE_MAPPING(struct f2fs_sb_info * sbi)2050 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2051 {
2052 return sbi->node_inode->i_mapping;
2053 }
2054
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2055 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2056 {
2057 return test_bit(type, &sbi->s_flag);
2058 }
2059
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2060 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2061 {
2062 set_bit(type, &sbi->s_flag);
2063 }
2064
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2065 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2066 {
2067 clear_bit(type, &sbi->s_flag);
2068 }
2069
cur_cp_version(struct f2fs_checkpoint * cp)2070 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2071 {
2072 return le64_to_cpu(cp->checkpoint_ver);
2073 }
2074
f2fs_qf_ino(struct super_block * sb,int type)2075 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2076 {
2077 if (type < F2FS_MAX_QUOTAS)
2078 return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2079 return 0;
2080 }
2081
cur_cp_crc(struct f2fs_checkpoint * cp)2082 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2083 {
2084 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2085 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2086 }
2087
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2088 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2089 {
2090 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2091
2092 return ckpt_flags & f;
2093 }
2094
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2095 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2096 {
2097 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2098 }
2099
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2100 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2101 {
2102 unsigned int ckpt_flags;
2103
2104 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2105 ckpt_flags |= f;
2106 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2107 }
2108
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2109 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2110 {
2111 unsigned long flags;
2112
2113 spin_lock_irqsave(&sbi->cp_lock, flags);
2114 __set_ckpt_flags(F2FS_CKPT(sbi), f);
2115 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2116 }
2117
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2118 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2119 {
2120 unsigned int ckpt_flags;
2121
2122 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2123 ckpt_flags &= (~f);
2124 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2125 }
2126
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2127 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2128 {
2129 unsigned long flags;
2130
2131 spin_lock_irqsave(&sbi->cp_lock, flags);
2132 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
2133 spin_unlock_irqrestore(&sbi->cp_lock, flags);
2134 }
2135
2136 #define init_f2fs_rwsem(sem) \
2137 do { \
2138 static struct lock_class_key __key; \
2139 \
2140 __init_f2fs_rwsem((sem), #sem, &__key); \
2141 } while (0)
2142
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2143 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2144 const char *sem_name, struct lock_class_key *key)
2145 {
2146 __init_rwsem(&sem->internal_rwsem, sem_name, key);
2147 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2148 init_waitqueue_head(&sem->read_waiters);
2149 #endif
2150 }
2151
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2152 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2153 {
2154 return rwsem_is_locked(&sem->internal_rwsem);
2155 }
2156
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2157 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2158 {
2159 return rwsem_is_contended(&sem->internal_rwsem);
2160 }
2161
f2fs_down_read(struct f2fs_rwsem * sem)2162 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2163 {
2164 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2165 wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2166 #else
2167 down_read(&sem->internal_rwsem);
2168 #endif
2169 }
2170
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2171 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2172 {
2173 return down_read_trylock(&sem->internal_rwsem);
2174 }
2175
2176 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2177 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2178 {
2179 down_read_nested(&sem->internal_rwsem, subclass);
2180 }
2181 #else
2182 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2183 #endif
2184
f2fs_up_read(struct f2fs_rwsem * sem)2185 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2186 {
2187 up_read(&sem->internal_rwsem);
2188 }
2189
f2fs_down_write(struct f2fs_rwsem * sem)2190 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2191 {
2192 down_write(&sem->internal_rwsem);
2193 }
2194
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2195 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2196 {
2197 return down_write_trylock(&sem->internal_rwsem);
2198 }
2199
f2fs_up_write(struct f2fs_rwsem * sem)2200 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2201 {
2202 up_write(&sem->internal_rwsem);
2203 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2204 wake_up_all(&sem->read_waiters);
2205 #endif
2206 }
2207
f2fs_lock_op(struct f2fs_sb_info * sbi)2208 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2209 {
2210 f2fs_down_read(&sbi->cp_rwsem);
2211 }
2212
f2fs_trylock_op(struct f2fs_sb_info * sbi)2213 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2214 {
2215 if (time_to_inject(sbi, FAULT_LOCK_OP)) {
2216 f2fs_show_injection_info(sbi, FAULT_LOCK_OP);
2217 return 0;
2218 }
2219 return f2fs_down_read_trylock(&sbi->cp_rwsem);
2220 }
2221
f2fs_unlock_op(struct f2fs_sb_info * sbi)2222 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2223 {
2224 f2fs_up_read(&sbi->cp_rwsem);
2225 }
2226
f2fs_lock_all(struct f2fs_sb_info * sbi)2227 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2228 {
2229 f2fs_down_write(&sbi->cp_rwsem);
2230 }
2231
f2fs_unlock_all(struct f2fs_sb_info * sbi)2232 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2233 {
2234 f2fs_up_write(&sbi->cp_rwsem);
2235 }
2236
__get_cp_reason(struct f2fs_sb_info * sbi)2237 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2238 {
2239 int reason = CP_SYNC;
2240
2241 if (test_opt(sbi, FASTBOOT))
2242 reason = CP_FASTBOOT;
2243 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2244 reason = CP_UMOUNT;
2245 return reason;
2246 }
2247
__remain_node_summaries(int reason)2248 static inline bool __remain_node_summaries(int reason)
2249 {
2250 return (reason & (CP_UMOUNT | CP_FASTBOOT));
2251 }
2252
__exist_node_summaries(struct f2fs_sb_info * sbi)2253 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2254 {
2255 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2256 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2257 }
2258
2259 /*
2260 * Check whether the inode has blocks or not
2261 */
F2FS_HAS_BLOCKS(struct inode * inode)2262 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2263 {
2264 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2265
2266 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2267 }
2268
f2fs_has_xattr_block(unsigned int ofs)2269 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2270 {
2271 return ofs == XATTR_NODE_OFFSET;
2272 }
2273
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2274 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2275 struct inode *inode, bool cap)
2276 {
2277 if (!inode)
2278 return true;
2279 if (!test_opt(sbi, RESERVE_ROOT))
2280 return false;
2281 if (IS_NOQUOTA(inode))
2282 return true;
2283 if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2284 return true;
2285 if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2286 in_group_p(F2FS_OPTION(sbi).s_resgid))
2287 return true;
2288 if (cap && capable(CAP_SYS_RESOURCE))
2289 return true;
2290 return false;
2291 }
2292
2293 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count)2294 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2295 struct inode *inode, blkcnt_t *count)
2296 {
2297 blkcnt_t diff = 0, release = 0;
2298 block_t avail_user_block_count;
2299 int ret;
2300
2301 ret = dquot_reserve_block(inode, *count);
2302 if (ret)
2303 return ret;
2304
2305 if (time_to_inject(sbi, FAULT_BLOCK)) {
2306 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2307 release = *count;
2308 goto release_quota;
2309 }
2310
2311 /*
2312 * let's increase this in prior to actual block count change in order
2313 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2314 */
2315 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2316
2317 spin_lock(&sbi->stat_lock);
2318 sbi->total_valid_block_count += (block_t)(*count);
2319 avail_user_block_count = sbi->user_block_count -
2320 sbi->current_reserved_blocks;
2321
2322 if (!__allow_reserved_blocks(sbi, inode, true))
2323 avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2324
2325 if (F2FS_IO_ALIGNED(sbi))
2326 avail_user_block_count -= sbi->blocks_per_seg *
2327 SM_I(sbi)->additional_reserved_segments;
2328
2329 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2330 if (avail_user_block_count > sbi->unusable_block_count)
2331 avail_user_block_count -= sbi->unusable_block_count;
2332 else
2333 avail_user_block_count = 0;
2334 }
2335 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
2336 diff = sbi->total_valid_block_count - avail_user_block_count;
2337 if (diff > *count)
2338 diff = *count;
2339 *count -= diff;
2340 release = diff;
2341 sbi->total_valid_block_count -= diff;
2342 if (!*count) {
2343 spin_unlock(&sbi->stat_lock);
2344 goto enospc;
2345 }
2346 }
2347 spin_unlock(&sbi->stat_lock);
2348
2349 if (unlikely(release)) {
2350 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2351 dquot_release_reservation_block(inode, release);
2352 }
2353 f2fs_i_blocks_write(inode, *count, true, true);
2354 return 0;
2355
2356 enospc:
2357 percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2358 release_quota:
2359 dquot_release_reservation_block(inode, release);
2360 return -ENOSPC;
2361 }
2362
2363 __printf(2, 3)
2364 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...);
2365
2366 #define f2fs_err(sbi, fmt, ...) \
2367 f2fs_printk(sbi, KERN_ERR fmt, ##__VA_ARGS__)
2368 #define f2fs_warn(sbi, fmt, ...) \
2369 f2fs_printk(sbi, KERN_WARNING fmt, ##__VA_ARGS__)
2370 #define f2fs_notice(sbi, fmt, ...) \
2371 f2fs_printk(sbi, KERN_NOTICE fmt, ##__VA_ARGS__)
2372 #define f2fs_info(sbi, fmt, ...) \
2373 f2fs_printk(sbi, KERN_INFO fmt, ##__VA_ARGS__)
2374 #define f2fs_debug(sbi, fmt, ...) \
2375 f2fs_printk(sbi, KERN_DEBUG fmt, ##__VA_ARGS__)
2376
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2377 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2378 struct inode *inode,
2379 block_t count)
2380 {
2381 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2382
2383 spin_lock(&sbi->stat_lock);
2384 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2385 sbi->total_valid_block_count -= (block_t)count;
2386 if (sbi->reserved_blocks &&
2387 sbi->current_reserved_blocks < sbi->reserved_blocks)
2388 sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2389 sbi->current_reserved_blocks + count);
2390 spin_unlock(&sbi->stat_lock);
2391 if (unlikely(inode->i_blocks < sectors)) {
2392 f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2393 inode->i_ino,
2394 (unsigned long long)inode->i_blocks,
2395 (unsigned long long)sectors);
2396 set_sbi_flag(sbi, SBI_NEED_FSCK);
2397 return;
2398 }
2399 f2fs_i_blocks_write(inode, count, false, true);
2400 }
2401
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2402 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2403 {
2404 atomic_inc(&sbi->nr_pages[count_type]);
2405
2406 if (count_type == F2FS_DIRTY_DENTS ||
2407 count_type == F2FS_DIRTY_NODES ||
2408 count_type == F2FS_DIRTY_META ||
2409 count_type == F2FS_DIRTY_QDATA ||
2410 count_type == F2FS_DIRTY_IMETA)
2411 set_sbi_flag(sbi, SBI_IS_DIRTY);
2412 }
2413
inode_inc_dirty_pages(struct inode * inode)2414 static inline void inode_inc_dirty_pages(struct inode *inode)
2415 {
2416 atomic_inc(&F2FS_I(inode)->dirty_pages);
2417 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2418 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2419 if (IS_NOQUOTA(inode))
2420 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2421 }
2422
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2423 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2424 {
2425 atomic_dec(&sbi->nr_pages[count_type]);
2426 }
2427
inode_dec_dirty_pages(struct inode * inode)2428 static inline void inode_dec_dirty_pages(struct inode *inode)
2429 {
2430 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2431 !S_ISLNK(inode->i_mode))
2432 return;
2433
2434 atomic_dec(&F2FS_I(inode)->dirty_pages);
2435 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2436 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2437 if (IS_NOQUOTA(inode))
2438 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2439 }
2440
inc_atomic_write_cnt(struct inode * inode)2441 static inline void inc_atomic_write_cnt(struct inode *inode)
2442 {
2443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2444 struct f2fs_inode_info *fi = F2FS_I(inode);
2445 u64 current_write;
2446
2447 fi->atomic_write_cnt++;
2448 atomic64_inc(&sbi->current_atomic_write);
2449 current_write = atomic64_read(&sbi->current_atomic_write);
2450 if (current_write > sbi->peak_atomic_write)
2451 sbi->peak_atomic_write = current_write;
2452 }
2453
release_atomic_write_cnt(struct inode * inode)2454 static inline void release_atomic_write_cnt(struct inode *inode)
2455 {
2456 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2457 struct f2fs_inode_info *fi = F2FS_I(inode);
2458
2459 atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2460 fi->atomic_write_cnt = 0;
2461 }
2462
get_pages(struct f2fs_sb_info * sbi,int count_type)2463 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2464 {
2465 return atomic_read(&sbi->nr_pages[count_type]);
2466 }
2467
get_dirty_pages(struct inode * inode)2468 static inline int get_dirty_pages(struct inode *inode)
2469 {
2470 return atomic_read(&F2FS_I(inode)->dirty_pages);
2471 }
2472
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2473 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2474 {
2475 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
2476 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
2477 sbi->log_blocks_per_seg;
2478
2479 return segs / sbi->segs_per_sec;
2480 }
2481
valid_user_blocks(struct f2fs_sb_info * sbi)2482 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2483 {
2484 return sbi->total_valid_block_count;
2485 }
2486
discard_blocks(struct f2fs_sb_info * sbi)2487 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2488 {
2489 return sbi->discard_blks;
2490 }
2491
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2492 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2493 {
2494 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2495
2496 /* return NAT or SIT bitmap */
2497 if (flag == NAT_BITMAP)
2498 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2499 else if (flag == SIT_BITMAP)
2500 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2501
2502 return 0;
2503 }
2504
__cp_payload(struct f2fs_sb_info * sbi)2505 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2506 {
2507 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2508 }
2509
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2510 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2511 {
2512 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2513 void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2514 int offset;
2515
2516 if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2517 offset = (flag == SIT_BITMAP) ?
2518 le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2519 /*
2520 * if large_nat_bitmap feature is enabled, leave checksum
2521 * protection for all nat/sit bitmaps.
2522 */
2523 return tmp_ptr + offset + sizeof(__le32);
2524 }
2525
2526 if (__cp_payload(sbi) > 0) {
2527 if (flag == NAT_BITMAP)
2528 return &ckpt->sit_nat_version_bitmap;
2529 else
2530 return (unsigned char *)ckpt + F2FS_BLKSIZE;
2531 } else {
2532 offset = (flag == NAT_BITMAP) ?
2533 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2534 return tmp_ptr + offset;
2535 }
2536 }
2537
__start_cp_addr(struct f2fs_sb_info * sbi)2538 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2539 {
2540 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2541
2542 if (sbi->cur_cp_pack == 2)
2543 start_addr += sbi->blocks_per_seg;
2544 return start_addr;
2545 }
2546
__start_cp_next_addr(struct f2fs_sb_info * sbi)2547 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2548 {
2549 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2550
2551 if (sbi->cur_cp_pack == 1)
2552 start_addr += sbi->blocks_per_seg;
2553 return start_addr;
2554 }
2555
__set_cp_next_pack(struct f2fs_sb_info * sbi)2556 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2557 {
2558 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2559 }
2560
__start_sum_addr(struct f2fs_sb_info * sbi)2561 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2562 {
2563 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2564 }
2565
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2566 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2567 struct inode *inode, bool is_inode)
2568 {
2569 block_t valid_block_count;
2570 unsigned int valid_node_count, user_block_count;
2571 int err;
2572
2573 if (is_inode) {
2574 if (inode) {
2575 err = dquot_alloc_inode(inode);
2576 if (err)
2577 return err;
2578 }
2579 } else {
2580 err = dquot_reserve_block(inode, 1);
2581 if (err)
2582 return err;
2583 }
2584
2585 if (time_to_inject(sbi, FAULT_BLOCK)) {
2586 f2fs_show_injection_info(sbi, FAULT_BLOCK);
2587 goto enospc;
2588 }
2589
2590 spin_lock(&sbi->stat_lock);
2591
2592 valid_block_count = sbi->total_valid_block_count +
2593 sbi->current_reserved_blocks + 1;
2594
2595 if (!__allow_reserved_blocks(sbi, inode, false))
2596 valid_block_count += F2FS_OPTION(sbi).root_reserved_blocks;
2597
2598 if (F2FS_IO_ALIGNED(sbi))
2599 valid_block_count += sbi->blocks_per_seg *
2600 SM_I(sbi)->additional_reserved_segments;
2601
2602 user_block_count = sbi->user_block_count;
2603 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2604 user_block_count -= sbi->unusable_block_count;
2605
2606 if (unlikely(valid_block_count > user_block_count)) {
2607 spin_unlock(&sbi->stat_lock);
2608 goto enospc;
2609 }
2610
2611 valid_node_count = sbi->total_valid_node_count + 1;
2612 if (unlikely(valid_node_count > sbi->total_node_count)) {
2613 spin_unlock(&sbi->stat_lock);
2614 goto enospc;
2615 }
2616
2617 sbi->total_valid_node_count++;
2618 sbi->total_valid_block_count++;
2619 spin_unlock(&sbi->stat_lock);
2620
2621 if (inode) {
2622 if (is_inode)
2623 f2fs_mark_inode_dirty_sync(inode, true);
2624 else
2625 f2fs_i_blocks_write(inode, 1, true, true);
2626 }
2627
2628 percpu_counter_inc(&sbi->alloc_valid_block_count);
2629 return 0;
2630
2631 enospc:
2632 if (is_inode) {
2633 if (inode)
2634 dquot_free_inode(inode);
2635 } else {
2636 dquot_release_reservation_block(inode, 1);
2637 }
2638 return -ENOSPC;
2639 }
2640
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2641 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2642 struct inode *inode, bool is_inode)
2643 {
2644 spin_lock(&sbi->stat_lock);
2645
2646 if (unlikely(!sbi->total_valid_block_count ||
2647 !sbi->total_valid_node_count)) {
2648 f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2649 sbi->total_valid_block_count,
2650 sbi->total_valid_node_count);
2651 set_sbi_flag(sbi, SBI_NEED_FSCK);
2652 } else {
2653 sbi->total_valid_block_count--;
2654 sbi->total_valid_node_count--;
2655 }
2656
2657 if (sbi->reserved_blocks &&
2658 sbi->current_reserved_blocks < sbi->reserved_blocks)
2659 sbi->current_reserved_blocks++;
2660
2661 spin_unlock(&sbi->stat_lock);
2662
2663 if (is_inode) {
2664 dquot_free_inode(inode);
2665 } else {
2666 if (unlikely(inode->i_blocks == 0)) {
2667 f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2668 inode->i_ino,
2669 (unsigned long long)inode->i_blocks);
2670 set_sbi_flag(sbi, SBI_NEED_FSCK);
2671 return;
2672 }
2673 f2fs_i_blocks_write(inode, 1, false, true);
2674 }
2675 }
2676
valid_node_count(struct f2fs_sb_info * sbi)2677 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2678 {
2679 return sbi->total_valid_node_count;
2680 }
2681
inc_valid_inode_count(struct f2fs_sb_info * sbi)2682 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2683 {
2684 percpu_counter_inc(&sbi->total_valid_inode_count);
2685 }
2686
dec_valid_inode_count(struct f2fs_sb_info * sbi)2687 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2688 {
2689 percpu_counter_dec(&sbi->total_valid_inode_count);
2690 }
2691
valid_inode_count(struct f2fs_sb_info * sbi)2692 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2693 {
2694 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2695 }
2696
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2697 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2698 pgoff_t index, bool for_write)
2699 {
2700 struct page *page;
2701
2702 if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2703 if (!for_write)
2704 page = find_get_page_flags(mapping, index,
2705 FGP_LOCK | FGP_ACCESSED);
2706 else
2707 page = find_lock_page(mapping, index);
2708 if (page)
2709 return page;
2710
2711 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
2712 f2fs_show_injection_info(F2FS_M_SB(mapping),
2713 FAULT_PAGE_ALLOC);
2714 return NULL;
2715 }
2716 }
2717
2718 if (!for_write)
2719 return grab_cache_page(mapping, index);
2720 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
2721 }
2722
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,int fgp_flags,gfp_t gfp_mask)2723 static inline struct page *f2fs_pagecache_get_page(
2724 struct address_space *mapping, pgoff_t index,
2725 int fgp_flags, gfp_t gfp_mask)
2726 {
2727 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET)) {
2728 f2fs_show_injection_info(F2FS_M_SB(mapping), FAULT_PAGE_GET);
2729 return NULL;
2730 }
2731
2732 return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2733 }
2734
f2fs_copy_page(struct page * src,struct page * dst)2735 static inline void f2fs_copy_page(struct page *src, struct page *dst)
2736 {
2737 char *src_kaddr = kmap(src);
2738 char *dst_kaddr = kmap(dst);
2739
2740 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
2741 kunmap(dst);
2742 kunmap(src);
2743 }
2744
f2fs_put_page(struct page * page,int unlock)2745 static inline void f2fs_put_page(struct page *page, int unlock)
2746 {
2747 if (!page)
2748 return;
2749
2750 if (unlock) {
2751 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
2752 unlock_page(page);
2753 }
2754 put_page(page);
2755 }
2756
f2fs_put_dnode(struct dnode_of_data * dn)2757 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2758 {
2759 if (dn->node_page)
2760 f2fs_put_page(dn->node_page, 1);
2761 if (dn->inode_page && dn->node_page != dn->inode_page)
2762 f2fs_put_page(dn->inode_page, 0);
2763 dn->node_page = NULL;
2764 dn->inode_page = NULL;
2765 }
2766
f2fs_kmem_cache_create(const char * name,size_t size)2767 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2768 size_t size)
2769 {
2770 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2771 }
2772
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2773 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2774 gfp_t flags)
2775 {
2776 void *entry;
2777
2778 entry = kmem_cache_alloc(cachep, flags);
2779 if (!entry)
2780 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2781 return entry;
2782 }
2783
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2784 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2785 gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2786 {
2787 if (nofail)
2788 return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2789
2790 if (time_to_inject(sbi, FAULT_SLAB_ALLOC)) {
2791 f2fs_show_injection_info(sbi, FAULT_SLAB_ALLOC);
2792 return NULL;
2793 }
2794
2795 return kmem_cache_alloc(cachep, flags);
2796 }
2797
is_inflight_io(struct f2fs_sb_info * sbi,int type)2798 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2799 {
2800 if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2801 get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2802 get_pages(sbi, F2FS_WB_CP_DATA) ||
2803 get_pages(sbi, F2FS_DIO_READ) ||
2804 get_pages(sbi, F2FS_DIO_WRITE))
2805 return true;
2806
2807 if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2808 atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2809 return true;
2810
2811 if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2812 atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2813 return true;
2814 return false;
2815 }
2816
is_idle(struct f2fs_sb_info * sbi,int type)2817 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2818 {
2819 if (sbi->gc_mode == GC_URGENT_HIGH)
2820 return true;
2821
2822 if (is_inflight_io(sbi, type))
2823 return false;
2824
2825 if (sbi->gc_mode == GC_URGENT_MID)
2826 return true;
2827
2828 if (sbi->gc_mode == GC_URGENT_LOW &&
2829 (type == DISCARD_TIME || type == GC_TIME))
2830 return true;
2831
2832 return f2fs_time_over(sbi, type);
2833 }
2834
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2835 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2836 unsigned long index, void *item)
2837 {
2838 while (radix_tree_insert(root, index, item))
2839 cond_resched();
2840 }
2841
2842 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
2843
IS_INODE(struct page * page)2844 static inline bool IS_INODE(struct page *page)
2845 {
2846 struct f2fs_node *p = F2FS_NODE(page);
2847
2848 return RAW_IS_INODE(p);
2849 }
2850
offset_in_addr(struct f2fs_inode * i)2851 static inline int offset_in_addr(struct f2fs_inode *i)
2852 {
2853 return (i->i_inline & F2FS_EXTRA_ATTR) ?
2854 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
2855 }
2856
blkaddr_in_node(struct f2fs_node * node)2857 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
2858 {
2859 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
2860 }
2861
2862 static inline int f2fs_has_extra_attr(struct inode *inode);
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)2863 static inline block_t data_blkaddr(struct inode *inode,
2864 struct page *node_page, unsigned int offset)
2865 {
2866 struct f2fs_node *raw_node;
2867 __le32 *addr_array;
2868 int base = 0;
2869 bool is_inode = IS_INODE(node_page);
2870
2871 raw_node = F2FS_NODE(node_page);
2872
2873 if (is_inode) {
2874 if (!inode)
2875 /* from GC path only */
2876 base = offset_in_addr(&raw_node->i);
2877 else if (f2fs_has_extra_attr(inode))
2878 base = get_extra_isize(inode);
2879 }
2880
2881 addr_array = blkaddr_in_node(raw_node);
2882 return le32_to_cpu(addr_array[base + offset]);
2883 }
2884
f2fs_data_blkaddr(struct dnode_of_data * dn)2885 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
2886 {
2887 return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
2888 }
2889
f2fs_test_bit(unsigned int nr,char * addr)2890 static inline int f2fs_test_bit(unsigned int nr, char *addr)
2891 {
2892 int mask;
2893
2894 addr += (nr >> 3);
2895 mask = 1 << (7 - (nr & 0x07));
2896 return mask & *addr;
2897 }
2898
f2fs_set_bit(unsigned int nr,char * addr)2899 static inline void f2fs_set_bit(unsigned int nr, char *addr)
2900 {
2901 int mask;
2902
2903 addr += (nr >> 3);
2904 mask = 1 << (7 - (nr & 0x07));
2905 *addr |= mask;
2906 }
2907
f2fs_clear_bit(unsigned int nr,char * addr)2908 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
2909 {
2910 int mask;
2911
2912 addr += (nr >> 3);
2913 mask = 1 << (7 - (nr & 0x07));
2914 *addr &= ~mask;
2915 }
2916
f2fs_test_and_set_bit(unsigned int nr,char * addr)2917 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
2918 {
2919 int mask;
2920 int ret;
2921
2922 addr += (nr >> 3);
2923 mask = 1 << (7 - (nr & 0x07));
2924 ret = mask & *addr;
2925 *addr |= mask;
2926 return ret;
2927 }
2928
f2fs_test_and_clear_bit(unsigned int nr,char * addr)2929 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2930 {
2931 int mask;
2932 int ret;
2933
2934 addr += (nr >> 3);
2935 mask = 1 << (7 - (nr & 0x07));
2936 ret = mask & *addr;
2937 *addr &= ~mask;
2938 return ret;
2939 }
2940
f2fs_change_bit(unsigned int nr,char * addr)2941 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2942 {
2943 int mask;
2944
2945 addr += (nr >> 3);
2946 mask = 1 << (7 - (nr & 0x07));
2947 *addr ^= mask;
2948 }
2949
2950 /*
2951 * On-disk inode flags (f2fs_inode::i_flags)
2952 */
2953 #define F2FS_COMPR_FL 0x00000004 /* Compress file */
2954 #define F2FS_SYNC_FL 0x00000008 /* Synchronous updates */
2955 #define F2FS_IMMUTABLE_FL 0x00000010 /* Immutable file */
2956 #define F2FS_APPEND_FL 0x00000020 /* writes to file may only append */
2957 #define F2FS_NODUMP_FL 0x00000040 /* do not dump file */
2958 #define F2FS_NOATIME_FL 0x00000080 /* do not update atime */
2959 #define F2FS_NOCOMP_FL 0x00000400 /* Don't compress */
2960 #define F2FS_INDEX_FL 0x00001000 /* hash-indexed directory */
2961 #define F2FS_DIRSYNC_FL 0x00010000 /* dirsync behaviour (directories only) */
2962 #define F2FS_PROJINHERIT_FL 0x20000000 /* Create with parents projid */
2963 #define F2FS_CASEFOLD_FL 0x40000000 /* Casefolded file */
2964
2965 /* Flags that should be inherited by new inodes from their parent. */
2966 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
2967 F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2968 F2FS_CASEFOLD_FL | F2FS_COMPR_FL | F2FS_NOCOMP_FL)
2969
2970 /* Flags that are appropriate for regular files (all but dir-specific ones). */
2971 #define F2FS_REG_FLMASK (~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
2972 F2FS_CASEFOLD_FL))
2973
2974 /* Flags that are appropriate for non-directories/regular files. */
2975 #define F2FS_OTHER_FLMASK (F2FS_NODUMP_FL | F2FS_NOATIME_FL)
2976
f2fs_mask_flags(umode_t mode,__u32 flags)2977 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2978 {
2979 if (S_ISDIR(mode))
2980 return flags;
2981 else if (S_ISREG(mode))
2982 return flags & F2FS_REG_FLMASK;
2983 else
2984 return flags & F2FS_OTHER_FLMASK;
2985 }
2986
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)2987 static inline void __mark_inode_dirty_flag(struct inode *inode,
2988 int flag, bool set)
2989 {
2990 switch (flag) {
2991 case FI_INLINE_XATTR:
2992 case FI_INLINE_DATA:
2993 case FI_INLINE_DENTRY:
2994 case FI_NEW_INODE:
2995 if (set)
2996 return;
2997 fallthrough;
2998 case FI_DATA_EXIST:
2999 case FI_INLINE_DOTS:
3000 case FI_PIN_FILE:
3001 case FI_COMPRESS_RELEASED:
3002 f2fs_mark_inode_dirty_sync(inode, true);
3003 }
3004 }
3005
set_inode_flag(struct inode * inode,int flag)3006 static inline void set_inode_flag(struct inode *inode, int flag)
3007 {
3008 set_bit(flag, F2FS_I(inode)->flags);
3009 __mark_inode_dirty_flag(inode, flag, true);
3010 }
3011
is_inode_flag_set(struct inode * inode,int flag)3012 static inline int is_inode_flag_set(struct inode *inode, int flag)
3013 {
3014 return test_bit(flag, F2FS_I(inode)->flags);
3015 }
3016
clear_inode_flag(struct inode * inode,int flag)3017 static inline void clear_inode_flag(struct inode *inode, int flag)
3018 {
3019 clear_bit(flag, F2FS_I(inode)->flags);
3020 __mark_inode_dirty_flag(inode, flag, false);
3021 }
3022
f2fs_verity_in_progress(struct inode * inode)3023 static inline bool f2fs_verity_in_progress(struct inode *inode)
3024 {
3025 return IS_ENABLED(CONFIG_FS_VERITY) &&
3026 is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3027 }
3028
set_acl_inode(struct inode * inode,umode_t mode)3029 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3030 {
3031 F2FS_I(inode)->i_acl_mode = mode;
3032 set_inode_flag(inode, FI_ACL_MODE);
3033 f2fs_mark_inode_dirty_sync(inode, false);
3034 }
3035
f2fs_i_links_write(struct inode * inode,bool inc)3036 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3037 {
3038 if (inc)
3039 inc_nlink(inode);
3040 else
3041 drop_nlink(inode);
3042 f2fs_mark_inode_dirty_sync(inode, true);
3043 }
3044
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3045 static inline void f2fs_i_blocks_write(struct inode *inode,
3046 block_t diff, bool add, bool claim)
3047 {
3048 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3049 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3050
3051 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
3052 if (add) {
3053 if (claim)
3054 dquot_claim_block(inode, diff);
3055 else
3056 dquot_alloc_block_nofail(inode, diff);
3057 } else {
3058 dquot_free_block(inode, diff);
3059 }
3060
3061 f2fs_mark_inode_dirty_sync(inode, true);
3062 if (clean || recover)
3063 set_inode_flag(inode, FI_AUTO_RECOVER);
3064 }
3065
3066 static inline bool f2fs_is_atomic_file(struct inode *inode);
3067
f2fs_i_size_write(struct inode * inode,loff_t i_size)3068 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3069 {
3070 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3071 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3072
3073 if (i_size_read(inode) == i_size)
3074 return;
3075
3076 i_size_write(inode, i_size);
3077
3078 if (f2fs_is_atomic_file(inode))
3079 return;
3080
3081 f2fs_mark_inode_dirty_sync(inode, true);
3082 if (clean || recover)
3083 set_inode_flag(inode, FI_AUTO_RECOVER);
3084 }
3085
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3086 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3087 {
3088 F2FS_I(inode)->i_current_depth = depth;
3089 f2fs_mark_inode_dirty_sync(inode, true);
3090 }
3091
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3092 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3093 unsigned int count)
3094 {
3095 F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN] = count;
3096 f2fs_mark_inode_dirty_sync(inode, true);
3097 }
3098
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3099 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3100 {
3101 F2FS_I(inode)->i_xattr_nid = xnid;
3102 f2fs_mark_inode_dirty_sync(inode, true);
3103 }
3104
f2fs_i_pino_write(struct inode * inode,nid_t pino)3105 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3106 {
3107 F2FS_I(inode)->i_pino = pino;
3108 f2fs_mark_inode_dirty_sync(inode, true);
3109 }
3110
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3111 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3112 {
3113 struct f2fs_inode_info *fi = F2FS_I(inode);
3114
3115 if (ri->i_inline & F2FS_INLINE_XATTR)
3116 set_bit(FI_INLINE_XATTR, fi->flags);
3117 if (ri->i_inline & F2FS_INLINE_DATA)
3118 set_bit(FI_INLINE_DATA, fi->flags);
3119 if (ri->i_inline & F2FS_INLINE_DENTRY)
3120 set_bit(FI_INLINE_DENTRY, fi->flags);
3121 if (ri->i_inline & F2FS_DATA_EXIST)
3122 set_bit(FI_DATA_EXIST, fi->flags);
3123 if (ri->i_inline & F2FS_INLINE_DOTS)
3124 set_bit(FI_INLINE_DOTS, fi->flags);
3125 if (ri->i_inline & F2FS_EXTRA_ATTR)
3126 set_bit(FI_EXTRA_ATTR, fi->flags);
3127 if (ri->i_inline & F2FS_PIN_FILE)
3128 set_bit(FI_PIN_FILE, fi->flags);
3129 if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3130 set_bit(FI_COMPRESS_RELEASED, fi->flags);
3131 }
3132
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3133 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3134 {
3135 ri->i_inline = 0;
3136
3137 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3138 ri->i_inline |= F2FS_INLINE_XATTR;
3139 if (is_inode_flag_set(inode, FI_INLINE_DATA))
3140 ri->i_inline |= F2FS_INLINE_DATA;
3141 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3142 ri->i_inline |= F2FS_INLINE_DENTRY;
3143 if (is_inode_flag_set(inode, FI_DATA_EXIST))
3144 ri->i_inline |= F2FS_DATA_EXIST;
3145 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
3146 ri->i_inline |= F2FS_INLINE_DOTS;
3147 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3148 ri->i_inline |= F2FS_EXTRA_ATTR;
3149 if (is_inode_flag_set(inode, FI_PIN_FILE))
3150 ri->i_inline |= F2FS_PIN_FILE;
3151 if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3152 ri->i_inline |= F2FS_COMPRESS_RELEASED;
3153 }
3154
f2fs_has_extra_attr(struct inode * inode)3155 static inline int f2fs_has_extra_attr(struct inode *inode)
3156 {
3157 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3158 }
3159
f2fs_has_inline_xattr(struct inode * inode)3160 static inline int f2fs_has_inline_xattr(struct inode *inode)
3161 {
3162 return is_inode_flag_set(inode, FI_INLINE_XATTR);
3163 }
3164
f2fs_compressed_file(struct inode * inode)3165 static inline int f2fs_compressed_file(struct inode *inode)
3166 {
3167 return S_ISREG(inode->i_mode) &&
3168 is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3169 }
3170
f2fs_need_compress_data(struct inode * inode)3171 static inline bool f2fs_need_compress_data(struct inode *inode)
3172 {
3173 int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3174
3175 if (!f2fs_compressed_file(inode))
3176 return false;
3177
3178 if (compress_mode == COMPR_MODE_FS)
3179 return true;
3180 else if (compress_mode == COMPR_MODE_USER &&
3181 is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3182 return true;
3183
3184 return false;
3185 }
3186
addrs_per_inode(struct inode * inode)3187 static inline unsigned int addrs_per_inode(struct inode *inode)
3188 {
3189 unsigned int addrs = CUR_ADDRS_PER_INODE(inode) -
3190 get_inline_xattr_addrs(inode);
3191
3192 if (!f2fs_compressed_file(inode))
3193 return addrs;
3194 return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3195 }
3196
addrs_per_block(struct inode * inode)3197 static inline unsigned int addrs_per_block(struct inode *inode)
3198 {
3199 if (!f2fs_compressed_file(inode))
3200 return DEF_ADDRS_PER_BLOCK;
3201 return ALIGN_DOWN(DEF_ADDRS_PER_BLOCK, F2FS_I(inode)->i_cluster_size);
3202 }
3203
inline_xattr_addr(struct inode * inode,struct page * page)3204 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3205 {
3206 struct f2fs_inode *ri = F2FS_INODE(page);
3207
3208 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3209 get_inline_xattr_addrs(inode)]);
3210 }
3211
inline_xattr_size(struct inode * inode)3212 static inline int inline_xattr_size(struct inode *inode)
3213 {
3214 if (f2fs_has_inline_xattr(inode))
3215 return get_inline_xattr_addrs(inode) * sizeof(__le32);
3216 return 0;
3217 }
3218
f2fs_has_inline_data(struct inode * inode)3219 static inline int f2fs_has_inline_data(struct inode *inode)
3220 {
3221 return is_inode_flag_set(inode, FI_INLINE_DATA);
3222 }
3223
f2fs_exist_data(struct inode * inode)3224 static inline int f2fs_exist_data(struct inode *inode)
3225 {
3226 return is_inode_flag_set(inode, FI_DATA_EXIST);
3227 }
3228
f2fs_has_inline_dots(struct inode * inode)3229 static inline int f2fs_has_inline_dots(struct inode *inode)
3230 {
3231 return is_inode_flag_set(inode, FI_INLINE_DOTS);
3232 }
3233
f2fs_is_mmap_file(struct inode * inode)3234 static inline int f2fs_is_mmap_file(struct inode *inode)
3235 {
3236 return is_inode_flag_set(inode, FI_MMAP_FILE);
3237 }
3238
f2fs_is_pinned_file(struct inode * inode)3239 static inline bool f2fs_is_pinned_file(struct inode *inode)
3240 {
3241 return is_inode_flag_set(inode, FI_PIN_FILE);
3242 }
3243
f2fs_is_atomic_file(struct inode * inode)3244 static inline bool f2fs_is_atomic_file(struct inode *inode)
3245 {
3246 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3247 }
3248
f2fs_is_cow_file(struct inode * inode)3249 static inline bool f2fs_is_cow_file(struct inode *inode)
3250 {
3251 return is_inode_flag_set(inode, FI_COW_FILE);
3252 }
3253
f2fs_is_first_block_written(struct inode * inode)3254 static inline bool f2fs_is_first_block_written(struct inode *inode)
3255 {
3256 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
3257 }
3258
f2fs_is_drop_cache(struct inode * inode)3259 static inline bool f2fs_is_drop_cache(struct inode *inode)
3260 {
3261 return is_inode_flag_set(inode, FI_DROP_CACHE);
3262 }
3263
inline_data_addr(struct inode * inode,struct page * page)3264 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3265 {
3266 struct f2fs_inode *ri = F2FS_INODE(page);
3267 int extra_size = get_extra_isize(inode);
3268
3269 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
3270 }
3271
f2fs_has_inline_dentry(struct inode * inode)3272 static inline int f2fs_has_inline_dentry(struct inode *inode)
3273 {
3274 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3275 }
3276
is_file(struct inode * inode,int type)3277 static inline int is_file(struct inode *inode, int type)
3278 {
3279 return F2FS_I(inode)->i_advise & type;
3280 }
3281
set_file(struct inode * inode,int type)3282 static inline void set_file(struct inode *inode, int type)
3283 {
3284 if (is_file(inode, type))
3285 return;
3286 F2FS_I(inode)->i_advise |= type;
3287 f2fs_mark_inode_dirty_sync(inode, true);
3288 }
3289
clear_file(struct inode * inode,int type)3290 static inline void clear_file(struct inode *inode, int type)
3291 {
3292 if (!is_file(inode, type))
3293 return;
3294 F2FS_I(inode)->i_advise &= ~type;
3295 f2fs_mark_inode_dirty_sync(inode, true);
3296 }
3297
f2fs_is_time_consistent(struct inode * inode)3298 static inline bool f2fs_is_time_consistent(struct inode *inode)
3299 {
3300 if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &inode->i_atime))
3301 return false;
3302 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &inode->i_ctime))
3303 return false;
3304 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &inode->i_mtime))
3305 return false;
3306 if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 3,
3307 &F2FS_I(inode)->i_crtime))
3308 return false;
3309 return true;
3310 }
3311
f2fs_skip_inode_update(struct inode * inode,int dsync)3312 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3313 {
3314 bool ret;
3315
3316 if (dsync) {
3317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318
3319 spin_lock(&sbi->inode_lock[DIRTY_META]);
3320 ret = list_empty(&F2FS_I(inode)->gdirty_list);
3321 spin_unlock(&sbi->inode_lock[DIRTY_META]);
3322 return ret;
3323 }
3324 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3325 file_keep_isize(inode) ||
3326 i_size_read(inode) & ~PAGE_MASK)
3327 return false;
3328
3329 if (!f2fs_is_time_consistent(inode))
3330 return false;
3331
3332 spin_lock(&F2FS_I(inode)->i_size_lock);
3333 ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3334 spin_unlock(&F2FS_I(inode)->i_size_lock);
3335
3336 return ret;
3337 }
3338
f2fs_readonly(struct super_block * sb)3339 static inline bool f2fs_readonly(struct super_block *sb)
3340 {
3341 return sb_rdonly(sb);
3342 }
3343
f2fs_cp_error(struct f2fs_sb_info * sbi)3344 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3345 {
3346 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3347 }
3348
is_dot_dotdot(const u8 * name,size_t len)3349 static inline bool is_dot_dotdot(const u8 *name, size_t len)
3350 {
3351 if (len == 1 && name[0] == '.')
3352 return true;
3353
3354 if (len == 2 && name[0] == '.' && name[1] == '.')
3355 return true;
3356
3357 return false;
3358 }
3359
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3360 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3361 size_t size, gfp_t flags)
3362 {
3363 if (time_to_inject(sbi, FAULT_KMALLOC)) {
3364 f2fs_show_injection_info(sbi, FAULT_KMALLOC);
3365 return NULL;
3366 }
3367
3368 return kmalloc(size, flags);
3369 }
3370
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3371 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3372 size_t size, gfp_t flags)
3373 {
3374 return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3375 }
3376
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3377 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3378 size_t size, gfp_t flags)
3379 {
3380 if (time_to_inject(sbi, FAULT_KVMALLOC)) {
3381 f2fs_show_injection_info(sbi, FAULT_KVMALLOC);
3382 return NULL;
3383 }
3384
3385 return kvmalloc(size, flags);
3386 }
3387
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3388 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3389 size_t size, gfp_t flags)
3390 {
3391 return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3392 }
3393
get_extra_isize(struct inode * inode)3394 static inline int get_extra_isize(struct inode *inode)
3395 {
3396 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3397 }
3398
get_inline_xattr_addrs(struct inode * inode)3399 static inline int get_inline_xattr_addrs(struct inode *inode)
3400 {
3401 return F2FS_I(inode)->i_inline_xattr_size;
3402 }
3403
3404 #define f2fs_get_inode_mode(i) \
3405 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3406 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3407
3408 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
3409 (offsetof(struct f2fs_inode, i_extra_end) - \
3410 offsetof(struct f2fs_inode, i_extra_isize)) \
3411
3412 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
3413 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
3414 ((offsetof(typeof(*(f2fs_inode)), field) + \
3415 sizeof((f2fs_inode)->field)) \
3416 <= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize))) \
3417
3418 #define __is_large_section(sbi) ((sbi)->segs_per_sec > 1)
3419
3420 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3421
3422 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3423 block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3424 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3425 block_t blkaddr, int type)
3426 {
3427 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type)) {
3428 f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3429 blkaddr, type);
3430 f2fs_bug_on(sbi, 1);
3431 }
3432 }
3433
__is_valid_data_blkaddr(block_t blkaddr)3434 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3435 {
3436 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3437 blkaddr == COMPRESS_ADDR)
3438 return false;
3439 return true;
3440 }
3441
3442 /*
3443 * file.c
3444 */
3445 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3446 void f2fs_truncate_data_blocks(struct dnode_of_data *dn);
3447 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3448 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3449 int f2fs_truncate(struct inode *inode);
3450 int f2fs_getattr(struct user_namespace *mnt_userns, const struct path *path,
3451 struct kstat *stat, u32 request_mask, unsigned int flags);
3452 int f2fs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
3453 struct iattr *attr);
3454 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3455 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3456 int f2fs_precache_extents(struct inode *inode);
3457 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3458 int f2fs_fileattr_set(struct user_namespace *mnt_userns,
3459 struct dentry *dentry, struct fileattr *fa);
3460 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3461 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3462 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3463 int f2fs_pin_file_control(struct inode *inode, bool inc);
3464
3465 /*
3466 * inode.c
3467 */
3468 void f2fs_set_inode_flags(struct inode *inode);
3469 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3470 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3471 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3472 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3473 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3474 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3475 void f2fs_update_inode_page(struct inode *inode);
3476 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3477 void f2fs_evict_inode(struct inode *inode);
3478 void f2fs_handle_failed_inode(struct inode *inode);
3479
3480 /*
3481 * namei.c
3482 */
3483 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3484 bool hot, bool set);
3485 struct dentry *f2fs_get_parent(struct dentry *child);
3486 int f2fs_get_tmpfile(struct user_namespace *mnt_userns, struct inode *dir,
3487 struct inode **new_inode);
3488
3489 /*
3490 * dir.c
3491 */
3492 unsigned char f2fs_get_de_type(struct f2fs_dir_entry *de);
3493 int f2fs_init_casefolded_name(const struct inode *dir,
3494 struct f2fs_filename *fname);
3495 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3496 int lookup, struct f2fs_filename *fname);
3497 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3498 struct f2fs_filename *fname);
3499 void f2fs_free_filename(struct f2fs_filename *fname);
3500 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3501 const struct f2fs_filename *fname, int *max_slots);
3502 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3503 unsigned int start_pos, struct fscrypt_str *fstr);
3504 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3505 struct f2fs_dentry_ptr *d);
3506 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3507 const struct f2fs_filename *fname, struct page *dpage);
3508 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3509 unsigned int current_depth);
3510 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3511 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3512 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3513 const struct f2fs_filename *fname,
3514 struct page **res_page);
3515 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3516 const struct qstr *child, struct page **res_page);
3517 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3518 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3519 struct page **page);
3520 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3521 struct page *page, struct inode *inode);
3522 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3523 const struct f2fs_filename *fname);
3524 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3525 const struct fscrypt_str *name, f2fs_hash_t name_hash,
3526 unsigned int bit_pos);
3527 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3528 struct inode *inode, nid_t ino, umode_t mode);
3529 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3530 struct inode *inode, nid_t ino, umode_t mode);
3531 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3532 struct inode *inode, nid_t ino, umode_t mode);
3533 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3534 struct inode *dir, struct inode *inode);
3535 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
3536 bool f2fs_empty_dir(struct inode *dir);
3537
f2fs_add_link(struct dentry * dentry,struct inode * inode)3538 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3539 {
3540 if (fscrypt_is_nokey_name(dentry))
3541 return -ENOKEY;
3542 return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3543 inode, inode->i_ino, inode->i_mode);
3544 }
3545
3546 /*
3547 * super.c
3548 */
3549 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3550 void f2fs_inode_synced(struct inode *inode);
3551 int f2fs_dquot_initialize(struct inode *inode);
3552 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3553 int f2fs_quota_sync(struct super_block *sb, int type);
3554 loff_t max_file_blocks(struct inode *inode);
3555 void f2fs_quota_off_umount(struct super_block *sb);
3556 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason);
3557 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3558 int f2fs_sync_fs(struct super_block *sb, int sync);
3559 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3560
3561 /*
3562 * hash.c
3563 */
3564 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3565
3566 /*
3567 * node.c
3568 */
3569 struct node_info;
3570
3571 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3572 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3573 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page);
3574 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3575 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3576 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3577 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3578 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3579 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3580 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3581 struct node_info *ni, bool checkpoint_context);
3582 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3583 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3584 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3585 int f2fs_truncate_xattr_node(struct inode *inode);
3586 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3587 unsigned int seq_id);
3588 bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi);
3589 int f2fs_remove_inode_page(struct inode *inode);
3590 struct page *f2fs_new_inode_page(struct inode *inode);
3591 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3592 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3593 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3594 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3595 int f2fs_move_node_page(struct page *node_page, int gc_type);
3596 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3597 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3598 struct writeback_control *wbc, bool atomic,
3599 unsigned int *seq_id);
3600 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3601 struct writeback_control *wbc,
3602 bool do_balance, enum iostat_type io_type);
3603 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3604 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3605 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3606 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3607 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3608 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3609 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3610 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3611 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3612 unsigned int segno, struct f2fs_summary_block *sum);
3613 void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi);
3614 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3615 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3616 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3617 int __init f2fs_create_node_manager_caches(void);
3618 void f2fs_destroy_node_manager_caches(void);
3619
3620 /*
3621 * segment.c
3622 */
3623 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3624 int f2fs_commit_atomic_write(struct inode *inode);
3625 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3626 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3627 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3628 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3629 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3630 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3631 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3632 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
3633 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3634 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3635 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3636 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3637 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3638 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3639 struct cp_control *cpc);
3640 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3641 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3642 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3643 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3644 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3645 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3646 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3647 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3648 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3649 void f2fs_get_new_segment(struct f2fs_sb_info *sbi,
3650 unsigned int *newseg, bool new_sec, int dir);
3651 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3652 unsigned int start, unsigned int end);
3653 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3654 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3655 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3656 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3657 struct cp_control *cpc);
3658 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3659 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3660 block_t blk_addr);
3661 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3662 enum iostat_type io_type);
3663 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3664 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3665 struct f2fs_io_info *fio);
3666 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3667 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3668 block_t old_blkaddr, block_t new_blkaddr,
3669 bool recover_curseg, bool recover_newaddr,
3670 bool from_gc);
3671 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3672 block_t old_addr, block_t new_addr,
3673 unsigned char version, bool recover_curseg,
3674 bool recover_newaddr);
3675 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3676 block_t old_blkaddr, block_t *new_blkaddr,
3677 struct f2fs_summary *sum, int type,
3678 struct f2fs_io_info *fio);
3679 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3680 block_t blkaddr, unsigned int blkcnt);
3681 void f2fs_wait_on_page_writeback(struct page *page,
3682 enum page_type type, bool ordered, bool locked);
3683 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3684 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3685 block_t len);
3686 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3687 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3688 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3689 unsigned int val, int alloc);
3690 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3691 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi);
3692 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi);
3693 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3694 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3695 int __init f2fs_create_segment_manager_caches(void);
3696 void f2fs_destroy_segment_manager_caches(void);
3697 int f2fs_rw_hint_to_seg_type(enum rw_hint hint);
3698 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3699 enum page_type type, enum temp_type temp);
3700 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
3701 unsigned int segno);
3702 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3703 unsigned int segno);
3704
3705 #define DEF_FRAGMENT_SIZE 4
3706 #define MIN_FRAGMENT_SIZE 1
3707 #define MAX_FRAGMENT_SIZE 512
3708
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3709 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3710 {
3711 return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3712 F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3713 }
3714
3715 /*
3716 * checkpoint.c
3717 */
3718 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3719 unsigned char reason);
3720 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3721 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3722 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3723 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3724 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3725 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3726 block_t blkaddr, int type);
3727 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3728 int type, bool sync);
3729 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3730 unsigned int ra_blocks);
3731 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3732 long nr_to_write, enum iostat_type io_type);
3733 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3734 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3735 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3736 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3737 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3738 unsigned int devidx, int type);
3739 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3740 unsigned int devidx, int type);
3741 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
3742 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3743 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3744 void f2fs_add_orphan_inode(struct inode *inode);
3745 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3746 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3747 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3748 void f2fs_update_dirty_page(struct inode *inode, struct page *page);
3749 void f2fs_remove_dirty_inode(struct inode *inode);
3750 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3751 bool from_cp);
3752 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3753 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3754 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3755 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3756 int __init f2fs_create_checkpoint_caches(void);
3757 void f2fs_destroy_checkpoint_caches(void);
3758 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3759 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3760 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3761 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3762
3763 /*
3764 * data.c
3765 */
3766 int __init f2fs_init_bioset(void);
3767 void f2fs_destroy_bioset(void);
3768 int f2fs_init_bio_entry_cache(void);
3769 void f2fs_destroy_bio_entry_cache(void);
3770 void f2fs_submit_bio(struct f2fs_sb_info *sbi,
3771 struct bio *bio, enum page_type type);
3772 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3773 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3774 struct inode *inode, struct page *page,
3775 nid_t ino, enum page_type type);
3776 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3777 struct bio **bio, struct page *page);
3778 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3779 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3780 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3781 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3782 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3783 block_t blk_addr, struct bio *bio);
3784 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3785 void f2fs_set_data_blkaddr(struct dnode_of_data *dn);
3786 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3787 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3788 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3789 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
3790 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3791 struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
3792 int op_flags, bool for_write);
3793 struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index);
3794 struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
3795 bool for_write);
3796 struct page *f2fs_get_new_data_page(struct inode *inode,
3797 struct page *ipage, pgoff_t index, bool new_i_size);
3798 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3799 void f2fs_do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock);
3800 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
3801 int create, int flag);
3802 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3803 u64 start, u64 len);
3804 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3805 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3806 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3807 int f2fs_write_single_data_page(struct page *page, int *submitted,
3808 struct bio **bio, sector_t *last_block,
3809 struct writeback_control *wbc,
3810 enum iostat_type io_type,
3811 int compr_blocks, bool allow_balance);
3812 void f2fs_write_failed(struct inode *inode, loff_t to);
3813 void f2fs_invalidate_page(struct page *page, unsigned int offset,
3814 unsigned int length);
3815 int f2fs_release_page(struct page *page, gfp_t wait);
3816 #ifdef CONFIG_MIGRATION
3817 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
3818 struct page *page, enum migrate_mode mode);
3819 #endif
3820 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3821 void f2fs_clear_page_cache_dirty_tag(struct page *page);
3822 int f2fs_init_post_read_processing(void);
3823 void f2fs_destroy_post_read_processing(void);
3824 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3825 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3826 extern const struct iomap_ops f2fs_iomap_ops;
3827
3828 /*
3829 * gc.c
3830 */
3831 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
3832 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
3833 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
3834 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background, bool force,
3835 unsigned int segno);
3836 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
3837 int f2fs_resize_fs(struct file *filp, __u64 block_count);
3838 int __init f2fs_create_garbage_collection_cache(void);
3839 void f2fs_destroy_garbage_collection_cache(void);
3840
3841 /*
3842 * recovery.c
3843 */
3844 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
3845 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
3846 int __init f2fs_create_recovery_cache(void);
3847 void f2fs_destroy_recovery_cache(void);
3848
3849 /*
3850 * debug.c
3851 */
3852 #ifdef CONFIG_F2FS_STAT_FS
3853 struct f2fs_stat_info {
3854 struct list_head stat_list;
3855 struct f2fs_sb_info *sbi;
3856 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
3857 int main_area_segs, main_area_sections, main_area_zones;
3858 unsigned long long hit_largest, hit_cached, hit_rbtree;
3859 unsigned long long hit_total, total_ext;
3860 int ext_tree, zombie_tree, ext_node;
3861 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
3862 int ndirty_data, ndirty_qdata;
3863 unsigned int ndirty_dirs, ndirty_files, nquota_files, ndirty_all;
3864 int nats, dirty_nats, sits, dirty_sits;
3865 int free_nids, avail_nids, alloc_nids;
3866 int total_count, utilization;
3867 int bg_gc, nr_wb_cp_data, nr_wb_data;
3868 int nr_rd_data, nr_rd_node, nr_rd_meta;
3869 int nr_dio_read, nr_dio_write;
3870 unsigned int io_skip_bggc, other_skip_bggc;
3871 int nr_flushing, nr_flushed, flush_list_empty;
3872 int nr_discarding, nr_discarded;
3873 int nr_discard_cmd;
3874 unsigned int undiscard_blks;
3875 int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
3876 unsigned int cur_ckpt_time, peak_ckpt_time;
3877 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
3878 int compr_inode;
3879 unsigned long long compr_blocks;
3880 int aw_cnt, max_aw_cnt;
3881 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
3882 unsigned int bimodal, avg_vblocks;
3883 int util_free, util_valid, util_invalid;
3884 int rsvd_segs, overp_segs;
3885 int dirty_count, node_pages, meta_pages, compress_pages;
3886 int compress_page_hit;
3887 int prefree_count, call_count, cp_count, bg_cp_count;
3888 int tot_segs, node_segs, data_segs, free_segs, free_secs;
3889 int bg_node_segs, bg_data_segs;
3890 int tot_blks, data_blks, node_blks;
3891 int bg_data_blks, bg_node_blks;
3892 int curseg[NR_CURSEG_TYPE];
3893 int cursec[NR_CURSEG_TYPE];
3894 int curzone[NR_CURSEG_TYPE];
3895 unsigned int dirty_seg[NR_CURSEG_TYPE];
3896 unsigned int full_seg[NR_CURSEG_TYPE];
3897 unsigned int valid_blks[NR_CURSEG_TYPE];
3898
3899 unsigned int meta_count[META_MAX];
3900 unsigned int segment_count[2];
3901 unsigned int block_count[2];
3902 unsigned int inplace_count;
3903 unsigned long long base_mem, cache_mem, page_mem;
3904 };
3905
F2FS_STAT(struct f2fs_sb_info * sbi)3906 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
3907 {
3908 return (struct f2fs_stat_info *)sbi->stat_info;
3909 }
3910
3911 #define stat_inc_cp_count(si) ((si)->cp_count++)
3912 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
3913 #define stat_inc_call_count(si) ((si)->call_count++)
3914 #define stat_inc_bggc_count(si) ((si)->bg_gc++)
3915 #define stat_io_skip_bggc_count(sbi) ((sbi)->io_skip_bggc++)
3916 #define stat_other_skip_bggc_count(sbi) ((sbi)->other_skip_bggc++)
3917 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
3918 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
3919 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
3920 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
3921 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
3922 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
3923 #define stat_inc_inline_xattr(inode) \
3924 do { \
3925 if (f2fs_has_inline_xattr(inode)) \
3926 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
3927 } while (0)
3928 #define stat_dec_inline_xattr(inode) \
3929 do { \
3930 if (f2fs_has_inline_xattr(inode)) \
3931 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
3932 } while (0)
3933 #define stat_inc_inline_inode(inode) \
3934 do { \
3935 if (f2fs_has_inline_data(inode)) \
3936 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
3937 } while (0)
3938 #define stat_dec_inline_inode(inode) \
3939 do { \
3940 if (f2fs_has_inline_data(inode)) \
3941 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
3942 } while (0)
3943 #define stat_inc_inline_dir(inode) \
3944 do { \
3945 if (f2fs_has_inline_dentry(inode)) \
3946 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
3947 } while (0)
3948 #define stat_dec_inline_dir(inode) \
3949 do { \
3950 if (f2fs_has_inline_dentry(inode)) \
3951 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
3952 } while (0)
3953 #define stat_inc_compr_inode(inode) \
3954 do { \
3955 if (f2fs_compressed_file(inode)) \
3956 (atomic_inc(&F2FS_I_SB(inode)->compr_inode)); \
3957 } while (0)
3958 #define stat_dec_compr_inode(inode) \
3959 do { \
3960 if (f2fs_compressed_file(inode)) \
3961 (atomic_dec(&F2FS_I_SB(inode)->compr_inode)); \
3962 } while (0)
3963 #define stat_add_compr_blocks(inode, blocks) \
3964 (atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
3965 #define stat_sub_compr_blocks(inode, blocks) \
3966 (atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
3967 #define stat_inc_atomic_inode(inode) \
3968 (atomic_inc(&F2FS_I_SB(inode)->atomic_files))
3969 #define stat_dec_atomic_inode(inode) \
3970 (atomic_dec(&F2FS_I_SB(inode)->atomic_files))
3971 #define stat_inc_meta_count(sbi, blkaddr) \
3972 do { \
3973 if (blkaddr < SIT_I(sbi)->sit_base_addr) \
3974 atomic_inc(&(sbi)->meta_count[META_CP]); \
3975 else if (blkaddr < NM_I(sbi)->nat_blkaddr) \
3976 atomic_inc(&(sbi)->meta_count[META_SIT]); \
3977 else if (blkaddr < SM_I(sbi)->ssa_blkaddr) \
3978 atomic_inc(&(sbi)->meta_count[META_NAT]); \
3979 else if (blkaddr < SM_I(sbi)->main_blkaddr) \
3980 atomic_inc(&(sbi)->meta_count[META_SSA]); \
3981 } while (0)
3982 #define stat_inc_seg_type(sbi, curseg) \
3983 ((sbi)->segment_count[(curseg)->alloc_type]++)
3984 #define stat_inc_block_count(sbi, curseg) \
3985 ((sbi)->block_count[(curseg)->alloc_type]++)
3986 #define stat_inc_inplace_blocks(sbi) \
3987 (atomic_inc(&(sbi)->inplace_count))
3988 #define stat_update_max_atomic_write(inode) \
3989 do { \
3990 int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files); \
3991 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
3992 if (cur > max) \
3993 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
3994 } while (0)
3995 #define stat_inc_seg_count(sbi, type, gc_type) \
3996 do { \
3997 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
3998 si->tot_segs++; \
3999 if ((type) == SUM_TYPE_DATA) { \
4000 si->data_segs++; \
4001 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
4002 } else { \
4003 si->node_segs++; \
4004 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
4005 } \
4006 } while (0)
4007
4008 #define stat_inc_tot_blk_count(si, blks) \
4009 ((si)->tot_blks += (blks))
4010
4011 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
4012 do { \
4013 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4014 stat_inc_tot_blk_count(si, blks); \
4015 si->data_blks += (blks); \
4016 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4017 } while (0)
4018
4019 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
4020 do { \
4021 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
4022 stat_inc_tot_blk_count(si, blks); \
4023 si->node_blks += (blks); \
4024 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
4025 } while (0)
4026
4027 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4028 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4029 void __init f2fs_create_root_stats(void);
4030 void f2fs_destroy_root_stats(void);
4031 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4032 #else
4033 #define stat_inc_cp_count(si) do { } while (0)
4034 #define stat_inc_bg_cp_count(si) do { } while (0)
4035 #define stat_inc_call_count(si) do { } while (0)
4036 #define stat_inc_bggc_count(si) do { } while (0)
4037 #define stat_io_skip_bggc_count(sbi) do { } while (0)
4038 #define stat_other_skip_bggc_count(sbi) do { } while (0)
4039 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
4040 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
4041 #define stat_inc_total_hit(sbi) do { } while (0)
4042 #define stat_inc_rbtree_node_hit(sbi) do { } while (0)
4043 #define stat_inc_largest_node_hit(sbi) do { } while (0)
4044 #define stat_inc_cached_node_hit(sbi) do { } while (0)
4045 #define stat_inc_inline_xattr(inode) do { } while (0)
4046 #define stat_dec_inline_xattr(inode) do { } while (0)
4047 #define stat_inc_inline_inode(inode) do { } while (0)
4048 #define stat_dec_inline_inode(inode) do { } while (0)
4049 #define stat_inc_inline_dir(inode) do { } while (0)
4050 #define stat_dec_inline_dir(inode) do { } while (0)
4051 #define stat_inc_compr_inode(inode) do { } while (0)
4052 #define stat_dec_compr_inode(inode) do { } while (0)
4053 #define stat_add_compr_blocks(inode, blocks) do { } while (0)
4054 #define stat_sub_compr_blocks(inode, blocks) do { } while (0)
4055 #define stat_inc_atomic_inode(inode) do { } while (0)
4056 #define stat_dec_atomic_inode(inode) do { } while (0)
4057 #define stat_update_max_atomic_write(inode) do { } while (0)
4058 #define stat_inc_meta_count(sbi, blkaddr) do { } while (0)
4059 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
4060 #define stat_inc_block_count(sbi, curseg) do { } while (0)
4061 #define stat_inc_inplace_blocks(sbi) do { } while (0)
4062 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
4063 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
4064 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
4065 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
4066
f2fs_build_stats(struct f2fs_sb_info * sbi)4067 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4068 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4069 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4070 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4071 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4072 #endif
4073
4074 extern const struct file_operations f2fs_dir_operations;
4075 extern const struct file_operations f2fs_file_operations;
4076 extern const struct inode_operations f2fs_file_inode_operations;
4077 extern const struct address_space_operations f2fs_dblock_aops;
4078 extern const struct address_space_operations f2fs_node_aops;
4079 extern const struct address_space_operations f2fs_meta_aops;
4080 extern const struct inode_operations f2fs_dir_inode_operations;
4081 extern const struct inode_operations f2fs_symlink_inode_operations;
4082 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4083 extern const struct inode_operations f2fs_special_inode_operations;
4084 extern struct kmem_cache *f2fs_inode_entry_slab;
4085
4086 /*
4087 * inline.c
4088 */
4089 bool f2fs_may_inline_data(struct inode *inode);
4090 bool f2fs_sanity_check_inline_data(struct inode *inode);
4091 bool f2fs_may_inline_dentry(struct inode *inode);
4092 void f2fs_do_read_inline_data(struct page *page, struct page *ipage);
4093 void f2fs_truncate_inline_inode(struct inode *inode,
4094 struct page *ipage, u64 from);
4095 int f2fs_read_inline_data(struct inode *inode, struct page *page);
4096 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4097 int f2fs_convert_inline_inode(struct inode *inode);
4098 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4099 int f2fs_write_inline_data(struct inode *inode, struct page *page);
4100 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4101 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4102 const struct f2fs_filename *fname,
4103 struct page **res_page);
4104 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4105 struct page *ipage);
4106 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4107 struct inode *inode, nid_t ino, umode_t mode);
4108 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4109 struct page *page, struct inode *dir,
4110 struct inode *inode);
4111 bool f2fs_empty_inline_dir(struct inode *dir);
4112 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4113 struct fscrypt_str *fstr);
4114 int f2fs_inline_data_fiemap(struct inode *inode,
4115 struct fiemap_extent_info *fieinfo,
4116 __u64 start, __u64 len);
4117
4118 /*
4119 * shrinker.c
4120 */
4121 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4122 struct shrink_control *sc);
4123 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4124 struct shrink_control *sc);
4125 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4126 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4127
4128 /*
4129 * extent_cache.c
4130 */
4131 struct rb_entry *f2fs_lookup_rb_tree(struct rb_root_cached *root,
4132 struct rb_entry *cached_re, unsigned int ofs);
4133 struct rb_node **f2fs_lookup_rb_tree_ext(struct f2fs_sb_info *sbi,
4134 struct rb_root_cached *root,
4135 struct rb_node **parent,
4136 unsigned long long key, bool *left_most);
4137 struct rb_node **f2fs_lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
4138 struct rb_root_cached *root,
4139 struct rb_node **parent,
4140 unsigned int ofs, bool *leftmost);
4141 struct rb_entry *f2fs_lookup_rb_tree_ret(struct rb_root_cached *root,
4142 struct rb_entry *cached_re, unsigned int ofs,
4143 struct rb_entry **prev_entry, struct rb_entry **next_entry,
4144 struct rb_node ***insert_p, struct rb_node **insert_parent,
4145 bool force, bool *leftmost);
4146 bool f2fs_check_rb_tree_consistence(struct f2fs_sb_info *sbi,
4147 struct rb_root_cached *root, bool check_key);
4148 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
4149 void f2fs_init_extent_tree(struct inode *inode, struct page *ipage);
4150 void f2fs_drop_extent_tree(struct inode *inode);
4151 unsigned int f2fs_destroy_extent_node(struct inode *inode);
4152 void f2fs_destroy_extent_tree(struct inode *inode);
4153 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
4154 struct extent_info *ei);
4155 void f2fs_update_extent_cache(struct dnode_of_data *dn);
4156 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
4157 pgoff_t fofs, block_t blkaddr, unsigned int len);
4158 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4159 int __init f2fs_create_extent_cache(void);
4160 void f2fs_destroy_extent_cache(void);
4161
4162 /*
4163 * sysfs.c
4164 */
4165 #define MIN_RA_MUL 2
4166 #define MAX_RA_MUL 256
4167
4168 int __init f2fs_init_sysfs(void);
4169 void f2fs_exit_sysfs(void);
4170 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4171 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4172
4173 /* verity.c */
4174 extern const struct fsverity_operations f2fs_verityops;
4175
4176 /*
4177 * crypto support
4178 */
f2fs_encrypted_file(struct inode * inode)4179 static inline bool f2fs_encrypted_file(struct inode *inode)
4180 {
4181 return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4182 }
4183
f2fs_set_encrypted_inode(struct inode * inode)4184 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4185 {
4186 #ifdef CONFIG_FS_ENCRYPTION
4187 file_set_encrypt(inode);
4188 f2fs_set_inode_flags(inode);
4189 #endif
4190 }
4191
4192 /*
4193 * Returns true if the reads of the inode's data need to undergo some
4194 * postprocessing step, like decryption or authenticity verification.
4195 */
f2fs_post_read_required(struct inode * inode)4196 static inline bool f2fs_post_read_required(struct inode *inode)
4197 {
4198 return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4199 f2fs_compressed_file(inode);
4200 }
4201
4202 /*
4203 * compress.c
4204 */
4205 #ifdef CONFIG_F2FS_FS_COMPRESSION
4206 bool f2fs_is_compressed_page(struct page *page);
4207 struct page *f2fs_compress_control_page(struct page *page);
4208 int f2fs_prepare_compress_overwrite(struct inode *inode,
4209 struct page **pagep, pgoff_t index, void **fsdata);
4210 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4211 pgoff_t index, unsigned copied);
4212 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4213 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4214 bool f2fs_is_compress_backend_ready(struct inode *inode);
4215 int f2fs_init_compress_mempool(void);
4216 void f2fs_destroy_compress_mempool(void);
4217 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4218 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4219 block_t blkaddr, bool in_task);
4220 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4221 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4222 bool f2fs_all_cluster_page_loaded(struct compress_ctx *cc, struct pagevec *pvec,
4223 int index, int nr_pages);
4224 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4225 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct page *page);
4226 int f2fs_write_multi_pages(struct compress_ctx *cc,
4227 int *submitted,
4228 struct writeback_control *wbc,
4229 enum iostat_type io_type);
4230 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4231 void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4232 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4233 unsigned int c_len);
4234 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4235 unsigned nr_pages, sector_t *last_block_in_bio,
4236 bool is_readahead, bool for_write);
4237 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4238 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4239 bool in_task);
4240 void f2fs_put_page_dic(struct page *page, bool in_task);
4241 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn);
4242 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4243 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4244 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4245 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4246 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4247 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4248 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4249 int __init f2fs_init_compress_cache(void);
4250 void f2fs_destroy_compress_cache(void);
4251 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4252 void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi, block_t blkaddr);
4253 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4254 nid_t ino, block_t blkaddr);
4255 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4256 block_t blkaddr);
4257 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4258 #define inc_compr_inode_stat(inode) \
4259 do { \
4260 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4261 sbi->compr_new_inode++; \
4262 } while (0)
4263 #define add_compr_block_stat(inode, blocks) \
4264 do { \
4265 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); \
4266 int diff = F2FS_I(inode)->i_cluster_size - blocks; \
4267 sbi->compr_written_block += blocks; \
4268 sbi->compr_saved_block += diff; \
4269 } while (0)
4270 #else
f2fs_is_compressed_page(struct page * page)4271 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4272 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4273 {
4274 if (!f2fs_compressed_file(inode))
4275 return true;
4276 /* not support compression */
4277 return false;
4278 }
f2fs_compress_control_page(struct page * page)4279 static inline struct page *f2fs_compress_control_page(struct page *page)
4280 {
4281 WARN_ON_ONCE(1);
4282 return ERR_PTR(-EINVAL);
4283 }
f2fs_init_compress_mempool(void)4284 static inline int f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4285 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4286 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4287 bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4288 static inline void f2fs_end_read_compressed_page(struct page *page,
4289 bool failed, block_t blkaddr, bool in_task)
4290 {
4291 WARN_ON_ONCE(1);
4292 }
f2fs_put_page_dic(struct page * page,bool in_task)4293 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4294 {
4295 WARN_ON_ONCE(1);
4296 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn)4297 static inline unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4298 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4299 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4300 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4301 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4302 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4303 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4304 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_page(struct f2fs_sb_info * sbi,block_t blkaddr)4305 static inline void f2fs_invalidate_compress_page(struct f2fs_sb_info *sbi,
4306 block_t blkaddr) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4307 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4308 struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4309 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4310 struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4311 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4312 nid_t ino) { }
4313 #define inc_compr_inode_stat(inode) do { } while (0)
f2fs_update_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4314 static inline void f2fs_update_extent_tree_range_compressed(struct inode *inode,
4315 pgoff_t fofs, block_t blkaddr, unsigned int llen,
4316 unsigned int c_len) { }
4317 #endif
4318
set_compress_context(struct inode * inode)4319 static inline int set_compress_context(struct inode *inode)
4320 {
4321 #ifdef CONFIG_F2FS_FS_COMPRESSION
4322 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4323
4324 F2FS_I(inode)->i_compress_algorithm =
4325 F2FS_OPTION(sbi).compress_algorithm;
4326 F2FS_I(inode)->i_log_cluster_size =
4327 F2FS_OPTION(sbi).compress_log_size;
4328 F2FS_I(inode)->i_compress_flag =
4329 F2FS_OPTION(sbi).compress_chksum ?
4330 1 << COMPRESS_CHKSUM : 0;
4331 F2FS_I(inode)->i_cluster_size =
4332 1 << F2FS_I(inode)->i_log_cluster_size;
4333 if ((F2FS_I(inode)->i_compress_algorithm == COMPRESS_LZ4 ||
4334 F2FS_I(inode)->i_compress_algorithm == COMPRESS_ZSTD) &&
4335 F2FS_OPTION(sbi).compress_level)
4336 F2FS_I(inode)->i_compress_flag |=
4337 F2FS_OPTION(sbi).compress_level <<
4338 COMPRESS_LEVEL_OFFSET;
4339 F2FS_I(inode)->i_flags |= F2FS_COMPR_FL;
4340 set_inode_flag(inode, FI_COMPRESSED_FILE);
4341 stat_inc_compr_inode(inode);
4342 inc_compr_inode_stat(inode);
4343 f2fs_mark_inode_dirty_sync(inode, true);
4344 return 0;
4345 #else
4346 return -EOPNOTSUPP;
4347 #endif
4348 }
4349
f2fs_disable_compressed_file(struct inode * inode)4350 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4351 {
4352 struct f2fs_inode_info *fi = F2FS_I(inode);
4353
4354 if (!f2fs_compressed_file(inode))
4355 return true;
4356 if (S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))
4357 return false;
4358
4359 fi->i_flags &= ~F2FS_COMPR_FL;
4360 stat_dec_compr_inode(inode);
4361 clear_inode_flag(inode, FI_COMPRESSED_FILE);
4362 f2fs_mark_inode_dirty_sync(inode, true);
4363 return true;
4364 }
4365
4366 #define F2FS_FEATURE_FUNCS(name, flagname) \
4367 static inline int f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4368 { \
4369 return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4370 }
4371
4372 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4373 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4374 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4375 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4376 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4377 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4378 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4379 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4380 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4381 F2FS_FEATURE_FUNCS(verity, VERITY);
4382 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4383 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4384 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4385 F2FS_FEATURE_FUNCS(readonly, RO);
4386
f2fs_may_extent_tree(struct inode * inode)4387 static inline bool f2fs_may_extent_tree(struct inode *inode)
4388 {
4389 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4390
4391 if (!test_opt(sbi, EXTENT_CACHE) ||
4392 is_inode_flag_set(inode, FI_NO_EXTENT) ||
4393 (is_inode_flag_set(inode, FI_COMPRESSED_FILE) &&
4394 !f2fs_sb_has_readonly(sbi)))
4395 return false;
4396
4397 /*
4398 * for recovered files during mount do not create extents
4399 * if shrinker is not registered.
4400 */
4401 if (list_empty(&sbi->s_list))
4402 return false;
4403
4404 return S_ISREG(inode->i_mode);
4405 }
4406
4407 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4408 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4409 block_t blkaddr)
4410 {
4411 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
4412
4413 return test_bit(zno, FDEV(devi).blkz_seq);
4414 }
4415 #endif
4416
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4417 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4418 {
4419 return f2fs_sb_has_blkzoned(sbi);
4420 }
4421
f2fs_bdev_support_discard(struct block_device * bdev)4422 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4423 {
4424 return blk_queue_discard(bdev_get_queue(bdev)) ||
4425 bdev_is_zoned(bdev);
4426 }
4427
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4428 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4429 {
4430 int i;
4431
4432 if (!f2fs_is_multi_device(sbi))
4433 return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4434
4435 for (i = 0; i < sbi->s_ndevs; i++)
4436 if (f2fs_bdev_support_discard(FDEV(i).bdev))
4437 return true;
4438 return false;
4439 }
4440
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4441 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4442 {
4443 return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4444 f2fs_hw_should_discard(sbi);
4445 }
4446
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4447 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4448 {
4449 int i;
4450
4451 if (!f2fs_is_multi_device(sbi))
4452 return bdev_read_only(sbi->sb->s_bdev);
4453
4454 for (i = 0; i < sbi->s_ndevs; i++)
4455 if (bdev_read_only(FDEV(i).bdev))
4456 return true;
4457 return false;
4458 }
4459
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4460 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4461 {
4462 return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4463 }
4464
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4465 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4466 {
4467 return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4468 }
4469
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4470 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4471 {
4472 return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4473 }
4474
f2fs_may_compress(struct inode * inode)4475 static inline bool f2fs_may_compress(struct inode *inode)
4476 {
4477 if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4478 f2fs_is_atomic_file(inode))
4479 return false;
4480 return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4481 }
4482
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4483 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4484 u64 blocks, bool add)
4485 {
4486 struct f2fs_inode_info *fi = F2FS_I(inode);
4487 int diff = fi->i_cluster_size - blocks;
4488
4489 /* don't update i_compr_blocks if saved blocks were released */
4490 if (!add && !atomic_read(&fi->i_compr_blocks))
4491 return;
4492
4493 if (add) {
4494 atomic_add(diff, &fi->i_compr_blocks);
4495 stat_add_compr_blocks(inode, diff);
4496 } else {
4497 atomic_sub(diff, &fi->i_compr_blocks);
4498 stat_sub_compr_blocks(inode, diff);
4499 }
4500 f2fs_mark_inode_dirty_sync(inode, true);
4501 }
4502
block_unaligned_IO(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4503 static inline int block_unaligned_IO(struct inode *inode,
4504 struct kiocb *iocb, struct iov_iter *iter)
4505 {
4506 unsigned int i_blkbits = READ_ONCE(inode->i_blkbits);
4507 unsigned int blocksize_mask = (1 << i_blkbits) - 1;
4508 loff_t offset = iocb->ki_pos;
4509 unsigned long align = offset | iov_iter_alignment(iter);
4510
4511 return align & blocksize_mask;
4512 }
4513
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4514 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4515 int flag)
4516 {
4517 if (!f2fs_is_multi_device(sbi))
4518 return false;
4519 if (flag != F2FS_GET_BLOCK_DIO)
4520 return false;
4521 return sbi->aligned_blksize;
4522 }
4523
f2fs_force_buffered_io(struct inode * inode,struct kiocb * iocb,struct iov_iter * iter)4524 static inline bool f2fs_force_buffered_io(struct inode *inode,
4525 struct kiocb *iocb, struct iov_iter *iter)
4526 {
4527 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4528 int rw = iov_iter_rw(iter);
4529
4530 if (!fscrypt_dio_supported(iocb, iter))
4531 return true;
4532 if (fsverity_active(inode))
4533 return true;
4534 if (f2fs_compressed_file(inode))
4535 return true;
4536
4537 /* disallow direct IO if any of devices has unaligned blksize */
4538 if (f2fs_is_multi_device(sbi) && !sbi->aligned_blksize)
4539 return true;
4540 /*
4541 * for blkzoned device, fallback direct IO to buffered IO, so
4542 * all IOs can be serialized by log-structured write.
4543 */
4544 if (f2fs_sb_has_blkzoned(sbi))
4545 return true;
4546 if (f2fs_lfs_mode(sbi) && (rw == WRITE)) {
4547 if (block_unaligned_IO(inode, iocb, iter))
4548 return true;
4549 if (F2FS_IO_ALIGNED(sbi))
4550 return true;
4551 }
4552 if (is_sbi_flag_set(F2FS_I_SB(inode), SBI_CP_DISABLED))
4553 return true;
4554
4555 return false;
4556 }
4557
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4558 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4559 {
4560 return fsverity_active(inode) &&
4561 idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4562 }
4563
4564 #ifdef CONFIG_F2FS_FAULT_INJECTION
4565 extern void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
4566 unsigned int type);
4567 #else
4568 #define f2fs_build_fault_attr(sbi, rate, type) do { } while (0)
4569 #endif
4570
is_journalled_quota(struct f2fs_sb_info * sbi)4571 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4572 {
4573 #ifdef CONFIG_QUOTA
4574 if (f2fs_sb_has_quota_ino(sbi))
4575 return true;
4576 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4577 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4578 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4579 return true;
4580 #endif
4581 return false;
4582 }
4583
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4584 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4585 {
4586 return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4587 }
4588
f2fs_io_schedule_timeout(long timeout)4589 static inline void f2fs_io_schedule_timeout(long timeout)
4590 {
4591 set_current_state(TASK_UNINTERRUPTIBLE);
4592 io_schedule_timeout(timeout);
4593 }
4594
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,pgoff_t ofs,enum page_type type)4595 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi, pgoff_t ofs,
4596 enum page_type type)
4597 {
4598 if (unlikely(f2fs_cp_error(sbi)))
4599 return;
4600
4601 if (ofs == sbi->page_eio_ofs[type]) {
4602 if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4603 set_ckpt_flags(sbi, CP_ERROR_FLAG);
4604 } else {
4605 sbi->page_eio_ofs[type] = ofs;
4606 sbi->page_eio_cnt[type] = 0;
4607 }
4608 }
4609
4610 #define EFSBADCRC EBADMSG /* Bad CRC detected */
4611 #define EFSCORRUPTED EUCLEAN /* Filesystem is corrupted */
4612
4613 #endif /* _LINUX_F2FS_H */
4614