1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
18 */
19
20 /*
21 * Lock ordering in mm:
22 *
23 * inode->i_rwsem (while writing or truncating, not reading or faulting)
24 * mm->mmap_lock
25 * mapping->invalidate_lock (in filemap_fault)
26 * page->flags PG_locked (lock_page) * (see hugetlbfs below)
27 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
28 * mapping->i_mmap_rwsem
29 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
30 * anon_vma->rwsem
31 * mm->page_table_lock or pte_lock
32 * swap_lock (in swap_duplicate, swap_info_get)
33 * mmlist_lock (in mmput, drain_mmlist and others)
34 * mapping->private_lock (in __set_page_dirty_buffers)
35 * lock_page_memcg move_lock (in __set_page_dirty_buffers)
36 * i_pages lock (widely used)
37 * lruvec->lru_lock (in lock_page_lruvec_irq)
38 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
39 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
40 * sb_lock (within inode_lock in fs/fs-writeback.c)
41 * i_pages lock (widely used, in set_page_dirty,
42 * in arch-dependent flush_dcache_mmap_lock,
43 * within bdi.wb->list_lock in __sync_single_inode)
44 *
45 * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
46 * ->tasklist_lock
47 * pte map lock
48 *
49 * * hugetlbfs PageHuge() pages take locks in this order:
50 * mapping->i_mmap_rwsem
51 * hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
52 * page->flags PG_locked (lock_page)
53 */
54
55 #include <linux/mm.h>
56 #include <linux/sched/mm.h>
57 #include <linux/sched/task.h>
58 #include <linux/pagemap.h>
59 #include <linux/swap.h>
60 #include <linux/swapops.h>
61 #include <linux/slab.h>
62 #include <linux/init.h>
63 #include <linux/ksm.h>
64 #include <linux/rmap.h>
65 #include <linux/rcupdate.h>
66 #include <linux/export.h>
67 #include <linux/memcontrol.h>
68 #include <linux/mmu_notifier.h>
69 #include <linux/migrate.h>
70 #include <linux/hugetlb.h>
71 #include <linux/huge_mm.h>
72 #include <linux/backing-dev.h>
73 #include <linux/page_idle.h>
74 #include <linux/memremap.h>
75 #include <linux/userfaultfd_k.h>
76 #include <linux/mm_inline.h>
77
78 #include <asm/tlbflush.h>
79
80 #include <trace/events/tlb.h>
81
82 #include <trace/hooks/mm.h>
83
84 #include "internal.h"
85
86 static struct kmem_cache *anon_vma_cachep;
87 static struct kmem_cache *anon_vma_chain_cachep;
88
anon_vma_alloc(void)89 static inline struct anon_vma *anon_vma_alloc(void)
90 {
91 struct anon_vma *anon_vma;
92
93 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
94 if (anon_vma) {
95 atomic_set(&anon_vma->refcount, 1);
96 anon_vma->num_children = 0;
97 anon_vma->num_active_vmas = 0;
98 anon_vma->parent = anon_vma;
99 /*
100 * Initialise the anon_vma root to point to itself. If called
101 * from fork, the root will be reset to the parents anon_vma.
102 */
103 anon_vma->root = anon_vma;
104 }
105
106 return anon_vma;
107 }
108
anon_vma_free(struct anon_vma * anon_vma)109 static inline void anon_vma_free(struct anon_vma *anon_vma)
110 {
111 VM_BUG_ON(atomic_read(&anon_vma->refcount));
112
113 /*
114 * Synchronize against page_lock_anon_vma_read() such that
115 * we can safely hold the lock without the anon_vma getting
116 * freed.
117 *
118 * Relies on the full mb implied by the atomic_dec_and_test() from
119 * put_anon_vma() against the acquire barrier implied by
120 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
121 *
122 * page_lock_anon_vma_read() VS put_anon_vma()
123 * down_read_trylock() atomic_dec_and_test()
124 * LOCK MB
125 * atomic_read() rwsem_is_locked()
126 *
127 * LOCK should suffice since the actual taking of the lock must
128 * happen _before_ what follows.
129 */
130 might_sleep();
131 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
132 anon_vma_lock_write(anon_vma);
133 anon_vma_unlock_write(anon_vma);
134 }
135
136 kmem_cache_free(anon_vma_cachep, anon_vma);
137 }
138
anon_vma_chain_alloc(gfp_t gfp)139 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
140 {
141 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
142 }
143
anon_vma_chain_free(struct anon_vma_chain * anon_vma_chain)144 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
145 {
146 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
147 }
148
anon_vma_chain_link(struct vm_area_struct * vma,struct anon_vma_chain * avc,struct anon_vma * anon_vma)149 static void anon_vma_chain_link(struct vm_area_struct *vma,
150 struct anon_vma_chain *avc,
151 struct anon_vma *anon_vma)
152 {
153 avc->vma = vma;
154 avc->anon_vma = anon_vma;
155 list_add(&avc->same_vma, &vma->anon_vma_chain);
156 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
157 }
158
159 /**
160 * __anon_vma_prepare - attach an anon_vma to a memory region
161 * @vma: the memory region in question
162 *
163 * This makes sure the memory mapping described by 'vma' has
164 * an 'anon_vma' attached to it, so that we can associate the
165 * anonymous pages mapped into it with that anon_vma.
166 *
167 * The common case will be that we already have one, which
168 * is handled inline by anon_vma_prepare(). But if
169 * not we either need to find an adjacent mapping that we
170 * can re-use the anon_vma from (very common when the only
171 * reason for splitting a vma has been mprotect()), or we
172 * allocate a new one.
173 *
174 * Anon-vma allocations are very subtle, because we may have
175 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
176 * and that may actually touch the rwsem even in the newly
177 * allocated vma (it depends on RCU to make sure that the
178 * anon_vma isn't actually destroyed).
179 *
180 * As a result, we need to do proper anon_vma locking even
181 * for the new allocation. At the same time, we do not want
182 * to do any locking for the common case of already having
183 * an anon_vma.
184 *
185 * This must be called with the mmap_lock held for reading.
186 */
__anon_vma_prepare(struct vm_area_struct * vma)187 int __anon_vma_prepare(struct vm_area_struct *vma)
188 {
189 struct mm_struct *mm = vma->vm_mm;
190 struct anon_vma *anon_vma, *allocated;
191 struct anon_vma_chain *avc;
192
193 might_sleep();
194
195 avc = anon_vma_chain_alloc(GFP_KERNEL);
196 if (!avc)
197 goto out_enomem;
198
199 anon_vma = find_mergeable_anon_vma(vma);
200 allocated = NULL;
201 if (!anon_vma) {
202 anon_vma = anon_vma_alloc();
203 if (unlikely(!anon_vma))
204 goto out_enomem_free_avc;
205 anon_vma->num_children++; /* self-parent link for new root */
206 allocated = anon_vma;
207 }
208
209 anon_vma_lock_write(anon_vma);
210 /* page_table_lock to protect against threads */
211 spin_lock(&mm->page_table_lock);
212 if (likely(!vma->anon_vma)) {
213 vma->anon_vma = anon_vma;
214 anon_vma_chain_link(vma, avc, anon_vma);
215 anon_vma->num_active_vmas++;
216 allocated = NULL;
217 avc = NULL;
218 }
219 spin_unlock(&mm->page_table_lock);
220 anon_vma_unlock_write(anon_vma);
221
222 if (unlikely(allocated))
223 put_anon_vma(allocated);
224 if (unlikely(avc))
225 anon_vma_chain_free(avc);
226
227 return 0;
228
229 out_enomem_free_avc:
230 anon_vma_chain_free(avc);
231 out_enomem:
232 return -ENOMEM;
233 }
234
235 /*
236 * This is a useful helper function for locking the anon_vma root as
237 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
238 * have the same vma.
239 *
240 * Such anon_vma's should have the same root, so you'd expect to see
241 * just a single mutex_lock for the whole traversal.
242 */
lock_anon_vma_root(struct anon_vma * root,struct anon_vma * anon_vma)243 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
244 {
245 struct anon_vma *new_root = anon_vma->root;
246 if (new_root != root) {
247 if (WARN_ON_ONCE(root))
248 up_write(&root->rwsem);
249 root = new_root;
250 down_write(&root->rwsem);
251 }
252 return root;
253 }
254
unlock_anon_vma_root(struct anon_vma * root)255 static inline void unlock_anon_vma_root(struct anon_vma *root)
256 {
257 if (root)
258 up_write(&root->rwsem);
259 }
260
261 /*
262 * Attach the anon_vmas from src to dst.
263 * Returns 0 on success, -ENOMEM on failure.
264 *
265 * anon_vma_clone() is called by __vma_adjust(), __split_vma(), copy_vma() and
266 * anon_vma_fork(). The first three want an exact copy of src, while the last
267 * one, anon_vma_fork(), may try to reuse an existing anon_vma to prevent
268 * endless growth of anon_vma. Since dst->anon_vma is set to NULL before call,
269 * we can identify this case by checking (!dst->anon_vma && src->anon_vma).
270 *
271 * If (!dst->anon_vma && src->anon_vma) is true, this function tries to find
272 * and reuse existing anon_vma which has no vmas and only one child anon_vma.
273 * This prevents degradation of anon_vma hierarchy to endless linear chain in
274 * case of constantly forking task. On the other hand, an anon_vma with more
275 * than one child isn't reused even if there was no alive vma, thus rmap
276 * walker has a good chance of avoiding scanning the whole hierarchy when it
277 * searches where page is mapped.
278 */
anon_vma_clone(struct vm_area_struct * dst,struct vm_area_struct * src)279 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
280 {
281 struct anon_vma_chain *avc, *pavc;
282 struct anon_vma *root = NULL;
283
284 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
285 struct anon_vma *anon_vma;
286
287 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
288 if (unlikely(!avc)) {
289 unlock_anon_vma_root(root);
290 root = NULL;
291 avc = anon_vma_chain_alloc(GFP_KERNEL);
292 if (!avc)
293 goto enomem_failure;
294 }
295 anon_vma = pavc->anon_vma;
296 root = lock_anon_vma_root(root, anon_vma);
297 anon_vma_chain_link(dst, avc, anon_vma);
298
299 /*
300 * Reuse existing anon_vma if it has no vma and only one
301 * anon_vma child.
302 *
303 * Root anon_vma is never reused:
304 * it has self-parent reference and at least one child.
305 */
306 if (!dst->anon_vma && src->anon_vma &&
307 anon_vma->num_children < 2 &&
308 anon_vma->num_active_vmas == 0)
309 dst->anon_vma = anon_vma;
310 }
311 if (dst->anon_vma)
312 dst->anon_vma->num_active_vmas++;
313 unlock_anon_vma_root(root);
314 return 0;
315
316 enomem_failure:
317 /*
318 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
319 * decremented in unlink_anon_vmas().
320 * We can safely do this because callers of anon_vma_clone() don't care
321 * about dst->anon_vma if anon_vma_clone() failed.
322 */
323 dst->anon_vma = NULL;
324 unlink_anon_vmas(dst);
325 return -ENOMEM;
326 }
327
328 /*
329 * Attach vma to its own anon_vma, as well as to the anon_vmas that
330 * the corresponding VMA in the parent process is attached to.
331 * Returns 0 on success, non-zero on failure.
332 */
anon_vma_fork(struct vm_area_struct * vma,struct vm_area_struct * pvma)333 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
334 {
335 struct anon_vma_chain *avc;
336 struct anon_vma *anon_vma;
337 int error;
338
339 /* Don't bother if the parent process has no anon_vma here. */
340 if (!pvma->anon_vma)
341 return 0;
342
343 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
344 vma->anon_vma = NULL;
345
346 /*
347 * First, attach the new VMA to the parent VMA's anon_vmas,
348 * so rmap can find non-COWed pages in child processes.
349 */
350 error = anon_vma_clone(vma, pvma);
351 if (error)
352 return error;
353
354 /* An existing anon_vma has been reused, all done then. */
355 if (vma->anon_vma)
356 return 0;
357
358 /* Then add our own anon_vma. */
359 anon_vma = anon_vma_alloc();
360 if (!anon_vma)
361 goto out_error;
362 anon_vma->num_active_vmas++;
363 avc = anon_vma_chain_alloc(GFP_KERNEL);
364 if (!avc)
365 goto out_error_free_anon_vma;
366
367 /*
368 * The root anon_vma's rwsem is the lock actually used when we
369 * lock any of the anon_vmas in this anon_vma tree.
370 */
371 anon_vma->root = pvma->anon_vma->root;
372 anon_vma->parent = pvma->anon_vma;
373 /*
374 * With refcounts, an anon_vma can stay around longer than the
375 * process it belongs to. The root anon_vma needs to be pinned until
376 * this anon_vma is freed, because the lock lives in the root.
377 */
378 get_anon_vma(anon_vma->root);
379 /* Mark this anon_vma as the one where our new (COWed) pages go. */
380 vma->anon_vma = anon_vma;
381 anon_vma_lock_write(anon_vma);
382 anon_vma_chain_link(vma, avc, anon_vma);
383 anon_vma->parent->num_children++;
384 anon_vma_unlock_write(anon_vma);
385
386 return 0;
387
388 out_error_free_anon_vma:
389 put_anon_vma(anon_vma);
390 out_error:
391 unlink_anon_vmas(vma);
392 return -ENOMEM;
393 }
394
unlink_anon_vmas(struct vm_area_struct * vma)395 void unlink_anon_vmas(struct vm_area_struct *vma)
396 {
397 struct anon_vma_chain *avc, *next;
398 struct anon_vma *root = NULL;
399
400 /*
401 * Unlink each anon_vma chained to the VMA. This list is ordered
402 * from newest to oldest, ensuring the root anon_vma gets freed last.
403 */
404 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
405 struct anon_vma *anon_vma = avc->anon_vma;
406
407 root = lock_anon_vma_root(root, anon_vma);
408 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
409
410 /*
411 * Leave empty anon_vmas on the list - we'll need
412 * to free them outside the lock.
413 */
414 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
415 anon_vma->parent->num_children--;
416 continue;
417 }
418
419 list_del(&avc->same_vma);
420 anon_vma_chain_free(avc);
421 }
422 if (vma->anon_vma) {
423 vma->anon_vma->num_active_vmas--;
424
425 #ifndef CONFIG_SPECULATIVE_PAGE_FAULT
426 /*
427 * vma would still be needed after unlink, and anon_vma will be prepared
428 * when handle fault.
429 */
430 vma->anon_vma = NULL;
431 #endif
432 }
433 unlock_anon_vma_root(root);
434
435 /*
436 * Iterate the list once more, it now only contains empty and unlinked
437 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
438 * needing to write-acquire the anon_vma->root->rwsem.
439 */
440 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
441 struct anon_vma *anon_vma = avc->anon_vma;
442
443 VM_WARN_ON(anon_vma->num_children);
444 VM_WARN_ON(anon_vma->num_active_vmas);
445 put_anon_vma(anon_vma);
446
447 list_del(&avc->same_vma);
448 anon_vma_chain_free(avc);
449 }
450 }
451
anon_vma_ctor(void * data)452 static void anon_vma_ctor(void *data)
453 {
454 struct anon_vma *anon_vma = data;
455
456 init_rwsem(&anon_vma->rwsem);
457 atomic_set(&anon_vma->refcount, 0);
458 anon_vma->rb_root = RB_ROOT_CACHED;
459 }
460
anon_vma_init(void)461 void __init anon_vma_init(void)
462 {
463 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
464 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
465 anon_vma_ctor);
466 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
467 SLAB_PANIC|SLAB_ACCOUNT);
468 }
469
470 /*
471 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
472 *
473 * Since there is no serialization what so ever against page_remove_rmap()
474 * the best this function can do is return a refcount increased anon_vma
475 * that might have been relevant to this page.
476 *
477 * The page might have been remapped to a different anon_vma or the anon_vma
478 * returned may already be freed (and even reused).
479 *
480 * In case it was remapped to a different anon_vma, the new anon_vma will be a
481 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
482 * ensure that any anon_vma obtained from the page will still be valid for as
483 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
484 *
485 * All users of this function must be very careful when walking the anon_vma
486 * chain and verify that the page in question is indeed mapped in it
487 * [ something equivalent to page_mapped_in_vma() ].
488 *
489 * Since anon_vma's slab is SLAB_TYPESAFE_BY_RCU and we know from
490 * page_remove_rmap() that the anon_vma pointer from page->mapping is valid
491 * if there is a mapcount, we can dereference the anon_vma after observing
492 * those.
493 */
page_get_anon_vma(struct page * page)494 struct anon_vma *page_get_anon_vma(struct page *page)
495 {
496 struct anon_vma *anon_vma = NULL;
497 unsigned long anon_mapping;
498
499 rcu_read_lock();
500 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
501 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
502 goto out;
503 if (!page_mapped(page))
504 goto out;
505
506 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
507 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
508 anon_vma = NULL;
509 goto out;
510 }
511
512 /*
513 * If this page is still mapped, then its anon_vma cannot have been
514 * freed. But if it has been unmapped, we have no security against the
515 * anon_vma structure being freed and reused (for another anon_vma:
516 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
517 * above cannot corrupt).
518 */
519 if (!page_mapped(page)) {
520 rcu_read_unlock();
521 put_anon_vma(anon_vma);
522 return NULL;
523 }
524 out:
525 rcu_read_unlock();
526
527 return anon_vma;
528 }
529
530 /*
531 * Similar to page_get_anon_vma() except it locks the anon_vma.
532 *
533 * Its a little more complex as it tries to keep the fast path to a single
534 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
535 * reference like with page_get_anon_vma() and then block on the mutex
536 * on !rwc->try_lock case.
537 */
page_lock_anon_vma_read(struct page * page,struct rmap_walk_control * rwc)538 struct anon_vma *page_lock_anon_vma_read(struct page *page,
539 struct rmap_walk_control *rwc)
540 {
541 struct anon_vma *anon_vma = NULL;
542 struct anon_vma *root_anon_vma;
543 unsigned long anon_mapping;
544 bool success = false;
545
546 rcu_read_lock();
547 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
548 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
549 goto out;
550 if (!page_mapped(page))
551 goto out;
552
553 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
554 root_anon_vma = READ_ONCE(anon_vma->root);
555 if (down_read_trylock(&root_anon_vma->rwsem)) {
556 /*
557 * If the page is still mapped, then this anon_vma is still
558 * its anon_vma, and holding the mutex ensures that it will
559 * not go away, see anon_vma_free().
560 */
561 if (!page_mapped(page)) {
562 up_read(&root_anon_vma->rwsem);
563 anon_vma = NULL;
564 }
565 goto out;
566 }
567 trace_android_vh_do_page_trylock(page, NULL, NULL, &success);
568 if (success) {
569 anon_vma = NULL;
570 goto out;
571 }
572
573 if (rwc && rwc->try_lock) {
574 anon_vma = NULL;
575 rwc->contended = true;
576 goto out;
577 }
578
579 /* trylock failed, we got to sleep */
580 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
581 anon_vma = NULL;
582 goto out;
583 }
584
585 if (!page_mapped(page)) {
586 rcu_read_unlock();
587 put_anon_vma(anon_vma);
588 return NULL;
589 }
590
591 /* we pinned the anon_vma, its safe to sleep */
592 rcu_read_unlock();
593 anon_vma_lock_read(anon_vma);
594
595 if (atomic_dec_and_test(&anon_vma->refcount)) {
596 /*
597 * Oops, we held the last refcount, release the lock
598 * and bail -- can't simply use put_anon_vma() because
599 * we'll deadlock on the anon_vma_lock_write() recursion.
600 */
601 anon_vma_unlock_read(anon_vma);
602 __put_anon_vma(anon_vma);
603 anon_vma = NULL;
604 }
605
606 return anon_vma;
607
608 out:
609 rcu_read_unlock();
610 return anon_vma;
611 }
612
page_unlock_anon_vma_read(struct anon_vma * anon_vma)613 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
614 {
615 anon_vma_unlock_read(anon_vma);
616 }
617
618 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
619 /*
620 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
621 * important if a PTE was dirty when it was unmapped that it's flushed
622 * before any IO is initiated on the page to prevent lost writes. Similarly,
623 * it must be flushed before freeing to prevent data leakage.
624 */
try_to_unmap_flush(void)625 void try_to_unmap_flush(void)
626 {
627 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
628
629 if (!tlb_ubc->flush_required)
630 return;
631
632 arch_tlbbatch_flush(&tlb_ubc->arch);
633 tlb_ubc->flush_required = false;
634 tlb_ubc->writable = false;
635 }
636
637 /* Flush iff there are potentially writable TLB entries that can race with IO */
try_to_unmap_flush_dirty(void)638 void try_to_unmap_flush_dirty(void)
639 {
640 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
641
642 if (tlb_ubc->writable)
643 try_to_unmap_flush();
644 }
645
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)646 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
647 {
648 struct tlbflush_unmap_batch *tlb_ubc = ¤t->tlb_ubc;
649
650 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
651 tlb_ubc->flush_required = true;
652
653 /*
654 * Ensure compiler does not re-order the setting of tlb_flush_batched
655 * before the PTE is cleared.
656 */
657 barrier();
658 mm->tlb_flush_batched = true;
659
660 /*
661 * If the PTE was dirty then it's best to assume it's writable. The
662 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
663 * before the page is queued for IO.
664 */
665 if (writable)
666 tlb_ubc->writable = true;
667 }
668
669 /*
670 * Returns true if the TLB flush should be deferred to the end of a batch of
671 * unmap operations to reduce IPIs.
672 */
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)673 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
674 {
675 bool should_defer = false;
676
677 if (!(flags & TTU_BATCH_FLUSH))
678 return false;
679
680 /* If remote CPUs need to be flushed then defer batch the flush */
681 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
682 should_defer = true;
683 put_cpu();
684
685 return should_defer;
686 }
687
688 /*
689 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
690 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
691 * operation such as mprotect or munmap to race between reclaim unmapping
692 * the page and flushing the page. If this race occurs, it potentially allows
693 * access to data via a stale TLB entry. Tracking all mm's that have TLB
694 * batching in flight would be expensive during reclaim so instead track
695 * whether TLB batching occurred in the past and if so then do a flush here
696 * if required. This will cost one additional flush per reclaim cycle paid
697 * by the first operation at risk such as mprotect and mumap.
698 *
699 * This must be called under the PTL so that an access to tlb_flush_batched
700 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
701 * via the PTL.
702 */
flush_tlb_batched_pending(struct mm_struct * mm)703 void flush_tlb_batched_pending(struct mm_struct *mm)
704 {
705 if (data_race(mm->tlb_flush_batched)) {
706 flush_tlb_mm(mm);
707
708 /*
709 * Do not allow the compiler to re-order the clearing of
710 * tlb_flush_batched before the tlb is flushed.
711 */
712 barrier();
713 mm->tlb_flush_batched = false;
714 }
715 }
716 #else
set_tlb_ubc_flush_pending(struct mm_struct * mm,bool writable)717 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
718 {
719 }
720
should_defer_flush(struct mm_struct * mm,enum ttu_flags flags)721 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
722 {
723 return false;
724 }
725 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
726
727 /*
728 * At what user virtual address is page expected in vma?
729 * Caller should check the page is actually part of the vma.
730 */
page_address_in_vma(struct page * page,struct vm_area_struct * vma)731 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
732 {
733 if (PageAnon(page)) {
734 struct anon_vma *page__anon_vma = page_anon_vma(page);
735 /*
736 * Note: swapoff's unuse_vma() is more efficient with this
737 * check, and needs it to match anon_vma when KSM is active.
738 */
739 if (!vma->anon_vma || !page__anon_vma ||
740 vma->anon_vma->root != page__anon_vma->root)
741 return -EFAULT;
742 } else if (!vma->vm_file) {
743 return -EFAULT;
744 } else if (vma->vm_file->f_mapping != compound_head(page)->mapping) {
745 return -EFAULT;
746 }
747
748 return vma_address(page, vma);
749 }
750
mm_find_pmd(struct mm_struct * mm,unsigned long address)751 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
752 {
753 pgd_t *pgd;
754 p4d_t *p4d;
755 pud_t *pud;
756 pmd_t *pmd = NULL;
757 pmd_t pmde;
758
759 pgd = pgd_offset(mm, address);
760 if (!pgd_present(*pgd))
761 goto out;
762
763 p4d = p4d_offset(pgd, address);
764 if (!p4d_present(*p4d))
765 goto out;
766
767 pud = pud_offset(p4d, address);
768 if (!pud_present(*pud))
769 goto out;
770
771 pmd = pmd_offset(pud, address);
772 /*
773 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
774 * without holding anon_vma lock for write. So when looking for a
775 * genuine pmde (in which to find pte), test present and !THP together.
776 */
777 pmde = *pmd;
778 barrier();
779 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
780 pmd = NULL;
781 out:
782 return pmd;
783 }
784
785 struct page_referenced_arg {
786 int mapcount;
787 int referenced;
788 unsigned long vm_flags;
789 struct mem_cgroup *memcg;
790 };
791 /*
792 * arg: page_referenced_arg will be passed
793 */
page_referenced_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)794 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
795 unsigned long address, void *arg)
796 {
797 struct page_referenced_arg *pra = arg;
798 struct page_vma_mapped_walk pvmw = {
799 .page = page,
800 .vma = vma,
801 .address = address,
802 };
803 int referenced = 0;
804
805 while (page_vma_mapped_walk(&pvmw)) {
806 address = pvmw.address;
807
808 if (vma->vm_flags & VM_LOCKED) {
809 page_vma_mapped_walk_done(&pvmw);
810 pra->vm_flags |= VM_LOCKED;
811 return false; /* To break the loop */
812 }
813
814 if (pvmw.pte) {
815 trace_android_vh_look_around(&pvmw, page, vma, &referenced);
816 if (lru_gen_enabled() && pte_young(*pvmw.pte) &&
817 !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ))) {
818 lru_gen_look_around(&pvmw);
819 referenced++;
820 }
821
822 if (ptep_clear_flush_young_notify(vma, address,
823 pvmw.pte)) {
824 /*
825 * Don't treat a reference through
826 * a sequentially read mapping as such.
827 * If the page has been used in another mapping,
828 * we will catch it; if this other mapping is
829 * already gone, the unmap path will have set
830 * PG_referenced or activated the page.
831 */
832 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
833 referenced++;
834 }
835 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
836 if (pmdp_clear_flush_young_notify(vma, address,
837 pvmw.pmd))
838 referenced++;
839 } else {
840 /* unexpected pmd-mapped page? */
841 WARN_ON_ONCE(1);
842 }
843
844 pra->mapcount--;
845 }
846
847 if (referenced)
848 clear_page_idle(page);
849 if (test_and_clear_page_young(page))
850 referenced++;
851
852 if (referenced) {
853 pra->referenced++;
854 pra->vm_flags |= vma->vm_flags;
855 }
856
857 if (!pra->mapcount)
858 return false; /* To break the loop */
859
860 return true;
861 }
862
invalid_page_referenced_vma(struct vm_area_struct * vma,void * arg)863 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
864 {
865 struct page_referenced_arg *pra = arg;
866 struct mem_cgroup *memcg = pra->memcg;
867
868 if (!mm_match_cgroup(vma->vm_mm, memcg))
869 return true;
870
871 return false;
872 }
873
874 /**
875 * page_referenced - test if the page was referenced
876 * @page: the page to test
877 * @is_locked: caller holds lock on the page
878 * @memcg: target memory cgroup
879 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
880 *
881 * Quick test_and_clear_referenced for all mappings of a page,
882 *
883 * Return: The number of mappings which referenced the page. Return -1 if
884 * the function bailed out due to rmap lock contention.
885 */
page_referenced(struct page * page,int is_locked,struct mem_cgroup * memcg,unsigned long * vm_flags)886 int page_referenced(struct page *page,
887 int is_locked,
888 struct mem_cgroup *memcg,
889 unsigned long *vm_flags)
890 {
891 int we_locked = 0;
892 struct page_referenced_arg pra = {
893 .mapcount = total_mapcount(page),
894 .memcg = memcg,
895 };
896 struct rmap_walk_control rwc = {
897 .rmap_one = page_referenced_one,
898 .arg = (void *)&pra,
899 .anon_lock = page_lock_anon_vma_read,
900 .try_lock = true,
901 };
902
903 *vm_flags = 0;
904 if (!pra.mapcount)
905 return 0;
906
907 if (!page_rmapping(page))
908 return 0;
909
910 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
911 we_locked = trylock_page(page);
912 if (!we_locked)
913 return 1;
914 }
915
916 /*
917 * If we are reclaiming on behalf of a cgroup, skip
918 * counting on behalf of references from different
919 * cgroups
920 */
921 if (memcg) {
922 rwc.invalid_vma = invalid_page_referenced_vma;
923 }
924
925 rmap_walk(page, &rwc);
926 *vm_flags = pra.vm_flags;
927
928 if (we_locked)
929 unlock_page(page);
930
931 return rwc.contended ? -1 : pra.referenced;
932 }
933 EXPORT_SYMBOL_GPL(page_referenced);
934
page_mkclean_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)935 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
936 unsigned long address, void *arg)
937 {
938 struct page_vma_mapped_walk pvmw = {
939 .page = page,
940 .vma = vma,
941 .address = address,
942 .flags = PVMW_SYNC,
943 };
944 struct mmu_notifier_range range;
945 int *cleaned = arg;
946
947 /*
948 * We have to assume the worse case ie pmd for invalidation. Note that
949 * the page can not be free from this function.
950 */
951 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
952 0, vma, vma->vm_mm, address,
953 vma_address_end(page, vma));
954 mmu_notifier_invalidate_range_start(&range);
955
956 while (page_vma_mapped_walk(&pvmw)) {
957 int ret = 0;
958
959 address = pvmw.address;
960 if (pvmw.pte) {
961 pte_t entry;
962 pte_t *pte = pvmw.pte;
963
964 if (!pte_dirty(*pte) && !pte_write(*pte))
965 continue;
966
967 flush_cache_page(vma, address, pte_pfn(*pte));
968 entry = ptep_clear_flush(vma, address, pte);
969 entry = pte_wrprotect(entry);
970 entry = pte_mkclean(entry);
971 set_pte_at(vma->vm_mm, address, pte, entry);
972 ret = 1;
973 } else {
974 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
975 pmd_t *pmd = pvmw.pmd;
976 pmd_t entry;
977
978 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
979 continue;
980
981 flush_cache_page(vma, address, page_to_pfn(page));
982 entry = pmdp_invalidate(vma, address, pmd);
983 entry = pmd_wrprotect(entry);
984 entry = pmd_mkclean(entry);
985 set_pmd_at(vma->vm_mm, address, pmd, entry);
986 ret = 1;
987 #else
988 /* unexpected pmd-mapped page? */
989 WARN_ON_ONCE(1);
990 #endif
991 }
992
993 /*
994 * No need to call mmu_notifier_invalidate_range() as we are
995 * downgrading page table protection not changing it to point
996 * to a new page.
997 *
998 * See Documentation/vm/mmu_notifier.rst
999 */
1000 if (ret)
1001 (*cleaned)++;
1002 }
1003
1004 mmu_notifier_invalidate_range_end(&range);
1005
1006 return true;
1007 }
1008
invalid_mkclean_vma(struct vm_area_struct * vma,void * arg)1009 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
1010 {
1011 if (vma->vm_flags & VM_SHARED)
1012 return false;
1013
1014 return true;
1015 }
1016
page_mkclean(struct page * page)1017 int page_mkclean(struct page *page)
1018 {
1019 int cleaned = 0;
1020 struct address_space *mapping;
1021 struct rmap_walk_control rwc = {
1022 .arg = (void *)&cleaned,
1023 .rmap_one = page_mkclean_one,
1024 .invalid_vma = invalid_mkclean_vma,
1025 };
1026
1027 BUG_ON(!PageLocked(page));
1028
1029 if (!page_mapped(page))
1030 return 0;
1031
1032 mapping = page_mapping(page);
1033 if (!mapping)
1034 return 0;
1035
1036 rmap_walk(page, &rwc);
1037
1038 return cleaned;
1039 }
1040 EXPORT_SYMBOL_GPL(page_mkclean);
1041
1042 /**
1043 * page_move_anon_rmap - move a page to our anon_vma
1044 * @page: the page to move to our anon_vma
1045 * @vma: the vma the page belongs to
1046 *
1047 * When a page belongs exclusively to one process after a COW event,
1048 * that page can be moved into the anon_vma that belongs to just that
1049 * process, so the rmap code will not search the parent or sibling
1050 * processes.
1051 */
page_move_anon_rmap(struct page * page,struct vm_area_struct * vma)1052 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1053 {
1054 struct anon_vma *anon_vma = vma->anon_vma;
1055
1056 page = compound_head(page);
1057
1058 VM_BUG_ON_PAGE(!PageLocked(page), page);
1059 VM_BUG_ON_VMA(!anon_vma, vma);
1060
1061 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1062 /*
1063 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1064 * simultaneously, so a concurrent reader (eg page_referenced()'s
1065 * PageAnon()) will not see one without the other.
1066 */
1067 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1068 }
1069
1070 /**
1071 * __page_set_anon_rmap - set up new anonymous rmap
1072 * @page: Page or Hugepage to add to rmap
1073 * @vma: VM area to add page to.
1074 * @address: User virtual address of the mapping
1075 * @exclusive: the page is exclusively owned by the current process
1076 */
__page_set_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int exclusive)1077 static void __page_set_anon_rmap(struct page *page,
1078 struct vm_area_struct *vma, unsigned long address, int exclusive)
1079 {
1080 struct anon_vma *anon_vma = vma->anon_vma;
1081
1082 BUG_ON(!anon_vma);
1083
1084 if (PageAnon(page))
1085 return;
1086
1087 /*
1088 * If the page isn't exclusively mapped into this vma,
1089 * we must use the _oldest_ possible anon_vma for the
1090 * page mapping!
1091 */
1092 if (!exclusive)
1093 anon_vma = anon_vma->root;
1094
1095 /*
1096 * page_idle does a lockless/optimistic rmap scan on page->mapping.
1097 * Make sure the compiler doesn't split the stores of anon_vma and
1098 * the PAGE_MAPPING_ANON type identifier, otherwise the rmap code
1099 * could mistake the mapping for a struct address_space and crash.
1100 */
1101 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1102 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1103 page->index = linear_page_index(vma, address);
1104 }
1105
1106 /**
1107 * __page_check_anon_rmap - sanity check anonymous rmap addition
1108 * @page: the page to add the mapping to
1109 * @vma: the vm area in which the mapping is added
1110 * @address: the user virtual address mapped
1111 */
__page_check_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)1112 static void __page_check_anon_rmap(struct page *page,
1113 struct vm_area_struct *vma, unsigned long address)
1114 {
1115 /*
1116 * The page's anon-rmap details (mapping and index) are guaranteed to
1117 * be set up correctly at this point.
1118 *
1119 * We have exclusion against page_add_anon_rmap because the caller
1120 * always holds the page locked.
1121 *
1122 * We have exclusion against page_add_new_anon_rmap because those pages
1123 * are initially only visible via the pagetables, and the pte is locked
1124 * over the call to page_add_new_anon_rmap.
1125 */
1126 VM_BUG_ON_PAGE(page_anon_vma(page)->root != vma->anon_vma->root, page);
1127 VM_BUG_ON_PAGE(page_to_pgoff(page) != linear_page_index(vma, address),
1128 page);
1129 }
1130
1131 /**
1132 * page_add_anon_rmap - add pte mapping to an anonymous page
1133 * @page: the page to add the mapping to
1134 * @vma: the vm area in which the mapping is added
1135 * @address: the user virtual address mapped
1136 * @compound: charge the page as compound or small page
1137 *
1138 * The caller needs to hold the pte lock, and the page must be locked in
1139 * the anon_vma case: to serialize mapping,index checking after setting,
1140 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1141 * (but PageKsm is never downgraded to PageAnon).
1142 */
page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1143 void page_add_anon_rmap(struct page *page,
1144 struct vm_area_struct *vma, unsigned long address, bool compound)
1145 {
1146 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1147 }
1148
1149 /*
1150 * Special version of the above for do_swap_page, which often runs
1151 * into pages that are exclusively owned by the current process.
1152 * Everybody else should continue to use page_add_anon_rmap above.
1153 */
do_page_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,int flags)1154 void do_page_add_anon_rmap(struct page *page,
1155 struct vm_area_struct *vma, unsigned long address, int flags)
1156 {
1157 bool compound = flags & RMAP_COMPOUND;
1158 bool first;
1159 bool success = false;
1160
1161 if (unlikely(PageKsm(page)))
1162 lock_page_memcg(page);
1163 else
1164 VM_BUG_ON_PAGE(!PageLocked(page), page);
1165
1166 if (compound) {
1167 atomic_t *mapcount;
1168 VM_BUG_ON_PAGE(!PageLocked(page), page);
1169 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1170 mapcount = compound_mapcount_ptr(page);
1171 first = atomic_inc_and_test(mapcount);
1172 } else {
1173 trace_android_vh_update_page_mapcount(page, true, compound,
1174 &first, &success);
1175 if (!success)
1176 first = atomic_inc_and_test(&page->_mapcount);
1177 }
1178
1179 if (first) {
1180 int nr = compound ? thp_nr_pages(page) : 1;
1181 /*
1182 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1183 * these counters are not modified in interrupt context, and
1184 * pte lock(a spinlock) is held, which implies preemption
1185 * disabled.
1186 */
1187 if (compound)
1188 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1189 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1190 }
1191
1192 if (unlikely(PageKsm(page))) {
1193 unlock_page_memcg(page);
1194 return;
1195 }
1196
1197 /* address might be in next vma when migration races vma_adjust */
1198 if (first)
1199 __page_set_anon_rmap(page, vma, address,
1200 flags & RMAP_EXCLUSIVE);
1201 else
1202 __page_check_anon_rmap(page, vma, address);
1203 }
1204
1205 /**
1206 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1207 * @page: the page to add the mapping to
1208 * @vma: the vm area in which the mapping is added
1209 * @address: the user virtual address mapped
1210 * @compound: charge the page as compound or small page
1211 *
1212 * Same as page_add_anon_rmap but must only be called on *new* pages.
1213 * This means the inc-and-test can be bypassed.
1214 * Page does not have to be locked.
1215 */
page_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address,bool compound)1216 void page_add_new_anon_rmap(struct page *page,
1217 struct vm_area_struct *vma, unsigned long address, bool compound)
1218 {
1219 int nr = compound ? thp_nr_pages(page) : 1;
1220
1221 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1222 __SetPageSwapBacked(page);
1223 if (compound) {
1224 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1225 /* increment count (starts at -1) */
1226 atomic_set(compound_mapcount_ptr(page), 0);
1227 if (hpage_pincount_available(page))
1228 atomic_set(compound_pincount_ptr(page), 0);
1229
1230 __mod_lruvec_page_state(page, NR_ANON_THPS, nr);
1231 } else {
1232 /* Anon THP always mapped first with PMD */
1233 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1234 /* increment count (starts at -1) */
1235 atomic_set(&page->_mapcount, 0);
1236 }
1237 __mod_lruvec_page_state(page, NR_ANON_MAPPED, nr);
1238 __page_set_anon_rmap(page, vma, address, 1);
1239 }
1240
1241 /**
1242 * page_add_file_rmap - add pte mapping to a file page
1243 * @page: the page to add the mapping to
1244 * @compound: charge the page as compound or small page
1245 *
1246 * The caller needs to hold the pte lock.
1247 */
page_add_file_rmap(struct page * page,bool compound)1248 void page_add_file_rmap(struct page *page, bool compound)
1249 {
1250 int i, nr = 1;
1251 bool first_mapping;
1252 bool success = false;
1253
1254 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1255 lock_page_memcg(page);
1256 if (compound && PageTransHuge(page)) {
1257 int nr_pages = thp_nr_pages(page);
1258
1259 for (i = 0, nr = 0; i < nr_pages; i++) {
1260 trace_android_vh_update_page_mapcount(&page[i], true,
1261 compound, &first_mapping, &success);
1262 if ((success)) {
1263 if (first_mapping)
1264 nr++;
1265 } else {
1266 if (atomic_inc_and_test(&page[i]._mapcount))
1267 nr++;
1268 }
1269 }
1270 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1271 goto out;
1272 if (PageSwapBacked(page))
1273 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1274 nr_pages);
1275 else
1276 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1277 nr_pages);
1278 } else {
1279 if (PageTransCompound(page) && page_mapping(page)) {
1280 struct page *head = compound_head(page);
1281
1282 VM_WARN_ON_ONCE(!PageLocked(page));
1283
1284 SetPageDoubleMap(head);
1285 if (PageMlocked(page))
1286 clear_page_mlock(head);
1287 }
1288 trace_android_vh_update_page_mapcount(page, true,
1289 compound, &first_mapping, &success);
1290 if (success) {
1291 if (!first_mapping)
1292 goto out;
1293 } else {
1294 if (!atomic_inc_and_test(&page->_mapcount))
1295 goto out;
1296 }
1297 }
1298 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1299 out:
1300 unlock_page_memcg(page);
1301 }
1302
page_remove_file_rmap(struct page * page,bool compound)1303 static void page_remove_file_rmap(struct page *page, bool compound)
1304 {
1305 int i, nr = 1;
1306 bool first_mapping;
1307 bool success = false;
1308
1309 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1310
1311 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1312 if (unlikely(PageHuge(page))) {
1313 /* hugetlb pages are always mapped with pmds */
1314 atomic_dec(compound_mapcount_ptr(page));
1315 return;
1316 }
1317
1318 /* page still mapped by someone else? */
1319 if (compound && PageTransHuge(page)) {
1320 int nr_pages = thp_nr_pages(page);
1321
1322 for (i = 0, nr = 0; i < nr_pages; i++) {
1323 trace_android_vh_update_page_mapcount(&page[i], false,
1324 compound, &first_mapping, &success);
1325 if (success) {
1326 if (first_mapping)
1327 nr++;
1328 } else {
1329 if (atomic_add_negative(-1, &page[i]._mapcount))
1330 nr++;
1331 }
1332 }
1333 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1334 return;
1335 if (PageSwapBacked(page))
1336 __mod_lruvec_page_state(page, NR_SHMEM_PMDMAPPED,
1337 -nr_pages);
1338 else
1339 __mod_lruvec_page_state(page, NR_FILE_PMDMAPPED,
1340 -nr_pages);
1341 } else {
1342 trace_android_vh_update_page_mapcount(page, false,
1343 compound, &first_mapping, &success);
1344 if (success) {
1345 if (!first_mapping)
1346 return;
1347 } else {
1348 if (!atomic_add_negative(-1, &page->_mapcount))
1349 return;
1350 }
1351 }
1352
1353 /*
1354 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1355 * these counters are not modified in interrupt context, and
1356 * pte lock(a spinlock) is held, which implies preemption disabled.
1357 */
1358 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1359
1360 if (unlikely(PageMlocked(page)))
1361 clear_page_mlock(page);
1362 }
1363
page_remove_anon_compound_rmap(struct page * page)1364 static void page_remove_anon_compound_rmap(struct page *page)
1365 {
1366 int i, nr;
1367 bool first_mapping;
1368 bool success = false;
1369
1370 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1371 return;
1372
1373 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1374 if (unlikely(PageHuge(page)))
1375 return;
1376
1377 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1378 return;
1379
1380 __mod_lruvec_page_state(page, NR_ANON_THPS, -thp_nr_pages(page));
1381
1382 if (TestClearPageDoubleMap(page)) {
1383 /*
1384 * Subpages can be mapped with PTEs too. Check how many of
1385 * them are still mapped.
1386 */
1387 for (i = 0, nr = 0; i < thp_nr_pages(page); i++) {
1388 trace_android_vh_update_page_mapcount(&page[i], false,
1389 false, &first_mapping, &success);
1390 if (success) {
1391 if (first_mapping)
1392 nr++;
1393 } else {
1394 if (atomic_add_negative(-1, &page[i]._mapcount))
1395 nr++;
1396 }
1397 }
1398
1399 /*
1400 * Queue the page for deferred split if at least one small
1401 * page of the compound page is unmapped, but at least one
1402 * small page is still mapped.
1403 */
1404 if (nr && nr < thp_nr_pages(page))
1405 deferred_split_huge_page(page);
1406 } else {
1407 nr = thp_nr_pages(page);
1408 }
1409
1410 if (unlikely(PageMlocked(page)))
1411 clear_page_mlock(page);
1412
1413 if (nr)
1414 __mod_lruvec_page_state(page, NR_ANON_MAPPED, -nr);
1415 }
1416
1417 /**
1418 * page_remove_rmap - take down pte mapping from a page
1419 * @page: page to remove mapping from
1420 * @compound: uncharge the page as compound or small page
1421 *
1422 * The caller needs to hold the pte lock.
1423 */
page_remove_rmap(struct page * page,bool compound)1424 void page_remove_rmap(struct page *page, bool compound)
1425 {
1426 bool first_mapping;
1427 bool success = false;
1428 lock_page_memcg(page);
1429
1430 if (!PageAnon(page)) {
1431 page_remove_file_rmap(page, compound);
1432 goto out;
1433 }
1434
1435 if (compound) {
1436 page_remove_anon_compound_rmap(page);
1437 goto out;
1438 }
1439
1440 trace_android_vh_update_page_mapcount(page, false,
1441 compound, &first_mapping, &success);
1442 if (success) {
1443 if (!first_mapping)
1444 goto out;
1445 } else {
1446 /* page still mapped by someone else? */
1447 if (!atomic_add_negative(-1, &page->_mapcount))
1448 goto out;
1449 }
1450 /*
1451 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1452 * these counters are not modified in interrupt context, and
1453 * pte lock(a spinlock) is held, which implies preemption disabled.
1454 */
1455 __dec_lruvec_page_state(page, NR_ANON_MAPPED);
1456
1457 if (unlikely(PageMlocked(page)))
1458 clear_page_mlock(page);
1459
1460 if (PageTransCompound(page))
1461 deferred_split_huge_page(compound_head(page));
1462
1463 /*
1464 * It would be tidy to reset the PageAnon mapping here,
1465 * but that might overwrite a racing page_add_anon_rmap
1466 * which increments mapcount after us but sets mapping
1467 * before us: so leave the reset to free_unref_page,
1468 * and remember that it's only reliable while mapped.
1469 * Leaving it set also helps swapoff to reinstate ptes
1470 * faster for those pages still in swapcache.
1471 */
1472 out:
1473 unlock_page_memcg(page);
1474 }
1475
1476 /*
1477 * @arg: enum ttu_flags will be passed to this argument
1478 */
try_to_unmap_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1479 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1480 unsigned long address, void *arg)
1481 {
1482 struct mm_struct *mm = vma->vm_mm;
1483 struct page_vma_mapped_walk pvmw = {
1484 .page = page,
1485 .vma = vma,
1486 .address = address,
1487 };
1488 pte_t pteval;
1489 struct page *subpage;
1490 bool ret = true;
1491 struct mmu_notifier_range range;
1492 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1493
1494 /*
1495 * When racing against e.g. zap_pte_range() on another cpu,
1496 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1497 * try_to_unmap() may return before page_mapped() has become false,
1498 * if page table locking is skipped: use TTU_SYNC to wait for that.
1499 */
1500 if (flags & TTU_SYNC)
1501 pvmw.flags = PVMW_SYNC;
1502
1503 if (flags & TTU_SPLIT_HUGE_PMD)
1504 split_huge_pmd_address(vma, address, false, page);
1505
1506 /*
1507 * For THP, we have to assume the worse case ie pmd for invalidation.
1508 * For hugetlb, it could be much worse if we need to do pud
1509 * invalidation in the case of pmd sharing.
1510 *
1511 * Note that the page can not be free in this function as call of
1512 * try_to_unmap() must hold a reference on the page.
1513 */
1514 range.end = PageKsm(page) ?
1515 address + PAGE_SIZE : vma_address_end(page, vma);
1516 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1517 address, range.end);
1518 if (PageHuge(page)) {
1519 /*
1520 * If sharing is possible, start and end will be adjusted
1521 * accordingly.
1522 */
1523 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1524 &range.end);
1525 }
1526 mmu_notifier_invalidate_range_start(&range);
1527
1528 while (page_vma_mapped_walk(&pvmw)) {
1529 /*
1530 * If the page is mlock()d, we cannot swap it out.
1531 */
1532 if (!(flags & TTU_IGNORE_MLOCK) &&
1533 (vma->vm_flags & VM_LOCKED)) {
1534 /*
1535 * PTE-mapped THP are never marked as mlocked: so do
1536 * not set it on a DoubleMap THP, nor on an Anon THP
1537 * (which may still be PTE-mapped after DoubleMap was
1538 * cleared). But stop unmapping even in those cases.
1539 */
1540 if (!PageTransCompound(page) || (PageHead(page) &&
1541 !PageDoubleMap(page) && !PageAnon(page)))
1542 mlock_vma_page(page);
1543 page_vma_mapped_walk_done(&pvmw);
1544 ret = false;
1545 break;
1546 }
1547
1548 /* Unexpected PMD-mapped THP? */
1549 VM_BUG_ON_PAGE(!pvmw.pte, page);
1550
1551 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1552 address = pvmw.address;
1553
1554 if (PageHuge(page) && !PageAnon(page)) {
1555 /*
1556 * To call huge_pmd_unshare, i_mmap_rwsem must be
1557 * held in write mode. Caller needs to explicitly
1558 * do this outside rmap routines.
1559 */
1560 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1561 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1562 /*
1563 * huge_pmd_unshare unmapped an entire PMD
1564 * page. There is no way of knowing exactly
1565 * which PMDs may be cached for this mm, so
1566 * we must flush them all. start/end were
1567 * already adjusted above to cover this range.
1568 */
1569 flush_cache_range(vma, range.start, range.end);
1570 flush_tlb_range(vma, range.start, range.end);
1571 mmu_notifier_invalidate_range(mm, range.start,
1572 range.end);
1573
1574 /*
1575 * The ref count of the PMD page was dropped
1576 * which is part of the way map counting
1577 * is done for shared PMDs. Return 'true'
1578 * here. When there is no other sharing,
1579 * huge_pmd_unshare returns false and we will
1580 * unmap the actual page and drop map count
1581 * to zero.
1582 */
1583 page_vma_mapped_walk_done(&pvmw);
1584 break;
1585 }
1586 }
1587
1588 /* Nuke the page table entry. */
1589 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1590 if (should_defer_flush(mm, flags)) {
1591 /*
1592 * We clear the PTE but do not flush so potentially
1593 * a remote CPU could still be writing to the page.
1594 * If the entry was previously clean then the
1595 * architecture must guarantee that a clear->dirty
1596 * transition on a cached TLB entry is written through
1597 * and traps if the PTE is unmapped.
1598 */
1599 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1600
1601 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1602 } else {
1603 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1604 }
1605
1606 /* Move the dirty bit to the page. Now the pte is gone. */
1607 if (pte_dirty(pteval))
1608 set_page_dirty(page);
1609
1610 /* Update high watermark before we lower rss */
1611 update_hiwater_rss(mm);
1612
1613 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1614 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1615 if (PageHuge(page)) {
1616 hugetlb_count_sub(compound_nr(page), mm);
1617 set_huge_swap_pte_at(mm, address,
1618 pvmw.pte, pteval,
1619 vma_mmu_pagesize(vma));
1620 } else {
1621 dec_mm_counter(mm, mm_counter(page));
1622 set_pte_at(mm, address, pvmw.pte, pteval);
1623 }
1624
1625 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1626 /*
1627 * The guest indicated that the page content is of no
1628 * interest anymore. Simply discard the pte, vmscan
1629 * will take care of the rest.
1630 * A future reference will then fault in a new zero
1631 * page. When userfaultfd is active, we must not drop
1632 * this page though, as its main user (postcopy
1633 * migration) will not expect userfaults on already
1634 * copied pages.
1635 */
1636 dec_mm_counter(mm, mm_counter(page));
1637 /* We have to invalidate as we cleared the pte */
1638 mmu_notifier_invalidate_range(mm, address,
1639 address + PAGE_SIZE);
1640 } else if (PageAnon(page)) {
1641 swp_entry_t entry = { .val = page_private(subpage) };
1642 pte_t swp_pte;
1643 /*
1644 * Store the swap location in the pte.
1645 * See handle_pte_fault() ...
1646 */
1647 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1648 WARN_ON_ONCE(1);
1649 ret = false;
1650 /* We have to invalidate as we cleared the pte */
1651 mmu_notifier_invalidate_range(mm, address,
1652 address + PAGE_SIZE);
1653 page_vma_mapped_walk_done(&pvmw);
1654 break;
1655 }
1656
1657 /* MADV_FREE page check */
1658 if (!PageSwapBacked(page)) {
1659 int ref_count, map_count;
1660
1661 /*
1662 * Synchronize with gup_pte_range():
1663 * - clear PTE; barrier; read refcount
1664 * - inc refcount; barrier; read PTE
1665 */
1666 smp_mb();
1667
1668 ref_count = page_ref_count(page);
1669 map_count = page_mapcount(page);
1670
1671 /*
1672 * Order reads for page refcount and dirty flag
1673 * (see comments in __remove_mapping()).
1674 */
1675 smp_rmb();
1676
1677 /*
1678 * The only page refs must be one from isolation
1679 * plus the rmap(s) (dropped by discard:).
1680 */
1681 if (ref_count == 1 + map_count &&
1682 !PageDirty(page)) {
1683 /* Invalidate as we cleared the pte */
1684 mmu_notifier_invalidate_range(mm,
1685 address, address + PAGE_SIZE);
1686 dec_mm_counter(mm, MM_ANONPAGES);
1687 goto discard;
1688 }
1689
1690 /*
1691 * If the page was redirtied, it cannot be
1692 * discarded. Remap the page to page table.
1693 */
1694 set_pte_at(mm, address, pvmw.pte, pteval);
1695 SetPageSwapBacked(page);
1696 ret = false;
1697 page_vma_mapped_walk_done(&pvmw);
1698 break;
1699 }
1700
1701 if (swap_duplicate(entry) < 0) {
1702 set_pte_at(mm, address, pvmw.pte, pteval);
1703 ret = false;
1704 page_vma_mapped_walk_done(&pvmw);
1705 break;
1706 }
1707 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1708 set_pte_at(mm, address, pvmw.pte, pteval);
1709 ret = false;
1710 page_vma_mapped_walk_done(&pvmw);
1711 break;
1712 }
1713 if (list_empty(&mm->mmlist)) {
1714 spin_lock(&mmlist_lock);
1715 if (list_empty(&mm->mmlist))
1716 list_add(&mm->mmlist, &init_mm.mmlist);
1717 spin_unlock(&mmlist_lock);
1718 }
1719 dec_mm_counter(mm, MM_ANONPAGES);
1720 inc_mm_counter(mm, MM_SWAPENTS);
1721 swp_pte = swp_entry_to_pte(entry);
1722 if (pte_soft_dirty(pteval))
1723 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1724 if (pte_uffd_wp(pteval))
1725 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1726 set_pte_at(mm, address, pvmw.pte, swp_pte);
1727 /* Invalidate as we cleared the pte */
1728 mmu_notifier_invalidate_range(mm, address,
1729 address + PAGE_SIZE);
1730 } else {
1731 /*
1732 * This is a locked file-backed page, thus it cannot
1733 * be removed from the page cache and replaced by a new
1734 * page before mmu_notifier_invalidate_range_end, so no
1735 * concurrent thread might update its page table to
1736 * point at new page while a device still is using this
1737 * page.
1738 *
1739 * See Documentation/vm/mmu_notifier.rst
1740 */
1741 dec_mm_counter(mm, mm_counter_file(page));
1742 }
1743 discard:
1744 /*
1745 * No need to call mmu_notifier_invalidate_range() it has be
1746 * done above for all cases requiring it to happen under page
1747 * table lock before mmu_notifier_invalidate_range_end()
1748 *
1749 * See Documentation/vm/mmu_notifier.rst
1750 */
1751 page_remove_rmap(subpage, PageHuge(page));
1752 put_page(page);
1753 }
1754
1755 mmu_notifier_invalidate_range_end(&range);
1756 trace_android_vh_try_to_unmap_one(vma, page, address, ret);
1757
1758 return ret;
1759 }
1760
invalid_migration_vma(struct vm_area_struct * vma,void * arg)1761 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1762 {
1763 return vma_is_temporary_stack(vma);
1764 }
1765
page_not_mapped(struct page * page)1766 static int page_not_mapped(struct page *page)
1767 {
1768 return !page_mapped(page);
1769 }
1770
1771 /**
1772 * try_to_unmap - try to remove all page table mappings to a page
1773 * @page: the page to get unmapped
1774 * @flags: action and flags
1775 *
1776 * Tries to remove all the page table entries which are mapping this
1777 * page, used in the pageout path. Caller must hold the page lock.
1778 *
1779 * It is the caller's responsibility to check if the page is still
1780 * mapped when needed (use TTU_SYNC to prevent accounting races).
1781 */
try_to_unmap(struct page * page,enum ttu_flags flags)1782 void try_to_unmap(struct page *page, enum ttu_flags flags)
1783 {
1784 struct rmap_walk_control rwc = {
1785 .rmap_one = try_to_unmap_one,
1786 .arg = (void *)flags,
1787 .done = page_not_mapped,
1788 .anon_lock = page_lock_anon_vma_read,
1789 };
1790
1791 if (flags & TTU_RMAP_LOCKED)
1792 rmap_walk_locked(page, &rwc);
1793 else
1794 rmap_walk(page, &rwc);
1795 }
1796
1797 /*
1798 * @arg: enum ttu_flags will be passed to this argument.
1799 *
1800 * If TTU_SPLIT_HUGE_PMD is specified any PMD mappings will be split into PTEs
1801 * containing migration entries.
1802 */
try_to_migrate_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * arg)1803 static bool try_to_migrate_one(struct page *page, struct vm_area_struct *vma,
1804 unsigned long address, void *arg)
1805 {
1806 struct mm_struct *mm = vma->vm_mm;
1807 struct page_vma_mapped_walk pvmw = {
1808 .page = page,
1809 .vma = vma,
1810 .address = address,
1811 };
1812 pte_t pteval;
1813 struct page *subpage;
1814 bool ret = true;
1815 struct mmu_notifier_range range;
1816 enum ttu_flags flags = (enum ttu_flags)(long)arg;
1817
1818 /*
1819 * When racing against e.g. zap_pte_range() on another cpu,
1820 * in between its ptep_get_and_clear_full() and page_remove_rmap(),
1821 * try_to_migrate() may return before page_mapped() has become false,
1822 * if page table locking is skipped: use TTU_SYNC to wait for that.
1823 */
1824 if (flags & TTU_SYNC)
1825 pvmw.flags = PVMW_SYNC;
1826
1827 /*
1828 * unmap_page() in mm/huge_memory.c is the only user of migration with
1829 * TTU_SPLIT_HUGE_PMD and it wants to freeze.
1830 */
1831 if (flags & TTU_SPLIT_HUGE_PMD)
1832 split_huge_pmd_address(vma, address, true, page);
1833
1834 /*
1835 * For THP, we have to assume the worse case ie pmd for invalidation.
1836 * For hugetlb, it could be much worse if we need to do pud
1837 * invalidation in the case of pmd sharing.
1838 *
1839 * Note that the page can not be free in this function as call of
1840 * try_to_unmap() must hold a reference on the page.
1841 */
1842 range.end = PageKsm(page) ?
1843 address + PAGE_SIZE : vma_address_end(page, vma);
1844 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1845 address, range.end);
1846 if (PageHuge(page)) {
1847 /*
1848 * If sharing is possible, start and end will be adjusted
1849 * accordingly.
1850 */
1851 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1852 &range.end);
1853 }
1854 mmu_notifier_invalidate_range_start(&range);
1855
1856 while (page_vma_mapped_walk(&pvmw)) {
1857 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1858 /* PMD-mapped THP migration entry */
1859 if (!pvmw.pte) {
1860 VM_BUG_ON_PAGE(PageHuge(page) ||
1861 !PageTransCompound(page), page);
1862
1863 set_pmd_migration_entry(&pvmw, page);
1864 continue;
1865 }
1866 #endif
1867
1868 /* Unexpected PMD-mapped THP? */
1869 VM_BUG_ON_PAGE(!pvmw.pte, page);
1870
1871 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1872 address = pvmw.address;
1873
1874 if (PageHuge(page) && !PageAnon(page)) {
1875 /*
1876 * To call huge_pmd_unshare, i_mmap_rwsem must be
1877 * held in write mode. Caller needs to explicitly
1878 * do this outside rmap routines.
1879 */
1880 VM_BUG_ON(!(flags & TTU_RMAP_LOCKED));
1881 if (huge_pmd_unshare(mm, vma, &address, pvmw.pte)) {
1882 /*
1883 * huge_pmd_unshare unmapped an entire PMD
1884 * page. There is no way of knowing exactly
1885 * which PMDs may be cached for this mm, so
1886 * we must flush them all. start/end were
1887 * already adjusted above to cover this range.
1888 */
1889 flush_cache_range(vma, range.start, range.end);
1890 flush_tlb_range(vma, range.start, range.end);
1891 mmu_notifier_invalidate_range(mm, range.start,
1892 range.end);
1893
1894 /*
1895 * The ref count of the PMD page was dropped
1896 * which is part of the way map counting
1897 * is done for shared PMDs. Return 'true'
1898 * here. When there is no other sharing,
1899 * huge_pmd_unshare returns false and we will
1900 * unmap the actual page and drop map count
1901 * to zero.
1902 */
1903 page_vma_mapped_walk_done(&pvmw);
1904 break;
1905 }
1906 }
1907
1908 /* Nuke the page table entry. */
1909 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1910 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1911
1912 /* Move the dirty bit to the page. Now the pte is gone. */
1913 if (pte_dirty(pteval))
1914 set_page_dirty(page);
1915
1916 /* Update high watermark before we lower rss */
1917 update_hiwater_rss(mm);
1918
1919 if (is_zone_device_page(page)) {
1920 swp_entry_t entry;
1921 pte_t swp_pte;
1922
1923 /*
1924 * Store the pfn of the page in a special migration
1925 * pte. do_swap_page() will wait until the migration
1926 * pte is removed and then restart fault handling.
1927 */
1928 entry = make_readable_migration_entry(
1929 page_to_pfn(page));
1930 swp_pte = swp_entry_to_pte(entry);
1931
1932 /*
1933 * pteval maps a zone device page and is therefore
1934 * a swap pte.
1935 */
1936 if (pte_swp_soft_dirty(pteval))
1937 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1938 if (pte_swp_uffd_wp(pteval))
1939 swp_pte = pte_swp_mkuffd_wp(swp_pte);
1940 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1941 /*
1942 * No need to invalidate here it will synchronize on
1943 * against the special swap migration pte.
1944 *
1945 * The assignment to subpage above was computed from a
1946 * swap PTE which results in an invalid pointer.
1947 * Since only PAGE_SIZE pages can currently be
1948 * migrated, just set it to page. This will need to be
1949 * changed when hugepage migrations to device private
1950 * memory are supported.
1951 */
1952 subpage = page;
1953 } else if (PageHWPoison(page)) {
1954 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1955 if (PageHuge(page)) {
1956 hugetlb_count_sub(compound_nr(page), mm);
1957 set_huge_swap_pte_at(mm, address,
1958 pvmw.pte, pteval,
1959 vma_mmu_pagesize(vma));
1960 } else {
1961 dec_mm_counter(mm, mm_counter(page));
1962 set_pte_at(mm, address, pvmw.pte, pteval);
1963 }
1964
1965 } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1966 /*
1967 * The guest indicated that the page content is of no
1968 * interest anymore. Simply discard the pte, vmscan
1969 * will take care of the rest.
1970 * A future reference will then fault in a new zero
1971 * page. When userfaultfd is active, we must not drop
1972 * this page though, as its main user (postcopy
1973 * migration) will not expect userfaults on already
1974 * copied pages.
1975 */
1976 dec_mm_counter(mm, mm_counter(page));
1977 /* We have to invalidate as we cleared the pte */
1978 mmu_notifier_invalidate_range(mm, address,
1979 address + PAGE_SIZE);
1980 } else {
1981 swp_entry_t entry;
1982 pte_t swp_pte;
1983
1984 if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1985 set_pte_at(mm, address, pvmw.pte, pteval);
1986 ret = false;
1987 page_vma_mapped_walk_done(&pvmw);
1988 break;
1989 }
1990
1991 /*
1992 * Store the pfn of the page in a special migration
1993 * pte. do_swap_page() will wait until the migration
1994 * pte is removed and then restart fault handling.
1995 */
1996 if (pte_write(pteval))
1997 entry = make_writable_migration_entry(
1998 page_to_pfn(subpage));
1999 else
2000 entry = make_readable_migration_entry(
2001 page_to_pfn(subpage));
2002
2003 swp_pte = swp_entry_to_pte(entry);
2004 if (pte_soft_dirty(pteval))
2005 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2006 if (pte_uffd_wp(pteval))
2007 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2008 set_pte_at(mm, address, pvmw.pte, swp_pte);
2009 /*
2010 * No need to invalidate here it will synchronize on
2011 * against the special swap migration pte.
2012 */
2013 }
2014
2015 /*
2016 * No need to call mmu_notifier_invalidate_range() it has be
2017 * done above for all cases requiring it to happen under page
2018 * table lock before mmu_notifier_invalidate_range_end()
2019 *
2020 * See Documentation/vm/mmu_notifier.rst
2021 */
2022 page_remove_rmap(subpage, PageHuge(page));
2023 put_page(page);
2024 }
2025
2026 mmu_notifier_invalidate_range_end(&range);
2027
2028 return ret;
2029 }
2030
2031 /**
2032 * try_to_migrate - try to replace all page table mappings with swap entries
2033 * @page: the page to replace page table entries for
2034 * @flags: action and flags
2035 *
2036 * Tries to remove all the page table entries which are mapping this page and
2037 * replace them with special swap entries. Caller must hold the page lock.
2038 */
try_to_migrate(struct page * page,enum ttu_flags flags)2039 void try_to_migrate(struct page *page, enum ttu_flags flags)
2040 {
2041 struct rmap_walk_control rwc = {
2042 .rmap_one = try_to_migrate_one,
2043 .arg = (void *)flags,
2044 .done = page_not_mapped,
2045 .anon_lock = page_lock_anon_vma_read,
2046 };
2047
2048 /*
2049 * Migration always ignores mlock and only supports TTU_RMAP_LOCKED and
2050 * TTU_SPLIT_HUGE_PMD and TTU_SYNC flags.
2051 */
2052 if (WARN_ON_ONCE(flags & ~(TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD |
2053 TTU_SYNC)))
2054 return;
2055
2056 if (is_zone_device_page(page) && !is_device_private_page(page))
2057 return;
2058
2059 /*
2060 * During exec, a temporary VMA is setup and later moved.
2061 * The VMA is moved under the anon_vma lock but not the
2062 * page tables leading to a race where migration cannot
2063 * find the migration ptes. Rather than increasing the
2064 * locking requirements of exec(), migration skips
2065 * temporary VMAs until after exec() completes.
2066 */
2067 if (!PageKsm(page) && PageAnon(page))
2068 rwc.invalid_vma = invalid_migration_vma;
2069
2070 trace_android_vh_set_page_migrating(page);
2071
2072 if (flags & TTU_RMAP_LOCKED)
2073 rmap_walk_locked(page, &rwc);
2074 else
2075 rmap_walk(page, &rwc);
2076
2077 trace_android_vh_clear_page_migrating(page);
2078 }
2079
2080 /*
2081 * Walks the vma's mapping a page and mlocks the page if any locked vma's are
2082 * found. Once one is found the page is locked and the scan can be terminated.
2083 */
page_mlock_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * unused)2084 static bool page_mlock_one(struct page *page, struct vm_area_struct *vma,
2085 unsigned long address, void *unused)
2086 {
2087 struct page_vma_mapped_walk pvmw = {
2088 .page = page,
2089 .vma = vma,
2090 .address = address,
2091 };
2092
2093 /* An un-locked vma doesn't have any pages to lock, continue the scan */
2094 if (!(vma->vm_flags & VM_LOCKED))
2095 return true;
2096
2097 while (page_vma_mapped_walk(&pvmw)) {
2098 /*
2099 * Need to recheck under the ptl to serialise with
2100 * __munlock_pagevec_fill() after VM_LOCKED is cleared in
2101 * munlock_vma_pages_range().
2102 */
2103 if (vma->vm_flags & VM_LOCKED) {
2104 /*
2105 * PTE-mapped THP are never marked as mlocked; but
2106 * this function is never called on a DoubleMap THP,
2107 * nor on an Anon THP (which may still be PTE-mapped
2108 * after DoubleMap was cleared).
2109 */
2110 mlock_vma_page(page);
2111 /*
2112 * No need to scan further once the page is marked
2113 * as mlocked.
2114 */
2115 page_vma_mapped_walk_done(&pvmw);
2116 return false;
2117 }
2118 }
2119
2120 return true;
2121 }
2122
2123 /**
2124 * page_mlock - try to mlock a page
2125 * @page: the page to be mlocked
2126 *
2127 * Called from munlock code. Checks all of the VMAs mapping the page and mlocks
2128 * the page if any are found. The page will be returned with PG_mlocked cleared
2129 * if it is not mapped by any locked vmas.
2130 */
page_mlock(struct page * page)2131 void page_mlock(struct page *page)
2132 {
2133 struct rmap_walk_control rwc = {
2134 .rmap_one = page_mlock_one,
2135 .done = page_not_mapped,
2136 .anon_lock = page_lock_anon_vma_read,
2137
2138 };
2139
2140 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
2141 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
2142
2143 /* Anon THP are only marked as mlocked when singly mapped */
2144 if (PageTransCompound(page) && PageAnon(page))
2145 return;
2146
2147 rmap_walk(page, &rwc);
2148 }
2149
2150 #ifdef CONFIG_DEVICE_PRIVATE
2151 struct make_exclusive_args {
2152 struct mm_struct *mm;
2153 unsigned long address;
2154 void *owner;
2155 bool valid;
2156 };
2157
page_make_device_exclusive_one(struct page * page,struct vm_area_struct * vma,unsigned long address,void * priv)2158 static bool page_make_device_exclusive_one(struct page *page,
2159 struct vm_area_struct *vma, unsigned long address, void *priv)
2160 {
2161 struct mm_struct *mm = vma->vm_mm;
2162 struct page_vma_mapped_walk pvmw = {
2163 .page = page,
2164 .vma = vma,
2165 .address = address,
2166 };
2167 struct make_exclusive_args *args = priv;
2168 pte_t pteval;
2169 struct page *subpage;
2170 bool ret = true;
2171 struct mmu_notifier_range range;
2172 swp_entry_t entry;
2173 pte_t swp_pte;
2174
2175 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
2176 vma->vm_mm, address, min(vma->vm_end,
2177 address + page_size(page)), args->owner);
2178 mmu_notifier_invalidate_range_start(&range);
2179
2180 while (page_vma_mapped_walk(&pvmw)) {
2181 /* Unexpected PMD-mapped THP? */
2182 VM_BUG_ON_PAGE(!pvmw.pte, page);
2183
2184 if (!pte_present(*pvmw.pte)) {
2185 ret = false;
2186 page_vma_mapped_walk_done(&pvmw);
2187 break;
2188 }
2189
2190 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
2191 address = pvmw.address;
2192
2193 /* Nuke the page table entry. */
2194 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
2195 pteval = ptep_clear_flush(vma, address, pvmw.pte);
2196
2197 /* Move the dirty bit to the page. Now the pte is gone. */
2198 if (pte_dirty(pteval))
2199 set_page_dirty(page);
2200
2201 /*
2202 * Check that our target page is still mapped at the expected
2203 * address.
2204 */
2205 if (args->mm == mm && args->address == address &&
2206 pte_write(pteval))
2207 args->valid = true;
2208
2209 /*
2210 * Store the pfn of the page in a special migration
2211 * pte. do_swap_page() will wait until the migration
2212 * pte is removed and then restart fault handling.
2213 */
2214 if (pte_write(pteval))
2215 entry = make_writable_device_exclusive_entry(
2216 page_to_pfn(subpage));
2217 else
2218 entry = make_readable_device_exclusive_entry(
2219 page_to_pfn(subpage));
2220 swp_pte = swp_entry_to_pte(entry);
2221 if (pte_soft_dirty(pteval))
2222 swp_pte = pte_swp_mksoft_dirty(swp_pte);
2223 if (pte_uffd_wp(pteval))
2224 swp_pte = pte_swp_mkuffd_wp(swp_pte);
2225
2226 set_pte_at(mm, address, pvmw.pte, swp_pte);
2227
2228 /*
2229 * There is a reference on the page for the swap entry which has
2230 * been removed, so shouldn't take another.
2231 */
2232 page_remove_rmap(subpage, false);
2233 }
2234
2235 mmu_notifier_invalidate_range_end(&range);
2236
2237 return ret;
2238 }
2239
2240 /**
2241 * page_make_device_exclusive - mark the page exclusively owned by a device
2242 * @page: the page to replace page table entries for
2243 * @mm: the mm_struct where the page is expected to be mapped
2244 * @address: address where the page is expected to be mapped
2245 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier callbacks
2246 *
2247 * Tries to remove all the page table entries which are mapping this page and
2248 * replace them with special device exclusive swap entries to grant a device
2249 * exclusive access to the page. Caller must hold the page lock.
2250 *
2251 * Returns false if the page is still mapped, or if it could not be unmapped
2252 * from the expected address. Otherwise returns true (success).
2253 */
page_make_device_exclusive(struct page * page,struct mm_struct * mm,unsigned long address,void * owner)2254 static bool page_make_device_exclusive(struct page *page, struct mm_struct *mm,
2255 unsigned long address, void *owner)
2256 {
2257 struct make_exclusive_args args = {
2258 .mm = mm,
2259 .address = address,
2260 .owner = owner,
2261 .valid = false,
2262 };
2263 struct rmap_walk_control rwc = {
2264 .rmap_one = page_make_device_exclusive_one,
2265 .done = page_not_mapped,
2266 .anon_lock = page_lock_anon_vma_read,
2267 .arg = &args,
2268 };
2269
2270 /*
2271 * Restrict to anonymous pages for now to avoid potential writeback
2272 * issues. Also tail pages shouldn't be passed to rmap_walk so skip
2273 * those.
2274 */
2275 if (!PageAnon(page) || PageTail(page))
2276 return false;
2277
2278 rmap_walk(page, &rwc);
2279
2280 return args.valid && !page_mapcount(page);
2281 }
2282
2283 /**
2284 * make_device_exclusive_range() - Mark a range for exclusive use by a device
2285 * @mm: mm_struct of assoicated target process
2286 * @start: start of the region to mark for exclusive device access
2287 * @end: end address of region
2288 * @pages: returns the pages which were successfully marked for exclusive access
2289 * @owner: passed to MMU_NOTIFY_EXCLUSIVE range notifier to allow filtering
2290 *
2291 * Returns: number of pages found in the range by GUP. A page is marked for
2292 * exclusive access only if the page pointer is non-NULL.
2293 *
2294 * This function finds ptes mapping page(s) to the given address range, locks
2295 * them and replaces mappings with special swap entries preventing userspace CPU
2296 * access. On fault these entries are replaced with the original mapping after
2297 * calling MMU notifiers.
2298 *
2299 * A driver using this to program access from a device must use a mmu notifier
2300 * critical section to hold a device specific lock during programming. Once
2301 * programming is complete it should drop the page lock and reference after
2302 * which point CPU access to the page will revoke the exclusive access.
2303 */
make_device_exclusive_range(struct mm_struct * mm,unsigned long start,unsigned long end,struct page ** pages,void * owner)2304 int make_device_exclusive_range(struct mm_struct *mm, unsigned long start,
2305 unsigned long end, struct page **pages,
2306 void *owner)
2307 {
2308 long npages = (end - start) >> PAGE_SHIFT;
2309 long i;
2310
2311 npages = get_user_pages_remote(mm, start, npages,
2312 FOLL_GET | FOLL_WRITE | FOLL_SPLIT_PMD,
2313 pages, NULL, NULL);
2314 if (npages < 0)
2315 return npages;
2316
2317 for (i = 0; i < npages; i++, start += PAGE_SIZE) {
2318 if (!trylock_page(pages[i])) {
2319 put_page(pages[i]);
2320 pages[i] = NULL;
2321 continue;
2322 }
2323
2324 if (!page_make_device_exclusive(pages[i], mm, start, owner)) {
2325 unlock_page(pages[i]);
2326 put_page(pages[i]);
2327 pages[i] = NULL;
2328 }
2329 }
2330
2331 return npages;
2332 }
2333 EXPORT_SYMBOL_GPL(make_device_exclusive_range);
2334 #endif
2335
__put_anon_vma(struct anon_vma * anon_vma)2336 void __put_anon_vma(struct anon_vma *anon_vma)
2337 {
2338 struct anon_vma *root = anon_vma->root;
2339
2340 anon_vma_free(anon_vma);
2341 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
2342 anon_vma_free(root);
2343 }
2344
rmap_walk_anon_lock(struct page * page,struct rmap_walk_control * rwc)2345 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
2346 struct rmap_walk_control *rwc)
2347 {
2348 struct anon_vma *anon_vma;
2349
2350 if (rwc->anon_lock)
2351 return rwc->anon_lock(page, rwc);
2352
2353 /*
2354 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
2355 * because that depends on page_mapped(); but not all its usages
2356 * are holding mmap_lock. Users without mmap_lock are required to
2357 * take a reference count to prevent the anon_vma disappearing
2358 */
2359 anon_vma = page_anon_vma(page);
2360 if (!anon_vma)
2361 return NULL;
2362
2363 if (anon_vma_trylock_read(anon_vma))
2364 goto out;
2365
2366 if (rwc->try_lock) {
2367 anon_vma = NULL;
2368 rwc->contended = true;
2369 goto out;
2370 }
2371
2372 anon_vma_lock_read(anon_vma);
2373 out:
2374 return anon_vma;
2375 }
2376
2377 /*
2378 * rmap_walk_anon - do something to anonymous page using the object-based
2379 * rmap method
2380 * @page: the page to be handled
2381 * @rwc: control variable according to each walk type
2382 *
2383 * Find all the mappings of a page using the mapping pointer and the vma chains
2384 * contained in the anon_vma struct it points to.
2385 *
2386 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2387 * where the page was found will be held for write. So, we won't recheck
2388 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2389 * LOCKED.
2390 */
rmap_walk_anon(struct page * page,struct rmap_walk_control * rwc,bool locked)2391 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
2392 bool locked)
2393 {
2394 struct anon_vma *anon_vma;
2395 pgoff_t pgoff_start, pgoff_end;
2396 struct anon_vma_chain *avc;
2397
2398 if (locked) {
2399 anon_vma = page_anon_vma(page);
2400 /* anon_vma disappear under us? */
2401 VM_BUG_ON_PAGE(!anon_vma, page);
2402 } else {
2403 anon_vma = rmap_walk_anon_lock(page, rwc);
2404 }
2405 if (!anon_vma)
2406 return;
2407
2408 pgoff_start = page_to_pgoff(page);
2409 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2410 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
2411 pgoff_start, pgoff_end) {
2412 struct vm_area_struct *vma = avc->vma;
2413 unsigned long address = vma_address(page, vma);
2414
2415 VM_BUG_ON_VMA(address == -EFAULT, vma);
2416 cond_resched();
2417
2418 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2419 continue;
2420
2421 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2422 break;
2423 if (rwc->done && rwc->done(page))
2424 break;
2425 }
2426
2427 if (!locked)
2428 anon_vma_unlock_read(anon_vma);
2429 }
2430
2431 /*
2432 * rmap_walk_file - do something to file page using the object-based rmap method
2433 * @page: the page to be handled
2434 * @rwc: control variable according to each walk type
2435 *
2436 * Find all the mappings of a page using the mapping pointer and the vma chains
2437 * contained in the address_space struct it points to.
2438 *
2439 * When called from page_mlock(), the mmap_lock of the mm containing the vma
2440 * where the page was found will be held for write. So, we won't recheck
2441 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
2442 * LOCKED.
2443 */
rmap_walk_file(struct page * page,struct rmap_walk_control * rwc,bool locked)2444 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
2445 bool locked)
2446 {
2447 struct address_space *mapping = page_mapping(page);
2448 pgoff_t pgoff_start, pgoff_end;
2449 struct vm_area_struct *vma;
2450 bool got_lock = false, success = false;
2451
2452 /*
2453 * The page lock not only makes sure that page->mapping cannot
2454 * suddenly be NULLified by truncation, it makes sure that the
2455 * structure at mapping cannot be freed and reused yet,
2456 * so we can safely take mapping->i_mmap_rwsem.
2457 */
2458 VM_BUG_ON_PAGE(!PageLocked(page), page);
2459
2460 if (!mapping)
2461 return;
2462
2463 pgoff_start = page_to_pgoff(page);
2464 pgoff_end = pgoff_start + thp_nr_pages(page) - 1;
2465 if (!locked) {
2466 trace_android_vh_do_page_trylock(page,
2467 &mapping->i_mmap_rwsem, &got_lock, &success);
2468 if (success) {
2469 if (!got_lock)
2470 return;
2471 } else {
2472 if (i_mmap_trylock_read(mapping))
2473 goto lookup;
2474
2475 if (rwc->try_lock) {
2476 rwc->contended = true;
2477 return;
2478 }
2479
2480 i_mmap_lock_read(mapping);
2481 }
2482 }
2483 lookup:
2484 vma_interval_tree_foreach(vma, &mapping->i_mmap,
2485 pgoff_start, pgoff_end) {
2486 unsigned long address = vma_address(page, vma);
2487
2488 VM_BUG_ON_VMA(address == -EFAULT, vma);
2489 cond_resched();
2490
2491 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2492 continue;
2493
2494 if (!rwc->rmap_one(page, vma, address, rwc->arg))
2495 goto done;
2496 if (rwc->done && rwc->done(page))
2497 goto done;
2498 }
2499
2500 done:
2501 if (!locked)
2502 i_mmap_unlock_read(mapping);
2503 }
2504
rmap_walk(struct page * page,struct rmap_walk_control * rwc)2505 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
2506 {
2507 if (unlikely(PageKsm(page)))
2508 rmap_walk_ksm(page, rwc);
2509 else if (PageAnon(page))
2510 rmap_walk_anon(page, rwc, false);
2511 else
2512 rmap_walk_file(page, rwc, false);
2513 }
2514
2515 /* Like rmap_walk, but caller holds relevant rmap lock */
rmap_walk_locked(struct page * page,struct rmap_walk_control * rwc)2516 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
2517 {
2518 /* no ksm support for now */
2519 VM_BUG_ON_PAGE(PageKsm(page), page);
2520 if (PageAnon(page))
2521 rmap_walk_anon(page, rwc, true);
2522 else
2523 rmap_walk_file(page, rwc, true);
2524 }
2525
2526 #ifdef CONFIG_HUGETLB_PAGE
2527 /*
2528 * The following two functions are for anonymous (private mapped) hugepages.
2529 * Unlike common anonymous pages, anonymous hugepages have no accounting code
2530 * and no lru code, because we handle hugepages differently from common pages.
2531 */
hugepage_add_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2532 void hugepage_add_anon_rmap(struct page *page,
2533 struct vm_area_struct *vma, unsigned long address)
2534 {
2535 struct anon_vma *anon_vma = vma->anon_vma;
2536 int first;
2537
2538 BUG_ON(!PageLocked(page));
2539 BUG_ON(!anon_vma);
2540 /* address might be in next vma when migration races vma_adjust */
2541 first = atomic_inc_and_test(compound_mapcount_ptr(page));
2542 if (first)
2543 __page_set_anon_rmap(page, vma, address, 0);
2544 }
2545
hugepage_add_new_anon_rmap(struct page * page,struct vm_area_struct * vma,unsigned long address)2546 void hugepage_add_new_anon_rmap(struct page *page,
2547 struct vm_area_struct *vma, unsigned long address)
2548 {
2549 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
2550 atomic_set(compound_mapcount_ptr(page), 0);
2551 if (hpage_pincount_available(page))
2552 atomic_set(compound_pincount_ptr(page), 0);
2553
2554 __page_set_anon_rmap(page, vma, address, 1);
2555 }
2556 #endif /* CONFIG_HUGETLB_PAGE */
2557