• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 	assert_spin_locked(&inode->i_lock);
124 
125 	list_move(&inode->i_io_list, head);
126 
127 	/* dirty_time doesn't count as dirty_io until expiration */
128 	if (head != &wb->b_dirty_time)
129 		return wb_io_lists_populated(wb);
130 
131 	wb_io_lists_depopulated(wb);
132 	return false;
133 }
134 
wb_wakeup(struct bdi_writeback * wb)135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137 	spin_lock_irq(&wb->work_lock);
138 	if (test_bit(WB_registered, &wb->state))
139 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
140 	spin_unlock_irq(&wb->work_lock);
141 }
142 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)143 static void finish_writeback_work(struct bdi_writeback *wb,
144 				  struct wb_writeback_work *work)
145 {
146 	struct wb_completion *done = work->done;
147 
148 	if (work->auto_free)
149 		kfree(work);
150 	if (done) {
151 		wait_queue_head_t *waitq = done->waitq;
152 
153 		/* @done can't be accessed after the following dec */
154 		if (atomic_dec_and_test(&done->cnt))
155 			wake_up_all(waitq);
156 	}
157 }
158 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)159 static void wb_queue_work(struct bdi_writeback *wb,
160 			  struct wb_writeback_work *work)
161 {
162 	trace_writeback_queue(wb, work);
163 
164 	if (work->done)
165 		atomic_inc(&work->done->cnt);
166 
167 	spin_lock_irq(&wb->work_lock);
168 
169 	if (test_bit(WB_registered, &wb->state)) {
170 		list_add_tail(&work->list, &wb->work_list);
171 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 	} else
173 		finish_writeback_work(wb, work);
174 
175 	spin_unlock_irq(&wb->work_lock);
176 }
177 
178 /**
179  * wb_wait_for_completion - wait for completion of bdi_writeback_works
180  * @done: target wb_completion
181  *
182  * Wait for one or more work items issued to @bdi with their ->done field
183  * set to @done, which should have been initialized with
184  * DEFINE_WB_COMPLETION().  This function returns after all such work items
185  * are completed.  Work items which are waited upon aren't freed
186  * automatically on completion.
187  */
wb_wait_for_completion(struct wb_completion * done)188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190 	atomic_dec(&done->cnt);		/* put down the initial count */
191 	wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193 
194 #ifdef CONFIG_CGROUP_WRITEBACK
195 
196 /*
197  * Parameters for foreign inode detection, see wbc_detach_inode() to see
198  * how they're used.
199  *
200  * These paramters are inherently heuristical as the detection target
201  * itself is fuzzy.  All we want to do is detaching an inode from the
202  * current owner if it's being written to by some other cgroups too much.
203  *
204  * The current cgroup writeback is built on the assumption that multiple
205  * cgroups writing to the same inode concurrently is very rare and a mode
206  * of operation which isn't well supported.  As such, the goal is not
207  * taking too long when a different cgroup takes over an inode while
208  * avoiding too aggressive flip-flops from occasional foreign writes.
209  *
210  * We record, very roughly, 2s worth of IO time history and if more than
211  * half of that is foreign, trigger the switch.  The recording is quantized
212  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
213  * writes smaller than 1/8 of avg size are ignored.
214  */
215 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
219 
220 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 					/* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
224 					/* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 					/* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
228 
229 /*
230  * Maximum inodes per isw.  A specific value has been chosen to make
231  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232  */
233 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234                                 / sizeof(struct inode *))
235 
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238 
__inode_attach_wb(struct inode * inode,struct page * page)239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241 	struct backing_dev_info *bdi = inode_to_bdi(inode);
242 	struct bdi_writeback *wb = NULL;
243 
244 	if (inode_cgwb_enabled(inode)) {
245 		struct cgroup_subsys_state *memcg_css;
246 
247 		if (page) {
248 			memcg_css = mem_cgroup_css_from_page(page);
249 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 		} else {
251 			/* must pin memcg_css, see wb_get_create() */
252 			memcg_css = task_get_css(current, memory_cgrp_id);
253 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 			css_put(memcg_css);
255 		}
256 	}
257 
258 	if (!wb)
259 		wb = &bdi->wb;
260 
261 	/*
262 	 * There may be multiple instances of this function racing to
263 	 * update the same inode.  Use cmpxchg() to tell the winner.
264 	 */
265 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266 		wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269 
270 /**
271  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272  * @inode: inode of interest with i_lock held
273  * @wb: target bdi_writeback
274  *
275  * Remove the inode from wb's io lists and if necessarily put onto b_attached
276  * list.  Only inodes attached to cgwb's are kept on this list.
277  */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)278 static void inode_cgwb_move_to_attached(struct inode *inode,
279 					struct bdi_writeback *wb)
280 {
281 	assert_spin_locked(&wb->list_lock);
282 	assert_spin_locked(&inode->i_lock);
283 
284 	inode->i_state &= ~I_SYNC_QUEUED;
285 	if (wb != &wb->bdi->wb)
286 		list_move(&inode->i_io_list, &wb->b_attached);
287 	else
288 		list_del_init(&inode->i_io_list);
289 	wb_io_lists_depopulated(wb);
290 }
291 
292 /**
293  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294  * @inode: inode of interest with i_lock held
295  *
296  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
297  * held on entry and is released on return.  The returned wb is guaranteed
298  * to stay @inode's associated wb until its list_lock is released.
299  */
300 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302 	__releases(&inode->i_lock)
303 	__acquires(&wb->list_lock)
304 {
305 	while (true) {
306 		struct bdi_writeback *wb = inode_to_wb(inode);
307 
308 		/*
309 		 * inode_to_wb() association is protected by both
310 		 * @inode->i_lock and @wb->list_lock but list_lock nests
311 		 * outside i_lock.  Drop i_lock and verify that the
312 		 * association hasn't changed after acquiring list_lock.
313 		 */
314 		wb_get(wb);
315 		spin_unlock(&inode->i_lock);
316 		spin_lock(&wb->list_lock);
317 
318 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
319 		if (likely(wb == inode->i_wb)) {
320 			wb_put(wb);	/* @inode already has ref */
321 			return wb;
322 		}
323 
324 		spin_unlock(&wb->list_lock);
325 		wb_put(wb);
326 		cpu_relax();
327 		spin_lock(&inode->i_lock);
328 	}
329 }
330 
331 /**
332  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333  * @inode: inode of interest
334  *
335  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336  * on entry.
337  */
inode_to_wb_and_lock_list(struct inode * inode)338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 	__acquires(&wb->list_lock)
340 {
341 	spin_lock(&inode->i_lock);
342 	return locked_inode_to_wb_and_lock_list(inode);
343 }
344 
345 struct inode_switch_wbs_context {
346 	struct rcu_work		work;
347 
348 	/*
349 	 * Multiple inodes can be switched at once.  The switching procedure
350 	 * consists of two parts, separated by a RCU grace period.  To make
351 	 * sure that the second part is executed for each inode gone through
352 	 * the first part, all inode pointers are placed into a NULL-terminated
353 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
354 	 * an inode could be left in a non-consistent state.
355 	 */
356 	struct bdi_writeback	*new_wb;
357 	struct inode		*inodes[];
358 };
359 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362 	down_write(&bdi->wb_switch_rwsem);
363 }
364 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367 	up_write(&bdi->wb_switch_rwsem);
368 }
369 
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)370 static bool inode_do_switch_wbs(struct inode *inode,
371 				struct bdi_writeback *old_wb,
372 				struct bdi_writeback *new_wb)
373 {
374 	struct address_space *mapping = inode->i_mapping;
375 	XA_STATE(xas, &mapping->i_pages, 0);
376 	struct page *page;
377 	bool switched = false;
378 
379 	spin_lock(&inode->i_lock);
380 	xa_lock_irq(&mapping->i_pages);
381 
382 	/*
383 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 	 * path owns the inode and we shouldn't modify ->i_io_list.
385 	 */
386 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387 		goto skip_switch;
388 
389 	trace_inode_switch_wbs(inode, old_wb, new_wb);
390 
391 	/*
392 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394 	 * pages actually under writeback.
395 	 */
396 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 		if (PageDirty(page)) {
398 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
400 		}
401 	}
402 
403 	xas_set(&xas, 0);
404 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 		WARN_ON_ONCE(!PageWriteback(page));
406 		dec_wb_stat(old_wb, WB_WRITEBACK);
407 		inc_wb_stat(new_wb, WB_WRITEBACK);
408 	}
409 
410 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
411 		atomic_dec(&old_wb->writeback_inodes);
412 		atomic_inc(&new_wb->writeback_inodes);
413 	}
414 
415 	wb_get(new_wb);
416 
417 	/*
418 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
419 	 * the specific list @inode was on is ignored and the @inode is put on
420 	 * ->b_dirty which is always correct including from ->b_dirty_time.
421 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
422 	 * was clean, it means it was on the b_attached list, so move it onto
423 	 * the b_attached list of @new_wb.
424 	 */
425 	if (!list_empty(&inode->i_io_list)) {
426 		inode->i_wb = new_wb;
427 
428 		if (inode->i_state & I_DIRTY_ALL) {
429 			struct inode *pos;
430 
431 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 				if (time_after_eq(inode->dirtied_when,
433 						  pos->dirtied_when))
434 					break;
435 			inode_io_list_move_locked(inode, new_wb,
436 						  pos->i_io_list.prev);
437 		} else {
438 			inode_cgwb_move_to_attached(inode, new_wb);
439 		}
440 	} else {
441 		inode->i_wb = new_wb;
442 	}
443 
444 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
445 	inode->i_wb_frn_winner = 0;
446 	inode->i_wb_frn_avg_time = 0;
447 	inode->i_wb_frn_history = 0;
448 	switched = true;
449 skip_switch:
450 	/*
451 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
452 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
453 	 */
454 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
455 
456 	xa_unlock_irq(&mapping->i_pages);
457 	spin_unlock(&inode->i_lock);
458 
459 	return switched;
460 }
461 
inode_switch_wbs_work_fn(struct work_struct * work)462 static void inode_switch_wbs_work_fn(struct work_struct *work)
463 {
464 	struct inode_switch_wbs_context *isw =
465 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
466 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
467 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
468 	struct bdi_writeback *new_wb = isw->new_wb;
469 	unsigned long nr_switched = 0;
470 	struct inode **inodep;
471 
472 	/*
473 	 * If @inode switches cgwb membership while sync_inodes_sb() is
474 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
475 	 */
476 	down_read(&bdi->wb_switch_rwsem);
477 
478 	/*
479 	 * By the time control reaches here, RCU grace period has passed
480 	 * since I_WB_SWITCH assertion and all wb stat update transactions
481 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
482 	 * synchronizing against the i_pages lock.
483 	 *
484 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
485 	 * gives us exclusion against all wb related operations on @inode
486 	 * including IO list manipulations and stat updates.
487 	 */
488 	if (old_wb < new_wb) {
489 		spin_lock(&old_wb->list_lock);
490 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
491 	} else {
492 		spin_lock(&new_wb->list_lock);
493 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
494 	}
495 
496 	for (inodep = isw->inodes; *inodep; inodep++) {
497 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
498 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
499 			nr_switched++;
500 	}
501 
502 	spin_unlock(&new_wb->list_lock);
503 	spin_unlock(&old_wb->list_lock);
504 
505 	up_read(&bdi->wb_switch_rwsem);
506 
507 	if (nr_switched) {
508 		wb_wakeup(new_wb);
509 		wb_put_many(old_wb, nr_switched);
510 	}
511 
512 	for (inodep = isw->inodes; *inodep; inodep++)
513 		iput(*inodep);
514 	wb_put(new_wb);
515 	kfree(isw);
516 	atomic_dec(&isw_nr_in_flight);
517 }
518 
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)519 static bool inode_prepare_wbs_switch(struct inode *inode,
520 				     struct bdi_writeback *new_wb)
521 {
522 	/*
523 	 * Paired with smp_mb() in cgroup_writeback_umount().
524 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
525 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
526 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
527 	 */
528 	smp_mb();
529 
530 	if (IS_DAX(inode))
531 		return false;
532 
533 	/* while holding I_WB_SWITCH, no one else can update the association */
534 	spin_lock(&inode->i_lock);
535 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
536 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
537 	    inode_to_wb(inode) == new_wb) {
538 		spin_unlock(&inode->i_lock);
539 		return false;
540 	}
541 	inode->i_state |= I_WB_SWITCH;
542 	__iget(inode);
543 	spin_unlock(&inode->i_lock);
544 
545 	return true;
546 }
547 
548 /**
549  * inode_switch_wbs - change the wb association of an inode
550  * @inode: target inode
551  * @new_wb_id: ID of the new wb
552  *
553  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
554  * switching is performed asynchronously and may fail silently.
555  */
inode_switch_wbs(struct inode * inode,int new_wb_id)556 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
557 {
558 	struct backing_dev_info *bdi = inode_to_bdi(inode);
559 	struct cgroup_subsys_state *memcg_css;
560 	struct inode_switch_wbs_context *isw;
561 
562 	/* noop if seems to be already in progress */
563 	if (inode->i_state & I_WB_SWITCH)
564 		return;
565 
566 	/* avoid queueing a new switch if too many are already in flight */
567 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
568 		return;
569 
570 	isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
571 	if (!isw)
572 		return;
573 
574 	atomic_inc(&isw_nr_in_flight);
575 
576 	/* find and pin the new wb */
577 	rcu_read_lock();
578 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
579 	if (memcg_css && !css_tryget(memcg_css))
580 		memcg_css = NULL;
581 	rcu_read_unlock();
582 	if (!memcg_css)
583 		goto out_free;
584 
585 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
586 	css_put(memcg_css);
587 	if (!isw->new_wb)
588 		goto out_free;
589 
590 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
591 		goto out_free;
592 
593 	isw->inodes[0] = inode;
594 
595 	/*
596 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
597 	 * the RCU protected stat update paths to grab the i_page
598 	 * lock so that stat transfer can synchronize against them.
599 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
600 	 */
601 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
602 	queue_rcu_work(isw_wq, &isw->work);
603 	return;
604 
605 out_free:
606 	atomic_dec(&isw_nr_in_flight);
607 	if (isw->new_wb)
608 		wb_put(isw->new_wb);
609 	kfree(isw);
610 }
611 
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)612 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
613 				   struct list_head *list, int *nr)
614 {
615 	struct inode *inode;
616 
617 	list_for_each_entry(inode, list, i_io_list) {
618 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
619 			continue;
620 
621 		isw->inodes[*nr] = inode;
622 		(*nr)++;
623 
624 		if (*nr >= WB_MAX_INODES_PER_ISW - 1)
625 			return true;
626 	}
627 	return false;
628 }
629 
630 /**
631  * cleanup_offline_cgwb - detach associated inodes
632  * @wb: target wb
633  *
634  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
635  * to eventually release the dying @wb.  Returns %true if not all inodes were
636  * switched and the function has to be restarted.
637  */
cleanup_offline_cgwb(struct bdi_writeback * wb)638 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
639 {
640 	struct cgroup_subsys_state *memcg_css;
641 	struct inode_switch_wbs_context *isw;
642 	int nr;
643 	bool restart = false;
644 
645 	isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
646 		      sizeof(struct inode *), GFP_KERNEL);
647 	if (!isw)
648 		return restart;
649 
650 	atomic_inc(&isw_nr_in_flight);
651 
652 	for (memcg_css = wb->memcg_css->parent; memcg_css;
653 	     memcg_css = memcg_css->parent) {
654 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
655 		if (isw->new_wb)
656 			break;
657 	}
658 	if (unlikely(!isw->new_wb))
659 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
660 
661 	nr = 0;
662 	spin_lock(&wb->list_lock);
663 	/*
664 	 * In addition to the inodes that have completed writeback, also switch
665 	 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
666 	 * inodes won't be written back for a long time when lazytime is
667 	 * enabled, and thus pinning the dying cgwbs. It won't break the
668 	 * bandwidth restrictions, as writeback of inode metadata is not
669 	 * accounted for.
670 	 */
671 	restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
672 	if (!restart)
673 		restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
674 	spin_unlock(&wb->list_lock);
675 
676 	/* no attached inodes? bail out */
677 	if (nr == 0) {
678 		atomic_dec(&isw_nr_in_flight);
679 		wb_put(isw->new_wb);
680 		kfree(isw);
681 		return restart;
682 	}
683 
684 	/*
685 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
686 	 * the RCU protected stat update paths to grab the i_page
687 	 * lock so that stat transfer can synchronize against them.
688 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
689 	 */
690 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
691 	queue_rcu_work(isw_wq, &isw->work);
692 
693 	return restart;
694 }
695 
696 /**
697  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
698  * @wbc: writeback_control of interest
699  * @inode: target inode
700  *
701  * @inode is locked and about to be written back under the control of @wbc.
702  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
703  * writeback completion, wbc_detach_inode() should be called.  This is used
704  * to track the cgroup writeback context.
705  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)706 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
707 				 struct inode *inode)
708 {
709 	if (!inode_cgwb_enabled(inode)) {
710 		spin_unlock(&inode->i_lock);
711 		return;
712 	}
713 
714 	wbc->wb = inode_to_wb(inode);
715 	wbc->inode = inode;
716 
717 	wbc->wb_id = wbc->wb->memcg_css->id;
718 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
719 	wbc->wb_tcand_id = 0;
720 	wbc->wb_bytes = 0;
721 	wbc->wb_lcand_bytes = 0;
722 	wbc->wb_tcand_bytes = 0;
723 
724 	wb_get(wbc->wb);
725 	spin_unlock(&inode->i_lock);
726 
727 	/*
728 	 * A dying wb indicates that either the blkcg associated with the
729 	 * memcg changed or the associated memcg is dying.  In the first
730 	 * case, a replacement wb should already be available and we should
731 	 * refresh the wb immediately.  In the second case, trying to
732 	 * refresh will keep failing.
733 	 */
734 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
735 		inode_switch_wbs(inode, wbc->wb_id);
736 }
737 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
738 
739 /**
740  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
741  * @wbc: writeback_control of the just finished writeback
742  *
743  * To be called after a writeback attempt of an inode finishes and undoes
744  * wbc_attach_and_unlock_inode().  Can be called under any context.
745  *
746  * As concurrent write sharing of an inode is expected to be very rare and
747  * memcg only tracks page ownership on first-use basis severely confining
748  * the usefulness of such sharing, cgroup writeback tracks ownership
749  * per-inode.  While the support for concurrent write sharing of an inode
750  * is deemed unnecessary, an inode being written to by different cgroups at
751  * different points in time is a lot more common, and, more importantly,
752  * charging only by first-use can too readily lead to grossly incorrect
753  * behaviors (single foreign page can lead to gigabytes of writeback to be
754  * incorrectly attributed).
755  *
756  * To resolve this issue, cgroup writeback detects the majority dirtier of
757  * an inode and transfers the ownership to it.  To avoid unnnecessary
758  * oscillation, the detection mechanism keeps track of history and gives
759  * out the switch verdict only if the foreign usage pattern is stable over
760  * a certain amount of time and/or writeback attempts.
761  *
762  * On each writeback attempt, @wbc tries to detect the majority writer
763  * using Boyer-Moore majority vote algorithm.  In addition to the byte
764  * count from the majority voting, it also counts the bytes written for the
765  * current wb and the last round's winner wb (max of last round's current
766  * wb, the winner from two rounds ago, and the last round's majority
767  * candidate).  Keeping track of the historical winner helps the algorithm
768  * to semi-reliably detect the most active writer even when it's not the
769  * absolute majority.
770  *
771  * Once the winner of the round is determined, whether the winner is
772  * foreign or not and how much IO time the round consumed is recorded in
773  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
774  * over a certain threshold, the switch verdict is given.
775  */
wbc_detach_inode(struct writeback_control * wbc)776 void wbc_detach_inode(struct writeback_control *wbc)
777 {
778 	struct bdi_writeback *wb = wbc->wb;
779 	struct inode *inode = wbc->inode;
780 	unsigned long avg_time, max_bytes, max_time;
781 	u16 history;
782 	int max_id;
783 
784 	if (!wb)
785 		return;
786 
787 	history = inode->i_wb_frn_history;
788 	avg_time = inode->i_wb_frn_avg_time;
789 
790 	/* pick the winner of this round */
791 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
792 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
793 		max_id = wbc->wb_id;
794 		max_bytes = wbc->wb_bytes;
795 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
796 		max_id = wbc->wb_lcand_id;
797 		max_bytes = wbc->wb_lcand_bytes;
798 	} else {
799 		max_id = wbc->wb_tcand_id;
800 		max_bytes = wbc->wb_tcand_bytes;
801 	}
802 
803 	/*
804 	 * Calculate the amount of IO time the winner consumed and fold it
805 	 * into the running average kept per inode.  If the consumed IO
806 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
807 	 * deciding whether to switch or not.  This is to prevent one-off
808 	 * small dirtiers from skewing the verdict.
809 	 */
810 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
811 				wb->avg_write_bandwidth);
812 	if (avg_time)
813 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
814 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
815 	else
816 		avg_time = max_time;	/* immediate catch up on first run */
817 
818 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
819 		int slots;
820 
821 		/*
822 		 * The switch verdict is reached if foreign wb's consume
823 		 * more than a certain proportion of IO time in a
824 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
825 		 * history mask where each bit represents one sixteenth of
826 		 * the period.  Determine the number of slots to shift into
827 		 * history from @max_time.
828 		 */
829 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
830 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
831 		history <<= slots;
832 		if (wbc->wb_id != max_id)
833 			history |= (1U << slots) - 1;
834 
835 		if (history)
836 			trace_inode_foreign_history(inode, wbc, history);
837 
838 		/*
839 		 * Switch if the current wb isn't the consistent winner.
840 		 * If there are multiple closely competing dirtiers, the
841 		 * inode may switch across them repeatedly over time, which
842 		 * is okay.  The main goal is avoiding keeping an inode on
843 		 * the wrong wb for an extended period of time.
844 		 */
845 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
846 			inode_switch_wbs(inode, max_id);
847 	}
848 
849 	/*
850 	 * Multiple instances of this function may race to update the
851 	 * following fields but we don't mind occassional inaccuracies.
852 	 */
853 	inode->i_wb_frn_winner = max_id;
854 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
855 	inode->i_wb_frn_history = history;
856 
857 	wb_put(wbc->wb);
858 	wbc->wb = NULL;
859 }
860 EXPORT_SYMBOL_GPL(wbc_detach_inode);
861 
862 /**
863  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
864  * @wbc: writeback_control of the writeback in progress
865  * @page: page being written out
866  * @bytes: number of bytes being written out
867  *
868  * @bytes from @page are about to written out during the writeback
869  * controlled by @wbc.  Keep the book for foreign inode detection.  See
870  * wbc_detach_inode().
871  */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)872 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
873 			      size_t bytes)
874 {
875 	struct cgroup_subsys_state *css;
876 	int id;
877 
878 	/*
879 	 * pageout() path doesn't attach @wbc to the inode being written
880 	 * out.  This is intentional as we don't want the function to block
881 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
882 	 * regular writeback instead of writing things out itself.
883 	 */
884 	if (!wbc->wb || wbc->no_cgroup_owner)
885 		return;
886 
887 	css = mem_cgroup_css_from_page(page);
888 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
889 	if (!(css->flags & CSS_ONLINE))
890 		return;
891 
892 	id = css->id;
893 
894 	if (id == wbc->wb_id) {
895 		wbc->wb_bytes += bytes;
896 		return;
897 	}
898 
899 	if (id == wbc->wb_lcand_id)
900 		wbc->wb_lcand_bytes += bytes;
901 
902 	/* Boyer-Moore majority vote algorithm */
903 	if (!wbc->wb_tcand_bytes)
904 		wbc->wb_tcand_id = id;
905 	if (id == wbc->wb_tcand_id)
906 		wbc->wb_tcand_bytes += bytes;
907 	else
908 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
909 }
910 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
911 
912 /**
913  * inode_congested - test whether an inode is congested
914  * @inode: inode to test for congestion (may be NULL)
915  * @cong_bits: mask of WB_[a]sync_congested bits to test
916  *
917  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
918  * bits to test and the return value is the mask of set bits.
919  *
920  * If cgroup writeback is enabled for @inode, the congestion state is
921  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
922  * associated with @inode is congested; otherwise, the root wb's congestion
923  * state is used.
924  *
925  * @inode is allowed to be NULL as this function is often called on
926  * mapping->host which is NULL for the swapper space.
927  */
inode_congested(struct inode * inode,int cong_bits)928 int inode_congested(struct inode *inode, int cong_bits)
929 {
930 	/*
931 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
932 	 * Start transaction iff ->i_wb is visible.
933 	 */
934 	if (inode && inode_to_wb_is_valid(inode)) {
935 		struct bdi_writeback *wb;
936 		struct wb_lock_cookie lock_cookie = {};
937 		bool congested;
938 
939 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
940 		congested = wb_congested(wb, cong_bits);
941 		unlocked_inode_to_wb_end(inode, &lock_cookie);
942 		return congested;
943 	}
944 
945 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
946 }
947 EXPORT_SYMBOL_GPL(inode_congested);
948 
949 /**
950  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
951  * @wb: target bdi_writeback to split @nr_pages to
952  * @nr_pages: number of pages to write for the whole bdi
953  *
954  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
955  * relation to the total write bandwidth of all wb's w/ dirty inodes on
956  * @wb->bdi.
957  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)958 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
959 {
960 	unsigned long this_bw = wb->avg_write_bandwidth;
961 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
962 
963 	if (nr_pages == LONG_MAX)
964 		return LONG_MAX;
965 
966 	/*
967 	 * This may be called on clean wb's and proportional distribution
968 	 * may not make sense, just use the original @nr_pages in those
969 	 * cases.  In general, we wanna err on the side of writing more.
970 	 */
971 	if (!tot_bw || this_bw >= tot_bw)
972 		return nr_pages;
973 	else
974 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
975 }
976 
977 /**
978  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
979  * @bdi: target backing_dev_info
980  * @base_work: wb_writeback_work to issue
981  * @skip_if_busy: skip wb's which already have writeback in progress
982  *
983  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
984  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
985  * distributed to the busy wbs according to each wb's proportion in the
986  * total active write bandwidth of @bdi.
987  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)988 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
989 				  struct wb_writeback_work *base_work,
990 				  bool skip_if_busy)
991 {
992 	struct bdi_writeback *last_wb = NULL;
993 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
994 					      struct bdi_writeback, bdi_node);
995 
996 	might_sleep();
997 restart:
998 	rcu_read_lock();
999 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1000 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1001 		struct wb_writeback_work fallback_work;
1002 		struct wb_writeback_work *work;
1003 		long nr_pages;
1004 
1005 		if (last_wb) {
1006 			wb_put(last_wb);
1007 			last_wb = NULL;
1008 		}
1009 
1010 		/* SYNC_ALL writes out I_DIRTY_TIME too */
1011 		if (!wb_has_dirty_io(wb) &&
1012 		    (base_work->sync_mode == WB_SYNC_NONE ||
1013 		     list_empty(&wb->b_dirty_time)))
1014 			continue;
1015 		if (skip_if_busy && writeback_in_progress(wb))
1016 			continue;
1017 
1018 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1019 
1020 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1021 		if (work) {
1022 			*work = *base_work;
1023 			work->nr_pages = nr_pages;
1024 			work->auto_free = 1;
1025 			wb_queue_work(wb, work);
1026 			continue;
1027 		}
1028 
1029 		/*
1030 		 * If wb_tryget fails, the wb has been shutdown, skip it.
1031 		 *
1032 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1033 		 * continuing iteration from @wb after dropping and
1034 		 * regrabbing rcu read lock.
1035 		 */
1036 		if (!wb_tryget(wb))
1037 			continue;
1038 
1039 		/* alloc failed, execute synchronously using on-stack fallback */
1040 		work = &fallback_work;
1041 		*work = *base_work;
1042 		work->nr_pages = nr_pages;
1043 		work->auto_free = 0;
1044 		work->done = &fallback_work_done;
1045 
1046 		wb_queue_work(wb, work);
1047 		last_wb = wb;
1048 
1049 		rcu_read_unlock();
1050 		wb_wait_for_completion(&fallback_work_done);
1051 		goto restart;
1052 	}
1053 	rcu_read_unlock();
1054 
1055 	if (last_wb)
1056 		wb_put(last_wb);
1057 }
1058 
1059 /**
1060  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1061  * @bdi_id: target bdi id
1062  * @memcg_id: target memcg css id
1063  * @reason: reason why some writeback work initiated
1064  * @done: target wb_completion
1065  *
1066  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1067  * with the specified parameters.
1068  */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1069 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1070 			   enum wb_reason reason, struct wb_completion *done)
1071 {
1072 	struct backing_dev_info *bdi;
1073 	struct cgroup_subsys_state *memcg_css;
1074 	struct bdi_writeback *wb;
1075 	struct wb_writeback_work *work;
1076 	unsigned long dirty;
1077 	int ret;
1078 
1079 	/* lookup bdi and memcg */
1080 	bdi = bdi_get_by_id(bdi_id);
1081 	if (!bdi)
1082 		return -ENOENT;
1083 
1084 	rcu_read_lock();
1085 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1086 	if (memcg_css && !css_tryget(memcg_css))
1087 		memcg_css = NULL;
1088 	rcu_read_unlock();
1089 	if (!memcg_css) {
1090 		ret = -ENOENT;
1091 		goto out_bdi_put;
1092 	}
1093 
1094 	/*
1095 	 * And find the associated wb.  If the wb isn't there already
1096 	 * there's nothing to flush, don't create one.
1097 	 */
1098 	wb = wb_get_lookup(bdi, memcg_css);
1099 	if (!wb) {
1100 		ret = -ENOENT;
1101 		goto out_css_put;
1102 	}
1103 
1104 	/*
1105 	 * The caller is attempting to write out most of
1106 	 * the currently dirty pages.  Let's take the current dirty page
1107 	 * count and inflate it by 25% which should be large enough to
1108 	 * flush out most dirty pages while avoiding getting livelocked by
1109 	 * concurrent dirtiers.
1110 	 *
1111 	 * BTW the memcg stats are flushed periodically and this is best-effort
1112 	 * estimation, so some potential error is ok.
1113 	 */
1114 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1115 	dirty = dirty * 10 / 8;
1116 
1117 	/* issue the writeback work */
1118 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1119 	if (work) {
1120 		work->nr_pages = dirty;
1121 		work->sync_mode = WB_SYNC_NONE;
1122 		work->range_cyclic = 1;
1123 		work->reason = reason;
1124 		work->done = done;
1125 		work->auto_free = 1;
1126 		wb_queue_work(wb, work);
1127 		ret = 0;
1128 	} else {
1129 		ret = -ENOMEM;
1130 	}
1131 
1132 	wb_put(wb);
1133 out_css_put:
1134 	css_put(memcg_css);
1135 out_bdi_put:
1136 	bdi_put(bdi);
1137 	return ret;
1138 }
1139 
1140 /**
1141  * cgroup_writeback_umount - flush inode wb switches for umount
1142  *
1143  * This function is called when a super_block is about to be destroyed and
1144  * flushes in-flight inode wb switches.  An inode wb switch goes through
1145  * RCU and then workqueue, so the two need to be flushed in order to ensure
1146  * that all previously scheduled switches are finished.  As wb switches are
1147  * rare occurrences and synchronize_rcu() can take a while, perform
1148  * flushing iff wb switches are in flight.
1149  */
cgroup_writeback_umount(void)1150 void cgroup_writeback_umount(void)
1151 {
1152 	/*
1153 	 * SB_ACTIVE should be reliably cleared before checking
1154 	 * isw_nr_in_flight, see generic_shutdown_super().
1155 	 */
1156 	smp_mb();
1157 
1158 	if (atomic_read(&isw_nr_in_flight)) {
1159 		/*
1160 		 * Use rcu_barrier() to wait for all pending callbacks to
1161 		 * ensure that all in-flight wb switches are in the workqueue.
1162 		 */
1163 		rcu_barrier();
1164 		flush_workqueue(isw_wq);
1165 	}
1166 }
1167 
cgroup_writeback_init(void)1168 static int __init cgroup_writeback_init(void)
1169 {
1170 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1171 	if (!isw_wq)
1172 		return -ENOMEM;
1173 	return 0;
1174 }
1175 fs_initcall(cgroup_writeback_init);
1176 
1177 #else	/* CONFIG_CGROUP_WRITEBACK */
1178 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1179 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1180 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1181 
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1182 static void inode_cgwb_move_to_attached(struct inode *inode,
1183 					struct bdi_writeback *wb)
1184 {
1185 	assert_spin_locked(&wb->list_lock);
1186 	assert_spin_locked(&inode->i_lock);
1187 
1188 	inode->i_state &= ~I_SYNC_QUEUED;
1189 	list_del_init(&inode->i_io_list);
1190 	wb_io_lists_depopulated(wb);
1191 }
1192 
1193 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1194 locked_inode_to_wb_and_lock_list(struct inode *inode)
1195 	__releases(&inode->i_lock)
1196 	__acquires(&wb->list_lock)
1197 {
1198 	struct bdi_writeback *wb = inode_to_wb(inode);
1199 
1200 	spin_unlock(&inode->i_lock);
1201 	spin_lock(&wb->list_lock);
1202 	return wb;
1203 }
1204 
inode_to_wb_and_lock_list(struct inode * inode)1205 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1206 	__acquires(&wb->list_lock)
1207 {
1208 	struct bdi_writeback *wb = inode_to_wb(inode);
1209 
1210 	spin_lock(&wb->list_lock);
1211 	return wb;
1212 }
1213 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1214 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1215 {
1216 	return nr_pages;
1217 }
1218 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1219 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1220 				  struct wb_writeback_work *base_work,
1221 				  bool skip_if_busy)
1222 {
1223 	might_sleep();
1224 
1225 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1226 		base_work->auto_free = 0;
1227 		wb_queue_work(&bdi->wb, base_work);
1228 	}
1229 }
1230 
1231 #endif	/* CONFIG_CGROUP_WRITEBACK */
1232 
1233 /*
1234  * Add in the number of potentially dirty inodes, because each inode
1235  * write can dirty pagecache in the underlying blockdev.
1236  */
get_nr_dirty_pages(void)1237 static unsigned long get_nr_dirty_pages(void)
1238 {
1239 	return global_node_page_state(NR_FILE_DIRTY) +
1240 		get_nr_dirty_inodes();
1241 }
1242 
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1243 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1244 {
1245 	if (!wb_has_dirty_io(wb))
1246 		return;
1247 
1248 	/*
1249 	 * All callers of this function want to start writeback of all
1250 	 * dirty pages. Places like vmscan can call this at a very
1251 	 * high frequency, causing pointless allocations of tons of
1252 	 * work items and keeping the flusher threads busy retrieving
1253 	 * that work. Ensure that we only allow one of them pending and
1254 	 * inflight at the time.
1255 	 */
1256 	if (test_bit(WB_start_all, &wb->state) ||
1257 	    test_and_set_bit(WB_start_all, &wb->state))
1258 		return;
1259 
1260 	wb->start_all_reason = reason;
1261 	wb_wakeup(wb);
1262 }
1263 
1264 /**
1265  * wb_start_background_writeback - start background writeback
1266  * @wb: bdi_writback to write from
1267  *
1268  * Description:
1269  *   This makes sure WB_SYNC_NONE background writeback happens. When
1270  *   this function returns, it is only guaranteed that for given wb
1271  *   some IO is happening if we are over background dirty threshold.
1272  *   Caller need not hold sb s_umount semaphore.
1273  */
wb_start_background_writeback(struct bdi_writeback * wb)1274 void wb_start_background_writeback(struct bdi_writeback *wb)
1275 {
1276 	/*
1277 	 * We just wake up the flusher thread. It will perform background
1278 	 * writeback as soon as there is no other work to do.
1279 	 */
1280 	trace_writeback_wake_background(wb);
1281 	wb_wakeup(wb);
1282 }
1283 
1284 /*
1285  * Remove the inode from the writeback list it is on.
1286  */
inode_io_list_del(struct inode * inode)1287 void inode_io_list_del(struct inode *inode)
1288 {
1289 	struct bdi_writeback *wb;
1290 
1291 	wb = inode_to_wb_and_lock_list(inode);
1292 	spin_lock(&inode->i_lock);
1293 
1294 	inode->i_state &= ~I_SYNC_QUEUED;
1295 	list_del_init(&inode->i_io_list);
1296 	wb_io_lists_depopulated(wb);
1297 
1298 	spin_unlock(&inode->i_lock);
1299 	spin_unlock(&wb->list_lock);
1300 }
1301 EXPORT_SYMBOL(inode_io_list_del);
1302 
1303 /*
1304  * mark an inode as under writeback on the sb
1305  */
sb_mark_inode_writeback(struct inode * inode)1306 void sb_mark_inode_writeback(struct inode *inode)
1307 {
1308 	struct super_block *sb = inode->i_sb;
1309 	unsigned long flags;
1310 
1311 	if (list_empty(&inode->i_wb_list)) {
1312 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1313 		if (list_empty(&inode->i_wb_list)) {
1314 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1315 			trace_sb_mark_inode_writeback(inode);
1316 		}
1317 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1318 	}
1319 }
1320 
1321 /*
1322  * clear an inode as under writeback on the sb
1323  */
sb_clear_inode_writeback(struct inode * inode)1324 void sb_clear_inode_writeback(struct inode *inode)
1325 {
1326 	struct super_block *sb = inode->i_sb;
1327 	unsigned long flags;
1328 
1329 	if (!list_empty(&inode->i_wb_list)) {
1330 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1331 		if (!list_empty(&inode->i_wb_list)) {
1332 			list_del_init(&inode->i_wb_list);
1333 			trace_sb_clear_inode_writeback(inode);
1334 		}
1335 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1336 	}
1337 }
1338 
1339 /*
1340  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1341  * furthest end of its superblock's dirty-inode list.
1342  *
1343  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1344  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1345  * the case then the inode must have been redirtied while it was being written
1346  * out and we don't reset its dirtied_when.
1347  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1348 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1349 {
1350 	assert_spin_locked(&inode->i_lock);
1351 
1352 	if (!list_empty(&wb->b_dirty)) {
1353 		struct inode *tail;
1354 
1355 		tail = wb_inode(wb->b_dirty.next);
1356 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1357 			inode->dirtied_when = jiffies;
1358 	}
1359 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1360 	inode->i_state &= ~I_SYNC_QUEUED;
1361 }
1362 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1363 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1364 {
1365 	spin_lock(&inode->i_lock);
1366 	redirty_tail_locked(inode, wb);
1367 	spin_unlock(&inode->i_lock);
1368 }
1369 
1370 /*
1371  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1372  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1373 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1374 {
1375 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1376 }
1377 
inode_sync_complete(struct inode * inode)1378 static void inode_sync_complete(struct inode *inode)
1379 {
1380 	inode->i_state &= ~I_SYNC;
1381 	/* If inode is clean an unused, put it into LRU now... */
1382 	inode_add_lru(inode);
1383 	/* Waiters must see I_SYNC cleared before being woken up */
1384 	smp_mb();
1385 	wake_up_bit(&inode->i_state, __I_SYNC);
1386 }
1387 
inode_dirtied_after(struct inode * inode,unsigned long t)1388 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1389 {
1390 	bool ret = time_after(inode->dirtied_when, t);
1391 #ifndef CONFIG_64BIT
1392 	/*
1393 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1394 	 * It _appears_ to be in the future, but is actually in distant past.
1395 	 * This test is necessary to prevent such wrapped-around relative times
1396 	 * from permanently stopping the whole bdi writeback.
1397 	 */
1398 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1399 #endif
1400 	return ret;
1401 }
1402 
1403 #define EXPIRE_DIRTY_ATIME 0x0001
1404 
1405 /*
1406  * Move expired (dirtied before dirtied_before) dirty inodes from
1407  * @delaying_queue to @dispatch_queue.
1408  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1409 static int move_expired_inodes(struct list_head *delaying_queue,
1410 			       struct list_head *dispatch_queue,
1411 			       unsigned long dirtied_before)
1412 {
1413 	LIST_HEAD(tmp);
1414 	struct list_head *pos, *node;
1415 	struct super_block *sb = NULL;
1416 	struct inode *inode;
1417 	int do_sb_sort = 0;
1418 	int moved = 0;
1419 
1420 	while (!list_empty(delaying_queue)) {
1421 		inode = wb_inode(delaying_queue->prev);
1422 		if (inode_dirtied_after(inode, dirtied_before))
1423 			break;
1424 		spin_lock(&inode->i_lock);
1425 		list_move(&inode->i_io_list, &tmp);
1426 		moved++;
1427 		inode->i_state |= I_SYNC_QUEUED;
1428 		spin_unlock(&inode->i_lock);
1429 		if (sb_is_blkdev_sb(inode->i_sb))
1430 			continue;
1431 		if (sb && sb != inode->i_sb)
1432 			do_sb_sort = 1;
1433 		sb = inode->i_sb;
1434 	}
1435 
1436 	/* just one sb in list, splice to dispatch_queue and we're done */
1437 	if (!do_sb_sort) {
1438 		list_splice(&tmp, dispatch_queue);
1439 		goto out;
1440 	}
1441 
1442 	/*
1443 	 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1444 	 * we don't take inode->i_lock here because it is just a pointless overhead.
1445 	 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1446 	 * fully under our control.
1447 	 */
1448 	while (!list_empty(&tmp)) {
1449 		sb = wb_inode(tmp.prev)->i_sb;
1450 		list_for_each_prev_safe(pos, node, &tmp) {
1451 			inode = wb_inode(pos);
1452 			if (inode->i_sb == sb)
1453 				list_move(&inode->i_io_list, dispatch_queue);
1454 		}
1455 	}
1456 out:
1457 	return moved;
1458 }
1459 
1460 /*
1461  * Queue all expired dirty inodes for io, eldest first.
1462  * Before
1463  *         newly dirtied     b_dirty    b_io    b_more_io
1464  *         =============>    gf         edc     BA
1465  * After
1466  *         newly dirtied     b_dirty    b_io    b_more_io
1467  *         =============>    g          fBAedc
1468  *                                           |
1469  *                                           +--> dequeue for IO
1470  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1471 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1472 		     unsigned long dirtied_before)
1473 {
1474 	int moved;
1475 	unsigned long time_expire_jif = dirtied_before;
1476 
1477 	assert_spin_locked(&wb->list_lock);
1478 	list_splice_init(&wb->b_more_io, &wb->b_io);
1479 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1480 	if (!work->for_sync)
1481 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1482 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1483 				     time_expire_jif);
1484 	if (moved)
1485 		wb_io_lists_populated(wb);
1486 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1487 }
1488 
write_inode(struct inode * inode,struct writeback_control * wbc)1489 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1490 {
1491 	int ret;
1492 
1493 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1494 		trace_writeback_write_inode_start(inode, wbc);
1495 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1496 		trace_writeback_write_inode(inode, wbc);
1497 		return ret;
1498 	}
1499 	return 0;
1500 }
1501 
1502 /*
1503  * Wait for writeback on an inode to complete. Called with i_lock held.
1504  * Caller must make sure inode cannot go away when we drop i_lock.
1505  */
__inode_wait_for_writeback(struct inode * inode)1506 static void __inode_wait_for_writeback(struct inode *inode)
1507 	__releases(inode->i_lock)
1508 	__acquires(inode->i_lock)
1509 {
1510 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1511 	wait_queue_head_t *wqh;
1512 
1513 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1514 	while (inode->i_state & I_SYNC) {
1515 		spin_unlock(&inode->i_lock);
1516 		__wait_on_bit(wqh, &wq, bit_wait,
1517 			      TASK_UNINTERRUPTIBLE);
1518 		spin_lock(&inode->i_lock);
1519 	}
1520 }
1521 
1522 /*
1523  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1524  */
inode_wait_for_writeback(struct inode * inode)1525 void inode_wait_for_writeback(struct inode *inode)
1526 {
1527 	spin_lock(&inode->i_lock);
1528 	__inode_wait_for_writeback(inode);
1529 	spin_unlock(&inode->i_lock);
1530 }
1531 
1532 /*
1533  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1534  * held and drops it. It is aimed for callers not holding any inode reference
1535  * so once i_lock is dropped, inode can go away.
1536  */
inode_sleep_on_writeback(struct inode * inode)1537 static void inode_sleep_on_writeback(struct inode *inode)
1538 	__releases(inode->i_lock)
1539 {
1540 	DEFINE_WAIT(wait);
1541 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1542 	int sleep;
1543 
1544 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1545 	sleep = inode->i_state & I_SYNC;
1546 	spin_unlock(&inode->i_lock);
1547 	if (sleep)
1548 		schedule();
1549 	finish_wait(wqh, &wait);
1550 }
1551 
1552 /*
1553  * Find proper writeback list for the inode depending on its current state and
1554  * possibly also change of its state while we were doing writeback.  Here we
1555  * handle things such as livelock prevention or fairness of writeback among
1556  * inodes. This function can be called only by flusher thread - noone else
1557  * processes all inodes in writeback lists and requeueing inodes behind flusher
1558  * thread's back can have unexpected consequences.
1559  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1560 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1561 			  struct writeback_control *wbc)
1562 {
1563 	if (inode->i_state & I_FREEING)
1564 		return;
1565 
1566 	/*
1567 	 * Sync livelock prevention. Each inode is tagged and synced in one
1568 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1569 	 * the dirty time to prevent enqueue and sync it again.
1570 	 */
1571 	if ((inode->i_state & I_DIRTY) &&
1572 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1573 		inode->dirtied_when = jiffies;
1574 
1575 	if (wbc->pages_skipped) {
1576 		/*
1577 		 * Writeback is not making progress due to locked buffers.
1578 		 * Skip this inode for now. Although having skipped pages
1579 		 * is odd for clean inodes, it can happen for some
1580 		 * filesystems so handle that gracefully.
1581 		 */
1582 		if (inode->i_state & I_DIRTY_ALL)
1583 			redirty_tail_locked(inode, wb);
1584 		else
1585 			inode_cgwb_move_to_attached(inode, wb);
1586 		return;
1587 	}
1588 
1589 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1590 		/*
1591 		 * We didn't write back all the pages.  nfs_writepages()
1592 		 * sometimes bales out without doing anything.
1593 		 */
1594 		if (wbc->nr_to_write <= 0) {
1595 			/* Slice used up. Queue for next turn. */
1596 			requeue_io(inode, wb);
1597 		} else {
1598 			/*
1599 			 * Writeback blocked by something other than
1600 			 * congestion. Delay the inode for some time to
1601 			 * avoid spinning on the CPU (100% iowait)
1602 			 * retrying writeback of the dirty page/inode
1603 			 * that cannot be performed immediately.
1604 			 */
1605 			redirty_tail_locked(inode, wb);
1606 		}
1607 	} else if (inode->i_state & I_DIRTY) {
1608 		/*
1609 		 * Filesystems can dirty the inode during writeback operations,
1610 		 * such as delayed allocation during submission or metadata
1611 		 * updates after data IO completion.
1612 		 */
1613 		redirty_tail_locked(inode, wb);
1614 	} else if (inode->i_state & I_DIRTY_TIME) {
1615 		inode->dirtied_when = jiffies;
1616 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1617 		inode->i_state &= ~I_SYNC_QUEUED;
1618 	} else {
1619 		/* The inode is clean. Remove from writeback lists. */
1620 		inode_cgwb_move_to_attached(inode, wb);
1621 	}
1622 }
1623 
1624 /*
1625  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1626  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1627  *
1628  * This doesn't remove the inode from the writeback list it is on, except
1629  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1630  * expiration.  The caller is otherwise responsible for writeback list handling.
1631  *
1632  * The caller is also responsible for setting the I_SYNC flag beforehand and
1633  * calling inode_sync_complete() to clear it afterwards.
1634  */
1635 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1636 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1637 {
1638 	struct address_space *mapping = inode->i_mapping;
1639 	long nr_to_write = wbc->nr_to_write;
1640 	unsigned dirty;
1641 	int ret;
1642 
1643 	WARN_ON(!(inode->i_state & I_SYNC));
1644 
1645 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1646 
1647 	ret = do_writepages(mapping, wbc);
1648 
1649 	/*
1650 	 * Make sure to wait on the data before writing out the metadata.
1651 	 * This is important for filesystems that modify metadata on data
1652 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1653 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1654 	 * inode metadata is written back correctly.
1655 	 */
1656 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1657 		int err = filemap_fdatawait(mapping);
1658 		if (ret == 0)
1659 			ret = err;
1660 	}
1661 
1662 	/*
1663 	 * If the inode has dirty timestamps and we need to write them, call
1664 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1665 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1666 	 */
1667 	if ((inode->i_state & I_DIRTY_TIME) &&
1668 	    (wbc->sync_mode == WB_SYNC_ALL ||
1669 	     time_after(jiffies, inode->dirtied_time_when +
1670 			dirtytime_expire_interval * HZ))) {
1671 		trace_writeback_lazytime(inode);
1672 		mark_inode_dirty_sync(inode);
1673 	}
1674 
1675 	/*
1676 	 * Get and clear the dirty flags from i_state.  This needs to be done
1677 	 * after calling writepages because some filesystems may redirty the
1678 	 * inode during writepages due to delalloc.  It also needs to be done
1679 	 * after handling timestamp expiration, as that may dirty the inode too.
1680 	 */
1681 	spin_lock(&inode->i_lock);
1682 	dirty = inode->i_state & I_DIRTY;
1683 	inode->i_state &= ~dirty;
1684 
1685 	/*
1686 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1687 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1688 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1689 	 * inode.
1690 	 *
1691 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1692 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1693 	 * necessary.  This guarantees that either __mark_inode_dirty()
1694 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1695 	 */
1696 	smp_mb();
1697 
1698 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1699 		inode->i_state |= I_DIRTY_PAGES;
1700 
1701 	spin_unlock(&inode->i_lock);
1702 
1703 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1704 	if (dirty & ~I_DIRTY_PAGES) {
1705 		int err = write_inode(inode, wbc);
1706 		if (ret == 0)
1707 			ret = err;
1708 	}
1709 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1710 	return ret;
1711 }
1712 
1713 /*
1714  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1715  * the regular batched writeback done by the flusher threads in
1716  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1717  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1718  *
1719  * To prevent the inode from going away, either the caller must have a reference
1720  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1721  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1722 static int writeback_single_inode(struct inode *inode,
1723 				  struct writeback_control *wbc)
1724 {
1725 	struct bdi_writeback *wb;
1726 	int ret = 0;
1727 
1728 	spin_lock(&inode->i_lock);
1729 	if (!atomic_read(&inode->i_count))
1730 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1731 	else
1732 		WARN_ON(inode->i_state & I_WILL_FREE);
1733 
1734 	if (inode->i_state & I_SYNC) {
1735 		/*
1736 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1737 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1738 		 * must wait for the existing writeback to complete, then do
1739 		 * writeback again if there's anything left.
1740 		 */
1741 		if (wbc->sync_mode != WB_SYNC_ALL)
1742 			goto out;
1743 		__inode_wait_for_writeback(inode);
1744 	}
1745 	WARN_ON(inode->i_state & I_SYNC);
1746 	/*
1747 	 * If the inode is already fully clean, then there's nothing to do.
1748 	 *
1749 	 * For data-integrity syncs we also need to check whether any pages are
1750 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1751 	 * there are any such pages, we'll need to wait for them.
1752 	 */
1753 	if (!(inode->i_state & I_DIRTY_ALL) &&
1754 	    (wbc->sync_mode != WB_SYNC_ALL ||
1755 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1756 		goto out;
1757 	inode->i_state |= I_SYNC;
1758 	wbc_attach_and_unlock_inode(wbc, inode);
1759 
1760 	ret = __writeback_single_inode(inode, wbc);
1761 
1762 	wbc_detach_inode(wbc);
1763 
1764 	wb = inode_to_wb_and_lock_list(inode);
1765 	spin_lock(&inode->i_lock);
1766 	/*
1767 	 * If the inode is freeing, its i_io_list shoudn't be updated
1768 	 * as it can be finally deleted at this moment.
1769 	 */
1770 	if (!(inode->i_state & I_FREEING)) {
1771 		/*
1772 		 * If the inode is now fully clean, then it can be safely
1773 		 * removed from its writeback list (if any). Otherwise the
1774 		 * flusher threads are responsible for the writeback lists.
1775 		 */
1776 		if (!(inode->i_state & I_DIRTY_ALL))
1777 			inode_cgwb_move_to_attached(inode, wb);
1778 		else if (!(inode->i_state & I_SYNC_QUEUED)) {
1779 			if ((inode->i_state & I_DIRTY))
1780 				redirty_tail_locked(inode, wb);
1781 			else if (inode->i_state & I_DIRTY_TIME) {
1782 				inode->dirtied_when = jiffies;
1783 				inode_io_list_move_locked(inode,
1784 							  wb,
1785 							  &wb->b_dirty_time);
1786 			}
1787 		}
1788 	}
1789 
1790 	spin_unlock(&wb->list_lock);
1791 	inode_sync_complete(inode);
1792 out:
1793 	spin_unlock(&inode->i_lock);
1794 	return ret;
1795 }
1796 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1797 static long writeback_chunk_size(struct bdi_writeback *wb,
1798 				 struct wb_writeback_work *work)
1799 {
1800 	long pages;
1801 
1802 	/*
1803 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1804 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1805 	 * here avoids calling into writeback_inodes_wb() more than once.
1806 	 *
1807 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1808 	 *
1809 	 *      wb_writeback()
1810 	 *          writeback_sb_inodes()       <== called only once
1811 	 *              write_cache_pages()     <== called once for each inode
1812 	 *                   (quickly) tag currently dirty pages
1813 	 *                   (maybe slowly) sync all tagged pages
1814 	 */
1815 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1816 		pages = LONG_MAX;
1817 	else {
1818 		pages = min(wb->avg_write_bandwidth / 2,
1819 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1820 		pages = min(pages, work->nr_pages);
1821 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1822 				   MIN_WRITEBACK_PAGES);
1823 	}
1824 
1825 	return pages;
1826 }
1827 
1828 /*
1829  * Write a portion of b_io inodes which belong to @sb.
1830  *
1831  * Return the number of pages and/or inodes written.
1832  *
1833  * NOTE! This is called with wb->list_lock held, and will
1834  * unlock and relock that for each inode it ends up doing
1835  * IO for.
1836  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1837 static long writeback_sb_inodes(struct super_block *sb,
1838 				struct bdi_writeback *wb,
1839 				struct wb_writeback_work *work)
1840 {
1841 	struct writeback_control wbc = {
1842 		.sync_mode		= work->sync_mode,
1843 		.tagged_writepages	= work->tagged_writepages,
1844 		.for_kupdate		= work->for_kupdate,
1845 		.for_background		= work->for_background,
1846 		.for_sync		= work->for_sync,
1847 		.range_cyclic		= work->range_cyclic,
1848 		.range_start		= 0,
1849 		.range_end		= LLONG_MAX,
1850 	};
1851 	unsigned long start_time = jiffies;
1852 	long write_chunk;
1853 	long total_wrote = 0;  /* count both pages and inodes */
1854 
1855 	while (!list_empty(&wb->b_io)) {
1856 		struct inode *inode = wb_inode(wb->b_io.prev);
1857 		struct bdi_writeback *tmp_wb;
1858 		long wrote;
1859 
1860 		if (inode->i_sb != sb) {
1861 			if (work->sb) {
1862 				/*
1863 				 * We only want to write back data for this
1864 				 * superblock, move all inodes not belonging
1865 				 * to it back onto the dirty list.
1866 				 */
1867 				redirty_tail(inode, wb);
1868 				continue;
1869 			}
1870 
1871 			/*
1872 			 * The inode belongs to a different superblock.
1873 			 * Bounce back to the caller to unpin this and
1874 			 * pin the next superblock.
1875 			 */
1876 			break;
1877 		}
1878 
1879 		/*
1880 		 * Don't bother with new inodes or inodes being freed, first
1881 		 * kind does not need periodic writeout yet, and for the latter
1882 		 * kind writeout is handled by the freer.
1883 		 */
1884 		spin_lock(&inode->i_lock);
1885 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1886 			redirty_tail_locked(inode, wb);
1887 			spin_unlock(&inode->i_lock);
1888 			continue;
1889 		}
1890 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1891 			/*
1892 			 * If this inode is locked for writeback and we are not
1893 			 * doing writeback-for-data-integrity, move it to
1894 			 * b_more_io so that writeback can proceed with the
1895 			 * other inodes on s_io.
1896 			 *
1897 			 * We'll have another go at writing back this inode
1898 			 * when we completed a full scan of b_io.
1899 			 */
1900 			requeue_io(inode, wb);
1901 			spin_unlock(&inode->i_lock);
1902 			trace_writeback_sb_inodes_requeue(inode);
1903 			continue;
1904 		}
1905 		spin_unlock(&wb->list_lock);
1906 
1907 		/*
1908 		 * We already requeued the inode if it had I_SYNC set and we
1909 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1910 		 * WB_SYNC_ALL case.
1911 		 */
1912 		if (inode->i_state & I_SYNC) {
1913 			/* Wait for I_SYNC. This function drops i_lock... */
1914 			inode_sleep_on_writeback(inode);
1915 			/* Inode may be gone, start again */
1916 			spin_lock(&wb->list_lock);
1917 			continue;
1918 		}
1919 		inode->i_state |= I_SYNC;
1920 		wbc_attach_and_unlock_inode(&wbc, inode);
1921 
1922 		write_chunk = writeback_chunk_size(wb, work);
1923 		wbc.nr_to_write = write_chunk;
1924 		wbc.pages_skipped = 0;
1925 
1926 		/*
1927 		 * We use I_SYNC to pin the inode in memory. While it is set
1928 		 * evict_inode() will wait so the inode cannot be freed.
1929 		 */
1930 		__writeback_single_inode(inode, &wbc);
1931 
1932 		wbc_detach_inode(&wbc);
1933 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1934 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1935 		wrote = wrote < 0 ? 0 : wrote;
1936 		total_wrote += wrote;
1937 
1938 		if (need_resched()) {
1939 			/*
1940 			 * We're trying to balance between building up a nice
1941 			 * long list of IOs to improve our merge rate, and
1942 			 * getting those IOs out quickly for anyone throttling
1943 			 * in balance_dirty_pages().  cond_resched() doesn't
1944 			 * unplug, so get our IOs out the door before we
1945 			 * give up the CPU.
1946 			 */
1947 			blk_flush_plug(current);
1948 			cond_resched();
1949 		}
1950 
1951 		/*
1952 		 * Requeue @inode if still dirty.  Be careful as @inode may
1953 		 * have been switched to another wb in the meantime.
1954 		 */
1955 		tmp_wb = inode_to_wb_and_lock_list(inode);
1956 		spin_lock(&inode->i_lock);
1957 		if (!(inode->i_state & I_DIRTY_ALL))
1958 			total_wrote++;
1959 		requeue_inode(inode, tmp_wb, &wbc);
1960 		inode_sync_complete(inode);
1961 		spin_unlock(&inode->i_lock);
1962 
1963 		if (unlikely(tmp_wb != wb)) {
1964 			spin_unlock(&tmp_wb->list_lock);
1965 			spin_lock(&wb->list_lock);
1966 		}
1967 
1968 		/*
1969 		 * bail out to wb_writeback() often enough to check
1970 		 * background threshold and other termination conditions.
1971 		 */
1972 		if (total_wrote) {
1973 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1974 				break;
1975 			if (work->nr_pages <= 0)
1976 				break;
1977 		}
1978 	}
1979 	return total_wrote;
1980 }
1981 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1982 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1983 				  struct wb_writeback_work *work)
1984 {
1985 	unsigned long start_time = jiffies;
1986 	long wrote = 0;
1987 
1988 	while (!list_empty(&wb->b_io)) {
1989 		struct inode *inode = wb_inode(wb->b_io.prev);
1990 		struct super_block *sb = inode->i_sb;
1991 
1992 		if (!trylock_super(sb)) {
1993 			/*
1994 			 * trylock_super() may fail consistently due to
1995 			 * s_umount being grabbed by someone else. Don't use
1996 			 * requeue_io() to avoid busy retrying the inode/sb.
1997 			 */
1998 			redirty_tail(inode, wb);
1999 			continue;
2000 		}
2001 		wrote += writeback_sb_inodes(sb, wb, work);
2002 		up_read(&sb->s_umount);
2003 
2004 		/* refer to the same tests at the end of writeback_sb_inodes */
2005 		if (wrote) {
2006 			if (time_is_before_jiffies(start_time + HZ / 10UL))
2007 				break;
2008 			if (work->nr_pages <= 0)
2009 				break;
2010 		}
2011 	}
2012 	/* Leave any unwritten inodes on b_io */
2013 	return wrote;
2014 }
2015 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2016 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2017 				enum wb_reason reason)
2018 {
2019 	struct wb_writeback_work work = {
2020 		.nr_pages	= nr_pages,
2021 		.sync_mode	= WB_SYNC_NONE,
2022 		.range_cyclic	= 1,
2023 		.reason		= reason,
2024 	};
2025 	struct blk_plug plug;
2026 
2027 	blk_start_plug(&plug);
2028 	spin_lock(&wb->list_lock);
2029 	if (list_empty(&wb->b_io))
2030 		queue_io(wb, &work, jiffies);
2031 	__writeback_inodes_wb(wb, &work);
2032 	spin_unlock(&wb->list_lock);
2033 	blk_finish_plug(&plug);
2034 
2035 	return nr_pages - work.nr_pages;
2036 }
2037 
2038 /*
2039  * Explicit flushing or periodic writeback of "old" data.
2040  *
2041  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2042  * dirtying-time in the inode's address_space.  So this periodic writeback code
2043  * just walks the superblock inode list, writing back any inodes which are
2044  * older than a specific point in time.
2045  *
2046  * Try to run once per dirty_writeback_interval.  But if a writeback event
2047  * takes longer than a dirty_writeback_interval interval, then leave a
2048  * one-second gap.
2049  *
2050  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2051  * all dirty pages if they are all attached to "old" mappings.
2052  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2053 static long wb_writeback(struct bdi_writeback *wb,
2054 			 struct wb_writeback_work *work)
2055 {
2056 	long nr_pages = work->nr_pages;
2057 	unsigned long dirtied_before = jiffies;
2058 	struct inode *inode;
2059 	long progress;
2060 	struct blk_plug plug;
2061 
2062 	blk_start_plug(&plug);
2063 	spin_lock(&wb->list_lock);
2064 	for (;;) {
2065 		/*
2066 		 * Stop writeback when nr_pages has been consumed
2067 		 */
2068 		if (work->nr_pages <= 0)
2069 			break;
2070 
2071 		/*
2072 		 * Background writeout and kupdate-style writeback may
2073 		 * run forever. Stop them if there is other work to do
2074 		 * so that e.g. sync can proceed. They'll be restarted
2075 		 * after the other works are all done.
2076 		 */
2077 		if ((work->for_background || work->for_kupdate) &&
2078 		    !list_empty(&wb->work_list))
2079 			break;
2080 
2081 		/*
2082 		 * For background writeout, stop when we are below the
2083 		 * background dirty threshold
2084 		 */
2085 		if (work->for_background && !wb_over_bg_thresh(wb))
2086 			break;
2087 
2088 		/*
2089 		 * Kupdate and background works are special and we want to
2090 		 * include all inodes that need writing. Livelock avoidance is
2091 		 * handled by these works yielding to any other work so we are
2092 		 * safe.
2093 		 */
2094 		if (work->for_kupdate) {
2095 			dirtied_before = jiffies -
2096 				msecs_to_jiffies(dirty_expire_interval * 10);
2097 		} else if (work->for_background)
2098 			dirtied_before = jiffies;
2099 
2100 		trace_writeback_start(wb, work);
2101 		if (list_empty(&wb->b_io))
2102 			queue_io(wb, work, dirtied_before);
2103 		if (work->sb)
2104 			progress = writeback_sb_inodes(work->sb, wb, work);
2105 		else
2106 			progress = __writeback_inodes_wb(wb, work);
2107 		trace_writeback_written(wb, work);
2108 
2109 		/*
2110 		 * Did we write something? Try for more
2111 		 *
2112 		 * Dirty inodes are moved to b_io for writeback in batches.
2113 		 * The completion of the current batch does not necessarily
2114 		 * mean the overall work is done. So we keep looping as long
2115 		 * as made some progress on cleaning pages or inodes.
2116 		 */
2117 		if (progress)
2118 			continue;
2119 		/*
2120 		 * No more inodes for IO, bail
2121 		 */
2122 		if (list_empty(&wb->b_more_io))
2123 			break;
2124 		/*
2125 		 * Nothing written. Wait for some inode to
2126 		 * become available for writeback. Otherwise
2127 		 * we'll just busyloop.
2128 		 */
2129 		trace_writeback_wait(wb, work);
2130 		inode = wb_inode(wb->b_more_io.prev);
2131 		spin_lock(&inode->i_lock);
2132 		spin_unlock(&wb->list_lock);
2133 		/* This function drops i_lock... */
2134 		inode_sleep_on_writeback(inode);
2135 		spin_lock(&wb->list_lock);
2136 	}
2137 	spin_unlock(&wb->list_lock);
2138 	blk_finish_plug(&plug);
2139 
2140 	return nr_pages - work->nr_pages;
2141 }
2142 
2143 /*
2144  * Return the next wb_writeback_work struct that hasn't been processed yet.
2145  */
get_next_work_item(struct bdi_writeback * wb)2146 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2147 {
2148 	struct wb_writeback_work *work = NULL;
2149 
2150 	spin_lock_irq(&wb->work_lock);
2151 	if (!list_empty(&wb->work_list)) {
2152 		work = list_entry(wb->work_list.next,
2153 				  struct wb_writeback_work, list);
2154 		list_del_init(&work->list);
2155 	}
2156 	spin_unlock_irq(&wb->work_lock);
2157 	return work;
2158 }
2159 
wb_check_background_flush(struct bdi_writeback * wb)2160 static long wb_check_background_flush(struct bdi_writeback *wb)
2161 {
2162 	if (wb_over_bg_thresh(wb)) {
2163 
2164 		struct wb_writeback_work work = {
2165 			.nr_pages	= LONG_MAX,
2166 			.sync_mode	= WB_SYNC_NONE,
2167 			.for_background	= 1,
2168 			.range_cyclic	= 1,
2169 			.reason		= WB_REASON_BACKGROUND,
2170 		};
2171 
2172 		return wb_writeback(wb, &work);
2173 	}
2174 
2175 	return 0;
2176 }
2177 
wb_check_old_data_flush(struct bdi_writeback * wb)2178 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2179 {
2180 	unsigned long expired;
2181 	long nr_pages;
2182 
2183 	/*
2184 	 * When set to zero, disable periodic writeback
2185 	 */
2186 	if (!dirty_writeback_interval)
2187 		return 0;
2188 
2189 	expired = wb->last_old_flush +
2190 			msecs_to_jiffies(dirty_writeback_interval * 10);
2191 	if (time_before(jiffies, expired))
2192 		return 0;
2193 
2194 	wb->last_old_flush = jiffies;
2195 	nr_pages = get_nr_dirty_pages();
2196 
2197 	if (nr_pages) {
2198 		struct wb_writeback_work work = {
2199 			.nr_pages	= nr_pages,
2200 			.sync_mode	= WB_SYNC_NONE,
2201 			.for_kupdate	= 1,
2202 			.range_cyclic	= 1,
2203 			.reason		= WB_REASON_PERIODIC,
2204 		};
2205 
2206 		return wb_writeback(wb, &work);
2207 	}
2208 
2209 	return 0;
2210 }
2211 
wb_check_start_all(struct bdi_writeback * wb)2212 static long wb_check_start_all(struct bdi_writeback *wb)
2213 {
2214 	long nr_pages;
2215 
2216 	if (!test_bit(WB_start_all, &wb->state))
2217 		return 0;
2218 
2219 	nr_pages = get_nr_dirty_pages();
2220 	if (nr_pages) {
2221 		struct wb_writeback_work work = {
2222 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2223 			.sync_mode	= WB_SYNC_NONE,
2224 			.range_cyclic	= 1,
2225 			.reason		= wb->start_all_reason,
2226 		};
2227 
2228 		nr_pages = wb_writeback(wb, &work);
2229 	}
2230 
2231 	clear_bit(WB_start_all, &wb->state);
2232 	return nr_pages;
2233 }
2234 
2235 
2236 /*
2237  * Retrieve work items and do the writeback they describe
2238  */
wb_do_writeback(struct bdi_writeback * wb)2239 static long wb_do_writeback(struct bdi_writeback *wb)
2240 {
2241 	struct wb_writeback_work *work;
2242 	long wrote = 0;
2243 
2244 	set_bit(WB_writeback_running, &wb->state);
2245 	while ((work = get_next_work_item(wb)) != NULL) {
2246 		trace_writeback_exec(wb, work);
2247 		wrote += wb_writeback(wb, work);
2248 		finish_writeback_work(wb, work);
2249 	}
2250 
2251 	/*
2252 	 * Check for a flush-everything request
2253 	 */
2254 	wrote += wb_check_start_all(wb);
2255 
2256 	/*
2257 	 * Check for periodic writeback, kupdated() style
2258 	 */
2259 	wrote += wb_check_old_data_flush(wb);
2260 	wrote += wb_check_background_flush(wb);
2261 	clear_bit(WB_writeback_running, &wb->state);
2262 
2263 	return wrote;
2264 }
2265 
2266 /*
2267  * Handle writeback of dirty data for the device backed by this bdi. Also
2268  * reschedules periodically and does kupdated style flushing.
2269  */
wb_workfn(struct work_struct * work)2270 void wb_workfn(struct work_struct *work)
2271 {
2272 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2273 						struct bdi_writeback, dwork);
2274 	long pages_written;
2275 
2276 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2277 	current->flags |= PF_SWAPWRITE;
2278 
2279 	if (likely(!current_is_workqueue_rescuer() ||
2280 		   !test_bit(WB_registered, &wb->state))) {
2281 		/*
2282 		 * The normal path.  Keep writing back @wb until its
2283 		 * work_list is empty.  Note that this path is also taken
2284 		 * if @wb is shutting down even when we're running off the
2285 		 * rescuer as work_list needs to be drained.
2286 		 */
2287 		do {
2288 			pages_written = wb_do_writeback(wb);
2289 			trace_writeback_pages_written(pages_written);
2290 		} while (!list_empty(&wb->work_list));
2291 	} else {
2292 		/*
2293 		 * bdi_wq can't get enough workers and we're running off
2294 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2295 		 * enough for efficient IO.
2296 		 */
2297 		pages_written = writeback_inodes_wb(wb, 1024,
2298 						    WB_REASON_FORKER_THREAD);
2299 		trace_writeback_pages_written(pages_written);
2300 	}
2301 
2302 	if (!list_empty(&wb->work_list))
2303 		wb_wakeup(wb);
2304 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2305 		wb_wakeup_delayed(wb);
2306 
2307 	current->flags &= ~PF_SWAPWRITE;
2308 }
2309 
2310 /*
2311  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2312  * write back the whole world.
2313  */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2314 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2315 					 enum wb_reason reason)
2316 {
2317 	struct bdi_writeback *wb;
2318 
2319 	if (!bdi_has_dirty_io(bdi))
2320 		return;
2321 
2322 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2323 		wb_start_writeback(wb, reason);
2324 }
2325 
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2326 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2327 				enum wb_reason reason)
2328 {
2329 	rcu_read_lock();
2330 	__wakeup_flusher_threads_bdi(bdi, reason);
2331 	rcu_read_unlock();
2332 }
2333 
2334 /*
2335  * Wakeup the flusher threads to start writeback of all currently dirty pages
2336  */
wakeup_flusher_threads(enum wb_reason reason)2337 void wakeup_flusher_threads(enum wb_reason reason)
2338 {
2339 	struct backing_dev_info *bdi;
2340 
2341 	/*
2342 	 * If we are expecting writeback progress we must submit plugged IO.
2343 	 */
2344 	if (blk_needs_flush_plug(current))
2345 		blk_schedule_flush_plug(current);
2346 
2347 	rcu_read_lock();
2348 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2349 		__wakeup_flusher_threads_bdi(bdi, reason);
2350 	rcu_read_unlock();
2351 }
2352 
2353 /*
2354  * Wake up bdi's periodically to make sure dirtytime inodes gets
2355  * written back periodically.  We deliberately do *not* check the
2356  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2357  * kernel to be constantly waking up once there are any dirtytime
2358  * inodes on the system.  So instead we define a separate delayed work
2359  * function which gets called much more rarely.  (By default, only
2360  * once every 12 hours.)
2361  *
2362  * If there is any other write activity going on in the file system,
2363  * this function won't be necessary.  But if the only thing that has
2364  * happened on the file system is a dirtytime inode caused by an atime
2365  * update, we need this infrastructure below to make sure that inode
2366  * eventually gets pushed out to disk.
2367  */
2368 static void wakeup_dirtytime_writeback(struct work_struct *w);
2369 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2370 
wakeup_dirtytime_writeback(struct work_struct * w)2371 static void wakeup_dirtytime_writeback(struct work_struct *w)
2372 {
2373 	struct backing_dev_info *bdi;
2374 
2375 	rcu_read_lock();
2376 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2377 		struct bdi_writeback *wb;
2378 
2379 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2380 			if (!list_empty(&wb->b_dirty_time))
2381 				wb_wakeup(wb);
2382 	}
2383 	rcu_read_unlock();
2384 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2385 }
2386 
start_dirtytime_writeback(void)2387 static int __init start_dirtytime_writeback(void)
2388 {
2389 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2390 	return 0;
2391 }
2392 __initcall(start_dirtytime_writeback);
2393 
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2394 int dirtytime_interval_handler(struct ctl_table *table, int write,
2395 			       void *buffer, size_t *lenp, loff_t *ppos)
2396 {
2397 	int ret;
2398 
2399 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2400 	if (ret == 0 && write)
2401 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2402 	return ret;
2403 }
2404 
2405 /**
2406  * __mark_inode_dirty -	internal function to mark an inode dirty
2407  *
2408  * @inode: inode to mark
2409  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2410  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2411  *	   with I_DIRTY_PAGES.
2412  *
2413  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2414  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2415  *
2416  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2417  * instead of calling this directly.
2418  *
2419  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2420  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2421  * even if they are later hashed, as they will have been marked dirty already.
2422  *
2423  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2424  *
2425  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2426  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2427  * the kernel-internal blockdev inode represents the dirtying time of the
2428  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2429  * page->mapping->host, so the page-dirtying time is recorded in the internal
2430  * blockdev inode.
2431  */
__mark_inode_dirty(struct inode * inode,int flags)2432 void __mark_inode_dirty(struct inode *inode, int flags)
2433 {
2434 	struct super_block *sb = inode->i_sb;
2435 	int dirtytime = 0;
2436 	struct bdi_writeback *wb = NULL;
2437 
2438 	trace_writeback_mark_inode_dirty(inode, flags);
2439 
2440 	if (flags & I_DIRTY_INODE) {
2441 		/*
2442 		 * Inode timestamp update will piggback on this dirtying.
2443 		 * We tell ->dirty_inode callback that timestamps need to
2444 		 * be updated by setting I_DIRTY_TIME in flags.
2445 		 */
2446 		if (inode->i_state & I_DIRTY_TIME) {
2447 			spin_lock(&inode->i_lock);
2448 			if (inode->i_state & I_DIRTY_TIME) {
2449 				inode->i_state &= ~I_DIRTY_TIME;
2450 				flags |= I_DIRTY_TIME;
2451 			}
2452 			spin_unlock(&inode->i_lock);
2453 		}
2454 
2455 		/*
2456 		 * Notify the filesystem about the inode being dirtied, so that
2457 		 * (if needed) it can update on-disk fields and journal the
2458 		 * inode.  This is only needed when the inode itself is being
2459 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2460 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2461 		 */
2462 		trace_writeback_dirty_inode_start(inode, flags);
2463 		if (sb->s_op->dirty_inode)
2464 			sb->s_op->dirty_inode(inode,
2465 				flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2466 		trace_writeback_dirty_inode(inode, flags);
2467 
2468 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2469 		flags &= ~I_DIRTY_TIME;
2470 	} else {
2471 		/*
2472 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2473 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2474 		 * in one call to __mark_inode_dirty().)
2475 		 */
2476 		dirtytime = flags & I_DIRTY_TIME;
2477 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2478 	}
2479 
2480 	/*
2481 	 * Paired with smp_mb() in __writeback_single_inode() for the
2482 	 * following lockless i_state test.  See there for details.
2483 	 */
2484 	smp_mb();
2485 
2486 	if ((inode->i_state & flags) == flags)
2487 		return;
2488 
2489 	spin_lock(&inode->i_lock);
2490 	if ((inode->i_state & flags) != flags) {
2491 		const int was_dirty = inode->i_state & I_DIRTY;
2492 
2493 		inode_attach_wb(inode, NULL);
2494 
2495 		inode->i_state |= flags;
2496 
2497 		/*
2498 		 * Grab inode's wb early because it requires dropping i_lock and we
2499 		 * need to make sure following checks happen atomically with dirty
2500 		 * list handling so that we don't move inodes under flush worker's
2501 		 * hands.
2502 		 */
2503 		if (!was_dirty) {
2504 			wb = locked_inode_to_wb_and_lock_list(inode);
2505 			spin_lock(&inode->i_lock);
2506 		}
2507 
2508 		/*
2509 		 * If the inode is queued for writeback by flush worker, just
2510 		 * update its dirty state. Once the flush worker is done with
2511 		 * the inode it will place it on the appropriate superblock
2512 		 * list, based upon its state.
2513 		 */
2514 		if (inode->i_state & I_SYNC_QUEUED)
2515 			goto out_unlock;
2516 
2517 		/*
2518 		 * Only add valid (hashed) inodes to the superblock's
2519 		 * dirty list.  Add blockdev inodes as well.
2520 		 */
2521 		if (!S_ISBLK(inode->i_mode)) {
2522 			if (inode_unhashed(inode))
2523 				goto out_unlock;
2524 		}
2525 		if (inode->i_state & I_FREEING)
2526 			goto out_unlock;
2527 
2528 		/*
2529 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2530 		 * reposition it (that would break b_dirty time-ordering).
2531 		 */
2532 		if (!was_dirty) {
2533 			struct list_head *dirty_list;
2534 			bool wakeup_bdi = false;
2535 
2536 			inode->dirtied_when = jiffies;
2537 			if (dirtytime)
2538 				inode->dirtied_time_when = jiffies;
2539 
2540 			if (inode->i_state & I_DIRTY)
2541 				dirty_list = &wb->b_dirty;
2542 			else
2543 				dirty_list = &wb->b_dirty_time;
2544 
2545 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2546 							       dirty_list);
2547 
2548 			spin_unlock(&wb->list_lock);
2549 			spin_unlock(&inode->i_lock);
2550 			trace_writeback_dirty_inode_enqueue(inode);
2551 
2552 			/*
2553 			 * If this is the first dirty inode for this bdi,
2554 			 * we have to wake-up the corresponding bdi thread
2555 			 * to make sure background write-back happens
2556 			 * later.
2557 			 */
2558 			if (wakeup_bdi &&
2559 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2560 				wb_wakeup_delayed(wb);
2561 			return;
2562 		}
2563 	}
2564 out_unlock:
2565 	if (wb)
2566 		spin_unlock(&wb->list_lock);
2567 	spin_unlock(&inode->i_lock);
2568 }
2569 EXPORT_SYMBOL_NS(__mark_inode_dirty, ANDROID_GKI_VFS_EXPORT_ONLY);
2570 
2571 /*
2572  * The @s_sync_lock is used to serialise concurrent sync operations
2573  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2574  * Concurrent callers will block on the s_sync_lock rather than doing contending
2575  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2576  * has been issued up to the time this function is enter is guaranteed to be
2577  * completed by the time we have gained the lock and waited for all IO that is
2578  * in progress regardless of the order callers are granted the lock.
2579  */
wait_sb_inodes(struct super_block * sb)2580 static void wait_sb_inodes(struct super_block *sb)
2581 {
2582 	LIST_HEAD(sync_list);
2583 
2584 	/*
2585 	 * We need to be protected against the filesystem going from
2586 	 * r/o to r/w or vice versa.
2587 	 */
2588 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2589 
2590 	mutex_lock(&sb->s_sync_lock);
2591 
2592 	/*
2593 	 * Splice the writeback list onto a temporary list to avoid waiting on
2594 	 * inodes that have started writeback after this point.
2595 	 *
2596 	 * Use rcu_read_lock() to keep the inodes around until we have a
2597 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2598 	 * the local list because inodes can be dropped from either by writeback
2599 	 * completion.
2600 	 */
2601 	rcu_read_lock();
2602 	spin_lock_irq(&sb->s_inode_wblist_lock);
2603 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2604 
2605 	/*
2606 	 * Data integrity sync. Must wait for all pages under writeback, because
2607 	 * there may have been pages dirtied before our sync call, but which had
2608 	 * writeout started before we write it out.  In which case, the inode
2609 	 * may not be on the dirty list, but we still have to wait for that
2610 	 * writeout.
2611 	 */
2612 	while (!list_empty(&sync_list)) {
2613 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2614 						       i_wb_list);
2615 		struct address_space *mapping = inode->i_mapping;
2616 
2617 		/*
2618 		 * Move each inode back to the wb list before we drop the lock
2619 		 * to preserve consistency between i_wb_list and the mapping
2620 		 * writeback tag. Writeback completion is responsible to remove
2621 		 * the inode from either list once the writeback tag is cleared.
2622 		 */
2623 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2624 
2625 		/*
2626 		 * The mapping can appear untagged while still on-list since we
2627 		 * do not have the mapping lock. Skip it here, wb completion
2628 		 * will remove it.
2629 		 */
2630 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2631 			continue;
2632 
2633 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2634 
2635 		spin_lock(&inode->i_lock);
2636 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2637 			spin_unlock(&inode->i_lock);
2638 
2639 			spin_lock_irq(&sb->s_inode_wblist_lock);
2640 			continue;
2641 		}
2642 		__iget(inode);
2643 		spin_unlock(&inode->i_lock);
2644 		rcu_read_unlock();
2645 
2646 		/*
2647 		 * We keep the error status of individual mapping so that
2648 		 * applications can catch the writeback error using fsync(2).
2649 		 * See filemap_fdatawait_keep_errors() for details.
2650 		 */
2651 		filemap_fdatawait_keep_errors(mapping);
2652 
2653 		cond_resched();
2654 
2655 		iput(inode);
2656 
2657 		rcu_read_lock();
2658 		spin_lock_irq(&sb->s_inode_wblist_lock);
2659 	}
2660 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2661 	rcu_read_unlock();
2662 	mutex_unlock(&sb->s_sync_lock);
2663 }
2664 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2665 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2666 				     enum wb_reason reason, bool skip_if_busy)
2667 {
2668 	struct backing_dev_info *bdi = sb->s_bdi;
2669 	DEFINE_WB_COMPLETION(done, bdi);
2670 	struct wb_writeback_work work = {
2671 		.sb			= sb,
2672 		.sync_mode		= WB_SYNC_NONE,
2673 		.tagged_writepages	= 1,
2674 		.done			= &done,
2675 		.nr_pages		= nr,
2676 		.reason			= reason,
2677 	};
2678 
2679 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2680 		return;
2681 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2682 
2683 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2684 	wb_wait_for_completion(&done);
2685 }
2686 
2687 /**
2688  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2689  * @sb: the superblock
2690  * @nr: the number of pages to write
2691  * @reason: reason why some writeback work initiated
2692  *
2693  * Start writeback on some inodes on this super_block. No guarantees are made
2694  * on how many (if any) will be written, and this function does not wait
2695  * for IO completion of submitted IO.
2696  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2697 void writeback_inodes_sb_nr(struct super_block *sb,
2698 			    unsigned long nr,
2699 			    enum wb_reason reason)
2700 {
2701 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2702 }
2703 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2704 
2705 /**
2706  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2707  * @sb: the superblock
2708  * @reason: reason why some writeback work was initiated
2709  *
2710  * Start writeback on some inodes on this super_block. No guarantees are made
2711  * on how many (if any) will be written, and this function does not wait
2712  * for IO completion of submitted IO.
2713  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2714 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2715 {
2716 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2717 }
2718 EXPORT_SYMBOL(writeback_inodes_sb);
2719 
2720 /**
2721  * try_to_writeback_inodes_sb - try to start writeback if none underway
2722  * @sb: the superblock
2723  * @reason: reason why some writeback work was initiated
2724  *
2725  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2726  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2727 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2728 {
2729 	if (!down_read_trylock(&sb->s_umount))
2730 		return;
2731 
2732 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2733 	up_read(&sb->s_umount);
2734 }
2735 EXPORT_SYMBOL_NS(try_to_writeback_inodes_sb, ANDROID_GKI_VFS_EXPORT_ONLY);
2736 
2737 /**
2738  * sync_inodes_sb	-	sync sb inode pages
2739  * @sb: the superblock
2740  *
2741  * This function writes and waits on any dirty inode belonging to this
2742  * super_block.
2743  */
sync_inodes_sb(struct super_block * sb)2744 void sync_inodes_sb(struct super_block *sb)
2745 {
2746 	struct backing_dev_info *bdi = sb->s_bdi;
2747 	DEFINE_WB_COMPLETION(done, bdi);
2748 	struct wb_writeback_work work = {
2749 		.sb		= sb,
2750 		.sync_mode	= WB_SYNC_ALL,
2751 		.nr_pages	= LONG_MAX,
2752 		.range_cyclic	= 0,
2753 		.done		= &done,
2754 		.reason		= WB_REASON_SYNC,
2755 		.for_sync	= 1,
2756 	};
2757 
2758 	/*
2759 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2760 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2761 	 * bdi_has_dirty() need to be written out too.
2762 	 */
2763 	if (bdi == &noop_backing_dev_info)
2764 		return;
2765 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2766 
2767 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2768 	bdi_down_write_wb_switch_rwsem(bdi);
2769 	bdi_split_work_to_wbs(bdi, &work, false);
2770 	wb_wait_for_completion(&done);
2771 	bdi_up_write_wb_switch_rwsem(bdi);
2772 
2773 	wait_sb_inodes(sb);
2774 }
2775 EXPORT_SYMBOL(sync_inodes_sb);
2776 
2777 /**
2778  * write_inode_now	-	write an inode to disk
2779  * @inode: inode to write to disk
2780  * @sync: whether the write should be synchronous or not
2781  *
2782  * This function commits an inode to disk immediately if it is dirty. This is
2783  * primarily needed by knfsd.
2784  *
2785  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2786  */
write_inode_now(struct inode * inode,int sync)2787 int write_inode_now(struct inode *inode, int sync)
2788 {
2789 	struct writeback_control wbc = {
2790 		.nr_to_write = LONG_MAX,
2791 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2792 		.range_start = 0,
2793 		.range_end = LLONG_MAX,
2794 	};
2795 
2796 	if (!mapping_can_writeback(inode->i_mapping))
2797 		wbc.nr_to_write = 0;
2798 
2799 	might_sleep();
2800 	return writeback_single_inode(inode, &wbc);
2801 }
2802 EXPORT_SYMBOL_NS(write_inode_now, ANDROID_GKI_VFS_EXPORT_ONLY);
2803 
2804 /**
2805  * sync_inode_metadata - write an inode to disk
2806  * @inode: the inode to sync
2807  * @wait: wait for I/O to complete.
2808  *
2809  * Write an inode to disk and adjust its dirty state after completion.
2810  *
2811  * Note: only writes the actual inode, no associated data or other metadata.
2812  */
sync_inode_metadata(struct inode * inode,int wait)2813 int sync_inode_metadata(struct inode *inode, int wait)
2814 {
2815 	struct writeback_control wbc = {
2816 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2817 		.nr_to_write = 0, /* metadata-only */
2818 	};
2819 
2820 	return writeback_single_inode(inode, &wbc);
2821 }
2822 EXPORT_SYMBOL_NS(sync_inode_metadata, ANDROID_GKI_VFS_EXPORT_ONLY);
2823