1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
124
125 list_move(&inode->i_io_list, head);
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133 }
134
wb_wakeup(struct bdi_writeback * wb)135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137 spin_lock_irq(&wb->work_lock);
138 if (test_bit(WB_registered, &wb->state))
139 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140 spin_unlock_irq(&wb->work_lock);
141 }
142
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)143 static void finish_writeback_work(struct bdi_writeback *wb,
144 struct wb_writeback_work *work)
145 {
146 struct wb_completion *done = work->done;
147
148 if (work->auto_free)
149 kfree(work);
150 if (done) {
151 wait_queue_head_t *waitq = done->waitq;
152
153 /* @done can't be accessed after the following dec */
154 if (atomic_dec_and_test(&done->cnt))
155 wake_up_all(waitq);
156 }
157 }
158
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)159 static void wb_queue_work(struct bdi_writeback *wb,
160 struct wb_writeback_work *work)
161 {
162 trace_writeback_queue(wb, work);
163
164 if (work->done)
165 atomic_inc(&work->done->cnt);
166
167 spin_lock_irq(&wb->work_lock);
168
169 if (test_bit(WB_registered, &wb->state)) {
170 list_add_tail(&work->list, &wb->work_list);
171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 } else
173 finish_writeback_work(wb, work);
174
175 spin_unlock_irq(&wb->work_lock);
176 }
177
178 /**
179 * wb_wait_for_completion - wait for completion of bdi_writeback_works
180 * @done: target wb_completion
181 *
182 * Wait for one or more work items issued to @bdi with their ->done field
183 * set to @done, which should have been initialized with
184 * DEFINE_WB_COMPLETION(). This function returns after all such work items
185 * are completed. Work items which are waited upon aren't freed
186 * automatically on completion.
187 */
wb_wait_for_completion(struct wb_completion * done)188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190 atomic_dec(&done->cnt); /* put down the initial count */
191 wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193
194 #ifdef CONFIG_CGROUP_WRITEBACK
195
196 /*
197 * Parameters for foreign inode detection, see wbc_detach_inode() to see
198 * how they're used.
199 *
200 * These paramters are inherently heuristical as the detection target
201 * itself is fuzzy. All we want to do is detaching an inode from the
202 * current owner if it's being written to by some other cgroups too much.
203 *
204 * The current cgroup writeback is built on the assumption that multiple
205 * cgroups writing to the same inode concurrently is very rare and a mode
206 * of operation which isn't well supported. As such, the goal is not
207 * taking too long when a different cgroup takes over an inode while
208 * avoiding too aggressive flip-flops from occasional foreign writes.
209 *
210 * We record, very roughly, 2s worth of IO time history and if more than
211 * half of that is foreign, trigger the switch. The recording is quantized
212 * to 16 slots. To avoid tiny writes from swinging the decision too much,
213 * writes smaller than 1/8 of avg size are ignored.
214 */
215 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
219
220 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
224 /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
228
229 /*
230 * Maximum inodes per isw. A specific value has been chosen to make
231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232 */
233 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234 / sizeof(struct inode *))
235
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238
__inode_attach_wb(struct inode * inode,struct page * page)239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241 struct backing_dev_info *bdi = inode_to_bdi(inode);
242 struct bdi_writeback *wb = NULL;
243
244 if (inode_cgwb_enabled(inode)) {
245 struct cgroup_subsys_state *memcg_css;
246
247 if (page) {
248 memcg_css = mem_cgroup_css_from_page(page);
249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 } else {
251 /* must pin memcg_css, see wb_get_create() */
252 memcg_css = task_get_css(current, memory_cgrp_id);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 css_put(memcg_css);
255 }
256 }
257
258 if (!wb)
259 wb = &bdi->wb;
260
261 /*
262 * There may be multiple instances of this function racing to
263 * update the same inode. Use cmpxchg() to tell the winner.
264 */
265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266 wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269
270 /**
271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272 * @inode: inode of interest with i_lock held
273 * @wb: target bdi_writeback
274 *
275 * Remove the inode from wb's io lists and if necessarily put onto b_attached
276 * list. Only inodes attached to cgwb's are kept on this list.
277 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)278 static void inode_cgwb_move_to_attached(struct inode *inode,
279 struct bdi_writeback *wb)
280 {
281 assert_spin_locked(&wb->list_lock);
282 assert_spin_locked(&inode->i_lock);
283
284 inode->i_state &= ~I_SYNC_QUEUED;
285 if (wb != &wb->bdi->wb)
286 list_move(&inode->i_io_list, &wb->b_attached);
287 else
288 list_del_init(&inode->i_io_list);
289 wb_io_lists_depopulated(wb);
290 }
291
292 /**
293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294 * @inode: inode of interest with i_lock held
295 *
296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
297 * held on entry and is released on return. The returned wb is guaranteed
298 * to stay @inode's associated wb until its list_lock is released.
299 */
300 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302 __releases(&inode->i_lock)
303 __acquires(&wb->list_lock)
304 {
305 while (true) {
306 struct bdi_writeback *wb = inode_to_wb(inode);
307
308 /*
309 * inode_to_wb() association is protected by both
310 * @inode->i_lock and @wb->list_lock but list_lock nests
311 * outside i_lock. Drop i_lock and verify that the
312 * association hasn't changed after acquiring list_lock.
313 */
314 wb_get(wb);
315 spin_unlock(&inode->i_lock);
316 spin_lock(&wb->list_lock);
317
318 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319 if (likely(wb == inode->i_wb)) {
320 wb_put(wb); /* @inode already has ref */
321 return wb;
322 }
323
324 spin_unlock(&wb->list_lock);
325 wb_put(wb);
326 cpu_relax();
327 spin_lock(&inode->i_lock);
328 }
329 }
330
331 /**
332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333 * @inode: inode of interest
334 *
335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336 * on entry.
337 */
inode_to_wb_and_lock_list(struct inode * inode)338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 __acquires(&wb->list_lock)
340 {
341 spin_lock(&inode->i_lock);
342 return locked_inode_to_wb_and_lock_list(inode);
343 }
344
345 struct inode_switch_wbs_context {
346 struct rcu_work work;
347
348 /*
349 * Multiple inodes can be switched at once. The switching procedure
350 * consists of two parts, separated by a RCU grace period. To make
351 * sure that the second part is executed for each inode gone through
352 * the first part, all inode pointers are placed into a NULL-terminated
353 * array embedded into struct inode_switch_wbs_context. Otherwise
354 * an inode could be left in a non-consistent state.
355 */
356 struct bdi_writeback *new_wb;
357 struct inode *inodes[];
358 };
359
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362 down_write(&bdi->wb_switch_rwsem);
363 }
364
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367 up_write(&bdi->wb_switch_rwsem);
368 }
369
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)370 static bool inode_do_switch_wbs(struct inode *inode,
371 struct bdi_writeback *old_wb,
372 struct bdi_writeback *new_wb)
373 {
374 struct address_space *mapping = inode->i_mapping;
375 XA_STATE(xas, &mapping->i_pages, 0);
376 struct page *page;
377 bool switched = false;
378
379 spin_lock(&inode->i_lock);
380 xa_lock_irq(&mapping->i_pages);
381
382 /*
383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 * path owns the inode and we shouldn't modify ->i_io_list.
385 */
386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387 goto skip_switch;
388
389 trace_inode_switch_wbs(inode, old_wb, new_wb);
390
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394 * pages actually under writeback.
395 */
396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (PageDirty(page)) {
398 dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 inc_wb_stat(new_wb, WB_RECLAIMABLE);
400 }
401 }
402
403 xas_set(&xas, 0);
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 WARN_ON_ONCE(!PageWriteback(page));
406 dec_wb_stat(old_wb, WB_WRITEBACK);
407 inc_wb_stat(new_wb, WB_WRITEBACK);
408 }
409
410 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
411 atomic_dec(&old_wb->writeback_inodes);
412 atomic_inc(&new_wb->writeback_inodes);
413 }
414
415 wb_get(new_wb);
416
417 /*
418 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
419 * the specific list @inode was on is ignored and the @inode is put on
420 * ->b_dirty which is always correct including from ->b_dirty_time.
421 * The transfer preserves @inode->dirtied_when ordering. If the @inode
422 * was clean, it means it was on the b_attached list, so move it onto
423 * the b_attached list of @new_wb.
424 */
425 if (!list_empty(&inode->i_io_list)) {
426 inode->i_wb = new_wb;
427
428 if (inode->i_state & I_DIRTY_ALL) {
429 struct inode *pos;
430
431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
435 inode_io_list_move_locked(inode, new_wb,
436 pos->i_io_list.prev);
437 } else {
438 inode_cgwb_move_to_attached(inode, new_wb);
439 }
440 } else {
441 inode->i_wb = new_wb;
442 }
443
444 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
445 inode->i_wb_frn_winner = 0;
446 inode->i_wb_frn_avg_time = 0;
447 inode->i_wb_frn_history = 0;
448 switched = true;
449 skip_switch:
450 /*
451 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
452 * ensures that the new wb is visible if they see !I_WB_SWITCH.
453 */
454 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
455
456 xa_unlock_irq(&mapping->i_pages);
457 spin_unlock(&inode->i_lock);
458
459 return switched;
460 }
461
inode_switch_wbs_work_fn(struct work_struct * work)462 static void inode_switch_wbs_work_fn(struct work_struct *work)
463 {
464 struct inode_switch_wbs_context *isw =
465 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
466 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
467 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
468 struct bdi_writeback *new_wb = isw->new_wb;
469 unsigned long nr_switched = 0;
470 struct inode **inodep;
471
472 /*
473 * If @inode switches cgwb membership while sync_inodes_sb() is
474 * being issued, sync_inodes_sb() might miss it. Synchronize.
475 */
476 down_read(&bdi->wb_switch_rwsem);
477
478 /*
479 * By the time control reaches here, RCU grace period has passed
480 * since I_WB_SWITCH assertion and all wb stat update transactions
481 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
482 * synchronizing against the i_pages lock.
483 *
484 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
485 * gives us exclusion against all wb related operations on @inode
486 * including IO list manipulations and stat updates.
487 */
488 if (old_wb < new_wb) {
489 spin_lock(&old_wb->list_lock);
490 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
491 } else {
492 spin_lock(&new_wb->list_lock);
493 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
494 }
495
496 for (inodep = isw->inodes; *inodep; inodep++) {
497 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
498 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
499 nr_switched++;
500 }
501
502 spin_unlock(&new_wb->list_lock);
503 spin_unlock(&old_wb->list_lock);
504
505 up_read(&bdi->wb_switch_rwsem);
506
507 if (nr_switched) {
508 wb_wakeup(new_wb);
509 wb_put_many(old_wb, nr_switched);
510 }
511
512 for (inodep = isw->inodes; *inodep; inodep++)
513 iput(*inodep);
514 wb_put(new_wb);
515 kfree(isw);
516 atomic_dec(&isw_nr_in_flight);
517 }
518
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)519 static bool inode_prepare_wbs_switch(struct inode *inode,
520 struct bdi_writeback *new_wb)
521 {
522 /*
523 * Paired with smp_mb() in cgroup_writeback_umount().
524 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
525 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
526 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
527 */
528 smp_mb();
529
530 if (IS_DAX(inode))
531 return false;
532
533 /* while holding I_WB_SWITCH, no one else can update the association */
534 spin_lock(&inode->i_lock);
535 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
536 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
537 inode_to_wb(inode) == new_wb) {
538 spin_unlock(&inode->i_lock);
539 return false;
540 }
541 inode->i_state |= I_WB_SWITCH;
542 __iget(inode);
543 spin_unlock(&inode->i_lock);
544
545 return true;
546 }
547
548 /**
549 * inode_switch_wbs - change the wb association of an inode
550 * @inode: target inode
551 * @new_wb_id: ID of the new wb
552 *
553 * Switch @inode's wb association to the wb identified by @new_wb_id. The
554 * switching is performed asynchronously and may fail silently.
555 */
inode_switch_wbs(struct inode * inode,int new_wb_id)556 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
557 {
558 struct backing_dev_info *bdi = inode_to_bdi(inode);
559 struct cgroup_subsys_state *memcg_css;
560 struct inode_switch_wbs_context *isw;
561
562 /* noop if seems to be already in progress */
563 if (inode->i_state & I_WB_SWITCH)
564 return;
565
566 /* avoid queueing a new switch if too many are already in flight */
567 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
568 return;
569
570 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
571 if (!isw)
572 return;
573
574 atomic_inc(&isw_nr_in_flight);
575
576 /* find and pin the new wb */
577 rcu_read_lock();
578 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
579 if (memcg_css && !css_tryget(memcg_css))
580 memcg_css = NULL;
581 rcu_read_unlock();
582 if (!memcg_css)
583 goto out_free;
584
585 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
586 css_put(memcg_css);
587 if (!isw->new_wb)
588 goto out_free;
589
590 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
591 goto out_free;
592
593 isw->inodes[0] = inode;
594
595 /*
596 * In addition to synchronizing among switchers, I_WB_SWITCH tells
597 * the RCU protected stat update paths to grab the i_page
598 * lock so that stat transfer can synchronize against them.
599 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
600 */
601 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
602 queue_rcu_work(isw_wq, &isw->work);
603 return;
604
605 out_free:
606 atomic_dec(&isw_nr_in_flight);
607 if (isw->new_wb)
608 wb_put(isw->new_wb);
609 kfree(isw);
610 }
611
isw_prepare_wbs_switch(struct inode_switch_wbs_context * isw,struct list_head * list,int * nr)612 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw,
613 struct list_head *list, int *nr)
614 {
615 struct inode *inode;
616
617 list_for_each_entry(inode, list, i_io_list) {
618 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
619 continue;
620
621 isw->inodes[*nr] = inode;
622 (*nr)++;
623
624 if (*nr >= WB_MAX_INODES_PER_ISW - 1)
625 return true;
626 }
627 return false;
628 }
629
630 /**
631 * cleanup_offline_cgwb - detach associated inodes
632 * @wb: target wb
633 *
634 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
635 * to eventually release the dying @wb. Returns %true if not all inodes were
636 * switched and the function has to be restarted.
637 */
cleanup_offline_cgwb(struct bdi_writeback * wb)638 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
639 {
640 struct cgroup_subsys_state *memcg_css;
641 struct inode_switch_wbs_context *isw;
642 int nr;
643 bool restart = false;
644
645 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
646 sizeof(struct inode *), GFP_KERNEL);
647 if (!isw)
648 return restart;
649
650 atomic_inc(&isw_nr_in_flight);
651
652 for (memcg_css = wb->memcg_css->parent; memcg_css;
653 memcg_css = memcg_css->parent) {
654 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
655 if (isw->new_wb)
656 break;
657 }
658 if (unlikely(!isw->new_wb))
659 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
660
661 nr = 0;
662 spin_lock(&wb->list_lock);
663 /*
664 * In addition to the inodes that have completed writeback, also switch
665 * cgwbs for those inodes only with dirty timestamps. Otherwise, those
666 * inodes won't be written back for a long time when lazytime is
667 * enabled, and thus pinning the dying cgwbs. It won't break the
668 * bandwidth restrictions, as writeback of inode metadata is not
669 * accounted for.
670 */
671 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr);
672 if (!restart)
673 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr);
674 spin_unlock(&wb->list_lock);
675
676 /* no attached inodes? bail out */
677 if (nr == 0) {
678 atomic_dec(&isw_nr_in_flight);
679 wb_put(isw->new_wb);
680 kfree(isw);
681 return restart;
682 }
683
684 /*
685 * In addition to synchronizing among switchers, I_WB_SWITCH tells
686 * the RCU protected stat update paths to grab the i_page
687 * lock so that stat transfer can synchronize against them.
688 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
689 */
690 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
691 queue_rcu_work(isw_wq, &isw->work);
692
693 return restart;
694 }
695
696 /**
697 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
698 * @wbc: writeback_control of interest
699 * @inode: target inode
700 *
701 * @inode is locked and about to be written back under the control of @wbc.
702 * Record @inode's writeback context into @wbc and unlock the i_lock. On
703 * writeback completion, wbc_detach_inode() should be called. This is used
704 * to track the cgroup writeback context.
705 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)706 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
707 struct inode *inode)
708 {
709 if (!inode_cgwb_enabled(inode)) {
710 spin_unlock(&inode->i_lock);
711 return;
712 }
713
714 wbc->wb = inode_to_wb(inode);
715 wbc->inode = inode;
716
717 wbc->wb_id = wbc->wb->memcg_css->id;
718 wbc->wb_lcand_id = inode->i_wb_frn_winner;
719 wbc->wb_tcand_id = 0;
720 wbc->wb_bytes = 0;
721 wbc->wb_lcand_bytes = 0;
722 wbc->wb_tcand_bytes = 0;
723
724 wb_get(wbc->wb);
725 spin_unlock(&inode->i_lock);
726
727 /*
728 * A dying wb indicates that either the blkcg associated with the
729 * memcg changed or the associated memcg is dying. In the first
730 * case, a replacement wb should already be available and we should
731 * refresh the wb immediately. In the second case, trying to
732 * refresh will keep failing.
733 */
734 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
735 inode_switch_wbs(inode, wbc->wb_id);
736 }
737 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
738
739 /**
740 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
741 * @wbc: writeback_control of the just finished writeback
742 *
743 * To be called after a writeback attempt of an inode finishes and undoes
744 * wbc_attach_and_unlock_inode(). Can be called under any context.
745 *
746 * As concurrent write sharing of an inode is expected to be very rare and
747 * memcg only tracks page ownership on first-use basis severely confining
748 * the usefulness of such sharing, cgroup writeback tracks ownership
749 * per-inode. While the support for concurrent write sharing of an inode
750 * is deemed unnecessary, an inode being written to by different cgroups at
751 * different points in time is a lot more common, and, more importantly,
752 * charging only by first-use can too readily lead to grossly incorrect
753 * behaviors (single foreign page can lead to gigabytes of writeback to be
754 * incorrectly attributed).
755 *
756 * To resolve this issue, cgroup writeback detects the majority dirtier of
757 * an inode and transfers the ownership to it. To avoid unnnecessary
758 * oscillation, the detection mechanism keeps track of history and gives
759 * out the switch verdict only if the foreign usage pattern is stable over
760 * a certain amount of time and/or writeback attempts.
761 *
762 * On each writeback attempt, @wbc tries to detect the majority writer
763 * using Boyer-Moore majority vote algorithm. In addition to the byte
764 * count from the majority voting, it also counts the bytes written for the
765 * current wb and the last round's winner wb (max of last round's current
766 * wb, the winner from two rounds ago, and the last round's majority
767 * candidate). Keeping track of the historical winner helps the algorithm
768 * to semi-reliably detect the most active writer even when it's not the
769 * absolute majority.
770 *
771 * Once the winner of the round is determined, whether the winner is
772 * foreign or not and how much IO time the round consumed is recorded in
773 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
774 * over a certain threshold, the switch verdict is given.
775 */
wbc_detach_inode(struct writeback_control * wbc)776 void wbc_detach_inode(struct writeback_control *wbc)
777 {
778 struct bdi_writeback *wb = wbc->wb;
779 struct inode *inode = wbc->inode;
780 unsigned long avg_time, max_bytes, max_time;
781 u16 history;
782 int max_id;
783
784 if (!wb)
785 return;
786
787 history = inode->i_wb_frn_history;
788 avg_time = inode->i_wb_frn_avg_time;
789
790 /* pick the winner of this round */
791 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
792 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
793 max_id = wbc->wb_id;
794 max_bytes = wbc->wb_bytes;
795 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
796 max_id = wbc->wb_lcand_id;
797 max_bytes = wbc->wb_lcand_bytes;
798 } else {
799 max_id = wbc->wb_tcand_id;
800 max_bytes = wbc->wb_tcand_bytes;
801 }
802
803 /*
804 * Calculate the amount of IO time the winner consumed and fold it
805 * into the running average kept per inode. If the consumed IO
806 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
807 * deciding whether to switch or not. This is to prevent one-off
808 * small dirtiers from skewing the verdict.
809 */
810 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
811 wb->avg_write_bandwidth);
812 if (avg_time)
813 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
814 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
815 else
816 avg_time = max_time; /* immediate catch up on first run */
817
818 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
819 int slots;
820
821 /*
822 * The switch verdict is reached if foreign wb's consume
823 * more than a certain proportion of IO time in a
824 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
825 * history mask where each bit represents one sixteenth of
826 * the period. Determine the number of slots to shift into
827 * history from @max_time.
828 */
829 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
830 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
831 history <<= slots;
832 if (wbc->wb_id != max_id)
833 history |= (1U << slots) - 1;
834
835 if (history)
836 trace_inode_foreign_history(inode, wbc, history);
837
838 /*
839 * Switch if the current wb isn't the consistent winner.
840 * If there are multiple closely competing dirtiers, the
841 * inode may switch across them repeatedly over time, which
842 * is okay. The main goal is avoiding keeping an inode on
843 * the wrong wb for an extended period of time.
844 */
845 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
846 inode_switch_wbs(inode, max_id);
847 }
848
849 /*
850 * Multiple instances of this function may race to update the
851 * following fields but we don't mind occassional inaccuracies.
852 */
853 inode->i_wb_frn_winner = max_id;
854 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
855 inode->i_wb_frn_history = history;
856
857 wb_put(wbc->wb);
858 wbc->wb = NULL;
859 }
860 EXPORT_SYMBOL_GPL(wbc_detach_inode);
861
862 /**
863 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
864 * @wbc: writeback_control of the writeback in progress
865 * @page: page being written out
866 * @bytes: number of bytes being written out
867 *
868 * @bytes from @page are about to written out during the writeback
869 * controlled by @wbc. Keep the book for foreign inode detection. See
870 * wbc_detach_inode().
871 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)872 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
873 size_t bytes)
874 {
875 struct cgroup_subsys_state *css;
876 int id;
877
878 /*
879 * pageout() path doesn't attach @wbc to the inode being written
880 * out. This is intentional as we don't want the function to block
881 * behind a slow cgroup. Ultimately, we want pageout() to kick off
882 * regular writeback instead of writing things out itself.
883 */
884 if (!wbc->wb || wbc->no_cgroup_owner)
885 return;
886
887 css = mem_cgroup_css_from_page(page);
888 /* dead cgroups shouldn't contribute to inode ownership arbitration */
889 if (!(css->flags & CSS_ONLINE))
890 return;
891
892 id = css->id;
893
894 if (id == wbc->wb_id) {
895 wbc->wb_bytes += bytes;
896 return;
897 }
898
899 if (id == wbc->wb_lcand_id)
900 wbc->wb_lcand_bytes += bytes;
901
902 /* Boyer-Moore majority vote algorithm */
903 if (!wbc->wb_tcand_bytes)
904 wbc->wb_tcand_id = id;
905 if (id == wbc->wb_tcand_id)
906 wbc->wb_tcand_bytes += bytes;
907 else
908 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
909 }
910 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
911
912 /**
913 * inode_congested - test whether an inode is congested
914 * @inode: inode to test for congestion (may be NULL)
915 * @cong_bits: mask of WB_[a]sync_congested bits to test
916 *
917 * Tests whether @inode is congested. @cong_bits is the mask of congestion
918 * bits to test and the return value is the mask of set bits.
919 *
920 * If cgroup writeback is enabled for @inode, the congestion state is
921 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
922 * associated with @inode is congested; otherwise, the root wb's congestion
923 * state is used.
924 *
925 * @inode is allowed to be NULL as this function is often called on
926 * mapping->host which is NULL for the swapper space.
927 */
inode_congested(struct inode * inode,int cong_bits)928 int inode_congested(struct inode *inode, int cong_bits)
929 {
930 /*
931 * Once set, ->i_wb never becomes NULL while the inode is alive.
932 * Start transaction iff ->i_wb is visible.
933 */
934 if (inode && inode_to_wb_is_valid(inode)) {
935 struct bdi_writeback *wb;
936 struct wb_lock_cookie lock_cookie = {};
937 bool congested;
938
939 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
940 congested = wb_congested(wb, cong_bits);
941 unlocked_inode_to_wb_end(inode, &lock_cookie);
942 return congested;
943 }
944
945 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
946 }
947 EXPORT_SYMBOL_GPL(inode_congested);
948
949 /**
950 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
951 * @wb: target bdi_writeback to split @nr_pages to
952 * @nr_pages: number of pages to write for the whole bdi
953 *
954 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
955 * relation to the total write bandwidth of all wb's w/ dirty inodes on
956 * @wb->bdi.
957 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)958 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
959 {
960 unsigned long this_bw = wb->avg_write_bandwidth;
961 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
962
963 if (nr_pages == LONG_MAX)
964 return LONG_MAX;
965
966 /*
967 * This may be called on clean wb's and proportional distribution
968 * may not make sense, just use the original @nr_pages in those
969 * cases. In general, we wanna err on the side of writing more.
970 */
971 if (!tot_bw || this_bw >= tot_bw)
972 return nr_pages;
973 else
974 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
975 }
976
977 /**
978 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
979 * @bdi: target backing_dev_info
980 * @base_work: wb_writeback_work to issue
981 * @skip_if_busy: skip wb's which already have writeback in progress
982 *
983 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
984 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
985 * distributed to the busy wbs according to each wb's proportion in the
986 * total active write bandwidth of @bdi.
987 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)988 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
989 struct wb_writeback_work *base_work,
990 bool skip_if_busy)
991 {
992 struct bdi_writeback *last_wb = NULL;
993 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
994 struct bdi_writeback, bdi_node);
995
996 might_sleep();
997 restart:
998 rcu_read_lock();
999 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
1000 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
1001 struct wb_writeback_work fallback_work;
1002 struct wb_writeback_work *work;
1003 long nr_pages;
1004
1005 if (last_wb) {
1006 wb_put(last_wb);
1007 last_wb = NULL;
1008 }
1009
1010 /* SYNC_ALL writes out I_DIRTY_TIME too */
1011 if (!wb_has_dirty_io(wb) &&
1012 (base_work->sync_mode == WB_SYNC_NONE ||
1013 list_empty(&wb->b_dirty_time)))
1014 continue;
1015 if (skip_if_busy && writeback_in_progress(wb))
1016 continue;
1017
1018 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1019
1020 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1021 if (work) {
1022 *work = *base_work;
1023 work->nr_pages = nr_pages;
1024 work->auto_free = 1;
1025 wb_queue_work(wb, work);
1026 continue;
1027 }
1028
1029 /*
1030 * If wb_tryget fails, the wb has been shutdown, skip it.
1031 *
1032 * Pin @wb so that it stays on @bdi->wb_list. This allows
1033 * continuing iteration from @wb after dropping and
1034 * regrabbing rcu read lock.
1035 */
1036 if (!wb_tryget(wb))
1037 continue;
1038
1039 /* alloc failed, execute synchronously using on-stack fallback */
1040 work = &fallback_work;
1041 *work = *base_work;
1042 work->nr_pages = nr_pages;
1043 work->auto_free = 0;
1044 work->done = &fallback_work_done;
1045
1046 wb_queue_work(wb, work);
1047 last_wb = wb;
1048
1049 rcu_read_unlock();
1050 wb_wait_for_completion(&fallback_work_done);
1051 goto restart;
1052 }
1053 rcu_read_unlock();
1054
1055 if (last_wb)
1056 wb_put(last_wb);
1057 }
1058
1059 /**
1060 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1061 * @bdi_id: target bdi id
1062 * @memcg_id: target memcg css id
1063 * @reason: reason why some writeback work initiated
1064 * @done: target wb_completion
1065 *
1066 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1067 * with the specified parameters.
1068 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1069 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1070 enum wb_reason reason, struct wb_completion *done)
1071 {
1072 struct backing_dev_info *bdi;
1073 struct cgroup_subsys_state *memcg_css;
1074 struct bdi_writeback *wb;
1075 struct wb_writeback_work *work;
1076 unsigned long dirty;
1077 int ret;
1078
1079 /* lookup bdi and memcg */
1080 bdi = bdi_get_by_id(bdi_id);
1081 if (!bdi)
1082 return -ENOENT;
1083
1084 rcu_read_lock();
1085 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1086 if (memcg_css && !css_tryget(memcg_css))
1087 memcg_css = NULL;
1088 rcu_read_unlock();
1089 if (!memcg_css) {
1090 ret = -ENOENT;
1091 goto out_bdi_put;
1092 }
1093
1094 /*
1095 * And find the associated wb. If the wb isn't there already
1096 * there's nothing to flush, don't create one.
1097 */
1098 wb = wb_get_lookup(bdi, memcg_css);
1099 if (!wb) {
1100 ret = -ENOENT;
1101 goto out_css_put;
1102 }
1103
1104 /*
1105 * The caller is attempting to write out most of
1106 * the currently dirty pages. Let's take the current dirty page
1107 * count and inflate it by 25% which should be large enough to
1108 * flush out most dirty pages while avoiding getting livelocked by
1109 * concurrent dirtiers.
1110 *
1111 * BTW the memcg stats are flushed periodically and this is best-effort
1112 * estimation, so some potential error is ok.
1113 */
1114 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1115 dirty = dirty * 10 / 8;
1116
1117 /* issue the writeback work */
1118 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1119 if (work) {
1120 work->nr_pages = dirty;
1121 work->sync_mode = WB_SYNC_NONE;
1122 work->range_cyclic = 1;
1123 work->reason = reason;
1124 work->done = done;
1125 work->auto_free = 1;
1126 wb_queue_work(wb, work);
1127 ret = 0;
1128 } else {
1129 ret = -ENOMEM;
1130 }
1131
1132 wb_put(wb);
1133 out_css_put:
1134 css_put(memcg_css);
1135 out_bdi_put:
1136 bdi_put(bdi);
1137 return ret;
1138 }
1139
1140 /**
1141 * cgroup_writeback_umount - flush inode wb switches for umount
1142 *
1143 * This function is called when a super_block is about to be destroyed and
1144 * flushes in-flight inode wb switches. An inode wb switch goes through
1145 * RCU and then workqueue, so the two need to be flushed in order to ensure
1146 * that all previously scheduled switches are finished. As wb switches are
1147 * rare occurrences and synchronize_rcu() can take a while, perform
1148 * flushing iff wb switches are in flight.
1149 */
cgroup_writeback_umount(void)1150 void cgroup_writeback_umount(void)
1151 {
1152 /*
1153 * SB_ACTIVE should be reliably cleared before checking
1154 * isw_nr_in_flight, see generic_shutdown_super().
1155 */
1156 smp_mb();
1157
1158 if (atomic_read(&isw_nr_in_flight)) {
1159 /*
1160 * Use rcu_barrier() to wait for all pending callbacks to
1161 * ensure that all in-flight wb switches are in the workqueue.
1162 */
1163 rcu_barrier();
1164 flush_workqueue(isw_wq);
1165 }
1166 }
1167
cgroup_writeback_init(void)1168 static int __init cgroup_writeback_init(void)
1169 {
1170 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1171 if (!isw_wq)
1172 return -ENOMEM;
1173 return 0;
1174 }
1175 fs_initcall(cgroup_writeback_init);
1176
1177 #else /* CONFIG_CGROUP_WRITEBACK */
1178
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1179 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1180 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1181
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1182 static void inode_cgwb_move_to_attached(struct inode *inode,
1183 struct bdi_writeback *wb)
1184 {
1185 assert_spin_locked(&wb->list_lock);
1186 assert_spin_locked(&inode->i_lock);
1187
1188 inode->i_state &= ~I_SYNC_QUEUED;
1189 list_del_init(&inode->i_io_list);
1190 wb_io_lists_depopulated(wb);
1191 }
1192
1193 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1194 locked_inode_to_wb_and_lock_list(struct inode *inode)
1195 __releases(&inode->i_lock)
1196 __acquires(&wb->list_lock)
1197 {
1198 struct bdi_writeback *wb = inode_to_wb(inode);
1199
1200 spin_unlock(&inode->i_lock);
1201 spin_lock(&wb->list_lock);
1202 return wb;
1203 }
1204
inode_to_wb_and_lock_list(struct inode * inode)1205 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1206 __acquires(&wb->list_lock)
1207 {
1208 struct bdi_writeback *wb = inode_to_wb(inode);
1209
1210 spin_lock(&wb->list_lock);
1211 return wb;
1212 }
1213
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1214 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1215 {
1216 return nr_pages;
1217 }
1218
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1219 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1220 struct wb_writeback_work *base_work,
1221 bool skip_if_busy)
1222 {
1223 might_sleep();
1224
1225 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1226 base_work->auto_free = 0;
1227 wb_queue_work(&bdi->wb, base_work);
1228 }
1229 }
1230
1231 #endif /* CONFIG_CGROUP_WRITEBACK */
1232
1233 /*
1234 * Add in the number of potentially dirty inodes, because each inode
1235 * write can dirty pagecache in the underlying blockdev.
1236 */
get_nr_dirty_pages(void)1237 static unsigned long get_nr_dirty_pages(void)
1238 {
1239 return global_node_page_state(NR_FILE_DIRTY) +
1240 get_nr_dirty_inodes();
1241 }
1242
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1243 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1244 {
1245 if (!wb_has_dirty_io(wb))
1246 return;
1247
1248 /*
1249 * All callers of this function want to start writeback of all
1250 * dirty pages. Places like vmscan can call this at a very
1251 * high frequency, causing pointless allocations of tons of
1252 * work items and keeping the flusher threads busy retrieving
1253 * that work. Ensure that we only allow one of them pending and
1254 * inflight at the time.
1255 */
1256 if (test_bit(WB_start_all, &wb->state) ||
1257 test_and_set_bit(WB_start_all, &wb->state))
1258 return;
1259
1260 wb->start_all_reason = reason;
1261 wb_wakeup(wb);
1262 }
1263
1264 /**
1265 * wb_start_background_writeback - start background writeback
1266 * @wb: bdi_writback to write from
1267 *
1268 * Description:
1269 * This makes sure WB_SYNC_NONE background writeback happens. When
1270 * this function returns, it is only guaranteed that for given wb
1271 * some IO is happening if we are over background dirty threshold.
1272 * Caller need not hold sb s_umount semaphore.
1273 */
wb_start_background_writeback(struct bdi_writeback * wb)1274 void wb_start_background_writeback(struct bdi_writeback *wb)
1275 {
1276 /*
1277 * We just wake up the flusher thread. It will perform background
1278 * writeback as soon as there is no other work to do.
1279 */
1280 trace_writeback_wake_background(wb);
1281 wb_wakeup(wb);
1282 }
1283
1284 /*
1285 * Remove the inode from the writeback list it is on.
1286 */
inode_io_list_del(struct inode * inode)1287 void inode_io_list_del(struct inode *inode)
1288 {
1289 struct bdi_writeback *wb;
1290
1291 wb = inode_to_wb_and_lock_list(inode);
1292 spin_lock(&inode->i_lock);
1293
1294 inode->i_state &= ~I_SYNC_QUEUED;
1295 list_del_init(&inode->i_io_list);
1296 wb_io_lists_depopulated(wb);
1297
1298 spin_unlock(&inode->i_lock);
1299 spin_unlock(&wb->list_lock);
1300 }
1301 EXPORT_SYMBOL(inode_io_list_del);
1302
1303 /*
1304 * mark an inode as under writeback on the sb
1305 */
sb_mark_inode_writeback(struct inode * inode)1306 void sb_mark_inode_writeback(struct inode *inode)
1307 {
1308 struct super_block *sb = inode->i_sb;
1309 unsigned long flags;
1310
1311 if (list_empty(&inode->i_wb_list)) {
1312 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1313 if (list_empty(&inode->i_wb_list)) {
1314 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1315 trace_sb_mark_inode_writeback(inode);
1316 }
1317 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1318 }
1319 }
1320
1321 /*
1322 * clear an inode as under writeback on the sb
1323 */
sb_clear_inode_writeback(struct inode * inode)1324 void sb_clear_inode_writeback(struct inode *inode)
1325 {
1326 struct super_block *sb = inode->i_sb;
1327 unsigned long flags;
1328
1329 if (!list_empty(&inode->i_wb_list)) {
1330 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1331 if (!list_empty(&inode->i_wb_list)) {
1332 list_del_init(&inode->i_wb_list);
1333 trace_sb_clear_inode_writeback(inode);
1334 }
1335 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1336 }
1337 }
1338
1339 /*
1340 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1341 * furthest end of its superblock's dirty-inode list.
1342 *
1343 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1344 * already the most-recently-dirtied inode on the b_dirty list. If that is
1345 * the case then the inode must have been redirtied while it was being written
1346 * out and we don't reset its dirtied_when.
1347 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1348 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1349 {
1350 assert_spin_locked(&inode->i_lock);
1351
1352 if (!list_empty(&wb->b_dirty)) {
1353 struct inode *tail;
1354
1355 tail = wb_inode(wb->b_dirty.next);
1356 if (time_before(inode->dirtied_when, tail->dirtied_when))
1357 inode->dirtied_when = jiffies;
1358 }
1359 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1360 inode->i_state &= ~I_SYNC_QUEUED;
1361 }
1362
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1363 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1364 {
1365 spin_lock(&inode->i_lock);
1366 redirty_tail_locked(inode, wb);
1367 spin_unlock(&inode->i_lock);
1368 }
1369
1370 /*
1371 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1372 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1373 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1374 {
1375 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1376 }
1377
inode_sync_complete(struct inode * inode)1378 static void inode_sync_complete(struct inode *inode)
1379 {
1380 inode->i_state &= ~I_SYNC;
1381 /* If inode is clean an unused, put it into LRU now... */
1382 inode_add_lru(inode);
1383 /* Waiters must see I_SYNC cleared before being woken up */
1384 smp_mb();
1385 wake_up_bit(&inode->i_state, __I_SYNC);
1386 }
1387
inode_dirtied_after(struct inode * inode,unsigned long t)1388 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1389 {
1390 bool ret = time_after(inode->dirtied_when, t);
1391 #ifndef CONFIG_64BIT
1392 /*
1393 * For inodes being constantly redirtied, dirtied_when can get stuck.
1394 * It _appears_ to be in the future, but is actually in distant past.
1395 * This test is necessary to prevent such wrapped-around relative times
1396 * from permanently stopping the whole bdi writeback.
1397 */
1398 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1399 #endif
1400 return ret;
1401 }
1402
1403 #define EXPIRE_DIRTY_ATIME 0x0001
1404
1405 /*
1406 * Move expired (dirtied before dirtied_before) dirty inodes from
1407 * @delaying_queue to @dispatch_queue.
1408 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1409 static int move_expired_inodes(struct list_head *delaying_queue,
1410 struct list_head *dispatch_queue,
1411 unsigned long dirtied_before)
1412 {
1413 LIST_HEAD(tmp);
1414 struct list_head *pos, *node;
1415 struct super_block *sb = NULL;
1416 struct inode *inode;
1417 int do_sb_sort = 0;
1418 int moved = 0;
1419
1420 while (!list_empty(delaying_queue)) {
1421 inode = wb_inode(delaying_queue->prev);
1422 if (inode_dirtied_after(inode, dirtied_before))
1423 break;
1424 spin_lock(&inode->i_lock);
1425 list_move(&inode->i_io_list, &tmp);
1426 moved++;
1427 inode->i_state |= I_SYNC_QUEUED;
1428 spin_unlock(&inode->i_lock);
1429 if (sb_is_blkdev_sb(inode->i_sb))
1430 continue;
1431 if (sb && sb != inode->i_sb)
1432 do_sb_sort = 1;
1433 sb = inode->i_sb;
1434 }
1435
1436 /* just one sb in list, splice to dispatch_queue and we're done */
1437 if (!do_sb_sort) {
1438 list_splice(&tmp, dispatch_queue);
1439 goto out;
1440 }
1441
1442 /*
1443 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1444 * we don't take inode->i_lock here because it is just a pointless overhead.
1445 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1446 * fully under our control.
1447 */
1448 while (!list_empty(&tmp)) {
1449 sb = wb_inode(tmp.prev)->i_sb;
1450 list_for_each_prev_safe(pos, node, &tmp) {
1451 inode = wb_inode(pos);
1452 if (inode->i_sb == sb)
1453 list_move(&inode->i_io_list, dispatch_queue);
1454 }
1455 }
1456 out:
1457 return moved;
1458 }
1459
1460 /*
1461 * Queue all expired dirty inodes for io, eldest first.
1462 * Before
1463 * newly dirtied b_dirty b_io b_more_io
1464 * =============> gf edc BA
1465 * After
1466 * newly dirtied b_dirty b_io b_more_io
1467 * =============> g fBAedc
1468 * |
1469 * +--> dequeue for IO
1470 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1471 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1472 unsigned long dirtied_before)
1473 {
1474 int moved;
1475 unsigned long time_expire_jif = dirtied_before;
1476
1477 assert_spin_locked(&wb->list_lock);
1478 list_splice_init(&wb->b_more_io, &wb->b_io);
1479 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1480 if (!work->for_sync)
1481 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1482 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1483 time_expire_jif);
1484 if (moved)
1485 wb_io_lists_populated(wb);
1486 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1487 }
1488
write_inode(struct inode * inode,struct writeback_control * wbc)1489 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1490 {
1491 int ret;
1492
1493 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1494 trace_writeback_write_inode_start(inode, wbc);
1495 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1496 trace_writeback_write_inode(inode, wbc);
1497 return ret;
1498 }
1499 return 0;
1500 }
1501
1502 /*
1503 * Wait for writeback on an inode to complete. Called with i_lock held.
1504 * Caller must make sure inode cannot go away when we drop i_lock.
1505 */
__inode_wait_for_writeback(struct inode * inode)1506 static void __inode_wait_for_writeback(struct inode *inode)
1507 __releases(inode->i_lock)
1508 __acquires(inode->i_lock)
1509 {
1510 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1511 wait_queue_head_t *wqh;
1512
1513 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1514 while (inode->i_state & I_SYNC) {
1515 spin_unlock(&inode->i_lock);
1516 __wait_on_bit(wqh, &wq, bit_wait,
1517 TASK_UNINTERRUPTIBLE);
1518 spin_lock(&inode->i_lock);
1519 }
1520 }
1521
1522 /*
1523 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1524 */
inode_wait_for_writeback(struct inode * inode)1525 void inode_wait_for_writeback(struct inode *inode)
1526 {
1527 spin_lock(&inode->i_lock);
1528 __inode_wait_for_writeback(inode);
1529 spin_unlock(&inode->i_lock);
1530 }
1531
1532 /*
1533 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1534 * held and drops it. It is aimed for callers not holding any inode reference
1535 * so once i_lock is dropped, inode can go away.
1536 */
inode_sleep_on_writeback(struct inode * inode)1537 static void inode_sleep_on_writeback(struct inode *inode)
1538 __releases(inode->i_lock)
1539 {
1540 DEFINE_WAIT(wait);
1541 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1542 int sleep;
1543
1544 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1545 sleep = inode->i_state & I_SYNC;
1546 spin_unlock(&inode->i_lock);
1547 if (sleep)
1548 schedule();
1549 finish_wait(wqh, &wait);
1550 }
1551
1552 /*
1553 * Find proper writeback list for the inode depending on its current state and
1554 * possibly also change of its state while we were doing writeback. Here we
1555 * handle things such as livelock prevention or fairness of writeback among
1556 * inodes. This function can be called only by flusher thread - noone else
1557 * processes all inodes in writeback lists and requeueing inodes behind flusher
1558 * thread's back can have unexpected consequences.
1559 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1560 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1561 struct writeback_control *wbc)
1562 {
1563 if (inode->i_state & I_FREEING)
1564 return;
1565
1566 /*
1567 * Sync livelock prevention. Each inode is tagged and synced in one
1568 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1569 * the dirty time to prevent enqueue and sync it again.
1570 */
1571 if ((inode->i_state & I_DIRTY) &&
1572 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1573 inode->dirtied_when = jiffies;
1574
1575 if (wbc->pages_skipped) {
1576 /*
1577 * Writeback is not making progress due to locked buffers.
1578 * Skip this inode for now. Although having skipped pages
1579 * is odd for clean inodes, it can happen for some
1580 * filesystems so handle that gracefully.
1581 */
1582 if (inode->i_state & I_DIRTY_ALL)
1583 redirty_tail_locked(inode, wb);
1584 else
1585 inode_cgwb_move_to_attached(inode, wb);
1586 return;
1587 }
1588
1589 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1590 /*
1591 * We didn't write back all the pages. nfs_writepages()
1592 * sometimes bales out without doing anything.
1593 */
1594 if (wbc->nr_to_write <= 0) {
1595 /* Slice used up. Queue for next turn. */
1596 requeue_io(inode, wb);
1597 } else {
1598 /*
1599 * Writeback blocked by something other than
1600 * congestion. Delay the inode for some time to
1601 * avoid spinning on the CPU (100% iowait)
1602 * retrying writeback of the dirty page/inode
1603 * that cannot be performed immediately.
1604 */
1605 redirty_tail_locked(inode, wb);
1606 }
1607 } else if (inode->i_state & I_DIRTY) {
1608 /*
1609 * Filesystems can dirty the inode during writeback operations,
1610 * such as delayed allocation during submission or metadata
1611 * updates after data IO completion.
1612 */
1613 redirty_tail_locked(inode, wb);
1614 } else if (inode->i_state & I_DIRTY_TIME) {
1615 inode->dirtied_when = jiffies;
1616 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1617 inode->i_state &= ~I_SYNC_QUEUED;
1618 } else {
1619 /* The inode is clean. Remove from writeback lists. */
1620 inode_cgwb_move_to_attached(inode, wb);
1621 }
1622 }
1623
1624 /*
1625 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1626 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1627 *
1628 * This doesn't remove the inode from the writeback list it is on, except
1629 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1630 * expiration. The caller is otherwise responsible for writeback list handling.
1631 *
1632 * The caller is also responsible for setting the I_SYNC flag beforehand and
1633 * calling inode_sync_complete() to clear it afterwards.
1634 */
1635 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1636 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1637 {
1638 struct address_space *mapping = inode->i_mapping;
1639 long nr_to_write = wbc->nr_to_write;
1640 unsigned dirty;
1641 int ret;
1642
1643 WARN_ON(!(inode->i_state & I_SYNC));
1644
1645 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1646
1647 ret = do_writepages(mapping, wbc);
1648
1649 /*
1650 * Make sure to wait on the data before writing out the metadata.
1651 * This is important for filesystems that modify metadata on data
1652 * I/O completion. We don't do it for sync(2) writeback because it has a
1653 * separate, external IO completion path and ->sync_fs for guaranteeing
1654 * inode metadata is written back correctly.
1655 */
1656 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1657 int err = filemap_fdatawait(mapping);
1658 if (ret == 0)
1659 ret = err;
1660 }
1661
1662 /*
1663 * If the inode has dirty timestamps and we need to write them, call
1664 * mark_inode_dirty_sync() to notify the filesystem about it and to
1665 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1666 */
1667 if ((inode->i_state & I_DIRTY_TIME) &&
1668 (wbc->sync_mode == WB_SYNC_ALL ||
1669 time_after(jiffies, inode->dirtied_time_when +
1670 dirtytime_expire_interval * HZ))) {
1671 trace_writeback_lazytime(inode);
1672 mark_inode_dirty_sync(inode);
1673 }
1674
1675 /*
1676 * Get and clear the dirty flags from i_state. This needs to be done
1677 * after calling writepages because some filesystems may redirty the
1678 * inode during writepages due to delalloc. It also needs to be done
1679 * after handling timestamp expiration, as that may dirty the inode too.
1680 */
1681 spin_lock(&inode->i_lock);
1682 dirty = inode->i_state & I_DIRTY;
1683 inode->i_state &= ~dirty;
1684
1685 /*
1686 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1687 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1688 * either they see the I_DIRTY bits cleared or we see the dirtied
1689 * inode.
1690 *
1691 * I_DIRTY_PAGES is always cleared together above even if @mapping
1692 * still has dirty pages. The flag is reinstated after smp_mb() if
1693 * necessary. This guarantees that either __mark_inode_dirty()
1694 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1695 */
1696 smp_mb();
1697
1698 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1699 inode->i_state |= I_DIRTY_PAGES;
1700
1701 spin_unlock(&inode->i_lock);
1702
1703 /* Don't write the inode if only I_DIRTY_PAGES was set */
1704 if (dirty & ~I_DIRTY_PAGES) {
1705 int err = write_inode(inode, wbc);
1706 if (ret == 0)
1707 ret = err;
1708 }
1709 trace_writeback_single_inode(inode, wbc, nr_to_write);
1710 return ret;
1711 }
1712
1713 /*
1714 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1715 * the regular batched writeback done by the flusher threads in
1716 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1717 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1718 *
1719 * To prevent the inode from going away, either the caller must have a reference
1720 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1721 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1722 static int writeback_single_inode(struct inode *inode,
1723 struct writeback_control *wbc)
1724 {
1725 struct bdi_writeback *wb;
1726 int ret = 0;
1727
1728 spin_lock(&inode->i_lock);
1729 if (!atomic_read(&inode->i_count))
1730 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1731 else
1732 WARN_ON(inode->i_state & I_WILL_FREE);
1733
1734 if (inode->i_state & I_SYNC) {
1735 /*
1736 * Writeback is already running on the inode. For WB_SYNC_NONE,
1737 * that's enough and we can just return. For WB_SYNC_ALL, we
1738 * must wait for the existing writeback to complete, then do
1739 * writeback again if there's anything left.
1740 */
1741 if (wbc->sync_mode != WB_SYNC_ALL)
1742 goto out;
1743 __inode_wait_for_writeback(inode);
1744 }
1745 WARN_ON(inode->i_state & I_SYNC);
1746 /*
1747 * If the inode is already fully clean, then there's nothing to do.
1748 *
1749 * For data-integrity syncs we also need to check whether any pages are
1750 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1751 * there are any such pages, we'll need to wait for them.
1752 */
1753 if (!(inode->i_state & I_DIRTY_ALL) &&
1754 (wbc->sync_mode != WB_SYNC_ALL ||
1755 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1756 goto out;
1757 inode->i_state |= I_SYNC;
1758 wbc_attach_and_unlock_inode(wbc, inode);
1759
1760 ret = __writeback_single_inode(inode, wbc);
1761
1762 wbc_detach_inode(wbc);
1763
1764 wb = inode_to_wb_and_lock_list(inode);
1765 spin_lock(&inode->i_lock);
1766 /*
1767 * If the inode is freeing, its i_io_list shoudn't be updated
1768 * as it can be finally deleted at this moment.
1769 */
1770 if (!(inode->i_state & I_FREEING)) {
1771 /*
1772 * If the inode is now fully clean, then it can be safely
1773 * removed from its writeback list (if any). Otherwise the
1774 * flusher threads are responsible for the writeback lists.
1775 */
1776 if (!(inode->i_state & I_DIRTY_ALL))
1777 inode_cgwb_move_to_attached(inode, wb);
1778 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1779 if ((inode->i_state & I_DIRTY))
1780 redirty_tail_locked(inode, wb);
1781 else if (inode->i_state & I_DIRTY_TIME) {
1782 inode->dirtied_when = jiffies;
1783 inode_io_list_move_locked(inode,
1784 wb,
1785 &wb->b_dirty_time);
1786 }
1787 }
1788 }
1789
1790 spin_unlock(&wb->list_lock);
1791 inode_sync_complete(inode);
1792 out:
1793 spin_unlock(&inode->i_lock);
1794 return ret;
1795 }
1796
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1797 static long writeback_chunk_size(struct bdi_writeback *wb,
1798 struct wb_writeback_work *work)
1799 {
1800 long pages;
1801
1802 /*
1803 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1804 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1805 * here avoids calling into writeback_inodes_wb() more than once.
1806 *
1807 * The intended call sequence for WB_SYNC_ALL writeback is:
1808 *
1809 * wb_writeback()
1810 * writeback_sb_inodes() <== called only once
1811 * write_cache_pages() <== called once for each inode
1812 * (quickly) tag currently dirty pages
1813 * (maybe slowly) sync all tagged pages
1814 */
1815 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1816 pages = LONG_MAX;
1817 else {
1818 pages = min(wb->avg_write_bandwidth / 2,
1819 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1820 pages = min(pages, work->nr_pages);
1821 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1822 MIN_WRITEBACK_PAGES);
1823 }
1824
1825 return pages;
1826 }
1827
1828 /*
1829 * Write a portion of b_io inodes which belong to @sb.
1830 *
1831 * Return the number of pages and/or inodes written.
1832 *
1833 * NOTE! This is called with wb->list_lock held, and will
1834 * unlock and relock that for each inode it ends up doing
1835 * IO for.
1836 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1837 static long writeback_sb_inodes(struct super_block *sb,
1838 struct bdi_writeback *wb,
1839 struct wb_writeback_work *work)
1840 {
1841 struct writeback_control wbc = {
1842 .sync_mode = work->sync_mode,
1843 .tagged_writepages = work->tagged_writepages,
1844 .for_kupdate = work->for_kupdate,
1845 .for_background = work->for_background,
1846 .for_sync = work->for_sync,
1847 .range_cyclic = work->range_cyclic,
1848 .range_start = 0,
1849 .range_end = LLONG_MAX,
1850 };
1851 unsigned long start_time = jiffies;
1852 long write_chunk;
1853 long total_wrote = 0; /* count both pages and inodes */
1854
1855 while (!list_empty(&wb->b_io)) {
1856 struct inode *inode = wb_inode(wb->b_io.prev);
1857 struct bdi_writeback *tmp_wb;
1858 long wrote;
1859
1860 if (inode->i_sb != sb) {
1861 if (work->sb) {
1862 /*
1863 * We only want to write back data for this
1864 * superblock, move all inodes not belonging
1865 * to it back onto the dirty list.
1866 */
1867 redirty_tail(inode, wb);
1868 continue;
1869 }
1870
1871 /*
1872 * The inode belongs to a different superblock.
1873 * Bounce back to the caller to unpin this and
1874 * pin the next superblock.
1875 */
1876 break;
1877 }
1878
1879 /*
1880 * Don't bother with new inodes or inodes being freed, first
1881 * kind does not need periodic writeout yet, and for the latter
1882 * kind writeout is handled by the freer.
1883 */
1884 spin_lock(&inode->i_lock);
1885 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1886 redirty_tail_locked(inode, wb);
1887 spin_unlock(&inode->i_lock);
1888 continue;
1889 }
1890 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1891 /*
1892 * If this inode is locked for writeback and we are not
1893 * doing writeback-for-data-integrity, move it to
1894 * b_more_io so that writeback can proceed with the
1895 * other inodes on s_io.
1896 *
1897 * We'll have another go at writing back this inode
1898 * when we completed a full scan of b_io.
1899 */
1900 requeue_io(inode, wb);
1901 spin_unlock(&inode->i_lock);
1902 trace_writeback_sb_inodes_requeue(inode);
1903 continue;
1904 }
1905 spin_unlock(&wb->list_lock);
1906
1907 /*
1908 * We already requeued the inode if it had I_SYNC set and we
1909 * are doing WB_SYNC_NONE writeback. So this catches only the
1910 * WB_SYNC_ALL case.
1911 */
1912 if (inode->i_state & I_SYNC) {
1913 /* Wait for I_SYNC. This function drops i_lock... */
1914 inode_sleep_on_writeback(inode);
1915 /* Inode may be gone, start again */
1916 spin_lock(&wb->list_lock);
1917 continue;
1918 }
1919 inode->i_state |= I_SYNC;
1920 wbc_attach_and_unlock_inode(&wbc, inode);
1921
1922 write_chunk = writeback_chunk_size(wb, work);
1923 wbc.nr_to_write = write_chunk;
1924 wbc.pages_skipped = 0;
1925
1926 /*
1927 * We use I_SYNC to pin the inode in memory. While it is set
1928 * evict_inode() will wait so the inode cannot be freed.
1929 */
1930 __writeback_single_inode(inode, &wbc);
1931
1932 wbc_detach_inode(&wbc);
1933 work->nr_pages -= write_chunk - wbc.nr_to_write;
1934 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1935 wrote = wrote < 0 ? 0 : wrote;
1936 total_wrote += wrote;
1937
1938 if (need_resched()) {
1939 /*
1940 * We're trying to balance between building up a nice
1941 * long list of IOs to improve our merge rate, and
1942 * getting those IOs out quickly for anyone throttling
1943 * in balance_dirty_pages(). cond_resched() doesn't
1944 * unplug, so get our IOs out the door before we
1945 * give up the CPU.
1946 */
1947 blk_flush_plug(current);
1948 cond_resched();
1949 }
1950
1951 /*
1952 * Requeue @inode if still dirty. Be careful as @inode may
1953 * have been switched to another wb in the meantime.
1954 */
1955 tmp_wb = inode_to_wb_and_lock_list(inode);
1956 spin_lock(&inode->i_lock);
1957 if (!(inode->i_state & I_DIRTY_ALL))
1958 total_wrote++;
1959 requeue_inode(inode, tmp_wb, &wbc);
1960 inode_sync_complete(inode);
1961 spin_unlock(&inode->i_lock);
1962
1963 if (unlikely(tmp_wb != wb)) {
1964 spin_unlock(&tmp_wb->list_lock);
1965 spin_lock(&wb->list_lock);
1966 }
1967
1968 /*
1969 * bail out to wb_writeback() often enough to check
1970 * background threshold and other termination conditions.
1971 */
1972 if (total_wrote) {
1973 if (time_is_before_jiffies(start_time + HZ / 10UL))
1974 break;
1975 if (work->nr_pages <= 0)
1976 break;
1977 }
1978 }
1979 return total_wrote;
1980 }
1981
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1982 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1983 struct wb_writeback_work *work)
1984 {
1985 unsigned long start_time = jiffies;
1986 long wrote = 0;
1987
1988 while (!list_empty(&wb->b_io)) {
1989 struct inode *inode = wb_inode(wb->b_io.prev);
1990 struct super_block *sb = inode->i_sb;
1991
1992 if (!trylock_super(sb)) {
1993 /*
1994 * trylock_super() may fail consistently due to
1995 * s_umount being grabbed by someone else. Don't use
1996 * requeue_io() to avoid busy retrying the inode/sb.
1997 */
1998 redirty_tail(inode, wb);
1999 continue;
2000 }
2001 wrote += writeback_sb_inodes(sb, wb, work);
2002 up_read(&sb->s_umount);
2003
2004 /* refer to the same tests at the end of writeback_sb_inodes */
2005 if (wrote) {
2006 if (time_is_before_jiffies(start_time + HZ / 10UL))
2007 break;
2008 if (work->nr_pages <= 0)
2009 break;
2010 }
2011 }
2012 /* Leave any unwritten inodes on b_io */
2013 return wrote;
2014 }
2015
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)2016 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
2017 enum wb_reason reason)
2018 {
2019 struct wb_writeback_work work = {
2020 .nr_pages = nr_pages,
2021 .sync_mode = WB_SYNC_NONE,
2022 .range_cyclic = 1,
2023 .reason = reason,
2024 };
2025 struct blk_plug plug;
2026
2027 blk_start_plug(&plug);
2028 spin_lock(&wb->list_lock);
2029 if (list_empty(&wb->b_io))
2030 queue_io(wb, &work, jiffies);
2031 __writeback_inodes_wb(wb, &work);
2032 spin_unlock(&wb->list_lock);
2033 blk_finish_plug(&plug);
2034
2035 return nr_pages - work.nr_pages;
2036 }
2037
2038 /*
2039 * Explicit flushing or periodic writeback of "old" data.
2040 *
2041 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2042 * dirtying-time in the inode's address_space. So this periodic writeback code
2043 * just walks the superblock inode list, writing back any inodes which are
2044 * older than a specific point in time.
2045 *
2046 * Try to run once per dirty_writeback_interval. But if a writeback event
2047 * takes longer than a dirty_writeback_interval interval, then leave a
2048 * one-second gap.
2049 *
2050 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2051 * all dirty pages if they are all attached to "old" mappings.
2052 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2053 static long wb_writeback(struct bdi_writeback *wb,
2054 struct wb_writeback_work *work)
2055 {
2056 long nr_pages = work->nr_pages;
2057 unsigned long dirtied_before = jiffies;
2058 struct inode *inode;
2059 long progress;
2060 struct blk_plug plug;
2061
2062 blk_start_plug(&plug);
2063 spin_lock(&wb->list_lock);
2064 for (;;) {
2065 /*
2066 * Stop writeback when nr_pages has been consumed
2067 */
2068 if (work->nr_pages <= 0)
2069 break;
2070
2071 /*
2072 * Background writeout and kupdate-style writeback may
2073 * run forever. Stop them if there is other work to do
2074 * so that e.g. sync can proceed. They'll be restarted
2075 * after the other works are all done.
2076 */
2077 if ((work->for_background || work->for_kupdate) &&
2078 !list_empty(&wb->work_list))
2079 break;
2080
2081 /*
2082 * For background writeout, stop when we are below the
2083 * background dirty threshold
2084 */
2085 if (work->for_background && !wb_over_bg_thresh(wb))
2086 break;
2087
2088 /*
2089 * Kupdate and background works are special and we want to
2090 * include all inodes that need writing. Livelock avoidance is
2091 * handled by these works yielding to any other work so we are
2092 * safe.
2093 */
2094 if (work->for_kupdate) {
2095 dirtied_before = jiffies -
2096 msecs_to_jiffies(dirty_expire_interval * 10);
2097 } else if (work->for_background)
2098 dirtied_before = jiffies;
2099
2100 trace_writeback_start(wb, work);
2101 if (list_empty(&wb->b_io))
2102 queue_io(wb, work, dirtied_before);
2103 if (work->sb)
2104 progress = writeback_sb_inodes(work->sb, wb, work);
2105 else
2106 progress = __writeback_inodes_wb(wb, work);
2107 trace_writeback_written(wb, work);
2108
2109 /*
2110 * Did we write something? Try for more
2111 *
2112 * Dirty inodes are moved to b_io for writeback in batches.
2113 * The completion of the current batch does not necessarily
2114 * mean the overall work is done. So we keep looping as long
2115 * as made some progress on cleaning pages or inodes.
2116 */
2117 if (progress)
2118 continue;
2119 /*
2120 * No more inodes for IO, bail
2121 */
2122 if (list_empty(&wb->b_more_io))
2123 break;
2124 /*
2125 * Nothing written. Wait for some inode to
2126 * become available for writeback. Otherwise
2127 * we'll just busyloop.
2128 */
2129 trace_writeback_wait(wb, work);
2130 inode = wb_inode(wb->b_more_io.prev);
2131 spin_lock(&inode->i_lock);
2132 spin_unlock(&wb->list_lock);
2133 /* This function drops i_lock... */
2134 inode_sleep_on_writeback(inode);
2135 spin_lock(&wb->list_lock);
2136 }
2137 spin_unlock(&wb->list_lock);
2138 blk_finish_plug(&plug);
2139
2140 return nr_pages - work->nr_pages;
2141 }
2142
2143 /*
2144 * Return the next wb_writeback_work struct that hasn't been processed yet.
2145 */
get_next_work_item(struct bdi_writeback * wb)2146 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2147 {
2148 struct wb_writeback_work *work = NULL;
2149
2150 spin_lock_irq(&wb->work_lock);
2151 if (!list_empty(&wb->work_list)) {
2152 work = list_entry(wb->work_list.next,
2153 struct wb_writeback_work, list);
2154 list_del_init(&work->list);
2155 }
2156 spin_unlock_irq(&wb->work_lock);
2157 return work;
2158 }
2159
wb_check_background_flush(struct bdi_writeback * wb)2160 static long wb_check_background_flush(struct bdi_writeback *wb)
2161 {
2162 if (wb_over_bg_thresh(wb)) {
2163
2164 struct wb_writeback_work work = {
2165 .nr_pages = LONG_MAX,
2166 .sync_mode = WB_SYNC_NONE,
2167 .for_background = 1,
2168 .range_cyclic = 1,
2169 .reason = WB_REASON_BACKGROUND,
2170 };
2171
2172 return wb_writeback(wb, &work);
2173 }
2174
2175 return 0;
2176 }
2177
wb_check_old_data_flush(struct bdi_writeback * wb)2178 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2179 {
2180 unsigned long expired;
2181 long nr_pages;
2182
2183 /*
2184 * When set to zero, disable periodic writeback
2185 */
2186 if (!dirty_writeback_interval)
2187 return 0;
2188
2189 expired = wb->last_old_flush +
2190 msecs_to_jiffies(dirty_writeback_interval * 10);
2191 if (time_before(jiffies, expired))
2192 return 0;
2193
2194 wb->last_old_flush = jiffies;
2195 nr_pages = get_nr_dirty_pages();
2196
2197 if (nr_pages) {
2198 struct wb_writeback_work work = {
2199 .nr_pages = nr_pages,
2200 .sync_mode = WB_SYNC_NONE,
2201 .for_kupdate = 1,
2202 .range_cyclic = 1,
2203 .reason = WB_REASON_PERIODIC,
2204 };
2205
2206 return wb_writeback(wb, &work);
2207 }
2208
2209 return 0;
2210 }
2211
wb_check_start_all(struct bdi_writeback * wb)2212 static long wb_check_start_all(struct bdi_writeback *wb)
2213 {
2214 long nr_pages;
2215
2216 if (!test_bit(WB_start_all, &wb->state))
2217 return 0;
2218
2219 nr_pages = get_nr_dirty_pages();
2220 if (nr_pages) {
2221 struct wb_writeback_work work = {
2222 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2223 .sync_mode = WB_SYNC_NONE,
2224 .range_cyclic = 1,
2225 .reason = wb->start_all_reason,
2226 };
2227
2228 nr_pages = wb_writeback(wb, &work);
2229 }
2230
2231 clear_bit(WB_start_all, &wb->state);
2232 return nr_pages;
2233 }
2234
2235
2236 /*
2237 * Retrieve work items and do the writeback they describe
2238 */
wb_do_writeback(struct bdi_writeback * wb)2239 static long wb_do_writeback(struct bdi_writeback *wb)
2240 {
2241 struct wb_writeback_work *work;
2242 long wrote = 0;
2243
2244 set_bit(WB_writeback_running, &wb->state);
2245 while ((work = get_next_work_item(wb)) != NULL) {
2246 trace_writeback_exec(wb, work);
2247 wrote += wb_writeback(wb, work);
2248 finish_writeback_work(wb, work);
2249 }
2250
2251 /*
2252 * Check for a flush-everything request
2253 */
2254 wrote += wb_check_start_all(wb);
2255
2256 /*
2257 * Check for periodic writeback, kupdated() style
2258 */
2259 wrote += wb_check_old_data_flush(wb);
2260 wrote += wb_check_background_flush(wb);
2261 clear_bit(WB_writeback_running, &wb->state);
2262
2263 return wrote;
2264 }
2265
2266 /*
2267 * Handle writeback of dirty data for the device backed by this bdi. Also
2268 * reschedules periodically and does kupdated style flushing.
2269 */
wb_workfn(struct work_struct * work)2270 void wb_workfn(struct work_struct *work)
2271 {
2272 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2273 struct bdi_writeback, dwork);
2274 long pages_written;
2275
2276 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2277 current->flags |= PF_SWAPWRITE;
2278
2279 if (likely(!current_is_workqueue_rescuer() ||
2280 !test_bit(WB_registered, &wb->state))) {
2281 /*
2282 * The normal path. Keep writing back @wb until its
2283 * work_list is empty. Note that this path is also taken
2284 * if @wb is shutting down even when we're running off the
2285 * rescuer as work_list needs to be drained.
2286 */
2287 do {
2288 pages_written = wb_do_writeback(wb);
2289 trace_writeback_pages_written(pages_written);
2290 } while (!list_empty(&wb->work_list));
2291 } else {
2292 /*
2293 * bdi_wq can't get enough workers and we're running off
2294 * the emergency worker. Don't hog it. Hopefully, 1024 is
2295 * enough for efficient IO.
2296 */
2297 pages_written = writeback_inodes_wb(wb, 1024,
2298 WB_REASON_FORKER_THREAD);
2299 trace_writeback_pages_written(pages_written);
2300 }
2301
2302 if (!list_empty(&wb->work_list))
2303 wb_wakeup(wb);
2304 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2305 wb_wakeup_delayed(wb);
2306
2307 current->flags &= ~PF_SWAPWRITE;
2308 }
2309
2310 /*
2311 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2312 * write back the whole world.
2313 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2314 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2315 enum wb_reason reason)
2316 {
2317 struct bdi_writeback *wb;
2318
2319 if (!bdi_has_dirty_io(bdi))
2320 return;
2321
2322 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2323 wb_start_writeback(wb, reason);
2324 }
2325
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2326 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2327 enum wb_reason reason)
2328 {
2329 rcu_read_lock();
2330 __wakeup_flusher_threads_bdi(bdi, reason);
2331 rcu_read_unlock();
2332 }
2333
2334 /*
2335 * Wakeup the flusher threads to start writeback of all currently dirty pages
2336 */
wakeup_flusher_threads(enum wb_reason reason)2337 void wakeup_flusher_threads(enum wb_reason reason)
2338 {
2339 struct backing_dev_info *bdi;
2340
2341 /*
2342 * If we are expecting writeback progress we must submit plugged IO.
2343 */
2344 if (blk_needs_flush_plug(current))
2345 blk_schedule_flush_plug(current);
2346
2347 rcu_read_lock();
2348 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2349 __wakeup_flusher_threads_bdi(bdi, reason);
2350 rcu_read_unlock();
2351 }
2352
2353 /*
2354 * Wake up bdi's periodically to make sure dirtytime inodes gets
2355 * written back periodically. We deliberately do *not* check the
2356 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2357 * kernel to be constantly waking up once there are any dirtytime
2358 * inodes on the system. So instead we define a separate delayed work
2359 * function which gets called much more rarely. (By default, only
2360 * once every 12 hours.)
2361 *
2362 * If there is any other write activity going on in the file system,
2363 * this function won't be necessary. But if the only thing that has
2364 * happened on the file system is a dirtytime inode caused by an atime
2365 * update, we need this infrastructure below to make sure that inode
2366 * eventually gets pushed out to disk.
2367 */
2368 static void wakeup_dirtytime_writeback(struct work_struct *w);
2369 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2370
wakeup_dirtytime_writeback(struct work_struct * w)2371 static void wakeup_dirtytime_writeback(struct work_struct *w)
2372 {
2373 struct backing_dev_info *bdi;
2374
2375 rcu_read_lock();
2376 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2377 struct bdi_writeback *wb;
2378
2379 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2380 if (!list_empty(&wb->b_dirty_time))
2381 wb_wakeup(wb);
2382 }
2383 rcu_read_unlock();
2384 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2385 }
2386
start_dirtytime_writeback(void)2387 static int __init start_dirtytime_writeback(void)
2388 {
2389 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2390 return 0;
2391 }
2392 __initcall(start_dirtytime_writeback);
2393
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2394 int dirtytime_interval_handler(struct ctl_table *table, int write,
2395 void *buffer, size_t *lenp, loff_t *ppos)
2396 {
2397 int ret;
2398
2399 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2400 if (ret == 0 && write)
2401 mod_delayed_work(system_wq, &dirtytime_work, 0);
2402 return ret;
2403 }
2404
2405 /**
2406 * __mark_inode_dirty - internal function to mark an inode dirty
2407 *
2408 * @inode: inode to mark
2409 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2410 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2411 * with I_DIRTY_PAGES.
2412 *
2413 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2414 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2415 *
2416 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2417 * instead of calling this directly.
2418 *
2419 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2420 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2421 * even if they are later hashed, as they will have been marked dirty already.
2422 *
2423 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2424 *
2425 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2426 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2427 * the kernel-internal blockdev inode represents the dirtying time of the
2428 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2429 * page->mapping->host, so the page-dirtying time is recorded in the internal
2430 * blockdev inode.
2431 */
__mark_inode_dirty(struct inode * inode,int flags)2432 void __mark_inode_dirty(struct inode *inode, int flags)
2433 {
2434 struct super_block *sb = inode->i_sb;
2435 int dirtytime = 0;
2436 struct bdi_writeback *wb = NULL;
2437
2438 trace_writeback_mark_inode_dirty(inode, flags);
2439
2440 if (flags & I_DIRTY_INODE) {
2441 /*
2442 * Inode timestamp update will piggback on this dirtying.
2443 * We tell ->dirty_inode callback that timestamps need to
2444 * be updated by setting I_DIRTY_TIME in flags.
2445 */
2446 if (inode->i_state & I_DIRTY_TIME) {
2447 spin_lock(&inode->i_lock);
2448 if (inode->i_state & I_DIRTY_TIME) {
2449 inode->i_state &= ~I_DIRTY_TIME;
2450 flags |= I_DIRTY_TIME;
2451 }
2452 spin_unlock(&inode->i_lock);
2453 }
2454
2455 /*
2456 * Notify the filesystem about the inode being dirtied, so that
2457 * (if needed) it can update on-disk fields and journal the
2458 * inode. This is only needed when the inode itself is being
2459 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2460 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2461 */
2462 trace_writeback_dirty_inode_start(inode, flags);
2463 if (sb->s_op->dirty_inode)
2464 sb->s_op->dirty_inode(inode,
2465 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2466 trace_writeback_dirty_inode(inode, flags);
2467
2468 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2469 flags &= ~I_DIRTY_TIME;
2470 } else {
2471 /*
2472 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2473 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2474 * in one call to __mark_inode_dirty().)
2475 */
2476 dirtytime = flags & I_DIRTY_TIME;
2477 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2478 }
2479
2480 /*
2481 * Paired with smp_mb() in __writeback_single_inode() for the
2482 * following lockless i_state test. See there for details.
2483 */
2484 smp_mb();
2485
2486 if ((inode->i_state & flags) == flags)
2487 return;
2488
2489 spin_lock(&inode->i_lock);
2490 if ((inode->i_state & flags) != flags) {
2491 const int was_dirty = inode->i_state & I_DIRTY;
2492
2493 inode_attach_wb(inode, NULL);
2494
2495 inode->i_state |= flags;
2496
2497 /*
2498 * Grab inode's wb early because it requires dropping i_lock and we
2499 * need to make sure following checks happen atomically with dirty
2500 * list handling so that we don't move inodes under flush worker's
2501 * hands.
2502 */
2503 if (!was_dirty) {
2504 wb = locked_inode_to_wb_and_lock_list(inode);
2505 spin_lock(&inode->i_lock);
2506 }
2507
2508 /*
2509 * If the inode is queued for writeback by flush worker, just
2510 * update its dirty state. Once the flush worker is done with
2511 * the inode it will place it on the appropriate superblock
2512 * list, based upon its state.
2513 */
2514 if (inode->i_state & I_SYNC_QUEUED)
2515 goto out_unlock;
2516
2517 /*
2518 * Only add valid (hashed) inodes to the superblock's
2519 * dirty list. Add blockdev inodes as well.
2520 */
2521 if (!S_ISBLK(inode->i_mode)) {
2522 if (inode_unhashed(inode))
2523 goto out_unlock;
2524 }
2525 if (inode->i_state & I_FREEING)
2526 goto out_unlock;
2527
2528 /*
2529 * If the inode was already on b_dirty/b_io/b_more_io, don't
2530 * reposition it (that would break b_dirty time-ordering).
2531 */
2532 if (!was_dirty) {
2533 struct list_head *dirty_list;
2534 bool wakeup_bdi = false;
2535
2536 inode->dirtied_when = jiffies;
2537 if (dirtytime)
2538 inode->dirtied_time_when = jiffies;
2539
2540 if (inode->i_state & I_DIRTY)
2541 dirty_list = &wb->b_dirty;
2542 else
2543 dirty_list = &wb->b_dirty_time;
2544
2545 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2546 dirty_list);
2547
2548 spin_unlock(&wb->list_lock);
2549 spin_unlock(&inode->i_lock);
2550 trace_writeback_dirty_inode_enqueue(inode);
2551
2552 /*
2553 * If this is the first dirty inode for this bdi,
2554 * we have to wake-up the corresponding bdi thread
2555 * to make sure background write-back happens
2556 * later.
2557 */
2558 if (wakeup_bdi &&
2559 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2560 wb_wakeup_delayed(wb);
2561 return;
2562 }
2563 }
2564 out_unlock:
2565 if (wb)
2566 spin_unlock(&wb->list_lock);
2567 spin_unlock(&inode->i_lock);
2568 }
2569 EXPORT_SYMBOL_NS(__mark_inode_dirty, ANDROID_GKI_VFS_EXPORT_ONLY);
2570
2571 /*
2572 * The @s_sync_lock is used to serialise concurrent sync operations
2573 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2574 * Concurrent callers will block on the s_sync_lock rather than doing contending
2575 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2576 * has been issued up to the time this function is enter is guaranteed to be
2577 * completed by the time we have gained the lock and waited for all IO that is
2578 * in progress regardless of the order callers are granted the lock.
2579 */
wait_sb_inodes(struct super_block * sb)2580 static void wait_sb_inodes(struct super_block *sb)
2581 {
2582 LIST_HEAD(sync_list);
2583
2584 /*
2585 * We need to be protected against the filesystem going from
2586 * r/o to r/w or vice versa.
2587 */
2588 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2589
2590 mutex_lock(&sb->s_sync_lock);
2591
2592 /*
2593 * Splice the writeback list onto a temporary list to avoid waiting on
2594 * inodes that have started writeback after this point.
2595 *
2596 * Use rcu_read_lock() to keep the inodes around until we have a
2597 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2598 * the local list because inodes can be dropped from either by writeback
2599 * completion.
2600 */
2601 rcu_read_lock();
2602 spin_lock_irq(&sb->s_inode_wblist_lock);
2603 list_splice_init(&sb->s_inodes_wb, &sync_list);
2604
2605 /*
2606 * Data integrity sync. Must wait for all pages under writeback, because
2607 * there may have been pages dirtied before our sync call, but which had
2608 * writeout started before we write it out. In which case, the inode
2609 * may not be on the dirty list, but we still have to wait for that
2610 * writeout.
2611 */
2612 while (!list_empty(&sync_list)) {
2613 struct inode *inode = list_first_entry(&sync_list, struct inode,
2614 i_wb_list);
2615 struct address_space *mapping = inode->i_mapping;
2616
2617 /*
2618 * Move each inode back to the wb list before we drop the lock
2619 * to preserve consistency between i_wb_list and the mapping
2620 * writeback tag. Writeback completion is responsible to remove
2621 * the inode from either list once the writeback tag is cleared.
2622 */
2623 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2624
2625 /*
2626 * The mapping can appear untagged while still on-list since we
2627 * do not have the mapping lock. Skip it here, wb completion
2628 * will remove it.
2629 */
2630 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2631 continue;
2632
2633 spin_unlock_irq(&sb->s_inode_wblist_lock);
2634
2635 spin_lock(&inode->i_lock);
2636 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2637 spin_unlock(&inode->i_lock);
2638
2639 spin_lock_irq(&sb->s_inode_wblist_lock);
2640 continue;
2641 }
2642 __iget(inode);
2643 spin_unlock(&inode->i_lock);
2644 rcu_read_unlock();
2645
2646 /*
2647 * We keep the error status of individual mapping so that
2648 * applications can catch the writeback error using fsync(2).
2649 * See filemap_fdatawait_keep_errors() for details.
2650 */
2651 filemap_fdatawait_keep_errors(mapping);
2652
2653 cond_resched();
2654
2655 iput(inode);
2656
2657 rcu_read_lock();
2658 spin_lock_irq(&sb->s_inode_wblist_lock);
2659 }
2660 spin_unlock_irq(&sb->s_inode_wblist_lock);
2661 rcu_read_unlock();
2662 mutex_unlock(&sb->s_sync_lock);
2663 }
2664
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2665 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2666 enum wb_reason reason, bool skip_if_busy)
2667 {
2668 struct backing_dev_info *bdi = sb->s_bdi;
2669 DEFINE_WB_COMPLETION(done, bdi);
2670 struct wb_writeback_work work = {
2671 .sb = sb,
2672 .sync_mode = WB_SYNC_NONE,
2673 .tagged_writepages = 1,
2674 .done = &done,
2675 .nr_pages = nr,
2676 .reason = reason,
2677 };
2678
2679 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2680 return;
2681 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2682
2683 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2684 wb_wait_for_completion(&done);
2685 }
2686
2687 /**
2688 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2689 * @sb: the superblock
2690 * @nr: the number of pages to write
2691 * @reason: reason why some writeback work initiated
2692 *
2693 * Start writeback on some inodes on this super_block. No guarantees are made
2694 * on how many (if any) will be written, and this function does not wait
2695 * for IO completion of submitted IO.
2696 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2697 void writeback_inodes_sb_nr(struct super_block *sb,
2698 unsigned long nr,
2699 enum wb_reason reason)
2700 {
2701 __writeback_inodes_sb_nr(sb, nr, reason, false);
2702 }
2703 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2704
2705 /**
2706 * writeback_inodes_sb - writeback dirty inodes from given super_block
2707 * @sb: the superblock
2708 * @reason: reason why some writeback work was initiated
2709 *
2710 * Start writeback on some inodes on this super_block. No guarantees are made
2711 * on how many (if any) will be written, and this function does not wait
2712 * for IO completion of submitted IO.
2713 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2714 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2715 {
2716 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2717 }
2718 EXPORT_SYMBOL(writeback_inodes_sb);
2719
2720 /**
2721 * try_to_writeback_inodes_sb - try to start writeback if none underway
2722 * @sb: the superblock
2723 * @reason: reason why some writeback work was initiated
2724 *
2725 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2726 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2727 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2728 {
2729 if (!down_read_trylock(&sb->s_umount))
2730 return;
2731
2732 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2733 up_read(&sb->s_umount);
2734 }
2735 EXPORT_SYMBOL_NS(try_to_writeback_inodes_sb, ANDROID_GKI_VFS_EXPORT_ONLY);
2736
2737 /**
2738 * sync_inodes_sb - sync sb inode pages
2739 * @sb: the superblock
2740 *
2741 * This function writes and waits on any dirty inode belonging to this
2742 * super_block.
2743 */
sync_inodes_sb(struct super_block * sb)2744 void sync_inodes_sb(struct super_block *sb)
2745 {
2746 struct backing_dev_info *bdi = sb->s_bdi;
2747 DEFINE_WB_COMPLETION(done, bdi);
2748 struct wb_writeback_work work = {
2749 .sb = sb,
2750 .sync_mode = WB_SYNC_ALL,
2751 .nr_pages = LONG_MAX,
2752 .range_cyclic = 0,
2753 .done = &done,
2754 .reason = WB_REASON_SYNC,
2755 .for_sync = 1,
2756 };
2757
2758 /*
2759 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2760 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2761 * bdi_has_dirty() need to be written out too.
2762 */
2763 if (bdi == &noop_backing_dev_info)
2764 return;
2765 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2766
2767 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2768 bdi_down_write_wb_switch_rwsem(bdi);
2769 bdi_split_work_to_wbs(bdi, &work, false);
2770 wb_wait_for_completion(&done);
2771 bdi_up_write_wb_switch_rwsem(bdi);
2772
2773 wait_sb_inodes(sb);
2774 }
2775 EXPORT_SYMBOL(sync_inodes_sb);
2776
2777 /**
2778 * write_inode_now - write an inode to disk
2779 * @inode: inode to write to disk
2780 * @sync: whether the write should be synchronous or not
2781 *
2782 * This function commits an inode to disk immediately if it is dirty. This is
2783 * primarily needed by knfsd.
2784 *
2785 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2786 */
write_inode_now(struct inode * inode,int sync)2787 int write_inode_now(struct inode *inode, int sync)
2788 {
2789 struct writeback_control wbc = {
2790 .nr_to_write = LONG_MAX,
2791 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2792 .range_start = 0,
2793 .range_end = LLONG_MAX,
2794 };
2795
2796 if (!mapping_can_writeback(inode->i_mapping))
2797 wbc.nr_to_write = 0;
2798
2799 might_sleep();
2800 return writeback_single_inode(inode, &wbc);
2801 }
2802 EXPORT_SYMBOL_NS(write_inode_now, ANDROID_GKI_VFS_EXPORT_ONLY);
2803
2804 /**
2805 * sync_inode_metadata - write an inode to disk
2806 * @inode: the inode to sync
2807 * @wait: wait for I/O to complete.
2808 *
2809 * Write an inode to disk and adjust its dirty state after completion.
2810 *
2811 * Note: only writes the actual inode, no associated data or other metadata.
2812 */
sync_inode_metadata(struct inode * inode,int wait)2813 int sync_inode_metadata(struct inode *inode, int wait)
2814 {
2815 struct writeback_control wbc = {
2816 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2817 .nr_to_write = 0, /* metadata-only */
2818 };
2819
2820 return writeback_single_inode(inode, &wbc);
2821 }
2822 EXPORT_SYMBOL_NS(sync_inode_metadata, ANDROID_GKI_VFS_EXPORT_ONLY);
2823