1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
__udf_clear_extent_cache(struct inode * inode)71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79 }
80
81 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94 {
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111 }
112
113 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116 {
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
udf_evict_inode(struct inode * inode)137 void udf_evict_inode(struct inode *inode)
138 {
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166 }
167
udf_write_failed(struct address_space * mapping,loff_t to)168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183 }
184
udf_writepage(struct page * page,struct writeback_control * wbc)185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 return block_write_full_page(page, udf_get_block, wbc);
188 }
189
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)190 static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192 {
193 return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
udf_readpage(struct file * file,struct page * page)196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 return mpage_readpage(page, udf_get_block);
199 }
200
udf_readahead(struct readahead_control * rac)201 static void udf_readahead(struct readahead_control *rac)
202 {
203 mpage_readahead(rac, udf_get_block);
204 }
205
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209 {
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216 }
217
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230 }
231
udf_bmap(struct address_space * mapping,sector_t block)232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238 .set_page_dirty = __set_page_dirty_buffers,
239 .readpage = udf_readpage,
240 .readahead = udf_readahead,
241 .writepage = udf_writepage,
242 .writepages = udf_writepages,
243 .write_begin = udf_write_begin,
244 .write_end = generic_write_end,
245 .direct_IO = udf_direct_IO,
246 .bmap = udf_bmap,
247 };
248
249 /*
250 * Expand file stored in ICB to a normal one-block-file
251 *
252 * This function requires i_data_sem for writing and releases it.
253 * This function requires i_mutex held
254 */
udf_expand_file_adinicb(struct inode * inode)255 int udf_expand_file_adinicb(struct inode *inode)
256 {
257 struct page *page;
258 char *kaddr;
259 struct udf_inode_info *iinfo = UDF_I(inode);
260 int err;
261
262 WARN_ON_ONCE(!inode_is_locked(inode));
263 if (!iinfo->i_lenAlloc) {
264 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
265 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
266 else
267 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
268 /* from now on we have normal address_space methods */
269 inode->i_data.a_ops = &udf_aops;
270 up_write(&iinfo->i_data_sem);
271 mark_inode_dirty(inode);
272 return 0;
273 }
274 /*
275 * Release i_data_sem so that we can lock a page - page lock ranks
276 * above i_data_sem. i_mutex still protects us against file changes.
277 */
278 up_write(&iinfo->i_data_sem);
279
280 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
281 if (!page)
282 return -ENOMEM;
283
284 if (!PageUptodate(page)) {
285 kaddr = kmap_atomic(page);
286 memset(kaddr + iinfo->i_lenAlloc, 0x00,
287 PAGE_SIZE - iinfo->i_lenAlloc);
288 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
289 iinfo->i_lenAlloc);
290 flush_dcache_page(page);
291 SetPageUptodate(page);
292 kunmap_atomic(kaddr);
293 }
294 down_write(&iinfo->i_data_sem);
295 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
296 iinfo->i_lenAlloc);
297 iinfo->i_lenAlloc = 0;
298 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
299 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
300 else
301 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
302 /* from now on we have normal address_space methods */
303 inode->i_data.a_ops = &udf_aops;
304 set_page_dirty(page);
305 unlock_page(page);
306 up_write(&iinfo->i_data_sem);
307 err = filemap_fdatawrite(inode->i_mapping);
308 if (err) {
309 /* Restore everything back so that we don't lose data... */
310 lock_page(page);
311 down_write(&iinfo->i_data_sem);
312 kaddr = kmap_atomic(page);
313 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
314 kunmap_atomic(kaddr);
315 unlock_page(page);
316 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
317 inode->i_data.a_ops = &udf_adinicb_aops;
318 iinfo->i_lenAlloc = inode->i_size;
319 up_write(&iinfo->i_data_sem);
320 }
321 put_page(page);
322 mark_inode_dirty(inode);
323
324 return err;
325 }
326
udf_expand_dir_adinicb(struct inode * inode,udf_pblk_t * block,int * err)327 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
328 udf_pblk_t *block, int *err)
329 {
330 udf_pblk_t newblock;
331 struct buffer_head *dbh = NULL;
332 struct kernel_lb_addr eloc;
333 uint8_t alloctype;
334 struct extent_position epos;
335
336 struct udf_fileident_bh sfibh, dfibh;
337 loff_t f_pos = udf_ext0_offset(inode);
338 int size = udf_ext0_offset(inode) + inode->i_size;
339 struct fileIdentDesc cfi, *sfi, *dfi;
340 struct udf_inode_info *iinfo = UDF_I(inode);
341
342 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
343 alloctype = ICBTAG_FLAG_AD_SHORT;
344 else
345 alloctype = ICBTAG_FLAG_AD_LONG;
346
347 if (!inode->i_size) {
348 iinfo->i_alloc_type = alloctype;
349 mark_inode_dirty(inode);
350 return NULL;
351 }
352
353 /* alloc block, and copy data to it */
354 *block = udf_new_block(inode->i_sb, inode,
355 iinfo->i_location.partitionReferenceNum,
356 iinfo->i_location.logicalBlockNum, err);
357 if (!(*block))
358 return NULL;
359 newblock = udf_get_pblock(inode->i_sb, *block,
360 iinfo->i_location.partitionReferenceNum,
361 0);
362 if (!newblock)
363 return NULL;
364 dbh = udf_tgetblk(inode->i_sb, newblock);
365 if (!dbh)
366 return NULL;
367 lock_buffer(dbh);
368 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
369 set_buffer_uptodate(dbh);
370 unlock_buffer(dbh);
371 mark_buffer_dirty_inode(dbh, inode);
372
373 sfibh.soffset = sfibh.eoffset =
374 f_pos & (inode->i_sb->s_blocksize - 1);
375 sfibh.sbh = sfibh.ebh = NULL;
376 dfibh.soffset = dfibh.eoffset = 0;
377 dfibh.sbh = dfibh.ebh = dbh;
378 while (f_pos < size) {
379 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
380 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
381 NULL, NULL, NULL);
382 if (!sfi) {
383 brelse(dbh);
384 return NULL;
385 }
386 iinfo->i_alloc_type = alloctype;
387 sfi->descTag.tagLocation = cpu_to_le32(*block);
388 dfibh.soffset = dfibh.eoffset;
389 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
390 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
391 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
392 udf_get_fi_ident(sfi))) {
393 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 brelse(dbh);
395 return NULL;
396 }
397 }
398 mark_buffer_dirty_inode(dbh, inode);
399
400 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
401 iinfo->i_lenAlloc = 0;
402 eloc.logicalBlockNum = *block;
403 eloc.partitionReferenceNum =
404 iinfo->i_location.partitionReferenceNum;
405 iinfo->i_lenExtents = inode->i_size;
406 epos.bh = NULL;
407 epos.block = iinfo->i_location;
408 epos.offset = udf_file_entry_alloc_offset(inode);
409 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 /* UniqueID stuff */
411
412 brelse(epos.bh);
413 mark_inode_dirty(inode);
414 return dbh;
415 }
416
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)417 static int udf_get_block(struct inode *inode, sector_t block,
418 struct buffer_head *bh_result, int create)
419 {
420 int err, new;
421 sector_t phys = 0;
422 struct udf_inode_info *iinfo;
423
424 if (!create) {
425 phys = udf_block_map(inode, block);
426 if (phys)
427 map_bh(bh_result, inode->i_sb, phys);
428 return 0;
429 }
430
431 err = -EIO;
432 new = 0;
433 iinfo = UDF_I(inode);
434
435 down_write(&iinfo->i_data_sem);
436 if (block == iinfo->i_next_alloc_block + 1) {
437 iinfo->i_next_alloc_block++;
438 iinfo->i_next_alloc_goal++;
439 }
440
441 /*
442 * Block beyond EOF and prealloc extents? Just discard preallocation
443 * as it is not useful and complicates things.
444 */
445 if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
446 udf_discard_prealloc(inode);
447 udf_clear_extent_cache(inode);
448 phys = inode_getblk(inode, block, &err, &new);
449 if (!phys)
450 goto abort;
451
452 if (new)
453 set_buffer_new(bh_result);
454 map_bh(bh_result, inode->i_sb, phys);
455
456 abort:
457 up_write(&iinfo->i_data_sem);
458 return err;
459 }
460
udf_getblk(struct inode * inode,udf_pblk_t block,int create,int * err)461 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
462 int create, int *err)
463 {
464 struct buffer_head *bh;
465 struct buffer_head dummy;
466
467 dummy.b_state = 0;
468 dummy.b_blocknr = -1000;
469 *err = udf_get_block(inode, block, &dummy, create);
470 if (!*err && buffer_mapped(&dummy)) {
471 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
472 if (buffer_new(&dummy)) {
473 lock_buffer(bh);
474 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
475 set_buffer_uptodate(bh);
476 unlock_buffer(bh);
477 mark_buffer_dirty_inode(bh, inode);
478 }
479 return bh;
480 }
481
482 return NULL;
483 }
484
485 /* Extend the file with new blocks totaling 'new_block_bytes',
486 * return the number of extents added
487 */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)488 static int udf_do_extend_file(struct inode *inode,
489 struct extent_position *last_pos,
490 struct kernel_long_ad *last_ext,
491 loff_t new_block_bytes)
492 {
493 uint32_t add;
494 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
495 struct super_block *sb = inode->i_sb;
496 struct udf_inode_info *iinfo;
497 int err;
498
499 /* The previous extent is fake and we should not extend by anything
500 * - there's nothing to do... */
501 if (!new_block_bytes && fake)
502 return 0;
503
504 iinfo = UDF_I(inode);
505 /* Round the last extent up to a multiple of block size */
506 if (last_ext->extLength & (sb->s_blocksize - 1)) {
507 last_ext->extLength =
508 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
509 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
510 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
511 iinfo->i_lenExtents =
512 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
513 ~(sb->s_blocksize - 1);
514 }
515
516 /* Can we merge with the previous extent? */
517 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
518 EXT_NOT_RECORDED_NOT_ALLOCATED) {
519 add = (1 << 30) - sb->s_blocksize -
520 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 if (add > new_block_bytes)
522 add = new_block_bytes;
523 new_block_bytes -= add;
524 last_ext->extLength += add;
525 }
526
527 if (fake) {
528 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
529 last_ext->extLength, 1);
530 if (err < 0)
531 goto out_err;
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539
540 /*
541 * We've rewritten the last extent. If we are going to add
542 * more extents, we may need to enter possible following
543 * empty indirect extent.
544 */
545 if (new_block_bytes)
546 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
547 }
548
549 /* Managed to do everything necessary? */
550 if (!new_block_bytes)
551 goto out;
552
553 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
554 last_ext->extLocation.logicalBlockNum = 0;
555 last_ext->extLocation.partitionReferenceNum = 0;
556 add = (1 << 30) - sb->s_blocksize;
557 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
558
559 /* Create enough extents to cover the whole hole */
560 while (new_block_bytes > add) {
561 new_block_bytes -= add;
562 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
563 last_ext->extLength, 1);
564 if (err)
565 goto out_err;
566 count++;
567 }
568 if (new_block_bytes) {
569 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
570 new_block_bytes;
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 goto out_err;
575 count++;
576 }
577
578 out:
579 /* last_pos should point to the last written extent... */
580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
581 last_pos->offset -= sizeof(struct short_ad);
582 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
583 last_pos->offset -= sizeof(struct long_ad);
584 else
585 return -EIO;
586
587 return count;
588 out_err:
589 /* Remove extents we've created so far */
590 udf_clear_extent_cache(inode);
591 udf_truncate_extents(inode);
592 return err;
593 }
594
595 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)596 static void udf_do_extend_final_block(struct inode *inode,
597 struct extent_position *last_pos,
598 struct kernel_long_ad *last_ext,
599 uint32_t new_elen)
600 {
601 uint32_t added_bytes;
602
603 /*
604 * Extent already large enough? It may be already rounded up to block
605 * size...
606 */
607 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
608 return;
609 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
610 last_ext->extLength += added_bytes;
611 UDF_I(inode)->i_lenExtents += added_bytes;
612
613 udf_write_aext(inode, last_pos, &last_ext->extLocation,
614 last_ext->extLength, 1);
615 }
616
udf_extend_file(struct inode * inode,loff_t newsize)617 static int udf_extend_file(struct inode *inode, loff_t newsize)
618 {
619
620 struct extent_position epos;
621 struct kernel_lb_addr eloc;
622 uint32_t elen;
623 int8_t etype;
624 struct super_block *sb = inode->i_sb;
625 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
626 loff_t new_elen;
627 int adsize;
628 struct udf_inode_info *iinfo = UDF_I(inode);
629 struct kernel_long_ad extent;
630 int err = 0;
631 bool within_last_ext;
632
633 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
634 adsize = sizeof(struct short_ad);
635 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
636 adsize = sizeof(struct long_ad);
637 else
638 BUG();
639
640 /*
641 * When creating hole in file, just don't bother with preserving
642 * preallocation. It likely won't be very useful anyway.
643 */
644 udf_discard_prealloc(inode);
645
646 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
647 within_last_ext = (etype != -1);
648 /* We don't expect extents past EOF... */
649 WARN_ON_ONCE(within_last_ext &&
650 elen > ((loff_t)offset + 1) << inode->i_blkbits);
651
652 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
653 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
654 /* File has no extents at all or has empty last
655 * indirect extent! Create a fake extent... */
656 extent.extLocation.logicalBlockNum = 0;
657 extent.extLocation.partitionReferenceNum = 0;
658 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
659 } else {
660 epos.offset -= adsize;
661 etype = udf_next_aext(inode, &epos, &extent.extLocation,
662 &extent.extLength, 0);
663 extent.extLength |= etype << 30;
664 }
665
666 new_elen = ((loff_t)offset << inode->i_blkbits) |
667 (newsize & (sb->s_blocksize - 1));
668
669 /* File has extent covering the new size (could happen when extending
670 * inside a block)?
671 */
672 if (within_last_ext) {
673 /* Extending file within the last file block */
674 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
675 } else {
676 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
677 }
678
679 if (err < 0)
680 goto out;
681 err = 0;
682 iinfo->i_lenExtents = newsize;
683 out:
684 brelse(epos.bh);
685 return err;
686 }
687
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)688 static sector_t inode_getblk(struct inode *inode, sector_t block,
689 int *err, int *new)
690 {
691 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
692 struct extent_position prev_epos, cur_epos, next_epos;
693 int count = 0, startnum = 0, endnum = 0;
694 uint32_t elen = 0, tmpelen;
695 struct kernel_lb_addr eloc, tmpeloc;
696 int c = 1;
697 loff_t lbcount = 0, b_off = 0;
698 udf_pblk_t newblocknum, newblock = 0;
699 sector_t offset = 0;
700 int8_t etype;
701 struct udf_inode_info *iinfo = UDF_I(inode);
702 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
703 int lastblock = 0;
704 bool isBeyondEOF;
705
706 *err = 0;
707 *new = 0;
708 prev_epos.offset = udf_file_entry_alloc_offset(inode);
709 prev_epos.block = iinfo->i_location;
710 prev_epos.bh = NULL;
711 cur_epos = next_epos = prev_epos;
712 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
713
714 /* find the extent which contains the block we are looking for.
715 alternate between laarr[0] and laarr[1] for locations of the
716 current extent, and the previous extent */
717 do {
718 if (prev_epos.bh != cur_epos.bh) {
719 brelse(prev_epos.bh);
720 get_bh(cur_epos.bh);
721 prev_epos.bh = cur_epos.bh;
722 }
723 if (cur_epos.bh != next_epos.bh) {
724 brelse(cur_epos.bh);
725 get_bh(next_epos.bh);
726 cur_epos.bh = next_epos.bh;
727 }
728
729 lbcount += elen;
730
731 prev_epos.block = cur_epos.block;
732 cur_epos.block = next_epos.block;
733
734 prev_epos.offset = cur_epos.offset;
735 cur_epos.offset = next_epos.offset;
736
737 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
738 if (etype == -1)
739 break;
740
741 c = !c;
742
743 laarr[c].extLength = (etype << 30) | elen;
744 laarr[c].extLocation = eloc;
745
746 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747 pgoal = eloc.logicalBlockNum +
748 ((elen + inode->i_sb->s_blocksize - 1) >>
749 inode->i_sb->s_blocksize_bits);
750
751 count++;
752 } while (lbcount + elen <= b_off);
753
754 b_off -= lbcount;
755 offset = b_off >> inode->i_sb->s_blocksize_bits;
756 /*
757 * Move prev_epos and cur_epos into indirect extent if we are at
758 * the pointer to it
759 */
760 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
761 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
762
763 /* if the extent is allocated and recorded, return the block
764 if the extent is not a multiple of the blocksize, round up */
765
766 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
767 if (elen & (inode->i_sb->s_blocksize - 1)) {
768 elen = EXT_RECORDED_ALLOCATED |
769 ((elen + inode->i_sb->s_blocksize - 1) &
770 ~(inode->i_sb->s_blocksize - 1));
771 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
772 }
773 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774 goto out_free;
775 }
776
777 /* Are we beyond EOF and preallocated extent? */
778 if (etype == -1) {
779 int ret;
780 loff_t hole_len;
781
782 isBeyondEOF = true;
783 if (count) {
784 if (c)
785 laarr[0] = laarr[1];
786 startnum = 1;
787 } else {
788 /* Create a fake extent when there's not one */
789 memset(&laarr[0].extLocation, 0x00,
790 sizeof(struct kernel_lb_addr));
791 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
792 /* Will udf_do_extend_file() create real extent from
793 a fake one? */
794 startnum = (offset > 0);
795 }
796 /* Create extents for the hole between EOF and offset */
797 hole_len = (loff_t)offset << inode->i_blkbits;
798 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
799 if (ret < 0) {
800 *err = ret;
801 goto out_free;
802 }
803 c = 0;
804 offset = 0;
805 count += ret;
806 /*
807 * Is there any real extent? - otherwise we overwrite the fake
808 * one...
809 */
810 if (count)
811 c = !c;
812 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
813 inode->i_sb->s_blocksize;
814 memset(&laarr[c].extLocation, 0x00,
815 sizeof(struct kernel_lb_addr));
816 count++;
817 endnum = c + 1;
818 lastblock = 1;
819 } else {
820 isBeyondEOF = false;
821 endnum = startnum = ((count > 2) ? 2 : count);
822
823 /* if the current extent is in position 0,
824 swap it with the previous */
825 if (!c && count != 1) {
826 laarr[2] = laarr[0];
827 laarr[0] = laarr[1];
828 laarr[1] = laarr[2];
829 c = 1;
830 }
831
832 /* if the current block is located in an extent,
833 read the next extent */
834 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
835 if (etype != -1) {
836 laarr[c + 1].extLength = (etype << 30) | elen;
837 laarr[c + 1].extLocation = eloc;
838 count++;
839 startnum++;
840 endnum++;
841 } else
842 lastblock = 1;
843 }
844
845 /* if the current extent is not recorded but allocated, get the
846 * block in the extent corresponding to the requested block */
847 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
848 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
849 else { /* otherwise, allocate a new block */
850 if (iinfo->i_next_alloc_block == block)
851 goal = iinfo->i_next_alloc_goal;
852
853 if (!goal) {
854 if (!(goal = pgoal)) /* XXX: what was intended here? */
855 goal = iinfo->i_location.logicalBlockNum + 1;
856 }
857
858 newblocknum = udf_new_block(inode->i_sb, inode,
859 iinfo->i_location.partitionReferenceNum,
860 goal, err);
861 if (!newblocknum) {
862 *err = -ENOSPC;
863 goto out_free;
864 }
865 if (isBeyondEOF)
866 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
867 }
868
869 /* if the extent the requsted block is located in contains multiple
870 * blocks, split the extent into at most three extents. blocks prior
871 * to requested block, requested block, and blocks after requested
872 * block */
873 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
874
875 /* We preallocate blocks only for regular files. It also makes sense
876 * for directories but there's a problem when to drop the
877 * preallocation. We might use some delayed work for that but I feel
878 * it's overengineering for a filesystem like UDF. */
879 if (S_ISREG(inode->i_mode))
880 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
881
882 /* merge any continuous blocks in laarr */
883 udf_merge_extents(inode, laarr, &endnum);
884
885 /* write back the new extents, inserting new extents if the new number
886 * of extents is greater than the old number, and deleting extents if
887 * the new number of extents is less than the old number */
888 *err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
889 if (*err < 0)
890 goto out_free;
891
892 newblock = udf_get_pblock(inode->i_sb, newblocknum,
893 iinfo->i_location.partitionReferenceNum, 0);
894 if (!newblock) {
895 *err = -EIO;
896 goto out_free;
897 }
898 *new = 1;
899 iinfo->i_next_alloc_block = block;
900 iinfo->i_next_alloc_goal = newblocknum;
901 inode->i_ctime = current_time(inode);
902
903 if (IS_SYNC(inode))
904 udf_sync_inode(inode);
905 else
906 mark_inode_dirty(inode);
907 out_free:
908 brelse(prev_epos.bh);
909 brelse(cur_epos.bh);
910 brelse(next_epos.bh);
911 return newblock;
912 }
913
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)914 static void udf_split_extents(struct inode *inode, int *c, int offset,
915 udf_pblk_t newblocknum,
916 struct kernel_long_ad *laarr, int *endnum)
917 {
918 unsigned long blocksize = inode->i_sb->s_blocksize;
919 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
920
921 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
922 (laarr[*c].extLength >> 30) ==
923 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
924 int curr = *c;
925 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
926 blocksize - 1) >> blocksize_bits;
927 int8_t etype = (laarr[curr].extLength >> 30);
928
929 if (blen == 1)
930 ;
931 else if (!offset || blen == offset + 1) {
932 laarr[curr + 2] = laarr[curr + 1];
933 laarr[curr + 1] = laarr[curr];
934 } else {
935 laarr[curr + 3] = laarr[curr + 1];
936 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
937 }
938
939 if (offset) {
940 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
941 udf_free_blocks(inode->i_sb, inode,
942 &laarr[curr].extLocation,
943 0, offset);
944 laarr[curr].extLength =
945 EXT_NOT_RECORDED_NOT_ALLOCATED |
946 (offset << blocksize_bits);
947 laarr[curr].extLocation.logicalBlockNum = 0;
948 laarr[curr].extLocation.
949 partitionReferenceNum = 0;
950 } else
951 laarr[curr].extLength = (etype << 30) |
952 (offset << blocksize_bits);
953 curr++;
954 (*c)++;
955 (*endnum)++;
956 }
957
958 laarr[curr].extLocation.logicalBlockNum = newblocknum;
959 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
960 laarr[curr].extLocation.partitionReferenceNum =
961 UDF_I(inode)->i_location.partitionReferenceNum;
962 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
963 blocksize;
964 curr++;
965
966 if (blen != offset + 1) {
967 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
968 laarr[curr].extLocation.logicalBlockNum +=
969 offset + 1;
970 laarr[curr].extLength = (etype << 30) |
971 ((blen - (offset + 1)) << blocksize_bits);
972 curr++;
973 (*endnum)++;
974 }
975 }
976 }
977
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)978 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
979 struct kernel_long_ad *laarr,
980 int *endnum)
981 {
982 int start, length = 0, currlength = 0, i;
983
984 if (*endnum >= (c + 1)) {
985 if (!lastblock)
986 return;
987 else
988 start = c;
989 } else {
990 if ((laarr[c + 1].extLength >> 30) ==
991 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
992 start = c + 1;
993 length = currlength =
994 (((laarr[c + 1].extLength &
995 UDF_EXTENT_LENGTH_MASK) +
996 inode->i_sb->s_blocksize - 1) >>
997 inode->i_sb->s_blocksize_bits);
998 } else
999 start = c;
1000 }
1001
1002 for (i = start + 1; i <= *endnum; i++) {
1003 if (i == *endnum) {
1004 if (lastblock)
1005 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006 } else if ((laarr[i].extLength >> 30) ==
1007 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008 length += (((laarr[i].extLength &
1009 UDF_EXTENT_LENGTH_MASK) +
1010 inode->i_sb->s_blocksize - 1) >>
1011 inode->i_sb->s_blocksize_bits);
1012 } else
1013 break;
1014 }
1015
1016 if (length) {
1017 int next = laarr[start].extLocation.logicalBlockNum +
1018 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019 inode->i_sb->s_blocksize - 1) >>
1020 inode->i_sb->s_blocksize_bits);
1021 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022 laarr[start].extLocation.partitionReferenceNum,
1023 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025 currlength);
1026 if (numalloc) {
1027 if (start == (c + 1))
1028 laarr[start].extLength +=
1029 (numalloc <<
1030 inode->i_sb->s_blocksize_bits);
1031 else {
1032 memmove(&laarr[c + 2], &laarr[c + 1],
1033 sizeof(struct long_ad) * (*endnum - (c + 1)));
1034 (*endnum)++;
1035 laarr[c + 1].extLocation.logicalBlockNum = next;
1036 laarr[c + 1].extLocation.partitionReferenceNum =
1037 laarr[c].extLocation.
1038 partitionReferenceNum;
1039 laarr[c + 1].extLength =
1040 EXT_NOT_RECORDED_ALLOCATED |
1041 (numalloc <<
1042 inode->i_sb->s_blocksize_bits);
1043 start = c + 1;
1044 }
1045
1046 for (i = start + 1; numalloc && i < *endnum; i++) {
1047 int elen = ((laarr[i].extLength &
1048 UDF_EXTENT_LENGTH_MASK) +
1049 inode->i_sb->s_blocksize - 1) >>
1050 inode->i_sb->s_blocksize_bits;
1051
1052 if (elen > numalloc) {
1053 laarr[i].extLength -=
1054 (numalloc <<
1055 inode->i_sb->s_blocksize_bits);
1056 numalloc = 0;
1057 } else {
1058 numalloc -= elen;
1059 if (*endnum > (i + 1))
1060 memmove(&laarr[i],
1061 &laarr[i + 1],
1062 sizeof(struct long_ad) *
1063 (*endnum - (i + 1)));
1064 i--;
1065 (*endnum)--;
1066 }
1067 }
1068 UDF_I(inode)->i_lenExtents +=
1069 numalloc << inode->i_sb->s_blocksize_bits;
1070 }
1071 }
1072 }
1073
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1074 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075 int *endnum)
1076 {
1077 int i;
1078 unsigned long blocksize = inode->i_sb->s_blocksize;
1079 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080
1081 for (i = 0; i < (*endnum - 1); i++) {
1082 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084
1085 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086 (((li->extLength >> 30) ==
1087 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088 ((lip1->extLocation.logicalBlockNum -
1089 li->extLocation.logicalBlockNum) ==
1090 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091 blocksize - 1) >> blocksize_bits)))) {
1092
1093 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1096 li->extLength = lip1->extLength +
1097 (((li->extLength &
1098 UDF_EXTENT_LENGTH_MASK) +
1099 blocksize - 1) & ~(blocksize - 1));
1100 if (*endnum > (i + 2))
1101 memmove(&laarr[i + 1], &laarr[i + 2],
1102 sizeof(struct long_ad) *
1103 (*endnum - (i + 2)));
1104 i--;
1105 (*endnum)--;
1106 }
1107 } else if (((li->extLength >> 30) ==
1108 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1109 ((lip1->extLength >> 30) ==
1110 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1111 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1112 ((li->extLength &
1113 UDF_EXTENT_LENGTH_MASK) +
1114 blocksize - 1) >> blocksize_bits);
1115 li->extLocation.logicalBlockNum = 0;
1116 li->extLocation.partitionReferenceNum = 0;
1117
1118 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1119 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1120 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1121 lip1->extLength = (lip1->extLength -
1122 (li->extLength &
1123 UDF_EXTENT_LENGTH_MASK) +
1124 UDF_EXTENT_LENGTH_MASK) &
1125 ~(blocksize - 1);
1126 li->extLength = (li->extLength &
1127 UDF_EXTENT_FLAG_MASK) +
1128 (UDF_EXTENT_LENGTH_MASK + 1) -
1129 blocksize;
1130 } else {
1131 li->extLength = lip1->extLength +
1132 (((li->extLength &
1133 UDF_EXTENT_LENGTH_MASK) +
1134 blocksize - 1) & ~(blocksize - 1));
1135 if (*endnum > (i + 2))
1136 memmove(&laarr[i + 1], &laarr[i + 2],
1137 sizeof(struct long_ad) *
1138 (*endnum - (i + 2)));
1139 i--;
1140 (*endnum)--;
1141 }
1142 } else if ((li->extLength >> 30) ==
1143 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1144 udf_free_blocks(inode->i_sb, inode,
1145 &li->extLocation, 0,
1146 ((li->extLength &
1147 UDF_EXTENT_LENGTH_MASK) +
1148 blocksize - 1) >> blocksize_bits);
1149 li->extLocation.logicalBlockNum = 0;
1150 li->extLocation.partitionReferenceNum = 0;
1151 li->extLength = (li->extLength &
1152 UDF_EXTENT_LENGTH_MASK) |
1153 EXT_NOT_RECORDED_NOT_ALLOCATED;
1154 }
1155 }
1156 }
1157
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1158 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1159 int startnum, int endnum,
1160 struct extent_position *epos)
1161 {
1162 int start = 0, i;
1163 struct kernel_lb_addr tmploc;
1164 uint32_t tmplen;
1165 int err;
1166
1167 if (startnum > endnum) {
1168 for (i = 0; i < (startnum - endnum); i++)
1169 udf_delete_aext(inode, *epos);
1170 } else if (startnum < endnum) {
1171 for (i = 0; i < (endnum - startnum); i++) {
1172 err = udf_insert_aext(inode, *epos,
1173 laarr[i].extLocation,
1174 laarr[i].extLength);
1175 /*
1176 * If we fail here, we are likely corrupting the extent
1177 * list and leaking blocks. At least stop early to
1178 * limit the damage.
1179 */
1180 if (err < 0)
1181 return err;
1182 udf_next_aext(inode, epos, &laarr[i].extLocation,
1183 &laarr[i].extLength, 1);
1184 start++;
1185 }
1186 }
1187
1188 for (i = start; i < endnum; i++) {
1189 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1190 udf_write_aext(inode, epos, &laarr[i].extLocation,
1191 laarr[i].extLength, 1);
1192 }
1193 return 0;
1194 }
1195
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1196 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1197 int create, int *err)
1198 {
1199 struct buffer_head *bh = NULL;
1200
1201 bh = udf_getblk(inode, block, create, err);
1202 if (!bh)
1203 return NULL;
1204
1205 if (buffer_uptodate(bh))
1206 return bh;
1207
1208 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209
1210 wait_on_buffer(bh);
1211 if (buffer_uptodate(bh))
1212 return bh;
1213
1214 brelse(bh);
1215 *err = -EIO;
1216 return NULL;
1217 }
1218
udf_setsize(struct inode * inode,loff_t newsize)1219 int udf_setsize(struct inode *inode, loff_t newsize)
1220 {
1221 int err;
1222 struct udf_inode_info *iinfo;
1223 unsigned int bsize = i_blocksize(inode);
1224
1225 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1226 S_ISLNK(inode->i_mode)))
1227 return -EINVAL;
1228 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1229 return -EPERM;
1230
1231 iinfo = UDF_I(inode);
1232 if (newsize > inode->i_size) {
1233 down_write(&iinfo->i_data_sem);
1234 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1235 if (bsize <
1236 (udf_file_entry_alloc_offset(inode) + newsize)) {
1237 err = udf_expand_file_adinicb(inode);
1238 if (err)
1239 return err;
1240 down_write(&iinfo->i_data_sem);
1241 } else {
1242 iinfo->i_lenAlloc = newsize;
1243 goto set_size;
1244 }
1245 }
1246 err = udf_extend_file(inode, newsize);
1247 if (err) {
1248 up_write(&iinfo->i_data_sem);
1249 return err;
1250 }
1251 set_size:
1252 up_write(&iinfo->i_data_sem);
1253 truncate_setsize(inode, newsize);
1254 } else {
1255 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1256 down_write(&iinfo->i_data_sem);
1257 udf_clear_extent_cache(inode);
1258 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1259 0x00, bsize - newsize -
1260 udf_file_entry_alloc_offset(inode));
1261 iinfo->i_lenAlloc = newsize;
1262 truncate_setsize(inode, newsize);
1263 up_write(&iinfo->i_data_sem);
1264 goto update_time;
1265 }
1266 err = block_truncate_page(inode->i_mapping, newsize,
1267 udf_get_block);
1268 if (err)
1269 return err;
1270 truncate_setsize(inode, newsize);
1271 down_write(&iinfo->i_data_sem);
1272 udf_clear_extent_cache(inode);
1273 err = udf_truncate_extents(inode);
1274 up_write(&iinfo->i_data_sem);
1275 if (err)
1276 return err;
1277 }
1278 update_time:
1279 inode->i_mtime = inode->i_ctime = current_time(inode);
1280 if (IS_SYNC(inode))
1281 udf_sync_inode(inode);
1282 else
1283 mark_inode_dirty(inode);
1284 return 0;
1285 }
1286
1287 /*
1288 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1289 * arbitrary - just that we hopefully don't limit any real use of rewritten
1290 * inode on write-once media but avoid looping for too long on corrupted media.
1291 */
1292 #define UDF_MAX_ICB_NESTING 1024
1293
udf_read_inode(struct inode * inode,bool hidden_inode)1294 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1295 {
1296 struct buffer_head *bh = NULL;
1297 struct fileEntry *fe;
1298 struct extendedFileEntry *efe;
1299 uint16_t ident;
1300 struct udf_inode_info *iinfo = UDF_I(inode);
1301 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1302 struct kernel_lb_addr *iloc = &iinfo->i_location;
1303 unsigned int link_count;
1304 unsigned int indirections = 0;
1305 int bs = inode->i_sb->s_blocksize;
1306 int ret = -EIO;
1307 uint32_t uid, gid;
1308
1309 reread:
1310 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1311 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1312 iloc->partitionReferenceNum, sbi->s_partitions);
1313 return -EIO;
1314 }
1315
1316 if (iloc->logicalBlockNum >=
1317 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1318 udf_debug("block=%u, partition=%u out of range\n",
1319 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1320 return -EIO;
1321 }
1322
1323 /*
1324 * Set defaults, but the inode is still incomplete!
1325 * Note: get_new_inode() sets the following on a new inode:
1326 * i_sb = sb
1327 * i_no = ino
1328 * i_flags = sb->s_flags
1329 * i_state = 0
1330 * clean_inode(): zero fills and sets
1331 * i_count = 1
1332 * i_nlink = 1
1333 * i_op = NULL;
1334 */
1335 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1336 if (!bh) {
1337 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1338 return -EIO;
1339 }
1340
1341 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1342 ident != TAG_IDENT_USE) {
1343 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1344 inode->i_ino, ident);
1345 goto out;
1346 }
1347
1348 fe = (struct fileEntry *)bh->b_data;
1349 efe = (struct extendedFileEntry *)bh->b_data;
1350
1351 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1352 struct buffer_head *ibh;
1353
1354 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1355 if (ident == TAG_IDENT_IE && ibh) {
1356 struct kernel_lb_addr loc;
1357 struct indirectEntry *ie;
1358
1359 ie = (struct indirectEntry *)ibh->b_data;
1360 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1361
1362 if (ie->indirectICB.extLength) {
1363 brelse(ibh);
1364 memcpy(&iinfo->i_location, &loc,
1365 sizeof(struct kernel_lb_addr));
1366 if (++indirections > UDF_MAX_ICB_NESTING) {
1367 udf_err(inode->i_sb,
1368 "too many ICBs in ICB hierarchy"
1369 " (max %d supported)\n",
1370 UDF_MAX_ICB_NESTING);
1371 goto out;
1372 }
1373 brelse(bh);
1374 goto reread;
1375 }
1376 }
1377 brelse(ibh);
1378 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1379 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1380 le16_to_cpu(fe->icbTag.strategyType));
1381 goto out;
1382 }
1383 if (fe->icbTag.strategyType == cpu_to_le16(4))
1384 iinfo->i_strat4096 = 0;
1385 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1386 iinfo->i_strat4096 = 1;
1387
1388 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1389 ICBTAG_FLAG_AD_MASK;
1390 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1391 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1392 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1393 ret = -EIO;
1394 goto out;
1395 }
1396 iinfo->i_hidden = hidden_inode;
1397 iinfo->i_unique = 0;
1398 iinfo->i_lenEAttr = 0;
1399 iinfo->i_lenExtents = 0;
1400 iinfo->i_lenAlloc = 0;
1401 iinfo->i_next_alloc_block = 0;
1402 iinfo->i_next_alloc_goal = 0;
1403 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1404 iinfo->i_efe = 1;
1405 iinfo->i_use = 0;
1406 ret = udf_alloc_i_data(inode, bs -
1407 sizeof(struct extendedFileEntry));
1408 if (ret)
1409 goto out;
1410 memcpy(iinfo->i_data,
1411 bh->b_data + sizeof(struct extendedFileEntry),
1412 bs - sizeof(struct extendedFileEntry));
1413 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1414 iinfo->i_efe = 0;
1415 iinfo->i_use = 0;
1416 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1417 if (ret)
1418 goto out;
1419 memcpy(iinfo->i_data,
1420 bh->b_data + sizeof(struct fileEntry),
1421 bs - sizeof(struct fileEntry));
1422 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1423 iinfo->i_efe = 0;
1424 iinfo->i_use = 1;
1425 iinfo->i_lenAlloc = le32_to_cpu(
1426 ((struct unallocSpaceEntry *)bh->b_data)->
1427 lengthAllocDescs);
1428 ret = udf_alloc_i_data(inode, bs -
1429 sizeof(struct unallocSpaceEntry));
1430 if (ret)
1431 goto out;
1432 memcpy(iinfo->i_data,
1433 bh->b_data + sizeof(struct unallocSpaceEntry),
1434 bs - sizeof(struct unallocSpaceEntry));
1435 return 0;
1436 }
1437
1438 ret = -EIO;
1439 read_lock(&sbi->s_cred_lock);
1440 uid = le32_to_cpu(fe->uid);
1441 if (uid == UDF_INVALID_ID ||
1442 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1443 inode->i_uid = sbi->s_uid;
1444 else
1445 i_uid_write(inode, uid);
1446
1447 gid = le32_to_cpu(fe->gid);
1448 if (gid == UDF_INVALID_ID ||
1449 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1450 inode->i_gid = sbi->s_gid;
1451 else
1452 i_gid_write(inode, gid);
1453
1454 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1455 sbi->s_fmode != UDF_INVALID_MODE)
1456 inode->i_mode = sbi->s_fmode;
1457 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1458 sbi->s_dmode != UDF_INVALID_MODE)
1459 inode->i_mode = sbi->s_dmode;
1460 else
1461 inode->i_mode = udf_convert_permissions(fe);
1462 inode->i_mode &= ~sbi->s_umask;
1463 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1464
1465 read_unlock(&sbi->s_cred_lock);
1466
1467 link_count = le16_to_cpu(fe->fileLinkCount);
1468 if (!link_count) {
1469 if (!hidden_inode) {
1470 ret = -ESTALE;
1471 goto out;
1472 }
1473 link_count = 1;
1474 }
1475 set_nlink(inode, link_count);
1476
1477 inode->i_size = le64_to_cpu(fe->informationLength);
1478 iinfo->i_lenExtents = inode->i_size;
1479
1480 if (iinfo->i_efe == 0) {
1481 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1482 (inode->i_sb->s_blocksize_bits - 9);
1483
1484 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1485 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1486 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1487
1488 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1489 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1490 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1491 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1492 iinfo->i_streamdir = 0;
1493 iinfo->i_lenStreams = 0;
1494 } else {
1495 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1496 (inode->i_sb->s_blocksize_bits - 9);
1497
1498 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1499 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1500 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1501 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1502
1503 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1504 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1505 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1506 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1507
1508 /* Named streams */
1509 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1510 iinfo->i_locStreamdir =
1511 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1512 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1513 if (iinfo->i_lenStreams >= inode->i_size)
1514 iinfo->i_lenStreams -= inode->i_size;
1515 else
1516 iinfo->i_lenStreams = 0;
1517 }
1518 inode->i_generation = iinfo->i_unique;
1519
1520 /*
1521 * Sanity check length of allocation descriptors and extended attrs to
1522 * avoid integer overflows
1523 */
1524 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1525 goto out;
1526 /* Now do exact checks */
1527 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1528 goto out;
1529 /* Sanity checks for files in ICB so that we don't get confused later */
1530 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1531 /*
1532 * For file in ICB data is stored in allocation descriptor
1533 * so sizes should match
1534 */
1535 if (iinfo->i_lenAlloc != inode->i_size)
1536 goto out;
1537 /* File in ICB has to fit in there... */
1538 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1539 goto out;
1540 }
1541
1542 switch (fe->icbTag.fileType) {
1543 case ICBTAG_FILE_TYPE_DIRECTORY:
1544 inode->i_op = &udf_dir_inode_operations;
1545 inode->i_fop = &udf_dir_operations;
1546 inode->i_mode |= S_IFDIR;
1547 inc_nlink(inode);
1548 break;
1549 case ICBTAG_FILE_TYPE_REALTIME:
1550 case ICBTAG_FILE_TYPE_REGULAR:
1551 case ICBTAG_FILE_TYPE_UNDEF:
1552 case ICBTAG_FILE_TYPE_VAT20:
1553 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1554 inode->i_data.a_ops = &udf_adinicb_aops;
1555 else
1556 inode->i_data.a_ops = &udf_aops;
1557 inode->i_op = &udf_file_inode_operations;
1558 inode->i_fop = &udf_file_operations;
1559 inode->i_mode |= S_IFREG;
1560 break;
1561 case ICBTAG_FILE_TYPE_BLOCK:
1562 inode->i_mode |= S_IFBLK;
1563 break;
1564 case ICBTAG_FILE_TYPE_CHAR:
1565 inode->i_mode |= S_IFCHR;
1566 break;
1567 case ICBTAG_FILE_TYPE_FIFO:
1568 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1569 break;
1570 case ICBTAG_FILE_TYPE_SOCKET:
1571 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1572 break;
1573 case ICBTAG_FILE_TYPE_SYMLINK:
1574 inode->i_data.a_ops = &udf_symlink_aops;
1575 inode->i_op = &udf_symlink_inode_operations;
1576 inode_nohighmem(inode);
1577 inode->i_mode = S_IFLNK | 0777;
1578 break;
1579 case ICBTAG_FILE_TYPE_MAIN:
1580 udf_debug("METADATA FILE-----\n");
1581 break;
1582 case ICBTAG_FILE_TYPE_MIRROR:
1583 udf_debug("METADATA MIRROR FILE-----\n");
1584 break;
1585 case ICBTAG_FILE_TYPE_BITMAP:
1586 udf_debug("METADATA BITMAP FILE-----\n");
1587 break;
1588 default:
1589 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1590 inode->i_ino, fe->icbTag.fileType);
1591 goto out;
1592 }
1593 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1594 struct deviceSpec *dsea =
1595 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1596 if (dsea) {
1597 init_special_inode(inode, inode->i_mode,
1598 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1599 le32_to_cpu(dsea->minorDeviceIdent)));
1600 /* Developer ID ??? */
1601 } else
1602 goto out;
1603 }
1604 ret = 0;
1605 out:
1606 brelse(bh);
1607 return ret;
1608 }
1609
udf_alloc_i_data(struct inode * inode,size_t size)1610 static int udf_alloc_i_data(struct inode *inode, size_t size)
1611 {
1612 struct udf_inode_info *iinfo = UDF_I(inode);
1613 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1614 if (!iinfo->i_data)
1615 return -ENOMEM;
1616 return 0;
1617 }
1618
udf_convert_permissions(struct fileEntry * fe)1619 static umode_t udf_convert_permissions(struct fileEntry *fe)
1620 {
1621 umode_t mode;
1622 uint32_t permissions;
1623 uint32_t flags;
1624
1625 permissions = le32_to_cpu(fe->permissions);
1626 flags = le16_to_cpu(fe->icbTag.flags);
1627
1628 mode = ((permissions) & 0007) |
1629 ((permissions >> 2) & 0070) |
1630 ((permissions >> 4) & 0700) |
1631 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1632 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1633 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1634
1635 return mode;
1636 }
1637
udf_update_extra_perms(struct inode * inode,umode_t mode)1638 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1639 {
1640 struct udf_inode_info *iinfo = UDF_I(inode);
1641
1642 /*
1643 * UDF 2.01 sec. 3.3.3.3 Note 2:
1644 * In Unix, delete permission tracks write
1645 */
1646 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1647 if (mode & 0200)
1648 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1649 if (mode & 0020)
1650 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1651 if (mode & 0002)
1652 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1653 }
1654
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1655 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1656 {
1657 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1658 }
1659
udf_sync_inode(struct inode * inode)1660 static int udf_sync_inode(struct inode *inode)
1661 {
1662 return udf_update_inode(inode, 1);
1663 }
1664
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1665 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1666 {
1667 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1668 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1669 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1670 iinfo->i_crtime = time;
1671 }
1672
udf_update_inode(struct inode * inode,int do_sync)1673 static int udf_update_inode(struct inode *inode, int do_sync)
1674 {
1675 struct buffer_head *bh = NULL;
1676 struct fileEntry *fe;
1677 struct extendedFileEntry *efe;
1678 uint64_t lb_recorded;
1679 uint32_t udfperms;
1680 uint16_t icbflags;
1681 uint16_t crclen;
1682 int err = 0;
1683 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1684 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1685 struct udf_inode_info *iinfo = UDF_I(inode);
1686
1687 bh = udf_tgetblk(inode->i_sb,
1688 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1689 if (!bh) {
1690 udf_debug("getblk failure\n");
1691 return -EIO;
1692 }
1693
1694 lock_buffer(bh);
1695 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1696 fe = (struct fileEntry *)bh->b_data;
1697 efe = (struct extendedFileEntry *)bh->b_data;
1698
1699 if (iinfo->i_use) {
1700 struct unallocSpaceEntry *use =
1701 (struct unallocSpaceEntry *)bh->b_data;
1702
1703 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1704 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1705 iinfo->i_data, inode->i_sb->s_blocksize -
1706 sizeof(struct unallocSpaceEntry));
1707 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1708 crclen = sizeof(struct unallocSpaceEntry);
1709
1710 goto finish;
1711 }
1712
1713 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1714 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1715 else
1716 fe->uid = cpu_to_le32(i_uid_read(inode));
1717
1718 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1719 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1720 else
1721 fe->gid = cpu_to_le32(i_gid_read(inode));
1722
1723 udfperms = ((inode->i_mode & 0007)) |
1724 ((inode->i_mode & 0070) << 2) |
1725 ((inode->i_mode & 0700) << 4);
1726
1727 udfperms |= iinfo->i_extraPerms;
1728 fe->permissions = cpu_to_le32(udfperms);
1729
1730 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1731 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1732 else {
1733 if (iinfo->i_hidden)
1734 fe->fileLinkCount = cpu_to_le16(0);
1735 else
1736 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1737 }
1738
1739 fe->informationLength = cpu_to_le64(inode->i_size);
1740
1741 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742 struct regid *eid;
1743 struct deviceSpec *dsea =
1744 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745 if (!dsea) {
1746 dsea = (struct deviceSpec *)
1747 udf_add_extendedattr(inode,
1748 sizeof(struct deviceSpec) +
1749 sizeof(struct regid), 12, 0x3);
1750 dsea->attrType = cpu_to_le32(12);
1751 dsea->attrSubtype = 1;
1752 dsea->attrLength = cpu_to_le32(
1753 sizeof(struct deviceSpec) +
1754 sizeof(struct regid));
1755 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756 }
1757 eid = (struct regid *)dsea->impUse;
1758 memset(eid, 0, sizeof(*eid));
1759 strcpy(eid->ident, UDF_ID_DEVELOPER);
1760 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764 }
1765
1766 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767 lb_recorded = 0; /* No extents => no blocks! */
1768 else
1769 lb_recorded =
1770 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771 (blocksize_bits - 9);
1772
1773 if (iinfo->i_efe == 0) {
1774 memcpy(bh->b_data + sizeof(struct fileEntry),
1775 iinfo->i_data,
1776 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778
1779 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782 memset(&(fe->impIdent), 0, sizeof(struct regid));
1783 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791 crclen = sizeof(struct fileEntry);
1792 } else {
1793 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794 iinfo->i_data,
1795 inode->i_sb->s_blocksize -
1796 sizeof(struct extendedFileEntry));
1797 efe->objectSize =
1798 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801 if (iinfo->i_streamdir) {
1802 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803
1804 icb_lad->extLocation =
1805 cpu_to_lelb(iinfo->i_locStreamdir);
1806 icb_lad->extLength =
1807 cpu_to_le32(inode->i_sb->s_blocksize);
1808 }
1809
1810 udf_adjust_time(iinfo, inode->i_atime);
1811 udf_adjust_time(iinfo, inode->i_mtime);
1812 udf_adjust_time(iinfo, inode->i_ctime);
1813
1814 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818
1819 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828 crclen = sizeof(struct extendedFileEntry);
1829 }
1830
1831 finish:
1832 if (iinfo->i_strat4096) {
1833 fe->icbTag.strategyType = cpu_to_le16(4096);
1834 fe->icbTag.strategyParameter = cpu_to_le16(1);
1835 fe->icbTag.numEntries = cpu_to_le16(2);
1836 } else {
1837 fe->icbTag.strategyType = cpu_to_le16(4);
1838 fe->icbTag.numEntries = cpu_to_le16(1);
1839 }
1840
1841 if (iinfo->i_use)
1842 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843 else if (S_ISDIR(inode->i_mode))
1844 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845 else if (S_ISREG(inode->i_mode))
1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847 else if (S_ISLNK(inode->i_mode))
1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849 else if (S_ISBLK(inode->i_mode))
1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851 else if (S_ISCHR(inode->i_mode))
1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853 else if (S_ISFIFO(inode->i_mode))
1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855 else if (S_ISSOCK(inode->i_mode))
1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857
1858 icbflags = iinfo->i_alloc_type |
1859 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862 (le16_to_cpu(fe->icbTag.flags) &
1863 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865
1866 fe->icbTag.flags = cpu_to_le16(icbflags);
1867 if (sbi->s_udfrev >= 0x0200)
1868 fe->descTag.descVersion = cpu_to_le16(3);
1869 else
1870 fe->descTag.descVersion = cpu_to_le16(2);
1871 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872 fe->descTag.tagLocation = cpu_to_le32(
1873 iinfo->i_location.logicalBlockNum);
1874 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877 crclen));
1878 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879
1880 set_buffer_uptodate(bh);
1881 unlock_buffer(bh);
1882
1883 /* write the data blocks */
1884 mark_buffer_dirty(bh);
1885 if (do_sync) {
1886 sync_dirty_buffer(bh);
1887 if (buffer_write_io_error(bh)) {
1888 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889 inode->i_ino);
1890 err = -EIO;
1891 }
1892 }
1893 brelse(bh);
1894
1895 return err;
1896 }
1897
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1898 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899 bool hidden_inode)
1900 {
1901 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902 struct inode *inode = iget_locked(sb, block);
1903 int err;
1904
1905 if (!inode)
1906 return ERR_PTR(-ENOMEM);
1907
1908 if (!(inode->i_state & I_NEW)) {
1909 if (UDF_I(inode)->i_hidden != hidden_inode) {
1910 iput(inode);
1911 return ERR_PTR(-EFSCORRUPTED);
1912 }
1913 return inode;
1914 }
1915
1916 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917 err = udf_read_inode(inode, hidden_inode);
1918 if (err < 0) {
1919 iget_failed(inode);
1920 return ERR_PTR(err);
1921 }
1922 unlock_new_inode(inode);
1923
1924 return inode;
1925 }
1926
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1927 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928 struct extent_position *epos)
1929 {
1930 struct super_block *sb = inode->i_sb;
1931 struct buffer_head *bh;
1932 struct allocExtDesc *aed;
1933 struct extent_position nepos;
1934 struct kernel_lb_addr neloc;
1935 int ver, adsize;
1936
1937 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938 adsize = sizeof(struct short_ad);
1939 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940 adsize = sizeof(struct long_ad);
1941 else
1942 return -EIO;
1943
1944 neloc.logicalBlockNum = block;
1945 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948 if (!bh)
1949 return -EIO;
1950 lock_buffer(bh);
1951 memset(bh->b_data, 0x00, sb->s_blocksize);
1952 set_buffer_uptodate(bh);
1953 unlock_buffer(bh);
1954 mark_buffer_dirty_inode(bh, inode);
1955
1956 aed = (struct allocExtDesc *)(bh->b_data);
1957 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958 aed->previousAllocExtLocation =
1959 cpu_to_le32(epos->block.logicalBlockNum);
1960 }
1961 aed->lengthAllocDescs = cpu_to_le32(0);
1962 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963 ver = 3;
1964 else
1965 ver = 2;
1966 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967 sizeof(struct tag));
1968
1969 nepos.block = neloc;
1970 nepos.offset = sizeof(struct allocExtDesc);
1971 nepos.bh = bh;
1972
1973 /*
1974 * Do we have to copy current last extent to make space for indirect
1975 * one?
1976 */
1977 if (epos->offset + adsize > sb->s_blocksize) {
1978 struct kernel_lb_addr cp_loc;
1979 uint32_t cp_len;
1980 int cp_type;
1981
1982 epos->offset -= adsize;
1983 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984 cp_len |= ((uint32_t)cp_type) << 30;
1985
1986 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987 udf_write_aext(inode, epos, &nepos.block,
1988 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989 } else {
1990 __udf_add_aext(inode, epos, &nepos.block,
1991 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992 }
1993
1994 brelse(epos->bh);
1995 *epos = nepos;
1996
1997 return 0;
1998 }
1999
2000 /*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2005 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007 {
2008 struct udf_inode_info *iinfo = UDF_I(inode);
2009 struct allocExtDesc *aed;
2010 int adsize;
2011
2012 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (!epos->bh) {
2020 WARN_ON(iinfo->i_lenAlloc !=
2021 epos->offset - udf_file_entry_alloc_offset(inode));
2022 } else {
2023 aed = (struct allocExtDesc *)epos->bh->b_data;
2024 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025 epos->offset - sizeof(struct allocExtDesc));
2026 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027 }
2028
2029 udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031 if (!epos->bh) {
2032 iinfo->i_lenAlloc += adsize;
2033 mark_inode_dirty(inode);
2034 } else {
2035 aed = (struct allocExtDesc *)epos->bh->b_data;
2036 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039 udf_update_tag(epos->bh->b_data,
2040 epos->offset + (inc ? 0 : adsize));
2041 else
2042 udf_update_tag(epos->bh->b_data,
2043 sizeof(struct allocExtDesc));
2044 mark_buffer_dirty_inode(epos->bh, inode);
2045 }
2046
2047 return 0;
2048 }
2049
2050 /*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2054 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056 {
2057 int adsize;
2058 struct super_block *sb = inode->i_sb;
2059
2060 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061 adsize = sizeof(struct short_ad);
2062 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063 adsize = sizeof(struct long_ad);
2064 else
2065 return -EIO;
2066
2067 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068 int err;
2069 udf_pblk_t new_block;
2070
2071 new_block = udf_new_block(sb, NULL,
2072 epos->block.partitionReferenceNum,
2073 epos->block.logicalBlockNum, &err);
2074 if (!new_block)
2075 return -ENOSPC;
2076
2077 err = udf_setup_indirect_aext(inode, new_block, epos);
2078 if (err)
2079 return err;
2080 }
2081
2082 return __udf_add_aext(inode, epos, eloc, elen, inc);
2083 }
2084
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2085 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087 {
2088 int adsize;
2089 uint8_t *ptr;
2090 struct short_ad *sad;
2091 struct long_ad *lad;
2092 struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094 if (!epos->bh)
2095 ptr = iinfo->i_data + epos->offset -
2096 udf_file_entry_alloc_offset(inode) +
2097 iinfo->i_lenEAttr;
2098 else
2099 ptr = epos->bh->b_data + epos->offset;
2100
2101 switch (iinfo->i_alloc_type) {
2102 case ICBTAG_FLAG_AD_SHORT:
2103 sad = (struct short_ad *)ptr;
2104 sad->extLength = cpu_to_le32(elen);
2105 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106 adsize = sizeof(struct short_ad);
2107 break;
2108 case ICBTAG_FLAG_AD_LONG:
2109 lad = (struct long_ad *)ptr;
2110 lad->extLength = cpu_to_le32(elen);
2111 lad->extLocation = cpu_to_lelb(*eloc);
2112 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113 adsize = sizeof(struct long_ad);
2114 break;
2115 default:
2116 return;
2117 }
2118
2119 if (epos->bh) {
2120 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122 struct allocExtDesc *aed =
2123 (struct allocExtDesc *)epos->bh->b_data;
2124 udf_update_tag(epos->bh->b_data,
2125 le32_to_cpu(aed->lengthAllocDescs) +
2126 sizeof(struct allocExtDesc));
2127 }
2128 mark_buffer_dirty_inode(epos->bh, inode);
2129 } else {
2130 mark_inode_dirty(inode);
2131 }
2132
2133 if (inc)
2134 epos->offset += adsize;
2135 }
2136
2137 /*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141 #define UDF_MAX_INDIR_EXTS 16
2142
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2143 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145 {
2146 int8_t etype;
2147 unsigned int indirections = 0;
2148
2149 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151 udf_pblk_t block;
2152
2153 if (++indirections > UDF_MAX_INDIR_EXTS) {
2154 udf_err(inode->i_sb,
2155 "too many indirect extents in inode %lu\n",
2156 inode->i_ino);
2157 return -1;
2158 }
2159
2160 epos->block = *eloc;
2161 epos->offset = sizeof(struct allocExtDesc);
2162 brelse(epos->bh);
2163 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164 epos->bh = udf_tread(inode->i_sb, block);
2165 if (!epos->bh) {
2166 udf_debug("reading block %u failed!\n", block);
2167 return -1;
2168 }
2169 }
2170
2171 return etype;
2172 }
2173
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2174 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176 {
2177 int alen;
2178 int8_t etype;
2179 uint8_t *ptr;
2180 struct short_ad *sad;
2181 struct long_ad *lad;
2182 struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184 if (!epos->bh) {
2185 if (!epos->offset)
2186 epos->offset = udf_file_entry_alloc_offset(inode);
2187 ptr = iinfo->i_data + epos->offset -
2188 udf_file_entry_alloc_offset(inode) +
2189 iinfo->i_lenEAttr;
2190 alen = udf_file_entry_alloc_offset(inode) +
2191 iinfo->i_lenAlloc;
2192 } else {
2193 if (!epos->offset)
2194 epos->offset = sizeof(struct allocExtDesc);
2195 ptr = epos->bh->b_data + epos->offset;
2196 alen = sizeof(struct allocExtDesc) +
2197 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198 lengthAllocDescs);
2199 }
2200
2201 switch (iinfo->i_alloc_type) {
2202 case ICBTAG_FLAG_AD_SHORT:
2203 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204 if (!sad)
2205 return -1;
2206 etype = le32_to_cpu(sad->extLength) >> 30;
2207 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208 eloc->partitionReferenceNum =
2209 iinfo->i_location.partitionReferenceNum;
2210 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211 break;
2212 case ICBTAG_FLAG_AD_LONG:
2213 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214 if (!lad)
2215 return -1;
2216 etype = le32_to_cpu(lad->extLength) >> 30;
2217 *eloc = lelb_to_cpu(lad->extLocation);
2218 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219 break;
2220 default:
2221 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222 return -1;
2223 }
2224
2225 return etype;
2226 }
2227
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2228 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2229 struct kernel_lb_addr neloc, uint32_t nelen)
2230 {
2231 struct kernel_lb_addr oeloc;
2232 uint32_t oelen;
2233 int8_t etype;
2234 int err;
2235
2236 if (epos.bh)
2237 get_bh(epos.bh);
2238
2239 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2240 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2241 neloc = oeloc;
2242 nelen = (etype << 30) | oelen;
2243 }
2244 err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2245 brelse(epos.bh);
2246
2247 return err;
2248 }
2249
udf_delete_aext(struct inode * inode,struct extent_position epos)2250 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2251 {
2252 struct extent_position oepos;
2253 int adsize;
2254 int8_t etype;
2255 struct allocExtDesc *aed;
2256 struct udf_inode_info *iinfo;
2257 struct kernel_lb_addr eloc;
2258 uint32_t elen;
2259
2260 if (epos.bh) {
2261 get_bh(epos.bh);
2262 get_bh(epos.bh);
2263 }
2264
2265 iinfo = UDF_I(inode);
2266 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2267 adsize = sizeof(struct short_ad);
2268 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2269 adsize = sizeof(struct long_ad);
2270 else
2271 adsize = 0;
2272
2273 oepos = epos;
2274 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2275 return -1;
2276
2277 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2278 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2279 if (oepos.bh != epos.bh) {
2280 oepos.block = epos.block;
2281 brelse(oepos.bh);
2282 get_bh(epos.bh);
2283 oepos.bh = epos.bh;
2284 oepos.offset = epos.offset - adsize;
2285 }
2286 }
2287 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2288 elen = 0;
2289
2290 if (epos.bh != oepos.bh) {
2291 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2292 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2294 if (!oepos.bh) {
2295 iinfo->i_lenAlloc -= (adsize * 2);
2296 mark_inode_dirty(inode);
2297 } else {
2298 aed = (struct allocExtDesc *)oepos.bh->b_data;
2299 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2300 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2301 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2302 udf_update_tag(oepos.bh->b_data,
2303 oepos.offset - (2 * adsize));
2304 else
2305 udf_update_tag(oepos.bh->b_data,
2306 sizeof(struct allocExtDesc));
2307 mark_buffer_dirty_inode(oepos.bh, inode);
2308 }
2309 } else {
2310 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2311 if (!oepos.bh) {
2312 iinfo->i_lenAlloc -= adsize;
2313 mark_inode_dirty(inode);
2314 } else {
2315 aed = (struct allocExtDesc *)oepos.bh->b_data;
2316 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2317 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2318 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2319 udf_update_tag(oepos.bh->b_data,
2320 epos.offset - adsize);
2321 else
2322 udf_update_tag(oepos.bh->b_data,
2323 sizeof(struct allocExtDesc));
2324 mark_buffer_dirty_inode(oepos.bh, inode);
2325 }
2326 }
2327
2328 brelse(epos.bh);
2329 brelse(oepos.bh);
2330
2331 return (elen >> 30);
2332 }
2333
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2334 int8_t inode_bmap(struct inode *inode, sector_t block,
2335 struct extent_position *pos, struct kernel_lb_addr *eloc,
2336 uint32_t *elen, sector_t *offset)
2337 {
2338 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2339 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2340 int8_t etype;
2341 struct udf_inode_info *iinfo;
2342
2343 iinfo = UDF_I(inode);
2344 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2345 pos->offset = 0;
2346 pos->block = iinfo->i_location;
2347 pos->bh = NULL;
2348 }
2349 *elen = 0;
2350 do {
2351 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2352 if (etype == -1) {
2353 *offset = (bcount - lbcount) >> blocksize_bits;
2354 iinfo->i_lenExtents = lbcount;
2355 return -1;
2356 }
2357 lbcount += *elen;
2358 } while (lbcount <= bcount);
2359 /* update extent cache */
2360 udf_update_extent_cache(inode, lbcount - *elen, pos);
2361 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2362
2363 return etype;
2364 }
2365
udf_block_map(struct inode * inode,sector_t block)2366 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2367 {
2368 struct kernel_lb_addr eloc;
2369 uint32_t elen;
2370 sector_t offset;
2371 struct extent_position epos = {};
2372 udf_pblk_t ret;
2373
2374 down_read(&UDF_I(inode)->i_data_sem);
2375
2376 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2377 (EXT_RECORDED_ALLOCATED >> 30))
2378 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2379 else
2380 ret = 0;
2381
2382 up_read(&UDF_I(inode)->i_data_sem);
2383 brelse(epos.bh);
2384
2385 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2386 return udf_fixed_to_variable(ret);
2387 else
2388 return ret;
2389 }
2390