• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		The User Datagram Protocol (UDP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13  *		Hirokazu Takahashi, <taka@valinux.co.jp>
14  *
15  * Fixes:
16  *		Alan Cox	:	verify_area() calls
17  *		Alan Cox	: 	stopped close while in use off icmp
18  *					messages. Not a fix but a botch that
19  *					for udp at least is 'valid'.
20  *		Alan Cox	:	Fixed icmp handling properly
21  *		Alan Cox	: 	Correct error for oversized datagrams
22  *		Alan Cox	:	Tidied select() semantics.
23  *		Alan Cox	:	udp_err() fixed properly, also now
24  *					select and read wake correctly on errors
25  *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26  *		Alan Cox	:	UDP can count its memory
27  *		Alan Cox	:	send to an unknown connection causes
28  *					an ECONNREFUSED off the icmp, but
29  *					does NOT close.
30  *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31  *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32  *					bug no longer crashes it.
33  *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34  *		Alan Cox	:	Uses skb_free_datagram
35  *		Alan Cox	:	Added get/set sockopt support.
36  *		Alan Cox	:	Broadcasting without option set returns EACCES.
37  *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38  *		Alan Cox	:	Use ip_tos and ip_ttl
39  *		Alan Cox	:	SNMP Mibs
40  *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41  *		Matt Dillon	:	UDP length checks.
42  *		Alan Cox	:	Smarter af_inet used properly.
43  *		Alan Cox	:	Use new kernel side addressing.
44  *		Alan Cox	:	Incorrect return on truncated datagram receive.
45  *	Arnt Gulbrandsen 	:	New udp_send and stuff
46  *		Alan Cox	:	Cache last socket
47  *		Alan Cox	:	Route cache
48  *		Jon Peatfield	:	Minor efficiency fix to sendto().
49  *		Mike Shaver	:	RFC1122 checks.
50  *		Alan Cox	:	Nonblocking error fix.
51  *	Willy Konynenberg	:	Transparent proxying support.
52  *		Mike McLagan	:	Routing by source
53  *		David S. Miller	:	New socket lookup architecture.
54  *					Last socket cache retained as it
55  *					does have a high hit rate.
56  *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57  *		Andi Kleen	:	Some cleanups, cache destination entry
58  *					for connect.
59  *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60  *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61  *					return ENOTCONN for unconnected sockets (POSIX)
62  *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63  *					bound-to-device socket
64  *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65  *					datagrams.
66  *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67  *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68  *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69  *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70  *					a single port at the same time.
71  *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72  *	James Chapman		:	Add L2TP encapsulation type.
73  */
74 
75 #define pr_fmt(fmt) "UDP: " fmt
76 
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119 
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122 
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125 
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 			       const struct udp_hslot *hslot,
134 			       unsigned long *bitmap,
135 			       struct sock *sk, unsigned int log)
136 {
137 	struct sock *sk2;
138 	kuid_t uid = sock_i_uid(sk);
139 
140 	sk_for_each(sk2, &hslot->head) {
141 		if (net_eq(sock_net(sk2), net) &&
142 		    sk2 != sk &&
143 		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
145 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 		    inet_rcv_saddr_equal(sk, sk2, true)) {
148 			if (sk2->sk_reuseport && sk->sk_reuseport &&
149 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 			    uid_eq(uid, sock_i_uid(sk2))) {
151 				if (!bitmap)
152 					return 0;
153 			} else {
154 				if (!bitmap)
155 					return 1;
156 				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 					  bitmap);
158 			}
159 		}
160 	}
161 	return 0;
162 }
163 
164 /*
165  * Note: we still hold spinlock of primary hash chain, so no other writer
166  * can insert/delete a socket with local_port == num
167  */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 				struct udp_hslot *hslot2,
170 				struct sock *sk)
171 {
172 	struct sock *sk2;
173 	kuid_t uid = sock_i_uid(sk);
174 	int res = 0;
175 
176 	spin_lock(&hslot2->lock);
177 	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 		if (net_eq(sock_net(sk2), net) &&
179 		    sk2 != sk &&
180 		    (udp_sk(sk2)->udp_port_hash == num) &&
181 		    (!sk2->sk_reuse || !sk->sk_reuse) &&
182 		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 		    inet_rcv_saddr_equal(sk, sk2, true)) {
185 			if (sk2->sk_reuseport && sk->sk_reuseport &&
186 			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 			    uid_eq(uid, sock_i_uid(sk2))) {
188 				res = 0;
189 			} else {
190 				res = 1;
191 			}
192 			break;
193 		}
194 	}
195 	spin_unlock(&hslot2->lock);
196 	return res;
197 }
198 
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 	struct net *net = sock_net(sk);
202 	kuid_t uid = sock_i_uid(sk);
203 	struct sock *sk2;
204 
205 	sk_for_each(sk2, &hslot->head) {
206 		if (net_eq(sock_net(sk2), net) &&
207 		    sk2 != sk &&
208 		    sk2->sk_family == sk->sk_family &&
209 		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 		    inet_rcv_saddr_equal(sk, sk2, false)) {
214 			return reuseport_add_sock(sk, sk2,
215 						  inet_rcv_saddr_any(sk));
216 		}
217 	}
218 
219 	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221 
222 /**
223  *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
224  *
225  *  @sk:          socket struct in question
226  *  @snum:        port number to look up
227  *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228  *                   with NULL address
229  */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 		     unsigned int hash2_nulladdr)
232 {
233 	struct udp_hslot *hslot, *hslot2;
234 	struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 	int    error = 1;
236 	struct net *net = sock_net(sk);
237 
238 	if (!snum) {
239 		int low, high, remaining;
240 		unsigned int rand;
241 		unsigned short first, last;
242 		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243 
244 		inet_get_local_port_range(net, &low, &high);
245 		remaining = (high - low) + 1;
246 
247 		rand = prandom_u32();
248 		first = reciprocal_scale(rand, remaining) + low;
249 		/*
250 		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 		 */
252 		rand = (rand | 1) * (udptable->mask + 1);
253 		last = first + udptable->mask + 1;
254 		do {
255 			hslot = udp_hashslot(udptable, net, first);
256 			bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 			spin_lock_bh(&hslot->lock);
258 			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 					    udptable->log);
260 
261 			snum = first;
262 			/*
263 			 * Iterate on all possible values of snum for this hash.
264 			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 			 * give us randomization and full range coverage.
266 			 */
267 			do {
268 				if (low <= snum && snum <= high &&
269 				    !test_bit(snum >> udptable->log, bitmap) &&
270 				    !inet_is_local_reserved_port(net, snum))
271 					goto found;
272 				snum += rand;
273 			} while (snum != first);
274 			spin_unlock_bh(&hslot->lock);
275 			cond_resched();
276 		} while (++first != last);
277 		goto fail;
278 	} else {
279 		hslot = udp_hashslot(udptable, net, snum);
280 		spin_lock_bh(&hslot->lock);
281 		if (hslot->count > 10) {
282 			int exist;
283 			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284 
285 			slot2          &= udptable->mask;
286 			hash2_nulladdr &= udptable->mask;
287 
288 			hslot2 = udp_hashslot2(udptable, slot2);
289 			if (hslot->count < hslot2->count)
290 				goto scan_primary_hash;
291 
292 			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 			if (!exist && (hash2_nulladdr != slot2)) {
294 				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 				exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 							     sk);
297 			}
298 			if (exist)
299 				goto fail_unlock;
300 			else
301 				goto found;
302 		}
303 scan_primary_hash:
304 		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 			goto fail_unlock;
306 	}
307 found:
308 	inet_sk(sk)->inet_num = snum;
309 	udp_sk(sk)->udp_port_hash = snum;
310 	udp_sk(sk)->udp_portaddr_hash ^= snum;
311 	if (sk_unhashed(sk)) {
312 		if (sk->sk_reuseport &&
313 		    udp_reuseport_add_sock(sk, hslot)) {
314 			inet_sk(sk)->inet_num = 0;
315 			udp_sk(sk)->udp_port_hash = 0;
316 			udp_sk(sk)->udp_portaddr_hash ^= snum;
317 			goto fail_unlock;
318 		}
319 
320 		sk_add_node_rcu(sk, &hslot->head);
321 		hslot->count++;
322 		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323 
324 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 		spin_lock(&hslot2->lock);
326 		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 		    sk->sk_family == AF_INET6)
328 			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 					   &hslot2->head);
330 		else
331 			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 					   &hslot2->head);
333 		hslot2->count++;
334 		spin_unlock(&hslot2->lock);
335 	}
336 	sock_set_flag(sk, SOCK_RCU_FREE);
337 	error = 0;
338 fail_unlock:
339 	spin_unlock_bh(&hslot->lock);
340 fail:
341 	return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344 
udp_v4_get_port(struct sock * sk,unsigned short snum)345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 	unsigned int hash2_nulladdr =
348 		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 	unsigned int hash2_partial =
350 		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351 
352 	/* precompute partial secondary hash */
353 	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 	return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356 
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)357 static int compute_score(struct sock *sk, struct net *net,
358 			 __be32 saddr, __be16 sport,
359 			 __be32 daddr, unsigned short hnum,
360 			 int dif, int sdif)
361 {
362 	int score;
363 	struct inet_sock *inet;
364 	bool dev_match;
365 
366 	if (!net_eq(sock_net(sk), net) ||
367 	    udp_sk(sk)->udp_port_hash != hnum ||
368 	    ipv6_only_sock(sk))
369 		return -1;
370 
371 	if (sk->sk_rcv_saddr != daddr)
372 		return -1;
373 
374 	score = (sk->sk_family == PF_INET) ? 2 : 1;
375 
376 	inet = inet_sk(sk);
377 	if (inet->inet_daddr) {
378 		if (inet->inet_daddr != saddr)
379 			return -1;
380 		score += 4;
381 	}
382 
383 	if (inet->inet_dport) {
384 		if (inet->inet_dport != sport)
385 			return -1;
386 		score += 4;
387 	}
388 
389 	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 					dif, sdif);
391 	if (!dev_match)
392 		return -1;
393 	if (sk->sk_bound_dev_if)
394 		score += 4;
395 
396 	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
397 		score++;
398 	return score;
399 }
400 
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
402 		       const __u16 lport, const __be32 faddr,
403 		       const __be16 fport)
404 {
405 	static u32 udp_ehash_secret __read_mostly;
406 
407 	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408 
409 	return __inet_ehashfn(laddr, lport, faddr, fport,
410 			      udp_ehash_secret + net_hash_mix(net));
411 }
412 
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
414 				     struct sk_buff *skb,
415 				     __be32 saddr, __be16 sport,
416 				     __be32 daddr, unsigned short hnum)
417 {
418 	struct sock *reuse_sk = NULL;
419 	u32 hash;
420 
421 	if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
422 		hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
423 		reuse_sk = reuseport_select_sock(sk, hash, skb,
424 						 sizeof(struct udphdr));
425 	}
426 	return reuse_sk;
427 }
428 
429 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)430 static struct sock *udp4_lib_lookup2(struct net *net,
431 				     __be32 saddr, __be16 sport,
432 				     __be32 daddr, unsigned int hnum,
433 				     int dif, int sdif,
434 				     struct udp_hslot *hslot2,
435 				     struct sk_buff *skb)
436 {
437 	struct sock *sk, *result;
438 	int score, badness;
439 
440 	result = NULL;
441 	badness = 0;
442 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 		score = compute_score(sk, net, saddr, sport,
444 				      daddr, hnum, dif, sdif);
445 		if (score > badness) {
446 			badness = score;
447 			result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
448 			if (!result) {
449 				result = sk;
450 				continue;
451 			}
452 
453 			/* Fall back to scoring if group has connections */
454 			if (!reuseport_has_conns(sk))
455 				return result;
456 
457 			/* Reuseport logic returned an error, keep original score. */
458 			if (IS_ERR(result))
459 				continue;
460 
461 			badness = compute_score(result, net, saddr, sport,
462 						daddr, hnum, dif, sdif);
463 
464 		}
465 	}
466 	return result;
467 }
468 
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)469 static struct sock *udp4_lookup_run_bpf(struct net *net,
470 					struct udp_table *udptable,
471 					struct sk_buff *skb,
472 					__be32 saddr, __be16 sport,
473 					__be32 daddr, u16 hnum)
474 {
475 	struct sock *sk, *reuse_sk;
476 	bool no_reuseport;
477 
478 	if (udptable != &udp_table)
479 		return NULL; /* only UDP is supported */
480 
481 	no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
482 					    saddr, sport, daddr, hnum, &sk);
483 	if (no_reuseport || IS_ERR_OR_NULL(sk))
484 		return sk;
485 
486 	reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
487 	if (reuse_sk)
488 		sk = reuse_sk;
489 	return sk;
490 }
491 
492 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
493  * harder than this. -DaveM
494  */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)495 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
496 		__be16 sport, __be32 daddr, __be16 dport, int dif,
497 		int sdif, struct udp_table *udptable, struct sk_buff *skb)
498 {
499 	unsigned short hnum = ntohs(dport);
500 	unsigned int hash2, slot2;
501 	struct udp_hslot *hslot2;
502 	struct sock *result, *sk;
503 
504 	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
505 	slot2 = hash2 & udptable->mask;
506 	hslot2 = &udptable->hash2[slot2];
507 
508 	/* Lookup connected or non-wildcard socket */
509 	result = udp4_lib_lookup2(net, saddr, sport,
510 				  daddr, hnum, dif, sdif,
511 				  hslot2, skb);
512 	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
513 		goto done;
514 
515 	/* Lookup redirect from BPF */
516 	if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
517 		sk = udp4_lookup_run_bpf(net, udptable, skb,
518 					 saddr, sport, daddr, hnum);
519 		if (sk) {
520 			result = sk;
521 			goto done;
522 		}
523 	}
524 
525 	/* Got non-wildcard socket or error on first lookup */
526 	if (result)
527 		goto done;
528 
529 	/* Lookup wildcard sockets */
530 	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
531 	slot2 = hash2 & udptable->mask;
532 	hslot2 = &udptable->hash2[slot2];
533 
534 	result = udp4_lib_lookup2(net, saddr, sport,
535 				  htonl(INADDR_ANY), hnum, dif, sdif,
536 				  hslot2, skb);
537 done:
538 	if (IS_ERR(result))
539 		return NULL;
540 	return result;
541 }
542 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
543 
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)544 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
545 						 __be16 sport, __be16 dport,
546 						 struct udp_table *udptable)
547 {
548 	const struct iphdr *iph = ip_hdr(skb);
549 
550 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
551 				 iph->daddr, dport, inet_iif(skb),
552 				 inet_sdif(skb), udptable, skb);
553 }
554 
udp4_lib_lookup_skb(const struct sk_buff * skb,__be16 sport,__be16 dport)555 struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
556 				 __be16 sport, __be16 dport)
557 {
558 	const struct iphdr *iph = ip_hdr(skb);
559 
560 	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
561 				 iph->daddr, dport, inet_iif(skb),
562 				 inet_sdif(skb), &udp_table, NULL);
563 }
564 
565 /* Must be called under rcu_read_lock().
566  * Does increment socket refcount.
567  */
568 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)569 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
570 			     __be32 daddr, __be16 dport, int dif)
571 {
572 	struct sock *sk;
573 
574 	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
575 			       dif, 0, &udp_table, NULL);
576 	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
577 		sk = NULL;
578 	return sk;
579 }
580 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
581 #endif
582 
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)583 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
584 				       __be16 loc_port, __be32 loc_addr,
585 				       __be16 rmt_port, __be32 rmt_addr,
586 				       int dif, int sdif, unsigned short hnum)
587 {
588 	struct inet_sock *inet = inet_sk(sk);
589 
590 	if (!net_eq(sock_net(sk), net) ||
591 	    udp_sk(sk)->udp_port_hash != hnum ||
592 	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
593 	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
594 	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
595 	    ipv6_only_sock(sk) ||
596 	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
597 		return false;
598 	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
599 		return false;
600 	return true;
601 }
602 
603 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)604 void udp_encap_enable(void)
605 {
606 	static_branch_inc(&udp_encap_needed_key);
607 }
608 EXPORT_SYMBOL(udp_encap_enable);
609 
udp_encap_disable(void)610 void udp_encap_disable(void)
611 {
612 	static_branch_dec(&udp_encap_needed_key);
613 }
614 EXPORT_SYMBOL(udp_encap_disable);
615 
616 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
617  * through error handlers in encapsulations looking for a match.
618  */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)619 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
620 {
621 	int i;
622 
623 	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
624 		int (*handler)(struct sk_buff *skb, u32 info);
625 		const struct ip_tunnel_encap_ops *encap;
626 
627 		encap = rcu_dereference(iptun_encaps[i]);
628 		if (!encap)
629 			continue;
630 		handler = encap->err_handler;
631 		if (handler && !handler(skb, info))
632 			return 0;
633 	}
634 
635 	return -ENOENT;
636 }
637 
638 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
639  * reversing source and destination port: this will match tunnels that force the
640  * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
641  * lwtunnels might actually break this assumption by being configured with
642  * different destination ports on endpoints, in this case we won't be able to
643  * trace ICMP messages back to them.
644  *
645  * If this doesn't match any socket, probe tunnels with arbitrary destination
646  * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
647  * we've sent packets to won't necessarily match the local destination port.
648  *
649  * Then ask the tunnel implementation to match the error against a valid
650  * association.
651  *
652  * Return an error if we can't find a match, the socket if we need further
653  * processing, zero otherwise.
654  */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sock * sk,struct sk_buff * skb,u32 info)655 static struct sock *__udp4_lib_err_encap(struct net *net,
656 					 const struct iphdr *iph,
657 					 struct udphdr *uh,
658 					 struct udp_table *udptable,
659 					 struct sock *sk,
660 					 struct sk_buff *skb, u32 info)
661 {
662 	int (*lookup)(struct sock *sk, struct sk_buff *skb);
663 	int network_offset, transport_offset;
664 	struct udp_sock *up;
665 
666 	network_offset = skb_network_offset(skb);
667 	transport_offset = skb_transport_offset(skb);
668 
669 	/* Network header needs to point to the outer IPv4 header inside ICMP */
670 	skb_reset_network_header(skb);
671 
672 	/* Transport header needs to point to the UDP header */
673 	skb_set_transport_header(skb, iph->ihl << 2);
674 
675 	if (sk) {
676 		up = udp_sk(sk);
677 
678 		lookup = READ_ONCE(up->encap_err_lookup);
679 		if (lookup && lookup(sk, skb))
680 			sk = NULL;
681 
682 		goto out;
683 	}
684 
685 	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
686 			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
687 			       udptable, NULL);
688 	if (sk) {
689 		up = udp_sk(sk);
690 
691 		lookup = READ_ONCE(up->encap_err_lookup);
692 		if (!lookup || lookup(sk, skb))
693 			sk = NULL;
694 	}
695 
696 out:
697 	if (!sk)
698 		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
699 
700 	skb_set_transport_header(skb, transport_offset);
701 	skb_set_network_header(skb, network_offset);
702 
703 	return sk;
704 }
705 
706 /*
707  * This routine is called by the ICMP module when it gets some
708  * sort of error condition.  If err < 0 then the socket should
709  * be closed and the error returned to the user.  If err > 0
710  * it's just the icmp type << 8 | icmp code.
711  * Header points to the ip header of the error packet. We move
712  * on past this. Then (as it used to claim before adjustment)
713  * header points to the first 8 bytes of the udp header.  We need
714  * to find the appropriate port.
715  */
716 
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)717 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
718 {
719 	struct inet_sock *inet;
720 	const struct iphdr *iph = (const struct iphdr *)skb->data;
721 	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
722 	const int type = icmp_hdr(skb)->type;
723 	const int code = icmp_hdr(skb)->code;
724 	bool tunnel = false;
725 	struct sock *sk;
726 	int harderr;
727 	int err;
728 	struct net *net = dev_net(skb->dev);
729 
730 	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
731 			       iph->saddr, uh->source, skb->dev->ifindex,
732 			       inet_sdif(skb), udptable, NULL);
733 
734 	if (!sk || udp_sk(sk)->encap_type) {
735 		/* No socket for error: try tunnels before discarding */
736 		if (static_branch_unlikely(&udp_encap_needed_key)) {
737 			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
738 						  info);
739 			if (!sk)
740 				return 0;
741 		} else
742 			sk = ERR_PTR(-ENOENT);
743 
744 		if (IS_ERR(sk)) {
745 			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
746 			return PTR_ERR(sk);
747 		}
748 
749 		tunnel = true;
750 	}
751 
752 	err = 0;
753 	harderr = 0;
754 	inet = inet_sk(sk);
755 
756 	switch (type) {
757 	default:
758 	case ICMP_TIME_EXCEEDED:
759 		err = EHOSTUNREACH;
760 		break;
761 	case ICMP_SOURCE_QUENCH:
762 		goto out;
763 	case ICMP_PARAMETERPROB:
764 		err = EPROTO;
765 		harderr = 1;
766 		break;
767 	case ICMP_DEST_UNREACH:
768 		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
769 			ipv4_sk_update_pmtu(skb, sk, info);
770 			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
771 				err = EMSGSIZE;
772 				harderr = 1;
773 				break;
774 			}
775 			goto out;
776 		}
777 		err = EHOSTUNREACH;
778 		if (code <= NR_ICMP_UNREACH) {
779 			harderr = icmp_err_convert[code].fatal;
780 			err = icmp_err_convert[code].errno;
781 		}
782 		break;
783 	case ICMP_REDIRECT:
784 		ipv4_sk_redirect(skb, sk);
785 		goto out;
786 	}
787 
788 	/*
789 	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
790 	 *	4.1.3.3.
791 	 */
792 	if (tunnel) {
793 		/* ...not for tunnels though: we don't have a sending socket */
794 		if (udp_sk(sk)->encap_err_rcv)
795 			udp_sk(sk)->encap_err_rcv(sk, skb, iph->ihl << 2);
796 		goto out;
797 	}
798 	if (!inet->recverr) {
799 		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
800 			goto out;
801 	} else
802 		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
803 
804 	sk->sk_err = err;
805 	sk_error_report(sk);
806 out:
807 	return 0;
808 }
809 
udp_err(struct sk_buff * skb,u32 info)810 int udp_err(struct sk_buff *skb, u32 info)
811 {
812 	return __udp4_lib_err(skb, info, &udp_table);
813 }
814 
815 /*
816  * Throw away all pending data and cancel the corking. Socket is locked.
817  */
udp_flush_pending_frames(struct sock * sk)818 void udp_flush_pending_frames(struct sock *sk)
819 {
820 	struct udp_sock *up = udp_sk(sk);
821 
822 	if (up->pending) {
823 		up->len = 0;
824 		up->pending = 0;
825 		ip_flush_pending_frames(sk);
826 	}
827 }
828 EXPORT_SYMBOL(udp_flush_pending_frames);
829 
830 /**
831  * 	udp4_hwcsum  -  handle outgoing HW checksumming
832  * 	@skb: 	sk_buff containing the filled-in UDP header
833  * 	        (checksum field must be zeroed out)
834  *	@src:	source IP address
835  *	@dst:	destination IP address
836  */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)837 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
838 {
839 	struct udphdr *uh = udp_hdr(skb);
840 	int offset = skb_transport_offset(skb);
841 	int len = skb->len - offset;
842 	int hlen = len;
843 	__wsum csum = 0;
844 
845 	if (!skb_has_frag_list(skb)) {
846 		/*
847 		 * Only one fragment on the socket.
848 		 */
849 		skb->csum_start = skb_transport_header(skb) - skb->head;
850 		skb->csum_offset = offsetof(struct udphdr, check);
851 		uh->check = ~csum_tcpudp_magic(src, dst, len,
852 					       IPPROTO_UDP, 0);
853 	} else {
854 		struct sk_buff *frags;
855 
856 		/*
857 		 * HW-checksum won't work as there are two or more
858 		 * fragments on the socket so that all csums of sk_buffs
859 		 * should be together
860 		 */
861 		skb_walk_frags(skb, frags) {
862 			csum = csum_add(csum, frags->csum);
863 			hlen -= frags->len;
864 		}
865 
866 		csum = skb_checksum(skb, offset, hlen, csum);
867 		skb->ip_summed = CHECKSUM_NONE;
868 
869 		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
870 		if (uh->check == 0)
871 			uh->check = CSUM_MANGLED_0;
872 	}
873 }
874 EXPORT_SYMBOL_GPL(udp4_hwcsum);
875 
876 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
877  * for the simple case like when setting the checksum for a UDP tunnel.
878  */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)879 void udp_set_csum(bool nocheck, struct sk_buff *skb,
880 		  __be32 saddr, __be32 daddr, int len)
881 {
882 	struct udphdr *uh = udp_hdr(skb);
883 
884 	if (nocheck) {
885 		uh->check = 0;
886 	} else if (skb_is_gso(skb)) {
887 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
888 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
889 		uh->check = 0;
890 		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
891 		if (uh->check == 0)
892 			uh->check = CSUM_MANGLED_0;
893 	} else {
894 		skb->ip_summed = CHECKSUM_PARTIAL;
895 		skb->csum_start = skb_transport_header(skb) - skb->head;
896 		skb->csum_offset = offsetof(struct udphdr, check);
897 		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
898 	}
899 }
900 EXPORT_SYMBOL(udp_set_csum);
901 
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)902 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
903 			struct inet_cork *cork)
904 {
905 	struct sock *sk = skb->sk;
906 	struct inet_sock *inet = inet_sk(sk);
907 	struct udphdr *uh;
908 	int err;
909 	int is_udplite = IS_UDPLITE(sk);
910 	int offset = skb_transport_offset(skb);
911 	int len = skb->len - offset;
912 	int datalen = len - sizeof(*uh);
913 	__wsum csum = 0;
914 
915 	/*
916 	 * Create a UDP header
917 	 */
918 	uh = udp_hdr(skb);
919 	uh->source = inet->inet_sport;
920 	uh->dest = fl4->fl4_dport;
921 	uh->len = htons(len);
922 	uh->check = 0;
923 
924 	if (cork->gso_size) {
925 		const int hlen = skb_network_header_len(skb) +
926 				 sizeof(struct udphdr);
927 
928 		if (hlen + cork->gso_size > cork->fragsize) {
929 			kfree_skb(skb);
930 			return -EINVAL;
931 		}
932 		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
933 			kfree_skb(skb);
934 			return -EINVAL;
935 		}
936 		if (sk->sk_no_check_tx) {
937 			kfree_skb(skb);
938 			return -EINVAL;
939 		}
940 		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
941 		    dst_xfrm(skb_dst(skb))) {
942 			kfree_skb(skb);
943 			return -EIO;
944 		}
945 
946 		if (datalen > cork->gso_size) {
947 			skb_shinfo(skb)->gso_size = cork->gso_size;
948 			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
949 			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
950 								 cork->gso_size);
951 		}
952 		goto csum_partial;
953 	}
954 
955 	if (is_udplite)  				 /*     UDP-Lite      */
956 		csum = udplite_csum(skb);
957 
958 	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
959 
960 		skb->ip_summed = CHECKSUM_NONE;
961 		goto send;
962 
963 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
964 csum_partial:
965 
966 		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
967 		goto send;
968 
969 	} else
970 		csum = udp_csum(skb);
971 
972 	/* add protocol-dependent pseudo-header */
973 	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
974 				      sk->sk_protocol, csum);
975 	if (uh->check == 0)
976 		uh->check = CSUM_MANGLED_0;
977 
978 send:
979 	err = ip_send_skb(sock_net(sk), skb);
980 	if (err) {
981 		if (err == -ENOBUFS && !inet->recverr) {
982 			UDP_INC_STATS(sock_net(sk),
983 				      UDP_MIB_SNDBUFERRORS, is_udplite);
984 			err = 0;
985 		}
986 	} else
987 		UDP_INC_STATS(sock_net(sk),
988 			      UDP_MIB_OUTDATAGRAMS, is_udplite);
989 	return err;
990 }
991 
992 /*
993  * Push out all pending data as one UDP datagram. Socket is locked.
994  */
udp_push_pending_frames(struct sock * sk)995 int udp_push_pending_frames(struct sock *sk)
996 {
997 	struct udp_sock  *up = udp_sk(sk);
998 	struct inet_sock *inet = inet_sk(sk);
999 	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1000 	struct sk_buff *skb;
1001 	int err = 0;
1002 
1003 	skb = ip_finish_skb(sk, fl4);
1004 	if (!skb)
1005 		goto out;
1006 
1007 	err = udp_send_skb(skb, fl4, &inet->cork.base);
1008 
1009 out:
1010 	up->len = 0;
1011 	up->pending = 0;
1012 	return err;
1013 }
1014 EXPORT_SYMBOL(udp_push_pending_frames);
1015 
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1016 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1017 {
1018 	switch (cmsg->cmsg_type) {
1019 	case UDP_SEGMENT:
1020 		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1021 			return -EINVAL;
1022 		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1023 		return 0;
1024 	default:
1025 		return -EINVAL;
1026 	}
1027 }
1028 
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1029 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1030 {
1031 	struct cmsghdr *cmsg;
1032 	bool need_ip = false;
1033 	int err;
1034 
1035 	for_each_cmsghdr(cmsg, msg) {
1036 		if (!CMSG_OK(msg, cmsg))
1037 			return -EINVAL;
1038 
1039 		if (cmsg->cmsg_level != SOL_UDP) {
1040 			need_ip = true;
1041 			continue;
1042 		}
1043 
1044 		err = __udp_cmsg_send(cmsg, gso_size);
1045 		if (err)
1046 			return err;
1047 	}
1048 
1049 	return need_ip;
1050 }
1051 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1052 
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1053 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1054 {
1055 	struct inet_sock *inet = inet_sk(sk);
1056 	struct udp_sock *up = udp_sk(sk);
1057 	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1058 	struct flowi4 fl4_stack;
1059 	struct flowi4 *fl4;
1060 	int ulen = len;
1061 	struct ipcm_cookie ipc;
1062 	struct rtable *rt = NULL;
1063 	int free = 0;
1064 	int connected = 0;
1065 	__be32 daddr, faddr, saddr;
1066 	__be16 dport;
1067 	u8  tos;
1068 	int err, is_udplite = IS_UDPLITE(sk);
1069 	int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1070 	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1071 	struct sk_buff *skb;
1072 	struct ip_options_data opt_copy;
1073 
1074 	if (len > 0xFFFF)
1075 		return -EMSGSIZE;
1076 
1077 	/*
1078 	 *	Check the flags.
1079 	 */
1080 
1081 	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1082 		return -EOPNOTSUPP;
1083 
1084 	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1085 
1086 	fl4 = &inet->cork.fl.u.ip4;
1087 	if (up->pending) {
1088 		/*
1089 		 * There are pending frames.
1090 		 * The socket lock must be held while it's corked.
1091 		 */
1092 		lock_sock(sk);
1093 		if (likely(up->pending)) {
1094 			if (unlikely(up->pending != AF_INET)) {
1095 				release_sock(sk);
1096 				return -EINVAL;
1097 			}
1098 			goto do_append_data;
1099 		}
1100 		release_sock(sk);
1101 	}
1102 	ulen += sizeof(struct udphdr);
1103 
1104 	/*
1105 	 *	Get and verify the address.
1106 	 */
1107 	if (usin) {
1108 		if (msg->msg_namelen < sizeof(*usin))
1109 			return -EINVAL;
1110 		if (usin->sin_family != AF_INET) {
1111 			if (usin->sin_family != AF_UNSPEC)
1112 				return -EAFNOSUPPORT;
1113 		}
1114 
1115 		daddr = usin->sin_addr.s_addr;
1116 		dport = usin->sin_port;
1117 		if (dport == 0)
1118 			return -EINVAL;
1119 	} else {
1120 		if (sk->sk_state != TCP_ESTABLISHED)
1121 			return -EDESTADDRREQ;
1122 		daddr = inet->inet_daddr;
1123 		dport = inet->inet_dport;
1124 		/* Open fast path for connected socket.
1125 		   Route will not be used, if at least one option is set.
1126 		 */
1127 		connected = 1;
1128 	}
1129 
1130 	ipcm_init_sk(&ipc, inet);
1131 	ipc.gso_size = READ_ONCE(up->gso_size);
1132 
1133 	if (msg->msg_controllen) {
1134 		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1135 		if (err > 0)
1136 			err = ip_cmsg_send(sk, msg, &ipc,
1137 					   sk->sk_family == AF_INET6);
1138 		if (unlikely(err < 0)) {
1139 			kfree(ipc.opt);
1140 			return err;
1141 		}
1142 		if (ipc.opt)
1143 			free = 1;
1144 		connected = 0;
1145 	}
1146 	if (!ipc.opt) {
1147 		struct ip_options_rcu *inet_opt;
1148 
1149 		rcu_read_lock();
1150 		inet_opt = rcu_dereference(inet->inet_opt);
1151 		if (inet_opt) {
1152 			memcpy(&opt_copy, inet_opt,
1153 			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1154 			ipc.opt = &opt_copy.opt;
1155 		}
1156 		rcu_read_unlock();
1157 	}
1158 
1159 	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1160 		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1161 					    (struct sockaddr *)usin, &ipc.addr);
1162 		if (err)
1163 			goto out_free;
1164 		if (usin) {
1165 			if (usin->sin_port == 0) {
1166 				/* BPF program set invalid port. Reject it. */
1167 				err = -EINVAL;
1168 				goto out_free;
1169 			}
1170 			daddr = usin->sin_addr.s_addr;
1171 			dport = usin->sin_port;
1172 		}
1173 	}
1174 
1175 	saddr = ipc.addr;
1176 	ipc.addr = faddr = daddr;
1177 
1178 	if (ipc.opt && ipc.opt->opt.srr) {
1179 		if (!daddr) {
1180 			err = -EINVAL;
1181 			goto out_free;
1182 		}
1183 		faddr = ipc.opt->opt.faddr;
1184 		connected = 0;
1185 	}
1186 	tos = get_rttos(&ipc, inet);
1187 	if (sock_flag(sk, SOCK_LOCALROUTE) ||
1188 	    (msg->msg_flags & MSG_DONTROUTE) ||
1189 	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
1190 		tos |= RTO_ONLINK;
1191 		connected = 0;
1192 	}
1193 
1194 	if (ipv4_is_multicast(daddr)) {
1195 		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1196 			ipc.oif = inet->mc_index;
1197 		if (!saddr)
1198 			saddr = inet->mc_addr;
1199 		connected = 0;
1200 	} else if (!ipc.oif) {
1201 		ipc.oif = inet->uc_index;
1202 	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1203 		/* oif is set, packet is to local broadcast and
1204 		 * uc_index is set. oif is most likely set
1205 		 * by sk_bound_dev_if. If uc_index != oif check if the
1206 		 * oif is an L3 master and uc_index is an L3 slave.
1207 		 * If so, we want to allow the send using the uc_index.
1208 		 */
1209 		if (ipc.oif != inet->uc_index &&
1210 		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1211 							      inet->uc_index)) {
1212 			ipc.oif = inet->uc_index;
1213 		}
1214 	}
1215 
1216 	if (connected)
1217 		rt = (struct rtable *)sk_dst_check(sk, 0);
1218 
1219 	if (!rt) {
1220 		struct net *net = sock_net(sk);
1221 		__u8 flow_flags = inet_sk_flowi_flags(sk);
1222 
1223 		fl4 = &fl4_stack;
1224 
1225 		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1226 				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1227 				   flow_flags,
1228 				   faddr, saddr, dport, inet->inet_sport,
1229 				   sk->sk_uid);
1230 
1231 		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1232 		rt = ip_route_output_flow(net, fl4, sk);
1233 		if (IS_ERR(rt)) {
1234 			err = PTR_ERR(rt);
1235 			rt = NULL;
1236 			if (err == -ENETUNREACH)
1237 				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1238 			goto out;
1239 		}
1240 
1241 		err = -EACCES;
1242 		if ((rt->rt_flags & RTCF_BROADCAST) &&
1243 		    !sock_flag(sk, SOCK_BROADCAST))
1244 			goto out;
1245 		if (connected)
1246 			sk_dst_set(sk, dst_clone(&rt->dst));
1247 	}
1248 
1249 	if (msg->msg_flags&MSG_CONFIRM)
1250 		goto do_confirm;
1251 back_from_confirm:
1252 
1253 	saddr = fl4->saddr;
1254 	if (!ipc.addr)
1255 		daddr = ipc.addr = fl4->daddr;
1256 
1257 	/* Lockless fast path for the non-corking case. */
1258 	if (!corkreq) {
1259 		struct inet_cork cork;
1260 
1261 		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1262 				  sizeof(struct udphdr), &ipc, &rt,
1263 				  &cork, msg->msg_flags);
1264 		err = PTR_ERR(skb);
1265 		if (!IS_ERR_OR_NULL(skb))
1266 			err = udp_send_skb(skb, fl4, &cork);
1267 		goto out;
1268 	}
1269 
1270 	lock_sock(sk);
1271 	if (unlikely(up->pending)) {
1272 		/* The socket is already corked while preparing it. */
1273 		/* ... which is an evident application bug. --ANK */
1274 		release_sock(sk);
1275 
1276 		net_dbg_ratelimited("socket already corked\n");
1277 		err = -EINVAL;
1278 		goto out;
1279 	}
1280 	/*
1281 	 *	Now cork the socket to pend data.
1282 	 */
1283 	fl4 = &inet->cork.fl.u.ip4;
1284 	fl4->daddr = daddr;
1285 	fl4->saddr = saddr;
1286 	fl4->fl4_dport = dport;
1287 	fl4->fl4_sport = inet->inet_sport;
1288 	up->pending = AF_INET;
1289 
1290 do_append_data:
1291 	up->len += ulen;
1292 	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1293 			     sizeof(struct udphdr), &ipc, &rt,
1294 			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1295 	if (err)
1296 		udp_flush_pending_frames(sk);
1297 	else if (!corkreq)
1298 		err = udp_push_pending_frames(sk);
1299 	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1300 		up->pending = 0;
1301 	release_sock(sk);
1302 
1303 out:
1304 	ip_rt_put(rt);
1305 out_free:
1306 	if (free)
1307 		kfree(ipc.opt);
1308 	if (!err)
1309 		return len;
1310 	/*
1311 	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1312 	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1313 	 * we don't have a good statistic (IpOutDiscards but it can be too many
1314 	 * things).  We could add another new stat but at least for now that
1315 	 * seems like overkill.
1316 	 */
1317 	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1318 		UDP_INC_STATS(sock_net(sk),
1319 			      UDP_MIB_SNDBUFERRORS, is_udplite);
1320 	}
1321 	return err;
1322 
1323 do_confirm:
1324 	if (msg->msg_flags & MSG_PROBE)
1325 		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1326 	if (!(msg->msg_flags&MSG_PROBE) || len)
1327 		goto back_from_confirm;
1328 	err = 0;
1329 	goto out;
1330 }
1331 EXPORT_SYMBOL(udp_sendmsg);
1332 
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1333 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1334 		 size_t size, int flags)
1335 {
1336 	struct inet_sock *inet = inet_sk(sk);
1337 	struct udp_sock *up = udp_sk(sk);
1338 	int ret;
1339 
1340 	if (flags & MSG_SENDPAGE_NOTLAST)
1341 		flags |= MSG_MORE;
1342 
1343 	if (!up->pending) {
1344 		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1345 
1346 		/* Call udp_sendmsg to specify destination address which
1347 		 * sendpage interface can't pass.
1348 		 * This will succeed only when the socket is connected.
1349 		 */
1350 		ret = udp_sendmsg(sk, &msg, 0);
1351 		if (ret < 0)
1352 			return ret;
1353 	}
1354 
1355 	lock_sock(sk);
1356 
1357 	if (unlikely(!up->pending)) {
1358 		release_sock(sk);
1359 
1360 		net_dbg_ratelimited("cork failed\n");
1361 		return -EINVAL;
1362 	}
1363 
1364 	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1365 			     page, offset, size, flags);
1366 	if (ret == -EOPNOTSUPP) {
1367 		release_sock(sk);
1368 		return sock_no_sendpage(sk->sk_socket, page, offset,
1369 					size, flags);
1370 	}
1371 	if (ret < 0) {
1372 		udp_flush_pending_frames(sk);
1373 		goto out;
1374 	}
1375 
1376 	up->len += size;
1377 	if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1378 		ret = udp_push_pending_frames(sk);
1379 	if (!ret)
1380 		ret = size;
1381 out:
1382 	release_sock(sk);
1383 	return ret;
1384 }
1385 
1386 #define UDP_SKB_IS_STATELESS 0x80000000
1387 
1388 /* all head states (dst, sk, nf conntrack) except skb extensions are
1389  * cleared by udp_rcv().
1390  *
1391  * We need to preserve secpath, if present, to eventually process
1392  * IP_CMSG_PASSSEC at recvmsg() time.
1393  *
1394  * Other extensions can be cleared.
1395  */
udp_try_make_stateless(struct sk_buff * skb)1396 static bool udp_try_make_stateless(struct sk_buff *skb)
1397 {
1398 	if (!skb_has_extensions(skb))
1399 		return true;
1400 
1401 	if (!secpath_exists(skb)) {
1402 		skb_ext_reset(skb);
1403 		return true;
1404 	}
1405 
1406 	return false;
1407 }
1408 
udp_set_dev_scratch(struct sk_buff * skb)1409 static void udp_set_dev_scratch(struct sk_buff *skb)
1410 {
1411 	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1412 
1413 	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1414 	scratch->_tsize_state = skb->truesize;
1415 #if BITS_PER_LONG == 64
1416 	scratch->len = skb->len;
1417 	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1418 	scratch->is_linear = !skb_is_nonlinear(skb);
1419 #endif
1420 	if (udp_try_make_stateless(skb))
1421 		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1422 }
1423 
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1424 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1425 {
1426 	/* We come here after udp_lib_checksum_complete() returned 0.
1427 	 * This means that __skb_checksum_complete() might have
1428 	 * set skb->csum_valid to 1.
1429 	 * On 64bit platforms, we can set csum_unnecessary
1430 	 * to true, but only if the skb is not shared.
1431 	 */
1432 #if BITS_PER_LONG == 64
1433 	if (!skb_shared(skb))
1434 		udp_skb_scratch(skb)->csum_unnecessary = true;
1435 #endif
1436 }
1437 
udp_skb_truesize(struct sk_buff * skb)1438 static int udp_skb_truesize(struct sk_buff *skb)
1439 {
1440 	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1441 }
1442 
udp_skb_has_head_state(struct sk_buff * skb)1443 static bool udp_skb_has_head_state(struct sk_buff *skb)
1444 {
1445 	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1446 }
1447 
1448 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1449 static void udp_rmem_release(struct sock *sk, int size, int partial,
1450 			     bool rx_queue_lock_held)
1451 {
1452 	struct udp_sock *up = udp_sk(sk);
1453 	struct sk_buff_head *sk_queue;
1454 	int amt;
1455 
1456 	if (likely(partial)) {
1457 		up->forward_deficit += size;
1458 		size = up->forward_deficit;
1459 		if (size < (sk->sk_rcvbuf >> 2) &&
1460 		    !skb_queue_empty(&up->reader_queue))
1461 			return;
1462 	} else {
1463 		size += up->forward_deficit;
1464 	}
1465 	up->forward_deficit = 0;
1466 
1467 	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1468 	 * if the called don't held it already
1469 	 */
1470 	sk_queue = &sk->sk_receive_queue;
1471 	if (!rx_queue_lock_held)
1472 		spin_lock(&sk_queue->lock);
1473 
1474 
1475 	sk->sk_forward_alloc += size;
1476 	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1477 	sk->sk_forward_alloc -= amt;
1478 
1479 	if (amt)
1480 		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1481 
1482 	atomic_sub(size, &sk->sk_rmem_alloc);
1483 
1484 	/* this can save us from acquiring the rx queue lock on next receive */
1485 	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1486 
1487 	if (!rx_queue_lock_held)
1488 		spin_unlock(&sk_queue->lock);
1489 }
1490 
1491 /* Note: called with reader_queue.lock held.
1492  * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1493  * This avoids a cache line miss while receive_queue lock is held.
1494  * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1495  */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1496 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1497 {
1498 	prefetch(&skb->data);
1499 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1500 }
1501 EXPORT_SYMBOL(udp_skb_destructor);
1502 
1503 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1504 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1505 {
1506 	prefetch(&skb->data);
1507 	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1508 }
1509 
1510 /* Idea of busylocks is to let producers grab an extra spinlock
1511  * to relieve pressure on the receive_queue spinlock shared by consumer.
1512  * Under flood, this means that only one producer can be in line
1513  * trying to acquire the receive_queue spinlock.
1514  * These busylock can be allocated on a per cpu manner, instead of a
1515  * per socket one (that would consume a cache line per socket)
1516  */
1517 static int udp_busylocks_log __read_mostly;
1518 static spinlock_t *udp_busylocks __read_mostly;
1519 
busylock_acquire(void * ptr)1520 static spinlock_t *busylock_acquire(void *ptr)
1521 {
1522 	spinlock_t *busy;
1523 
1524 	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1525 	spin_lock(busy);
1526 	return busy;
1527 }
1528 
busylock_release(spinlock_t * busy)1529 static void busylock_release(spinlock_t *busy)
1530 {
1531 	if (busy)
1532 		spin_unlock(busy);
1533 }
1534 
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1535 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1536 {
1537 	struct sk_buff_head *list = &sk->sk_receive_queue;
1538 	int rmem, delta, amt, err = -ENOMEM;
1539 	spinlock_t *busy = NULL;
1540 	int size;
1541 
1542 	/* try to avoid the costly atomic add/sub pair when the receive
1543 	 * queue is full; always allow at least a packet
1544 	 */
1545 	rmem = atomic_read(&sk->sk_rmem_alloc);
1546 	if (rmem > sk->sk_rcvbuf)
1547 		goto drop;
1548 
1549 	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1550 	 * having linear skbs :
1551 	 * - Reduce memory overhead and thus increase receive queue capacity
1552 	 * - Less cache line misses at copyout() time
1553 	 * - Less work at consume_skb() (less alien page frag freeing)
1554 	 */
1555 	if (rmem > (sk->sk_rcvbuf >> 1)) {
1556 		skb_condense(skb);
1557 
1558 		busy = busylock_acquire(sk);
1559 	}
1560 	size = skb->truesize;
1561 	udp_set_dev_scratch(skb);
1562 
1563 	/* we drop only if the receive buf is full and the receive
1564 	 * queue contains some other skb
1565 	 */
1566 	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1567 	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1568 		goto uncharge_drop;
1569 
1570 	spin_lock(&list->lock);
1571 	if (size >= sk->sk_forward_alloc) {
1572 		amt = sk_mem_pages(size);
1573 		delta = amt << SK_MEM_QUANTUM_SHIFT;
1574 		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1575 			err = -ENOBUFS;
1576 			spin_unlock(&list->lock);
1577 			goto uncharge_drop;
1578 		}
1579 
1580 		sk->sk_forward_alloc += delta;
1581 	}
1582 
1583 	sk->sk_forward_alloc -= size;
1584 
1585 	/* no need to setup a destructor, we will explicitly release the
1586 	 * forward allocated memory on dequeue
1587 	 */
1588 	sock_skb_set_dropcount(sk, skb);
1589 
1590 	__skb_queue_tail(list, skb);
1591 	spin_unlock(&list->lock);
1592 
1593 	if (!sock_flag(sk, SOCK_DEAD))
1594 		sk->sk_data_ready(sk);
1595 
1596 	busylock_release(busy);
1597 	return 0;
1598 
1599 uncharge_drop:
1600 	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1601 
1602 drop:
1603 	atomic_inc(&sk->sk_drops);
1604 	busylock_release(busy);
1605 	return err;
1606 }
1607 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1608 
udp_destruct_common(struct sock * sk)1609 void udp_destruct_common(struct sock *sk)
1610 {
1611 	/* reclaim completely the forward allocated memory */
1612 	struct udp_sock *up = udp_sk(sk);
1613 	unsigned int total = 0;
1614 	struct sk_buff *skb;
1615 
1616 	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1617 	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1618 		total += skb->truesize;
1619 		kfree_skb(skb);
1620 	}
1621 	udp_rmem_release(sk, total, 0, true);
1622 }
1623 EXPORT_SYMBOL_GPL(udp_destruct_common);
1624 
udp_destruct_sock(struct sock * sk)1625 static void udp_destruct_sock(struct sock *sk)
1626 {
1627 	udp_destruct_common(sk);
1628 	inet_sock_destruct(sk);
1629 }
1630 
udp_init_sock(struct sock * sk)1631 int udp_init_sock(struct sock *sk)
1632 {
1633 	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1634 	sk->sk_destruct = udp_destruct_sock;
1635 	return 0;
1636 }
1637 
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1638 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1639 {
1640 	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1641 		bool slow = lock_sock_fast(sk);
1642 
1643 		sk_peek_offset_bwd(sk, len);
1644 		unlock_sock_fast(sk, slow);
1645 	}
1646 
1647 	if (!skb_unref(skb))
1648 		return;
1649 
1650 	/* In the more common cases we cleared the head states previously,
1651 	 * see __udp_queue_rcv_skb().
1652 	 */
1653 	if (unlikely(udp_skb_has_head_state(skb)))
1654 		skb_release_head_state(skb);
1655 	__consume_stateless_skb(skb);
1656 }
1657 EXPORT_SYMBOL_GPL(skb_consume_udp);
1658 
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1659 static struct sk_buff *__first_packet_length(struct sock *sk,
1660 					     struct sk_buff_head *rcvq,
1661 					     int *total)
1662 {
1663 	struct sk_buff *skb;
1664 
1665 	while ((skb = skb_peek(rcvq)) != NULL) {
1666 		if (udp_lib_checksum_complete(skb)) {
1667 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1668 					IS_UDPLITE(sk));
1669 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1670 					IS_UDPLITE(sk));
1671 			atomic_inc(&sk->sk_drops);
1672 			__skb_unlink(skb, rcvq);
1673 			*total += skb->truesize;
1674 			kfree_skb(skb);
1675 		} else {
1676 			udp_skb_csum_unnecessary_set(skb);
1677 			break;
1678 		}
1679 	}
1680 	return skb;
1681 }
1682 
1683 /**
1684  *	first_packet_length	- return length of first packet in receive queue
1685  *	@sk: socket
1686  *
1687  *	Drops all bad checksum frames, until a valid one is found.
1688  *	Returns the length of found skb, or -1 if none is found.
1689  */
first_packet_length(struct sock * sk)1690 static int first_packet_length(struct sock *sk)
1691 {
1692 	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1693 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1694 	struct sk_buff *skb;
1695 	int total = 0;
1696 	int res;
1697 
1698 	spin_lock_bh(&rcvq->lock);
1699 	skb = __first_packet_length(sk, rcvq, &total);
1700 	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1701 		spin_lock(&sk_queue->lock);
1702 		skb_queue_splice_tail_init(sk_queue, rcvq);
1703 		spin_unlock(&sk_queue->lock);
1704 
1705 		skb = __first_packet_length(sk, rcvq, &total);
1706 	}
1707 	res = skb ? skb->len : -1;
1708 	if (total)
1709 		udp_rmem_release(sk, total, 1, false);
1710 	spin_unlock_bh(&rcvq->lock);
1711 	return res;
1712 }
1713 
1714 /*
1715  *	IOCTL requests applicable to the UDP protocol
1716  */
1717 
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1718 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1719 {
1720 	switch (cmd) {
1721 	case SIOCOUTQ:
1722 	{
1723 		int amount = sk_wmem_alloc_get(sk);
1724 
1725 		return put_user(amount, (int __user *)arg);
1726 	}
1727 
1728 	case SIOCINQ:
1729 	{
1730 		int amount = max_t(int, 0, first_packet_length(sk));
1731 
1732 		return put_user(amount, (int __user *)arg);
1733 	}
1734 
1735 	default:
1736 		return -ENOIOCTLCMD;
1737 	}
1738 
1739 	return 0;
1740 }
1741 EXPORT_SYMBOL(udp_ioctl);
1742 
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1743 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1744 			       int noblock, int *off, int *err)
1745 {
1746 	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1747 	struct sk_buff_head *queue;
1748 	struct sk_buff *last;
1749 	long timeo;
1750 	int error;
1751 
1752 	queue = &udp_sk(sk)->reader_queue;
1753 	flags |= noblock ? MSG_DONTWAIT : 0;
1754 	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1755 	do {
1756 		struct sk_buff *skb;
1757 
1758 		error = sock_error(sk);
1759 		if (error)
1760 			break;
1761 
1762 		error = -EAGAIN;
1763 		do {
1764 			spin_lock_bh(&queue->lock);
1765 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1766 							err, &last);
1767 			if (skb) {
1768 				if (!(flags & MSG_PEEK))
1769 					udp_skb_destructor(sk, skb);
1770 				spin_unlock_bh(&queue->lock);
1771 				return skb;
1772 			}
1773 
1774 			if (skb_queue_empty_lockless(sk_queue)) {
1775 				spin_unlock_bh(&queue->lock);
1776 				goto busy_check;
1777 			}
1778 
1779 			/* refill the reader queue and walk it again
1780 			 * keep both queues locked to avoid re-acquiring
1781 			 * the sk_receive_queue lock if fwd memory scheduling
1782 			 * is needed.
1783 			 */
1784 			spin_lock(&sk_queue->lock);
1785 			skb_queue_splice_tail_init(sk_queue, queue);
1786 
1787 			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1788 							err, &last);
1789 			if (skb && !(flags & MSG_PEEK))
1790 				udp_skb_dtor_locked(sk, skb);
1791 			spin_unlock(&sk_queue->lock);
1792 			spin_unlock_bh(&queue->lock);
1793 			if (skb)
1794 				return skb;
1795 
1796 busy_check:
1797 			if (!sk_can_busy_loop(sk))
1798 				break;
1799 
1800 			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1801 		} while (!skb_queue_empty_lockless(sk_queue));
1802 
1803 		/* sk_queue is empty, reader_queue may contain peeked packets */
1804 	} while (timeo &&
1805 		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1806 					      &error, &timeo,
1807 					      (struct sk_buff *)sk_queue));
1808 
1809 	*err = error;
1810 	return NULL;
1811 }
1812 EXPORT_SYMBOL(__skb_recv_udp);
1813 
udp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1814 int udp_read_sock(struct sock *sk, read_descriptor_t *desc,
1815 		  sk_read_actor_t recv_actor)
1816 {
1817 	int copied = 0;
1818 
1819 	while (1) {
1820 		struct sk_buff *skb;
1821 		int err, used;
1822 
1823 		skb = skb_recv_udp(sk, 0, 1, &err);
1824 		if (!skb)
1825 			return err;
1826 
1827 		if (udp_lib_checksum_complete(skb)) {
1828 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1829 					IS_UDPLITE(sk));
1830 			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1831 					IS_UDPLITE(sk));
1832 			atomic_inc(&sk->sk_drops);
1833 			kfree_skb(skb);
1834 			continue;
1835 		}
1836 
1837 		used = recv_actor(desc, skb, 0, skb->len);
1838 		if (used <= 0) {
1839 			if (!copied)
1840 				copied = used;
1841 			kfree_skb(skb);
1842 			break;
1843 		} else if (used <= skb->len) {
1844 			copied += used;
1845 		}
1846 
1847 		kfree_skb(skb);
1848 		if (!desc->count)
1849 			break;
1850 	}
1851 
1852 	return copied;
1853 }
1854 EXPORT_SYMBOL(udp_read_sock);
1855 
1856 /*
1857  * 	This should be easy, if there is something there we
1858  * 	return it, otherwise we block.
1859  */
1860 
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1861 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1862 		int flags, int *addr_len)
1863 {
1864 	struct inet_sock *inet = inet_sk(sk);
1865 	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1866 	struct sk_buff *skb;
1867 	unsigned int ulen, copied;
1868 	int off, err, peeking = flags & MSG_PEEK;
1869 	int is_udplite = IS_UDPLITE(sk);
1870 	bool checksum_valid = false;
1871 
1872 	if (flags & MSG_ERRQUEUE)
1873 		return ip_recv_error(sk, msg, len, addr_len);
1874 
1875 try_again:
1876 	off = sk_peek_offset(sk, flags);
1877 	skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1878 	if (!skb)
1879 		return err;
1880 
1881 	ulen = udp_skb_len(skb);
1882 	copied = len;
1883 	if (copied > ulen - off)
1884 		copied = ulen - off;
1885 	else if (copied < ulen)
1886 		msg->msg_flags |= MSG_TRUNC;
1887 
1888 	/*
1889 	 * If checksum is needed at all, try to do it while copying the
1890 	 * data.  If the data is truncated, or if we only want a partial
1891 	 * coverage checksum (UDP-Lite), do it before the copy.
1892 	 */
1893 
1894 	if (copied < ulen || peeking ||
1895 	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1896 		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1897 				!__udp_lib_checksum_complete(skb);
1898 		if (!checksum_valid)
1899 			goto csum_copy_err;
1900 	}
1901 
1902 	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1903 		if (udp_skb_is_linear(skb))
1904 			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1905 		else
1906 			err = skb_copy_datagram_msg(skb, off, msg, copied);
1907 	} else {
1908 		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1909 
1910 		if (err == -EINVAL)
1911 			goto csum_copy_err;
1912 	}
1913 
1914 	if (unlikely(err)) {
1915 		if (!peeking) {
1916 			atomic_inc(&sk->sk_drops);
1917 			UDP_INC_STATS(sock_net(sk),
1918 				      UDP_MIB_INERRORS, is_udplite);
1919 		}
1920 		kfree_skb(skb);
1921 		return err;
1922 	}
1923 
1924 	if (!peeking)
1925 		UDP_INC_STATS(sock_net(sk),
1926 			      UDP_MIB_INDATAGRAMS, is_udplite);
1927 
1928 	sock_recv_ts_and_drops(msg, sk, skb);
1929 
1930 	/* Copy the address. */
1931 	if (sin) {
1932 		sin->sin_family = AF_INET;
1933 		sin->sin_port = udp_hdr(skb)->source;
1934 		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1935 		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1936 		*addr_len = sizeof(*sin);
1937 
1938 		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1939 						      (struct sockaddr *)sin);
1940 	}
1941 
1942 	if (udp_sk(sk)->gro_enabled)
1943 		udp_cmsg_recv(msg, sk, skb);
1944 
1945 	if (inet->cmsg_flags)
1946 		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1947 
1948 	err = copied;
1949 	if (flags & MSG_TRUNC)
1950 		err = ulen;
1951 
1952 	skb_consume_udp(sk, skb, peeking ? -err : err);
1953 	return err;
1954 
1955 csum_copy_err:
1956 	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1957 				 udp_skb_destructor)) {
1958 		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1959 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1960 	}
1961 	kfree_skb(skb);
1962 
1963 	/* starting over for a new packet, but check if we need to yield */
1964 	cond_resched();
1965 	msg->msg_flags &= ~MSG_TRUNC;
1966 	goto try_again;
1967 }
1968 
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1969 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1970 {
1971 	/* This check is replicated from __ip4_datagram_connect() and
1972 	 * intended to prevent BPF program called below from accessing bytes
1973 	 * that are out of the bound specified by user in addr_len.
1974 	 */
1975 	if (addr_len < sizeof(struct sockaddr_in))
1976 		return -EINVAL;
1977 
1978 	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1979 }
1980 EXPORT_SYMBOL(udp_pre_connect);
1981 
__udp_disconnect(struct sock * sk,int flags)1982 int __udp_disconnect(struct sock *sk, int flags)
1983 {
1984 	struct inet_sock *inet = inet_sk(sk);
1985 	/*
1986 	 *	1003.1g - break association.
1987 	 */
1988 
1989 	sk->sk_state = TCP_CLOSE;
1990 	inet->inet_daddr = 0;
1991 	inet->inet_dport = 0;
1992 	sock_rps_reset_rxhash(sk);
1993 	sk->sk_bound_dev_if = 0;
1994 	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1995 		inet_reset_saddr(sk);
1996 		if (sk->sk_prot->rehash &&
1997 		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1998 			sk->sk_prot->rehash(sk);
1999 	}
2000 
2001 	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
2002 		sk->sk_prot->unhash(sk);
2003 		inet->inet_sport = 0;
2004 	}
2005 	sk_dst_reset(sk);
2006 	return 0;
2007 }
2008 EXPORT_SYMBOL(__udp_disconnect);
2009 
udp_disconnect(struct sock * sk,int flags)2010 int udp_disconnect(struct sock *sk, int flags)
2011 {
2012 	lock_sock(sk);
2013 	__udp_disconnect(sk, flags);
2014 	release_sock(sk);
2015 	return 0;
2016 }
2017 EXPORT_SYMBOL(udp_disconnect);
2018 
udp_lib_unhash(struct sock * sk)2019 void udp_lib_unhash(struct sock *sk)
2020 {
2021 	if (sk_hashed(sk)) {
2022 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2023 		struct udp_hslot *hslot, *hslot2;
2024 
2025 		hslot  = udp_hashslot(udptable, sock_net(sk),
2026 				      udp_sk(sk)->udp_port_hash);
2027 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2028 
2029 		spin_lock_bh(&hslot->lock);
2030 		if (rcu_access_pointer(sk->sk_reuseport_cb))
2031 			reuseport_detach_sock(sk);
2032 		if (sk_del_node_init_rcu(sk)) {
2033 			hslot->count--;
2034 			inet_sk(sk)->inet_num = 0;
2035 			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
2036 
2037 			spin_lock(&hslot2->lock);
2038 			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2039 			hslot2->count--;
2040 			spin_unlock(&hslot2->lock);
2041 		}
2042 		spin_unlock_bh(&hslot->lock);
2043 	}
2044 }
2045 EXPORT_SYMBOL(udp_lib_unhash);
2046 
2047 /*
2048  * inet_rcv_saddr was changed, we must rehash secondary hash
2049  */
udp_lib_rehash(struct sock * sk,u16 newhash)2050 void udp_lib_rehash(struct sock *sk, u16 newhash)
2051 {
2052 	if (sk_hashed(sk)) {
2053 		struct udp_table *udptable = sk->sk_prot->h.udp_table;
2054 		struct udp_hslot *hslot, *hslot2, *nhslot2;
2055 
2056 		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2057 		nhslot2 = udp_hashslot2(udptable, newhash);
2058 		udp_sk(sk)->udp_portaddr_hash = newhash;
2059 
2060 		if (hslot2 != nhslot2 ||
2061 		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2062 			hslot = udp_hashslot(udptable, sock_net(sk),
2063 					     udp_sk(sk)->udp_port_hash);
2064 			/* we must lock primary chain too */
2065 			spin_lock_bh(&hslot->lock);
2066 			if (rcu_access_pointer(sk->sk_reuseport_cb))
2067 				reuseport_detach_sock(sk);
2068 
2069 			if (hslot2 != nhslot2) {
2070 				spin_lock(&hslot2->lock);
2071 				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2072 				hslot2->count--;
2073 				spin_unlock(&hslot2->lock);
2074 
2075 				spin_lock(&nhslot2->lock);
2076 				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2077 							 &nhslot2->head);
2078 				nhslot2->count++;
2079 				spin_unlock(&nhslot2->lock);
2080 			}
2081 
2082 			spin_unlock_bh(&hslot->lock);
2083 		}
2084 	}
2085 }
2086 EXPORT_SYMBOL(udp_lib_rehash);
2087 
udp_v4_rehash(struct sock * sk)2088 void udp_v4_rehash(struct sock *sk)
2089 {
2090 	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2091 					  inet_sk(sk)->inet_rcv_saddr,
2092 					  inet_sk(sk)->inet_num);
2093 	udp_lib_rehash(sk, new_hash);
2094 }
2095 
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2096 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2097 {
2098 	int rc;
2099 
2100 	if (inet_sk(sk)->inet_daddr) {
2101 		sock_rps_save_rxhash(sk, skb);
2102 		sk_mark_napi_id(sk, skb);
2103 		sk_incoming_cpu_update(sk);
2104 	} else {
2105 		sk_mark_napi_id_once(sk, skb);
2106 	}
2107 
2108 	rc = __udp_enqueue_schedule_skb(sk, skb);
2109 	if (rc < 0) {
2110 		int is_udplite = IS_UDPLITE(sk);
2111 
2112 		/* Note that an ENOMEM error is charged twice */
2113 		if (rc == -ENOMEM)
2114 			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2115 					is_udplite);
2116 		else
2117 			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2118 				      is_udplite);
2119 		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2120 		kfree_skb(skb);
2121 		trace_udp_fail_queue_rcv_skb(rc, sk);
2122 		return -1;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 /* returns:
2129  *  -1: error
2130  *   0: success
2131  *  >0: "udp encap" protocol resubmission
2132  *
2133  * Note that in the success and error cases, the skb is assumed to
2134  * have either been requeued or freed.
2135  */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2136 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2137 {
2138 	struct udp_sock *up = udp_sk(sk);
2139 	int is_udplite = IS_UDPLITE(sk);
2140 
2141 	/*
2142 	 *	Charge it to the socket, dropping if the queue is full.
2143 	 */
2144 	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2145 		goto drop;
2146 	nf_reset_ct(skb);
2147 
2148 	if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2149 		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2150 
2151 		/*
2152 		 * This is an encapsulation socket so pass the skb to
2153 		 * the socket's udp_encap_rcv() hook. Otherwise, just
2154 		 * fall through and pass this up the UDP socket.
2155 		 * up->encap_rcv() returns the following value:
2156 		 * =0 if skb was successfully passed to the encap
2157 		 *    handler or was discarded by it.
2158 		 * >0 if skb should be passed on to UDP.
2159 		 * <0 if skb should be resubmitted as proto -N
2160 		 */
2161 
2162 		/* if we're overly short, let UDP handle it */
2163 		encap_rcv = READ_ONCE(up->encap_rcv);
2164 		if (encap_rcv) {
2165 			int ret;
2166 
2167 			/* Verify checksum before giving to encap */
2168 			if (udp_lib_checksum_complete(skb))
2169 				goto csum_error;
2170 
2171 			ret = encap_rcv(sk, skb);
2172 			if (ret <= 0) {
2173 				__UDP_INC_STATS(sock_net(sk),
2174 						UDP_MIB_INDATAGRAMS,
2175 						is_udplite);
2176 				return -ret;
2177 			}
2178 		}
2179 
2180 		/* FALLTHROUGH -- it's a UDP Packet */
2181 	}
2182 
2183 	/*
2184 	 * 	UDP-Lite specific tests, ignored on UDP sockets
2185 	 */
2186 	if ((up->pcflag & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
2187 
2188 		/*
2189 		 * MIB statistics other than incrementing the error count are
2190 		 * disabled for the following two types of errors: these depend
2191 		 * on the application settings, not on the functioning of the
2192 		 * protocol stack as such.
2193 		 *
2194 		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2195 		 * way ... to ... at least let the receiving application block
2196 		 * delivery of packets with coverage values less than a value
2197 		 * provided by the application."
2198 		 */
2199 		if (up->pcrlen == 0) {          /* full coverage was set  */
2200 			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2201 					    UDP_SKB_CB(skb)->cscov, skb->len);
2202 			goto drop;
2203 		}
2204 		/* The next case involves violating the min. coverage requested
2205 		 * by the receiver. This is subtle: if receiver wants x and x is
2206 		 * greater than the buffersize/MTU then receiver will complain
2207 		 * that it wants x while sender emits packets of smaller size y.
2208 		 * Therefore the above ...()->partial_cov statement is essential.
2209 		 */
2210 		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
2211 			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2212 					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
2213 			goto drop;
2214 		}
2215 	}
2216 
2217 	prefetch(&sk->sk_rmem_alloc);
2218 	if (rcu_access_pointer(sk->sk_filter) &&
2219 	    udp_lib_checksum_complete(skb))
2220 			goto csum_error;
2221 
2222 	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2223 		goto drop;
2224 
2225 	udp_csum_pull_header(skb);
2226 
2227 	ipv4_pktinfo_prepare(sk, skb);
2228 	return __udp_queue_rcv_skb(sk, skb);
2229 
2230 csum_error:
2231 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2232 drop:
2233 	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2234 	atomic_inc(&sk->sk_drops);
2235 	kfree_skb(skb);
2236 	return -1;
2237 }
2238 
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2239 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2240 {
2241 	struct sk_buff *next, *segs;
2242 	int ret;
2243 
2244 	if (likely(!udp_unexpected_gso(sk, skb)))
2245 		return udp_queue_rcv_one_skb(sk, skb);
2246 
2247 	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2248 	__skb_push(skb, -skb_mac_offset(skb));
2249 	segs = udp_rcv_segment(sk, skb, true);
2250 	skb_list_walk_safe(segs, skb, next) {
2251 		__skb_pull(skb, skb_transport_offset(skb));
2252 
2253 		udp_post_segment_fix_csum(skb);
2254 		ret = udp_queue_rcv_one_skb(sk, skb);
2255 		if (ret > 0)
2256 			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2257 	}
2258 	return 0;
2259 }
2260 
2261 /* For TCP sockets, sk_rx_dst is protected by socket lock
2262  * For UDP, we use xchg() to guard against concurrent changes.
2263  */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2264 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2265 {
2266 	struct dst_entry *old;
2267 
2268 	if (dst_hold_safe(dst)) {
2269 		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2270 		dst_release(old);
2271 		return old != dst;
2272 	}
2273 	return false;
2274 }
2275 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2276 
2277 /*
2278  *	Multicasts and broadcasts go to each listener.
2279  *
2280  *	Note: called only from the BH handler context.
2281  */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2282 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2283 				    struct udphdr  *uh,
2284 				    __be32 saddr, __be32 daddr,
2285 				    struct udp_table *udptable,
2286 				    int proto)
2287 {
2288 	struct sock *sk, *first = NULL;
2289 	unsigned short hnum = ntohs(uh->dest);
2290 	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2291 	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2292 	unsigned int offset = offsetof(typeof(*sk), sk_node);
2293 	int dif = skb->dev->ifindex;
2294 	int sdif = inet_sdif(skb);
2295 	struct hlist_node *node;
2296 	struct sk_buff *nskb;
2297 
2298 	if (use_hash2) {
2299 		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2300 			    udptable->mask;
2301 		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2302 start_lookup:
2303 		hslot = &udptable->hash2[hash2];
2304 		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2305 	}
2306 
2307 	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2308 		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2309 					 uh->source, saddr, dif, sdif, hnum))
2310 			continue;
2311 
2312 		if (!first) {
2313 			first = sk;
2314 			continue;
2315 		}
2316 		nskb = skb_clone(skb, GFP_ATOMIC);
2317 
2318 		if (unlikely(!nskb)) {
2319 			atomic_inc(&sk->sk_drops);
2320 			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2321 					IS_UDPLITE(sk));
2322 			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2323 					IS_UDPLITE(sk));
2324 			continue;
2325 		}
2326 		if (udp_queue_rcv_skb(sk, nskb) > 0)
2327 			consume_skb(nskb);
2328 	}
2329 
2330 	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2331 	if (use_hash2 && hash2 != hash2_any) {
2332 		hash2 = hash2_any;
2333 		goto start_lookup;
2334 	}
2335 
2336 	if (first) {
2337 		if (udp_queue_rcv_skb(first, skb) > 0)
2338 			consume_skb(skb);
2339 	} else {
2340 		kfree_skb(skb);
2341 		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2342 				proto == IPPROTO_UDPLITE);
2343 	}
2344 	return 0;
2345 }
2346 
2347 /* Initialize UDP checksum. If exited with zero value (success),
2348  * CHECKSUM_UNNECESSARY means, that no more checks are required.
2349  * Otherwise, csum completion requires checksumming packet body,
2350  * including udp header and folding it to skb->csum.
2351  */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2352 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2353 				 int proto)
2354 {
2355 	int err;
2356 
2357 	UDP_SKB_CB(skb)->partial_cov = 0;
2358 	UDP_SKB_CB(skb)->cscov = skb->len;
2359 
2360 	if (proto == IPPROTO_UDPLITE) {
2361 		err = udplite_checksum_init(skb, uh);
2362 		if (err)
2363 			return err;
2364 
2365 		if (UDP_SKB_CB(skb)->partial_cov) {
2366 			skb->csum = inet_compute_pseudo(skb, proto);
2367 			return 0;
2368 		}
2369 	}
2370 
2371 	/* Note, we are only interested in != 0 or == 0, thus the
2372 	 * force to int.
2373 	 */
2374 	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2375 							inet_compute_pseudo);
2376 	if (err)
2377 		return err;
2378 
2379 	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2380 		/* If SW calculated the value, we know it's bad */
2381 		if (skb->csum_complete_sw)
2382 			return 1;
2383 
2384 		/* HW says the value is bad. Let's validate that.
2385 		 * skb->csum is no longer the full packet checksum,
2386 		 * so don't treat it as such.
2387 		 */
2388 		skb_checksum_complete_unset(skb);
2389 	}
2390 
2391 	return 0;
2392 }
2393 
2394 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2395  * return code conversion for ip layer consumption
2396  */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2397 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2398 			       struct udphdr *uh)
2399 {
2400 	int ret;
2401 
2402 	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2403 		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2404 
2405 	ret = udp_queue_rcv_skb(sk, skb);
2406 
2407 	/* a return value > 0 means to resubmit the input, but
2408 	 * it wants the return to be -protocol, or 0
2409 	 */
2410 	if (ret > 0)
2411 		return -ret;
2412 	return 0;
2413 }
2414 
2415 /*
2416  *	All we need to do is get the socket, and then do a checksum.
2417  */
2418 
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2419 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2420 		   int proto)
2421 {
2422 	struct sock *sk;
2423 	struct udphdr *uh;
2424 	unsigned short ulen;
2425 	struct rtable *rt = skb_rtable(skb);
2426 	__be32 saddr, daddr;
2427 	struct net *net = dev_net(skb->dev);
2428 	bool refcounted;
2429 	int drop_reason;
2430 
2431 	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2432 
2433 	/*
2434 	 *  Validate the packet.
2435 	 */
2436 	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2437 		goto drop;		/* No space for header. */
2438 
2439 	uh   = udp_hdr(skb);
2440 	ulen = ntohs(uh->len);
2441 	saddr = ip_hdr(skb)->saddr;
2442 	daddr = ip_hdr(skb)->daddr;
2443 
2444 	if (ulen > skb->len)
2445 		goto short_packet;
2446 
2447 	if (proto == IPPROTO_UDP) {
2448 		/* UDP validates ulen. */
2449 		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2450 			goto short_packet;
2451 		uh = udp_hdr(skb);
2452 	}
2453 
2454 	if (udp4_csum_init(skb, uh, proto))
2455 		goto csum_error;
2456 
2457 	sk = skb_steal_sock(skb, &refcounted);
2458 	if (sk) {
2459 		struct dst_entry *dst = skb_dst(skb);
2460 		int ret;
2461 
2462 		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2463 			udp_sk_rx_dst_set(sk, dst);
2464 
2465 		ret = udp_unicast_rcv_skb(sk, skb, uh);
2466 		if (refcounted)
2467 			sock_put(sk);
2468 		return ret;
2469 	}
2470 
2471 	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2472 		return __udp4_lib_mcast_deliver(net, skb, uh,
2473 						saddr, daddr, udptable, proto);
2474 
2475 	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2476 	if (sk)
2477 		return udp_unicast_rcv_skb(sk, skb, uh);
2478 
2479 	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2480 		goto drop;
2481 	nf_reset_ct(skb);
2482 
2483 	/* No socket. Drop packet silently, if checksum is wrong */
2484 	if (udp_lib_checksum_complete(skb))
2485 		goto csum_error;
2486 
2487 	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2488 	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2489 	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2490 
2491 	/*
2492 	 * Hmm.  We got an UDP packet to a port to which we
2493 	 * don't wanna listen.  Ignore it.
2494 	 */
2495 	kfree_skb_reason(skb, drop_reason);
2496 	return 0;
2497 
2498 short_packet:
2499 	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2500 	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2501 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2502 			    &saddr, ntohs(uh->source),
2503 			    ulen, skb->len,
2504 			    &daddr, ntohs(uh->dest));
2505 	goto drop;
2506 
2507 csum_error:
2508 	/*
2509 	 * RFC1122: OK.  Discards the bad packet silently (as far as
2510 	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2511 	 */
2512 	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2513 	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2514 			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2515 			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2516 			    ulen);
2517 	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2518 drop:
2519 	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2520 	kfree_skb_reason(skb, drop_reason);
2521 	return 0;
2522 }
2523 
2524 /* We can only early demux multicast if there is a single matching socket.
2525  * If more than one socket found returns NULL
2526  */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2527 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2528 						  __be16 loc_port, __be32 loc_addr,
2529 						  __be16 rmt_port, __be32 rmt_addr,
2530 						  int dif, int sdif)
2531 {
2532 	struct sock *sk, *result;
2533 	unsigned short hnum = ntohs(loc_port);
2534 	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2535 	struct udp_hslot *hslot = &udp_table.hash[slot];
2536 
2537 	/* Do not bother scanning a too big list */
2538 	if (hslot->count > 10)
2539 		return NULL;
2540 
2541 	result = NULL;
2542 	sk_for_each_rcu(sk, &hslot->head) {
2543 		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2544 					rmt_port, rmt_addr, dif, sdif, hnum)) {
2545 			if (result)
2546 				return NULL;
2547 			result = sk;
2548 		}
2549 	}
2550 
2551 	return result;
2552 }
2553 
2554 /* For unicast we should only early demux connected sockets or we can
2555  * break forwarding setups.  The chains here can be long so only check
2556  * if the first socket is an exact match and if not move on.
2557  */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2558 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2559 					    __be16 loc_port, __be32 loc_addr,
2560 					    __be16 rmt_port, __be32 rmt_addr,
2561 					    int dif, int sdif)
2562 {
2563 	unsigned short hnum = ntohs(loc_port);
2564 	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2565 	unsigned int slot2 = hash2 & udp_table.mask;
2566 	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2567 	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2568 	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2569 	struct sock *sk;
2570 
2571 	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2572 		if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2573 			return sk;
2574 		/* Only check first socket in chain */
2575 		break;
2576 	}
2577 	return NULL;
2578 }
2579 
udp_v4_early_demux(struct sk_buff * skb)2580 int udp_v4_early_demux(struct sk_buff *skb)
2581 {
2582 	struct net *net = dev_net(skb->dev);
2583 	struct in_device *in_dev = NULL;
2584 	const struct iphdr *iph;
2585 	const struct udphdr *uh;
2586 	struct sock *sk = NULL;
2587 	struct dst_entry *dst;
2588 	int dif = skb->dev->ifindex;
2589 	int sdif = inet_sdif(skb);
2590 	int ours;
2591 
2592 	/* validate the packet */
2593 	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2594 		return 0;
2595 
2596 	iph = ip_hdr(skb);
2597 	uh = udp_hdr(skb);
2598 
2599 	if (skb->pkt_type == PACKET_MULTICAST) {
2600 		in_dev = __in_dev_get_rcu(skb->dev);
2601 
2602 		if (!in_dev)
2603 			return 0;
2604 
2605 		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2606 				       iph->protocol);
2607 		if (!ours)
2608 			return 0;
2609 
2610 		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2611 						   uh->source, iph->saddr,
2612 						   dif, sdif);
2613 	} else if (skb->pkt_type == PACKET_HOST) {
2614 		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2615 					     uh->source, iph->saddr, dif, sdif);
2616 	}
2617 
2618 	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2619 		return 0;
2620 
2621 	skb->sk = sk;
2622 	skb->destructor = sock_efree;
2623 	dst = rcu_dereference(sk->sk_rx_dst);
2624 
2625 	if (dst)
2626 		dst = dst_check(dst, 0);
2627 	if (dst) {
2628 		u32 itag = 0;
2629 
2630 		/* set noref for now.
2631 		 * any place which wants to hold dst has to call
2632 		 * dst_hold_safe()
2633 		 */
2634 		skb_dst_set_noref(skb, dst);
2635 
2636 		/* for unconnected multicast sockets we need to validate
2637 		 * the source on each packet
2638 		 */
2639 		if (!inet_sk(sk)->inet_daddr && in_dev)
2640 			return ip_mc_validate_source(skb, iph->daddr,
2641 						     iph->saddr,
2642 						     iph->tos & IPTOS_RT_MASK,
2643 						     skb->dev, in_dev, &itag);
2644 	}
2645 	return 0;
2646 }
2647 
udp_rcv(struct sk_buff * skb)2648 int udp_rcv(struct sk_buff *skb)
2649 {
2650 	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2651 }
2652 
udp_destroy_sock(struct sock * sk)2653 void udp_destroy_sock(struct sock *sk)
2654 {
2655 	struct udp_sock *up = udp_sk(sk);
2656 	bool slow = lock_sock_fast(sk);
2657 
2658 	/* protects from races with udp_abort() */
2659 	sock_set_flag(sk, SOCK_DEAD);
2660 	udp_flush_pending_frames(sk);
2661 	unlock_sock_fast(sk, slow);
2662 	if (static_branch_unlikely(&udp_encap_needed_key)) {
2663 		if (up->encap_type) {
2664 			void (*encap_destroy)(struct sock *sk);
2665 			encap_destroy = READ_ONCE(up->encap_destroy);
2666 			if (encap_destroy)
2667 				encap_destroy(sk);
2668 		}
2669 		if (up->encap_enabled)
2670 			static_branch_dec(&udp_encap_needed_key);
2671 	}
2672 }
2673 
2674 /*
2675  *	Socket option code for UDP
2676  */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2677 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2678 		       sockptr_t optval, unsigned int optlen,
2679 		       int (*push_pending_frames)(struct sock *))
2680 {
2681 	struct udp_sock *up = udp_sk(sk);
2682 	int val, valbool;
2683 	int err = 0;
2684 	int is_udplite = IS_UDPLITE(sk);
2685 
2686 	if (optlen < sizeof(int))
2687 		return -EINVAL;
2688 
2689 	if (copy_from_sockptr(&val, optval, sizeof(val)))
2690 		return -EFAULT;
2691 
2692 	valbool = val ? 1 : 0;
2693 
2694 	switch (optname) {
2695 	case UDP_CORK:
2696 		if (val != 0) {
2697 			WRITE_ONCE(up->corkflag, 1);
2698 		} else {
2699 			WRITE_ONCE(up->corkflag, 0);
2700 			lock_sock(sk);
2701 			push_pending_frames(sk);
2702 			release_sock(sk);
2703 		}
2704 		break;
2705 
2706 	case UDP_ENCAP:
2707 		switch (val) {
2708 		case 0:
2709 #ifdef CONFIG_XFRM
2710 		case UDP_ENCAP_ESPINUDP:
2711 		case UDP_ENCAP_ESPINUDP_NON_IKE:
2712 #if IS_ENABLED(CONFIG_IPV6)
2713 			if (sk->sk_family == AF_INET6)
2714 				WRITE_ONCE(up->encap_rcv,
2715 					   ipv6_stub->xfrm6_udp_encap_rcv);
2716 			else
2717 #endif
2718 				WRITE_ONCE(up->encap_rcv,
2719 					   xfrm4_udp_encap_rcv);
2720 #endif
2721 			fallthrough;
2722 		case UDP_ENCAP_L2TPINUDP:
2723 			up->encap_type = val;
2724 			lock_sock(sk);
2725 			udp_tunnel_encap_enable(sk->sk_socket);
2726 			release_sock(sk);
2727 			break;
2728 		default:
2729 			err = -ENOPROTOOPT;
2730 			break;
2731 		}
2732 		break;
2733 
2734 	case UDP_NO_CHECK6_TX:
2735 		up->no_check6_tx = valbool;
2736 		break;
2737 
2738 	case UDP_NO_CHECK6_RX:
2739 		up->no_check6_rx = valbool;
2740 		break;
2741 
2742 	case UDP_SEGMENT:
2743 		if (val < 0 || val > USHRT_MAX)
2744 			return -EINVAL;
2745 		WRITE_ONCE(up->gso_size, val);
2746 		break;
2747 
2748 	case UDP_GRO:
2749 		lock_sock(sk);
2750 
2751 		/* when enabling GRO, accept the related GSO packet type */
2752 		if (valbool)
2753 			udp_tunnel_encap_enable(sk->sk_socket);
2754 		up->gro_enabled = valbool;
2755 		up->accept_udp_l4 = valbool;
2756 		release_sock(sk);
2757 		break;
2758 
2759 	/*
2760 	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2761 	 */
2762 	/* The sender sets actual checksum coverage length via this option.
2763 	 * The case coverage > packet length is handled by send module. */
2764 	case UDPLITE_SEND_CSCOV:
2765 		if (!is_udplite)         /* Disable the option on UDP sockets */
2766 			return -ENOPROTOOPT;
2767 		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2768 			val = 8;
2769 		else if (val > USHRT_MAX)
2770 			val = USHRT_MAX;
2771 		up->pcslen = val;
2772 		up->pcflag |= UDPLITE_SEND_CC;
2773 		break;
2774 
2775 	/* The receiver specifies a minimum checksum coverage value. To make
2776 	 * sense, this should be set to at least 8 (as done below). If zero is
2777 	 * used, this again means full checksum coverage.                     */
2778 	case UDPLITE_RECV_CSCOV:
2779 		if (!is_udplite)         /* Disable the option on UDP sockets */
2780 			return -ENOPROTOOPT;
2781 		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2782 			val = 8;
2783 		else if (val > USHRT_MAX)
2784 			val = USHRT_MAX;
2785 		up->pcrlen = val;
2786 		up->pcflag |= UDPLITE_RECV_CC;
2787 		break;
2788 
2789 	default:
2790 		err = -ENOPROTOOPT;
2791 		break;
2792 	}
2793 
2794 	return err;
2795 }
2796 EXPORT_SYMBOL(udp_lib_setsockopt);
2797 
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2798 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2799 		   unsigned int optlen)
2800 {
2801 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2802 		return udp_lib_setsockopt(sk, level, optname,
2803 					  optval, optlen,
2804 					  udp_push_pending_frames);
2805 	return ip_setsockopt(sk, level, optname, optval, optlen);
2806 }
2807 
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2808 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2809 		       char __user *optval, int __user *optlen)
2810 {
2811 	struct udp_sock *up = udp_sk(sk);
2812 	int val, len;
2813 
2814 	if (get_user(len, optlen))
2815 		return -EFAULT;
2816 
2817 	len = min_t(unsigned int, len, sizeof(int));
2818 
2819 	if (len < 0)
2820 		return -EINVAL;
2821 
2822 	switch (optname) {
2823 	case UDP_CORK:
2824 		val = READ_ONCE(up->corkflag);
2825 		break;
2826 
2827 	case UDP_ENCAP:
2828 		val = up->encap_type;
2829 		break;
2830 
2831 	case UDP_NO_CHECK6_TX:
2832 		val = up->no_check6_tx;
2833 		break;
2834 
2835 	case UDP_NO_CHECK6_RX:
2836 		val = up->no_check6_rx;
2837 		break;
2838 
2839 	case UDP_SEGMENT:
2840 		val = READ_ONCE(up->gso_size);
2841 		break;
2842 
2843 	case UDP_GRO:
2844 		val = up->gro_enabled;
2845 		break;
2846 
2847 	/* The following two cannot be changed on UDP sockets, the return is
2848 	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2849 	case UDPLITE_SEND_CSCOV:
2850 		val = up->pcslen;
2851 		break;
2852 
2853 	case UDPLITE_RECV_CSCOV:
2854 		val = up->pcrlen;
2855 		break;
2856 
2857 	default:
2858 		return -ENOPROTOOPT;
2859 	}
2860 
2861 	if (put_user(len, optlen))
2862 		return -EFAULT;
2863 	if (copy_to_user(optval, &val, len))
2864 		return -EFAULT;
2865 	return 0;
2866 }
2867 EXPORT_SYMBOL(udp_lib_getsockopt);
2868 
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2869 int udp_getsockopt(struct sock *sk, int level, int optname,
2870 		   char __user *optval, int __user *optlen)
2871 {
2872 	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2873 		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2874 	return ip_getsockopt(sk, level, optname, optval, optlen);
2875 }
2876 
2877 /**
2878  * 	udp_poll - wait for a UDP event.
2879  *	@file: - file struct
2880  *	@sock: - socket
2881  *	@wait: - poll table
2882  *
2883  *	This is same as datagram poll, except for the special case of
2884  *	blocking sockets. If application is using a blocking fd
2885  *	and a packet with checksum error is in the queue;
2886  *	then it could get return from select indicating data available
2887  *	but then block when reading it. Add special case code
2888  *	to work around these arguably broken applications.
2889  */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2890 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2891 {
2892 	__poll_t mask = datagram_poll(file, sock, wait);
2893 	struct sock *sk = sock->sk;
2894 
2895 	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2896 		mask |= EPOLLIN | EPOLLRDNORM;
2897 
2898 	/* Check for false positives due to checksum errors */
2899 	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2900 	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2901 		mask &= ~(EPOLLIN | EPOLLRDNORM);
2902 
2903 	/* psock ingress_msg queue should not contain any bad checksum frames */
2904 	if (sk_is_readable(sk))
2905 		mask |= EPOLLIN | EPOLLRDNORM;
2906 	return mask;
2907 
2908 }
2909 EXPORT_SYMBOL(udp_poll);
2910 
udp_abort(struct sock * sk,int err)2911 int udp_abort(struct sock *sk, int err)
2912 {
2913 	lock_sock(sk);
2914 
2915 	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2916 	 * with close()
2917 	 */
2918 	if (sock_flag(sk, SOCK_DEAD))
2919 		goto out;
2920 
2921 	sk->sk_err = err;
2922 	sk_error_report(sk);
2923 	__udp_disconnect(sk, 0);
2924 
2925 out:
2926 	release_sock(sk);
2927 
2928 	return 0;
2929 }
2930 EXPORT_SYMBOL_GPL(udp_abort);
2931 
2932 struct proto udp_prot = {
2933 	.name			= "UDP",
2934 	.owner			= THIS_MODULE,
2935 	.close			= udp_lib_close,
2936 	.pre_connect		= udp_pre_connect,
2937 	.connect		= ip4_datagram_connect,
2938 	.disconnect		= udp_disconnect,
2939 	.ioctl			= udp_ioctl,
2940 	.init			= udp_init_sock,
2941 	.destroy		= udp_destroy_sock,
2942 	.setsockopt		= udp_setsockopt,
2943 	.getsockopt		= udp_getsockopt,
2944 	.sendmsg		= udp_sendmsg,
2945 	.recvmsg		= udp_recvmsg,
2946 	.sendpage		= udp_sendpage,
2947 	.release_cb		= ip4_datagram_release_cb,
2948 	.hash			= udp_lib_hash,
2949 	.unhash			= udp_lib_unhash,
2950 	.rehash			= udp_v4_rehash,
2951 	.get_port		= udp_v4_get_port,
2952 #ifdef CONFIG_BPF_SYSCALL
2953 	.psock_update_sk_prot	= udp_bpf_update_proto,
2954 #endif
2955 	.memory_allocated	= &udp_memory_allocated,
2956 	.sysctl_mem		= sysctl_udp_mem,
2957 	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2958 	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2959 	.obj_size		= sizeof(struct udp_sock),
2960 	.h.udp_table		= &udp_table,
2961 	.diag_destroy		= udp_abort,
2962 };
2963 EXPORT_SYMBOL(udp_prot);
2964 
2965 /* ------------------------------------------------------------------------ */
2966 #ifdef CONFIG_PROC_FS
2967 
udp_get_first(struct seq_file * seq,int start)2968 static struct sock *udp_get_first(struct seq_file *seq, int start)
2969 {
2970 	struct sock *sk;
2971 	struct udp_seq_afinfo *afinfo;
2972 	struct udp_iter_state *state = seq->private;
2973 	struct net *net = seq_file_net(seq);
2974 
2975 	if (state->bpf_seq_afinfo)
2976 		afinfo = state->bpf_seq_afinfo;
2977 	else
2978 		afinfo = PDE_DATA(file_inode(seq->file));
2979 
2980 	for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2981 	     ++state->bucket) {
2982 		struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2983 
2984 		if (hlist_empty(&hslot->head))
2985 			continue;
2986 
2987 		spin_lock_bh(&hslot->lock);
2988 		sk_for_each(sk, &hslot->head) {
2989 			if (!net_eq(sock_net(sk), net))
2990 				continue;
2991 			if (afinfo->family == AF_UNSPEC ||
2992 			    sk->sk_family == afinfo->family)
2993 				goto found;
2994 		}
2995 		spin_unlock_bh(&hslot->lock);
2996 	}
2997 	sk = NULL;
2998 found:
2999 	return sk;
3000 }
3001 
udp_get_next(struct seq_file * seq,struct sock * sk)3002 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3003 {
3004 	struct udp_seq_afinfo *afinfo;
3005 	struct udp_iter_state *state = seq->private;
3006 	struct net *net = seq_file_net(seq);
3007 
3008 	if (state->bpf_seq_afinfo)
3009 		afinfo = state->bpf_seq_afinfo;
3010 	else
3011 		afinfo = PDE_DATA(file_inode(seq->file));
3012 
3013 	do {
3014 		sk = sk_next(sk);
3015 	} while (sk && (!net_eq(sock_net(sk), net) ||
3016 			(afinfo->family != AF_UNSPEC &&
3017 			 sk->sk_family != afinfo->family)));
3018 
3019 	if (!sk) {
3020 		if (state->bucket <= afinfo->udp_table->mask)
3021 			spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3022 		return udp_get_first(seq, state->bucket + 1);
3023 	}
3024 	return sk;
3025 }
3026 
udp_get_idx(struct seq_file * seq,loff_t pos)3027 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3028 {
3029 	struct sock *sk = udp_get_first(seq, 0);
3030 
3031 	if (sk)
3032 		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3033 			--pos;
3034 	return pos ? NULL : sk;
3035 }
3036 
udp_seq_start(struct seq_file * seq,loff_t * pos)3037 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3038 {
3039 	struct udp_iter_state *state = seq->private;
3040 	state->bucket = MAX_UDP_PORTS;
3041 
3042 	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3043 }
3044 EXPORT_SYMBOL(udp_seq_start);
3045 
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)3046 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3047 {
3048 	struct sock *sk;
3049 
3050 	if (v == SEQ_START_TOKEN)
3051 		sk = udp_get_idx(seq, 0);
3052 	else
3053 		sk = udp_get_next(seq, v);
3054 
3055 	++*pos;
3056 	return sk;
3057 }
3058 EXPORT_SYMBOL(udp_seq_next);
3059 
udp_seq_stop(struct seq_file * seq,void * v)3060 void udp_seq_stop(struct seq_file *seq, void *v)
3061 {
3062 	struct udp_seq_afinfo *afinfo;
3063 	struct udp_iter_state *state = seq->private;
3064 
3065 	if (state->bpf_seq_afinfo)
3066 		afinfo = state->bpf_seq_afinfo;
3067 	else
3068 		afinfo = PDE_DATA(file_inode(seq->file));
3069 
3070 	if (state->bucket <= afinfo->udp_table->mask)
3071 		spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
3072 }
3073 EXPORT_SYMBOL(udp_seq_stop);
3074 
3075 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3076 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3077 		int bucket)
3078 {
3079 	struct inet_sock *inet = inet_sk(sp);
3080 	__be32 dest = inet->inet_daddr;
3081 	__be32 src  = inet->inet_rcv_saddr;
3082 	__u16 destp	  = ntohs(inet->inet_dport);
3083 	__u16 srcp	  = ntohs(inet->inet_sport);
3084 
3085 	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3086 		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3087 		bucket, src, srcp, dest, destp, sp->sk_state,
3088 		sk_wmem_alloc_get(sp),
3089 		udp_rqueue_get(sp),
3090 		0, 0L, 0,
3091 		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3092 		0, sock_i_ino(sp),
3093 		refcount_read(&sp->sk_refcnt), sp,
3094 		atomic_read(&sp->sk_drops));
3095 }
3096 
udp4_seq_show(struct seq_file * seq,void * v)3097 int udp4_seq_show(struct seq_file *seq, void *v)
3098 {
3099 	seq_setwidth(seq, 127);
3100 	if (v == SEQ_START_TOKEN)
3101 		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3102 			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3103 			   "inode ref pointer drops");
3104 	else {
3105 		struct udp_iter_state *state = seq->private;
3106 
3107 		udp4_format_sock(v, seq, state->bucket);
3108 	}
3109 	seq_pad(seq, '\n');
3110 	return 0;
3111 }
3112 
3113 #ifdef CONFIG_BPF_SYSCALL
3114 struct bpf_iter__udp {
3115 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3116 	__bpf_md_ptr(struct udp_sock *, udp_sk);
3117 	uid_t uid __aligned(8);
3118 	int bucket __aligned(8);
3119 };
3120 
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3121 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3122 			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3123 {
3124 	struct bpf_iter__udp ctx;
3125 
3126 	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3127 	ctx.meta = meta;
3128 	ctx.udp_sk = udp_sk;
3129 	ctx.uid = uid;
3130 	ctx.bucket = bucket;
3131 	return bpf_iter_run_prog(prog, &ctx);
3132 }
3133 
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3134 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3135 {
3136 	struct udp_iter_state *state = seq->private;
3137 	struct bpf_iter_meta meta;
3138 	struct bpf_prog *prog;
3139 	struct sock *sk = v;
3140 	uid_t uid;
3141 
3142 	if (v == SEQ_START_TOKEN)
3143 		return 0;
3144 
3145 	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3146 	meta.seq = seq;
3147 	prog = bpf_iter_get_info(&meta, false);
3148 	return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3149 }
3150 
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3151 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3152 {
3153 	struct bpf_iter_meta meta;
3154 	struct bpf_prog *prog;
3155 
3156 	if (!v) {
3157 		meta.seq = seq;
3158 		prog = bpf_iter_get_info(&meta, true);
3159 		if (prog)
3160 			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3161 	}
3162 
3163 	udp_seq_stop(seq, v);
3164 }
3165 
3166 static const struct seq_operations bpf_iter_udp_seq_ops = {
3167 	.start		= udp_seq_start,
3168 	.next		= udp_seq_next,
3169 	.stop		= bpf_iter_udp_seq_stop,
3170 	.show		= bpf_iter_udp_seq_show,
3171 };
3172 #endif
3173 
3174 const struct seq_operations udp_seq_ops = {
3175 	.start		= udp_seq_start,
3176 	.next		= udp_seq_next,
3177 	.stop		= udp_seq_stop,
3178 	.show		= udp4_seq_show,
3179 };
3180 EXPORT_SYMBOL(udp_seq_ops);
3181 
3182 static struct udp_seq_afinfo udp4_seq_afinfo = {
3183 	.family		= AF_INET,
3184 	.udp_table	= &udp_table,
3185 };
3186 
udp4_proc_init_net(struct net * net)3187 static int __net_init udp4_proc_init_net(struct net *net)
3188 {
3189 	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3190 			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3191 		return -ENOMEM;
3192 	return 0;
3193 }
3194 
udp4_proc_exit_net(struct net * net)3195 static void __net_exit udp4_proc_exit_net(struct net *net)
3196 {
3197 	remove_proc_entry("udp", net->proc_net);
3198 }
3199 
3200 static struct pernet_operations udp4_net_ops = {
3201 	.init = udp4_proc_init_net,
3202 	.exit = udp4_proc_exit_net,
3203 };
3204 
udp4_proc_init(void)3205 int __init udp4_proc_init(void)
3206 {
3207 	return register_pernet_subsys(&udp4_net_ops);
3208 }
3209 
udp4_proc_exit(void)3210 void udp4_proc_exit(void)
3211 {
3212 	unregister_pernet_subsys(&udp4_net_ops);
3213 }
3214 #endif /* CONFIG_PROC_FS */
3215 
3216 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3217 static int __init set_uhash_entries(char *str)
3218 {
3219 	ssize_t ret;
3220 
3221 	if (!str)
3222 		return 0;
3223 
3224 	ret = kstrtoul(str, 0, &uhash_entries);
3225 	if (ret)
3226 		return 0;
3227 
3228 	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3229 		uhash_entries = UDP_HTABLE_SIZE_MIN;
3230 	return 1;
3231 }
3232 __setup("uhash_entries=", set_uhash_entries);
3233 
udp_table_init(struct udp_table * table,const char * name)3234 void __init udp_table_init(struct udp_table *table, const char *name)
3235 {
3236 	unsigned int i;
3237 
3238 	table->hash = alloc_large_system_hash(name,
3239 					      2 * sizeof(struct udp_hslot),
3240 					      uhash_entries,
3241 					      21, /* one slot per 2 MB */
3242 					      0,
3243 					      &table->log,
3244 					      &table->mask,
3245 					      UDP_HTABLE_SIZE_MIN,
3246 					      64 * 1024);
3247 
3248 	table->hash2 = table->hash + (table->mask + 1);
3249 	for (i = 0; i <= table->mask; i++) {
3250 		INIT_HLIST_HEAD(&table->hash[i].head);
3251 		table->hash[i].count = 0;
3252 		spin_lock_init(&table->hash[i].lock);
3253 	}
3254 	for (i = 0; i <= table->mask; i++) {
3255 		INIT_HLIST_HEAD(&table->hash2[i].head);
3256 		table->hash2[i].count = 0;
3257 		spin_lock_init(&table->hash2[i].lock);
3258 	}
3259 }
3260 
udp_flow_hashrnd(void)3261 u32 udp_flow_hashrnd(void)
3262 {
3263 	static u32 hashrnd __read_mostly;
3264 
3265 	net_get_random_once(&hashrnd, sizeof(hashrnd));
3266 
3267 	return hashrnd;
3268 }
3269 EXPORT_SYMBOL(udp_flow_hashrnd);
3270 
__udp_sysctl_init(struct net * net)3271 static void __udp_sysctl_init(struct net *net)
3272 {
3273 	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3274 	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3275 
3276 #ifdef CONFIG_NET_L3_MASTER_DEV
3277 	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3278 #endif
3279 }
3280 
udp_sysctl_init(struct net * net)3281 static int __net_init udp_sysctl_init(struct net *net)
3282 {
3283 	__udp_sysctl_init(net);
3284 	return 0;
3285 }
3286 
3287 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3288 	.init	= udp_sysctl_init,
3289 };
3290 
3291 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3292 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3293 		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3294 
3295 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3296 {
3297 	struct udp_iter_state *st = priv_data;
3298 	struct udp_seq_afinfo *afinfo;
3299 	int ret;
3300 
3301 	afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3302 	if (!afinfo)
3303 		return -ENOMEM;
3304 
3305 	afinfo->family = AF_UNSPEC;
3306 	afinfo->udp_table = &udp_table;
3307 	st->bpf_seq_afinfo = afinfo;
3308 	ret = bpf_iter_init_seq_net(priv_data, aux);
3309 	if (ret)
3310 		kfree(afinfo);
3311 	return ret;
3312 }
3313 
bpf_iter_fini_udp(void * priv_data)3314 static void bpf_iter_fini_udp(void *priv_data)
3315 {
3316 	struct udp_iter_state *st = priv_data;
3317 
3318 	kfree(st->bpf_seq_afinfo);
3319 	bpf_iter_fini_seq_net(priv_data);
3320 }
3321 
3322 static const struct bpf_iter_seq_info udp_seq_info = {
3323 	.seq_ops		= &bpf_iter_udp_seq_ops,
3324 	.init_seq_private	= bpf_iter_init_udp,
3325 	.fini_seq_private	= bpf_iter_fini_udp,
3326 	.seq_priv_size		= sizeof(struct udp_iter_state),
3327 };
3328 
3329 static struct bpf_iter_reg udp_reg_info = {
3330 	.target			= "udp",
3331 	.ctx_arg_info_size	= 1,
3332 	.ctx_arg_info		= {
3333 		{ offsetof(struct bpf_iter__udp, udp_sk),
3334 		  PTR_TO_BTF_ID_OR_NULL },
3335 	},
3336 	.seq_info		= &udp_seq_info,
3337 };
3338 
bpf_iter_register(void)3339 static void __init bpf_iter_register(void)
3340 {
3341 	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3342 	if (bpf_iter_reg_target(&udp_reg_info))
3343 		pr_warn("Warning: could not register bpf iterator udp\n");
3344 }
3345 #endif
3346 
udp_init(void)3347 void __init udp_init(void)
3348 {
3349 	unsigned long limit;
3350 	unsigned int i;
3351 
3352 	udp_table_init(&udp_table, "UDP");
3353 	limit = nr_free_buffer_pages() / 8;
3354 	limit = max(limit, 128UL);
3355 	sysctl_udp_mem[0] = limit / 4 * 3;
3356 	sysctl_udp_mem[1] = limit;
3357 	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3358 
3359 	__udp_sysctl_init(&init_net);
3360 
3361 	/* 16 spinlocks per cpu */
3362 	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3363 	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3364 				GFP_KERNEL);
3365 	if (!udp_busylocks)
3366 		panic("UDP: failed to alloc udp_busylocks\n");
3367 	for (i = 0; i < (1U << udp_busylocks_log); i++)
3368 		spin_lock_init(udp_busylocks + i);
3369 
3370 	if (register_pernet_subsys(&udp_sysctl_ops))
3371 		panic("UDP: failed to init sysctl parameters.\n");
3372 
3373 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3374 	bpf_iter_register();
3375 #endif
3376 }
3377