1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Universal Flash Storage Host controller driver Core
4 * Copyright (C) 2011-2013 Samsung India Software Operations
5 * Copyright (c) 2013-2016, The Linux Foundation. All rights reserved.
6 *
7 * Authors:
8 * Santosh Yaraganavi <santosh.sy@samsung.com>
9 * Vinayak Holikatti <h.vinayak@samsung.com>
10 */
11
12 #include <linux/async.h>
13 #include <linux/devfreq.h>
14 #include <linux/nls.h>
15 #include <linux/of.h>
16 #include <linux/bitfield.h>
17 #include <linux/blk-pm.h>
18 #include <linux/blkdev.h>
19 #include <scsi/scsi_driver.h>
20 #include "ufshcd.h"
21 #include "ufs_quirks.h"
22 #include "unipro.h"
23 #include "ufs-sysfs.h"
24 #include "ufs-debugfs.h"
25 #include "ufs-fault-injection.h"
26 #include "ufs_bsg.h"
27 #include "ufshcd-crypto.h"
28 #include "ufshpb.h"
29 #include <asm/unaligned.h>
30
31 #define CREATE_TRACE_POINTS
32 #include <trace/events/ufs.h>
33
34 #undef CREATE_TRACE_POINTS
35 #include <trace/hooks/ufshcd.h>
36
37 #define UFSHCD_ENABLE_INTRS (UTP_TRANSFER_REQ_COMPL |\
38 UTP_TASK_REQ_COMPL |\
39 UFSHCD_ERROR_MASK)
40 /* UIC command timeout, unit: ms */
41 #define UIC_CMD_TIMEOUT 500
42
43 /* NOP OUT retries waiting for NOP IN response */
44 #define NOP_OUT_RETRIES 10
45 /* Timeout after 50 msecs if NOP OUT hangs without response */
46 #define NOP_OUT_TIMEOUT 50 /* msecs */
47
48 /* Query request retries */
49 #define QUERY_REQ_RETRIES 3
50 /* Query request timeout */
51 #define QUERY_REQ_TIMEOUT 1500 /* 1.5 seconds */
52
53 /* Task management command timeout */
54 #define TM_CMD_TIMEOUT 100 /* msecs */
55
56 /* maximum number of retries for a general UIC command */
57 #define UFS_UIC_COMMAND_RETRIES 3
58
59 /* maximum number of link-startup retries */
60 #define DME_LINKSTARTUP_RETRIES 3
61
62 /* Maximum retries for Hibern8 enter */
63 #define UIC_HIBERN8_ENTER_RETRIES 3
64
65 /* maximum number of reset retries before giving up */
66 #define MAX_HOST_RESET_RETRIES 5
67
68 /* Expose the flag value from utp_upiu_query.value */
69 #define MASK_QUERY_UPIU_FLAG_LOC 0xFF
70
71 /* Interrupt aggregation default timeout, unit: 40us */
72 #define INT_AGGR_DEF_TO 0x02
73
74 /* default delay of autosuspend: 2000 ms */
75 #define RPM_AUTOSUSPEND_DELAY_MS 2000
76
77 /* Default delay of RPM device flush delayed work */
78 #define RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS 5000
79
80 /* Default value of wait time before gating device ref clock */
81 #define UFSHCD_REF_CLK_GATING_WAIT_US 0xFF /* microsecs */
82
83 /* Polling time to wait for fDeviceInit */
84 #define FDEVICEINIT_COMPL_TIMEOUT 1500 /* millisecs */
85
86 #define wlun_dev_to_hba(dv) shost_priv(to_scsi_device(dv)->host)
87
88 #define ufshcd_toggle_vreg(_dev, _vreg, _on) \
89 ({ \
90 int _ret; \
91 if (_on) \
92 _ret = ufshcd_enable_vreg(_dev, _vreg); \
93 else \
94 _ret = ufshcd_disable_vreg(_dev, _vreg); \
95 _ret; \
96 })
97
98 #define ufshcd_hex_dump(prefix_str, buf, len) do { \
99 size_t __len = (len); \
100 print_hex_dump(KERN_ERR, prefix_str, \
101 __len > 4 ? DUMP_PREFIX_OFFSET : DUMP_PREFIX_NONE,\
102 16, 4, buf, __len, false); \
103 } while (0)
104
105 /*
106 * ANDROID: this mutex is used to serialize devfreq and sysfs write booster
107 * toggling, it was taken out of struct ufs_hba from commit b03f7ed9af6e ("scsi:
108 * ufs: core: Fix devfreq deadlocks") and made static here in order to preserve
109 * the ABI.
110 * Bug: 286803489
111 */
112 static DEFINE_MUTEX(wb_mutex);
113
ufshcd_dump_regs(struct ufs_hba * hba,size_t offset,size_t len,const char * prefix)114 int ufshcd_dump_regs(struct ufs_hba *hba, size_t offset, size_t len,
115 const char *prefix)
116 {
117 u32 *regs;
118 size_t pos;
119
120 if (offset % 4 != 0 || len % 4 != 0) /* keep readl happy */
121 return -EINVAL;
122
123 regs = kzalloc(len, GFP_ATOMIC);
124 if (!regs)
125 return -ENOMEM;
126
127 for (pos = 0; pos < len; pos += 4) {
128 if (offset == 0 &&
129 pos >= REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER &&
130 pos <= REG_UIC_ERROR_CODE_DME)
131 continue;
132 regs[pos / 4] = ufshcd_readl(hba, offset + pos);
133 }
134
135 ufshcd_hex_dump(prefix, regs, len);
136 kfree(regs);
137
138 return 0;
139 }
140 EXPORT_SYMBOL_GPL(ufshcd_dump_regs);
141
142 enum {
143 UFSHCD_MAX_CHANNEL = 0,
144 UFSHCD_MAX_ID = 1,
145 UFSHCD_NUM_RESERVED = 1,
146 UFSHCD_CMD_PER_LUN = 32 - UFSHCD_NUM_RESERVED,
147 UFSHCD_CAN_QUEUE = 32 - UFSHCD_NUM_RESERVED,
148 };
149
150 /* UFSHCD error handling flags */
151 enum {
152 UFSHCD_EH_IN_PROGRESS = (1 << 0),
153 };
154
155 /* UFSHCD UIC layer error flags */
156 enum {
157 UFSHCD_UIC_DL_PA_INIT_ERROR = (1 << 0), /* Data link layer error */
158 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR = (1 << 1), /* Data link layer error */
159 UFSHCD_UIC_DL_TCx_REPLAY_ERROR = (1 << 2), /* Data link layer error */
160 UFSHCD_UIC_NL_ERROR = (1 << 3), /* Network layer error */
161 UFSHCD_UIC_TL_ERROR = (1 << 4), /* Transport Layer error */
162 UFSHCD_UIC_DME_ERROR = (1 << 5), /* DME error */
163 UFSHCD_UIC_PA_GENERIC_ERROR = (1 << 6), /* Generic PA error */
164 };
165
166 #define ufshcd_set_eh_in_progress(h) \
167 ((h)->eh_flags |= UFSHCD_EH_IN_PROGRESS)
168 #define ufshcd_eh_in_progress(h) \
169 ((h)->eh_flags & UFSHCD_EH_IN_PROGRESS)
170 #define ufshcd_clear_eh_in_progress(h) \
171 ((h)->eh_flags &= ~UFSHCD_EH_IN_PROGRESS)
172
173 struct ufs_pm_lvl_states ufs_pm_lvl_states[] = {
174 [UFS_PM_LVL_0] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_ACTIVE_STATE},
175 [UFS_PM_LVL_1] = {UFS_ACTIVE_PWR_MODE, UIC_LINK_HIBERN8_STATE},
176 [UFS_PM_LVL_2] = {UFS_SLEEP_PWR_MODE, UIC_LINK_ACTIVE_STATE},
177 [UFS_PM_LVL_3] = {UFS_SLEEP_PWR_MODE, UIC_LINK_HIBERN8_STATE},
178 [UFS_PM_LVL_4] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_HIBERN8_STATE},
179 [UFS_PM_LVL_5] = {UFS_POWERDOWN_PWR_MODE, UIC_LINK_OFF_STATE},
180 /*
181 * For DeepSleep, the link is first put in hibern8 and then off.
182 * Leaving the link in hibern8 is not supported.
183 */
184 [UFS_PM_LVL_6] = {UFS_DEEPSLEEP_PWR_MODE, UIC_LINK_OFF_STATE},
185 };
186
187 static inline enum ufs_dev_pwr_mode
ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)188 ufs_get_pm_lvl_to_dev_pwr_mode(enum ufs_pm_level lvl)
189 {
190 return ufs_pm_lvl_states[lvl].dev_state;
191 }
192
193 static inline enum uic_link_state
ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)194 ufs_get_pm_lvl_to_link_pwr_state(enum ufs_pm_level lvl)
195 {
196 return ufs_pm_lvl_states[lvl].link_state;
197 }
198
199 static inline enum ufs_pm_level
ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,enum uic_link_state link_state)200 ufs_get_desired_pm_lvl_for_dev_link_state(enum ufs_dev_pwr_mode dev_state,
201 enum uic_link_state link_state)
202 {
203 enum ufs_pm_level lvl;
204
205 for (lvl = UFS_PM_LVL_0; lvl < UFS_PM_LVL_MAX; lvl++) {
206 if ((ufs_pm_lvl_states[lvl].dev_state == dev_state) &&
207 (ufs_pm_lvl_states[lvl].link_state == link_state))
208 return lvl;
209 }
210
211 /* if no match found, return the level 0 */
212 return UFS_PM_LVL_0;
213 }
214
215 static struct ufs_dev_fix ufs_fixups[] = {
216 /* UFS cards deviations table */
217 UFS_FIX(UFS_VENDOR_MICRON, UFS_ANY_MODEL,
218 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
219 UFS_DEVICE_QUIRK_SWAP_L2P_ENTRY_FOR_HPB_READ),
220 UFS_FIX(UFS_VENDOR_SAMSUNG, UFS_ANY_MODEL,
221 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM |
222 UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE |
223 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS),
224 UFS_FIX(UFS_VENDOR_SKHYNIX, UFS_ANY_MODEL,
225 UFS_DEVICE_QUIRK_HOST_PA_SAVECONFIGTIME),
226 UFS_FIX(UFS_VENDOR_SKHYNIX, "hB8aL1" /*H28U62301AMR*/,
227 UFS_DEVICE_QUIRK_HOST_VS_DEBUGSAVECONFIGTIME),
228 UFS_FIX(UFS_VENDOR_TOSHIBA, UFS_ANY_MODEL,
229 UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM),
230 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9C8KBADG",
231 UFS_DEVICE_QUIRK_PA_TACTIVATE),
232 UFS_FIX(UFS_VENDOR_TOSHIBA, "THGLF2G9D8KBADG",
233 UFS_DEVICE_QUIRK_PA_TACTIVATE),
234 END_FIX
235 };
236
237 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba);
238 static void ufshcd_async_scan(void *data, async_cookie_t cookie);
239 static int ufshcd_reset_and_restore(struct ufs_hba *hba);
240 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd);
241 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag);
242 static void ufshcd_hba_exit(struct ufs_hba *hba);
243 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params);
244 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on);
245 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba);
246 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba);
247 static void ufshcd_resume_clkscaling(struct ufs_hba *hba);
248 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba);
249 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba);
250 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up);
251 static irqreturn_t ufshcd_intr(int irq, void *__hba);
252 static int ufshcd_change_power_mode(struct ufs_hba *hba,
253 struct ufs_pa_layer_attr *pwr_mode);
254 static void ufshcd_schedule_eh_work(struct ufs_hba *hba);
255 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on);
256 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on);
257 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
258 struct ufs_vreg *vreg);
259 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag);
260 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set);
261 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable);
262 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba);
263 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba);
264
ufshcd_use_mcq_hooks(struct ufs_hba * hba)265 static inline int ufshcd_use_mcq_hooks(struct ufs_hba *hba)
266 {
267 bool mcq_hooks = false;
268
269 trace_android_vh_ufs_use_mcq_hooks(hba, &mcq_hooks);
270
271 return mcq_hooks;
272 }
273
ufshcd_enable_irq(struct ufs_hba * hba)274 static inline void ufshcd_enable_irq(struct ufs_hba *hba)
275 {
276 if (!hba->is_irq_enabled) {
277 enable_irq(hba->irq);
278 hba->is_irq_enabled = true;
279 }
280 }
281
ufshcd_disable_irq(struct ufs_hba * hba)282 static inline void ufshcd_disable_irq(struct ufs_hba *hba)
283 {
284 if (hba->is_irq_enabled) {
285 disable_irq(hba->irq);
286 hba->is_irq_enabled = false;
287 }
288 }
289
ufshcd_wb_config(struct ufs_hba * hba)290 static inline void ufshcd_wb_config(struct ufs_hba *hba)
291 {
292 if (!ufshcd_is_wb_allowed(hba))
293 return;
294
295 ufshcd_wb_toggle(hba, true);
296
297 ufshcd_wb_toggle_flush_during_h8(hba, true);
298 if (!(hba->quirks & UFSHCI_QUIRK_SKIP_MANUAL_WB_FLUSH_CTRL))
299 ufshcd_wb_toggle_flush(hba, true);
300 }
301
ufshcd_scsi_unblock_requests(struct ufs_hba * hba)302 static void ufshcd_scsi_unblock_requests(struct ufs_hba *hba)
303 {
304 if (atomic_dec_and_test(&hba->scsi_block_reqs_cnt))
305 scsi_unblock_requests(hba->host);
306 }
307
ufshcd_scsi_block_requests(struct ufs_hba * hba)308 static void ufshcd_scsi_block_requests(struct ufs_hba *hba)
309 {
310 if (atomic_inc_return(&hba->scsi_block_reqs_cnt) == 1)
311 scsi_block_requests(hba->host);
312 }
313
ufshcd_add_cmd_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)314 static void ufshcd_add_cmd_upiu_trace(struct ufs_hba *hba, unsigned int tag,
315 enum ufs_trace_str_t str_t)
316 {
317 struct utp_upiu_req *rq = hba->lrb[tag].ucd_req_ptr;
318 struct utp_upiu_header *header;
319
320 if (!trace_ufshcd_upiu_enabled())
321 return;
322
323 if (str_t == UFS_CMD_SEND)
324 header = &rq->header;
325 else
326 header = &hba->lrb[tag].ucd_rsp_ptr->header;
327
328 trace_ufshcd_upiu(dev_name(hba->dev), str_t, header, &rq->sc.cdb,
329 UFS_TSF_CDB);
330 }
331
ufshcd_add_query_upiu_trace(struct ufs_hba * hba,enum ufs_trace_str_t str_t,struct utp_upiu_req * rq_rsp)332 static void ufshcd_add_query_upiu_trace(struct ufs_hba *hba,
333 enum ufs_trace_str_t str_t,
334 struct utp_upiu_req *rq_rsp)
335 {
336 if (!trace_ufshcd_upiu_enabled())
337 return;
338
339 trace_ufshcd_upiu(dev_name(hba->dev), str_t, &rq_rsp->header,
340 &rq_rsp->qr, UFS_TSF_OSF);
341 }
342
ufshcd_add_tm_upiu_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)343 static void ufshcd_add_tm_upiu_trace(struct ufs_hba *hba, unsigned int tag,
344 enum ufs_trace_str_t str_t)
345 {
346 struct utp_task_req_desc *descp = &hba->utmrdl_base_addr[tag];
347
348 trace_android_vh_ufs_send_tm_command(hba, tag, (int)str_t);
349
350 if (!trace_ufshcd_upiu_enabled())
351 return;
352
353 if (str_t == UFS_TM_SEND)
354 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
355 &descp->upiu_req.req_header,
356 &descp->upiu_req.input_param1,
357 UFS_TSF_TM_INPUT);
358 else
359 trace_ufshcd_upiu(dev_name(hba->dev), str_t,
360 &descp->upiu_rsp.rsp_header,
361 &descp->upiu_rsp.output_param1,
362 UFS_TSF_TM_OUTPUT);
363 }
364
ufshcd_add_uic_command_trace(struct ufs_hba * hba,struct uic_command * ucmd,enum ufs_trace_str_t str_t)365 static void ufshcd_add_uic_command_trace(struct ufs_hba *hba,
366 struct uic_command *ucmd,
367 enum ufs_trace_str_t str_t)
368 {
369 u32 cmd;
370
371 trace_android_vh_ufs_send_uic_command(hba, ucmd, (int)str_t);
372
373 if (!trace_ufshcd_uic_command_enabled())
374 return;
375
376 if (str_t == UFS_CMD_SEND)
377 cmd = ucmd->command;
378 else
379 cmd = ufshcd_readl(hba, REG_UIC_COMMAND);
380
381 trace_ufshcd_uic_command(dev_name(hba->dev), str_t, cmd,
382 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_1),
383 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2),
384 ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3));
385 }
386
ufshcd_add_command_trace(struct ufs_hba * hba,unsigned int tag,enum ufs_trace_str_t str_t)387 void ufshcd_add_command_trace(struct ufs_hba *hba, unsigned int tag,
388 enum ufs_trace_str_t str_t)
389 {
390 u64 lba = 0;
391 u8 opcode = 0, group_id = 0;
392 u32 intr, doorbell;
393 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
394 struct scsi_cmnd *cmd = lrbp->cmd;
395 struct request *rq = scsi_cmd_to_rq(cmd);
396 int transfer_len = -1;
397
398 if (!cmd)
399 return;
400
401 /* trace UPIU also */
402 ufshcd_add_cmd_upiu_trace(hba, tag, str_t);
403 if (!trace_ufshcd_command_enabled())
404 return;
405
406 opcode = cmd->cmnd[0];
407
408 if (opcode == READ_10 || opcode == WRITE_10) {
409 /*
410 * Currently we only fully trace read(10) and write(10) commands
411 */
412 transfer_len =
413 be32_to_cpu(lrbp->ucd_req_ptr->sc.exp_data_transfer_len);
414 lba = scsi_get_lba(cmd);
415 if (opcode == WRITE_10)
416 group_id = lrbp->cmd->cmnd[6];
417 } else if (opcode == UNMAP) {
418 /*
419 * The number of Bytes to be unmapped beginning with the lba.
420 */
421 transfer_len = blk_rq_bytes(rq);
422 lba = scsi_get_lba(cmd);
423 }
424
425 intr = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
426 doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
427 trace_ufshcd_command(dev_name(hba->dev), str_t, tag,
428 doorbell, transfer_len, intr, lba, opcode, group_id);
429 }
430 EXPORT_SYMBOL_GPL(ufshcd_add_command_trace);
431
ufshcd_print_clk_freqs(struct ufs_hba * hba)432 static void ufshcd_print_clk_freqs(struct ufs_hba *hba)
433 {
434 struct ufs_clk_info *clki;
435 struct list_head *head = &hba->clk_list_head;
436
437 if (list_empty(head))
438 return;
439
440 list_for_each_entry(clki, head, list) {
441 if (!IS_ERR_OR_NULL(clki->clk) && clki->min_freq &&
442 clki->max_freq)
443 dev_err(hba->dev, "clk: %s, rate: %u\n",
444 clki->name, clki->curr_freq);
445 }
446 }
447
ufshcd_print_evt(struct ufs_hba * hba,u32 id,char * err_name)448 static void ufshcd_print_evt(struct ufs_hba *hba, u32 id,
449 char *err_name)
450 {
451 int i;
452 bool found = false;
453 struct ufs_event_hist *e;
454
455 if (id >= UFS_EVT_CNT)
456 return;
457
458 e = &hba->ufs_stats.event[id];
459
460 for (i = 0; i < UFS_EVENT_HIST_LENGTH; i++) {
461 int p = (i + e->pos) % UFS_EVENT_HIST_LENGTH;
462
463 if (e->tstamp[p] == 0)
464 continue;
465 dev_err(hba->dev, "%s[%d] = 0x%x at %lld us\n", err_name, p,
466 e->val[p], ktime_to_us(e->tstamp[p]));
467 found = true;
468 }
469
470 if (!found)
471 dev_err(hba->dev, "No record of %s\n", err_name);
472 else
473 dev_err(hba->dev, "%s: total cnt=%llu\n", err_name, e->cnt);
474 }
475
ufshcd_print_evt_hist(struct ufs_hba * hba)476 static void ufshcd_print_evt_hist(struct ufs_hba *hba)
477 {
478 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
479
480 ufshcd_print_evt(hba, UFS_EVT_PA_ERR, "pa_err");
481 ufshcd_print_evt(hba, UFS_EVT_DL_ERR, "dl_err");
482 ufshcd_print_evt(hba, UFS_EVT_NL_ERR, "nl_err");
483 ufshcd_print_evt(hba, UFS_EVT_TL_ERR, "tl_err");
484 ufshcd_print_evt(hba, UFS_EVT_DME_ERR, "dme_err");
485 ufshcd_print_evt(hba, UFS_EVT_AUTO_HIBERN8_ERR,
486 "auto_hibern8_err");
487 ufshcd_print_evt(hba, UFS_EVT_FATAL_ERR, "fatal_err");
488 ufshcd_print_evt(hba, UFS_EVT_LINK_STARTUP_FAIL,
489 "link_startup_fail");
490 ufshcd_print_evt(hba, UFS_EVT_RESUME_ERR, "resume_fail");
491 ufshcd_print_evt(hba, UFS_EVT_SUSPEND_ERR,
492 "suspend_fail");
493 ufshcd_print_evt(hba, UFS_EVT_DEV_RESET, "dev_reset");
494 ufshcd_print_evt(hba, UFS_EVT_HOST_RESET, "host_reset");
495 ufshcd_print_evt(hba, UFS_EVT_ABORT, "task_abort");
496
497 ufshcd_vops_dbg_register_dump(hba);
498 }
499
500 static
ufshcd_print_trs(struct ufs_hba * hba,unsigned long bitmap,bool pr_prdt)501 void ufshcd_print_trs(struct ufs_hba *hba, unsigned long bitmap, bool pr_prdt)
502 {
503 struct ufshcd_lrb *lrbp;
504 int prdt_length;
505 int tag;
506
507 for_each_set_bit(tag, &bitmap, hba->nutrs) {
508 lrbp = &hba->lrb[tag];
509
510 dev_err(hba->dev, "UPIU[%d] - issue time %lld us\n",
511 tag, ktime_to_us(lrbp->issue_time_stamp));
512 dev_err(hba->dev, "UPIU[%d] - complete time %lld us\n",
513 tag, ktime_to_us(lrbp->compl_time_stamp));
514 dev_err(hba->dev,
515 "UPIU[%d] - Transfer Request Descriptor phys@0x%llx\n",
516 tag, (u64)lrbp->utrd_dma_addr);
517
518 ufshcd_hex_dump("UPIU TRD: ", lrbp->utr_descriptor_ptr,
519 sizeof(struct utp_transfer_req_desc));
520 dev_err(hba->dev, "UPIU[%d] - Request UPIU phys@0x%llx\n", tag,
521 (u64)lrbp->ucd_req_dma_addr);
522 ufshcd_hex_dump("UPIU REQ: ", lrbp->ucd_req_ptr,
523 sizeof(struct utp_upiu_req));
524 dev_err(hba->dev, "UPIU[%d] - Response UPIU phys@0x%llx\n", tag,
525 (u64)lrbp->ucd_rsp_dma_addr);
526 ufshcd_hex_dump("UPIU RSP: ", lrbp->ucd_rsp_ptr,
527 sizeof(struct utp_upiu_rsp));
528
529 prdt_length = le16_to_cpu(
530 lrbp->utr_descriptor_ptr->prd_table_length);
531 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
532 prdt_length /= hba->sg_entry_size;
533
534 dev_err(hba->dev,
535 "UPIU[%d] - PRDT - %d entries phys@0x%llx\n",
536 tag, prdt_length,
537 (u64)lrbp->ucd_prdt_dma_addr);
538
539 if (pr_prdt)
540 ufshcd_hex_dump("UPIU PRDT: ", lrbp->ucd_prdt_ptr,
541 hba->sg_entry_size * prdt_length);
542 }
543 }
544
ufshcd_print_tmrs(struct ufs_hba * hba,unsigned long bitmap)545 static void ufshcd_print_tmrs(struct ufs_hba *hba, unsigned long bitmap)
546 {
547 int tag;
548
549 for_each_set_bit(tag, &bitmap, hba->nutmrs) {
550 struct utp_task_req_desc *tmrdp = &hba->utmrdl_base_addr[tag];
551
552 dev_err(hba->dev, "TM[%d] - Task Management Header\n", tag);
553 ufshcd_hex_dump("", tmrdp, sizeof(*tmrdp));
554 }
555 }
556
ufshcd_print_host_state(struct ufs_hba * hba)557 static void ufshcd_print_host_state(struct ufs_hba *hba)
558 {
559 struct scsi_device *sdev_ufs = hba->sdev_ufs_device;
560
561 dev_err(hba->dev, "UFS Host state=%d\n", hba->ufshcd_state);
562 dev_err(hba->dev, "outstanding reqs=0x%lx tasks=0x%lx\n",
563 hba->outstanding_reqs, hba->outstanding_tasks);
564 dev_err(hba->dev, "saved_err=0x%x, saved_uic_err=0x%x\n",
565 hba->saved_err, hba->saved_uic_err);
566 dev_err(hba->dev, "Device power mode=%d, UIC link state=%d\n",
567 hba->curr_dev_pwr_mode, hba->uic_link_state);
568 dev_err(hba->dev, "PM in progress=%d, sys. suspended=%d\n",
569 hba->pm_op_in_progress, hba->is_sys_suspended);
570 dev_err(hba->dev, "Auto BKOPS=%d, Host self-block=%d\n",
571 hba->auto_bkops_enabled, hba->host->host_self_blocked);
572 dev_err(hba->dev, "Clk gate=%d\n", hba->clk_gating.state);
573 dev_err(hba->dev,
574 "last_hibern8_exit_tstamp at %lld us, hibern8_exit_cnt=%d\n",
575 ktime_to_us(hba->ufs_stats.last_hibern8_exit_tstamp),
576 hba->ufs_stats.hibern8_exit_cnt);
577 dev_err(hba->dev, "last intr at %lld us, last intr status=0x%x\n",
578 ktime_to_us(hba->ufs_stats.last_intr_ts),
579 hba->ufs_stats.last_intr_status);
580 dev_err(hba->dev, "error handling flags=0x%x, req. abort count=%d\n",
581 hba->eh_flags, hba->req_abort_count);
582 dev_err(hba->dev, "hba->ufs_version=0x%x, Host capabilities=0x%x, caps=0x%x\n",
583 hba->ufs_version, hba->capabilities, hba->caps);
584 dev_err(hba->dev, "quirks=0x%x, dev. quirks=0x%x\n", hba->quirks,
585 hba->dev_quirks);
586 if (sdev_ufs)
587 dev_err(hba->dev, "UFS dev info: %.8s %.16s rev %.4s\n",
588 sdev_ufs->vendor, sdev_ufs->model, sdev_ufs->rev);
589
590 ufshcd_print_clk_freqs(hba);
591 }
592
593 /**
594 * ufshcd_print_pwr_info - print power params as saved in hba
595 * power info
596 * @hba: per-adapter instance
597 */
ufshcd_print_pwr_info(struct ufs_hba * hba)598 static void ufshcd_print_pwr_info(struct ufs_hba *hba)
599 {
600 static const char * const names[] = {
601 "INVALID MODE",
602 "FAST MODE",
603 "SLOW_MODE",
604 "INVALID MODE",
605 "FASTAUTO_MODE",
606 "SLOWAUTO_MODE",
607 "INVALID MODE",
608 };
609
610 /*
611 * Using dev_dbg to avoid messages during runtime PM to avoid
612 * never-ending cycles of messages written back to storage by user space
613 * causing runtime resume, causing more messages and so on.
614 */
615 dev_dbg(hba->dev, "%s:[RX, TX]: gear=[%d, %d], lane[%d, %d], pwr[%s, %s], rate = %d\n",
616 __func__,
617 hba->pwr_info.gear_rx, hba->pwr_info.gear_tx,
618 hba->pwr_info.lane_rx, hba->pwr_info.lane_tx,
619 names[hba->pwr_info.pwr_rx],
620 names[hba->pwr_info.pwr_tx],
621 hba->pwr_info.hs_rate);
622 }
623
ufshcd_device_reset(struct ufs_hba * hba)624 static void ufshcd_device_reset(struct ufs_hba *hba)
625 {
626 int err;
627
628 err = ufshcd_vops_device_reset(hba);
629
630 if (!err) {
631 ufshcd_set_ufs_dev_active(hba);
632 if (ufshcd_is_wb_allowed(hba)) {
633 hba->dev_info.wb_enabled = false;
634 hba->dev_info.wb_buf_flush_enabled = false;
635 }
636 }
637 if (err != -EOPNOTSUPP)
638 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, err);
639 }
640
ufshcd_delay_us(unsigned long us,unsigned long tolerance)641 void ufshcd_delay_us(unsigned long us, unsigned long tolerance)
642 {
643 if (!us)
644 return;
645
646 if (us < 10)
647 udelay(us);
648 else
649 usleep_range(us, us + tolerance);
650 }
651 EXPORT_SYMBOL_GPL(ufshcd_delay_us);
652
653 /**
654 * ufshcd_wait_for_register - wait for register value to change
655 * @hba: per-adapter interface
656 * @reg: mmio register offset
657 * @mask: mask to apply to the read register value
658 * @val: value to wait for
659 * @interval_us: polling interval in microseconds
660 * @timeout_ms: timeout in milliseconds
661 *
662 * Return:
663 * -ETIMEDOUT on error, zero on success.
664 */
ufshcd_wait_for_register(struct ufs_hba * hba,u32 reg,u32 mask,u32 val,unsigned long interval_us,unsigned long timeout_ms)665 int ufshcd_wait_for_register(struct ufs_hba *hba, u32 reg, u32 mask,
666 u32 val, unsigned long interval_us,
667 unsigned long timeout_ms)
668 {
669 int err = 0;
670 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
671
672 /* ignore bits that we don't intend to wait on */
673 val = val & mask;
674
675 while ((ufshcd_readl(hba, reg) & mask) != val) {
676 usleep_range(interval_us, interval_us + 50);
677 if (time_after(jiffies, timeout)) {
678 if ((ufshcd_readl(hba, reg) & mask) != val)
679 err = -ETIMEDOUT;
680 break;
681 }
682 }
683
684 return err;
685 }
686
687 /**
688 * ufshcd_get_intr_mask - Get the interrupt bit mask
689 * @hba: Pointer to adapter instance
690 *
691 * Returns interrupt bit mask per version
692 */
ufshcd_get_intr_mask(struct ufs_hba * hba)693 static inline u32 ufshcd_get_intr_mask(struct ufs_hba *hba)
694 {
695 if (hba->ufs_version == ufshci_version(1, 0))
696 return INTERRUPT_MASK_ALL_VER_10;
697 if (hba->ufs_version <= ufshci_version(2, 0))
698 return INTERRUPT_MASK_ALL_VER_11;
699
700 return INTERRUPT_MASK_ALL_VER_21;
701 }
702
703 /**
704 * ufshcd_get_ufs_version - Get the UFS version supported by the HBA
705 * @hba: Pointer to adapter instance
706 *
707 * Returns UFSHCI version supported by the controller
708 */
ufshcd_get_ufs_version(struct ufs_hba * hba)709 static inline u32 ufshcd_get_ufs_version(struct ufs_hba *hba)
710 {
711 u32 ufshci_ver;
712
713 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UFS_HCI_VERSION)
714 ufshci_ver = ufshcd_vops_get_ufs_hci_version(hba);
715 else
716 ufshci_ver = ufshcd_readl(hba, REG_UFS_VERSION);
717
718 /*
719 * UFSHCI v1.x uses a different version scheme, in order
720 * to allow the use of comparisons with the ufshci_version
721 * function, we convert it to the same scheme as ufs 2.0+.
722 */
723 if (ufshci_ver & 0x00010000)
724 return ufshci_version(1, ufshci_ver & 0x00000100);
725
726 return ufshci_ver;
727 }
728
729 /**
730 * ufshcd_is_device_present - Check if any device connected to
731 * the host controller
732 * @hba: pointer to adapter instance
733 *
734 * Returns true if device present, false if no device detected
735 */
ufshcd_is_device_present(struct ufs_hba * hba)736 static inline bool ufshcd_is_device_present(struct ufs_hba *hba)
737 {
738 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) &
739 DEVICE_PRESENT) ? true : false;
740 }
741
742 /**
743 * ufshcd_get_tr_ocs - Get the UTRD Overall Command Status
744 * @lrbp: pointer to local command reference block
745 *
746 * This function is used to get the OCS field from UTRD
747 * Returns the OCS field in the UTRD
748 */
ufshcd_get_tr_ocs(struct ufshcd_lrb * lrbp)749 static inline int ufshcd_get_tr_ocs(struct ufshcd_lrb *lrbp)
750 {
751 return le32_to_cpu(lrbp->utr_descriptor_ptr->header.dword_2) & MASK_OCS;
752 }
753
754 /**
755 * ufshcd_utrl_clear - Clear a bit in UTRLCLR register
756 * @hba: per adapter instance
757 * @pos: position of the bit to be cleared
758 */
ufshcd_utrl_clear(struct ufs_hba * hba,u32 pos)759 static inline void ufshcd_utrl_clear(struct ufs_hba *hba, u32 pos)
760 {
761 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
762 ufshcd_writel(hba, (1 << pos), REG_UTP_TRANSFER_REQ_LIST_CLEAR);
763 else
764 ufshcd_writel(hba, ~(1 << pos),
765 REG_UTP_TRANSFER_REQ_LIST_CLEAR);
766 }
767
768 /**
769 * ufshcd_utmrl_clear - Clear a bit in UTRMLCLR register
770 * @hba: per adapter instance
771 * @pos: position of the bit to be cleared
772 */
ufshcd_utmrl_clear(struct ufs_hba * hba,u32 pos)773 static inline void ufshcd_utmrl_clear(struct ufs_hba *hba, u32 pos)
774 {
775 if (hba->quirks & UFSHCI_QUIRK_BROKEN_REQ_LIST_CLR)
776 ufshcd_writel(hba, (1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
777 else
778 ufshcd_writel(hba, ~(1 << pos), REG_UTP_TASK_REQ_LIST_CLEAR);
779 }
780
781 /**
782 * ufshcd_get_lists_status - Check UCRDY, UTRLRDY and UTMRLRDY
783 * @reg: Register value of host controller status
784 *
785 * Returns integer, 0 on Success and positive value if failed
786 */
ufshcd_get_lists_status(u32 reg)787 static inline int ufshcd_get_lists_status(u32 reg)
788 {
789 return !((reg & UFSHCD_STATUS_READY) == UFSHCD_STATUS_READY);
790 }
791
792 /**
793 * ufshcd_get_uic_cmd_result - Get the UIC command result
794 * @hba: Pointer to adapter instance
795 *
796 * This function gets the result of UIC command completion
797 * Returns 0 on success, non zero value on error
798 */
ufshcd_get_uic_cmd_result(struct ufs_hba * hba)799 static inline int ufshcd_get_uic_cmd_result(struct ufs_hba *hba)
800 {
801 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_2) &
802 MASK_UIC_COMMAND_RESULT;
803 }
804
805 /**
806 * ufshcd_get_dme_attr_val - Get the value of attribute returned by UIC command
807 * @hba: Pointer to adapter instance
808 *
809 * This function gets UIC command argument3
810 * Returns 0 on success, non zero value on error
811 */
ufshcd_get_dme_attr_val(struct ufs_hba * hba)812 static inline u32 ufshcd_get_dme_attr_val(struct ufs_hba *hba)
813 {
814 return ufshcd_readl(hba, REG_UIC_COMMAND_ARG_3);
815 }
816
817 /**
818 * ufshcd_get_req_rsp - returns the TR response transaction type
819 * @ucd_rsp_ptr: pointer to response UPIU
820 */
821 static inline int
ufshcd_get_req_rsp(struct utp_upiu_rsp * ucd_rsp_ptr)822 ufshcd_get_req_rsp(struct utp_upiu_rsp *ucd_rsp_ptr)
823 {
824 return be32_to_cpu(ucd_rsp_ptr->header.dword_0) >> 24;
825 }
826
827 /**
828 * ufshcd_get_rsp_upiu_result - Get the result from response UPIU
829 * @ucd_rsp_ptr: pointer to response UPIU
830 *
831 * This function gets the response status and scsi_status from response UPIU
832 * Returns the response result code.
833 */
834 static inline int
ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp * ucd_rsp_ptr)835 ufshcd_get_rsp_upiu_result(struct utp_upiu_rsp *ucd_rsp_ptr)
836 {
837 return be32_to_cpu(ucd_rsp_ptr->header.dword_1) & MASK_RSP_UPIU_RESULT;
838 }
839
840 /*
841 * ufshcd_get_rsp_upiu_data_seg_len - Get the data segment length
842 * from response UPIU
843 * @ucd_rsp_ptr: pointer to response UPIU
844 *
845 * Return the data segment length.
846 */
847 static inline unsigned int
ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp * ucd_rsp_ptr)848 ufshcd_get_rsp_upiu_data_seg_len(struct utp_upiu_rsp *ucd_rsp_ptr)
849 {
850 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
851 MASK_RSP_UPIU_DATA_SEG_LEN;
852 }
853
854 /**
855 * ufshcd_is_exception_event - Check if the device raised an exception event
856 * @ucd_rsp_ptr: pointer to response UPIU
857 *
858 * The function checks if the device raised an exception event indicated in
859 * the Device Information field of response UPIU.
860 *
861 * Returns true if exception is raised, false otherwise.
862 */
ufshcd_is_exception_event(struct utp_upiu_rsp * ucd_rsp_ptr)863 static inline bool ufshcd_is_exception_event(struct utp_upiu_rsp *ucd_rsp_ptr)
864 {
865 return be32_to_cpu(ucd_rsp_ptr->header.dword_2) &
866 MASK_RSP_EXCEPTION_EVENT ? true : false;
867 }
868
869 /**
870 * ufshcd_reset_intr_aggr - Reset interrupt aggregation values.
871 * @hba: per adapter instance
872 */
873 static inline void
ufshcd_reset_intr_aggr(struct ufs_hba * hba)874 ufshcd_reset_intr_aggr(struct ufs_hba *hba)
875 {
876 ufshcd_writel(hba, INT_AGGR_ENABLE |
877 INT_AGGR_COUNTER_AND_TIMER_RESET,
878 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
879 }
880
881 /**
882 * ufshcd_config_intr_aggr - Configure interrupt aggregation values.
883 * @hba: per adapter instance
884 * @cnt: Interrupt aggregation counter threshold
885 * @tmout: Interrupt aggregation timeout value
886 */
887 static inline void
ufshcd_config_intr_aggr(struct ufs_hba * hba,u8 cnt,u8 tmout)888 ufshcd_config_intr_aggr(struct ufs_hba *hba, u8 cnt, u8 tmout)
889 {
890 ufshcd_writel(hba, INT_AGGR_ENABLE | INT_AGGR_PARAM_WRITE |
891 INT_AGGR_COUNTER_THLD_VAL(cnt) |
892 INT_AGGR_TIMEOUT_VAL(tmout),
893 REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
894 }
895
896 /**
897 * ufshcd_disable_intr_aggr - Disables interrupt aggregation.
898 * @hba: per adapter instance
899 */
ufshcd_disable_intr_aggr(struct ufs_hba * hba)900 static inline void ufshcd_disable_intr_aggr(struct ufs_hba *hba)
901 {
902 ufshcd_writel(hba, 0, REG_UTP_TRANSFER_REQ_INT_AGG_CONTROL);
903 }
904
905 /**
906 * ufshcd_enable_run_stop_reg - Enable run-stop registers,
907 * When run-stop registers are set to 1, it indicates the
908 * host controller that it can process the requests
909 * @hba: per adapter instance
910 */
ufshcd_enable_run_stop_reg(struct ufs_hba * hba)911 static void ufshcd_enable_run_stop_reg(struct ufs_hba *hba)
912 {
913 ufshcd_writel(hba, UTP_TASK_REQ_LIST_RUN_STOP_BIT,
914 REG_UTP_TASK_REQ_LIST_RUN_STOP);
915 ufshcd_writel(hba, UTP_TRANSFER_REQ_LIST_RUN_STOP_BIT,
916 REG_UTP_TRANSFER_REQ_LIST_RUN_STOP);
917 }
918
919 /**
920 * ufshcd_hba_start - Start controller initialization sequence
921 * @hba: per adapter instance
922 */
ufshcd_hba_start(struct ufs_hba * hba)923 static inline void ufshcd_hba_start(struct ufs_hba *hba)
924 {
925 u32 val = CONTROLLER_ENABLE;
926
927 if (ufshcd_crypto_enable(hba))
928 val |= CRYPTO_GENERAL_ENABLE;
929
930 ufshcd_writel(hba, val, REG_CONTROLLER_ENABLE);
931 }
932
933 /**
934 * ufshcd_is_hba_active - Get controller state
935 * @hba: per adapter instance
936 *
937 * Returns false if controller is active, true otherwise
938 */
ufshcd_is_hba_active(struct ufs_hba * hba)939 static inline bool ufshcd_is_hba_active(struct ufs_hba *hba)
940 {
941 return (ufshcd_readl(hba, REG_CONTROLLER_ENABLE) & CONTROLLER_ENABLE)
942 ? false : true;
943 }
944
ufshcd_get_local_unipro_ver(struct ufs_hba * hba)945 u32 ufshcd_get_local_unipro_ver(struct ufs_hba *hba)
946 {
947 /* HCI version 1.0 and 1.1 supports UniPro 1.41 */
948 if (hba->ufs_version <= ufshci_version(1, 1))
949 return UFS_UNIPRO_VER_1_41;
950 else
951 return UFS_UNIPRO_VER_1_6;
952 }
953 EXPORT_SYMBOL(ufshcd_get_local_unipro_ver);
954
ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba * hba)955 static bool ufshcd_is_unipro_pa_params_tuning_req(struct ufs_hba *hba)
956 {
957 /*
958 * If both host and device support UniPro ver1.6 or later, PA layer
959 * parameters tuning happens during link startup itself.
960 *
961 * We can manually tune PA layer parameters if either host or device
962 * doesn't support UniPro ver 1.6 or later. But to keep manual tuning
963 * logic simple, we will only do manual tuning if local unipro version
964 * doesn't support ver1.6 or later.
965 */
966 if (ufshcd_get_local_unipro_ver(hba) < UFS_UNIPRO_VER_1_6)
967 return true;
968 else
969 return false;
970 }
971
972 /**
973 * ufshcd_set_clk_freq - set UFS controller clock frequencies
974 * @hba: per adapter instance
975 * @scale_up: If True, set max possible frequency othewise set low frequency
976 *
977 * Returns 0 if successful
978 * Returns < 0 for any other errors
979 */
ufshcd_set_clk_freq(struct ufs_hba * hba,bool scale_up)980 static int ufshcd_set_clk_freq(struct ufs_hba *hba, bool scale_up)
981 {
982 int ret = 0;
983 struct ufs_clk_info *clki;
984 struct list_head *head = &hba->clk_list_head;
985
986 if (list_empty(head))
987 goto out;
988
989 list_for_each_entry(clki, head, list) {
990 if (!IS_ERR_OR_NULL(clki->clk)) {
991 if (scale_up && clki->max_freq) {
992 if (clki->curr_freq == clki->max_freq)
993 continue;
994
995 ret = clk_set_rate(clki->clk, clki->max_freq);
996 if (ret) {
997 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
998 __func__, clki->name,
999 clki->max_freq, ret);
1000 break;
1001 }
1002 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1003 "scaled up", clki->name,
1004 clki->curr_freq,
1005 clki->max_freq);
1006
1007 clki->curr_freq = clki->max_freq;
1008
1009 } else if (!scale_up && clki->min_freq) {
1010 if (clki->curr_freq == clki->min_freq)
1011 continue;
1012
1013 ret = clk_set_rate(clki->clk, clki->min_freq);
1014 if (ret) {
1015 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
1016 __func__, clki->name,
1017 clki->min_freq, ret);
1018 break;
1019 }
1020 trace_ufshcd_clk_scaling(dev_name(hba->dev),
1021 "scaled down", clki->name,
1022 clki->curr_freq,
1023 clki->min_freq);
1024 clki->curr_freq = clki->min_freq;
1025 }
1026 }
1027 dev_dbg(hba->dev, "%s: clk: %s, rate: %lu\n", __func__,
1028 clki->name, clk_get_rate(clki->clk));
1029 }
1030
1031 out:
1032 return ret;
1033 }
1034
1035 /**
1036 * ufshcd_scale_clks - scale up or scale down UFS controller clocks
1037 * @hba: per adapter instance
1038 * @scale_up: True if scaling up and false if scaling down
1039 *
1040 * Returns 0 if successful
1041 * Returns < 0 for any other errors
1042 */
ufshcd_scale_clks(struct ufs_hba * hba,bool scale_up)1043 static int ufshcd_scale_clks(struct ufs_hba *hba, bool scale_up)
1044 {
1045 int ret = 0;
1046 ktime_t start = ktime_get();
1047
1048 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, PRE_CHANGE);
1049 if (ret)
1050 goto out;
1051
1052 ret = ufshcd_set_clk_freq(hba, scale_up);
1053 if (ret)
1054 goto out;
1055
1056 ret = ufshcd_vops_clk_scale_notify(hba, scale_up, POST_CHANGE);
1057 if (ret)
1058 ufshcd_set_clk_freq(hba, !scale_up);
1059
1060 out:
1061 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1062 (scale_up ? "up" : "down"),
1063 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1064 return ret;
1065 }
1066
1067 /**
1068 * ufshcd_is_devfreq_scaling_required - check if scaling is required or not
1069 * @hba: per adapter instance
1070 * @scale_up: True if scaling up and false if scaling down
1071 *
1072 * Returns true if scaling is required, false otherwise.
1073 */
ufshcd_is_devfreq_scaling_required(struct ufs_hba * hba,bool scale_up)1074 static bool ufshcd_is_devfreq_scaling_required(struct ufs_hba *hba,
1075 bool scale_up)
1076 {
1077 struct ufs_clk_info *clki;
1078 struct list_head *head = &hba->clk_list_head;
1079
1080 if (list_empty(head))
1081 return false;
1082
1083 list_for_each_entry(clki, head, list) {
1084 if (!IS_ERR_OR_NULL(clki->clk)) {
1085 if (scale_up && clki->max_freq) {
1086 if (clki->curr_freq == clki->max_freq)
1087 continue;
1088 return true;
1089 } else if (!scale_up && clki->min_freq) {
1090 if (clki->curr_freq == clki->min_freq)
1091 continue;
1092 return true;
1093 }
1094 }
1095 }
1096
1097 return false;
1098 }
1099
ufshcd_wait_for_doorbell_clr(struct ufs_hba * hba,u64 wait_timeout_us)1100 static int ufshcd_wait_for_doorbell_clr(struct ufs_hba *hba,
1101 u64 wait_timeout_us)
1102 {
1103 unsigned long flags;
1104 int ret = 0;
1105 u32 tm_doorbell;
1106 u32 tr_doorbell;
1107 bool timeout = false, do_last_check = false;
1108 ktime_t start;
1109 bool has_outstanding = false;
1110
1111 ufshcd_hold(hba, false);
1112 spin_lock_irqsave(hba->host->host_lock, flags);
1113 /*
1114 * Wait for all the outstanding tasks/transfer requests.
1115 * Verify by checking the doorbell registers are clear.
1116 */
1117 start = ktime_get();
1118 do {
1119 if (hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL) {
1120 ret = -EBUSY;
1121 goto out;
1122 }
1123
1124 tm_doorbell = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
1125 if (ufshcd_use_mcq_hooks(hba)) {
1126 trace_android_vh_ufs_mcq_has_oustanding_reqs(hba, &has_outstanding);
1127 tr_doorbell = has_outstanding ? 1 : 0;
1128 } else {
1129 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
1130 }
1131 if (!tm_doorbell && !tr_doorbell) {
1132 timeout = false;
1133 break;
1134 } else if (do_last_check) {
1135 break;
1136 }
1137
1138 spin_unlock_irqrestore(hba->host->host_lock, flags);
1139 schedule();
1140 if (ktime_to_us(ktime_sub(ktime_get(), start)) >
1141 wait_timeout_us) {
1142 timeout = true;
1143 /*
1144 * We might have scheduled out for long time so make
1145 * sure to check if doorbells are cleared by this time
1146 * or not.
1147 */
1148 do_last_check = true;
1149 }
1150 spin_lock_irqsave(hba->host->host_lock, flags);
1151 } while (tm_doorbell || tr_doorbell);
1152
1153 if (timeout) {
1154 dev_err(hba->dev,
1155 "%s: timedout waiting for doorbell to clear (tm=0x%x, tr=0x%x)\n",
1156 __func__, tm_doorbell, tr_doorbell);
1157 ret = -EBUSY;
1158 }
1159 out:
1160 spin_unlock_irqrestore(hba->host->host_lock, flags);
1161 ufshcd_release(hba);
1162 return ret;
1163 }
1164
1165 /**
1166 * ufshcd_scale_gear - scale up/down UFS gear
1167 * @hba: per adapter instance
1168 * @scale_up: True for scaling up gear and false for scaling down
1169 *
1170 * Returns 0 for success,
1171 * Returns -EBUSY if scaling can't happen at this time
1172 * Returns non-zero for any other errors
1173 */
ufshcd_scale_gear(struct ufs_hba * hba,bool scale_up)1174 static int ufshcd_scale_gear(struct ufs_hba *hba, bool scale_up)
1175 {
1176 int ret = 0;
1177 struct ufs_pa_layer_attr new_pwr_info;
1178
1179 if (scale_up) {
1180 memcpy(&new_pwr_info, &hba->clk_scaling.saved_pwr_info.info,
1181 sizeof(struct ufs_pa_layer_attr));
1182 } else {
1183 memcpy(&new_pwr_info, &hba->pwr_info,
1184 sizeof(struct ufs_pa_layer_attr));
1185
1186 if (hba->pwr_info.gear_tx > hba->clk_scaling.min_gear ||
1187 hba->pwr_info.gear_rx > hba->clk_scaling.min_gear) {
1188 /* save the current power mode */
1189 memcpy(&hba->clk_scaling.saved_pwr_info.info,
1190 &hba->pwr_info,
1191 sizeof(struct ufs_pa_layer_attr));
1192
1193 /* scale down gear */
1194 new_pwr_info.gear_tx = hba->clk_scaling.min_gear;
1195 new_pwr_info.gear_rx = hba->clk_scaling.min_gear;
1196 }
1197 }
1198
1199 /* check if the power mode needs to be changed or not? */
1200 ret = ufshcd_config_pwr_mode(hba, &new_pwr_info);
1201 if (ret)
1202 dev_err(hba->dev, "%s: failed err %d, old gear: (tx %d rx %d), new gear: (tx %d rx %d)",
1203 __func__, ret,
1204 hba->pwr_info.gear_tx, hba->pwr_info.gear_rx,
1205 new_pwr_info.gear_tx, new_pwr_info.gear_rx);
1206
1207 return ret;
1208 }
1209
ufshcd_clock_scaling_prepare(struct ufs_hba * hba)1210 static int ufshcd_clock_scaling_prepare(struct ufs_hba *hba)
1211 {
1212 #define DOORBELL_CLR_TOUT_US (1000 * 1000) /* 1 sec */
1213 int ret = 0;
1214 /*
1215 * make sure that there are no outstanding requests when
1216 * clock scaling is in progress
1217 */
1218 ufshcd_scsi_block_requests(hba);
1219 mutex_lock(&wb_mutex);
1220 down_write(&hba->clk_scaling_lock);
1221
1222 if (!hba->clk_scaling.is_allowed ||
1223 ufshcd_wait_for_doorbell_clr(hba, DOORBELL_CLR_TOUT_US)) {
1224 ret = -EBUSY;
1225 up_write(&hba->clk_scaling_lock);
1226 mutex_unlock(&wb_mutex);
1227 ufshcd_scsi_unblock_requests(hba);
1228 goto out;
1229 }
1230
1231 /* let's not get into low power until clock scaling is completed */
1232 ufshcd_hold(hba, false);
1233
1234 out:
1235 return ret;
1236 }
1237
ufshcd_clock_scaling_unprepare(struct ufs_hba * hba,int err,bool scale_up)1238 static void ufshcd_clock_scaling_unprepare(struct ufs_hba *hba, int err, bool scale_up)
1239 {
1240 up_write(&hba->clk_scaling_lock);
1241
1242 /* Enable Write Booster if we have scaled up else disable it */
1243 if (ufshcd_enable_wb_if_scaling_up(hba) && !err)
1244 ufshcd_wb_toggle(hba, scale_up);
1245
1246 mutex_unlock(&wb_mutex);
1247
1248 ufshcd_scsi_unblock_requests(hba);
1249 ufshcd_release(hba);
1250 }
1251
1252 /**
1253 * ufshcd_devfreq_scale - scale up/down UFS clocks and gear
1254 * @hba: per adapter instance
1255 * @scale_up: True for scaling up and false for scalin down
1256 *
1257 * Returns 0 for success,
1258 * Returns -EBUSY if scaling can't happen at this time
1259 * Returns non-zero for any other errors
1260 */
ufshcd_devfreq_scale(struct ufs_hba * hba,bool scale_up)1261 static int ufshcd_devfreq_scale(struct ufs_hba *hba, bool scale_up)
1262 {
1263 int ret = 0;
1264
1265 ret = ufshcd_clock_scaling_prepare(hba);
1266 if (ret)
1267 return ret;
1268
1269 /* scale down the gear before scaling down clocks */
1270 if (!scale_up) {
1271 ret = ufshcd_scale_gear(hba, false);
1272 if (ret)
1273 goto out_unprepare;
1274 }
1275
1276 ret = ufshcd_scale_clks(hba, scale_up);
1277 if (ret) {
1278 if (!scale_up)
1279 ufshcd_scale_gear(hba, true);
1280 goto out_unprepare;
1281 }
1282
1283 /* scale up the gear after scaling up clocks */
1284 if (scale_up) {
1285 ret = ufshcd_scale_gear(hba, true);
1286 if (ret) {
1287 ufshcd_scale_clks(hba, false);
1288 goto out_unprepare;
1289 }
1290 }
1291
1292 out_unprepare:
1293 ufshcd_clock_scaling_unprepare(hba, ret, scale_up);
1294 return ret;
1295 }
1296
ufshcd_clk_scaling_suspend_work(struct work_struct * work)1297 static void ufshcd_clk_scaling_suspend_work(struct work_struct *work)
1298 {
1299 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1300 clk_scaling.suspend_work);
1301 unsigned long irq_flags;
1302
1303 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1304 if (hba->clk_scaling.active_reqs || hba->clk_scaling.is_suspended) {
1305 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1306 return;
1307 }
1308 hba->clk_scaling.is_suspended = true;
1309 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1310
1311 __ufshcd_suspend_clkscaling(hba);
1312 }
1313
ufshcd_clk_scaling_resume_work(struct work_struct * work)1314 static void ufshcd_clk_scaling_resume_work(struct work_struct *work)
1315 {
1316 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1317 clk_scaling.resume_work);
1318 unsigned long irq_flags;
1319
1320 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1321 if (!hba->clk_scaling.is_suspended) {
1322 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1323 return;
1324 }
1325 hba->clk_scaling.is_suspended = false;
1326 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1327
1328 devfreq_resume_device(hba->devfreq);
1329 }
1330
ufshcd_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)1331 static int ufshcd_devfreq_target(struct device *dev,
1332 unsigned long *freq, u32 flags)
1333 {
1334 int ret = 0;
1335 struct ufs_hba *hba = dev_get_drvdata(dev);
1336 ktime_t start;
1337 bool scale_up, sched_clk_scaling_suspend_work = false;
1338 struct list_head *clk_list = &hba->clk_list_head;
1339 struct ufs_clk_info *clki;
1340 unsigned long irq_flags;
1341 bool force_out = false;
1342 bool force_scaling = false;
1343
1344 if (!ufshcd_is_clkscaling_supported(hba))
1345 return -EINVAL;
1346
1347 clki = list_first_entry(&hba->clk_list_head, struct ufs_clk_info, list);
1348 /* Override with the closest supported frequency */
1349 *freq = (unsigned long) clk_round_rate(clki->clk, *freq);
1350 spin_lock_irqsave(hba->host->host_lock, irq_flags);
1351 if (ufshcd_eh_in_progress(hba)) {
1352 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1353 return 0;
1354 }
1355
1356 if (!hba->clk_scaling.active_reqs)
1357 sched_clk_scaling_suspend_work = true;
1358
1359 if (list_empty(clk_list)) {
1360 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1361 goto out;
1362 }
1363
1364 /* Decide based on the rounded-off frequency and update */
1365 scale_up = (*freq == clki->max_freq) ? true : false;
1366 if (!scale_up)
1367 *freq = clki->min_freq;
1368
1369 trace_android_vh_ufs_clock_scaling(hba, &force_out, &force_scaling, &scale_up);
1370
1371 /* Update the frequency */
1372 if (force_out || (!force_scaling && !ufshcd_is_devfreq_scaling_required(hba, scale_up))) {
1373 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1374 ret = 0;
1375 goto out; /* no state change required */
1376 }
1377 spin_unlock_irqrestore(hba->host->host_lock, irq_flags);
1378
1379 start = ktime_get();
1380 ret = ufshcd_devfreq_scale(hba, scale_up);
1381
1382 trace_ufshcd_profile_clk_scaling(dev_name(hba->dev),
1383 (scale_up ? "up" : "down"),
1384 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
1385
1386 out:
1387 if (sched_clk_scaling_suspend_work)
1388 queue_work(hba->clk_scaling.workq,
1389 &hba->clk_scaling.suspend_work);
1390
1391 return ret;
1392 }
1393
ufshcd_is_busy(struct request * req,void * priv,bool reserved)1394 static bool ufshcd_is_busy(struct request *req, void *priv, bool reserved)
1395 {
1396 int *busy = priv;
1397
1398 WARN_ON_ONCE(reserved);
1399 (*busy)++;
1400 return false;
1401 }
1402
1403 /* Whether or not any tag is in use by a request that is in progress. */
ufshcd_any_tag_in_use(struct ufs_hba * hba)1404 static bool ufshcd_any_tag_in_use(struct ufs_hba *hba)
1405 {
1406 struct request_queue *q = hba->cmd_queue;
1407 int busy = 0;
1408
1409 blk_mq_tagset_busy_iter(q->tag_set, ufshcd_is_busy, &busy);
1410 return busy;
1411 }
1412
ufshcd_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)1413 static int ufshcd_devfreq_get_dev_status(struct device *dev,
1414 struct devfreq_dev_status *stat)
1415 {
1416 struct ufs_hba *hba = dev_get_drvdata(dev);
1417 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
1418 unsigned long flags;
1419 struct list_head *clk_list = &hba->clk_list_head;
1420 struct ufs_clk_info *clki;
1421 ktime_t curr_t;
1422 bool has_outstanding;
1423
1424 if (!ufshcd_is_clkscaling_supported(hba))
1425 return -EINVAL;
1426
1427 memset(stat, 0, sizeof(*stat));
1428
1429 spin_lock_irqsave(hba->host->host_lock, flags);
1430 curr_t = ktime_get();
1431 if (!scaling->window_start_t)
1432 goto start_window;
1433
1434 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1435 /*
1436 * If current frequency is 0, then the ondemand governor considers
1437 * there's no initial frequency set. And it always requests to set
1438 * to max. frequency.
1439 */
1440 stat->current_frequency = clki->curr_freq;
1441 if (scaling->is_busy_started)
1442 scaling->tot_busy_t += ktime_us_delta(curr_t,
1443 scaling->busy_start_t);
1444
1445 stat->total_time = ktime_us_delta(curr_t, scaling->window_start_t);
1446 stat->busy_time = scaling->tot_busy_t;
1447 start_window:
1448 scaling->window_start_t = curr_t;
1449 scaling->tot_busy_t = 0;
1450
1451 has_outstanding = hba->outstanding_reqs != 0;
1452 trace_android_vh_ufs_mcq_has_oustanding_reqs(hba, &has_outstanding);
1453
1454 if (has_outstanding) {
1455 scaling->busy_start_t = curr_t;
1456 scaling->is_busy_started = true;
1457 } else {
1458 scaling->busy_start_t = 0;
1459 scaling->is_busy_started = false;
1460 }
1461 spin_unlock_irqrestore(hba->host->host_lock, flags);
1462 return 0;
1463 }
1464
ufshcd_devfreq_init(struct ufs_hba * hba)1465 static int ufshcd_devfreq_init(struct ufs_hba *hba)
1466 {
1467 struct list_head *clk_list = &hba->clk_list_head;
1468 struct ufs_clk_info *clki;
1469 struct devfreq *devfreq;
1470 int ret;
1471
1472 /* Skip devfreq if we don't have any clocks in the list */
1473 if (list_empty(clk_list))
1474 return 0;
1475
1476 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1477 dev_pm_opp_add(hba->dev, clki->min_freq, 0);
1478 dev_pm_opp_add(hba->dev, clki->max_freq, 0);
1479
1480 ufshcd_vops_config_scaling_param(hba, &hba->vps->devfreq_profile,
1481 &hba->vps->ondemand_data);
1482 devfreq = devfreq_add_device(hba->dev,
1483 &hba->vps->devfreq_profile,
1484 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1485 &hba->vps->ondemand_data);
1486 if (IS_ERR(devfreq)) {
1487 ret = PTR_ERR(devfreq);
1488 dev_err(hba->dev, "Unable to register with devfreq %d\n", ret);
1489
1490 dev_pm_opp_remove(hba->dev, clki->min_freq);
1491 dev_pm_opp_remove(hba->dev, clki->max_freq);
1492 return ret;
1493 }
1494
1495 hba->devfreq = devfreq;
1496
1497 return 0;
1498 }
1499
ufshcd_devfreq_remove(struct ufs_hba * hba)1500 static void ufshcd_devfreq_remove(struct ufs_hba *hba)
1501 {
1502 struct list_head *clk_list = &hba->clk_list_head;
1503 struct ufs_clk_info *clki;
1504
1505 if (!hba->devfreq)
1506 return;
1507
1508 devfreq_remove_device(hba->devfreq);
1509 hba->devfreq = NULL;
1510
1511 clki = list_first_entry(clk_list, struct ufs_clk_info, list);
1512 dev_pm_opp_remove(hba->dev, clki->min_freq);
1513 dev_pm_opp_remove(hba->dev, clki->max_freq);
1514 }
1515
__ufshcd_suspend_clkscaling(struct ufs_hba * hba)1516 static void __ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1517 {
1518 unsigned long flags;
1519
1520 devfreq_suspend_device(hba->devfreq);
1521 spin_lock_irqsave(hba->host->host_lock, flags);
1522 hba->clk_scaling.window_start_t = 0;
1523 spin_unlock_irqrestore(hba->host->host_lock, flags);
1524 }
1525
ufshcd_suspend_clkscaling(struct ufs_hba * hba)1526 static void ufshcd_suspend_clkscaling(struct ufs_hba *hba)
1527 {
1528 unsigned long flags;
1529 bool suspend = false;
1530
1531 cancel_work_sync(&hba->clk_scaling.suspend_work);
1532 cancel_work_sync(&hba->clk_scaling.resume_work);
1533
1534 spin_lock_irqsave(hba->host->host_lock, flags);
1535 if (!hba->clk_scaling.is_suspended) {
1536 suspend = true;
1537 hba->clk_scaling.is_suspended = true;
1538 }
1539 spin_unlock_irqrestore(hba->host->host_lock, flags);
1540
1541 if (suspend)
1542 __ufshcd_suspend_clkscaling(hba);
1543 }
1544
ufshcd_resume_clkscaling(struct ufs_hba * hba)1545 static void ufshcd_resume_clkscaling(struct ufs_hba *hba)
1546 {
1547 unsigned long flags;
1548 bool resume = false;
1549
1550 spin_lock_irqsave(hba->host->host_lock, flags);
1551 if (hba->clk_scaling.is_suspended) {
1552 resume = true;
1553 hba->clk_scaling.is_suspended = false;
1554 }
1555 spin_unlock_irqrestore(hba->host->host_lock, flags);
1556
1557 if (resume)
1558 devfreq_resume_device(hba->devfreq);
1559 }
1560
ufshcd_clkscale_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1561 static ssize_t ufshcd_clkscale_enable_show(struct device *dev,
1562 struct device_attribute *attr, char *buf)
1563 {
1564 struct ufs_hba *hba = dev_get_drvdata(dev);
1565
1566 return sysfs_emit(buf, "%d\n", hba->clk_scaling.is_enabled);
1567 }
1568
ufshcd_clkscale_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1569 static ssize_t ufshcd_clkscale_enable_store(struct device *dev,
1570 struct device_attribute *attr, const char *buf, size_t count)
1571 {
1572 struct ufs_hba *hba = dev_get_drvdata(dev);
1573 u32 value;
1574 int err = 0;
1575
1576 if (kstrtou32(buf, 0, &value))
1577 return -EINVAL;
1578
1579 down(&hba->host_sem);
1580 if (!ufshcd_is_user_access_allowed(hba)) {
1581 err = -EBUSY;
1582 goto out;
1583 }
1584
1585 value = !!value;
1586 if (value == hba->clk_scaling.is_enabled)
1587 goto out;
1588
1589 ufshcd_rpm_get_sync(hba);
1590 ufshcd_hold(hba, false);
1591
1592 hba->clk_scaling.is_enabled = value;
1593
1594 if (value) {
1595 ufshcd_resume_clkscaling(hba);
1596 } else {
1597 ufshcd_suspend_clkscaling(hba);
1598 err = ufshcd_devfreq_scale(hba, true);
1599 if (err)
1600 dev_err(hba->dev, "%s: failed to scale clocks up %d\n",
1601 __func__, err);
1602 }
1603
1604 ufshcd_release(hba);
1605 ufshcd_rpm_put_sync(hba);
1606 out:
1607 up(&hba->host_sem);
1608 return err ? err : count;
1609 }
1610
ufshcd_init_clk_scaling_sysfs(struct ufs_hba * hba)1611 static void ufshcd_init_clk_scaling_sysfs(struct ufs_hba *hba)
1612 {
1613 hba->clk_scaling.enable_attr.show = ufshcd_clkscale_enable_show;
1614 hba->clk_scaling.enable_attr.store = ufshcd_clkscale_enable_store;
1615 sysfs_attr_init(&hba->clk_scaling.enable_attr.attr);
1616 hba->clk_scaling.enable_attr.attr.name = "clkscale_enable";
1617 hba->clk_scaling.enable_attr.attr.mode = 0644;
1618 if (device_create_file(hba->dev, &hba->clk_scaling.enable_attr))
1619 dev_err(hba->dev, "Failed to create sysfs for clkscale_enable\n");
1620 }
1621
ufshcd_remove_clk_scaling_sysfs(struct ufs_hba * hba)1622 static void ufshcd_remove_clk_scaling_sysfs(struct ufs_hba *hba)
1623 {
1624 if (hba->clk_scaling.enable_attr.attr.name)
1625 device_remove_file(hba->dev, &hba->clk_scaling.enable_attr);
1626 }
1627
ufshcd_init_clk_scaling(struct ufs_hba * hba)1628 static void ufshcd_init_clk_scaling(struct ufs_hba *hba)
1629 {
1630 char wq_name[sizeof("ufs_clkscaling_00")];
1631
1632 if (!ufshcd_is_clkscaling_supported(hba))
1633 return;
1634
1635 if (!hba->clk_scaling.min_gear)
1636 hba->clk_scaling.min_gear = UFS_HS_G1;
1637
1638 INIT_WORK(&hba->clk_scaling.suspend_work,
1639 ufshcd_clk_scaling_suspend_work);
1640 INIT_WORK(&hba->clk_scaling.resume_work,
1641 ufshcd_clk_scaling_resume_work);
1642
1643 snprintf(wq_name, sizeof(wq_name), "ufs_clkscaling_%d",
1644 hba->host->host_no);
1645 hba->clk_scaling.workq = create_singlethread_workqueue(wq_name);
1646
1647 hba->clk_scaling.is_initialized = true;
1648 }
1649
ufshcd_exit_clk_scaling(struct ufs_hba * hba)1650 static void ufshcd_exit_clk_scaling(struct ufs_hba *hba)
1651 {
1652 if (!hba->clk_scaling.is_initialized)
1653 return;
1654
1655 ufshcd_remove_clk_scaling_sysfs(hba);
1656 destroy_workqueue(hba->clk_scaling.workq);
1657 ufshcd_devfreq_remove(hba);
1658 hba->clk_scaling.is_initialized = false;
1659 }
1660
ufshcd_ungate_work(struct work_struct * work)1661 static void ufshcd_ungate_work(struct work_struct *work)
1662 {
1663 int ret;
1664 unsigned long flags;
1665 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1666 clk_gating.ungate_work);
1667
1668 cancel_delayed_work_sync(&hba->clk_gating.gate_work);
1669
1670 spin_lock_irqsave(hba->host->host_lock, flags);
1671 if (hba->clk_gating.state == CLKS_ON) {
1672 spin_unlock_irqrestore(hba->host->host_lock, flags);
1673 goto unblock_reqs;
1674 }
1675
1676 spin_unlock_irqrestore(hba->host->host_lock, flags);
1677 ufshcd_hba_vreg_set_hpm(hba);
1678 ufshcd_setup_clocks(hba, true);
1679
1680 ufshcd_enable_irq(hba);
1681
1682 /* Exit from hibern8 */
1683 if (ufshcd_can_hibern8_during_gating(hba)) {
1684 /* Prevent gating in this path */
1685 hba->clk_gating.is_suspended = true;
1686 if (ufshcd_is_link_hibern8(hba)) {
1687 ret = ufshcd_uic_hibern8_exit(hba);
1688 if (ret)
1689 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
1690 __func__, ret);
1691 else
1692 ufshcd_set_link_active(hba);
1693 }
1694 hba->clk_gating.is_suspended = false;
1695 }
1696 unblock_reqs:
1697 ufshcd_scsi_unblock_requests(hba);
1698 }
1699
1700 /**
1701 * ufshcd_hold - Enable clocks that were gated earlier due to ufshcd_release.
1702 * Also, exit from hibern8 mode and set the link as active.
1703 * @hba: per adapter instance
1704 * @async: This indicates whether caller should ungate clocks asynchronously.
1705 */
ufshcd_hold(struct ufs_hba * hba,bool async)1706 int ufshcd_hold(struct ufs_hba *hba, bool async)
1707 {
1708 int rc = 0;
1709 bool flush_result;
1710 unsigned long flags;
1711
1712 if (!ufshcd_is_clkgating_allowed(hba) ||
1713 !hba->clk_gating.is_initialized)
1714 goto out;
1715 spin_lock_irqsave(hba->host->host_lock, flags);
1716 hba->clk_gating.active_reqs++;
1717
1718 start:
1719 switch (hba->clk_gating.state) {
1720 case CLKS_ON:
1721 /*
1722 * Wait for the ungate work to complete if in progress.
1723 * Though the clocks may be in ON state, the link could
1724 * still be in hibner8 state if hibern8 is allowed
1725 * during clock gating.
1726 * Make sure we exit hibern8 state also in addition to
1727 * clocks being ON.
1728 */
1729 if (ufshcd_can_hibern8_during_gating(hba) &&
1730 ufshcd_is_link_hibern8(hba)) {
1731 if (async) {
1732 rc = -EAGAIN;
1733 hba->clk_gating.active_reqs--;
1734 break;
1735 }
1736 spin_unlock_irqrestore(hba->host->host_lock, flags);
1737 flush_result = flush_work(&hba->clk_gating.ungate_work);
1738 if (hba->clk_gating.is_suspended && !flush_result)
1739 goto out;
1740 spin_lock_irqsave(hba->host->host_lock, flags);
1741 goto start;
1742 }
1743 break;
1744 case REQ_CLKS_OFF:
1745 if (cancel_delayed_work(&hba->clk_gating.gate_work)) {
1746 hba->clk_gating.state = CLKS_ON;
1747 trace_ufshcd_clk_gating(dev_name(hba->dev),
1748 hba->clk_gating.state);
1749 break;
1750 }
1751 /*
1752 * If we are here, it means gating work is either done or
1753 * currently running. Hence, fall through to cancel gating
1754 * work and to enable clocks.
1755 */
1756 fallthrough;
1757 case CLKS_OFF:
1758 hba->clk_gating.state = REQ_CLKS_ON;
1759 trace_ufshcd_clk_gating(dev_name(hba->dev),
1760 hba->clk_gating.state);
1761 if (queue_work(hba->clk_gating.clk_gating_workq,
1762 &hba->clk_gating.ungate_work))
1763 ufshcd_scsi_block_requests(hba);
1764 /*
1765 * fall through to check if we should wait for this
1766 * work to be done or not.
1767 */
1768 fallthrough;
1769 case REQ_CLKS_ON:
1770 if (async) {
1771 rc = -EAGAIN;
1772 hba->clk_gating.active_reqs--;
1773 break;
1774 }
1775
1776 spin_unlock_irqrestore(hba->host->host_lock, flags);
1777 flush_work(&hba->clk_gating.ungate_work);
1778 /* Make sure state is CLKS_ON before returning */
1779 spin_lock_irqsave(hba->host->host_lock, flags);
1780 goto start;
1781 default:
1782 dev_err(hba->dev, "%s: clk gating is in invalid state %d\n",
1783 __func__, hba->clk_gating.state);
1784 break;
1785 }
1786 spin_unlock_irqrestore(hba->host->host_lock, flags);
1787 out:
1788 return rc;
1789 }
1790 EXPORT_SYMBOL_GPL(ufshcd_hold);
1791
ufshcd_gate_work(struct work_struct * work)1792 static void ufshcd_gate_work(struct work_struct *work)
1793 {
1794 struct ufs_hba *hba = container_of(work, struct ufs_hba,
1795 clk_gating.gate_work.work);
1796 unsigned long flags;
1797 int ret;
1798
1799 spin_lock_irqsave(hba->host->host_lock, flags);
1800 /*
1801 * In case you are here to cancel this work the gating state
1802 * would be marked as REQ_CLKS_ON. In this case save time by
1803 * skipping the gating work and exit after changing the clock
1804 * state to CLKS_ON.
1805 */
1806 if (hba->clk_gating.is_suspended ||
1807 (hba->clk_gating.state != REQ_CLKS_OFF)) {
1808 hba->clk_gating.state = CLKS_ON;
1809 trace_ufshcd_clk_gating(dev_name(hba->dev),
1810 hba->clk_gating.state);
1811 goto rel_lock;
1812 }
1813
1814 if (hba->clk_gating.active_reqs
1815 || hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL
1816 || ufshcd_any_tag_in_use(hba) || hba->outstanding_tasks
1817 || hba->active_uic_cmd || hba->uic_async_done)
1818 goto rel_lock;
1819
1820 spin_unlock_irqrestore(hba->host->host_lock, flags);
1821
1822 /* put the link into hibern8 mode before turning off clocks */
1823 if (ufshcd_can_hibern8_during_gating(hba)) {
1824 ret = ufshcd_uic_hibern8_enter(hba);
1825 if (ret) {
1826 hba->clk_gating.state = CLKS_ON;
1827 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
1828 __func__, ret);
1829 trace_ufshcd_clk_gating(dev_name(hba->dev),
1830 hba->clk_gating.state);
1831 goto out;
1832 }
1833 ufshcd_set_link_hibern8(hba);
1834 }
1835
1836 ufshcd_disable_irq(hba);
1837
1838 ufshcd_setup_clocks(hba, false);
1839
1840 /* Put the host controller in low power mode if possible */
1841 ufshcd_hba_vreg_set_lpm(hba);
1842 /*
1843 * In case you are here to cancel this work the gating state
1844 * would be marked as REQ_CLKS_ON. In this case keep the state
1845 * as REQ_CLKS_ON which would anyway imply that clocks are off
1846 * and a request to turn them on is pending. By doing this way,
1847 * we keep the state machine in tact and this would ultimately
1848 * prevent from doing cancel work multiple times when there are
1849 * new requests arriving before the current cancel work is done.
1850 */
1851 spin_lock_irqsave(hba->host->host_lock, flags);
1852 if (hba->clk_gating.state == REQ_CLKS_OFF) {
1853 hba->clk_gating.state = CLKS_OFF;
1854 trace_ufshcd_clk_gating(dev_name(hba->dev),
1855 hba->clk_gating.state);
1856 }
1857 rel_lock:
1858 spin_unlock_irqrestore(hba->host->host_lock, flags);
1859 out:
1860 return;
1861 }
1862
1863 /* host lock must be held before calling this variant */
__ufshcd_release(struct ufs_hba * hba)1864 static void __ufshcd_release(struct ufs_hba *hba)
1865 {
1866 if (!ufshcd_is_clkgating_allowed(hba))
1867 return;
1868
1869 hba->clk_gating.active_reqs--;
1870
1871 if (hba->clk_gating.active_reqs || hba->clk_gating.is_suspended ||
1872 hba->ufshcd_state != UFSHCD_STATE_OPERATIONAL ||
1873 hba->outstanding_tasks || !hba->clk_gating.is_initialized ||
1874 hba->active_uic_cmd || hba->uic_async_done ||
1875 hba->clk_gating.state == CLKS_OFF)
1876 return;
1877
1878 hba->clk_gating.state = REQ_CLKS_OFF;
1879 trace_ufshcd_clk_gating(dev_name(hba->dev), hba->clk_gating.state);
1880 queue_delayed_work(hba->clk_gating.clk_gating_workq,
1881 &hba->clk_gating.gate_work,
1882 msecs_to_jiffies(hba->clk_gating.delay_ms));
1883 }
1884
ufshcd_release(struct ufs_hba * hba)1885 void ufshcd_release(struct ufs_hba *hba)
1886 {
1887 unsigned long flags;
1888
1889 spin_lock_irqsave(hba->host->host_lock, flags);
1890 __ufshcd_release(hba);
1891 spin_unlock_irqrestore(hba->host->host_lock, flags);
1892 }
1893 EXPORT_SYMBOL_GPL(ufshcd_release);
1894
ufshcd_clkgate_delay_show(struct device * dev,struct device_attribute * attr,char * buf)1895 static ssize_t ufshcd_clkgate_delay_show(struct device *dev,
1896 struct device_attribute *attr, char *buf)
1897 {
1898 struct ufs_hba *hba = dev_get_drvdata(dev);
1899
1900 return sysfs_emit(buf, "%lu\n", hba->clk_gating.delay_ms);
1901 }
1902
ufshcd_clkgate_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1903 static ssize_t ufshcd_clkgate_delay_store(struct device *dev,
1904 struct device_attribute *attr, const char *buf, size_t count)
1905 {
1906 struct ufs_hba *hba = dev_get_drvdata(dev);
1907 unsigned long flags, value;
1908
1909 if (kstrtoul(buf, 0, &value))
1910 return -EINVAL;
1911
1912 spin_lock_irqsave(hba->host->host_lock, flags);
1913 hba->clk_gating.delay_ms = value;
1914 spin_unlock_irqrestore(hba->host->host_lock, flags);
1915 return count;
1916 }
1917
ufshcd_clkgate_enable_show(struct device * dev,struct device_attribute * attr,char * buf)1918 static ssize_t ufshcd_clkgate_enable_show(struct device *dev,
1919 struct device_attribute *attr, char *buf)
1920 {
1921 struct ufs_hba *hba = dev_get_drvdata(dev);
1922
1923 return sysfs_emit(buf, "%d\n", hba->clk_gating.is_enabled);
1924 }
1925
ufshcd_clkgate_enable_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1926 static ssize_t ufshcd_clkgate_enable_store(struct device *dev,
1927 struct device_attribute *attr, const char *buf, size_t count)
1928 {
1929 struct ufs_hba *hba = dev_get_drvdata(dev);
1930 unsigned long flags;
1931 u32 value;
1932
1933 if (kstrtou32(buf, 0, &value))
1934 return -EINVAL;
1935
1936 value = !!value;
1937
1938 spin_lock_irqsave(hba->host->host_lock, flags);
1939 if (value == hba->clk_gating.is_enabled)
1940 goto out;
1941
1942 if (value)
1943 __ufshcd_release(hba);
1944 else
1945 hba->clk_gating.active_reqs++;
1946
1947 hba->clk_gating.is_enabled = value;
1948 out:
1949 spin_unlock_irqrestore(hba->host->host_lock, flags);
1950 return count;
1951 }
1952
ufshcd_init_clk_gating_sysfs(struct ufs_hba * hba)1953 static void ufshcd_init_clk_gating_sysfs(struct ufs_hba *hba)
1954 {
1955 hba->clk_gating.delay_attr.show = ufshcd_clkgate_delay_show;
1956 hba->clk_gating.delay_attr.store = ufshcd_clkgate_delay_store;
1957 sysfs_attr_init(&hba->clk_gating.delay_attr.attr);
1958 hba->clk_gating.delay_attr.attr.name = "clkgate_delay_ms";
1959 hba->clk_gating.delay_attr.attr.mode = 0644;
1960 if (device_create_file(hba->dev, &hba->clk_gating.delay_attr))
1961 dev_err(hba->dev, "Failed to create sysfs for clkgate_delay\n");
1962
1963 hba->clk_gating.enable_attr.show = ufshcd_clkgate_enable_show;
1964 hba->clk_gating.enable_attr.store = ufshcd_clkgate_enable_store;
1965 sysfs_attr_init(&hba->clk_gating.enable_attr.attr);
1966 hba->clk_gating.enable_attr.attr.name = "clkgate_enable";
1967 hba->clk_gating.enable_attr.attr.mode = 0644;
1968 if (device_create_file(hba->dev, &hba->clk_gating.enable_attr))
1969 dev_err(hba->dev, "Failed to create sysfs for clkgate_enable\n");
1970 }
1971
ufshcd_remove_clk_gating_sysfs(struct ufs_hba * hba)1972 static void ufshcd_remove_clk_gating_sysfs(struct ufs_hba *hba)
1973 {
1974 if (hba->clk_gating.delay_attr.attr.name)
1975 device_remove_file(hba->dev, &hba->clk_gating.delay_attr);
1976 if (hba->clk_gating.enable_attr.attr.name)
1977 device_remove_file(hba->dev, &hba->clk_gating.enable_attr);
1978 }
1979
ufshcd_init_clk_gating(struct ufs_hba * hba)1980 static void ufshcd_init_clk_gating(struct ufs_hba *hba)
1981 {
1982 char wq_name[sizeof("ufs_clk_gating_00")];
1983
1984 if (!ufshcd_is_clkgating_allowed(hba))
1985 return;
1986
1987 hba->clk_gating.state = CLKS_ON;
1988
1989 hba->clk_gating.delay_ms = 150;
1990 INIT_DELAYED_WORK(&hba->clk_gating.gate_work, ufshcd_gate_work);
1991 INIT_WORK(&hba->clk_gating.ungate_work, ufshcd_ungate_work);
1992
1993 snprintf(wq_name, ARRAY_SIZE(wq_name), "ufs_clk_gating_%d",
1994 hba->host->host_no);
1995 hba->clk_gating.clk_gating_workq = alloc_ordered_workqueue(wq_name,
1996 WQ_MEM_RECLAIM | WQ_HIGHPRI);
1997
1998 ufshcd_init_clk_gating_sysfs(hba);
1999
2000 hba->clk_gating.is_enabled = true;
2001 hba->clk_gating.is_initialized = true;
2002 }
2003
ufshcd_exit_clk_gating(struct ufs_hba * hba)2004 static void ufshcd_exit_clk_gating(struct ufs_hba *hba)
2005 {
2006 if (!hba->clk_gating.is_initialized)
2007 return;
2008
2009 ufshcd_remove_clk_gating_sysfs(hba);
2010
2011 /* Ungate the clock if necessary. */
2012 ufshcd_hold(hba, false);
2013 hba->clk_gating.is_initialized = false;
2014 ufshcd_release(hba);
2015
2016 destroy_workqueue(hba->clk_gating.clk_gating_workq);
2017 }
2018
2019 /* Must be called with host lock acquired */
ufshcd_clk_scaling_start_busy(struct ufs_hba * hba)2020 void ufshcd_clk_scaling_start_busy(struct ufs_hba *hba)
2021 {
2022 bool queue_resume_work = false;
2023 ktime_t curr_t = ktime_get();
2024 unsigned long flags;
2025
2026 if (!ufshcd_is_clkscaling_supported(hba))
2027 return;
2028
2029 spin_lock_irqsave(hba->host->host_lock, flags);
2030 if (!hba->clk_scaling.active_reqs++)
2031 queue_resume_work = true;
2032
2033 if (!hba->clk_scaling.is_enabled || hba->pm_op_in_progress) {
2034 spin_unlock_irqrestore(hba->host->host_lock, flags);
2035 return;
2036 }
2037
2038 if (queue_resume_work)
2039 queue_work(hba->clk_scaling.workq,
2040 &hba->clk_scaling.resume_work);
2041
2042 if (!hba->clk_scaling.window_start_t) {
2043 hba->clk_scaling.window_start_t = curr_t;
2044 hba->clk_scaling.tot_busy_t = 0;
2045 hba->clk_scaling.is_busy_started = false;
2046 }
2047
2048 if (!hba->clk_scaling.is_busy_started) {
2049 hba->clk_scaling.busy_start_t = curr_t;
2050 hba->clk_scaling.is_busy_started = true;
2051 }
2052 spin_unlock_irqrestore(hba->host->host_lock, flags);
2053 }
2054 EXPORT_SYMBOL_GPL(ufshcd_clk_scaling_start_busy);
2055
ufshcd_clk_scaling_update_busy(struct ufs_hba * hba)2056 void ufshcd_clk_scaling_update_busy(struct ufs_hba *hba)
2057 {
2058 struct ufs_clk_scaling *scaling = &hba->clk_scaling;
2059 unsigned long flags;
2060 bool has_outstanding;
2061
2062 if (!ufshcd_is_clkscaling_supported(hba))
2063 return;
2064
2065 spin_lock_irqsave(hba->host->host_lock, flags);
2066 hba->clk_scaling.active_reqs--;
2067 has_outstanding = hba->outstanding_reqs != 0;
2068 trace_android_vh_ufs_mcq_has_oustanding_reqs(hba, &has_outstanding);
2069 if (!has_outstanding && scaling->is_busy_started) {
2070 scaling->tot_busy_t += ktime_to_us(ktime_sub(ktime_get(),
2071 scaling->busy_start_t));
2072 scaling->busy_start_t = 0;
2073 scaling->is_busy_started = false;
2074 }
2075 spin_unlock_irqrestore(hba->host->host_lock, flags);
2076 }
2077 EXPORT_SYMBOL_GPL(ufshcd_clk_scaling_update_busy);
2078
ufshcd_monitor_opcode2dir(u8 opcode)2079 static inline int ufshcd_monitor_opcode2dir(u8 opcode)
2080 {
2081 if (opcode == READ_6 || opcode == READ_10 || opcode == READ_16)
2082 return READ;
2083 else if (opcode == WRITE_6 || opcode == WRITE_10 || opcode == WRITE_16)
2084 return WRITE;
2085 else
2086 return -EINVAL;
2087 }
2088
ufshcd_should_inform_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2089 static inline bool ufshcd_should_inform_monitor(struct ufs_hba *hba,
2090 struct ufshcd_lrb *lrbp)
2091 {
2092 struct ufs_hba_monitor *m = &hba->monitor;
2093
2094 return (m->enabled && lrbp && lrbp->cmd &&
2095 (!m->chunk_size || m->chunk_size == lrbp->cmd->sdb.length) &&
2096 ktime_before(hba->monitor.enabled_ts, lrbp->issue_time_stamp));
2097 }
2098
ufshcd_start_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2099 static void ufshcd_start_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2100 {
2101 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2102 unsigned long flags;
2103
2104 spin_lock_irqsave(hba->host->host_lock, flags);
2105 if (dir >= 0 && hba->monitor.nr_queued[dir]++ == 0)
2106 hba->monitor.busy_start_ts[dir] = ktime_get();
2107 spin_unlock_irqrestore(hba->host->host_lock, flags);
2108 }
2109
ufshcd_update_monitor(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2110 static void ufshcd_update_monitor(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2111 {
2112 int dir = ufshcd_monitor_opcode2dir(*lrbp->cmd->cmnd);
2113 unsigned long flags;
2114
2115 spin_lock_irqsave(hba->host->host_lock, flags);
2116 if (dir >= 0 && hba->monitor.nr_queued[dir] > 0) {
2117 struct request *req = scsi_cmd_to_rq(lrbp->cmd);
2118 struct ufs_hba_monitor *m = &hba->monitor;
2119 ktime_t now, inc, lat;
2120
2121 now = lrbp->compl_time_stamp;
2122 inc = ktime_sub(now, m->busy_start_ts[dir]);
2123 m->total_busy[dir] = ktime_add(m->total_busy[dir], inc);
2124 m->nr_sec_rw[dir] += blk_rq_sectors(req);
2125
2126 /* Update latencies */
2127 m->nr_req[dir]++;
2128 lat = ktime_sub(now, lrbp->issue_time_stamp);
2129 m->lat_sum[dir] += lat;
2130 if (m->lat_max[dir] < lat || !m->lat_max[dir])
2131 m->lat_max[dir] = lat;
2132 if (m->lat_min[dir] > lat || !m->lat_min[dir])
2133 m->lat_min[dir] = lat;
2134
2135 m->nr_queued[dir]--;
2136 /* Push forward the busy start of monitor */
2137 m->busy_start_ts[dir] = now;
2138 }
2139 spin_unlock_irqrestore(hba->host->host_lock, flags);
2140 }
2141
2142 /**
2143 * ufshcd_send_command - Send SCSI or device management commands
2144 * @hba: per adapter instance
2145 * @task_tag: Task tag of the command
2146 */
2147 static inline
ufshcd_send_command(struct ufs_hba * hba,unsigned int task_tag)2148 void ufshcd_send_command(struct ufs_hba *hba, unsigned int task_tag)
2149 {
2150 struct ufshcd_lrb *lrbp = &hba->lrb[task_tag];
2151 unsigned long flags;
2152
2153 if (ufshcd_use_mcq_hooks(hba)) {
2154 trace_android_vh_ufs_mcq_send_command(hba, task_tag);
2155 return;
2156 }
2157
2158 lrbp->issue_time_stamp = ktime_get();
2159 lrbp->compl_time_stamp = ktime_set(0, 0);
2160 trace_android_vh_ufs_send_command(hba, lrbp);
2161 ufshcd_add_command_trace(hba, task_tag, UFS_CMD_SEND);
2162 ufshcd_clk_scaling_start_busy(hba);
2163 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
2164 ufshcd_start_monitor(hba, lrbp);
2165
2166 spin_lock_irqsave(&hba->outstanding_lock, flags);
2167 if (hba->vops && hba->vops->setup_xfer_req)
2168 hba->vops->setup_xfer_req(hba, task_tag, !!lrbp->cmd);
2169 __set_bit(task_tag, &hba->outstanding_reqs);
2170 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TRANSFER_REQ_DOOR_BELL);
2171 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2172
2173 /* Make sure that doorbell is committed immediately */
2174 wmb();
2175 }
2176
2177 /**
2178 * ufshcd_copy_sense_data - Copy sense data in case of check condition
2179 * @lrbp: pointer to local reference block
2180 */
ufshcd_copy_sense_data(struct ufshcd_lrb * lrbp)2181 static inline void ufshcd_copy_sense_data(struct ufshcd_lrb *lrbp)
2182 {
2183 int len;
2184 if (lrbp->sense_buffer &&
2185 ufshcd_get_rsp_upiu_data_seg_len(lrbp->ucd_rsp_ptr)) {
2186 int len_to_copy;
2187
2188 len = be16_to_cpu(lrbp->ucd_rsp_ptr->sr.sense_data_len);
2189 len_to_copy = min_t(int, UFS_SENSE_SIZE, len);
2190
2191 memcpy(lrbp->sense_buffer, lrbp->ucd_rsp_ptr->sr.sense_data,
2192 len_to_copy);
2193 }
2194 }
2195
2196 /**
2197 * ufshcd_copy_query_response() - Copy the Query Response and the data
2198 * descriptor
2199 * @hba: per adapter instance
2200 * @lrbp: pointer to local reference block
2201 */
2202 static
ufshcd_copy_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2203 int ufshcd_copy_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2204 {
2205 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2206
2207 memcpy(&query_res->upiu_res, &lrbp->ucd_rsp_ptr->qr, QUERY_OSF_SIZE);
2208
2209 /* Get the descriptor */
2210 if (hba->dev_cmd.query.descriptor &&
2211 lrbp->ucd_rsp_ptr->qr.opcode == UPIU_QUERY_OPCODE_READ_DESC) {
2212 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr +
2213 GENERAL_UPIU_REQUEST_SIZE;
2214 u16 resp_len;
2215 u16 buf_len;
2216
2217 /* data segment length */
2218 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
2219 MASK_QUERY_DATA_SEG_LEN;
2220 buf_len = be16_to_cpu(
2221 hba->dev_cmd.query.request.upiu_req.length);
2222 if (likely(buf_len >= resp_len)) {
2223 memcpy(hba->dev_cmd.query.descriptor, descp, resp_len);
2224 } else {
2225 dev_warn(hba->dev,
2226 "%s: rsp size %d is bigger than buffer size %d",
2227 __func__, resp_len, buf_len);
2228 return -EINVAL;
2229 }
2230 }
2231
2232 return 0;
2233 }
2234
2235 /**
2236 * ufshcd_hba_capabilities - Read controller capabilities
2237 * @hba: per adapter instance
2238 *
2239 * Return: 0 on success, negative on error.
2240 */
ufshcd_hba_capabilities(struct ufs_hba * hba)2241 static inline int ufshcd_hba_capabilities(struct ufs_hba *hba)
2242 {
2243 int err = 0;
2244
2245 hba->capabilities = ufshcd_readl(hba, REG_CONTROLLER_CAPABILITIES);
2246
2247 /* nutrs and nutmrs are 0 based values */
2248 hba->nutrs = (hba->capabilities & MASK_TRANSFER_REQUESTS_SLOTS) + 1;
2249 hba->nutmrs =
2250 ((hba->capabilities & MASK_TASK_MANAGEMENT_REQUEST_SLOTS) >> 16) + 1;
2251 hba->reserved_slot = hba->nutrs - 1;
2252
2253 trace_android_vh_ufs_mcq_hba_capabilities(hba, &err);
2254 if (err)
2255 goto out;
2256
2257 /* Read crypto capabilities */
2258 err = ufshcd_hba_init_crypto_capabilities(hba);
2259 if (err)
2260 dev_err(hba->dev, "crypto setup failed\n");
2261 out:
2262 return err;
2263 }
2264
2265 /**
2266 * ufshcd_ready_for_uic_cmd - Check if controller is ready
2267 * to accept UIC commands
2268 * @hba: per adapter instance
2269 * Return true on success, else false
2270 */
ufshcd_ready_for_uic_cmd(struct ufs_hba * hba)2271 static inline bool ufshcd_ready_for_uic_cmd(struct ufs_hba *hba)
2272 {
2273 if (ufshcd_readl(hba, REG_CONTROLLER_STATUS) & UIC_COMMAND_READY)
2274 return true;
2275 else
2276 return false;
2277 }
2278
2279 /**
2280 * ufshcd_get_upmcrs - Get the power mode change request status
2281 * @hba: Pointer to adapter instance
2282 *
2283 * This function gets the UPMCRS field of HCS register
2284 * Returns value of UPMCRS field
2285 */
ufshcd_get_upmcrs(struct ufs_hba * hba)2286 static inline u8 ufshcd_get_upmcrs(struct ufs_hba *hba)
2287 {
2288 return (ufshcd_readl(hba, REG_CONTROLLER_STATUS) >> 8) & 0x7;
2289 }
2290
2291 /**
2292 * ufshcd_dispatch_uic_cmd - Dispatch an UIC command to the Unipro layer
2293 * @hba: per adapter instance
2294 * @uic_cmd: UIC command
2295 */
2296 static inline void
ufshcd_dispatch_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2297 ufshcd_dispatch_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2298 {
2299 lockdep_assert_held(&hba->uic_cmd_mutex);
2300
2301 WARN_ON(hba->active_uic_cmd);
2302
2303 hba->active_uic_cmd = uic_cmd;
2304
2305 /* Write Args */
2306 ufshcd_writel(hba, uic_cmd->argument1, REG_UIC_COMMAND_ARG_1);
2307 ufshcd_writel(hba, uic_cmd->argument2, REG_UIC_COMMAND_ARG_2);
2308 ufshcd_writel(hba, uic_cmd->argument3, REG_UIC_COMMAND_ARG_3);
2309
2310 ufshcd_add_uic_command_trace(hba, uic_cmd, UFS_CMD_SEND);
2311
2312 /* Write UIC Cmd */
2313 ufshcd_writel(hba, uic_cmd->command & COMMAND_OPCODE_MASK,
2314 REG_UIC_COMMAND);
2315 }
2316
2317 /**
2318 * ufshcd_wait_for_uic_cmd - Wait for completion of an UIC command
2319 * @hba: per adapter instance
2320 * @uic_cmd: UIC command
2321 *
2322 * Returns 0 only if success.
2323 */
2324 static int
ufshcd_wait_for_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2325 ufshcd_wait_for_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2326 {
2327 int ret;
2328 unsigned long flags;
2329
2330 lockdep_assert_held(&hba->uic_cmd_mutex);
2331
2332 if (wait_for_completion_timeout(&uic_cmd->done,
2333 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
2334 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2335 } else {
2336 ret = -ETIMEDOUT;
2337 dev_err(hba->dev,
2338 "uic cmd 0x%x with arg3 0x%x completion timeout\n",
2339 uic_cmd->command, uic_cmd->argument3);
2340
2341 if (!uic_cmd->cmd_active) {
2342 dev_err(hba->dev, "%s: UIC cmd has been completed, return the result\n",
2343 __func__);
2344 ret = uic_cmd->argument2 & MASK_UIC_COMMAND_RESULT;
2345 }
2346 }
2347
2348 spin_lock_irqsave(hba->host->host_lock, flags);
2349 hba->active_uic_cmd = NULL;
2350 spin_unlock_irqrestore(hba->host->host_lock, flags);
2351
2352 return ret;
2353 }
2354
2355 /**
2356 * __ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2357 * @hba: per adapter instance
2358 * @uic_cmd: UIC command
2359 * @completion: initialize the completion only if this is set to true
2360 *
2361 * Returns 0 only if success.
2362 */
2363 static int
__ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd,bool completion)2364 __ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd,
2365 bool completion)
2366 {
2367 lockdep_assert_held(&hba->uic_cmd_mutex);
2368
2369 if (!ufshcd_ready_for_uic_cmd(hba)) {
2370 dev_err(hba->dev,
2371 "Controller not ready to accept UIC commands\n");
2372 return -EIO;
2373 }
2374
2375 if (completion)
2376 init_completion(&uic_cmd->done);
2377
2378 uic_cmd->cmd_active = 1;
2379 ufshcd_dispatch_uic_cmd(hba, uic_cmd);
2380
2381 return 0;
2382 }
2383
2384 /**
2385 * ufshcd_send_uic_cmd - Send UIC commands and retrieve the result
2386 * @hba: per adapter instance
2387 * @uic_cmd: UIC command
2388 *
2389 * Returns 0 only if success.
2390 */
ufshcd_send_uic_cmd(struct ufs_hba * hba,struct uic_command * uic_cmd)2391 int ufshcd_send_uic_cmd(struct ufs_hba *hba, struct uic_command *uic_cmd)
2392 {
2393 int ret;
2394
2395 if (hba->quirks & UFSHCD_QUIRK_BROKEN_UIC_CMD)
2396 return 0;
2397
2398 ufshcd_hold(hba, false);
2399 mutex_lock(&hba->uic_cmd_mutex);
2400 ufshcd_add_delay_before_dme_cmd(hba);
2401
2402 ret = __ufshcd_send_uic_cmd(hba, uic_cmd, true);
2403 if (!ret)
2404 ret = ufshcd_wait_for_uic_cmd(hba, uic_cmd);
2405
2406 mutex_unlock(&hba->uic_cmd_mutex);
2407
2408 ufshcd_release(hba);
2409 return ret;
2410 }
2411
2412 /**
2413 * ufshcd_map_sg - Map scatter-gather list to prdt
2414 * @hba: per adapter instance
2415 * @lrbp: pointer to local reference block
2416 *
2417 * Returns 0 in case of success, non-zero value in case of failure
2418 */
ufshcd_map_sg(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2419 static int ufshcd_map_sg(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2420 {
2421 struct ufshcd_sg_entry *prd;
2422 struct scatterlist *sg;
2423 struct scsi_cmnd *cmd;
2424 int sg_segments;
2425 int i;
2426 int err;
2427
2428 cmd = lrbp->cmd;
2429 sg_segments = scsi_dma_map(cmd);
2430 if (sg_segments < 0)
2431 return sg_segments;
2432
2433 if (sg_segments) {
2434
2435 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN)
2436 lrbp->utr_descriptor_ptr->prd_table_length =
2437 cpu_to_le16(sg_segments * hba->sg_entry_size);
2438 else
2439 lrbp->utr_descriptor_ptr->prd_table_length =
2440 cpu_to_le16((u16) (sg_segments));
2441
2442 prd = (struct ufshcd_sg_entry *)lrbp->ucd_prdt_ptr;
2443
2444 scsi_for_each_sg(cmd, sg, sg_segments, i) {
2445 prd->size =
2446 cpu_to_le32(((u32) sg_dma_len(sg))-1);
2447 prd->base_addr =
2448 cpu_to_le32(lower_32_bits(sg->dma_address));
2449 prd->upper_addr =
2450 cpu_to_le32(upper_32_bits(sg->dma_address));
2451 prd->reserved = 0;
2452 prd = (void *)prd + hba->sg_entry_size;
2453 }
2454 } else {
2455 lrbp->utr_descriptor_ptr->prd_table_length = 0;
2456 }
2457
2458 err = 0;
2459 trace_android_vh_ufs_fill_prdt(hba, lrbp, sg_segments, &err);
2460 return err;
2461 }
2462
2463 /**
2464 * ufshcd_enable_intr - enable interrupts
2465 * @hba: per adapter instance
2466 * @intrs: interrupt bits
2467 */
ufshcd_enable_intr(struct ufs_hba * hba,u32 intrs)2468 static void ufshcd_enable_intr(struct ufs_hba *hba, u32 intrs)
2469 {
2470 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2471
2472 if (hba->ufs_version == ufshci_version(1, 0)) {
2473 u32 rw;
2474 rw = set & INTERRUPT_MASK_RW_VER_10;
2475 set = rw | ((set ^ intrs) & intrs);
2476 } else {
2477 set |= intrs;
2478 }
2479
2480 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2481 }
2482
2483 /**
2484 * ufshcd_disable_intr - disable interrupts
2485 * @hba: per adapter instance
2486 * @intrs: interrupt bits
2487 */
ufshcd_disable_intr(struct ufs_hba * hba,u32 intrs)2488 static void ufshcd_disable_intr(struct ufs_hba *hba, u32 intrs)
2489 {
2490 u32 set = ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
2491
2492 if (hba->ufs_version == ufshci_version(1, 0)) {
2493 u32 rw;
2494 rw = (set & INTERRUPT_MASK_RW_VER_10) &
2495 ~(intrs & INTERRUPT_MASK_RW_VER_10);
2496 set = rw | ((set & intrs) & ~INTERRUPT_MASK_RW_VER_10);
2497
2498 } else {
2499 set &= ~intrs;
2500 }
2501
2502 ufshcd_writel(hba, set, REG_INTERRUPT_ENABLE);
2503 }
2504
2505 /**
2506 * ufshcd_prepare_req_desc_hdr() - Fills the requests header
2507 * descriptor according to request
2508 * @lrbp: pointer to local reference block
2509 * @upiu_flags: flags required in the header
2510 * @cmd_dir: requests data direction
2511 */
ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb * lrbp,u8 * upiu_flags,enum dma_data_direction cmd_dir)2512 static void ufshcd_prepare_req_desc_hdr(struct ufshcd_lrb *lrbp,
2513 u8 *upiu_flags, enum dma_data_direction cmd_dir)
2514 {
2515 struct utp_transfer_req_desc *req_desc = lrbp->utr_descriptor_ptr;
2516 u32 data_direction;
2517 u32 dword_0;
2518 u32 dword_1 = 0;
2519 u32 dword_3 = 0;
2520
2521 if (cmd_dir == DMA_FROM_DEVICE) {
2522 data_direction = UTP_DEVICE_TO_HOST;
2523 *upiu_flags = UPIU_CMD_FLAGS_READ;
2524 } else if (cmd_dir == DMA_TO_DEVICE) {
2525 data_direction = UTP_HOST_TO_DEVICE;
2526 *upiu_flags = UPIU_CMD_FLAGS_WRITE;
2527 } else {
2528 data_direction = UTP_NO_DATA_TRANSFER;
2529 *upiu_flags = UPIU_CMD_FLAGS_NONE;
2530 }
2531
2532 dword_0 = data_direction | (lrbp->command_type
2533 << UPIU_COMMAND_TYPE_OFFSET);
2534 if (lrbp->intr_cmd)
2535 dword_0 |= UTP_REQ_DESC_INT_CMD;
2536
2537 /* Prepare crypto related dwords */
2538 ufshcd_prepare_req_desc_hdr_crypto(lrbp, &dword_0, &dword_1, &dword_3);
2539
2540 /* Transfer request descriptor header fields */
2541 req_desc->header.dword_0 = cpu_to_le32(dword_0);
2542 req_desc->header.dword_1 = cpu_to_le32(dword_1);
2543 /*
2544 * assigning invalid value for command status. Controller
2545 * updates OCS on command completion, with the command
2546 * status
2547 */
2548 req_desc->header.dword_2 =
2549 cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
2550 req_desc->header.dword_3 = cpu_to_le32(dword_3);
2551
2552 req_desc->prd_table_length = 0;
2553 }
2554
2555 /**
2556 * ufshcd_prepare_utp_scsi_cmd_upiu() - fills the utp_transfer_req_desc,
2557 * for scsi commands
2558 * @lrbp: local reference block pointer
2559 * @upiu_flags: flags
2560 */
2561 static
ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb * lrbp,u8 upiu_flags)2562 void ufshcd_prepare_utp_scsi_cmd_upiu(struct ufshcd_lrb *lrbp, u8 upiu_flags)
2563 {
2564 struct scsi_cmnd *cmd = lrbp->cmd;
2565 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2566 unsigned short cdb_len;
2567
2568 /* command descriptor fields */
2569 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2570 UPIU_TRANSACTION_COMMAND, upiu_flags,
2571 lrbp->lun, lrbp->task_tag);
2572 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2573 UPIU_COMMAND_SET_TYPE_SCSI, 0, 0, 0);
2574
2575 /* Total EHS length and Data segment length will be zero */
2576 ucd_req_ptr->header.dword_2 = 0;
2577
2578 ucd_req_ptr->sc.exp_data_transfer_len = cpu_to_be32(cmd->sdb.length);
2579
2580 cdb_len = min_t(unsigned short, cmd->cmd_len, UFS_CDB_SIZE);
2581 memset(ucd_req_ptr->sc.cdb, 0, UFS_CDB_SIZE);
2582 memcpy(ucd_req_ptr->sc.cdb, cmd->cmnd, cdb_len);
2583
2584 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2585 }
2586
2587 /**
2588 * ufshcd_prepare_utp_query_req_upiu() - fills the utp_transfer_req_desc,
2589 * for query requsts
2590 * @hba: UFS hba
2591 * @lrbp: local reference block pointer
2592 * @upiu_flags: flags
2593 */
ufshcd_prepare_utp_query_req_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,u8 upiu_flags)2594 static void ufshcd_prepare_utp_query_req_upiu(struct ufs_hba *hba,
2595 struct ufshcd_lrb *lrbp, u8 upiu_flags)
2596 {
2597 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2598 struct ufs_query *query = &hba->dev_cmd.query;
2599 u16 len = be16_to_cpu(query->request.upiu_req.length);
2600
2601 /* Query request header */
2602 ucd_req_ptr->header.dword_0 = UPIU_HEADER_DWORD(
2603 UPIU_TRANSACTION_QUERY_REQ, upiu_flags,
2604 lrbp->lun, lrbp->task_tag);
2605 ucd_req_ptr->header.dword_1 = UPIU_HEADER_DWORD(
2606 0, query->request.query_func, 0, 0);
2607
2608 /* Data segment length only need for WRITE_DESC */
2609 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2610 ucd_req_ptr->header.dword_2 =
2611 UPIU_HEADER_DWORD(0, 0, (len >> 8), (u8)len);
2612 else
2613 ucd_req_ptr->header.dword_2 = 0;
2614
2615 /* Copy the Query Request buffer as is */
2616 memcpy(&ucd_req_ptr->qr, &query->request.upiu_req,
2617 QUERY_OSF_SIZE);
2618
2619 /* Copy the Descriptor */
2620 if (query->request.upiu_req.opcode == UPIU_QUERY_OPCODE_WRITE_DESC)
2621 memcpy(ucd_req_ptr + 1, query->descriptor, len);
2622
2623 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2624 }
2625
ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb * lrbp)2626 static inline void ufshcd_prepare_utp_nop_upiu(struct ufshcd_lrb *lrbp)
2627 {
2628 struct utp_upiu_req *ucd_req_ptr = lrbp->ucd_req_ptr;
2629
2630 memset(ucd_req_ptr, 0, sizeof(struct utp_upiu_req));
2631
2632 /* command descriptor fields */
2633 ucd_req_ptr->header.dword_0 =
2634 UPIU_HEADER_DWORD(
2635 UPIU_TRANSACTION_NOP_OUT, 0, 0, lrbp->task_tag);
2636 /* clear rest of the fields of basic header */
2637 ucd_req_ptr->header.dword_1 = 0;
2638 ucd_req_ptr->header.dword_2 = 0;
2639
2640 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
2641 }
2642
2643 /**
2644 * ufshcd_compose_devman_upiu - UFS Protocol Information Unit(UPIU)
2645 * for Device Management Purposes
2646 * @hba: per adapter instance
2647 * @lrbp: pointer to local reference block
2648 */
ufshcd_compose_devman_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2649 static int ufshcd_compose_devman_upiu(struct ufs_hba *hba,
2650 struct ufshcd_lrb *lrbp)
2651 {
2652 u8 upiu_flags;
2653 int ret = 0;
2654
2655 if (hba->ufs_version <= ufshci_version(1, 1))
2656 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
2657 else
2658 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2659
2660 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
2661 if (hba->dev_cmd.type == DEV_CMD_TYPE_QUERY)
2662 ufshcd_prepare_utp_query_req_upiu(hba, lrbp, upiu_flags);
2663 else if (hba->dev_cmd.type == DEV_CMD_TYPE_NOP)
2664 ufshcd_prepare_utp_nop_upiu(lrbp);
2665 else
2666 ret = -EINVAL;
2667
2668 return ret;
2669 }
2670
2671 /**
2672 * ufshcd_comp_scsi_upiu - UFS Protocol Information Unit(UPIU)
2673 * for SCSI Purposes
2674 * @hba: per adapter instance
2675 * @lrbp: pointer to local reference block
2676 */
ufshcd_comp_scsi_upiu(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2677 static int ufshcd_comp_scsi_upiu(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2678 {
2679 u8 upiu_flags;
2680 int ret = 0;
2681
2682 if (hba->ufs_version <= ufshci_version(1, 1))
2683 lrbp->command_type = UTP_CMD_TYPE_SCSI;
2684 else
2685 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
2686
2687 if (likely(lrbp->cmd)) {
2688 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags,
2689 lrbp->cmd->sc_data_direction);
2690 ufshcd_prepare_utp_scsi_cmd_upiu(lrbp, upiu_flags);
2691 } else {
2692 ret = -EINVAL;
2693 }
2694
2695 return ret;
2696 }
2697
2698 /**
2699 * ufshcd_upiu_wlun_to_scsi_wlun - maps UPIU W-LUN id to SCSI W-LUN ID
2700 * @upiu_wlun_id: UPIU W-LUN id
2701 *
2702 * Returns SCSI W-LUN id
2703 */
ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)2704 static inline u16 ufshcd_upiu_wlun_to_scsi_wlun(u8 upiu_wlun_id)
2705 {
2706 return (upiu_wlun_id & ~UFS_UPIU_WLUN_ID) | SCSI_W_LUN_BASE;
2707 }
2708
is_rpmb_wlun(struct scsi_device * sdev)2709 static inline bool is_rpmb_wlun(struct scsi_device *sdev)
2710 {
2711 return sdev->lun == ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN);
2712 }
2713
is_device_wlun(struct scsi_device * sdev)2714 static inline bool is_device_wlun(struct scsi_device *sdev)
2715 {
2716 return sdev->lun ==
2717 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN);
2718 }
2719
ufshcd_init_lrb(struct ufs_hba * hba,struct ufshcd_lrb * lrb,int i)2720 static void ufshcd_init_lrb(struct ufs_hba *hba, struct ufshcd_lrb *lrb, int i)
2721 {
2722 struct utp_transfer_cmd_desc *cmd_descp = (void *)hba->ucdl_base_addr +
2723 i * sizeof_utp_transfer_cmd_desc(hba);
2724 struct utp_transfer_req_desc *utrdlp = hba->utrdl_base_addr;
2725 dma_addr_t cmd_desc_element_addr = hba->ucdl_dma_addr +
2726 i * sizeof_utp_transfer_cmd_desc(hba);
2727 u16 response_offset = offsetof(struct utp_transfer_cmd_desc,
2728 response_upiu);
2729 u16 prdt_offset = offsetof(struct utp_transfer_cmd_desc, prd_table);
2730
2731 lrb->utr_descriptor_ptr = utrdlp + i;
2732 lrb->utrd_dma_addr = hba->utrdl_dma_addr +
2733 i * sizeof(struct utp_transfer_req_desc);
2734 lrb->ucd_req_ptr = (struct utp_upiu_req *)cmd_descp;
2735 lrb->ucd_req_dma_addr = cmd_desc_element_addr;
2736 lrb->ucd_rsp_ptr = (struct utp_upiu_rsp *)cmd_descp->response_upiu;
2737 lrb->ucd_rsp_dma_addr = cmd_desc_element_addr + response_offset;
2738 lrb->ucd_prdt_ptr = (struct ufshcd_sg_entry *)cmd_descp->prd_table;
2739 lrb->ucd_prdt_dma_addr = cmd_desc_element_addr + prdt_offset;
2740 }
2741
2742 /**
2743 * ufshcd_queuecommand - main entry point for SCSI requests
2744 * @host: SCSI host pointer
2745 * @cmd: command from SCSI Midlayer
2746 *
2747 * Returns 0 for success, non-zero in case of failure
2748 */
ufshcd_queuecommand(struct Scsi_Host * host,struct scsi_cmnd * cmd)2749 static int ufshcd_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *cmd)
2750 {
2751 struct ufs_hba *hba = shost_priv(host);
2752 int tag = scsi_cmd_to_rq(cmd)->tag;
2753 struct ufshcd_lrb *lrbp;
2754 int err = 0;
2755
2756 trace_android_vh_ufs_mcq_map_tag(hba,
2757 (scsi_cmd_to_rq(cmd)->mq_hctx->queue_num), &tag);
2758
2759 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
2760
2761 if (!down_read_trylock(&hba->clk_scaling_lock))
2762 return SCSI_MLQUEUE_HOST_BUSY;
2763
2764 /*
2765 * Allows the UFS error handler to wait for prior ufshcd_queuecommand()
2766 * calls.
2767 */
2768 rcu_read_lock();
2769
2770 switch (hba->ufshcd_state) {
2771 case UFSHCD_STATE_OPERATIONAL:
2772 case UFSHCD_STATE_EH_SCHEDULED_NON_FATAL:
2773 break;
2774 case UFSHCD_STATE_EH_SCHEDULED_FATAL:
2775 /*
2776 * pm_runtime_get_sync() is used at error handling preparation
2777 * stage. If a scsi cmd, e.g. the SSU cmd, is sent from hba's
2778 * PM ops, it can never be finished if we let SCSI layer keep
2779 * retrying it, which gets err handler stuck forever. Neither
2780 * can we let the scsi cmd pass through, because UFS is in bad
2781 * state, the scsi cmd may eventually time out, which will get
2782 * err handler blocked for too long. So, just fail the scsi cmd
2783 * sent from PM ops, err handler can recover PM error anyways.
2784 */
2785 if (hba->pm_op_in_progress) {
2786 hba->force_reset = true;
2787 set_host_byte(cmd, DID_BAD_TARGET);
2788 cmd->scsi_done(cmd);
2789 goto out;
2790 }
2791 fallthrough;
2792 case UFSHCD_STATE_RESET:
2793 err = SCSI_MLQUEUE_HOST_BUSY;
2794 goto out;
2795 case UFSHCD_STATE_ERROR:
2796 set_host_byte(cmd, DID_ERROR);
2797 cmd->scsi_done(cmd);
2798 goto out;
2799 }
2800
2801 hba->req_abort_count = 0;
2802
2803 err = ufshcd_hold(hba, true);
2804 if (err) {
2805 err = SCSI_MLQUEUE_HOST_BUSY;
2806 goto out;
2807 }
2808 WARN_ON(ufshcd_is_clkgating_allowed(hba) &&
2809 (hba->clk_gating.state != CLKS_ON));
2810
2811 lrbp = &hba->lrb[tag];
2812 WARN_ON(lrbp->cmd);
2813 lrbp->cmd = cmd;
2814 lrbp->sense_bufflen = UFS_SENSE_SIZE;
2815 lrbp->sense_buffer = cmd->sense_buffer;
2816 lrbp->task_tag = tag;
2817 lrbp->lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
2818 lrbp->intr_cmd = !ufshcd_is_intr_aggr_allowed(hba) ? true : false;
2819
2820 trace_android_vh_ufs_mcq_set_sqid(hba, scsi_cmd_to_rq(cmd)->mq_hctx->queue_num, lrbp);
2821
2822 ufshcd_prepare_lrbp_crypto(scsi_cmd_to_rq(cmd), lrbp);
2823
2824 trace_android_vh_ufs_prepare_command(hba, scsi_cmd_to_rq(cmd), lrbp,
2825 &err);
2826 if (err) {
2827 lrbp->cmd = NULL;
2828 ufshcd_release(hba);
2829 goto out;
2830 }
2831
2832 lrbp->req_abort_skip = false;
2833
2834 ufshpb_prep(hba, lrbp);
2835
2836 ufshcd_comp_scsi_upiu(hba, lrbp);
2837
2838 err = ufshcd_map_sg(hba, lrbp);
2839 if (err) {
2840 lrbp->cmd = NULL;
2841 ufshcd_release(hba);
2842 goto out;
2843 }
2844
2845 ufshcd_send_command(hba, tag);
2846
2847 out:
2848 rcu_read_unlock();
2849
2850 up_read(&hba->clk_scaling_lock);
2851
2852 if (ufs_trigger_eh()) {
2853 unsigned long flags;
2854
2855 spin_lock_irqsave(hba->host->host_lock, flags);
2856 ufshcd_schedule_eh_work(hba);
2857 spin_unlock_irqrestore(hba->host->host_lock, flags);
2858 }
2859
2860 return err;
2861 }
2862
ufshcd_compose_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,enum dev_cmd_type cmd_type,int tag)2863 static int ufshcd_compose_dev_cmd(struct ufs_hba *hba,
2864 struct ufshcd_lrb *lrbp, enum dev_cmd_type cmd_type, int tag)
2865 {
2866 lrbp->cmd = NULL;
2867 lrbp->sense_bufflen = 0;
2868 lrbp->sense_buffer = NULL;
2869 lrbp->task_tag = tag;
2870 lrbp->lun = 0; /* device management cmd is not specific to any LUN */
2871 lrbp->intr_cmd = true; /* No interrupt aggregation */
2872 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
2873 hba->dev_cmd.type = cmd_type;
2874
2875 return ufshcd_compose_devman_upiu(hba, lrbp);
2876 }
2877
2878 static int
ufshcd_clear_cmd(struct ufs_hba * hba,int tag)2879 ufshcd_clear_cmd(struct ufs_hba *hba, int tag)
2880 {
2881 int err = 0;
2882 unsigned long flags;
2883 u32 mask = 1 << tag;
2884
2885 if (ufshcd_use_mcq_hooks(hba)) {
2886 trace_android_vh_ufs_mcq_clear_cmd(hba, tag, &err);
2887 return err;
2888 }
2889
2890 /* clear outstanding transaction before retry */
2891 spin_lock_irqsave(hba->host->host_lock, flags);
2892 ufshcd_utrl_clear(hba, tag);
2893 spin_unlock_irqrestore(hba->host->host_lock, flags);
2894
2895 /*
2896 * wait for h/w to clear corresponding bit in door-bell.
2897 * max. wait is 1 sec.
2898 */
2899 err = ufshcd_wait_for_register(hba,
2900 REG_UTP_TRANSFER_REQ_DOOR_BELL,
2901 mask, ~mask, 1000, 1000);
2902
2903 return err;
2904 }
2905
2906 static int
ufshcd_check_query_response(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2907 ufshcd_check_query_response(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2908 {
2909 struct ufs_query_res *query_res = &hba->dev_cmd.query.response;
2910
2911 /* Get the UPIU response */
2912 query_res->response = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr) >>
2913 UPIU_RSP_CODE_OFFSET;
2914 return query_res->response;
2915 }
2916
2917 /**
2918 * ufshcd_dev_cmd_completion() - handles device management command responses
2919 * @hba: per adapter instance
2920 * @lrbp: pointer to local reference block
2921 */
2922 static int
ufshcd_dev_cmd_completion(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)2923 ufshcd_dev_cmd_completion(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
2924 {
2925 int resp;
2926 int err = 0;
2927
2928 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
2929 resp = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
2930
2931 switch (resp) {
2932 case UPIU_TRANSACTION_NOP_IN:
2933 if (hba->dev_cmd.type != DEV_CMD_TYPE_NOP) {
2934 err = -EINVAL;
2935 dev_err(hba->dev, "%s: unexpected response %x\n",
2936 __func__, resp);
2937 }
2938 break;
2939 case UPIU_TRANSACTION_QUERY_RSP:
2940 err = ufshcd_check_query_response(hba, lrbp);
2941 if (!err)
2942 err = ufshcd_copy_query_response(hba, lrbp);
2943 break;
2944 case UPIU_TRANSACTION_REJECT_UPIU:
2945 /* TODO: handle Reject UPIU Response */
2946 err = -EPERM;
2947 dev_err(hba->dev, "%s: Reject UPIU not fully implemented\n",
2948 __func__);
2949 break;
2950 default:
2951 err = -EINVAL;
2952 dev_err(hba->dev, "%s: Invalid device management cmd response: %x\n",
2953 __func__, resp);
2954 break;
2955 }
2956
2957 return err;
2958 }
2959
ufshcd_wait_for_dev_cmd(struct ufs_hba * hba,struct ufshcd_lrb * lrbp,int max_timeout)2960 static int ufshcd_wait_for_dev_cmd(struct ufs_hba *hba,
2961 struct ufshcd_lrb *lrbp, int max_timeout)
2962 {
2963 int err = 0;
2964 unsigned long time_left;
2965 unsigned long flags;
2966 unsigned long *outstanding_reqs;
2967
2968 time_left = wait_for_completion_timeout(hba->dev_cmd.complete,
2969 msecs_to_jiffies(max_timeout));
2970
2971 spin_lock_irqsave(hba->host->host_lock, flags);
2972 hba->dev_cmd.complete = NULL;
2973 if (likely(time_left)) {
2974 err = ufshcd_get_tr_ocs(lrbp);
2975 if (!err)
2976 err = ufshcd_dev_cmd_completion(hba, lrbp);
2977 }
2978 spin_unlock_irqrestore(hba->host->host_lock, flags);
2979
2980 if (!time_left) {
2981 err = -ETIMEDOUT;
2982 dev_dbg(hba->dev, "%s: dev_cmd request timedout, tag %d\n",
2983 __func__, lrbp->task_tag);
2984 if (!ufshcd_clear_cmd(hba, lrbp->task_tag))
2985 /* successfully cleared the command, retry if needed */
2986 err = -EAGAIN;
2987 /*
2988 * in case of an error, after clearing the doorbell,
2989 * we also need to clear the outstanding_request
2990 * field in hba
2991 */
2992 spin_lock_irqsave(&hba->outstanding_lock, flags);
2993 outstanding_reqs = &hba->outstanding_reqs;
2994 trace_android_vh_ufs_mcq_get_outstanding_reqs(hba,
2995 &outstanding_reqs, NULL);
2996 __clear_bit(lrbp->task_tag, outstanding_reqs);
2997 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
2998 }
2999
3000 return err;
3001 }
3002
3003 /**
3004 * ufshcd_exec_dev_cmd - API for sending device management requests
3005 * @hba: UFS hba
3006 * @cmd_type: specifies the type (NOP, Query...)
3007 * @timeout: timeout in milliseconds
3008 *
3009 * NOTE: Since there is only one available tag for device management commands,
3010 * it is expected you hold the hba->dev_cmd.lock mutex.
3011 */
ufshcd_exec_dev_cmd(struct ufs_hba * hba,enum dev_cmd_type cmd_type,int timeout)3012 static int ufshcd_exec_dev_cmd(struct ufs_hba *hba,
3013 enum dev_cmd_type cmd_type, int timeout)
3014 {
3015 DECLARE_COMPLETION_ONSTACK(wait);
3016 const u32 tag = hba->reserved_slot;
3017 struct ufshcd_lrb *lrbp;
3018 int err;
3019
3020 /* Protects use of hba->reserved_slot. */
3021 lockdep_assert_held(&hba->dev_cmd.lock);
3022
3023 down_read(&hba->clk_scaling_lock);
3024
3025 lrbp = &hba->lrb[tag];
3026 WARN_ON(lrbp->cmd);
3027 err = ufshcd_compose_dev_cmd(hba, lrbp, cmd_type, tag);
3028 if (unlikely(err))
3029 goto out;
3030
3031 hba->dev_cmd.complete = &wait;
3032
3033 trace_android_vh_ufs_mcq_set_sqid(hba, 0, lrbp);
3034
3035 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
3036
3037 ufshcd_send_command(hba, tag);
3038 err = ufshcd_wait_for_dev_cmd(hba, lrbp, timeout);
3039 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
3040 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
3041
3042 out:
3043 up_read(&hba->clk_scaling_lock);
3044 return err;
3045 }
3046
3047 /**
3048 * ufshcd_init_query() - init the query response and request parameters
3049 * @hba: per-adapter instance
3050 * @request: address of the request pointer to be initialized
3051 * @response: address of the response pointer to be initialized
3052 * @opcode: operation to perform
3053 * @idn: flag idn to access
3054 * @index: LU number to access
3055 * @selector: query/flag/descriptor further identification
3056 */
ufshcd_init_query(struct ufs_hba * hba,struct ufs_query_req ** request,struct ufs_query_res ** response,enum query_opcode opcode,u8 idn,u8 index,u8 selector)3057 static inline void ufshcd_init_query(struct ufs_hba *hba,
3058 struct ufs_query_req **request, struct ufs_query_res **response,
3059 enum query_opcode opcode, u8 idn, u8 index, u8 selector)
3060 {
3061 *request = &hba->dev_cmd.query.request;
3062 *response = &hba->dev_cmd.query.response;
3063 memset(*request, 0, sizeof(struct ufs_query_req));
3064 memset(*response, 0, sizeof(struct ufs_query_res));
3065 (*request)->upiu_req.opcode = opcode;
3066 (*request)->upiu_req.idn = idn;
3067 (*request)->upiu_req.index = index;
3068 (*request)->upiu_req.selector = selector;
3069 }
3070
ufshcd_query_flag_retry(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3071 int ufshcd_query_flag_retry(struct ufs_hba *hba,
3072 enum query_opcode opcode, enum flag_idn idn, u8 index, bool *flag_res)
3073 {
3074 int ret;
3075 int retries;
3076
3077 for (retries = 0; retries < QUERY_REQ_RETRIES; retries++) {
3078 ret = ufshcd_query_flag(hba, opcode, idn, index, flag_res);
3079 if (ret)
3080 dev_dbg(hba->dev,
3081 "%s: failed with error %d, retries %d\n",
3082 __func__, ret, retries);
3083 else
3084 break;
3085 }
3086
3087 if (ret)
3088 dev_err(hba->dev,
3089 "%s: query attribute, opcode %d, idn %d, failed with error %d after %d retires\n",
3090 __func__, opcode, idn, ret, retries);
3091 return ret;
3092 }
3093 EXPORT_SYMBOL_GPL(ufshcd_query_flag_retry);
3094
3095 /**
3096 * ufshcd_query_flag() - API function for sending flag query requests
3097 * @hba: per-adapter instance
3098 * @opcode: flag query to perform
3099 * @idn: flag idn to access
3100 * @index: flag index to access
3101 * @flag_res: the flag value after the query request completes
3102 *
3103 * Returns 0 for success, non-zero in case of failure
3104 */
ufshcd_query_flag(struct ufs_hba * hba,enum query_opcode opcode,enum flag_idn idn,u8 index,bool * flag_res)3105 int ufshcd_query_flag(struct ufs_hba *hba, enum query_opcode opcode,
3106 enum flag_idn idn, u8 index, bool *flag_res)
3107 {
3108 struct ufs_query_req *request = NULL;
3109 struct ufs_query_res *response = NULL;
3110 int err, selector = 0;
3111 int timeout = QUERY_REQ_TIMEOUT;
3112
3113 BUG_ON(!hba);
3114
3115 ufshcd_hold(hba, false);
3116 mutex_lock(&hba->dev_cmd.lock);
3117 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3118 selector);
3119
3120 switch (opcode) {
3121 case UPIU_QUERY_OPCODE_SET_FLAG:
3122 case UPIU_QUERY_OPCODE_CLEAR_FLAG:
3123 case UPIU_QUERY_OPCODE_TOGGLE_FLAG:
3124 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3125 break;
3126 case UPIU_QUERY_OPCODE_READ_FLAG:
3127 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3128 if (!flag_res) {
3129 /* No dummy reads */
3130 dev_err(hba->dev, "%s: Invalid argument for read request\n",
3131 __func__);
3132 err = -EINVAL;
3133 goto out_unlock;
3134 }
3135 break;
3136 default:
3137 dev_err(hba->dev,
3138 "%s: Expected query flag opcode but got = %d\n",
3139 __func__, opcode);
3140 err = -EINVAL;
3141 goto out_unlock;
3142 }
3143
3144 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, timeout);
3145
3146 if (err) {
3147 dev_err(hba->dev,
3148 "%s: Sending flag query for idn %d failed, err = %d\n",
3149 __func__, idn, err);
3150 goto out_unlock;
3151 }
3152
3153 if (flag_res)
3154 *flag_res = (be32_to_cpu(response->upiu_res.value) &
3155 MASK_QUERY_UPIU_FLAG_LOC) & 0x1;
3156
3157 out_unlock:
3158 mutex_unlock(&hba->dev_cmd.lock);
3159 ufshcd_release(hba);
3160 return err;
3161 }
3162 EXPORT_SYMBOL_GPL(ufshcd_query_flag);
3163
3164 /**
3165 * ufshcd_query_attr - API function for sending attribute requests
3166 * @hba: per-adapter instance
3167 * @opcode: attribute opcode
3168 * @idn: attribute idn to access
3169 * @index: index field
3170 * @selector: selector field
3171 * @attr_val: the attribute value after the query request completes
3172 *
3173 * Returns 0 for success, non-zero in case of failure
3174 */
ufshcd_query_attr(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3175 int ufshcd_query_attr(struct ufs_hba *hba, enum query_opcode opcode,
3176 enum attr_idn idn, u8 index, u8 selector, u32 *attr_val)
3177 {
3178 struct ufs_query_req *request = NULL;
3179 struct ufs_query_res *response = NULL;
3180 int err;
3181
3182 BUG_ON(!hba);
3183
3184 if (!attr_val) {
3185 dev_err(hba->dev, "%s: attribute value required for opcode 0x%x\n",
3186 __func__, opcode);
3187 return -EINVAL;
3188 }
3189
3190 ufshcd_hold(hba, false);
3191
3192 mutex_lock(&hba->dev_cmd.lock);
3193 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3194 selector);
3195
3196 switch (opcode) {
3197 case UPIU_QUERY_OPCODE_WRITE_ATTR:
3198 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3199 request->upiu_req.value = cpu_to_be32(*attr_val);
3200 break;
3201 case UPIU_QUERY_OPCODE_READ_ATTR:
3202 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3203 break;
3204 default:
3205 dev_err(hba->dev, "%s: Expected query attr opcode but got = 0x%.2x\n",
3206 __func__, opcode);
3207 err = -EINVAL;
3208 goto out_unlock;
3209 }
3210
3211 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3212
3213 if (err) {
3214 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3215 __func__, opcode, idn, index, err);
3216 goto out_unlock;
3217 }
3218
3219 *attr_val = be32_to_cpu(response->upiu_res.value);
3220
3221 out_unlock:
3222 mutex_unlock(&hba->dev_cmd.lock);
3223 ufshcd_release(hba);
3224 return err;
3225 }
3226 EXPORT_SYMBOL_GPL(ufshcd_query_attr);
3227
3228 /**
3229 * ufshcd_query_attr_retry() - API function for sending query
3230 * attribute with retries
3231 * @hba: per-adapter instance
3232 * @opcode: attribute opcode
3233 * @idn: attribute idn to access
3234 * @index: index field
3235 * @selector: selector field
3236 * @attr_val: the attribute value after the query request
3237 * completes
3238 *
3239 * Returns 0 for success, non-zero in case of failure
3240 */
ufshcd_query_attr_retry(struct ufs_hba * hba,enum query_opcode opcode,enum attr_idn idn,u8 index,u8 selector,u32 * attr_val)3241 int ufshcd_query_attr_retry(struct ufs_hba *hba,
3242 enum query_opcode opcode, enum attr_idn idn, u8 index, u8 selector,
3243 u32 *attr_val)
3244 {
3245 int ret = 0;
3246 u32 retries;
3247
3248 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3249 ret = ufshcd_query_attr(hba, opcode, idn, index,
3250 selector, attr_val);
3251 if (ret)
3252 dev_dbg(hba->dev, "%s: failed with error %d, retries %d\n",
3253 __func__, ret, retries);
3254 else
3255 break;
3256 }
3257
3258 if (ret)
3259 dev_err(hba->dev,
3260 "%s: query attribute, idn %d, failed with error %d after %d retires\n",
3261 __func__, idn, ret, QUERY_REQ_RETRIES);
3262 return ret;
3263 }
3264 EXPORT_SYMBOL_GPL(ufshcd_query_attr_retry);
3265
__ufshcd_query_descriptor(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3266 static int __ufshcd_query_descriptor(struct ufs_hba *hba,
3267 enum query_opcode opcode, enum desc_idn idn, u8 index,
3268 u8 selector, u8 *desc_buf, int *buf_len)
3269 {
3270 struct ufs_query_req *request = NULL;
3271 struct ufs_query_res *response = NULL;
3272 int err;
3273
3274 BUG_ON(!hba);
3275
3276 if (!desc_buf) {
3277 dev_err(hba->dev, "%s: descriptor buffer required for opcode 0x%x\n",
3278 __func__, opcode);
3279 return -EINVAL;
3280 }
3281
3282 if (*buf_len < QUERY_DESC_MIN_SIZE || *buf_len > QUERY_DESC_MAX_SIZE) {
3283 dev_err(hba->dev, "%s: descriptor buffer size (%d) is out of range\n",
3284 __func__, *buf_len);
3285 return -EINVAL;
3286 }
3287
3288 ufshcd_hold(hba, false);
3289
3290 mutex_lock(&hba->dev_cmd.lock);
3291 ufshcd_init_query(hba, &request, &response, opcode, idn, index,
3292 selector);
3293 hba->dev_cmd.query.descriptor = desc_buf;
3294 request->upiu_req.length = cpu_to_be16(*buf_len);
3295
3296 switch (opcode) {
3297 case UPIU_QUERY_OPCODE_WRITE_DESC:
3298 request->query_func = UPIU_QUERY_FUNC_STANDARD_WRITE_REQUEST;
3299 break;
3300 case UPIU_QUERY_OPCODE_READ_DESC:
3301 request->query_func = UPIU_QUERY_FUNC_STANDARD_READ_REQUEST;
3302 break;
3303 default:
3304 dev_err(hba->dev,
3305 "%s: Expected query descriptor opcode but got = 0x%.2x\n",
3306 __func__, opcode);
3307 err = -EINVAL;
3308 goto out_unlock;
3309 }
3310
3311 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_QUERY, QUERY_REQ_TIMEOUT);
3312
3313 if (err) {
3314 dev_err(hba->dev, "%s: opcode 0x%.2x for idn %d failed, index %d, err = %d\n",
3315 __func__, opcode, idn, index, err);
3316 goto out_unlock;
3317 }
3318
3319 *buf_len = be16_to_cpu(response->upiu_res.length);
3320
3321 out_unlock:
3322 hba->dev_cmd.query.descriptor = NULL;
3323 mutex_unlock(&hba->dev_cmd.lock);
3324 ufshcd_release(hba);
3325 return err;
3326 }
3327
3328 /**
3329 * ufshcd_query_descriptor_retry - API function for sending descriptor requests
3330 * @hba: per-adapter instance
3331 * @opcode: attribute opcode
3332 * @idn: attribute idn to access
3333 * @index: index field
3334 * @selector: selector field
3335 * @desc_buf: the buffer that contains the descriptor
3336 * @buf_len: length parameter passed to the device
3337 *
3338 * Returns 0 for success, non-zero in case of failure.
3339 * The buf_len parameter will contain, on return, the length parameter
3340 * received on the response.
3341 */
ufshcd_query_descriptor_retry(struct ufs_hba * hba,enum query_opcode opcode,enum desc_idn idn,u8 index,u8 selector,u8 * desc_buf,int * buf_len)3342 int ufshcd_query_descriptor_retry(struct ufs_hba *hba,
3343 enum query_opcode opcode,
3344 enum desc_idn idn, u8 index,
3345 u8 selector,
3346 u8 *desc_buf, int *buf_len)
3347 {
3348 int err;
3349 int retries;
3350
3351 for (retries = QUERY_REQ_RETRIES; retries > 0; retries--) {
3352 err = __ufshcd_query_descriptor(hba, opcode, idn, index,
3353 selector, desc_buf, buf_len);
3354 if (!err || err == -EINVAL)
3355 break;
3356 }
3357
3358 return err;
3359 }
3360 EXPORT_SYMBOL_GPL(ufshcd_query_descriptor_retry);
3361
3362 /**
3363 * ufshcd_map_desc_id_to_length - map descriptor IDN to its length
3364 * @hba: Pointer to adapter instance
3365 * @desc_id: descriptor idn value
3366 * @desc_len: mapped desc length (out)
3367 */
ufshcd_map_desc_id_to_length(struct ufs_hba * hba,enum desc_idn desc_id,int * desc_len)3368 void ufshcd_map_desc_id_to_length(struct ufs_hba *hba, enum desc_idn desc_id,
3369 int *desc_len)
3370 {
3371 if (desc_id >= QUERY_DESC_IDN_MAX || desc_id == QUERY_DESC_IDN_RFU_0 ||
3372 desc_id == QUERY_DESC_IDN_RFU_1)
3373 *desc_len = 0;
3374 else
3375 *desc_len = hba->desc_size[desc_id];
3376 }
3377 EXPORT_SYMBOL(ufshcd_map_desc_id_to_length);
3378
ufshcd_update_desc_length(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,unsigned char desc_len)3379 static void ufshcd_update_desc_length(struct ufs_hba *hba,
3380 enum desc_idn desc_id, int desc_index,
3381 unsigned char desc_len)
3382 {
3383 if (hba->desc_size[desc_id] == QUERY_DESC_MAX_SIZE &&
3384 desc_id != QUERY_DESC_IDN_STRING && desc_index != UFS_RPMB_UNIT)
3385 /* For UFS 3.1, the normal unit descriptor is 10 bytes larger
3386 * than the RPMB unit, however, both descriptors share the same
3387 * desc_idn, to cover both unit descriptors with one length, we
3388 * choose the normal unit descriptor length by desc_index.
3389 */
3390 hba->desc_size[desc_id] = desc_len;
3391 }
3392
3393 /**
3394 * ufshcd_read_desc_param - read the specified descriptor parameter
3395 * @hba: Pointer to adapter instance
3396 * @desc_id: descriptor idn value
3397 * @desc_index: descriptor index
3398 * @param_offset: offset of the parameter to read
3399 * @param_read_buf: pointer to buffer where parameter would be read
3400 * @param_size: sizeof(param_read_buf)
3401 *
3402 * Return 0 in case of success, non-zero otherwise
3403 */
ufshcd_read_desc_param(struct ufs_hba * hba,enum desc_idn desc_id,int desc_index,u8 param_offset,u8 * param_read_buf,u8 param_size)3404 int ufshcd_read_desc_param(struct ufs_hba *hba,
3405 enum desc_idn desc_id,
3406 int desc_index,
3407 u8 param_offset,
3408 u8 *param_read_buf,
3409 u8 param_size)
3410 {
3411 int ret;
3412 u8 *desc_buf;
3413 int buff_len;
3414 bool is_kmalloc = true;
3415
3416 /* Safety check */
3417 if (desc_id >= QUERY_DESC_IDN_MAX || !param_size)
3418 return -EINVAL;
3419
3420 /* Get the length of descriptor */
3421 ufshcd_map_desc_id_to_length(hba, desc_id, &buff_len);
3422 if (!buff_len) {
3423 dev_err(hba->dev, "%s: Failed to get desc length\n", __func__);
3424 return -EINVAL;
3425 }
3426
3427 if (param_offset >= buff_len) {
3428 dev_err(hba->dev, "%s: Invalid offset 0x%x in descriptor IDN 0x%x, length 0x%x\n",
3429 __func__, param_offset, desc_id, buff_len);
3430 return -EINVAL;
3431 }
3432
3433 /* Check whether we need temp memory */
3434 if (param_offset != 0 || param_size < buff_len) {
3435 desc_buf = kzalloc(buff_len, GFP_KERNEL);
3436 if (!desc_buf)
3437 return -ENOMEM;
3438 } else {
3439 desc_buf = param_read_buf;
3440 is_kmalloc = false;
3441 }
3442
3443 /* Request for full descriptor */
3444 ret = ufshcd_query_descriptor_retry(hba, UPIU_QUERY_OPCODE_READ_DESC,
3445 desc_id, desc_index, 0,
3446 desc_buf, &buff_len);
3447
3448 if (ret) {
3449 dev_err(hba->dev, "%s: Failed reading descriptor. desc_id %d, desc_index %d, param_offset %d, ret %d\n",
3450 __func__, desc_id, desc_index, param_offset, ret);
3451 goto out;
3452 }
3453
3454 /* Sanity check */
3455 if (desc_buf[QUERY_DESC_DESC_TYPE_OFFSET] != desc_id) {
3456 dev_err(hba->dev, "%s: invalid desc_id %d in descriptor header\n",
3457 __func__, desc_buf[QUERY_DESC_DESC_TYPE_OFFSET]);
3458 ret = -EINVAL;
3459 goto out;
3460 }
3461
3462 /* Update descriptor length */
3463 buff_len = desc_buf[QUERY_DESC_LENGTH_OFFSET];
3464 ufshcd_update_desc_length(hba, desc_id, desc_index, buff_len);
3465
3466 if (is_kmalloc) {
3467 /* Make sure we don't copy more data than available */
3468 if (param_offset >= buff_len)
3469 ret = -EINVAL;
3470 else
3471 memcpy(param_read_buf, &desc_buf[param_offset],
3472 min_t(u32, param_size, buff_len - param_offset));
3473 }
3474 out:
3475 if (is_kmalloc)
3476 kfree(desc_buf);
3477 return ret;
3478 }
3479 EXPORT_SYMBOL_GPL(ufshcd_read_desc_param);
3480
3481 /**
3482 * struct uc_string_id - unicode string
3483 *
3484 * @len: size of this descriptor inclusive
3485 * @type: descriptor type
3486 * @uc: unicode string character
3487 */
3488 struct uc_string_id {
3489 u8 len;
3490 u8 type;
3491 wchar_t uc[];
3492 } __packed;
3493
3494 /* replace non-printable or non-ASCII characters with spaces */
ufshcd_remove_non_printable(u8 ch)3495 static inline char ufshcd_remove_non_printable(u8 ch)
3496 {
3497 return (ch >= 0x20 && ch <= 0x7e) ? ch : ' ';
3498 }
3499
3500 /**
3501 * ufshcd_read_string_desc - read string descriptor
3502 * @hba: pointer to adapter instance
3503 * @desc_index: descriptor index
3504 * @buf: pointer to buffer where descriptor would be read,
3505 * the caller should free the memory.
3506 * @ascii: if true convert from unicode to ascii characters
3507 * null terminated string.
3508 *
3509 * Return:
3510 * * string size on success.
3511 * * -ENOMEM: on allocation failure
3512 * * -EINVAL: on a wrong parameter
3513 */
ufshcd_read_string_desc(struct ufs_hba * hba,u8 desc_index,u8 ** buf,bool ascii)3514 int ufshcd_read_string_desc(struct ufs_hba *hba, u8 desc_index,
3515 u8 **buf, bool ascii)
3516 {
3517 struct uc_string_id *uc_str;
3518 u8 *str;
3519 int ret;
3520
3521 if (!buf)
3522 return -EINVAL;
3523
3524 uc_str = kzalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
3525 if (!uc_str)
3526 return -ENOMEM;
3527
3528 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_STRING, desc_index, 0,
3529 (u8 *)uc_str, QUERY_DESC_MAX_SIZE);
3530 if (ret < 0) {
3531 dev_err(hba->dev, "Reading String Desc failed after %d retries. err = %d\n",
3532 QUERY_REQ_RETRIES, ret);
3533 str = NULL;
3534 goto out;
3535 }
3536
3537 if (uc_str->len <= QUERY_DESC_HDR_SIZE) {
3538 dev_dbg(hba->dev, "String Desc is of zero length\n");
3539 str = NULL;
3540 ret = 0;
3541 goto out;
3542 }
3543
3544 if (ascii) {
3545 ssize_t ascii_len;
3546 int i;
3547 /* remove header and divide by 2 to move from UTF16 to UTF8 */
3548 ascii_len = (uc_str->len - QUERY_DESC_HDR_SIZE) / 2 + 1;
3549 str = kzalloc(ascii_len, GFP_KERNEL);
3550 if (!str) {
3551 ret = -ENOMEM;
3552 goto out;
3553 }
3554
3555 /*
3556 * the descriptor contains string in UTF16 format
3557 * we need to convert to utf-8 so it can be displayed
3558 */
3559 ret = utf16s_to_utf8s(uc_str->uc,
3560 uc_str->len - QUERY_DESC_HDR_SIZE,
3561 UTF16_BIG_ENDIAN, str, ascii_len - 1);
3562
3563 /* replace non-printable or non-ASCII characters with spaces */
3564 for (i = 0; i < ret; i++)
3565 str[i] = ufshcd_remove_non_printable(str[i]);
3566
3567 str[ret++] = '\0';
3568
3569 } else {
3570 str = kmemdup(uc_str, uc_str->len, GFP_KERNEL);
3571 if (!str) {
3572 ret = -ENOMEM;
3573 goto out;
3574 }
3575 ret = uc_str->len;
3576 }
3577 out:
3578 *buf = str;
3579 kfree(uc_str);
3580 return ret;
3581 }
3582
3583 /**
3584 * ufshcd_read_unit_desc_param - read the specified unit descriptor parameter
3585 * @hba: Pointer to adapter instance
3586 * @lun: lun id
3587 * @param_offset: offset of the parameter to read
3588 * @param_read_buf: pointer to buffer where parameter would be read
3589 * @param_size: sizeof(param_read_buf)
3590 *
3591 * Return 0 in case of success, non-zero otherwise
3592 */
ufshcd_read_unit_desc_param(struct ufs_hba * hba,int lun,enum unit_desc_param param_offset,u8 * param_read_buf,u32 param_size)3593 static inline int ufshcd_read_unit_desc_param(struct ufs_hba *hba,
3594 int lun,
3595 enum unit_desc_param param_offset,
3596 u8 *param_read_buf,
3597 u32 param_size)
3598 {
3599 /*
3600 * Unit descriptors are only available for general purpose LUs (LUN id
3601 * from 0 to 7) and RPMB Well known LU.
3602 */
3603 if (!ufs_is_valid_unit_desc_lun(&hba->dev_info, lun, param_offset))
3604 return -EOPNOTSUPP;
3605
3606 return ufshcd_read_desc_param(hba, QUERY_DESC_IDN_UNIT, lun,
3607 param_offset, param_read_buf, param_size);
3608 }
3609
ufshcd_get_ref_clk_gating_wait(struct ufs_hba * hba)3610 static int ufshcd_get_ref_clk_gating_wait(struct ufs_hba *hba)
3611 {
3612 int err = 0;
3613 u32 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3614
3615 if (hba->dev_info.wspecversion >= 0x300) {
3616 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
3617 QUERY_ATTR_IDN_REF_CLK_GATING_WAIT_TIME, 0, 0,
3618 &gating_wait);
3619 if (err)
3620 dev_err(hba->dev, "Failed reading bRefClkGatingWait. err = %d, use default %uus\n",
3621 err, gating_wait);
3622
3623 if (gating_wait == 0) {
3624 gating_wait = UFSHCD_REF_CLK_GATING_WAIT_US;
3625 dev_err(hba->dev, "Undefined ref clk gating wait time, use default %uus\n",
3626 gating_wait);
3627 }
3628
3629 hba->dev_info.clk_gating_wait_us = gating_wait;
3630 }
3631
3632 return err;
3633 }
3634
3635 /**
3636 * ufshcd_memory_alloc - allocate memory for host memory space data structures
3637 * @hba: per adapter instance
3638 *
3639 * 1. Allocate DMA memory for Command Descriptor array
3640 * Each command descriptor consist of Command UPIU, Response UPIU and PRDT
3641 * 2. Allocate DMA memory for UTP Transfer Request Descriptor List (UTRDL).
3642 * 3. Allocate DMA memory for UTP Task Management Request Descriptor List
3643 * (UTMRDL)
3644 * 4. Allocate memory for local reference block(lrb).
3645 *
3646 * Returns 0 for success, non-zero in case of failure
3647 */
ufshcd_memory_alloc(struct ufs_hba * hba)3648 static int ufshcd_memory_alloc(struct ufs_hba *hba)
3649 {
3650 size_t utmrdl_size, utrdl_size, ucdl_size;
3651 int pool_size = hba->nutrs;
3652
3653 trace_android_vh_ufs_mcq_max_tag(hba, &pool_size);
3654
3655 /* Allocate memory for UTP command descriptors */
3656 ucdl_size = (sizeof_utp_transfer_cmd_desc(hba) * pool_size);
3657 hba->ucdl_base_addr = dmam_alloc_coherent(hba->dev,
3658 ucdl_size,
3659 &hba->ucdl_dma_addr,
3660 GFP_KERNEL);
3661
3662 /*
3663 * UFSHCI requires UTP command descriptor to be 128 byte aligned.
3664 * make sure hba->ucdl_dma_addr is aligned to PAGE_SIZE
3665 * if hba->ucdl_dma_addr is aligned to PAGE_SIZE, then it will
3666 * be aligned to 128 bytes as well
3667 */
3668 if (!hba->ucdl_base_addr ||
3669 WARN_ON(hba->ucdl_dma_addr & (PAGE_SIZE - 1))) {
3670 dev_err(hba->dev,
3671 "Command Descriptor Memory allocation failed\n");
3672 goto out;
3673 }
3674
3675 /*
3676 * Allocate memory for UTP Transfer descriptors
3677 * UFSHCI requires 1024 byte alignment of UTRD
3678 */
3679 utrdl_size = (sizeof(struct utp_transfer_req_desc) * pool_size);
3680 hba->utrdl_base_addr = dmam_alloc_coherent(hba->dev,
3681 utrdl_size,
3682 &hba->utrdl_dma_addr,
3683 GFP_KERNEL);
3684 if (!hba->utrdl_base_addr ||
3685 WARN_ON(hba->utrdl_dma_addr & (PAGE_SIZE - 1))) {
3686 dev_err(hba->dev,
3687 "Transfer Descriptor Memory allocation failed\n");
3688 goto out;
3689 }
3690
3691 /*
3692 * Allocate memory for UTP Task Management descriptors
3693 * UFSHCI requires 1024 byte alignment of UTMRD
3694 */
3695 utmrdl_size = sizeof(struct utp_task_req_desc) * hba->nutmrs;
3696 hba->utmrdl_base_addr = dmam_alloc_coherent(hba->dev,
3697 utmrdl_size,
3698 &hba->utmrdl_dma_addr,
3699 GFP_KERNEL);
3700 if (!hba->utmrdl_base_addr ||
3701 WARN_ON(hba->utmrdl_dma_addr & (PAGE_SIZE - 1))) {
3702 dev_err(hba->dev,
3703 "Task Management Descriptor Memory allocation failed\n");
3704 goto out;
3705 }
3706
3707 /* Allocate memory for local reference block */
3708 hba->lrb = devm_kcalloc(hba->dev,
3709 pool_size, sizeof(struct ufshcd_lrb),
3710 GFP_KERNEL);
3711 if (!hba->lrb) {
3712 dev_err(hba->dev, "LRB Memory allocation failed\n");
3713 goto out;
3714 }
3715 return 0;
3716 out:
3717 return -ENOMEM;
3718 }
3719
3720 /**
3721 * ufshcd_host_memory_configure - configure local reference block with
3722 * memory offsets
3723 * @hba: per adapter instance
3724 *
3725 * Configure Host memory space
3726 * 1. Update Corresponding UTRD.UCDBA and UTRD.UCDBAU with UCD DMA
3727 * address.
3728 * 2. Update each UTRD with Response UPIU offset, Response UPIU length
3729 * and PRDT offset.
3730 * 3. Save the corresponding addresses of UTRD, UCD.CMD, UCD.RSP and UCD.PRDT
3731 * into local reference block.
3732 */
ufshcd_host_memory_configure(struct ufs_hba * hba)3733 static void ufshcd_host_memory_configure(struct ufs_hba *hba)
3734 {
3735 struct utp_transfer_req_desc *utrdlp;
3736 dma_addr_t cmd_desc_dma_addr;
3737 dma_addr_t cmd_desc_element_addr;
3738 u16 response_offset;
3739 u16 prdt_offset;
3740 int cmd_desc_size;
3741 int i;
3742 int pool_size = hba->nutrs;
3743
3744 trace_android_vh_ufs_mcq_max_tag(hba, &pool_size);
3745
3746 utrdlp = hba->utrdl_base_addr;
3747
3748 response_offset =
3749 offsetof(struct utp_transfer_cmd_desc, response_upiu);
3750 prdt_offset =
3751 offsetof(struct utp_transfer_cmd_desc, prd_table);
3752
3753 cmd_desc_size = sizeof_utp_transfer_cmd_desc(hba);
3754 cmd_desc_dma_addr = hba->ucdl_dma_addr;
3755
3756 for (i = 0; i < pool_size; i++) {
3757 /* Configure UTRD with command descriptor base address */
3758 cmd_desc_element_addr =
3759 (cmd_desc_dma_addr + (cmd_desc_size * i));
3760 utrdlp[i].command_desc_base_addr_lo =
3761 cpu_to_le32(lower_32_bits(cmd_desc_element_addr));
3762 utrdlp[i].command_desc_base_addr_hi =
3763 cpu_to_le32(upper_32_bits(cmd_desc_element_addr));
3764
3765 /* Response upiu and prdt offset should be in double words */
3766 if (hba->quirks & UFSHCD_QUIRK_PRDT_BYTE_GRAN) {
3767 utrdlp[i].response_upiu_offset =
3768 cpu_to_le16(response_offset);
3769 utrdlp[i].prd_table_offset =
3770 cpu_to_le16(prdt_offset);
3771 utrdlp[i].response_upiu_length =
3772 cpu_to_le16(ALIGNED_UPIU_SIZE);
3773 } else {
3774 utrdlp[i].response_upiu_offset =
3775 cpu_to_le16(response_offset >> 2);
3776 utrdlp[i].prd_table_offset =
3777 cpu_to_le16(prdt_offset >> 2);
3778 utrdlp[i].response_upiu_length =
3779 cpu_to_le16(ALIGNED_UPIU_SIZE >> 2);
3780 }
3781
3782 ufshcd_init_lrb(hba, &hba->lrb[i], i);
3783 }
3784 }
3785
3786 /**
3787 * ufshcd_dme_link_startup - Notify Unipro to perform link startup
3788 * @hba: per adapter instance
3789 *
3790 * UIC_CMD_DME_LINK_STARTUP command must be issued to Unipro layer,
3791 * in order to initialize the Unipro link startup procedure.
3792 * Once the Unipro links are up, the device connected to the controller
3793 * is detected.
3794 *
3795 * Returns 0 on success, non-zero value on failure
3796 */
ufshcd_dme_link_startup(struct ufs_hba * hba)3797 static int ufshcd_dme_link_startup(struct ufs_hba *hba)
3798 {
3799 struct uic_command uic_cmd = {0};
3800 int ret;
3801
3802 uic_cmd.command = UIC_CMD_DME_LINK_STARTUP;
3803
3804 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3805 if (ret)
3806 dev_dbg(hba->dev,
3807 "dme-link-startup: error code %d\n", ret);
3808 return ret;
3809 }
3810 /**
3811 * ufshcd_dme_reset - UIC command for DME_RESET
3812 * @hba: per adapter instance
3813 *
3814 * DME_RESET command is issued in order to reset UniPro stack.
3815 * This function now deals with cold reset.
3816 *
3817 * Returns 0 on success, non-zero value on failure
3818 */
ufshcd_dme_reset(struct ufs_hba * hba)3819 static int ufshcd_dme_reset(struct ufs_hba *hba)
3820 {
3821 struct uic_command uic_cmd = {0};
3822 int ret;
3823
3824 uic_cmd.command = UIC_CMD_DME_RESET;
3825
3826 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3827 if (ret)
3828 dev_err(hba->dev,
3829 "dme-reset: error code %d\n", ret);
3830
3831 return ret;
3832 }
3833
ufshcd_dme_configure_adapt(struct ufs_hba * hba,int agreed_gear,int adapt_val)3834 int ufshcd_dme_configure_adapt(struct ufs_hba *hba,
3835 int agreed_gear,
3836 int adapt_val)
3837 {
3838 int ret;
3839
3840 if (agreed_gear < UFS_HS_G4)
3841 adapt_val = PA_NO_ADAPT;
3842
3843 ret = ufshcd_dme_set(hba,
3844 UIC_ARG_MIB(PA_TXHSADAPTTYPE),
3845 adapt_val);
3846 return ret;
3847 }
3848 EXPORT_SYMBOL_GPL(ufshcd_dme_configure_adapt);
3849
3850 /**
3851 * ufshcd_dme_enable - UIC command for DME_ENABLE
3852 * @hba: per adapter instance
3853 *
3854 * DME_ENABLE command is issued in order to enable UniPro stack.
3855 *
3856 * Returns 0 on success, non-zero value on failure
3857 */
ufshcd_dme_enable(struct ufs_hba * hba)3858 static int ufshcd_dme_enable(struct ufs_hba *hba)
3859 {
3860 struct uic_command uic_cmd = {0};
3861 int ret;
3862
3863 uic_cmd.command = UIC_CMD_DME_ENABLE;
3864
3865 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3866 if (ret)
3867 dev_err(hba->dev,
3868 "dme-enable: error code %d\n", ret);
3869
3870 return ret;
3871 }
3872
ufshcd_add_delay_before_dme_cmd(struct ufs_hba * hba)3873 static inline void ufshcd_add_delay_before_dme_cmd(struct ufs_hba *hba)
3874 {
3875 #define MIN_DELAY_BEFORE_DME_CMDS_US 1000
3876 unsigned long min_sleep_time_us;
3877
3878 if (!(hba->quirks & UFSHCD_QUIRK_DELAY_BEFORE_DME_CMDS))
3879 return;
3880
3881 /*
3882 * last_dme_cmd_tstamp will be 0 only for 1st call to
3883 * this function
3884 */
3885 if (unlikely(!ktime_to_us(hba->last_dme_cmd_tstamp))) {
3886 min_sleep_time_us = MIN_DELAY_BEFORE_DME_CMDS_US;
3887 } else {
3888 unsigned long delta =
3889 (unsigned long) ktime_to_us(
3890 ktime_sub(ktime_get(),
3891 hba->last_dme_cmd_tstamp));
3892
3893 if (delta < MIN_DELAY_BEFORE_DME_CMDS_US)
3894 min_sleep_time_us =
3895 MIN_DELAY_BEFORE_DME_CMDS_US - delta;
3896 else
3897 return; /* no more delay required */
3898 }
3899
3900 /* allow sleep for extra 50us if needed */
3901 usleep_range(min_sleep_time_us, min_sleep_time_us + 50);
3902 }
3903
3904 /**
3905 * ufshcd_dme_set_attr - UIC command for DME_SET, DME_PEER_SET
3906 * @hba: per adapter instance
3907 * @attr_sel: uic command argument1
3908 * @attr_set: attribute set type as uic command argument2
3909 * @mib_val: setting value as uic command argument3
3910 * @peer: indicate whether peer or local
3911 *
3912 * Returns 0 on success, non-zero value on failure
3913 */
ufshcd_dme_set_attr(struct ufs_hba * hba,u32 attr_sel,u8 attr_set,u32 mib_val,u8 peer)3914 int ufshcd_dme_set_attr(struct ufs_hba *hba, u32 attr_sel,
3915 u8 attr_set, u32 mib_val, u8 peer)
3916 {
3917 struct uic_command uic_cmd = {0};
3918 static const char *const action[] = {
3919 "dme-set",
3920 "dme-peer-set"
3921 };
3922 const char *set = action[!!peer];
3923 int ret;
3924 int retries = UFS_UIC_COMMAND_RETRIES;
3925
3926 uic_cmd.command = peer ?
3927 UIC_CMD_DME_PEER_SET : UIC_CMD_DME_SET;
3928 uic_cmd.argument1 = attr_sel;
3929 uic_cmd.argument2 = UIC_ARG_ATTR_TYPE(attr_set);
3930 uic_cmd.argument3 = mib_val;
3931
3932 do {
3933 /* for peer attributes we retry upon failure */
3934 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
3935 if (ret)
3936 dev_dbg(hba->dev, "%s: attr-id 0x%x val 0x%x error code %d\n",
3937 set, UIC_GET_ATTR_ID(attr_sel), mib_val, ret);
3938 } while (ret && peer && --retries);
3939
3940 if (ret)
3941 dev_err(hba->dev, "%s: attr-id 0x%x val 0x%x failed %d retries\n",
3942 set, UIC_GET_ATTR_ID(attr_sel), mib_val,
3943 UFS_UIC_COMMAND_RETRIES - retries);
3944
3945 return ret;
3946 }
3947 EXPORT_SYMBOL_GPL(ufshcd_dme_set_attr);
3948
3949 /**
3950 * ufshcd_dme_get_attr - UIC command for DME_GET, DME_PEER_GET
3951 * @hba: per adapter instance
3952 * @attr_sel: uic command argument1
3953 * @mib_val: the value of the attribute as returned by the UIC command
3954 * @peer: indicate whether peer or local
3955 *
3956 * Returns 0 on success, non-zero value on failure
3957 */
ufshcd_dme_get_attr(struct ufs_hba * hba,u32 attr_sel,u32 * mib_val,u8 peer)3958 int ufshcd_dme_get_attr(struct ufs_hba *hba, u32 attr_sel,
3959 u32 *mib_val, u8 peer)
3960 {
3961 struct uic_command uic_cmd = {0};
3962 static const char *const action[] = {
3963 "dme-get",
3964 "dme-peer-get"
3965 };
3966 const char *get = action[!!peer];
3967 int ret;
3968 int retries = UFS_UIC_COMMAND_RETRIES;
3969 struct ufs_pa_layer_attr orig_pwr_info;
3970 struct ufs_pa_layer_attr temp_pwr_info;
3971 bool pwr_mode_change = false;
3972
3973 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)) {
3974 orig_pwr_info = hba->pwr_info;
3975 temp_pwr_info = orig_pwr_info;
3976
3977 if (orig_pwr_info.pwr_tx == FAST_MODE ||
3978 orig_pwr_info.pwr_rx == FAST_MODE) {
3979 temp_pwr_info.pwr_tx = FASTAUTO_MODE;
3980 temp_pwr_info.pwr_rx = FASTAUTO_MODE;
3981 pwr_mode_change = true;
3982 } else if (orig_pwr_info.pwr_tx == SLOW_MODE ||
3983 orig_pwr_info.pwr_rx == SLOW_MODE) {
3984 temp_pwr_info.pwr_tx = SLOWAUTO_MODE;
3985 temp_pwr_info.pwr_rx = SLOWAUTO_MODE;
3986 pwr_mode_change = true;
3987 }
3988 if (pwr_mode_change) {
3989 ret = ufshcd_change_power_mode(hba, &temp_pwr_info);
3990 if (ret)
3991 goto out;
3992 }
3993 }
3994
3995 uic_cmd.command = peer ?
3996 UIC_CMD_DME_PEER_GET : UIC_CMD_DME_GET;
3997 uic_cmd.argument1 = attr_sel;
3998
3999 do {
4000 /* for peer attributes we retry upon failure */
4001 ret = ufshcd_send_uic_cmd(hba, &uic_cmd);
4002 if (ret)
4003 dev_dbg(hba->dev, "%s: attr-id 0x%x error code %d\n",
4004 get, UIC_GET_ATTR_ID(attr_sel), ret);
4005 } while (ret && peer && --retries);
4006
4007 if (ret)
4008 dev_err(hba->dev, "%s: attr-id 0x%x failed %d retries\n",
4009 get, UIC_GET_ATTR_ID(attr_sel),
4010 UFS_UIC_COMMAND_RETRIES - retries);
4011
4012 if (mib_val && !ret)
4013 *mib_val = uic_cmd.argument3;
4014
4015 if (peer && (hba->quirks & UFSHCD_QUIRK_DME_PEER_ACCESS_AUTO_MODE)
4016 && pwr_mode_change)
4017 ufshcd_change_power_mode(hba, &orig_pwr_info);
4018 out:
4019 return ret;
4020 }
4021 EXPORT_SYMBOL_GPL(ufshcd_dme_get_attr);
4022
4023 /**
4024 * ufshcd_uic_pwr_ctrl - executes UIC commands (which affects the link power
4025 * state) and waits for it to take effect.
4026 *
4027 * @hba: per adapter instance
4028 * @cmd: UIC command to execute
4029 *
4030 * DME operations like DME_SET(PA_PWRMODE), DME_HIBERNATE_ENTER &
4031 * DME_HIBERNATE_EXIT commands take some time to take its effect on both host
4032 * and device UniPro link and hence it's final completion would be indicated by
4033 * dedicated status bits in Interrupt Status register (UPMS, UHES, UHXS) in
4034 * addition to normal UIC command completion Status (UCCS). This function only
4035 * returns after the relevant status bits indicate the completion.
4036 *
4037 * Returns 0 on success, non-zero value on failure
4038 */
ufshcd_uic_pwr_ctrl(struct ufs_hba * hba,struct uic_command * cmd)4039 static int ufshcd_uic_pwr_ctrl(struct ufs_hba *hba, struct uic_command *cmd)
4040 {
4041 DECLARE_COMPLETION_ONSTACK(uic_async_done);
4042 unsigned long flags;
4043 u8 status;
4044 int ret;
4045 bool reenable_intr = false;
4046
4047 mutex_lock(&hba->uic_cmd_mutex);
4048 ufshcd_add_delay_before_dme_cmd(hba);
4049
4050 spin_lock_irqsave(hba->host->host_lock, flags);
4051 if (ufshcd_is_link_broken(hba)) {
4052 ret = -ENOLINK;
4053 goto out_unlock;
4054 }
4055 hba->uic_async_done = &uic_async_done;
4056 if (ufshcd_readl(hba, REG_INTERRUPT_ENABLE) & UIC_COMMAND_COMPL) {
4057 ufshcd_disable_intr(hba, UIC_COMMAND_COMPL);
4058 /*
4059 * Make sure UIC command completion interrupt is disabled before
4060 * issuing UIC command.
4061 */
4062 wmb();
4063 reenable_intr = true;
4064 }
4065 spin_unlock_irqrestore(hba->host->host_lock, flags);
4066 ret = __ufshcd_send_uic_cmd(hba, cmd, false);
4067 if (ret) {
4068 dev_err(hba->dev,
4069 "pwr ctrl cmd 0x%x with mode 0x%x uic error %d\n",
4070 cmd->command, cmd->argument3, ret);
4071 goto out;
4072 }
4073
4074 if (!wait_for_completion_timeout(hba->uic_async_done,
4075 msecs_to_jiffies(UIC_CMD_TIMEOUT))) {
4076 dev_err(hba->dev,
4077 "pwr ctrl cmd 0x%x with mode 0x%x completion timeout\n",
4078 cmd->command, cmd->argument3);
4079
4080 if (!cmd->cmd_active) {
4081 dev_err(hba->dev, "%s: Power Mode Change operation has been completed, go check UPMCRS\n",
4082 __func__);
4083 goto check_upmcrs;
4084 }
4085
4086 ret = -ETIMEDOUT;
4087 goto out;
4088 }
4089
4090 check_upmcrs:
4091 status = ufshcd_get_upmcrs(hba);
4092 if (status != PWR_LOCAL) {
4093 dev_err(hba->dev,
4094 "pwr ctrl cmd 0x%x failed, host upmcrs:0x%x\n",
4095 cmd->command, status);
4096 ret = (status != PWR_OK) ? status : -1;
4097 }
4098 out:
4099 if (ret) {
4100 ufshcd_print_host_state(hba);
4101 ufshcd_print_pwr_info(hba);
4102 ufshcd_print_evt_hist(hba);
4103 }
4104
4105 spin_lock_irqsave(hba->host->host_lock, flags);
4106 hba->active_uic_cmd = NULL;
4107 hba->uic_async_done = NULL;
4108 if (reenable_intr)
4109 ufshcd_enable_intr(hba, UIC_COMMAND_COMPL);
4110 if (ret) {
4111 ufshcd_set_link_broken(hba);
4112 ufshcd_schedule_eh_work(hba);
4113 }
4114 out_unlock:
4115 spin_unlock_irqrestore(hba->host->host_lock, flags);
4116 mutex_unlock(&hba->uic_cmd_mutex);
4117
4118 return ret;
4119 }
4120
4121 /**
4122 * ufshcd_uic_change_pwr_mode - Perform the UIC power mode chage
4123 * using DME_SET primitives.
4124 * @hba: per adapter instance
4125 * @mode: powr mode value
4126 *
4127 * Returns 0 on success, non-zero value on failure
4128 */
ufshcd_uic_change_pwr_mode(struct ufs_hba * hba,u8 mode)4129 int ufshcd_uic_change_pwr_mode(struct ufs_hba *hba, u8 mode)
4130 {
4131 struct uic_command uic_cmd = {0};
4132 int ret;
4133
4134 if (hba->quirks & UFSHCD_QUIRK_BROKEN_PA_RXHSUNTERMCAP) {
4135 ret = ufshcd_dme_set(hba,
4136 UIC_ARG_MIB_SEL(PA_RXHSUNTERMCAP, 0), 1);
4137 if (ret) {
4138 dev_err(hba->dev, "%s: failed to enable PA_RXHSUNTERMCAP ret %d\n",
4139 __func__, ret);
4140 goto out;
4141 }
4142 }
4143
4144 uic_cmd.command = UIC_CMD_DME_SET;
4145 uic_cmd.argument1 = UIC_ARG_MIB(PA_PWRMODE);
4146 uic_cmd.argument3 = mode;
4147 ufshcd_hold(hba, false);
4148 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4149 ufshcd_release(hba);
4150
4151 out:
4152 return ret;
4153 }
4154 EXPORT_SYMBOL_GPL(ufshcd_uic_change_pwr_mode);
4155
ufshcd_link_recovery(struct ufs_hba * hba)4156 int ufshcd_link_recovery(struct ufs_hba *hba)
4157 {
4158 int ret;
4159 unsigned long flags;
4160
4161 spin_lock_irqsave(hba->host->host_lock, flags);
4162 hba->ufshcd_state = UFSHCD_STATE_RESET;
4163 ufshcd_set_eh_in_progress(hba);
4164 spin_unlock_irqrestore(hba->host->host_lock, flags);
4165
4166 /* Reset the attached device */
4167 ufshcd_device_reset(hba);
4168
4169 ret = ufshcd_host_reset_and_restore(hba);
4170
4171 spin_lock_irqsave(hba->host->host_lock, flags);
4172 if (ret)
4173 hba->ufshcd_state = UFSHCD_STATE_ERROR;
4174 ufshcd_clear_eh_in_progress(hba);
4175 spin_unlock_irqrestore(hba->host->host_lock, flags);
4176
4177 if (ret)
4178 dev_err(hba->dev, "%s: link recovery failed, err %d",
4179 __func__, ret);
4180
4181 return ret;
4182 }
4183 EXPORT_SYMBOL_GPL(ufshcd_link_recovery);
4184
ufshcd_uic_hibern8_enter(struct ufs_hba * hba)4185 int ufshcd_uic_hibern8_enter(struct ufs_hba *hba)
4186 {
4187 int ret;
4188 struct uic_command uic_cmd = {0};
4189 ktime_t start = ktime_get();
4190
4191 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER, PRE_CHANGE);
4192
4193 uic_cmd.command = UIC_CMD_DME_HIBER_ENTER;
4194 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4195 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "enter",
4196 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4197
4198 if (ret)
4199 dev_err(hba->dev, "%s: hibern8 enter failed. ret = %d\n",
4200 __func__, ret);
4201 else
4202 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_ENTER,
4203 POST_CHANGE);
4204
4205 return ret;
4206 }
4207 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_enter);
4208
ufshcd_uic_hibern8_exit(struct ufs_hba * hba)4209 int ufshcd_uic_hibern8_exit(struct ufs_hba *hba)
4210 {
4211 struct uic_command uic_cmd = {0};
4212 int ret;
4213 ktime_t start = ktime_get();
4214
4215 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT, PRE_CHANGE);
4216
4217 uic_cmd.command = UIC_CMD_DME_HIBER_EXIT;
4218 ret = ufshcd_uic_pwr_ctrl(hba, &uic_cmd);
4219 trace_ufshcd_profile_hibern8(dev_name(hba->dev), "exit",
4220 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
4221
4222 if (ret) {
4223 dev_err(hba->dev, "%s: hibern8 exit failed. ret = %d\n",
4224 __func__, ret);
4225 } else {
4226 ufshcd_vops_hibern8_notify(hba, UIC_CMD_DME_HIBER_EXIT,
4227 POST_CHANGE);
4228 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_get();
4229 hba->ufs_stats.hibern8_exit_cnt++;
4230 }
4231
4232 return ret;
4233 }
4234 EXPORT_SYMBOL_GPL(ufshcd_uic_hibern8_exit);
4235
ufshcd_auto_hibern8_update(struct ufs_hba * hba,u32 ahit)4236 void ufshcd_auto_hibern8_update(struct ufs_hba *hba, u32 ahit)
4237 {
4238 unsigned long flags;
4239 bool update = false;
4240
4241 if (!ufshcd_is_auto_hibern8_supported(hba))
4242 return;
4243
4244 spin_lock_irqsave(hba->host->host_lock, flags);
4245 if (hba->ahit != ahit) {
4246 hba->ahit = ahit;
4247 update = true;
4248 }
4249 spin_unlock_irqrestore(hba->host->host_lock, flags);
4250
4251 if (update &&
4252 !pm_runtime_suspended(&hba->sdev_ufs_device->sdev_gendev)) {
4253 ufshcd_rpm_get_sync(hba);
4254 ufshcd_hold(hba, false);
4255 ufshcd_auto_hibern8_enable(hba);
4256 ufshcd_release(hba);
4257 ufshcd_rpm_put_sync(hba);
4258 }
4259 }
4260 EXPORT_SYMBOL_GPL(ufshcd_auto_hibern8_update);
4261
ufshcd_auto_hibern8_enable(struct ufs_hba * hba)4262 void ufshcd_auto_hibern8_enable(struct ufs_hba *hba)
4263 {
4264 unsigned long flags;
4265
4266 if (!ufshcd_is_auto_hibern8_supported(hba))
4267 return;
4268
4269 spin_lock_irqsave(hba->host->host_lock, flags);
4270 ufshcd_writel(hba, hba->ahit, REG_AUTO_HIBERNATE_IDLE_TIMER);
4271 spin_unlock_irqrestore(hba->host->host_lock, flags);
4272 }
4273
4274 /**
4275 * ufshcd_init_pwr_info - setting the POR (power on reset)
4276 * values in hba power info
4277 * @hba: per-adapter instance
4278 */
ufshcd_init_pwr_info(struct ufs_hba * hba)4279 static void ufshcd_init_pwr_info(struct ufs_hba *hba)
4280 {
4281 hba->pwr_info.gear_rx = UFS_PWM_G1;
4282 hba->pwr_info.gear_tx = UFS_PWM_G1;
4283 hba->pwr_info.lane_rx = 1;
4284 hba->pwr_info.lane_tx = 1;
4285 hba->pwr_info.pwr_rx = SLOWAUTO_MODE;
4286 hba->pwr_info.pwr_tx = SLOWAUTO_MODE;
4287 hba->pwr_info.hs_rate = 0;
4288 }
4289
4290 /**
4291 * ufshcd_get_max_pwr_mode - reads the max power mode negotiated with device
4292 * @hba: per-adapter instance
4293 */
ufshcd_get_max_pwr_mode(struct ufs_hba * hba)4294 static int ufshcd_get_max_pwr_mode(struct ufs_hba *hba)
4295 {
4296 struct ufs_pa_layer_attr *pwr_info = &hba->max_pwr_info.info;
4297
4298 if (hba->max_pwr_info.is_valid)
4299 return 0;
4300
4301 pwr_info->pwr_tx = FAST_MODE;
4302 pwr_info->pwr_rx = FAST_MODE;
4303 pwr_info->hs_rate = PA_HS_MODE_B;
4304
4305 /* Get the connected lane count */
4306 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDRXDATALANES),
4307 &pwr_info->lane_rx);
4308 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4309 &pwr_info->lane_tx);
4310
4311 if (!pwr_info->lane_rx || !pwr_info->lane_tx) {
4312 dev_err(hba->dev, "%s: invalid connected lanes value. rx=%d, tx=%d\n",
4313 __func__,
4314 pwr_info->lane_rx,
4315 pwr_info->lane_tx);
4316 return -EINVAL;
4317 }
4318
4319 /*
4320 * First, get the maximum gears of HS speed.
4321 * If a zero value, it means there is no HSGEAR capability.
4322 * Then, get the maximum gears of PWM speed.
4323 */
4324 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR), &pwr_info->gear_rx);
4325 if (!pwr_info->gear_rx) {
4326 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4327 &pwr_info->gear_rx);
4328 if (!pwr_info->gear_rx) {
4329 dev_err(hba->dev, "%s: invalid max pwm rx gear read = %d\n",
4330 __func__, pwr_info->gear_rx);
4331 return -EINVAL;
4332 }
4333 pwr_info->pwr_rx = SLOW_MODE;
4334 }
4335
4336 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXHSGEAR),
4337 &pwr_info->gear_tx);
4338 if (!pwr_info->gear_tx) {
4339 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_MAXRXPWMGEAR),
4340 &pwr_info->gear_tx);
4341 if (!pwr_info->gear_tx) {
4342 dev_err(hba->dev, "%s: invalid max pwm tx gear read = %d\n",
4343 __func__, pwr_info->gear_tx);
4344 return -EINVAL;
4345 }
4346 pwr_info->pwr_tx = SLOW_MODE;
4347 }
4348
4349 hba->max_pwr_info.is_valid = true;
4350 return 0;
4351 }
4352
ufshcd_change_power_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * pwr_mode)4353 static int ufshcd_change_power_mode(struct ufs_hba *hba,
4354 struct ufs_pa_layer_attr *pwr_mode)
4355 {
4356 int ret;
4357
4358 /* if already configured to the requested pwr_mode */
4359 if (!hba->force_pmc &&
4360 pwr_mode->gear_rx == hba->pwr_info.gear_rx &&
4361 pwr_mode->gear_tx == hba->pwr_info.gear_tx &&
4362 pwr_mode->lane_rx == hba->pwr_info.lane_rx &&
4363 pwr_mode->lane_tx == hba->pwr_info.lane_tx &&
4364 pwr_mode->pwr_rx == hba->pwr_info.pwr_rx &&
4365 pwr_mode->pwr_tx == hba->pwr_info.pwr_tx &&
4366 pwr_mode->hs_rate == hba->pwr_info.hs_rate) {
4367 dev_dbg(hba->dev, "%s: power already configured\n", __func__);
4368 return 0;
4369 }
4370
4371 /*
4372 * Configure attributes for power mode change with below.
4373 * - PA_RXGEAR, PA_ACTIVERXDATALANES, PA_RXTERMINATION,
4374 * - PA_TXGEAR, PA_ACTIVETXDATALANES, PA_TXTERMINATION,
4375 * - PA_HSSERIES
4376 */
4377 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXGEAR), pwr_mode->gear_rx);
4378 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVERXDATALANES),
4379 pwr_mode->lane_rx);
4380 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4381 pwr_mode->pwr_rx == FAST_MODE)
4382 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), TRUE);
4383 else
4384 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_RXTERMINATION), FALSE);
4385
4386 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXGEAR), pwr_mode->gear_tx);
4387 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_ACTIVETXDATALANES),
4388 pwr_mode->lane_tx);
4389 if (pwr_mode->pwr_tx == FASTAUTO_MODE ||
4390 pwr_mode->pwr_tx == FAST_MODE)
4391 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), TRUE);
4392 else
4393 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TXTERMINATION), FALSE);
4394
4395 if (pwr_mode->pwr_rx == FASTAUTO_MODE ||
4396 pwr_mode->pwr_tx == FASTAUTO_MODE ||
4397 pwr_mode->pwr_rx == FAST_MODE ||
4398 pwr_mode->pwr_tx == FAST_MODE)
4399 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HSSERIES),
4400 pwr_mode->hs_rate);
4401
4402 if (!(hba->quirks & UFSHCD_QUIRK_SKIP_DEF_UNIPRO_TIMEOUT_SETTING)) {
4403 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA0),
4404 DL_FC0ProtectionTimeOutVal_Default);
4405 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA1),
4406 DL_TC0ReplayTimeOutVal_Default);
4407 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA2),
4408 DL_AFC0ReqTimeOutVal_Default);
4409 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA3),
4410 DL_FC1ProtectionTimeOutVal_Default);
4411 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA4),
4412 DL_TC1ReplayTimeOutVal_Default);
4413 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_PWRMODEUSERDATA5),
4414 DL_AFC1ReqTimeOutVal_Default);
4415
4416 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalFC0ProtectionTimeOutVal),
4417 DL_FC0ProtectionTimeOutVal_Default);
4418 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalTC0ReplayTimeOutVal),
4419 DL_TC0ReplayTimeOutVal_Default);
4420 ufshcd_dme_set(hba, UIC_ARG_MIB(DME_LocalAFC0ReqTimeOutVal),
4421 DL_AFC0ReqTimeOutVal_Default);
4422 }
4423
4424 ret = ufshcd_uic_change_pwr_mode(hba, pwr_mode->pwr_rx << 4
4425 | pwr_mode->pwr_tx);
4426
4427 if (ret) {
4428 dev_err(hba->dev,
4429 "%s: power mode change failed %d\n", __func__, ret);
4430 } else {
4431 ufshcd_vops_pwr_change_notify(hba, POST_CHANGE, NULL,
4432 pwr_mode);
4433
4434 memcpy(&hba->pwr_info, pwr_mode,
4435 sizeof(struct ufs_pa_layer_attr));
4436 }
4437
4438 return ret;
4439 }
4440
4441 /**
4442 * ufshcd_config_pwr_mode - configure a new power mode
4443 * @hba: per-adapter instance
4444 * @desired_pwr_mode: desired power configuration
4445 */
ufshcd_config_pwr_mode(struct ufs_hba * hba,struct ufs_pa_layer_attr * desired_pwr_mode)4446 int ufshcd_config_pwr_mode(struct ufs_hba *hba,
4447 struct ufs_pa_layer_attr *desired_pwr_mode)
4448 {
4449 struct ufs_pa_layer_attr final_params = { 0 };
4450 int ret;
4451
4452 ret = ufshcd_vops_pwr_change_notify(hba, PRE_CHANGE,
4453 desired_pwr_mode, &final_params);
4454
4455 if (ret)
4456 memcpy(&final_params, desired_pwr_mode, sizeof(final_params));
4457
4458 ret = ufshcd_change_power_mode(hba, &final_params);
4459
4460 return ret;
4461 }
4462 EXPORT_SYMBOL_GPL(ufshcd_config_pwr_mode);
4463
4464 /**
4465 * ufshcd_complete_dev_init() - checks device readiness
4466 * @hba: per-adapter instance
4467 *
4468 * Set fDeviceInit flag and poll until device toggles it.
4469 */
ufshcd_complete_dev_init(struct ufs_hba * hba)4470 static int ufshcd_complete_dev_init(struct ufs_hba *hba)
4471 {
4472 int err;
4473 bool flag_res = true;
4474 ktime_t timeout;
4475
4476 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
4477 QUERY_FLAG_IDN_FDEVICEINIT, 0, NULL);
4478 if (err) {
4479 dev_err(hba->dev,
4480 "%s setting fDeviceInit flag failed with error %d\n",
4481 __func__, err);
4482 goto out;
4483 }
4484
4485 /* Poll fDeviceInit flag to be cleared */
4486 timeout = ktime_add_ms(ktime_get(), FDEVICEINIT_COMPL_TIMEOUT);
4487 do {
4488 err = ufshcd_query_flag(hba, UPIU_QUERY_OPCODE_READ_FLAG,
4489 QUERY_FLAG_IDN_FDEVICEINIT, 0, &flag_res);
4490 if (!flag_res)
4491 break;
4492 usleep_range(500, 1000);
4493 } while (ktime_before(ktime_get(), timeout));
4494
4495 if (err) {
4496 dev_err(hba->dev,
4497 "%s reading fDeviceInit flag failed with error %d\n",
4498 __func__, err);
4499 } else if (flag_res) {
4500 dev_err(hba->dev,
4501 "%s fDeviceInit was not cleared by the device\n",
4502 __func__);
4503 err = -EBUSY;
4504 }
4505 out:
4506 return err;
4507 }
4508
4509 /**
4510 * ufshcd_make_hba_operational - Make UFS controller operational
4511 * @hba: per adapter instance
4512 *
4513 * To bring UFS host controller to operational state,
4514 * 1. Enable required interrupts
4515 * 2. Configure interrupt aggregation
4516 * 3. Program UTRL and UTMRL base address
4517 * 4. Configure run-stop-registers
4518 *
4519 * Returns 0 on success, non-zero value on failure
4520 */
ufshcd_make_hba_operational(struct ufs_hba * hba)4521 int ufshcd_make_hba_operational(struct ufs_hba *hba)
4522 {
4523 int err = 0;
4524 u32 reg;
4525
4526 if (ufshcd_use_mcq_hooks(hba)) {
4527 trace_android_vh_ufs_mcq_make_hba_operational(hba, &err);
4528 return err;
4529 }
4530
4531 /* Enable required interrupts */
4532 ufshcd_enable_intr(hba, UFSHCD_ENABLE_INTRS);
4533
4534 /* Configure interrupt aggregation */
4535 if (ufshcd_is_intr_aggr_allowed(hba))
4536 ufshcd_config_intr_aggr(hba, hba->nutrs - 1, INT_AGGR_DEF_TO);
4537 else
4538 ufshcd_disable_intr_aggr(hba);
4539
4540 /* Configure UTRL and UTMRL base address registers */
4541 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
4542 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
4543 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
4544 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
4545 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
4546 REG_UTP_TASK_REQ_LIST_BASE_L);
4547 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
4548 REG_UTP_TASK_REQ_LIST_BASE_H);
4549
4550 /*
4551 * Make sure base address and interrupt setup are updated before
4552 * enabling the run/stop registers below.
4553 */
4554 wmb();
4555
4556 /*
4557 * UCRDY, UTMRLDY and UTRLRDY bits must be 1
4558 */
4559 reg = ufshcd_readl(hba, REG_CONTROLLER_STATUS);
4560 if (!(ufshcd_get_lists_status(reg))) {
4561 ufshcd_enable_run_stop_reg(hba);
4562 } else {
4563 dev_err(hba->dev,
4564 "Host controller not ready to process requests");
4565 err = -EIO;
4566 }
4567
4568 return err;
4569 }
4570 EXPORT_SYMBOL_GPL(ufshcd_make_hba_operational);
4571
4572 /**
4573 * ufshcd_hba_stop - Send controller to reset state
4574 * @hba: per adapter instance
4575 */
ufshcd_hba_stop(struct ufs_hba * hba)4576 void ufshcd_hba_stop(struct ufs_hba *hba)
4577 {
4578 unsigned long flags;
4579 int err;
4580
4581 /*
4582 * Obtain the host lock to prevent that the controller is disabled
4583 * while the UFS interrupt handler is active on another CPU.
4584 */
4585 spin_lock_irqsave(hba->host->host_lock, flags);
4586 ufshcd_writel(hba, CONTROLLER_DISABLE, REG_CONTROLLER_ENABLE);
4587 spin_unlock_irqrestore(hba->host->host_lock, flags);
4588
4589 err = ufshcd_wait_for_register(hba, REG_CONTROLLER_ENABLE,
4590 CONTROLLER_ENABLE, CONTROLLER_DISABLE,
4591 10, 1);
4592 if (err)
4593 dev_err(hba->dev, "%s: Controller disable failed\n", __func__);
4594 }
4595 EXPORT_SYMBOL_GPL(ufshcd_hba_stop);
4596
4597 /**
4598 * ufshcd_hba_execute_hce - initialize the controller
4599 * @hba: per adapter instance
4600 *
4601 * The controller resets itself and controller firmware initialization
4602 * sequence kicks off. When controller is ready it will set
4603 * the Host Controller Enable bit to 1.
4604 *
4605 * Returns 0 on success, non-zero value on failure
4606 */
ufshcd_hba_execute_hce(struct ufs_hba * hba)4607 static int ufshcd_hba_execute_hce(struct ufs_hba *hba)
4608 {
4609 int retry_outer = 3;
4610 int retry_inner;
4611
4612 start:
4613 if (!ufshcd_is_hba_active(hba))
4614 /* change controller state to "reset state" */
4615 ufshcd_hba_stop(hba);
4616
4617 /* UniPro link is disabled at this point */
4618 ufshcd_set_link_off(hba);
4619
4620 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4621
4622 /* start controller initialization sequence */
4623 ufshcd_hba_start(hba);
4624
4625 /*
4626 * To initialize a UFS host controller HCE bit must be set to 1.
4627 * During initialization the HCE bit value changes from 1->0->1.
4628 * When the host controller completes initialization sequence
4629 * it sets the value of HCE bit to 1. The same HCE bit is read back
4630 * to check if the controller has completed initialization sequence.
4631 * So without this delay the value HCE = 1, set in the previous
4632 * instruction might be read back.
4633 * This delay can be changed based on the controller.
4634 */
4635 ufshcd_delay_us(hba->vps->hba_enable_delay_us, 100);
4636
4637 /* wait for the host controller to complete initialization */
4638 retry_inner = 50;
4639 while (ufshcd_is_hba_active(hba)) {
4640 if (retry_inner) {
4641 retry_inner--;
4642 } else {
4643 dev_err(hba->dev,
4644 "Controller enable failed\n");
4645 if (retry_outer) {
4646 retry_outer--;
4647 goto start;
4648 }
4649 return -EIO;
4650 }
4651 usleep_range(1000, 1100);
4652 }
4653
4654 /* enable UIC related interrupts */
4655 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4656
4657 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4658
4659 return 0;
4660 }
4661
ufshcd_hba_enable(struct ufs_hba * hba)4662 int ufshcd_hba_enable(struct ufs_hba *hba)
4663 {
4664 int ret;
4665
4666 if (hba->quirks & UFSHCI_QUIRK_BROKEN_HCE) {
4667 ufshcd_set_link_off(hba);
4668 ufshcd_vops_hce_enable_notify(hba, PRE_CHANGE);
4669
4670 /* enable UIC related interrupts */
4671 ufshcd_enable_intr(hba, UFSHCD_UIC_MASK);
4672 ret = ufshcd_dme_reset(hba);
4673 if (!ret) {
4674 ret = ufshcd_dme_enable(hba);
4675 if (!ret)
4676 ufshcd_vops_hce_enable_notify(hba, POST_CHANGE);
4677 if (ret)
4678 dev_err(hba->dev,
4679 "Host controller enable failed with non-hce\n");
4680 }
4681 } else {
4682 ret = ufshcd_hba_execute_hce(hba);
4683 }
4684
4685 return ret;
4686 }
4687 EXPORT_SYMBOL_GPL(ufshcd_hba_enable);
4688
ufshcd_disable_tx_lcc(struct ufs_hba * hba,bool peer)4689 static int ufshcd_disable_tx_lcc(struct ufs_hba *hba, bool peer)
4690 {
4691 int tx_lanes = 0, i, err = 0;
4692
4693 if (!peer)
4694 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4695 &tx_lanes);
4696 else
4697 ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_CONNECTEDTXDATALANES),
4698 &tx_lanes);
4699 for (i = 0; i < tx_lanes; i++) {
4700 if (!peer)
4701 err = ufshcd_dme_set(hba,
4702 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4703 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4704 0);
4705 else
4706 err = ufshcd_dme_peer_set(hba,
4707 UIC_ARG_MIB_SEL(TX_LCC_ENABLE,
4708 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(i)),
4709 0);
4710 if (err) {
4711 dev_err(hba->dev, "%s: TX LCC Disable failed, peer = %d, lane = %d, err = %d",
4712 __func__, peer, i, err);
4713 break;
4714 }
4715 }
4716
4717 return err;
4718 }
4719
ufshcd_disable_device_tx_lcc(struct ufs_hba * hba)4720 static inline int ufshcd_disable_device_tx_lcc(struct ufs_hba *hba)
4721 {
4722 return ufshcd_disable_tx_lcc(hba, true);
4723 }
4724
ufshcd_update_evt_hist(struct ufs_hba * hba,u32 id,u32 val)4725 void ufshcd_update_evt_hist(struct ufs_hba *hba, u32 id, u32 val)
4726 {
4727 struct ufs_event_hist *e;
4728
4729 if (id >= UFS_EVT_CNT)
4730 return;
4731
4732 e = &hba->ufs_stats.event[id];
4733 e->val[e->pos] = val;
4734 e->tstamp[e->pos] = ktime_get();
4735 e->cnt += 1;
4736 e->pos = (e->pos + 1) % UFS_EVENT_HIST_LENGTH;
4737
4738 ufshcd_vops_event_notify(hba, id, &val);
4739 }
4740 EXPORT_SYMBOL_GPL(ufshcd_update_evt_hist);
4741
4742 /**
4743 * ufshcd_link_startup - Initialize unipro link startup
4744 * @hba: per adapter instance
4745 *
4746 * Returns 0 for success, non-zero in case of failure
4747 */
ufshcd_link_startup(struct ufs_hba * hba)4748 static int ufshcd_link_startup(struct ufs_hba *hba)
4749 {
4750 int ret;
4751 int retries = DME_LINKSTARTUP_RETRIES;
4752 bool link_startup_again = false;
4753
4754 /*
4755 * If UFS device isn't active then we will have to issue link startup
4756 * 2 times to make sure the device state move to active.
4757 */
4758 if (!ufshcd_is_ufs_dev_active(hba))
4759 link_startup_again = true;
4760
4761 link_startup:
4762 do {
4763 ufshcd_vops_link_startup_notify(hba, PRE_CHANGE);
4764
4765 ret = ufshcd_dme_link_startup(hba);
4766
4767 /* check if device is detected by inter-connect layer */
4768 if (!ret && !ufshcd_is_device_present(hba)) {
4769 ufshcd_update_evt_hist(hba,
4770 UFS_EVT_LINK_STARTUP_FAIL,
4771 0);
4772 dev_err(hba->dev, "%s: Device not present\n", __func__);
4773 ret = -ENXIO;
4774 goto out;
4775 }
4776
4777 /*
4778 * DME link lost indication is only received when link is up,
4779 * but we can't be sure if the link is up until link startup
4780 * succeeds. So reset the local Uni-Pro and try again.
4781 */
4782 if (ret && ufshcd_hba_enable(hba)) {
4783 ufshcd_update_evt_hist(hba,
4784 UFS_EVT_LINK_STARTUP_FAIL,
4785 (u32)ret);
4786 goto out;
4787 }
4788 } while (ret && retries--);
4789
4790 if (ret) {
4791 /* failed to get the link up... retire */
4792 ufshcd_update_evt_hist(hba,
4793 UFS_EVT_LINK_STARTUP_FAIL,
4794 (u32)ret);
4795 goto out;
4796 }
4797
4798 if (link_startup_again) {
4799 link_startup_again = false;
4800 retries = DME_LINKSTARTUP_RETRIES;
4801 goto link_startup;
4802 }
4803
4804 /* Mark that link is up in PWM-G1, 1-lane, SLOW-AUTO mode */
4805 ufshcd_init_pwr_info(hba);
4806 ufshcd_print_pwr_info(hba);
4807
4808 if (hba->quirks & UFSHCD_QUIRK_BROKEN_LCC) {
4809 ret = ufshcd_disable_device_tx_lcc(hba);
4810 if (ret)
4811 goto out;
4812 }
4813
4814 /* Include any host controller configuration via UIC commands */
4815 ret = ufshcd_vops_link_startup_notify(hba, POST_CHANGE);
4816 if (ret)
4817 goto out;
4818
4819 /* Clear UECPA once due to LINERESET has happened during LINK_STARTUP */
4820 ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
4821 ret = ufshcd_make_hba_operational(hba);
4822 out:
4823 if (ret) {
4824 dev_err(hba->dev, "link startup failed %d\n", ret);
4825 ufshcd_print_host_state(hba);
4826 ufshcd_print_pwr_info(hba);
4827 ufshcd_print_evt_hist(hba);
4828 }
4829 return ret;
4830 }
4831
4832 /**
4833 * ufshcd_verify_dev_init() - Verify device initialization
4834 * @hba: per-adapter instance
4835 *
4836 * Send NOP OUT UPIU and wait for NOP IN response to check whether the
4837 * device Transport Protocol (UTP) layer is ready after a reset.
4838 * If the UTP layer at the device side is not initialized, it may
4839 * not respond with NOP IN UPIU within timeout of %NOP_OUT_TIMEOUT
4840 * and we retry sending NOP OUT for %NOP_OUT_RETRIES iterations.
4841 */
ufshcd_verify_dev_init(struct ufs_hba * hba)4842 static int ufshcd_verify_dev_init(struct ufs_hba *hba)
4843 {
4844 int err = 0;
4845 int retries;
4846
4847 ufshcd_hold(hba, false);
4848 mutex_lock(&hba->dev_cmd.lock);
4849 for (retries = NOP_OUT_RETRIES; retries > 0; retries--) {
4850 err = ufshcd_exec_dev_cmd(hba, DEV_CMD_TYPE_NOP,
4851 hba->nop_out_timeout);
4852
4853 if (!err || err == -ETIMEDOUT)
4854 break;
4855
4856 dev_dbg(hba->dev, "%s: error %d retrying\n", __func__, err);
4857 }
4858 mutex_unlock(&hba->dev_cmd.lock);
4859 ufshcd_release(hba);
4860
4861 if (err)
4862 dev_err(hba->dev, "%s: NOP OUT failed %d\n", __func__, err);
4863 return err;
4864 }
4865
4866 /**
4867 * ufshcd_set_queue_depth - set lun queue depth
4868 * @sdev: pointer to SCSI device
4869 *
4870 * Read bLUQueueDepth value and activate scsi tagged command
4871 * queueing. For WLUN, queue depth is set to 1. For best-effort
4872 * cases (bLUQueueDepth = 0) the queue depth is set to a maximum
4873 * value that host can queue.
4874 */
ufshcd_set_queue_depth(struct scsi_device * sdev)4875 static void ufshcd_set_queue_depth(struct scsi_device *sdev)
4876 {
4877 int ret = 0;
4878 u8 lun_qdepth;
4879 struct ufs_hba *hba;
4880
4881 hba = shost_priv(sdev->host);
4882
4883 lun_qdepth = hba->nutrs;
4884 ret = ufshcd_read_unit_desc_param(hba,
4885 ufshcd_scsi_to_upiu_lun(sdev->lun),
4886 UNIT_DESC_PARAM_LU_Q_DEPTH,
4887 &lun_qdepth,
4888 sizeof(lun_qdepth));
4889
4890 /* Some WLUN doesn't support unit descriptor */
4891 if (ret == -EOPNOTSUPP)
4892 lun_qdepth = 1;
4893 else if (!lun_qdepth)
4894 /* eventually, we can figure out the real queue depth */
4895 lun_qdepth = hba->nutrs;
4896 else
4897 lun_qdepth = min_t(int, lun_qdepth, hba->nutrs);
4898
4899 dev_dbg(hba->dev, "%s: activate tcq with queue depth %d\n",
4900 __func__, lun_qdepth);
4901 scsi_change_queue_depth(sdev, lun_qdepth);
4902 }
4903
4904 /*
4905 * ufshcd_get_lu_wp - returns the "b_lu_write_protect" from UNIT DESCRIPTOR
4906 * @hba: per-adapter instance
4907 * @lun: UFS device lun id
4908 * @b_lu_write_protect: pointer to buffer to hold the LU's write protect info
4909 *
4910 * Returns 0 in case of success and b_lu_write_protect status would be returned
4911 * @b_lu_write_protect parameter.
4912 * Returns -ENOTSUPP if reading b_lu_write_protect is not supported.
4913 * Returns -EINVAL in case of invalid parameters passed to this function.
4914 */
ufshcd_get_lu_wp(struct ufs_hba * hba,u8 lun,u8 * b_lu_write_protect)4915 static int ufshcd_get_lu_wp(struct ufs_hba *hba,
4916 u8 lun,
4917 u8 *b_lu_write_protect)
4918 {
4919 int ret;
4920
4921 if (!b_lu_write_protect)
4922 ret = -EINVAL;
4923 /*
4924 * According to UFS device spec, RPMB LU can't be write
4925 * protected so skip reading bLUWriteProtect parameter for
4926 * it. For other W-LUs, UNIT DESCRIPTOR is not available.
4927 */
4928 else if (lun >= hba->dev_info.max_lu_supported)
4929 ret = -ENOTSUPP;
4930 else
4931 ret = ufshcd_read_unit_desc_param(hba,
4932 lun,
4933 UNIT_DESC_PARAM_LU_WR_PROTECT,
4934 b_lu_write_protect,
4935 sizeof(*b_lu_write_protect));
4936 return ret;
4937 }
4938
4939 /**
4940 * ufshcd_get_lu_power_on_wp_status - get LU's power on write protect
4941 * status
4942 * @hba: per-adapter instance
4943 * @sdev: pointer to SCSI device
4944 *
4945 */
ufshcd_get_lu_power_on_wp_status(struct ufs_hba * hba,struct scsi_device * sdev)4946 static inline void ufshcd_get_lu_power_on_wp_status(struct ufs_hba *hba,
4947 struct scsi_device *sdev)
4948 {
4949 if (hba->dev_info.f_power_on_wp_en &&
4950 !hba->dev_info.is_lu_power_on_wp) {
4951 u8 b_lu_write_protect;
4952
4953 if (!ufshcd_get_lu_wp(hba, ufshcd_scsi_to_upiu_lun(sdev->lun),
4954 &b_lu_write_protect) &&
4955 (b_lu_write_protect == UFS_LU_POWER_ON_WP))
4956 hba->dev_info.is_lu_power_on_wp = true;
4957 }
4958 }
4959
4960 /**
4961 * ufshcd_setup_links - associate link b/w device wlun and other luns
4962 * @sdev: pointer to SCSI device
4963 * @hba: pointer to ufs hba
4964 */
ufshcd_setup_links(struct ufs_hba * hba,struct scsi_device * sdev)4965 static void ufshcd_setup_links(struct ufs_hba *hba, struct scsi_device *sdev)
4966 {
4967 struct device_link *link;
4968
4969 /*
4970 * Device wlun is the supplier & rest of the luns are consumers.
4971 * This ensures that device wlun suspends after all other luns.
4972 */
4973 if (hba->sdev_ufs_device) {
4974 link = device_link_add(&sdev->sdev_gendev,
4975 &hba->sdev_ufs_device->sdev_gendev,
4976 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE);
4977 if (!link) {
4978 dev_err(&sdev->sdev_gendev, "Failed establishing link - %s\n",
4979 dev_name(&hba->sdev_ufs_device->sdev_gendev));
4980 return;
4981 }
4982 hba->luns_avail--;
4983 /* Ignore REPORT_LUN wlun probing */
4984 if (hba->luns_avail == 1) {
4985 ufshcd_rpm_put(hba);
4986 return;
4987 }
4988 } else {
4989 /*
4990 * Device wlun is probed. The assumption is that WLUNs are
4991 * scanned before other LUNs.
4992 */
4993 hba->luns_avail--;
4994 }
4995 }
4996
4997 /**
4998 * ufshcd_slave_alloc - handle initial SCSI device configurations
4999 * @sdev: pointer to SCSI device
5000 *
5001 * Returns success
5002 */
ufshcd_slave_alloc(struct scsi_device * sdev)5003 static int ufshcd_slave_alloc(struct scsi_device *sdev)
5004 {
5005 struct ufs_hba *hba;
5006
5007 hba = shost_priv(sdev->host);
5008
5009 /* Mode sense(6) is not supported by UFS, so use Mode sense(10) */
5010 sdev->use_10_for_ms = 1;
5011
5012 /* DBD field should be set to 1 in mode sense(10) */
5013 sdev->set_dbd_for_ms = 1;
5014
5015 /* allow SCSI layer to restart the device in case of errors */
5016 sdev->allow_restart = 1;
5017
5018 /* REPORT SUPPORTED OPERATION CODES is not supported */
5019 sdev->no_report_opcodes = 1;
5020
5021 /* WRITE_SAME command is not supported */
5022 sdev->no_write_same = 1;
5023
5024 ufshcd_set_queue_depth(sdev);
5025
5026 ufshcd_get_lu_power_on_wp_status(hba, sdev);
5027
5028 ufshcd_setup_links(hba, sdev);
5029
5030 return 0;
5031 }
5032
5033 /**
5034 * ufshcd_change_queue_depth - change queue depth
5035 * @sdev: pointer to SCSI device
5036 * @depth: required depth to set
5037 *
5038 * Change queue depth and make sure the max. limits are not crossed.
5039 */
ufshcd_change_queue_depth(struct scsi_device * sdev,int depth)5040 static int ufshcd_change_queue_depth(struct scsi_device *sdev, int depth)
5041 {
5042 struct ufs_hba *hba = shost_priv(sdev->host);
5043
5044 if (depth > hba->nutrs)
5045 depth = hba->nutrs;
5046 return scsi_change_queue_depth(sdev, depth);
5047 }
5048
ufshcd_hpb_destroy(struct ufs_hba * hba,struct scsi_device * sdev)5049 static void ufshcd_hpb_destroy(struct ufs_hba *hba, struct scsi_device *sdev)
5050 {
5051 /* skip well-known LU */
5052 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5053 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5054 return;
5055
5056 ufshpb_destroy_lu(hba, sdev);
5057 }
5058
ufshcd_hpb_configure(struct ufs_hba * hba,struct scsi_device * sdev)5059 static void ufshcd_hpb_configure(struct ufs_hba *hba, struct scsi_device *sdev)
5060 {
5061 /* skip well-known LU */
5062 if ((sdev->lun >= UFS_UPIU_MAX_UNIT_NUM_ID) ||
5063 !(hba->dev_info.hpb_enabled) || !ufshpb_is_allowed(hba))
5064 return;
5065
5066 ufshpb_init_hpb_lu(hba, sdev);
5067 }
5068
5069 /**
5070 * ufshcd_slave_configure - adjust SCSI device configurations
5071 * @sdev: pointer to SCSI device
5072 */
ufshcd_slave_configure(struct scsi_device * sdev)5073 static int ufshcd_slave_configure(struct scsi_device *sdev)
5074 {
5075 struct ufs_hba *hba = shost_priv(sdev->host);
5076 struct request_queue *q = sdev->request_queue;
5077
5078 ufshcd_hpb_configure(hba, sdev);
5079
5080 blk_queue_update_dma_pad(q, PRDT_DATA_BYTE_COUNT_PAD - 1);
5081 if (hba->quirks & UFSHCD_QUIRK_ALIGN_SG_WITH_PAGE_SIZE)
5082 blk_queue_update_dma_alignment(q, PAGE_SIZE - 1);
5083 /*
5084 * Block runtime-pm until all consumers are added.
5085 * Refer ufshcd_setup_links().
5086 */
5087 if (is_device_wlun(sdev))
5088 pm_runtime_get_noresume(&sdev->sdev_gendev);
5089 else if (ufshcd_is_rpm_autosuspend_allowed(hba))
5090 sdev->rpm_autosuspend = 1;
5091 /*
5092 * Do not print messages during runtime PM to avoid never-ending cycles
5093 * of messages written back to storage by user space causing runtime
5094 * resume, causing more messages and so on.
5095 */
5096 sdev->silence_suspend = 1;
5097
5098 ufshcd_crypto_setup_rq_keyslot_manager(hba, q);
5099
5100 trace_android_vh_ufs_update_sdev(sdev);
5101
5102 return 0;
5103 }
5104
5105 /**
5106 * ufshcd_slave_destroy - remove SCSI device configurations
5107 * @sdev: pointer to SCSI device
5108 */
ufshcd_slave_destroy(struct scsi_device * sdev)5109 static void ufshcd_slave_destroy(struct scsi_device *sdev)
5110 {
5111 struct ufs_hba *hba;
5112 unsigned long flags;
5113
5114 hba = shost_priv(sdev->host);
5115
5116 ufshcd_hpb_destroy(hba, sdev);
5117
5118 /* Drop the reference as it won't be needed anymore */
5119 if (ufshcd_scsi_to_upiu_lun(sdev->lun) == UFS_UPIU_UFS_DEVICE_WLUN) {
5120 spin_lock_irqsave(hba->host->host_lock, flags);
5121 hba->sdev_ufs_device = NULL;
5122 spin_unlock_irqrestore(hba->host->host_lock, flags);
5123 } else if (hba->sdev_ufs_device) {
5124 struct device *supplier = NULL;
5125
5126 /* Ensure UFS Device WLUN exists and does not disappear */
5127 spin_lock_irqsave(hba->host->host_lock, flags);
5128 if (hba->sdev_ufs_device) {
5129 supplier = &hba->sdev_ufs_device->sdev_gendev;
5130 get_device(supplier);
5131 }
5132 spin_unlock_irqrestore(hba->host->host_lock, flags);
5133
5134 if (supplier) {
5135 /*
5136 * If a LUN fails to probe (e.g. absent BOOT WLUN), the
5137 * device will not have been registered but can still
5138 * have a device link holding a reference to the device.
5139 */
5140 device_link_remove(&sdev->sdev_gendev, supplier);
5141 put_device(supplier);
5142 }
5143 }
5144 }
5145
5146 /**
5147 * ufshcd_scsi_cmd_status - Update SCSI command result based on SCSI status
5148 * @lrbp: pointer to local reference block of completed command
5149 * @scsi_status: SCSI command status
5150 *
5151 * Returns value base on SCSI command status
5152 */
5153 static inline int
ufshcd_scsi_cmd_status(struct ufshcd_lrb * lrbp,int scsi_status)5154 ufshcd_scsi_cmd_status(struct ufshcd_lrb *lrbp, int scsi_status)
5155 {
5156 int result = 0;
5157
5158 switch (scsi_status) {
5159 case SAM_STAT_CHECK_CONDITION:
5160 ufshcd_copy_sense_data(lrbp);
5161 fallthrough;
5162 case SAM_STAT_GOOD:
5163 result |= DID_OK << 16 | scsi_status;
5164 break;
5165 case SAM_STAT_TASK_SET_FULL:
5166 case SAM_STAT_BUSY:
5167 case SAM_STAT_TASK_ABORTED:
5168 ufshcd_copy_sense_data(lrbp);
5169 result |= scsi_status;
5170 break;
5171 default:
5172 result |= DID_ERROR << 16;
5173 break;
5174 } /* end of switch */
5175
5176 return result;
5177 }
5178
5179 /**
5180 * ufshcd_transfer_rsp_status - Get overall status of the response
5181 * @hba: per adapter instance
5182 * @lrbp: pointer to local reference block of completed command
5183 *
5184 * Returns result of the command to notify SCSI midlayer
5185 */
ufshcd_transfer_rsp_status(struct ufs_hba * hba,struct ufshcd_lrb * lrbp)5186 int ufshcd_transfer_rsp_status(struct ufs_hba *hba, struct ufshcd_lrb *lrbp)
5187 {
5188 int result = 0;
5189 int scsi_status;
5190 int ocs;
5191
5192 /* overall command status of utrd */
5193 ocs = ufshcd_get_tr_ocs(lrbp);
5194
5195 if (hba->quirks & UFSHCD_QUIRK_BROKEN_OCS_FATAL_ERROR) {
5196 if (be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_1) &
5197 MASK_RSP_UPIU_RESULT)
5198 ocs = OCS_SUCCESS;
5199 }
5200
5201 switch (ocs) {
5202 case OCS_SUCCESS:
5203 result = ufshcd_get_req_rsp(lrbp->ucd_rsp_ptr);
5204 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
5205 switch (result) {
5206 case UPIU_TRANSACTION_RESPONSE:
5207 /*
5208 * get the response UPIU result to extract
5209 * the SCSI command status
5210 */
5211 result = ufshcd_get_rsp_upiu_result(lrbp->ucd_rsp_ptr);
5212
5213 /*
5214 * get the result based on SCSI status response
5215 * to notify the SCSI midlayer of the command status
5216 */
5217 scsi_status = result & MASK_SCSI_STATUS;
5218 result = ufshcd_scsi_cmd_status(lrbp, scsi_status);
5219
5220 /*
5221 * Currently we are only supporting BKOPs exception
5222 * events hence we can ignore BKOPs exception event
5223 * during power management callbacks. BKOPs exception
5224 * event is not expected to be raised in runtime suspend
5225 * callback as it allows the urgent bkops.
5226 * During system suspend, we are anyway forcefully
5227 * disabling the bkops and if urgent bkops is needed
5228 * it will be enabled on system resume. Long term
5229 * solution could be to abort the system suspend if
5230 * UFS device needs urgent BKOPs.
5231 */
5232 if (!hba->pm_op_in_progress &&
5233 !ufshcd_eh_in_progress(hba) &&
5234 ufshcd_is_exception_event(lrbp->ucd_rsp_ptr))
5235 /* Flushed in suspend */
5236 schedule_work(&hba->eeh_work);
5237
5238 if (scsi_status == SAM_STAT_GOOD)
5239 ufshpb_rsp_upiu(hba, lrbp);
5240 break;
5241 case UPIU_TRANSACTION_REJECT_UPIU:
5242 /* TODO: handle Reject UPIU Response */
5243 result = DID_ERROR << 16;
5244 dev_err(hba->dev,
5245 "Reject UPIU not fully implemented\n");
5246 break;
5247 default:
5248 dev_err(hba->dev,
5249 "Unexpected request response code = %x\n",
5250 result);
5251 result = DID_ERROR << 16;
5252 break;
5253 }
5254 break;
5255 case OCS_ABORTED:
5256 result |= DID_ABORT << 16;
5257 break;
5258 case OCS_INVALID_COMMAND_STATUS:
5259 result |= DID_REQUEUE << 16;
5260 break;
5261 case OCS_INVALID_CMD_TABLE_ATTR:
5262 case OCS_INVALID_PRDT_ATTR:
5263 case OCS_MISMATCH_DATA_BUF_SIZE:
5264 case OCS_MISMATCH_RESP_UPIU_SIZE:
5265 case OCS_PEER_COMM_FAILURE:
5266 case OCS_FATAL_ERROR:
5267 case OCS_DEVICE_FATAL_ERROR:
5268 case OCS_INVALID_CRYPTO_CONFIG:
5269 case OCS_GENERAL_CRYPTO_ERROR:
5270 default:
5271 result |= DID_ERROR << 16;
5272 dev_err(hba->dev,
5273 "OCS error from controller = %x for tag %d\n",
5274 ocs, lrbp->task_tag);
5275 ufshcd_print_evt_hist(hba);
5276 ufshcd_print_host_state(hba);
5277 break;
5278 } /* end of switch */
5279
5280 if ((host_byte(result) != DID_OK) &&
5281 (host_byte(result) != DID_REQUEUE) && !hba->silence_err_logs)
5282 ufshcd_print_trs(hba, 1 << lrbp->task_tag, true);
5283 return result;
5284 }
5285 EXPORT_SYMBOL_GPL(ufshcd_transfer_rsp_status);
5286
ufshcd_is_auto_hibern8_error(struct ufs_hba * hba,u32 intr_mask)5287 static bool ufshcd_is_auto_hibern8_error(struct ufs_hba *hba,
5288 u32 intr_mask)
5289 {
5290 if (!ufshcd_is_auto_hibern8_supported(hba) ||
5291 !ufshcd_is_auto_hibern8_enabled(hba))
5292 return false;
5293
5294 if (!(intr_mask & UFSHCD_UIC_HIBERN8_MASK))
5295 return false;
5296
5297 if (hba->active_uic_cmd &&
5298 (hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_ENTER ||
5299 hba->active_uic_cmd->command == UIC_CMD_DME_HIBER_EXIT))
5300 return false;
5301
5302 return true;
5303 }
5304
5305 /**
5306 * ufshcd_uic_cmd_compl - handle completion of uic command
5307 * @hba: per adapter instance
5308 * @intr_status: interrupt status generated by the controller
5309 *
5310 * Returns
5311 * IRQ_HANDLED - If interrupt is valid
5312 * IRQ_NONE - If invalid interrupt
5313 */
ufshcd_uic_cmd_compl(struct ufs_hba * hba,u32 intr_status)5314 static irqreturn_t ufshcd_uic_cmd_compl(struct ufs_hba *hba, u32 intr_status)
5315 {
5316 irqreturn_t retval = IRQ_NONE;
5317
5318 spin_lock(hba->host->host_lock);
5319 if (ufshcd_is_auto_hibern8_error(hba, intr_status))
5320 hba->errors |= (UFSHCD_UIC_HIBERN8_MASK & intr_status);
5321
5322 if ((intr_status & UIC_COMMAND_COMPL) && hba->active_uic_cmd) {
5323 hba->active_uic_cmd->argument2 |=
5324 ufshcd_get_uic_cmd_result(hba);
5325 hba->active_uic_cmd->argument3 =
5326 ufshcd_get_dme_attr_val(hba);
5327 if (!hba->uic_async_done)
5328 hba->active_uic_cmd->cmd_active = 0;
5329 complete(&hba->active_uic_cmd->done);
5330 retval = IRQ_HANDLED;
5331 }
5332
5333 if ((intr_status & UFSHCD_UIC_PWR_MASK) && hba->uic_async_done) {
5334 hba->active_uic_cmd->cmd_active = 0;
5335 complete(hba->uic_async_done);
5336 retval = IRQ_HANDLED;
5337 }
5338
5339 if (retval == IRQ_HANDLED)
5340 ufshcd_add_uic_command_trace(hba, hba->active_uic_cmd,
5341 UFS_CMD_COMP);
5342 spin_unlock(hba->host->host_lock);
5343 return retval;
5344 }
5345
5346 /**
5347 * __ufshcd_transfer_req_compl - handle SCSI and query command completion
5348 * @hba: per adapter instance
5349 * @completed_reqs: bitmask that indicates which requests to complete
5350 * @retry_requests: whether to ask the SCSI core to retry completed requests
5351 */
__ufshcd_transfer_req_compl(struct ufs_hba * hba,unsigned long completed_reqs,bool retry_requests)5352 static void __ufshcd_transfer_req_compl(struct ufs_hba *hba,
5353 unsigned long completed_reqs,
5354 bool retry_requests)
5355 {
5356 struct ufshcd_lrb *lrbp;
5357 struct scsi_cmnd *cmd;
5358 int result;
5359 int index;
5360 bool update_scaling = false;
5361
5362 for_each_set_bit(index, &completed_reqs, hba->nutrs) {
5363 lrbp = &hba->lrb[index];
5364 lrbp->compl_time_stamp = ktime_get();
5365 cmd = lrbp->cmd;
5366 if (cmd) {
5367 trace_android_vh_ufs_compl_command(hba, lrbp);
5368 if (unlikely(ufshcd_should_inform_monitor(hba, lrbp)))
5369 ufshcd_update_monitor(hba, lrbp);
5370 ufshcd_add_command_trace(hba, index, UFS_CMD_COMP);
5371 result = retry_requests ? DID_BUS_BUSY << 16 :
5372 ufshcd_transfer_rsp_status(hba, lrbp);
5373 scsi_dma_unmap(cmd);
5374 cmd->result = result;
5375 ufshcd_crypto_clear_prdt(hba, lrbp);
5376 /* Mark completed command as NULL in LRB */
5377 lrbp->cmd = NULL;
5378 /* Do not touch lrbp after scsi done */
5379 cmd->scsi_done(cmd);
5380 ufshcd_release(hba);
5381 update_scaling = true;
5382 } else if (lrbp->command_type == UTP_CMD_TYPE_DEV_MANAGE ||
5383 lrbp->command_type == UTP_CMD_TYPE_UFS_STORAGE) {
5384 if (hba->dev_cmd.complete) {
5385 trace_android_vh_ufs_compl_command(hba, lrbp);
5386 ufshcd_add_command_trace(hba, index,
5387 UFS_DEV_COMP);
5388 complete(hba->dev_cmd.complete);
5389 update_scaling = true;
5390 }
5391 }
5392 if (update_scaling)
5393 ufshcd_clk_scaling_update_busy(hba);
5394 }
5395 }
5396
5397 /**
5398 * ufshcd_transfer_req_compl - handle SCSI and query command completion
5399 * @hba: per adapter instance
5400 * @retry_requests: whether or not to ask to retry requests
5401 *
5402 * Returns
5403 * IRQ_HANDLED - If interrupt is valid
5404 * IRQ_NONE - If invalid interrupt
5405 */
ufshcd_transfer_req_compl(struct ufs_hba * hba,bool retry_requests)5406 static irqreturn_t ufshcd_transfer_req_compl(struct ufs_hba *hba,
5407 bool retry_requests)
5408 {
5409 unsigned long completed_reqs, flags;
5410 u32 tr_doorbell;
5411
5412 if (ufshcd_use_mcq_hooks(hba))
5413 return IRQ_HANDLED;
5414
5415 /* Resetting interrupt aggregation counters first and reading the
5416 * DOOR_BELL afterward allows us to handle all the completed requests.
5417 * In order to prevent other interrupts starvation the DB is read once
5418 * after reset. The down side of this solution is the possibility of
5419 * false interrupt if device completes another request after resetting
5420 * aggregation and before reading the DB.
5421 */
5422 if (ufshcd_is_intr_aggr_allowed(hba) &&
5423 !(hba->quirks & UFSHCI_QUIRK_SKIP_RESET_INTR_AGGR))
5424 ufshcd_reset_intr_aggr(hba);
5425
5426 if (ufs_fail_completion())
5427 return IRQ_HANDLED;
5428
5429 spin_lock_irqsave(&hba->outstanding_lock, flags);
5430 tr_doorbell = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
5431 completed_reqs = ~tr_doorbell & hba->outstanding_reqs;
5432 WARN_ONCE(completed_reqs & ~hba->outstanding_reqs,
5433 "completed: %#lx; outstanding: %#lx\n", completed_reqs,
5434 hba->outstanding_reqs);
5435 hba->outstanding_reqs &= ~completed_reqs;
5436 spin_unlock_irqrestore(&hba->outstanding_lock, flags);
5437
5438 if (completed_reqs) {
5439 __ufshcd_transfer_req_compl(hba, completed_reqs,
5440 retry_requests);
5441 return IRQ_HANDLED;
5442 } else {
5443 return IRQ_NONE;
5444 }
5445 }
5446
__ufshcd_write_ee_control(struct ufs_hba * hba,u32 ee_ctrl_mask)5447 int __ufshcd_write_ee_control(struct ufs_hba *hba, u32 ee_ctrl_mask)
5448 {
5449 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
5450 QUERY_ATTR_IDN_EE_CONTROL, 0, 0,
5451 &ee_ctrl_mask);
5452 }
5453
ufshcd_write_ee_control(struct ufs_hba * hba)5454 int ufshcd_write_ee_control(struct ufs_hba *hba)
5455 {
5456 int err;
5457
5458 mutex_lock(&hba->ee_ctrl_mutex);
5459 err = __ufshcd_write_ee_control(hba, hba->ee_ctrl_mask);
5460 mutex_unlock(&hba->ee_ctrl_mutex);
5461 if (err)
5462 dev_err(hba->dev, "%s: failed to write ee control %d\n",
5463 __func__, err);
5464 return err;
5465 }
5466
ufshcd_update_ee_control(struct ufs_hba * hba,u16 * mask,u16 * other_mask,u16 set,u16 clr)5467 int ufshcd_update_ee_control(struct ufs_hba *hba, u16 *mask, u16 *other_mask,
5468 u16 set, u16 clr)
5469 {
5470 u16 new_mask, ee_ctrl_mask;
5471 int err = 0;
5472
5473 mutex_lock(&hba->ee_ctrl_mutex);
5474 new_mask = (*mask & ~clr) | set;
5475 ee_ctrl_mask = new_mask | *other_mask;
5476 if (ee_ctrl_mask != hba->ee_ctrl_mask)
5477 err = __ufshcd_write_ee_control(hba, ee_ctrl_mask);
5478 /* Still need to update 'mask' even if 'ee_ctrl_mask' was unchanged */
5479 if (!err) {
5480 hba->ee_ctrl_mask = ee_ctrl_mask;
5481 *mask = new_mask;
5482 }
5483 mutex_unlock(&hba->ee_ctrl_mutex);
5484 return err;
5485 }
5486
5487 /**
5488 * ufshcd_disable_ee - disable exception event
5489 * @hba: per-adapter instance
5490 * @mask: exception event to disable
5491 *
5492 * Disables exception event in the device so that the EVENT_ALERT
5493 * bit is not set.
5494 *
5495 * Returns zero on success, non-zero error value on failure.
5496 */
ufshcd_disable_ee(struct ufs_hba * hba,u16 mask)5497 static inline int ufshcd_disable_ee(struct ufs_hba *hba, u16 mask)
5498 {
5499 return ufshcd_update_ee_drv_mask(hba, 0, mask);
5500 }
5501
5502 /**
5503 * ufshcd_enable_ee - enable exception event
5504 * @hba: per-adapter instance
5505 * @mask: exception event to enable
5506 *
5507 * Enable corresponding exception event in the device to allow
5508 * device to alert host in critical scenarios.
5509 *
5510 * Returns zero on success, non-zero error value on failure.
5511 */
ufshcd_enable_ee(struct ufs_hba * hba,u16 mask)5512 static inline int ufshcd_enable_ee(struct ufs_hba *hba, u16 mask)
5513 {
5514 return ufshcd_update_ee_drv_mask(hba, mask, 0);
5515 }
5516
5517 /**
5518 * ufshcd_enable_auto_bkops - Allow device managed BKOPS
5519 * @hba: per-adapter instance
5520 *
5521 * Allow device to manage background operations on its own. Enabling
5522 * this might lead to inconsistent latencies during normal data transfers
5523 * as the device is allowed to manage its own way of handling background
5524 * operations.
5525 *
5526 * Returns zero on success, non-zero on failure.
5527 */
ufshcd_enable_auto_bkops(struct ufs_hba * hba)5528 static int ufshcd_enable_auto_bkops(struct ufs_hba *hba)
5529 {
5530 int err = 0;
5531
5532 if (hba->auto_bkops_enabled)
5533 goto out;
5534
5535 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_SET_FLAG,
5536 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5537 if (err) {
5538 dev_err(hba->dev, "%s: failed to enable bkops %d\n",
5539 __func__, err);
5540 goto out;
5541 }
5542
5543 hba->auto_bkops_enabled = true;
5544 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Enabled");
5545
5546 /* No need of URGENT_BKOPS exception from the device */
5547 err = ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5548 if (err)
5549 dev_err(hba->dev, "%s: failed to disable exception event %d\n",
5550 __func__, err);
5551 out:
5552 return err;
5553 }
5554
5555 /**
5556 * ufshcd_disable_auto_bkops - block device in doing background operations
5557 * @hba: per-adapter instance
5558 *
5559 * Disabling background operations improves command response latency but
5560 * has drawback of device moving into critical state where the device is
5561 * not-operable. Make sure to call ufshcd_enable_auto_bkops() whenever the
5562 * host is idle so that BKOPS are managed effectively without any negative
5563 * impacts.
5564 *
5565 * Returns zero on success, non-zero on failure.
5566 */
ufshcd_disable_auto_bkops(struct ufs_hba * hba)5567 static int ufshcd_disable_auto_bkops(struct ufs_hba *hba)
5568 {
5569 int err = 0;
5570
5571 if (!hba->auto_bkops_enabled)
5572 goto out;
5573
5574 /*
5575 * If host assisted BKOPs is to be enabled, make sure
5576 * urgent bkops exception is allowed.
5577 */
5578 err = ufshcd_enable_ee(hba, MASK_EE_URGENT_BKOPS);
5579 if (err) {
5580 dev_err(hba->dev, "%s: failed to enable exception event %d\n",
5581 __func__, err);
5582 goto out;
5583 }
5584
5585 err = ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_CLEAR_FLAG,
5586 QUERY_FLAG_IDN_BKOPS_EN, 0, NULL);
5587 if (err) {
5588 dev_err(hba->dev, "%s: failed to disable bkops %d\n",
5589 __func__, err);
5590 ufshcd_disable_ee(hba, MASK_EE_URGENT_BKOPS);
5591 goto out;
5592 }
5593
5594 hba->auto_bkops_enabled = false;
5595 trace_ufshcd_auto_bkops_state(dev_name(hba->dev), "Disabled");
5596 hba->is_urgent_bkops_lvl_checked = false;
5597 out:
5598 return err;
5599 }
5600
5601 /**
5602 * ufshcd_force_reset_auto_bkops - force reset auto bkops state
5603 * @hba: per adapter instance
5604 *
5605 * After a device reset the device may toggle the BKOPS_EN flag
5606 * to default value. The s/w tracking variables should be updated
5607 * as well. This function would change the auto-bkops state based on
5608 * UFSHCD_CAP_KEEP_AUTO_BKOPS_ENABLED_EXCEPT_SUSPEND.
5609 */
ufshcd_force_reset_auto_bkops(struct ufs_hba * hba)5610 static void ufshcd_force_reset_auto_bkops(struct ufs_hba *hba)
5611 {
5612 if (ufshcd_keep_autobkops_enabled_except_suspend(hba)) {
5613 hba->auto_bkops_enabled = false;
5614 hba->ee_ctrl_mask |= MASK_EE_URGENT_BKOPS;
5615 ufshcd_enable_auto_bkops(hba);
5616 } else {
5617 hba->auto_bkops_enabled = true;
5618 hba->ee_ctrl_mask &= ~MASK_EE_URGENT_BKOPS;
5619 ufshcd_disable_auto_bkops(hba);
5620 }
5621 hba->urgent_bkops_lvl = BKOPS_STATUS_PERF_IMPACT;
5622 hba->is_urgent_bkops_lvl_checked = false;
5623 }
5624
ufshcd_get_bkops_status(struct ufs_hba * hba,u32 * status)5625 static inline int ufshcd_get_bkops_status(struct ufs_hba *hba, u32 *status)
5626 {
5627 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5628 QUERY_ATTR_IDN_BKOPS_STATUS, 0, 0, status);
5629 }
5630
5631 /**
5632 * ufshcd_bkops_ctrl - control the auto bkops based on current bkops status
5633 * @hba: per-adapter instance
5634 * @status: bkops_status value
5635 *
5636 * Read the bkops_status from the UFS device and Enable fBackgroundOpsEn
5637 * flag in the device to permit background operations if the device
5638 * bkops_status is greater than or equal to "status" argument passed to
5639 * this function, disable otherwise.
5640 *
5641 * Returns 0 for success, non-zero in case of failure.
5642 *
5643 * NOTE: Caller of this function can check the "hba->auto_bkops_enabled" flag
5644 * to know whether auto bkops is enabled or disabled after this function
5645 * returns control to it.
5646 */
ufshcd_bkops_ctrl(struct ufs_hba * hba,enum bkops_status status)5647 int ufshcd_bkops_ctrl(struct ufs_hba *hba,
5648 enum bkops_status status)
5649 {
5650 int err;
5651 u32 curr_status = 0;
5652
5653 err = ufshcd_get_bkops_status(hba, &curr_status);
5654 if (err) {
5655 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5656 __func__, err);
5657 goto out;
5658 } else if (curr_status > BKOPS_STATUS_MAX) {
5659 dev_err(hba->dev, "%s: invalid BKOPS status %d\n",
5660 __func__, curr_status);
5661 err = -EINVAL;
5662 goto out;
5663 }
5664
5665 if (curr_status >= status)
5666 err = ufshcd_enable_auto_bkops(hba);
5667 else
5668 err = ufshcd_disable_auto_bkops(hba);
5669 out:
5670 return err;
5671 }
5672 EXPORT_SYMBOL_GPL(ufshcd_bkops_ctrl);
5673
5674 /**
5675 * ufshcd_urgent_bkops - handle urgent bkops exception event
5676 * @hba: per-adapter instance
5677 *
5678 * Enable fBackgroundOpsEn flag in the device to permit background
5679 * operations.
5680 *
5681 * If BKOPs is enabled, this function returns 0, 1 if the bkops in not enabled
5682 * and negative error value for any other failure.
5683 */
ufshcd_urgent_bkops(struct ufs_hba * hba)5684 static int ufshcd_urgent_bkops(struct ufs_hba *hba)
5685 {
5686 return ufshcd_bkops_ctrl(hba, hba->urgent_bkops_lvl);
5687 }
5688
ufshcd_get_ee_status(struct ufs_hba * hba,u32 * status)5689 static inline int ufshcd_get_ee_status(struct ufs_hba *hba, u32 *status)
5690 {
5691 return ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5692 QUERY_ATTR_IDN_EE_STATUS, 0, 0, status);
5693 }
5694
ufshcd_bkops_exception_event_handler(struct ufs_hba * hba)5695 static void ufshcd_bkops_exception_event_handler(struct ufs_hba *hba)
5696 {
5697 int err;
5698 u32 curr_status = 0;
5699
5700 if (hba->is_urgent_bkops_lvl_checked)
5701 goto enable_auto_bkops;
5702
5703 err = ufshcd_get_bkops_status(hba, &curr_status);
5704 if (err) {
5705 dev_err(hba->dev, "%s: failed to get BKOPS status %d\n",
5706 __func__, err);
5707 goto out;
5708 }
5709
5710 /*
5711 * We are seeing that some devices are raising the urgent bkops
5712 * exception events even when BKOPS status doesn't indicate performace
5713 * impacted or critical. Handle these device by determining their urgent
5714 * bkops status at runtime.
5715 */
5716 if (curr_status < BKOPS_STATUS_PERF_IMPACT) {
5717 dev_err(hba->dev, "%s: device raised urgent BKOPS exception for bkops status %d\n",
5718 __func__, curr_status);
5719 /* update the current status as the urgent bkops level */
5720 hba->urgent_bkops_lvl = curr_status;
5721 hba->is_urgent_bkops_lvl_checked = true;
5722 }
5723
5724 enable_auto_bkops:
5725 err = ufshcd_enable_auto_bkops(hba);
5726 out:
5727 if (err < 0)
5728 dev_err(hba->dev, "%s: failed to handle urgent bkops %d\n",
5729 __func__, err);
5730 }
5731
__ufshcd_wb_toggle(struct ufs_hba * hba,bool set,enum flag_idn idn)5732 static int __ufshcd_wb_toggle(struct ufs_hba *hba, bool set, enum flag_idn idn)
5733 {
5734 u8 index;
5735 enum query_opcode opcode = set ? UPIU_QUERY_OPCODE_SET_FLAG :
5736 UPIU_QUERY_OPCODE_CLEAR_FLAG;
5737
5738 index = ufshcd_wb_get_query_index(hba);
5739 return ufshcd_query_flag_retry(hba, opcode, idn, index, NULL);
5740 }
5741
ufshcd_wb_toggle(struct ufs_hba * hba,bool enable)5742 int ufshcd_wb_toggle(struct ufs_hba *hba, bool enable)
5743 {
5744 int ret;
5745
5746 if (!ufshcd_is_wb_allowed(hba))
5747 return 0;
5748
5749 if (!(enable ^ hba->dev_info.wb_enabled))
5750 return 0;
5751
5752 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_EN);
5753 if (ret) {
5754 dev_err(hba->dev, "%s Write Booster %s failed %d\n",
5755 __func__, enable ? "enable" : "disable", ret);
5756 return ret;
5757 }
5758
5759 hba->dev_info.wb_enabled = enable;
5760 dev_dbg(hba->dev, "%s Write Booster %s\n",
5761 __func__, enable ? "enabled" : "disabled");
5762
5763 return ret;
5764 }
5765
ufshcd_wb_toggle_flush_during_h8(struct ufs_hba * hba,bool set)5766 static void ufshcd_wb_toggle_flush_during_h8(struct ufs_hba *hba, bool set)
5767 {
5768 int ret;
5769
5770 ret = __ufshcd_wb_toggle(hba, set,
5771 QUERY_FLAG_IDN_WB_BUFF_FLUSH_DURING_HIBERN8);
5772 if (ret) {
5773 dev_err(hba->dev, "%s: WB-Buf Flush during H8 %s failed: %d\n",
5774 __func__, set ? "enable" : "disable", ret);
5775 return;
5776 }
5777 dev_dbg(hba->dev, "%s WB-Buf Flush during H8 %s\n",
5778 __func__, set ? "enabled" : "disabled");
5779 }
5780
ufshcd_wb_toggle_flush(struct ufs_hba * hba,bool enable)5781 static inline void ufshcd_wb_toggle_flush(struct ufs_hba *hba, bool enable)
5782 {
5783 int ret;
5784
5785 if (!ufshcd_is_wb_allowed(hba) ||
5786 hba->dev_info.wb_buf_flush_enabled == enable)
5787 return;
5788
5789 ret = __ufshcd_wb_toggle(hba, enable, QUERY_FLAG_IDN_WB_BUFF_FLUSH_EN);
5790 if (ret) {
5791 dev_err(hba->dev, "%s WB-Buf Flush %s failed %d\n", __func__,
5792 enable ? "enable" : "disable", ret);
5793 return;
5794 }
5795
5796 hba->dev_info.wb_buf_flush_enabled = enable;
5797
5798 dev_dbg(hba->dev, "%s WB-Buf Flush %s\n",
5799 __func__, enable ? "enabled" : "disabled");
5800 }
5801
ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba * hba,u32 avail_buf)5802 static bool ufshcd_wb_presrv_usrspc_keep_vcc_on(struct ufs_hba *hba,
5803 u32 avail_buf)
5804 {
5805 u32 cur_buf;
5806 int ret;
5807 u8 index;
5808
5809 index = ufshcd_wb_get_query_index(hba);
5810 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5811 QUERY_ATTR_IDN_CURR_WB_BUFF_SIZE,
5812 index, 0, &cur_buf);
5813 if (ret) {
5814 dev_err(hba->dev, "%s dCurWriteBoosterBufferSize read failed %d\n",
5815 __func__, ret);
5816 return false;
5817 }
5818
5819 if (!cur_buf) {
5820 dev_info(hba->dev, "dCurWBBuf: %d WB disabled until free-space is available\n",
5821 cur_buf);
5822 return false;
5823 }
5824 /* Let it continue to flush when available buffer exceeds threshold */
5825 if (avail_buf < hba->vps->wb_flush_threshold)
5826 return true;
5827
5828 return false;
5829 }
5830
ufshcd_wb_need_flush(struct ufs_hba * hba)5831 static bool ufshcd_wb_need_flush(struct ufs_hba *hba)
5832 {
5833 int ret;
5834 u32 avail_buf;
5835 u8 index;
5836
5837 if (!ufshcd_is_wb_allowed(hba))
5838 return false;
5839 /*
5840 * The ufs device needs the vcc to be ON to flush.
5841 * With user-space reduction enabled, it's enough to enable flush
5842 * by checking only the available buffer. The threshold
5843 * defined here is > 90% full.
5844 * With user-space preserved enabled, the current-buffer
5845 * should be checked too because the wb buffer size can reduce
5846 * when disk tends to be full. This info is provided by current
5847 * buffer (dCurrentWriteBoosterBufferSize). There's no point in
5848 * keeping vcc on when current buffer is empty.
5849 */
5850 index = ufshcd_wb_get_query_index(hba);
5851 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
5852 QUERY_ATTR_IDN_AVAIL_WB_BUFF_SIZE,
5853 index, 0, &avail_buf);
5854 if (ret) {
5855 dev_warn(hba->dev, "%s dAvailableWriteBoosterBufferSize read failed %d\n",
5856 __func__, ret);
5857 return false;
5858 }
5859
5860 if (!hba->dev_info.b_presrv_uspc_en) {
5861 if (avail_buf <= UFS_WB_BUF_REMAIN_PERCENT(10))
5862 return true;
5863 return false;
5864 }
5865
5866 return ufshcd_wb_presrv_usrspc_keep_vcc_on(hba, avail_buf);
5867 }
5868
ufshcd_rpm_dev_flush_recheck_work(struct work_struct * work)5869 static void ufshcd_rpm_dev_flush_recheck_work(struct work_struct *work)
5870 {
5871 struct ufs_hba *hba = container_of(to_delayed_work(work),
5872 struct ufs_hba,
5873 rpm_dev_flush_recheck_work);
5874 /*
5875 * To prevent unnecessary VCC power drain after device finishes
5876 * WriteBooster buffer flush or Auto BKOPs, force runtime resume
5877 * after a certain delay to recheck the threshold by next runtime
5878 * suspend.
5879 */
5880 ufshcd_rpm_get_sync(hba);
5881 ufshcd_rpm_put_sync(hba);
5882 }
5883
5884 /**
5885 * ufshcd_exception_event_handler - handle exceptions raised by device
5886 * @work: pointer to work data
5887 *
5888 * Read bExceptionEventStatus attribute from the device and handle the
5889 * exception event accordingly.
5890 */
ufshcd_exception_event_handler(struct work_struct * work)5891 static void ufshcd_exception_event_handler(struct work_struct *work)
5892 {
5893 struct ufs_hba *hba;
5894 int err;
5895 u32 status = 0;
5896 hba = container_of(work, struct ufs_hba, eeh_work);
5897
5898 ufshcd_scsi_block_requests(hba);
5899 err = ufshcd_get_ee_status(hba, &status);
5900 if (err) {
5901 dev_err(hba->dev, "%s: failed to get exception status %d\n",
5902 __func__, err);
5903 goto out;
5904 }
5905
5906 trace_ufshcd_exception_event(dev_name(hba->dev), status);
5907
5908 if (status & hba->ee_drv_mask & MASK_EE_URGENT_BKOPS)
5909 ufshcd_bkops_exception_event_handler(hba);
5910
5911 ufs_debugfs_exception_event(hba, status);
5912 out:
5913 ufshcd_scsi_unblock_requests(hba);
5914 return;
5915 }
5916
5917 /* Complete requests that have door-bell cleared */
ufshcd_complete_requests(struct ufs_hba * hba)5918 static void ufshcd_complete_requests(struct ufs_hba *hba)
5919 {
5920 ufshcd_transfer_req_compl(hba, /*retry_requests=*/false);
5921 ufshcd_tmc_handler(hba);
5922 }
5923
ufshcd_retry_aborted_requests(struct ufs_hba * hba)5924 static void ufshcd_retry_aborted_requests(struct ufs_hba *hba)
5925 {
5926 ufshcd_transfer_req_compl(hba, /*retry_requests=*/true);
5927 ufshcd_tmc_handler(hba);
5928 }
5929
5930 /**
5931 * ufshcd_quirk_dl_nac_errors - This function checks if error handling is
5932 * to recover from the DL NAC errors or not.
5933 * @hba: per-adapter instance
5934 *
5935 * Returns true if error handling is required, false otherwise
5936 */
ufshcd_quirk_dl_nac_errors(struct ufs_hba * hba)5937 static bool ufshcd_quirk_dl_nac_errors(struct ufs_hba *hba)
5938 {
5939 unsigned long flags;
5940 bool err_handling = true;
5941
5942 spin_lock_irqsave(hba->host->host_lock, flags);
5943 /*
5944 * UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS only workaround the
5945 * device fatal error and/or DL NAC & REPLAY timeout errors.
5946 */
5947 if (hba->saved_err & (CONTROLLER_FATAL_ERROR | SYSTEM_BUS_FATAL_ERROR))
5948 goto out;
5949
5950 if ((hba->saved_err & DEVICE_FATAL_ERROR) ||
5951 ((hba->saved_err & UIC_ERROR) &&
5952 (hba->saved_uic_err & UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))
5953 goto out;
5954
5955 if ((hba->saved_err & UIC_ERROR) &&
5956 (hba->saved_uic_err & UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)) {
5957 int err;
5958 /*
5959 * wait for 50ms to see if we can get any other errors or not.
5960 */
5961 spin_unlock_irqrestore(hba->host->host_lock, flags);
5962 msleep(50);
5963 spin_lock_irqsave(hba->host->host_lock, flags);
5964
5965 /*
5966 * now check if we have got any other severe errors other than
5967 * DL NAC error?
5968 */
5969 if ((hba->saved_err & INT_FATAL_ERRORS) ||
5970 ((hba->saved_err & UIC_ERROR) &&
5971 (hba->saved_uic_err & ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)))
5972 goto out;
5973
5974 /*
5975 * As DL NAC is the only error received so far, send out NOP
5976 * command to confirm if link is still active or not.
5977 * - If we don't get any response then do error recovery.
5978 * - If we get response then clear the DL NAC error bit.
5979 */
5980
5981 spin_unlock_irqrestore(hba->host->host_lock, flags);
5982 err = ufshcd_verify_dev_init(hba);
5983 spin_lock_irqsave(hba->host->host_lock, flags);
5984
5985 if (err)
5986 goto out;
5987
5988 /* Link seems to be alive hence ignore the DL NAC errors */
5989 if (hba->saved_uic_err == UFSHCD_UIC_DL_NAC_RECEIVED_ERROR)
5990 hba->saved_err &= ~UIC_ERROR;
5991 /* clear NAC error */
5992 hba->saved_uic_err &= ~UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
5993 if (!hba->saved_uic_err)
5994 err_handling = false;
5995 }
5996 out:
5997 spin_unlock_irqrestore(hba->host->host_lock, flags);
5998 return err_handling;
5999 }
6000
6001 /* host lock must be held before calling this func */
ufshcd_is_saved_err_fatal(struct ufs_hba * hba)6002 static inline bool ufshcd_is_saved_err_fatal(struct ufs_hba *hba)
6003 {
6004 return (hba->saved_uic_err & UFSHCD_UIC_DL_PA_INIT_ERROR) ||
6005 (hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK));
6006 }
6007
6008 /* host lock must be held before calling this func */
ufshcd_schedule_eh_work(struct ufs_hba * hba)6009 static inline void ufshcd_schedule_eh_work(struct ufs_hba *hba)
6010 {
6011 /* handle fatal errors only when link is not in error state */
6012 if (hba->ufshcd_state != UFSHCD_STATE_ERROR) {
6013 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6014 ufshcd_is_saved_err_fatal(hba))
6015 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_FATAL;
6016 else
6017 hba->ufshcd_state = UFSHCD_STATE_EH_SCHEDULED_NON_FATAL;
6018 queue_work(hba->eh_wq, &hba->eh_work);
6019 }
6020 }
6021
ufshcd_force_error_recovery(struct ufs_hba * hba)6022 static void ufshcd_force_error_recovery(struct ufs_hba *hba)
6023 {
6024 spin_lock_irq(hba->host->host_lock);
6025 hba->force_reset = true;
6026 ufshcd_schedule_eh_work(hba);
6027 spin_unlock_irq(hba->host->host_lock);
6028 }
6029
ufshcd_clk_scaling_allow(struct ufs_hba * hba,bool allow)6030 static void ufshcd_clk_scaling_allow(struct ufs_hba *hba, bool allow)
6031 {
6032 mutex_lock(&wb_mutex);
6033 down_write(&hba->clk_scaling_lock);
6034 hba->clk_scaling.is_allowed = allow;
6035 up_write(&hba->clk_scaling_lock);
6036 mutex_unlock(&wb_mutex);
6037 }
6038
ufshcd_clk_scaling_suspend(struct ufs_hba * hba,bool suspend)6039 static void ufshcd_clk_scaling_suspend(struct ufs_hba *hba, bool suspend)
6040 {
6041 if (suspend) {
6042 if (hba->clk_scaling.is_enabled)
6043 ufshcd_suspend_clkscaling(hba);
6044 ufshcd_clk_scaling_allow(hba, false);
6045 } else {
6046 ufshcd_clk_scaling_allow(hba, true);
6047 if (hba->clk_scaling.is_enabled)
6048 ufshcd_resume_clkscaling(hba);
6049 }
6050 }
6051
ufshcd_err_handling_prepare(struct ufs_hba * hba)6052 static void ufshcd_err_handling_prepare(struct ufs_hba *hba)
6053 {
6054 ufshcd_rpm_get_sync(hba);
6055 if (pm_runtime_status_suspended(&hba->sdev_ufs_device->sdev_gendev) ||
6056 hba->is_sys_suspended) {
6057 enum ufs_pm_op pm_op;
6058
6059 /*
6060 * Don't assume anything of resume, if
6061 * resume fails, irq and clocks can be OFF, and powers
6062 * can be OFF or in LPM.
6063 */
6064 ufshcd_setup_hba_vreg(hba, true);
6065 ufshcd_enable_irq(hba);
6066 ufshcd_setup_vreg(hba, true);
6067 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
6068 ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
6069 ufshcd_hold(hba, false);
6070 if (!ufshcd_is_clkgating_allowed(hba))
6071 ufshcd_setup_clocks(hba, true);
6072 ufshcd_release(hba);
6073 pm_op = hba->is_sys_suspended ? UFS_SYSTEM_PM : UFS_RUNTIME_PM;
6074 ufshcd_vops_resume(hba, pm_op);
6075 } else {
6076 ufshcd_hold(hba, false);
6077 if (ufshcd_is_clkscaling_supported(hba) &&
6078 hba->clk_scaling.is_enabled)
6079 ufshcd_suspend_clkscaling(hba);
6080 ufshcd_clk_scaling_allow(hba, false);
6081 }
6082 ufshcd_scsi_block_requests(hba);
6083 /* Drain ufshcd_queuecommand() */
6084 synchronize_rcu();
6085 cancel_work_sync(&hba->eeh_work);
6086 }
6087
ufshcd_err_handling_unprepare(struct ufs_hba * hba)6088 static void ufshcd_err_handling_unprepare(struct ufs_hba *hba)
6089 {
6090 ufshcd_scsi_unblock_requests(hba);
6091 ufshcd_release(hba);
6092 if (ufshcd_is_clkscaling_supported(hba))
6093 ufshcd_clk_scaling_suspend(hba, false);
6094 ufshcd_rpm_put(hba);
6095 }
6096
ufshcd_err_handling_should_stop(struct ufs_hba * hba)6097 static inline bool ufshcd_err_handling_should_stop(struct ufs_hba *hba)
6098 {
6099 return (!hba->is_powered || hba->shutting_down ||
6100 !hba->sdev_ufs_device ||
6101 hba->ufshcd_state == UFSHCD_STATE_ERROR ||
6102 (!(hba->saved_err || hba->saved_uic_err || hba->force_reset ||
6103 ufshcd_is_link_broken(hba))));
6104 }
6105
6106 #ifdef CONFIG_PM
ufshcd_recover_pm_error(struct ufs_hba * hba)6107 static void ufshcd_recover_pm_error(struct ufs_hba *hba)
6108 {
6109 struct Scsi_Host *shost = hba->host;
6110 struct scsi_device *sdev;
6111 struct request_queue *q;
6112 int ret;
6113
6114 hba->is_sys_suspended = false;
6115 /*
6116 * Set RPM status of wlun device to RPM_ACTIVE,
6117 * this also clears its runtime error.
6118 */
6119 ret = pm_runtime_set_active(&hba->sdev_ufs_device->sdev_gendev);
6120
6121 /* hba device might have a runtime error otherwise */
6122 if (ret)
6123 ret = pm_runtime_set_active(hba->dev);
6124 /*
6125 * If wlun device had runtime error, we also need to resume those
6126 * consumer scsi devices in case any of them has failed to be
6127 * resumed due to supplier runtime resume failure. This is to unblock
6128 * blk_queue_enter in case there are bios waiting inside it.
6129 */
6130 if (!ret) {
6131 shost_for_each_device(sdev, shost) {
6132 q = sdev->request_queue;
6133 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
6134 q->rpm_status == RPM_SUSPENDING))
6135 pm_request_resume(q->dev);
6136 }
6137 }
6138 }
6139 #else
ufshcd_recover_pm_error(struct ufs_hba * hba)6140 static inline void ufshcd_recover_pm_error(struct ufs_hba *hba)
6141 {
6142 }
6143 #endif
6144
ufshcd_is_pwr_mode_restore_needed(struct ufs_hba * hba)6145 static bool ufshcd_is_pwr_mode_restore_needed(struct ufs_hba *hba)
6146 {
6147 struct ufs_pa_layer_attr *pwr_info = &hba->pwr_info;
6148 u32 mode;
6149
6150 ufshcd_dme_get(hba, UIC_ARG_MIB(PA_PWRMODE), &mode);
6151
6152 if (pwr_info->pwr_rx != ((mode >> PWRMODE_RX_OFFSET) & PWRMODE_MASK))
6153 return true;
6154
6155 if (pwr_info->pwr_tx != (mode & PWRMODE_MASK))
6156 return true;
6157
6158 return false;
6159 }
6160
6161 /**
6162 * ufshcd_err_handler - handle UFS errors that require s/w attention
6163 * @work: pointer to work structure
6164 */
ufshcd_err_handler(struct work_struct * work)6165 static void ufshcd_err_handler(struct work_struct *work)
6166 {
6167 struct ufs_hba *hba;
6168 unsigned long flags;
6169 bool err_xfer = false;
6170 bool err_tm = false;
6171 int err = 0, pmc_err;
6172 int tag;
6173 bool needs_reset = false, needs_restore = false;
6174 unsigned long *outstanding_reqs;
6175 int nr_tag;
6176
6177 hba = container_of(work, struct ufs_hba, eh_work);
6178
6179 down(&hba->host_sem);
6180 spin_lock_irqsave(hba->host->host_lock, flags);
6181 if (ufshcd_err_handling_should_stop(hba)) {
6182 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6183 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6184 spin_unlock_irqrestore(hba->host->host_lock, flags);
6185 up(&hba->host_sem);
6186 return;
6187 }
6188 ufshcd_set_eh_in_progress(hba);
6189 spin_unlock_irqrestore(hba->host->host_lock, flags);
6190 ufshcd_err_handling_prepare(hba);
6191 /* Complete requests that have door-bell cleared by h/w */
6192 ufshcd_complete_requests(hba);
6193 spin_lock_irqsave(hba->host->host_lock, flags);
6194 if (hba->ufshcd_state != UFSHCD_STATE_ERROR)
6195 hba->ufshcd_state = UFSHCD_STATE_RESET;
6196 /*
6197 * A full reset and restore might have happened after preparation
6198 * is finished, double check whether we should stop.
6199 */
6200 if (ufshcd_err_handling_should_stop(hba))
6201 goto skip_err_handling;
6202
6203 if (hba->dev_quirks & UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6204 bool ret;
6205
6206 spin_unlock_irqrestore(hba->host->host_lock, flags);
6207 /* release the lock as ufshcd_quirk_dl_nac_errors() may sleep */
6208 ret = ufshcd_quirk_dl_nac_errors(hba);
6209 spin_lock_irqsave(hba->host->host_lock, flags);
6210 if (!ret && ufshcd_err_handling_should_stop(hba))
6211 goto skip_err_handling;
6212 }
6213
6214 if ((hba->saved_err & (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6215 (hba->saved_uic_err &&
6216 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6217 bool pr_prdt = !!(hba->saved_err & SYSTEM_BUS_FATAL_ERROR);
6218
6219 spin_unlock_irqrestore(hba->host->host_lock, flags);
6220 ufshcd_print_host_state(hba);
6221 ufshcd_print_pwr_info(hba);
6222 ufshcd_print_evt_hist(hba);
6223 ufshcd_print_tmrs(hba, hba->outstanding_tasks);
6224
6225 if (ufshcd_use_mcq_hooks(hba))
6226 trace_android_vh_ufs_mcq_print_trs(hba, pr_prdt);
6227 else
6228 ufshcd_print_trs(hba, hba->outstanding_reqs, pr_prdt);
6229 spin_lock_irqsave(hba->host->host_lock, flags);
6230 }
6231
6232 /*
6233 * if host reset is required then skip clearing the pending
6234 * transfers forcefully because they will get cleared during
6235 * host reset and restore
6236 */
6237 if (hba->force_reset || ufshcd_is_link_broken(hba) ||
6238 ufshcd_is_saved_err_fatal(hba) ||
6239 ((hba->saved_err & UIC_ERROR) &&
6240 (hba->saved_uic_err & (UFSHCD_UIC_DL_NAC_RECEIVED_ERROR |
6241 UFSHCD_UIC_DL_TCx_REPLAY_ERROR)))) {
6242 needs_reset = true;
6243 goto do_reset;
6244 }
6245
6246 /*
6247 * If LINERESET was caught, UFS might have been put to PWM mode,
6248 * check if power mode restore is needed.
6249 */
6250 if (hba->saved_uic_err & UFSHCD_UIC_PA_GENERIC_ERROR) {
6251 hba->saved_uic_err &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6252 if (!hba->saved_uic_err)
6253 hba->saved_err &= ~UIC_ERROR;
6254 spin_unlock_irqrestore(hba->host->host_lock, flags);
6255 if (ufshcd_is_pwr_mode_restore_needed(hba))
6256 needs_restore = true;
6257 spin_lock_irqsave(hba->host->host_lock, flags);
6258 if (!hba->saved_err && !needs_restore)
6259 goto skip_err_handling;
6260 }
6261
6262 hba->silence_err_logs = true;
6263 /* release lock as clear command might sleep */
6264 spin_unlock_irqrestore(hba->host->host_lock, flags);
6265 outstanding_reqs = &hba->outstanding_reqs;
6266 nr_tag = hba->nutrs;
6267 trace_android_vh_ufs_mcq_get_outstanding_reqs(hba,
6268 &outstanding_reqs, &nr_tag);
6269 /* Clear pending transfer requests */
6270 for_each_set_bit(tag, outstanding_reqs, nr_tag) {
6271 if (ufshcd_try_to_abort_task(hba, tag)) {
6272 err_xfer = true;
6273 goto lock_skip_pending_xfer_clear;
6274 }
6275 }
6276
6277 /* Clear pending task management requests */
6278 for_each_set_bit(tag, &hba->outstanding_tasks, hba->nutmrs) {
6279 if (ufshcd_clear_tm_cmd(hba, tag)) {
6280 err_tm = true;
6281 goto lock_skip_pending_xfer_clear;
6282 }
6283 }
6284
6285 lock_skip_pending_xfer_clear:
6286 ufshcd_retry_aborted_requests(hba);
6287
6288 spin_lock_irqsave(hba->host->host_lock, flags);
6289 hba->silence_err_logs = false;
6290 if (err_xfer || err_tm) {
6291 needs_reset = true;
6292 goto do_reset;
6293 }
6294
6295 /*
6296 * After all reqs and tasks are cleared from doorbell,
6297 * now it is safe to retore power mode.
6298 */
6299 if (needs_restore) {
6300 spin_unlock_irqrestore(hba->host->host_lock, flags);
6301 /*
6302 * Hold the scaling lock just in case dev cmds
6303 * are sent via bsg and/or sysfs.
6304 */
6305 down_write(&hba->clk_scaling_lock);
6306 hba->force_pmc = true;
6307 pmc_err = ufshcd_config_pwr_mode(hba, &(hba->pwr_info));
6308 if (pmc_err) {
6309 needs_reset = true;
6310 dev_err(hba->dev, "%s: Failed to restore power mode, err = %d\n",
6311 __func__, pmc_err);
6312 }
6313 hba->force_pmc = false;
6314 ufshcd_print_pwr_info(hba);
6315 up_write(&hba->clk_scaling_lock);
6316 spin_lock_irqsave(hba->host->host_lock, flags);
6317 }
6318
6319 do_reset:
6320 /* Fatal errors need reset */
6321 if (needs_reset) {
6322 hba->force_reset = false;
6323 spin_unlock_irqrestore(hba->host->host_lock, flags);
6324 trace_android_vh_ufs_mcq_retry_complete(hba);
6325 err = ufshcd_reset_and_restore(hba);
6326 if (err)
6327 dev_err(hba->dev, "%s: reset and restore failed with err %d\n",
6328 __func__, err);
6329 else
6330 ufshcd_recover_pm_error(hba);
6331 spin_lock_irqsave(hba->host->host_lock, flags);
6332 }
6333
6334 skip_err_handling:
6335 if (!needs_reset) {
6336 if (hba->ufshcd_state == UFSHCD_STATE_RESET)
6337 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
6338 if (hba->saved_err || hba->saved_uic_err)
6339 dev_err_ratelimited(hba->dev, "%s: exit: saved_err 0x%x saved_uic_err 0x%x",
6340 __func__, hba->saved_err, hba->saved_uic_err);
6341 }
6342 ufshcd_clear_eh_in_progress(hba);
6343 spin_unlock_irqrestore(hba->host->host_lock, flags);
6344 ufshcd_err_handling_unprepare(hba);
6345 up(&hba->host_sem);
6346 }
6347
6348 /**
6349 * ufshcd_update_uic_error - check and set fatal UIC error flags.
6350 * @hba: per-adapter instance
6351 *
6352 * Returns
6353 * IRQ_HANDLED - If interrupt is valid
6354 * IRQ_NONE - If invalid interrupt
6355 */
ufshcd_update_uic_error(struct ufs_hba * hba)6356 static irqreturn_t ufshcd_update_uic_error(struct ufs_hba *hba)
6357 {
6358 u32 reg;
6359 irqreturn_t retval = IRQ_NONE;
6360
6361 /* PHY layer error */
6362 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_PHY_ADAPTER_LAYER);
6363 if ((reg & UIC_PHY_ADAPTER_LAYER_ERROR) &&
6364 (reg & UIC_PHY_ADAPTER_LAYER_ERROR_CODE_MASK)) {
6365 ufshcd_update_evt_hist(hba, UFS_EVT_PA_ERR, reg);
6366 /*
6367 * To know whether this error is fatal or not, DB timeout
6368 * must be checked but this error is handled separately.
6369 */
6370 if (reg & UIC_PHY_ADAPTER_LAYER_LANE_ERR_MASK)
6371 dev_dbg(hba->dev, "%s: UIC Lane error reported\n",
6372 __func__);
6373
6374 /* Got a LINERESET indication. */
6375 if (reg & UIC_PHY_ADAPTER_LAYER_GENERIC_ERROR) {
6376 struct uic_command *cmd = NULL;
6377
6378 hba->uic_error |= UFSHCD_UIC_PA_GENERIC_ERROR;
6379 if (hba->uic_async_done && hba->active_uic_cmd)
6380 cmd = hba->active_uic_cmd;
6381 /*
6382 * Ignore the LINERESET during power mode change
6383 * operation via DME_SET command.
6384 */
6385 if (cmd && (cmd->command == UIC_CMD_DME_SET))
6386 hba->uic_error &= ~UFSHCD_UIC_PA_GENERIC_ERROR;
6387 }
6388 retval |= IRQ_HANDLED;
6389 }
6390
6391 /* PA_INIT_ERROR is fatal and needs UIC reset */
6392 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DATA_LINK_LAYER);
6393 if ((reg & UIC_DATA_LINK_LAYER_ERROR) &&
6394 (reg & UIC_DATA_LINK_LAYER_ERROR_CODE_MASK)) {
6395 ufshcd_update_evt_hist(hba, UFS_EVT_DL_ERR, reg);
6396
6397 if (reg & UIC_DATA_LINK_LAYER_ERROR_PA_INIT)
6398 hba->uic_error |= UFSHCD_UIC_DL_PA_INIT_ERROR;
6399 else if (hba->dev_quirks &
6400 UFS_DEVICE_QUIRK_RECOVERY_FROM_DL_NAC_ERRORS) {
6401 if (reg & UIC_DATA_LINK_LAYER_ERROR_NAC_RECEIVED)
6402 hba->uic_error |=
6403 UFSHCD_UIC_DL_NAC_RECEIVED_ERROR;
6404 else if (reg & UIC_DATA_LINK_LAYER_ERROR_TCx_REPLAY_TIMEOUT)
6405 hba->uic_error |= UFSHCD_UIC_DL_TCx_REPLAY_ERROR;
6406 }
6407 retval |= IRQ_HANDLED;
6408 }
6409
6410 /* UIC NL/TL/DME errors needs software retry */
6411 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_NETWORK_LAYER);
6412 if ((reg & UIC_NETWORK_LAYER_ERROR) &&
6413 (reg & UIC_NETWORK_LAYER_ERROR_CODE_MASK)) {
6414 ufshcd_update_evt_hist(hba, UFS_EVT_NL_ERR, reg);
6415 hba->uic_error |= UFSHCD_UIC_NL_ERROR;
6416 retval |= IRQ_HANDLED;
6417 }
6418
6419 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_TRANSPORT_LAYER);
6420 if ((reg & UIC_TRANSPORT_LAYER_ERROR) &&
6421 (reg & UIC_TRANSPORT_LAYER_ERROR_CODE_MASK)) {
6422 ufshcd_update_evt_hist(hba, UFS_EVT_TL_ERR, reg);
6423 hba->uic_error |= UFSHCD_UIC_TL_ERROR;
6424 retval |= IRQ_HANDLED;
6425 }
6426
6427 reg = ufshcd_readl(hba, REG_UIC_ERROR_CODE_DME);
6428 if ((reg & UIC_DME_ERROR) &&
6429 (reg & UIC_DME_ERROR_CODE_MASK)) {
6430 ufshcd_update_evt_hist(hba, UFS_EVT_DME_ERR, reg);
6431 hba->uic_error |= UFSHCD_UIC_DME_ERROR;
6432 retval |= IRQ_HANDLED;
6433 }
6434
6435 dev_dbg(hba->dev, "%s: UIC error flags = 0x%08x\n",
6436 __func__, hba->uic_error);
6437 return retval;
6438 }
6439
6440 /**
6441 * ufshcd_check_errors - Check for errors that need s/w attention
6442 * @hba: per-adapter instance
6443 * @intr_status: interrupt status generated by the controller
6444 *
6445 * Returns
6446 * IRQ_HANDLED - If interrupt is valid
6447 * IRQ_NONE - If invalid interrupt
6448 */
ufshcd_check_errors(struct ufs_hba * hba,u32 intr_status)6449 static irqreturn_t ufshcd_check_errors(struct ufs_hba *hba, u32 intr_status)
6450 {
6451 bool queue_eh_work = false;
6452 irqreturn_t retval = IRQ_NONE;
6453
6454 spin_lock(hba->host->host_lock);
6455 hba->errors |= UFSHCD_ERROR_MASK & intr_status;
6456
6457 if (hba->errors & INT_FATAL_ERRORS) {
6458 ufshcd_update_evt_hist(hba, UFS_EVT_FATAL_ERR,
6459 hba->errors);
6460 queue_eh_work = true;
6461 }
6462
6463 if (hba->errors & UIC_ERROR) {
6464 hba->uic_error = 0;
6465 retval = ufshcd_update_uic_error(hba);
6466 if (hba->uic_error)
6467 queue_eh_work = true;
6468 }
6469
6470 if (hba->errors & UFSHCD_UIC_HIBERN8_MASK) {
6471 dev_err(hba->dev,
6472 "%s: Auto Hibern8 %s failed - status: 0x%08x, upmcrs: 0x%08x\n",
6473 __func__, (hba->errors & UIC_HIBERNATE_ENTER) ?
6474 "Enter" : "Exit",
6475 hba->errors, ufshcd_get_upmcrs(hba));
6476 ufshcd_update_evt_hist(hba, UFS_EVT_AUTO_HIBERN8_ERR,
6477 hba->errors);
6478 ufshcd_set_link_broken(hba);
6479 queue_eh_work = true;
6480 }
6481
6482 trace_android_vh_ufs_check_int_errors(hba, queue_eh_work);
6483
6484 if (queue_eh_work) {
6485 /*
6486 * update the transfer error masks to sticky bits, let's do this
6487 * irrespective of current ufshcd_state.
6488 */
6489 hba->saved_err |= hba->errors;
6490 hba->saved_uic_err |= hba->uic_error;
6491
6492 /* dump controller state before resetting */
6493 if ((hba->saved_err &
6494 (INT_FATAL_ERRORS | UFSHCD_UIC_HIBERN8_MASK)) ||
6495 (hba->saved_uic_err &&
6496 (hba->saved_uic_err != UFSHCD_UIC_PA_GENERIC_ERROR))) {
6497 dev_err(hba->dev, "%s: saved_err 0x%x saved_uic_err 0x%x\n",
6498 __func__, hba->saved_err,
6499 hba->saved_uic_err);
6500 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE,
6501 "host_regs: ");
6502 ufshcd_print_pwr_info(hba);
6503 }
6504 ufshcd_schedule_eh_work(hba);
6505 retval |= IRQ_HANDLED;
6506 }
6507 /*
6508 * if (!queue_eh_work) -
6509 * Other errors are either non-fatal where host recovers
6510 * itself without s/w intervention or errors that will be
6511 * handled by the SCSI core layer.
6512 */
6513 hba->errors = 0;
6514 hba->uic_error = 0;
6515 spin_unlock(hba->host->host_lock);
6516 return retval;
6517 }
6518
6519 /**
6520 * ufshcd_tmc_handler - handle task management function completion
6521 * @hba: per adapter instance
6522 *
6523 * Returns
6524 * IRQ_HANDLED - If interrupt is valid
6525 * IRQ_NONE - If invalid interrupt
6526 */
ufshcd_tmc_handler(struct ufs_hba * hba)6527 static irqreturn_t ufshcd_tmc_handler(struct ufs_hba *hba)
6528 {
6529 unsigned long flags, pending, issued;
6530 irqreturn_t ret = IRQ_NONE;
6531 int tag;
6532
6533 spin_lock_irqsave(hba->host->host_lock, flags);
6534 pending = ufshcd_readl(hba, REG_UTP_TASK_REQ_DOOR_BELL);
6535 issued = hba->outstanding_tasks & ~pending;
6536 for_each_set_bit(tag, &issued, hba->nutmrs) {
6537 struct request *req = hba->tmf_rqs[tag];
6538 struct completion *c = req->end_io_data;
6539
6540 complete(c);
6541 ret = IRQ_HANDLED;
6542 }
6543 spin_unlock_irqrestore(hba->host->host_lock, flags);
6544
6545 return ret;
6546 }
6547
6548 /**
6549 * ufshcd_sl_intr - Interrupt service routine
6550 * @hba: per adapter instance
6551 * @intr_status: contains interrupts generated by the controller
6552 *
6553 * Returns
6554 * IRQ_HANDLED - If interrupt is valid
6555 * IRQ_NONE - If invalid interrupt
6556 */
ufshcd_sl_intr(struct ufs_hba * hba,u32 intr_status)6557 static irqreturn_t ufshcd_sl_intr(struct ufs_hba *hba, u32 intr_status)
6558 {
6559 irqreturn_t retval = IRQ_NONE;
6560
6561 if (intr_status & UFSHCD_UIC_MASK)
6562 retval |= ufshcd_uic_cmd_compl(hba, intr_status);
6563
6564 if (intr_status & UFSHCD_ERROR_MASK || hba->errors)
6565 retval |= ufshcd_check_errors(hba, intr_status);
6566
6567 if (intr_status & UTP_TASK_REQ_COMPL)
6568 retval |= ufshcd_tmc_handler(hba);
6569
6570 if (intr_status & UTP_TRANSFER_REQ_COMPL)
6571 retval |= ufshcd_transfer_req_compl(hba, /*retry_requests=*/false);
6572
6573 trace_android_vh_ufs_mcq_handler(hba, intr_status, &retval);
6574
6575 return retval;
6576 }
6577
6578 /**
6579 * ufshcd_intr - Main interrupt service routine
6580 * @irq: irq number
6581 * @__hba: pointer to adapter instance
6582 *
6583 * Returns
6584 * IRQ_HANDLED - If interrupt is valid
6585 * IRQ_NONE - If invalid interrupt
6586 */
ufshcd_intr(int irq,void * __hba)6587 static irqreturn_t ufshcd_intr(int irq, void *__hba)
6588 {
6589 u32 intr_status, enabled_intr_status = 0;
6590 irqreturn_t retval = IRQ_NONE;
6591 struct ufs_hba *hba = __hba;
6592 int retries = hba->nutrs;
6593 bool has_outstanding;
6594
6595 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6596 hba->ufs_stats.last_intr_status = intr_status;
6597 hba->ufs_stats.last_intr_ts = ktime_get();
6598
6599 /*
6600 * There could be max of hba->nutrs reqs in flight and in worst case
6601 * if the reqs get finished 1 by 1 after the interrupt status is
6602 * read, make sure we handle them by checking the interrupt status
6603 * again in a loop until we process all of the reqs before returning.
6604 */
6605 while (intr_status && retries--) {
6606 enabled_intr_status =
6607 intr_status & ufshcd_readl(hba, REG_INTERRUPT_ENABLE);
6608 ufshcd_writel(hba, intr_status, REG_INTERRUPT_STATUS);
6609 if (enabled_intr_status)
6610 retval |= ufshcd_sl_intr(hba, enabled_intr_status);
6611
6612 intr_status = ufshcd_readl(hba, REG_INTERRUPT_STATUS);
6613 }
6614
6615 has_outstanding = hba->outstanding_reqs != 0;
6616 trace_android_vh_ufs_mcq_has_oustanding_reqs(hba, &has_outstanding);
6617
6618 if (enabled_intr_status && retval == IRQ_NONE &&
6619 (!(enabled_intr_status & UTP_TRANSFER_REQ_COMPL) ||
6620 has_outstanding) && !ufshcd_eh_in_progress(hba)) {
6621 dev_err(hba->dev, "%s: Unhandled interrupt 0x%08x (0x%08x, 0x%08x)\n",
6622 __func__,
6623 intr_status,
6624 hba->ufs_stats.last_intr_status,
6625 enabled_intr_status);
6626 ufshcd_dump_regs(hba, 0, UFSHCI_REG_SPACE_SIZE, "host_regs: ");
6627 }
6628
6629 return retval;
6630 }
6631
ufshcd_clear_tm_cmd(struct ufs_hba * hba,int tag)6632 static int ufshcd_clear_tm_cmd(struct ufs_hba *hba, int tag)
6633 {
6634 int err = 0;
6635 u32 mask = 1 << tag;
6636 unsigned long flags;
6637
6638 if (!test_bit(tag, &hba->outstanding_tasks))
6639 goto out;
6640
6641 spin_lock_irqsave(hba->host->host_lock, flags);
6642 ufshcd_utmrl_clear(hba, tag);
6643 spin_unlock_irqrestore(hba->host->host_lock, flags);
6644
6645 /* poll for max. 1 sec to clear door bell register by h/w */
6646 err = ufshcd_wait_for_register(hba,
6647 REG_UTP_TASK_REQ_DOOR_BELL,
6648 mask, 0, 1000, 1000);
6649 out:
6650 return err;
6651 }
6652
__ufshcd_issue_tm_cmd(struct ufs_hba * hba,struct utp_task_req_desc * treq,u8 tm_function)6653 static int __ufshcd_issue_tm_cmd(struct ufs_hba *hba,
6654 struct utp_task_req_desc *treq, u8 tm_function)
6655 {
6656 struct request_queue *q = hba->tmf_queue;
6657 struct Scsi_Host *host = hba->host;
6658 DECLARE_COMPLETION_ONSTACK(wait);
6659 struct request *req;
6660 unsigned long flags;
6661 int task_tag, err;
6662
6663 /*
6664 * blk_get_request() is used here only to get a free tag.
6665 */
6666 req = blk_get_request(q, REQ_OP_DRV_OUT, 0);
6667 if (IS_ERR(req))
6668 return PTR_ERR(req);
6669
6670 req->end_io_data = &wait;
6671 ufshcd_hold(hba, false);
6672
6673 spin_lock_irqsave(host->host_lock, flags);
6674
6675 task_tag = req->tag;
6676 hba->tmf_rqs[req->tag] = req;
6677 treq->upiu_req.req_header.dword_0 |= cpu_to_be32(task_tag);
6678
6679 memcpy(hba->utmrdl_base_addr + task_tag, treq, sizeof(*treq));
6680 ufshcd_vops_setup_task_mgmt(hba, task_tag, tm_function);
6681
6682 /* send command to the controller */
6683 __set_bit(task_tag, &hba->outstanding_tasks);
6684
6685 ufshcd_writel(hba, 1 << task_tag, REG_UTP_TASK_REQ_DOOR_BELL);
6686 /* Make sure that doorbell is committed immediately */
6687 wmb();
6688
6689 spin_unlock_irqrestore(host->host_lock, flags);
6690
6691 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_SEND);
6692
6693 /* wait until the task management command is completed */
6694 err = wait_for_completion_io_timeout(&wait,
6695 msecs_to_jiffies(TM_CMD_TIMEOUT));
6696 if (!err) {
6697 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_ERR);
6698 dev_err(hba->dev, "%s: task management cmd 0x%.2x timed-out\n",
6699 __func__, tm_function);
6700 if (ufshcd_clear_tm_cmd(hba, task_tag))
6701 dev_WARN(hba->dev, "%s: unable to clear tm cmd (slot %d) after timeout\n",
6702 __func__, task_tag);
6703 err = -ETIMEDOUT;
6704 } else {
6705 err = 0;
6706 memcpy(treq, hba->utmrdl_base_addr + task_tag, sizeof(*treq));
6707
6708 ufshcd_add_tm_upiu_trace(hba, task_tag, UFS_TM_COMP);
6709 }
6710
6711 spin_lock_irqsave(hba->host->host_lock, flags);
6712 hba->tmf_rqs[req->tag] = NULL;
6713 __clear_bit(task_tag, &hba->outstanding_tasks);
6714 spin_unlock_irqrestore(hba->host->host_lock, flags);
6715
6716 ufshcd_release(hba);
6717 blk_put_request(req);
6718
6719 return err;
6720 }
6721
6722 /**
6723 * ufshcd_issue_tm_cmd - issues task management commands to controller
6724 * @hba: per adapter instance
6725 * @lun_id: LUN ID to which TM command is sent
6726 * @task_id: task ID to which the TM command is applicable
6727 * @tm_function: task management function opcode
6728 * @tm_response: task management service response return value
6729 *
6730 * Returns non-zero value on error, zero on success.
6731 */
ufshcd_issue_tm_cmd(struct ufs_hba * hba,int lun_id,int task_id,u8 tm_function,u8 * tm_response)6732 static int ufshcd_issue_tm_cmd(struct ufs_hba *hba, int lun_id, int task_id,
6733 u8 tm_function, u8 *tm_response)
6734 {
6735 struct utp_task_req_desc treq = { { 0 }, };
6736 int ocs_value, err;
6737
6738 /* Configure task request descriptor */
6739 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6740 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6741
6742 /* Configure task request UPIU */
6743 treq.upiu_req.req_header.dword_0 = cpu_to_be32(lun_id << 8) |
6744 cpu_to_be32(UPIU_TRANSACTION_TASK_REQ << 24);
6745 treq.upiu_req.req_header.dword_1 = cpu_to_be32(tm_function << 16);
6746
6747 /*
6748 * The host shall provide the same value for LUN field in the basic
6749 * header and for Input Parameter.
6750 */
6751 treq.upiu_req.input_param1 = cpu_to_be32(lun_id);
6752 treq.upiu_req.input_param2 = cpu_to_be32(task_id);
6753
6754 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_function);
6755 if (err == -ETIMEDOUT)
6756 return err;
6757
6758 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6759 if (ocs_value != OCS_SUCCESS)
6760 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n",
6761 __func__, ocs_value);
6762 else if (tm_response)
6763 *tm_response = be32_to_cpu(treq.upiu_rsp.output_param1) &
6764 MASK_TM_SERVICE_RESP;
6765 return err;
6766 }
6767
6768 /**
6769 * ufshcd_issue_devman_upiu_cmd - API for sending "utrd" type requests
6770 * @hba: per-adapter instance
6771 * @req_upiu: upiu request
6772 * @rsp_upiu: upiu reply
6773 * @desc_buff: pointer to descriptor buffer, NULL if NA
6774 * @buff_len: descriptor size, 0 if NA
6775 * @cmd_type: specifies the type (NOP, Query...)
6776 * @desc_op: descriptor operation
6777 *
6778 * Those type of requests uses UTP Transfer Request Descriptor - utrd.
6779 * Therefore, it "rides" the device management infrastructure: uses its tag and
6780 * tasks work queues.
6781 *
6782 * Since there is only one available tag for device management commands,
6783 * the caller is expected to hold the hba->dev_cmd.lock mutex.
6784 */
ufshcd_issue_devman_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,u8 * desc_buff,int * buff_len,enum dev_cmd_type cmd_type,enum query_opcode desc_op)6785 static int ufshcd_issue_devman_upiu_cmd(struct ufs_hba *hba,
6786 struct utp_upiu_req *req_upiu,
6787 struct utp_upiu_req *rsp_upiu,
6788 u8 *desc_buff, int *buff_len,
6789 enum dev_cmd_type cmd_type,
6790 enum query_opcode desc_op)
6791 {
6792 DECLARE_COMPLETION_ONSTACK(wait);
6793 const u32 tag = hba->reserved_slot;
6794 struct ufshcd_lrb *lrbp;
6795 int err = 0;
6796 u8 upiu_flags;
6797
6798 /* Protects use of hba->reserved_slot. */
6799 lockdep_assert_held(&hba->dev_cmd.lock);
6800
6801 down_read(&hba->clk_scaling_lock);
6802
6803 lrbp = &hba->lrb[tag];
6804 WARN_ON(lrbp->cmd);
6805 lrbp->cmd = NULL;
6806 lrbp->sense_bufflen = 0;
6807 lrbp->sense_buffer = NULL;
6808 lrbp->task_tag = tag;
6809 lrbp->lun = 0;
6810 lrbp->intr_cmd = true;
6811
6812 trace_android_vh_ufs_mcq_set_sqid(hba, 0, lrbp);
6813
6814 ufshcd_prepare_lrbp_crypto(NULL, lrbp);
6815 hba->dev_cmd.type = cmd_type;
6816
6817 if (hba->ufs_version <= ufshci_version(1, 1))
6818 lrbp->command_type = UTP_CMD_TYPE_DEV_MANAGE;
6819 else
6820 lrbp->command_type = UTP_CMD_TYPE_UFS_STORAGE;
6821
6822 /* update the task tag in the request upiu */
6823 req_upiu->header.dword_0 |= cpu_to_be32(tag);
6824
6825 ufshcd_prepare_req_desc_hdr(lrbp, &upiu_flags, DMA_NONE);
6826
6827 /* just copy the upiu request as it is */
6828 memcpy(lrbp->ucd_req_ptr, req_upiu, sizeof(*lrbp->ucd_req_ptr));
6829 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_WRITE_DESC) {
6830 /* The Data Segment Area is optional depending upon the query
6831 * function value. for WRITE DESCRIPTOR, the data segment
6832 * follows right after the tsf.
6833 */
6834 memcpy(lrbp->ucd_req_ptr + 1, desc_buff, *buff_len);
6835 *buff_len = 0;
6836 }
6837
6838 memset(lrbp->ucd_rsp_ptr, 0, sizeof(struct utp_upiu_rsp));
6839
6840 hba->dev_cmd.complete = &wait;
6841
6842 ufshcd_add_query_upiu_trace(hba, UFS_QUERY_SEND, lrbp->ucd_req_ptr);
6843
6844 ufshcd_send_command(hba, tag);
6845 /*
6846 * ignore the returning value here - ufshcd_check_query_response is
6847 * bound to fail since dev_cmd.query and dev_cmd.type were left empty.
6848 * read the response directly ignoring all errors.
6849 */
6850 ufshcd_wait_for_dev_cmd(hba, lrbp, QUERY_REQ_TIMEOUT);
6851
6852 /* just copy the upiu response as it is */
6853 memcpy(rsp_upiu, lrbp->ucd_rsp_ptr, sizeof(*rsp_upiu));
6854 if (desc_buff && desc_op == UPIU_QUERY_OPCODE_READ_DESC) {
6855 u8 *descp = (u8 *)lrbp->ucd_rsp_ptr + sizeof(*rsp_upiu);
6856 u16 resp_len = be32_to_cpu(lrbp->ucd_rsp_ptr->header.dword_2) &
6857 MASK_QUERY_DATA_SEG_LEN;
6858
6859 if (*buff_len >= resp_len) {
6860 memcpy(desc_buff, descp, resp_len);
6861 *buff_len = resp_len;
6862 } else {
6863 dev_warn(hba->dev,
6864 "%s: rsp size %d is bigger than buffer size %d",
6865 __func__, resp_len, *buff_len);
6866 *buff_len = 0;
6867 err = -EINVAL;
6868 }
6869 }
6870 ufshcd_add_query_upiu_trace(hba, err ? UFS_QUERY_ERR : UFS_QUERY_COMP,
6871 (struct utp_upiu_req *)lrbp->ucd_rsp_ptr);
6872
6873 up_read(&hba->clk_scaling_lock);
6874 return err;
6875 }
6876
6877 /**
6878 * ufshcd_exec_raw_upiu_cmd - API function for sending raw upiu commands
6879 * @hba: per-adapter instance
6880 * @req_upiu: upiu request
6881 * @rsp_upiu: upiu reply - only 8 DW as we do not support scsi commands
6882 * @msgcode: message code, one of UPIU Transaction Codes Initiator to Target
6883 * @desc_buff: pointer to descriptor buffer, NULL if NA
6884 * @buff_len: descriptor size, 0 if NA
6885 * @desc_op: descriptor operation
6886 *
6887 * Supports UTP Transfer requests (nop and query), and UTP Task
6888 * Management requests.
6889 * It is up to the caller to fill the upiu conent properly, as it will
6890 * be copied without any further input validations.
6891 */
ufshcd_exec_raw_upiu_cmd(struct ufs_hba * hba,struct utp_upiu_req * req_upiu,struct utp_upiu_req * rsp_upiu,int msgcode,u8 * desc_buff,int * buff_len,enum query_opcode desc_op)6892 int ufshcd_exec_raw_upiu_cmd(struct ufs_hba *hba,
6893 struct utp_upiu_req *req_upiu,
6894 struct utp_upiu_req *rsp_upiu,
6895 int msgcode,
6896 u8 *desc_buff, int *buff_len,
6897 enum query_opcode desc_op)
6898 {
6899 int err;
6900 enum dev_cmd_type cmd_type = DEV_CMD_TYPE_QUERY;
6901 struct utp_task_req_desc treq = { { 0 }, };
6902 int ocs_value;
6903 u8 tm_f = be32_to_cpu(req_upiu->header.dword_1) >> 16 & MASK_TM_FUNC;
6904
6905 switch (msgcode) {
6906 case UPIU_TRANSACTION_NOP_OUT:
6907 cmd_type = DEV_CMD_TYPE_NOP;
6908 fallthrough;
6909 case UPIU_TRANSACTION_QUERY_REQ:
6910 ufshcd_hold(hba, false);
6911 mutex_lock(&hba->dev_cmd.lock);
6912 err = ufshcd_issue_devman_upiu_cmd(hba, req_upiu, rsp_upiu,
6913 desc_buff, buff_len,
6914 cmd_type, desc_op);
6915 mutex_unlock(&hba->dev_cmd.lock);
6916 ufshcd_release(hba);
6917
6918 break;
6919 case UPIU_TRANSACTION_TASK_REQ:
6920 treq.header.dword_0 = cpu_to_le32(UTP_REQ_DESC_INT_CMD);
6921 treq.header.dword_2 = cpu_to_le32(OCS_INVALID_COMMAND_STATUS);
6922
6923 memcpy(&treq.upiu_req, req_upiu, sizeof(*req_upiu));
6924
6925 err = __ufshcd_issue_tm_cmd(hba, &treq, tm_f);
6926 if (err == -ETIMEDOUT)
6927 break;
6928
6929 ocs_value = le32_to_cpu(treq.header.dword_2) & MASK_OCS;
6930 if (ocs_value != OCS_SUCCESS) {
6931 dev_err(hba->dev, "%s: failed, ocs = 0x%x\n", __func__,
6932 ocs_value);
6933 break;
6934 }
6935
6936 memcpy(rsp_upiu, &treq.upiu_rsp, sizeof(*rsp_upiu));
6937
6938 break;
6939 default:
6940 err = -EINVAL;
6941
6942 break;
6943 }
6944
6945 return err;
6946 }
6947
6948 /**
6949 * ufshcd_eh_device_reset_handler - device reset handler registered to
6950 * scsi layer.
6951 * @cmd: SCSI command pointer
6952 *
6953 * Returns SUCCESS/FAILED
6954 */
ufshcd_eh_device_reset_handler(struct scsi_cmnd * cmd)6955 static int ufshcd_eh_device_reset_handler(struct scsi_cmnd *cmd)
6956 {
6957 struct Scsi_Host *host;
6958 struct ufs_hba *hba;
6959 u32 pos;
6960 int err;
6961 u8 resp = 0xF, lun;
6962
6963 host = cmd->device->host;
6964 hba = shost_priv(host);
6965
6966 lun = ufshcd_scsi_to_upiu_lun(cmd->device->lun);
6967 err = ufshcd_issue_tm_cmd(hba, lun, 0, UFS_LOGICAL_RESET, &resp);
6968 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
6969 if (!err)
6970 err = resp;
6971 goto out;
6972 }
6973
6974 if (ufshcd_use_mcq_hooks(hba)) {
6975 trace_android_vh_ufs_mcq_clear_pending(hba, &err);
6976 } else {
6977 /* clear the commands that were pending for corresponding LUN */
6978 for_each_set_bit(pos, &hba->outstanding_reqs, hba->nutrs) {
6979 if (hba->lrb[pos].lun == lun) {
6980 err = ufshcd_clear_cmd(hba, pos);
6981 if (err)
6982 break;
6983 __ufshcd_transfer_req_compl(hba, 1U << pos, false);
6984 }
6985 }
6986 }
6987
6988 out:
6989 hba->req_abort_count = 0;
6990 ufshcd_update_evt_hist(hba, UFS_EVT_DEV_RESET, (u32)err);
6991 if (!err) {
6992 err = SUCCESS;
6993 } else {
6994 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
6995 err = FAILED;
6996 }
6997 return err;
6998 }
6999
ufshcd_set_req_abort_skip(struct ufs_hba * hba,unsigned long bitmap)7000 static void ufshcd_set_req_abort_skip(struct ufs_hba *hba, unsigned long bitmap)
7001 {
7002 struct ufshcd_lrb *lrbp;
7003 int tag;
7004
7005 for_each_set_bit(tag, &bitmap, hba->nutrs) {
7006 lrbp = &hba->lrb[tag];
7007 lrbp->req_abort_skip = true;
7008 }
7009 }
7010
7011 /**
7012 * ufshcd_try_to_abort_task - abort a specific task
7013 * @hba: Pointer to adapter instance
7014 * @tag: Task tag/index to be aborted
7015 *
7016 * Abort the pending command in device by sending UFS_ABORT_TASK task management
7017 * command, and in host controller by clearing the door-bell register. There can
7018 * be race between controller sending the command to the device while abort is
7019 * issued. To avoid that, first issue UFS_QUERY_TASK to check if the command is
7020 * really issued and then try to abort it.
7021 *
7022 * Returns zero on success, non-zero on failure
7023 */
ufshcd_try_to_abort_task(struct ufs_hba * hba,int tag)7024 static int ufshcd_try_to_abort_task(struct ufs_hba *hba, int tag)
7025 {
7026 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7027 int err = 0;
7028 int poll_cnt;
7029 u8 resp = 0xF;
7030 u32 reg;
7031 unsigned long *outstanding_reqs;
7032
7033 for (poll_cnt = 100; poll_cnt; poll_cnt--) {
7034 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7035 UFS_QUERY_TASK, &resp);
7036 if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_SUCCEEDED) {
7037 /* cmd pending in the device */
7038 dev_err(hba->dev, "%s: cmd pending in the device. tag = %d\n",
7039 __func__, tag);
7040 break;
7041 } else if (!err && resp == UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7042 /*
7043 * cmd not pending in the device, check if it is
7044 * in transition.
7045 */
7046 dev_err(hba->dev, "%s: cmd at tag %d not pending in the device.\n",
7047 __func__, tag);
7048
7049 if (ufshcd_use_mcq_hooks(hba)) {
7050 trace_android_vh_ufs_mcq_get_outstanding_reqs(hba,
7051 &outstanding_reqs, NULL);
7052 if (test_bit(tag, outstanding_reqs)) {
7053 /* sleep for max. 200us to stabilize */
7054 usleep_range(100, 200);
7055 continue;
7056 }
7057 } else {
7058 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7059 if (reg & (1 << tag)) {
7060 /* sleep for max. 200us to stabilize */
7061 usleep_range(100, 200);
7062 continue;
7063 }
7064 }
7065
7066 /* command completed already */
7067 dev_err(hba->dev, "%s: cmd at tag %d successfully cleared from DB.\n",
7068 __func__, tag);
7069 goto out;
7070 } else {
7071 dev_err(hba->dev,
7072 "%s: no response from device. tag = %d, err %d\n",
7073 __func__, tag, err);
7074 if (!err)
7075 err = resp; /* service response error */
7076 goto out;
7077 }
7078 }
7079
7080 if (!poll_cnt) {
7081 err = -EBUSY;
7082 goto out;
7083 }
7084
7085 err = ufshcd_issue_tm_cmd(hba, lrbp->lun, lrbp->task_tag,
7086 UFS_ABORT_TASK, &resp);
7087 if (err || resp != UPIU_TASK_MANAGEMENT_FUNC_COMPL) {
7088 if (!err) {
7089 err = resp; /* service response error */
7090 dev_err(hba->dev, "%s: issued. tag = %d, err %d\n",
7091 __func__, tag, err);
7092 }
7093 goto out;
7094 }
7095
7096 err = ufshcd_clear_cmd(hba, tag);
7097 if (err)
7098 dev_err(hba->dev, "%s: Failed clearing cmd at tag %d, err %d\n",
7099 __func__, tag, err);
7100
7101 out:
7102 return err;
7103 }
7104
7105 /**
7106 * ufshcd_abort - scsi host template eh_abort_handler callback
7107 * @cmd: SCSI command pointer
7108 *
7109 * Returns SUCCESS/FAILED
7110 */
ufshcd_abort(struct scsi_cmnd * cmd)7111 static int ufshcd_abort(struct scsi_cmnd *cmd)
7112 {
7113 struct Scsi_Host *host = cmd->device->host;
7114 struct ufs_hba *hba = shost_priv(host);
7115 int tag = scsi_cmd_to_rq(cmd)->tag;
7116 struct ufshcd_lrb *lrbp = &hba->lrb[tag];
7117 unsigned long flags;
7118 int err = FAILED;
7119 u32 reg;
7120
7121 trace_android_vh_ufs_mcq_map_tag(hba,
7122 (scsi_cmd_to_rq(cmd)->mq_hctx->queue_num), &tag);
7123
7124 WARN_ONCE(tag < 0, "Invalid tag %d\n", tag);
7125
7126 if (ufshcd_use_mcq_hooks(hba)) {
7127 trace_android_vh_ufs_mcq_abort(cmd, &err);
7128 return err;
7129 }
7130
7131 ufshcd_hold(hba, false);
7132 reg = ufshcd_readl(hba, REG_UTP_TRANSFER_REQ_DOOR_BELL);
7133 /* If command is already aborted/completed, return FAILED. */
7134 if (!(test_bit(tag, &hba->outstanding_reqs))) {
7135 dev_err(hba->dev,
7136 "%s: cmd at tag %d already completed, outstanding=0x%lx, doorbell=0x%x\n",
7137 __func__, tag, hba->outstanding_reqs, reg);
7138 goto release;
7139 }
7140
7141 /* Print Transfer Request of aborted task */
7142 dev_info(hba->dev, "%s: Device abort task at tag %d\n", __func__, tag);
7143
7144 /*
7145 * Print detailed info about aborted request.
7146 * As more than one request might get aborted at the same time,
7147 * print full information only for the first aborted request in order
7148 * to reduce repeated printouts. For other aborted requests only print
7149 * basic details.
7150 */
7151 scsi_print_command(cmd);
7152 if (!hba->req_abort_count) {
7153 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, tag);
7154 ufshcd_print_evt_hist(hba);
7155 ufshcd_print_host_state(hba);
7156 ufshcd_print_pwr_info(hba);
7157 ufshcd_print_trs(hba, 1 << tag, true);
7158 } else {
7159 ufshcd_print_trs(hba, 1 << tag, false);
7160 }
7161 hba->req_abort_count++;
7162
7163 if (!(reg & (1 << tag))) {
7164 dev_err(hba->dev,
7165 "%s: cmd was completed, but without a notifying intr, tag = %d",
7166 __func__, tag);
7167 __ufshcd_transfer_req_compl(hba, 1UL << tag, /*retry_requests=*/false);
7168 goto release;
7169 }
7170
7171 /*
7172 * Task abort to the device W-LUN is illegal. When this command
7173 * will fail, due to spec violation, scsi err handling next step
7174 * will be to send LU reset which, again, is a spec violation.
7175 * To avoid these unnecessary/illegal steps, first we clean up
7176 * the lrb taken by this cmd and re-set it in outstanding_reqs,
7177 * then queue the eh_work and bail.
7178 */
7179 if (lrbp->lun == UFS_UPIU_UFS_DEVICE_WLUN) {
7180 ufshcd_update_evt_hist(hba, UFS_EVT_ABORT, lrbp->lun);
7181
7182 spin_lock_irqsave(host->host_lock, flags);
7183 hba->force_reset = true;
7184 ufshcd_schedule_eh_work(hba);
7185 spin_unlock_irqrestore(host->host_lock, flags);
7186 goto release;
7187 }
7188
7189 /* Skip task abort in case previous aborts failed and report failure */
7190 if (lrbp->req_abort_skip) {
7191 dev_err(hba->dev, "%s: skipping abort\n", __func__);
7192 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7193 goto release;
7194 }
7195
7196 err = ufshcd_try_to_abort_task(hba, tag);
7197 if (err) {
7198 dev_err(hba->dev, "%s: failed with err %d\n", __func__, err);
7199 ufshcd_set_req_abort_skip(hba, hba->outstanding_reqs);
7200 err = FAILED;
7201 goto release;
7202 }
7203
7204 lrbp->cmd = NULL;
7205 err = SUCCESS;
7206
7207 release:
7208 /* Matches the ufshcd_hold() call at the start of this function. */
7209 ufshcd_release(hba);
7210 return err;
7211 }
7212
7213 /**
7214 * ufshcd_host_reset_and_restore - reset and restore host controller
7215 * @hba: per-adapter instance
7216 *
7217 * Note that host controller reset may issue DME_RESET to
7218 * local and remote (device) Uni-Pro stack and the attributes
7219 * are reset to default state.
7220 *
7221 * Returns zero on success, non-zero on failure
7222 */
ufshcd_host_reset_and_restore(struct ufs_hba * hba)7223 static int ufshcd_host_reset_and_restore(struct ufs_hba *hba)
7224 {
7225 int err;
7226
7227 /*
7228 * Stop the host controller and complete the requests
7229 * cleared by h/w
7230 */
7231 ufshpb_reset_host(hba);
7232 ufshcd_hba_stop(hba);
7233 hba->silence_err_logs = true;
7234 ufshcd_retry_aborted_requests(hba);
7235 hba->silence_err_logs = false;
7236
7237 /* scale up clocks to max frequency before full reinitialization */
7238 ufshcd_scale_clks(hba, true);
7239
7240 err = ufshcd_hba_enable(hba);
7241
7242 /* Establish the link again and restore the device */
7243 if (!err)
7244 err = ufshcd_probe_hba(hba, false);
7245
7246 if (err)
7247 dev_err(hba->dev, "%s: Host init failed %d\n", __func__, err);
7248 ufshcd_update_evt_hist(hba, UFS_EVT_HOST_RESET, (u32)err);
7249 return err;
7250 }
7251
7252 /**
7253 * ufshcd_reset_and_restore - reset and re-initialize host/device
7254 * @hba: per-adapter instance
7255 *
7256 * Reset and recover device, host and re-establish link. This
7257 * is helpful to recover the communication in fatal error conditions.
7258 *
7259 * Returns zero on success, non-zero on failure
7260 */
ufshcd_reset_and_restore(struct ufs_hba * hba)7261 static int ufshcd_reset_and_restore(struct ufs_hba *hba)
7262 {
7263 u32 saved_err;
7264 u32 saved_uic_err;
7265 int err = 0;
7266 unsigned long flags;
7267 int retries = MAX_HOST_RESET_RETRIES;
7268
7269 /*
7270 * This is a fresh start, cache and clear saved error first,
7271 * in case new error generated during reset and restore.
7272 */
7273 spin_lock_irqsave(hba->host->host_lock, flags);
7274 saved_err = hba->saved_err;
7275 saved_uic_err = hba->saved_uic_err;
7276 hba->saved_err = 0;
7277 hba->saved_uic_err = 0;
7278 spin_unlock_irqrestore(hba->host->host_lock, flags);
7279
7280 do {
7281 /* Reset the attached device */
7282 ufshcd_device_reset(hba);
7283
7284 err = ufshcd_host_reset_and_restore(hba);
7285 } while (err && --retries);
7286
7287 spin_lock_irqsave(hba->host->host_lock, flags);
7288 /*
7289 * Inform scsi mid-layer that we did reset and allow to handle
7290 * Unit Attention properly.
7291 */
7292 scsi_report_bus_reset(hba->host, 0);
7293 if (err) {
7294 hba->ufshcd_state = UFSHCD_STATE_ERROR;
7295 hba->saved_err |= saved_err;
7296 hba->saved_uic_err |= saved_uic_err;
7297 }
7298 spin_unlock_irqrestore(hba->host->host_lock, flags);
7299
7300 return err;
7301 }
7302
7303 /**
7304 * ufshcd_eh_host_reset_handler - host reset handler registered to scsi layer
7305 * @cmd: SCSI command pointer
7306 *
7307 * Returns SUCCESS/FAILED
7308 */
ufshcd_eh_host_reset_handler(struct scsi_cmnd * cmd)7309 static int ufshcd_eh_host_reset_handler(struct scsi_cmnd *cmd)
7310 {
7311 int err = SUCCESS;
7312 unsigned long flags;
7313 struct ufs_hba *hba;
7314
7315 hba = shost_priv(cmd->device->host);
7316
7317 /*
7318 * If runtime pm send SSU and got timeout, scsi_error_handler
7319 * stuck at this function to wait for flush_work(&hba->eh_work).
7320 * And ufshcd_err_handler(eh_work) stuck at wait for runtime pm active.
7321 * Do ufshcd_link_recovery instead schedule eh_work can prevent
7322 * dead lock to happen.
7323 */
7324 if (hba->pm_op_in_progress) {
7325 if (ufshcd_link_recovery(hba))
7326 err = FAILED;
7327
7328 return err;
7329 }
7330
7331 spin_lock_irqsave(hba->host->host_lock, flags);
7332 hba->force_reset = true;
7333 ufshcd_schedule_eh_work(hba);
7334 dev_err(hba->dev, "%s: reset in progress - 1\n", __func__);
7335 spin_unlock_irqrestore(hba->host->host_lock, flags);
7336
7337 flush_work(&hba->eh_work);
7338
7339 spin_lock_irqsave(hba->host->host_lock, flags);
7340 if (hba->ufshcd_state == UFSHCD_STATE_ERROR)
7341 err = FAILED;
7342 spin_unlock_irqrestore(hba->host->host_lock, flags);
7343
7344 return err;
7345 }
7346
7347 /**
7348 * ufshcd_get_max_icc_level - calculate the ICC level
7349 * @sup_curr_uA: max. current supported by the regulator
7350 * @start_scan: row at the desc table to start scan from
7351 * @buff: power descriptor buffer
7352 *
7353 * Returns calculated max ICC level for specific regulator
7354 */
ufshcd_get_max_icc_level(int sup_curr_uA,u32 start_scan,char * buff)7355 static u32 ufshcd_get_max_icc_level(int sup_curr_uA, u32 start_scan, char *buff)
7356 {
7357 int i;
7358 int curr_uA;
7359 u16 data;
7360 u16 unit;
7361
7362 for (i = start_scan; i >= 0; i--) {
7363 data = be16_to_cpup((__be16 *)&buff[2 * i]);
7364 unit = (data & ATTR_ICC_LVL_UNIT_MASK) >>
7365 ATTR_ICC_LVL_UNIT_OFFSET;
7366 curr_uA = data & ATTR_ICC_LVL_VALUE_MASK;
7367 switch (unit) {
7368 case UFSHCD_NANO_AMP:
7369 curr_uA = curr_uA / 1000;
7370 break;
7371 case UFSHCD_MILI_AMP:
7372 curr_uA = curr_uA * 1000;
7373 break;
7374 case UFSHCD_AMP:
7375 curr_uA = curr_uA * 1000 * 1000;
7376 break;
7377 case UFSHCD_MICRO_AMP:
7378 default:
7379 break;
7380 }
7381 if (sup_curr_uA >= curr_uA)
7382 break;
7383 }
7384 if (i < 0) {
7385 i = 0;
7386 pr_err("%s: Couldn't find valid icc_level = %d", __func__, i);
7387 }
7388
7389 return (u32)i;
7390 }
7391
7392 /**
7393 * ufshcd_find_max_sup_active_icc_level - calculate the max ICC level
7394 * In case regulators are not initialized we'll return 0
7395 * @hba: per-adapter instance
7396 * @desc_buf: power descriptor buffer to extract ICC levels from.
7397 * @len: length of desc_buff
7398 *
7399 * Returns calculated ICC level
7400 */
ufshcd_find_max_sup_active_icc_level(struct ufs_hba * hba,u8 * desc_buf,int len)7401 static u32 ufshcd_find_max_sup_active_icc_level(struct ufs_hba *hba,
7402 u8 *desc_buf, int len)
7403 {
7404 u32 icc_level = 0;
7405
7406 if (!hba->vreg_info.vcc || !hba->vreg_info.vccq ||
7407 !hba->vreg_info.vccq2) {
7408 /*
7409 * Using dev_dbg to avoid messages during runtime PM to avoid
7410 * never-ending cycles of messages written back to storage by
7411 * user space causing runtime resume, causing more messages and
7412 * so on.
7413 */
7414 dev_dbg(hba->dev,
7415 "%s: Regulator capability was not set, actvIccLevel=%d",
7416 __func__, icc_level);
7417 goto out;
7418 }
7419
7420 if (hba->vreg_info.vcc->max_uA)
7421 icc_level = ufshcd_get_max_icc_level(
7422 hba->vreg_info.vcc->max_uA,
7423 POWER_DESC_MAX_ACTV_ICC_LVLS - 1,
7424 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCC_0]);
7425
7426 if (hba->vreg_info.vccq->max_uA)
7427 icc_level = ufshcd_get_max_icc_level(
7428 hba->vreg_info.vccq->max_uA,
7429 icc_level,
7430 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ_0]);
7431
7432 if (hba->vreg_info.vccq2->max_uA)
7433 icc_level = ufshcd_get_max_icc_level(
7434 hba->vreg_info.vccq2->max_uA,
7435 icc_level,
7436 &desc_buf[PWR_DESC_ACTIVE_LVLS_VCCQ2_0]);
7437 out:
7438 return icc_level;
7439 }
7440
ufshcd_set_active_icc_lvl(struct ufs_hba * hba)7441 static void ufshcd_set_active_icc_lvl(struct ufs_hba *hba)
7442 {
7443 int ret;
7444 int buff_len = hba->desc_size[QUERY_DESC_IDN_POWER];
7445 u8 *desc_buf;
7446 u32 icc_level;
7447
7448 desc_buf = kmalloc(buff_len, GFP_KERNEL);
7449 if (!desc_buf)
7450 return;
7451
7452 ret = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_POWER, 0, 0,
7453 desc_buf, buff_len);
7454 if (ret) {
7455 dev_err(hba->dev,
7456 "%s: Failed reading power descriptor.len = %d ret = %d",
7457 __func__, buff_len, ret);
7458 goto out;
7459 }
7460
7461 icc_level = ufshcd_find_max_sup_active_icc_level(hba, desc_buf,
7462 buff_len);
7463 dev_dbg(hba->dev, "%s: setting icc_level 0x%x", __func__, icc_level);
7464
7465 ret = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
7466 QUERY_ATTR_IDN_ACTIVE_ICC_LVL, 0, 0, &icc_level);
7467
7468 if (ret)
7469 dev_err(hba->dev,
7470 "%s: Failed configuring bActiveICCLevel = %d ret = %d",
7471 __func__, icc_level, ret);
7472
7473 out:
7474 kfree(desc_buf);
7475 }
7476
ufshcd_blk_pm_runtime_init(struct scsi_device * sdev)7477 static inline void ufshcd_blk_pm_runtime_init(struct scsi_device *sdev)
7478 {
7479 scsi_autopm_get_device(sdev);
7480 blk_pm_runtime_init(sdev->request_queue, &sdev->sdev_gendev);
7481 if (sdev->rpm_autosuspend)
7482 pm_runtime_set_autosuspend_delay(&sdev->sdev_gendev,
7483 RPM_AUTOSUSPEND_DELAY_MS);
7484 scsi_autopm_put_device(sdev);
7485 }
7486
7487 /**
7488 * ufshcd_scsi_add_wlus - Adds required W-LUs
7489 * @hba: per-adapter instance
7490 *
7491 * UFS device specification requires the UFS devices to support 4 well known
7492 * logical units:
7493 * "REPORT_LUNS" (address: 01h)
7494 * "UFS Device" (address: 50h)
7495 * "RPMB" (address: 44h)
7496 * "BOOT" (address: 30h)
7497 * UFS device's power management needs to be controlled by "POWER CONDITION"
7498 * field of SSU (START STOP UNIT) command. But this "power condition" field
7499 * will take effect only when its sent to "UFS device" well known logical unit
7500 * hence we require the scsi_device instance to represent this logical unit in
7501 * order for the UFS host driver to send the SSU command for power management.
7502 *
7503 * We also require the scsi_device instance for "RPMB" (Replay Protected Memory
7504 * Block) LU so user space process can control this LU. User space may also
7505 * want to have access to BOOT LU.
7506 *
7507 * This function adds scsi device instances for each of all well known LUs
7508 * (except "REPORT LUNS" LU).
7509 *
7510 * Returns zero on success (all required W-LUs are added successfully),
7511 * non-zero error value on failure (if failed to add any of the required W-LU).
7512 */
ufshcd_scsi_add_wlus(struct ufs_hba * hba)7513 static int ufshcd_scsi_add_wlus(struct ufs_hba *hba)
7514 {
7515 int ret = 0;
7516 struct scsi_device *sdev_boot;
7517
7518 hba->sdev_ufs_device = __scsi_add_device(hba->host, 0, 0,
7519 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_UFS_DEVICE_WLUN), NULL);
7520 if (IS_ERR(hba->sdev_ufs_device)) {
7521 ret = PTR_ERR(hba->sdev_ufs_device);
7522 hba->sdev_ufs_device = NULL;
7523 goto out;
7524 }
7525 scsi_device_put(hba->sdev_ufs_device);
7526
7527 hba->sdev_rpmb = __scsi_add_device(hba->host, 0, 0,
7528 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_RPMB_WLUN), NULL);
7529 if (IS_ERR(hba->sdev_rpmb)) {
7530 ret = PTR_ERR(hba->sdev_rpmb);
7531 goto remove_sdev_ufs_device;
7532 }
7533 ufshcd_blk_pm_runtime_init(hba->sdev_rpmb);
7534 scsi_device_put(hba->sdev_rpmb);
7535
7536 sdev_boot = __scsi_add_device(hba->host, 0, 0,
7537 ufshcd_upiu_wlun_to_scsi_wlun(UFS_UPIU_BOOT_WLUN), NULL);
7538 if (IS_ERR(sdev_boot)) {
7539 dev_err(hba->dev, "%s: BOOT WLUN not found\n", __func__);
7540 } else {
7541 ufshcd_blk_pm_runtime_init(sdev_boot);
7542 scsi_device_put(sdev_boot);
7543 }
7544 goto out;
7545
7546 remove_sdev_ufs_device:
7547 scsi_remove_device(hba->sdev_ufs_device);
7548 out:
7549 return ret;
7550 }
7551
ufshcd_wb_probe(struct ufs_hba * hba,u8 * desc_buf)7552 static void ufshcd_wb_probe(struct ufs_hba *hba, u8 *desc_buf)
7553 {
7554 struct ufs_dev_info *dev_info = &hba->dev_info;
7555 u8 lun;
7556 u32 d_lu_wb_buf_alloc;
7557 u32 ext_ufs_feature;
7558
7559 if (!ufshcd_is_wb_allowed(hba))
7560 return;
7561 /*
7562 * Probe WB only for UFS-2.2 and UFS-3.1 (and later) devices or
7563 * UFS devices with quirk UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES
7564 * enabled
7565 */
7566 if (!(dev_info->wspecversion >= 0x310 ||
7567 dev_info->wspecversion == 0x220 ||
7568 (hba->dev_quirks & UFS_DEVICE_QUIRK_SUPPORT_EXTENDED_FEATURES)))
7569 goto wb_disabled;
7570
7571 if (hba->desc_size[QUERY_DESC_IDN_DEVICE] <
7572 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP + 4)
7573 goto wb_disabled;
7574
7575 ext_ufs_feature = get_unaligned_be32(desc_buf +
7576 DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7577
7578 if (!(ext_ufs_feature & UFS_DEV_WRITE_BOOSTER_SUP))
7579 goto wb_disabled;
7580
7581 /*
7582 * WB may be supported but not configured while provisioning. The spec
7583 * says, in dedicated wb buffer mode, a max of 1 lun would have wb
7584 * buffer configured.
7585 */
7586 dev_info->wb_buffer_type = desc_buf[DEVICE_DESC_PARAM_WB_TYPE];
7587
7588 dev_info->b_presrv_uspc_en =
7589 desc_buf[DEVICE_DESC_PARAM_WB_PRESRV_USRSPC_EN];
7590
7591 if (dev_info->wb_buffer_type == WB_BUF_MODE_SHARED) {
7592 if (!get_unaligned_be32(desc_buf +
7593 DEVICE_DESC_PARAM_WB_SHARED_ALLOC_UNITS))
7594 goto wb_disabled;
7595 } else {
7596 for (lun = 0; lun < UFS_UPIU_MAX_WB_LUN_ID; lun++) {
7597 d_lu_wb_buf_alloc = 0;
7598 ufshcd_read_unit_desc_param(hba,
7599 lun,
7600 UNIT_DESC_PARAM_WB_BUF_ALLOC_UNITS,
7601 (u8 *)&d_lu_wb_buf_alloc,
7602 sizeof(d_lu_wb_buf_alloc));
7603 if (d_lu_wb_buf_alloc) {
7604 dev_info->wb_dedicated_lu = lun;
7605 break;
7606 }
7607 }
7608
7609 if (!d_lu_wb_buf_alloc)
7610 goto wb_disabled;
7611 }
7612 return;
7613
7614 wb_disabled:
7615 hba->caps &= ~UFSHCD_CAP_WB_EN;
7616 }
7617
ufshcd_temp_notif_probe(struct ufs_hba * hba,u8 * desc_buf)7618 static void ufshcd_temp_notif_probe(struct ufs_hba *hba, u8 *desc_buf)
7619 {
7620 struct ufs_dev_info *dev_info = &hba->dev_info;
7621 u32 ext_ufs_feature;
7622 u8 mask = 0;
7623
7624 if (!(hba->caps & UFSHCD_CAP_TEMP_NOTIF) || dev_info->wspecversion < 0x300)
7625 return;
7626
7627 ext_ufs_feature = get_unaligned_be32(desc_buf + DEVICE_DESC_PARAM_EXT_UFS_FEATURE_SUP);
7628
7629 if (ext_ufs_feature & UFS_DEV_LOW_TEMP_NOTIF)
7630 mask |= MASK_EE_TOO_LOW_TEMP;
7631
7632 if (ext_ufs_feature & UFS_DEV_HIGH_TEMP_NOTIF)
7633 mask |= MASK_EE_TOO_HIGH_TEMP;
7634
7635 if (mask) {
7636 ufshcd_enable_ee(hba, mask);
7637 ufs_hwmon_probe(hba, mask);
7638 }
7639 }
7640
ufshcd_fixup_dev_quirks(struct ufs_hba * hba,struct ufs_dev_fix * fixups)7641 void ufshcd_fixup_dev_quirks(struct ufs_hba *hba, struct ufs_dev_fix *fixups)
7642 {
7643 struct ufs_dev_fix *f;
7644 struct ufs_dev_info *dev_info = &hba->dev_info;
7645
7646 if (!fixups)
7647 return;
7648
7649 for (f = fixups; f->quirk; f++) {
7650 if ((f->wmanufacturerid == dev_info->wmanufacturerid ||
7651 f->wmanufacturerid == UFS_ANY_VENDOR) &&
7652 ((dev_info->model &&
7653 STR_PRFX_EQUAL(f->model, dev_info->model)) ||
7654 !strcmp(f->model, UFS_ANY_MODEL)))
7655 hba->dev_quirks |= f->quirk;
7656 }
7657 }
7658 EXPORT_SYMBOL_GPL(ufshcd_fixup_dev_quirks);
7659
ufs_fixup_device_setup(struct ufs_hba * hba)7660 static void ufs_fixup_device_setup(struct ufs_hba *hba)
7661 {
7662 /* fix by general quirk table */
7663 ufshcd_fixup_dev_quirks(hba, ufs_fixups);
7664
7665 /* allow vendors to fix quirks */
7666 ufshcd_vops_fixup_dev_quirks(hba);
7667 }
7668
ufs_get_device_desc(struct ufs_hba * hba)7669 static int ufs_get_device_desc(struct ufs_hba *hba)
7670 {
7671 int err;
7672 u8 model_index;
7673 u8 b_ufs_feature_sup;
7674 u8 *desc_buf;
7675 struct ufs_dev_info *dev_info = &hba->dev_info;
7676
7677 desc_buf = kmalloc(QUERY_DESC_MAX_SIZE, GFP_KERNEL);
7678 if (!desc_buf) {
7679 err = -ENOMEM;
7680 goto out;
7681 }
7682
7683 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_DEVICE, 0, 0, desc_buf,
7684 hba->desc_size[QUERY_DESC_IDN_DEVICE]);
7685 if (err) {
7686 dev_err(hba->dev, "%s: Failed reading Device Desc. err = %d\n",
7687 __func__, err);
7688 goto out;
7689 }
7690
7691 /*
7692 * getting vendor (manufacturerID) and Bank Index in big endian
7693 * format
7694 */
7695 dev_info->wmanufacturerid = desc_buf[DEVICE_DESC_PARAM_MANF_ID] << 8 |
7696 desc_buf[DEVICE_DESC_PARAM_MANF_ID + 1];
7697
7698 /* getting Specification Version in big endian format */
7699 dev_info->wspecversion = desc_buf[DEVICE_DESC_PARAM_SPEC_VER] << 8 |
7700 desc_buf[DEVICE_DESC_PARAM_SPEC_VER + 1];
7701 b_ufs_feature_sup = desc_buf[DEVICE_DESC_PARAM_UFS_FEAT];
7702
7703 model_index = desc_buf[DEVICE_DESC_PARAM_PRDCT_NAME];
7704
7705 if (dev_info->wspecversion >= UFS_DEV_HPB_SUPPORT_VERSION &&
7706 (b_ufs_feature_sup & UFS_DEV_HPB_SUPPORT)) {
7707 bool hpb_en = false;
7708
7709 ufshpb_get_dev_info(hba, desc_buf);
7710
7711 if (!ufshpb_is_legacy(hba))
7712 err = ufshcd_query_flag_retry(hba,
7713 UPIU_QUERY_OPCODE_READ_FLAG,
7714 QUERY_FLAG_IDN_HPB_EN, 0,
7715 &hpb_en);
7716
7717 if (ufshpb_is_legacy(hba) || (!err && hpb_en))
7718 dev_info->hpb_enabled = true;
7719 }
7720
7721 err = ufshcd_read_string_desc(hba, model_index,
7722 &dev_info->model, SD_ASCII_STD);
7723 if (err < 0) {
7724 dev_err(hba->dev, "%s: Failed reading Product Name. err = %d\n",
7725 __func__, err);
7726 goto out;
7727 }
7728
7729 hba->luns_avail = desc_buf[DEVICE_DESC_PARAM_NUM_LU] +
7730 desc_buf[DEVICE_DESC_PARAM_NUM_WLU];
7731
7732 ufs_fixup_device_setup(hba);
7733
7734 ufshcd_wb_probe(hba, desc_buf);
7735
7736 ufshcd_temp_notif_probe(hba, desc_buf);
7737
7738 /*
7739 * ufshcd_read_string_desc returns size of the string
7740 * reset the error value
7741 */
7742 err = 0;
7743
7744 out:
7745 kfree(desc_buf);
7746 return err;
7747 }
7748
ufs_put_device_desc(struct ufs_hba * hba)7749 static void ufs_put_device_desc(struct ufs_hba *hba)
7750 {
7751 struct ufs_dev_info *dev_info = &hba->dev_info;
7752
7753 kfree(dev_info->model);
7754 dev_info->model = NULL;
7755 }
7756
7757 /**
7758 * ufshcd_tune_pa_tactivate - Tunes PA_TActivate of local UniPro
7759 * @hba: per-adapter instance
7760 *
7761 * PA_TActivate parameter can be tuned manually if UniPro version is less than
7762 * 1.61. PA_TActivate needs to be greater than or equal to peerM-PHY's
7763 * RX_MIN_ACTIVATETIME_CAPABILITY attribute. This optimal value can help reduce
7764 * the hibern8 exit latency.
7765 *
7766 * Returns zero on success, non-zero error value on failure.
7767 */
ufshcd_tune_pa_tactivate(struct ufs_hba * hba)7768 static int ufshcd_tune_pa_tactivate(struct ufs_hba *hba)
7769 {
7770 int ret = 0;
7771 u32 peer_rx_min_activatetime = 0, tuned_pa_tactivate;
7772
7773 ret = ufshcd_dme_peer_get(hba,
7774 UIC_ARG_MIB_SEL(
7775 RX_MIN_ACTIVATETIME_CAPABILITY,
7776 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7777 &peer_rx_min_activatetime);
7778 if (ret)
7779 goto out;
7780
7781 /* make sure proper unit conversion is applied */
7782 tuned_pa_tactivate =
7783 ((peer_rx_min_activatetime * RX_MIN_ACTIVATETIME_UNIT_US)
7784 / PA_TACTIVATE_TIME_UNIT_US);
7785 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7786 tuned_pa_tactivate);
7787
7788 out:
7789 return ret;
7790 }
7791
7792 /**
7793 * ufshcd_tune_pa_hibern8time - Tunes PA_Hibern8Time of local UniPro
7794 * @hba: per-adapter instance
7795 *
7796 * PA_Hibern8Time parameter can be tuned manually if UniPro version is less than
7797 * 1.61. PA_Hibern8Time needs to be maximum of local M-PHY's
7798 * TX_HIBERN8TIME_CAPABILITY & peer M-PHY's RX_HIBERN8TIME_CAPABILITY.
7799 * This optimal value can help reduce the hibern8 exit latency.
7800 *
7801 * Returns zero on success, non-zero error value on failure.
7802 */
ufshcd_tune_pa_hibern8time(struct ufs_hba * hba)7803 static int ufshcd_tune_pa_hibern8time(struct ufs_hba *hba)
7804 {
7805 int ret = 0;
7806 u32 local_tx_hibern8_time_cap = 0, peer_rx_hibern8_time_cap = 0;
7807 u32 max_hibern8_time, tuned_pa_hibern8time;
7808
7809 ret = ufshcd_dme_get(hba,
7810 UIC_ARG_MIB_SEL(TX_HIBERN8TIME_CAPABILITY,
7811 UIC_ARG_MPHY_TX_GEN_SEL_INDEX(0)),
7812 &local_tx_hibern8_time_cap);
7813 if (ret)
7814 goto out;
7815
7816 ret = ufshcd_dme_peer_get(hba,
7817 UIC_ARG_MIB_SEL(RX_HIBERN8TIME_CAPABILITY,
7818 UIC_ARG_MPHY_RX_GEN_SEL_INDEX(0)),
7819 &peer_rx_hibern8_time_cap);
7820 if (ret)
7821 goto out;
7822
7823 max_hibern8_time = max(local_tx_hibern8_time_cap,
7824 peer_rx_hibern8_time_cap);
7825 /* make sure proper unit conversion is applied */
7826 tuned_pa_hibern8time = ((max_hibern8_time * HIBERN8TIME_UNIT_US)
7827 / PA_HIBERN8_TIME_UNIT_US);
7828 ret = ufshcd_dme_set(hba, UIC_ARG_MIB(PA_HIBERN8TIME),
7829 tuned_pa_hibern8time);
7830 out:
7831 return ret;
7832 }
7833
7834 /**
7835 * ufshcd_quirk_tune_host_pa_tactivate - Ensures that host PA_TACTIVATE is
7836 * less than device PA_TACTIVATE time.
7837 * @hba: per-adapter instance
7838 *
7839 * Some UFS devices require host PA_TACTIVATE to be lower than device
7840 * PA_TACTIVATE, we need to enable UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE quirk
7841 * for such devices.
7842 *
7843 * Returns zero on success, non-zero error value on failure.
7844 */
ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba * hba)7845 static int ufshcd_quirk_tune_host_pa_tactivate(struct ufs_hba *hba)
7846 {
7847 int ret = 0;
7848 u32 granularity, peer_granularity;
7849 u32 pa_tactivate, peer_pa_tactivate;
7850 u32 pa_tactivate_us, peer_pa_tactivate_us;
7851 u8 gran_to_us_table[] = {1, 4, 8, 16, 32, 100};
7852
7853 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7854 &granularity);
7855 if (ret)
7856 goto out;
7857
7858 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_GRANULARITY),
7859 &peer_granularity);
7860 if (ret)
7861 goto out;
7862
7863 if ((granularity < PA_GRANULARITY_MIN_VAL) ||
7864 (granularity > PA_GRANULARITY_MAX_VAL)) {
7865 dev_err(hba->dev, "%s: invalid host PA_GRANULARITY %d",
7866 __func__, granularity);
7867 return -EINVAL;
7868 }
7869
7870 if ((peer_granularity < PA_GRANULARITY_MIN_VAL) ||
7871 (peer_granularity > PA_GRANULARITY_MAX_VAL)) {
7872 dev_err(hba->dev, "%s: invalid device PA_GRANULARITY %d",
7873 __func__, peer_granularity);
7874 return -EINVAL;
7875 }
7876
7877 ret = ufshcd_dme_get(hba, UIC_ARG_MIB(PA_TACTIVATE), &pa_tactivate);
7878 if (ret)
7879 goto out;
7880
7881 ret = ufshcd_dme_peer_get(hba, UIC_ARG_MIB(PA_TACTIVATE),
7882 &peer_pa_tactivate);
7883 if (ret)
7884 goto out;
7885
7886 pa_tactivate_us = pa_tactivate * gran_to_us_table[granularity - 1];
7887 peer_pa_tactivate_us = peer_pa_tactivate *
7888 gran_to_us_table[peer_granularity - 1];
7889
7890 if (pa_tactivate_us >= peer_pa_tactivate_us) {
7891 u32 new_peer_pa_tactivate;
7892
7893 new_peer_pa_tactivate = pa_tactivate_us /
7894 gran_to_us_table[peer_granularity - 1];
7895 new_peer_pa_tactivate++;
7896 ret = ufshcd_dme_peer_set(hba, UIC_ARG_MIB(PA_TACTIVATE),
7897 new_peer_pa_tactivate);
7898 }
7899
7900 out:
7901 return ret;
7902 }
7903
ufshcd_tune_unipro_params(struct ufs_hba * hba)7904 static void ufshcd_tune_unipro_params(struct ufs_hba *hba)
7905 {
7906 if (ufshcd_is_unipro_pa_params_tuning_req(hba)) {
7907 ufshcd_tune_pa_tactivate(hba);
7908 ufshcd_tune_pa_hibern8time(hba);
7909 }
7910
7911 ufshcd_vops_apply_dev_quirks(hba);
7912
7913 if (hba->dev_quirks & UFS_DEVICE_QUIRK_PA_TACTIVATE)
7914 /* set 1ms timeout for PA_TACTIVATE */
7915 ufshcd_dme_set(hba, UIC_ARG_MIB(PA_TACTIVATE), 10);
7916
7917 if (hba->dev_quirks & UFS_DEVICE_QUIRK_HOST_PA_TACTIVATE)
7918 ufshcd_quirk_tune_host_pa_tactivate(hba);
7919 }
7920
ufshcd_clear_dbg_ufs_stats(struct ufs_hba * hba)7921 static void ufshcd_clear_dbg_ufs_stats(struct ufs_hba *hba)
7922 {
7923 hba->ufs_stats.hibern8_exit_cnt = 0;
7924 hba->ufs_stats.last_hibern8_exit_tstamp = ktime_set(0, 0);
7925 hba->req_abort_count = 0;
7926 }
7927
ufshcd_device_geo_params_init(struct ufs_hba * hba)7928 static int ufshcd_device_geo_params_init(struct ufs_hba *hba)
7929 {
7930 int err;
7931 size_t buff_len;
7932 u8 *desc_buf;
7933
7934 buff_len = hba->desc_size[QUERY_DESC_IDN_GEOMETRY];
7935 desc_buf = kmalloc(buff_len, GFP_KERNEL);
7936 if (!desc_buf) {
7937 err = -ENOMEM;
7938 goto out;
7939 }
7940
7941 err = ufshcd_read_desc_param(hba, QUERY_DESC_IDN_GEOMETRY, 0, 0,
7942 desc_buf, buff_len);
7943 if (err) {
7944 dev_err(hba->dev, "%s: Failed reading Geometry Desc. err = %d\n",
7945 __func__, err);
7946 goto out;
7947 }
7948
7949 if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 1)
7950 hba->dev_info.max_lu_supported = 32;
7951 else if (desc_buf[GEOMETRY_DESC_PARAM_MAX_NUM_LUN] == 0)
7952 hba->dev_info.max_lu_supported = 8;
7953
7954 if (hba->desc_size[QUERY_DESC_IDN_GEOMETRY] >=
7955 GEOMETRY_DESC_PARAM_HPB_MAX_ACTIVE_REGS)
7956 ufshpb_get_geo_info(hba, desc_buf);
7957
7958 out:
7959 kfree(desc_buf);
7960 return err;
7961 }
7962
7963 static struct ufs_ref_clk ufs_ref_clk_freqs[] = {
7964 {19200000, REF_CLK_FREQ_19_2_MHZ},
7965 {26000000, REF_CLK_FREQ_26_MHZ},
7966 {38400000, REF_CLK_FREQ_38_4_MHZ},
7967 {52000000, REF_CLK_FREQ_52_MHZ},
7968 {0, REF_CLK_FREQ_INVAL},
7969 };
7970
7971 static enum ufs_ref_clk_freq
ufs_get_bref_clk_from_hz(unsigned long freq)7972 ufs_get_bref_clk_from_hz(unsigned long freq)
7973 {
7974 int i;
7975
7976 for (i = 0; ufs_ref_clk_freqs[i].freq_hz; i++)
7977 if (ufs_ref_clk_freqs[i].freq_hz == freq)
7978 return ufs_ref_clk_freqs[i].val;
7979
7980 return REF_CLK_FREQ_INVAL;
7981 }
7982
ufshcd_parse_dev_ref_clk_freq(struct ufs_hba * hba,struct clk * refclk)7983 void ufshcd_parse_dev_ref_clk_freq(struct ufs_hba *hba, struct clk *refclk)
7984 {
7985 unsigned long freq;
7986
7987 freq = clk_get_rate(refclk);
7988
7989 hba->dev_ref_clk_freq =
7990 ufs_get_bref_clk_from_hz(freq);
7991
7992 if (hba->dev_ref_clk_freq == REF_CLK_FREQ_INVAL)
7993 dev_err(hba->dev,
7994 "invalid ref_clk setting = %ld\n", freq);
7995 }
7996
ufshcd_set_dev_ref_clk(struct ufs_hba * hba)7997 static int ufshcd_set_dev_ref_clk(struct ufs_hba *hba)
7998 {
7999 int err;
8000 u32 ref_clk;
8001 u32 freq = hba->dev_ref_clk_freq;
8002
8003 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_READ_ATTR,
8004 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &ref_clk);
8005
8006 if (err) {
8007 dev_err(hba->dev, "failed reading bRefClkFreq. err = %d\n",
8008 err);
8009 goto out;
8010 }
8011
8012 if (ref_clk == freq)
8013 goto out; /* nothing to update */
8014
8015 err = ufshcd_query_attr_retry(hba, UPIU_QUERY_OPCODE_WRITE_ATTR,
8016 QUERY_ATTR_IDN_REF_CLK_FREQ, 0, 0, &freq);
8017
8018 if (err) {
8019 dev_err(hba->dev, "bRefClkFreq setting to %lu Hz failed\n",
8020 ufs_ref_clk_freqs[freq].freq_hz);
8021 goto out;
8022 }
8023
8024 dev_dbg(hba->dev, "bRefClkFreq setting to %lu Hz succeeded\n",
8025 ufs_ref_clk_freqs[freq].freq_hz);
8026
8027 out:
8028 return err;
8029 }
8030
ufshcd_device_params_init(struct ufs_hba * hba)8031 static int ufshcd_device_params_init(struct ufs_hba *hba)
8032 {
8033 bool flag;
8034 int ret, i;
8035
8036 /* Init device descriptor sizes */
8037 for (i = 0; i < QUERY_DESC_IDN_MAX; i++)
8038 hba->desc_size[i] = QUERY_DESC_MAX_SIZE;
8039
8040 /* Init UFS geometry descriptor related parameters */
8041 ret = ufshcd_device_geo_params_init(hba);
8042 if (ret)
8043 goto out;
8044
8045 /* Check and apply UFS device quirks */
8046 ret = ufs_get_device_desc(hba);
8047 if (ret) {
8048 dev_err(hba->dev, "%s: Failed getting device info. err = %d\n",
8049 __func__, ret);
8050 goto out;
8051 }
8052
8053 ufshcd_get_ref_clk_gating_wait(hba);
8054
8055 if (!ufshcd_query_flag_retry(hba, UPIU_QUERY_OPCODE_READ_FLAG,
8056 QUERY_FLAG_IDN_PWR_ON_WPE, 0, &flag))
8057 hba->dev_info.f_power_on_wp_en = flag;
8058
8059 /* Probe maximum power mode co-supported by both UFS host and device */
8060 if (ufshcd_get_max_pwr_mode(hba))
8061 dev_err(hba->dev,
8062 "%s: Failed getting max supported power mode\n",
8063 __func__);
8064 out:
8065 return ret;
8066 }
8067
8068 /**
8069 * ufshcd_add_lus - probe and add UFS logical units
8070 * @hba: per-adapter instance
8071 */
ufshcd_add_lus(struct ufs_hba * hba)8072 static int ufshcd_add_lus(struct ufs_hba *hba)
8073 {
8074 int ret;
8075
8076 /* Add required well known logical units to scsi mid layer */
8077 ret = ufshcd_scsi_add_wlus(hba);
8078 if (ret)
8079 goto out;
8080
8081 /* Initialize devfreq after UFS device is detected */
8082 if (ufshcd_is_clkscaling_supported(hba)) {
8083 memcpy(&hba->clk_scaling.saved_pwr_info.info,
8084 &hba->pwr_info,
8085 sizeof(struct ufs_pa_layer_attr));
8086 hba->clk_scaling.saved_pwr_info.is_valid = true;
8087 hba->clk_scaling.is_allowed = true;
8088
8089 ret = ufshcd_devfreq_init(hba);
8090 if (ret)
8091 goto out;
8092
8093 hba->clk_scaling.is_enabled = true;
8094 ufshcd_init_clk_scaling_sysfs(hba);
8095 }
8096
8097 ufs_bsg_probe(hba);
8098 ufshpb_init(hba);
8099 scsi_scan_host(hba->host);
8100
8101 out:
8102 return ret;
8103 }
8104
8105 /**
8106 * ufshcd_probe_hba - probe hba to detect device and initialize it
8107 * @hba: per-adapter instance
8108 * @init_dev_params: whether or not to call ufshcd_device_params_init().
8109 *
8110 * Execute link-startup and verify device initialization
8111 */
ufshcd_probe_hba(struct ufs_hba * hba,bool init_dev_params)8112 static int ufshcd_probe_hba(struct ufs_hba *hba, bool init_dev_params)
8113 {
8114 int ret;
8115 unsigned long flags;
8116 ktime_t start = ktime_get();
8117
8118 hba->ufshcd_state = UFSHCD_STATE_RESET;
8119
8120 ret = ufshcd_link_startup(hba);
8121 if (ret)
8122 goto out;
8123
8124 if (hba->quirks & UFSHCD_QUIRK_SKIP_PH_CONFIGURATION)
8125 goto out;
8126
8127 /* Debug counters initialization */
8128 ufshcd_clear_dbg_ufs_stats(hba);
8129
8130 /* UniPro link is active now */
8131 ufshcd_set_link_active(hba);
8132
8133 /* Verify device initialization by sending NOP OUT UPIU */
8134 ret = ufshcd_verify_dev_init(hba);
8135 if (ret)
8136 goto out;
8137
8138 /* Initiate UFS initialization, and waiting until completion */
8139 ret = ufshcd_complete_dev_init(hba);
8140 if (ret)
8141 goto out;
8142
8143 /*
8144 * Initialize UFS device parameters used by driver, these
8145 * parameters are associated with UFS descriptors.
8146 */
8147 if (init_dev_params) {
8148 ret = ufshcd_device_params_init(hba);
8149 if (ret)
8150 goto out;
8151 }
8152
8153 ufshcd_tune_unipro_params(hba);
8154
8155 /* UFS device is also active now */
8156 ufshcd_set_ufs_dev_active(hba);
8157 ufshcd_force_reset_auto_bkops(hba);
8158
8159 /* Gear up to HS gear if supported */
8160 if (hba->max_pwr_info.is_valid) {
8161 /*
8162 * Set the right value to bRefClkFreq before attempting to
8163 * switch to HS gears.
8164 */
8165 if (hba->dev_ref_clk_freq != REF_CLK_FREQ_INVAL)
8166 ufshcd_set_dev_ref_clk(hba);
8167 ret = ufshcd_config_pwr_mode(hba, &hba->max_pwr_info.info);
8168 if (ret) {
8169 dev_err(hba->dev, "%s: Failed setting power mode, err = %d\n",
8170 __func__, ret);
8171 goto out;
8172 }
8173 ufshcd_print_pwr_info(hba);
8174 }
8175
8176 /*
8177 * bActiveICCLevel is volatile for UFS device (as per latest v2.1 spec)
8178 * and for removable UFS card as well, hence always set the parameter.
8179 * Note: Error handler may issue the device reset hence resetting
8180 * bActiveICCLevel as well so it is always safe to set this here.
8181 */
8182 ufshcd_set_active_icc_lvl(hba);
8183
8184 ufshcd_wb_config(hba);
8185 if (hba->ee_usr_mask)
8186 ufshcd_write_ee_control(hba);
8187 /* Enable Auto-Hibernate if configured */
8188 ufshcd_auto_hibern8_enable(hba);
8189
8190 ufshpb_reset(hba);
8191
8192 trace_android_rvh_ufs_complete_init(hba);
8193 out:
8194 spin_lock_irqsave(hba->host->host_lock, flags);
8195 if (ret)
8196 hba->ufshcd_state = UFSHCD_STATE_ERROR;
8197 else if (hba->ufshcd_state == UFSHCD_STATE_RESET)
8198 hba->ufshcd_state = UFSHCD_STATE_OPERATIONAL;
8199 spin_unlock_irqrestore(hba->host->host_lock, flags);
8200
8201 trace_ufshcd_init(dev_name(hba->dev), ret,
8202 ktime_to_us(ktime_sub(ktime_get(), start)),
8203 hba->curr_dev_pwr_mode, hba->uic_link_state);
8204 return ret;
8205 }
8206
8207 /**
8208 * ufshcd_async_scan - asynchronous execution for probing hba
8209 * @data: data pointer to pass to this function
8210 * @cookie: cookie data
8211 */
ufshcd_async_scan(void * data,async_cookie_t cookie)8212 static void ufshcd_async_scan(void *data, async_cookie_t cookie)
8213 {
8214 struct ufs_hba *hba = (struct ufs_hba *)data;
8215 int ret;
8216
8217 down(&hba->host_sem);
8218 /* Initialize hba, detect and initialize UFS device */
8219 ret = ufshcd_probe_hba(hba, true);
8220 up(&hba->host_sem);
8221 if (ret)
8222 goto out;
8223
8224 /* Probe and add UFS logical units */
8225 ret = ufshcd_add_lus(hba);
8226
8227 out:
8228 pm_runtime_put_sync(hba->dev);
8229
8230 if (ret)
8231 dev_err(hba->dev, "%s failed: %d\n", __func__, ret);
8232 }
8233
8234 static const struct attribute_group *ufshcd_driver_groups[] = {
8235 &ufs_sysfs_unit_descriptor_group,
8236 &ufs_sysfs_lun_attributes_group,
8237 #ifdef CONFIG_SCSI_UFS_HPB
8238 &ufs_sysfs_hpb_stat_group,
8239 &ufs_sysfs_hpb_param_group,
8240 #endif
8241 NULL,
8242 };
8243
8244 static struct ufs_hba_variant_params ufs_hba_vps = {
8245 .hba_enable_delay_us = 1000,
8246 .wb_flush_threshold = UFS_WB_BUF_REMAIN_PERCENT(40),
8247 .devfreq_profile.polling_ms = 100,
8248 .devfreq_profile.target = ufshcd_devfreq_target,
8249 .devfreq_profile.get_dev_status = ufshcd_devfreq_get_dev_status,
8250 .ondemand_data.upthreshold = 70,
8251 .ondemand_data.downdifferential = 5,
8252 };
8253
8254 static struct scsi_host_template ufshcd_driver_template = {
8255 .module = THIS_MODULE,
8256 .name = UFSHCD,
8257 .proc_name = UFSHCD,
8258 .queuecommand = ufshcd_queuecommand,
8259 .slave_alloc = ufshcd_slave_alloc,
8260 .slave_configure = ufshcd_slave_configure,
8261 .slave_destroy = ufshcd_slave_destroy,
8262 .change_queue_depth = ufshcd_change_queue_depth,
8263 .eh_abort_handler = ufshcd_abort,
8264 .eh_device_reset_handler = ufshcd_eh_device_reset_handler,
8265 .eh_host_reset_handler = ufshcd_eh_host_reset_handler,
8266 .this_id = -1,
8267 .sg_tablesize = SG_ALL,
8268 .cmd_per_lun = UFSHCD_CMD_PER_LUN,
8269 .can_queue = UFSHCD_CAN_QUEUE,
8270 .max_segment_size = PRDT_DATA_BYTE_COUNT_MAX,
8271 .max_host_blocked = 1,
8272 .track_queue_depth = 1,
8273 .sdev_groups = ufshcd_driver_groups,
8274 .dma_boundary = PAGE_SIZE - 1,
8275 .rpm_autosuspend_delay = RPM_AUTOSUSPEND_DELAY_MS,
8276 };
8277
ufshcd_config_vreg_load(struct device * dev,struct ufs_vreg * vreg,int ua)8278 static int ufshcd_config_vreg_load(struct device *dev, struct ufs_vreg *vreg,
8279 int ua)
8280 {
8281 int ret;
8282
8283 if (!vreg)
8284 return 0;
8285
8286 /*
8287 * "set_load" operation shall be required on those regulators
8288 * which specifically configured current limitation. Otherwise
8289 * zero max_uA may cause unexpected behavior when regulator is
8290 * enabled or set as high power mode.
8291 */
8292 if (!vreg->max_uA)
8293 return 0;
8294
8295 ret = regulator_set_load(vreg->reg, ua);
8296 if (ret < 0) {
8297 dev_err(dev, "%s: %s set load (ua=%d) failed, err=%d\n",
8298 __func__, vreg->name, ua, ret);
8299 }
8300
8301 return ret;
8302 }
8303
ufshcd_config_vreg_lpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8304 static inline int ufshcd_config_vreg_lpm(struct ufs_hba *hba,
8305 struct ufs_vreg *vreg)
8306 {
8307 return ufshcd_config_vreg_load(hba->dev, vreg, UFS_VREG_LPM_LOAD_UA);
8308 }
8309
ufshcd_config_vreg_hpm(struct ufs_hba * hba,struct ufs_vreg * vreg)8310 static inline int ufshcd_config_vreg_hpm(struct ufs_hba *hba,
8311 struct ufs_vreg *vreg)
8312 {
8313 if (!vreg)
8314 return 0;
8315
8316 return ufshcd_config_vreg_load(hba->dev, vreg, vreg->max_uA);
8317 }
8318
ufshcd_config_vreg(struct device * dev,struct ufs_vreg * vreg,bool on)8319 static int ufshcd_config_vreg(struct device *dev,
8320 struct ufs_vreg *vreg, bool on)
8321 {
8322 int ret = 0;
8323 struct regulator *reg;
8324 const char *name;
8325 int min_uV, uA_load;
8326
8327 BUG_ON(!vreg);
8328
8329 reg = vreg->reg;
8330 name = vreg->name;
8331
8332 if (regulator_count_voltages(reg) > 0) {
8333 uA_load = on ? vreg->max_uA : 0;
8334 ret = ufshcd_config_vreg_load(dev, vreg, uA_load);
8335 if (ret)
8336 goto out;
8337
8338 if (vreg->min_uV && vreg->max_uV) {
8339 min_uV = on ? vreg->min_uV : 0;
8340 ret = regulator_set_voltage(reg, min_uV, vreg->max_uV);
8341 if (ret)
8342 dev_err(dev,
8343 "%s: %s set voltage failed, err=%d\n",
8344 __func__, name, ret);
8345 }
8346 }
8347 out:
8348 return ret;
8349 }
8350
ufshcd_enable_vreg(struct device * dev,struct ufs_vreg * vreg)8351 static int ufshcd_enable_vreg(struct device *dev, struct ufs_vreg *vreg)
8352 {
8353 int ret = 0;
8354
8355 if (!vreg || vreg->enabled)
8356 goto out;
8357
8358 ret = ufshcd_config_vreg(dev, vreg, true);
8359 if (!ret)
8360 ret = regulator_enable(vreg->reg);
8361
8362 if (!ret)
8363 vreg->enabled = true;
8364 else
8365 dev_err(dev, "%s: %s enable failed, err=%d\n",
8366 __func__, vreg->name, ret);
8367 out:
8368 return ret;
8369 }
8370
ufshcd_disable_vreg(struct device * dev,struct ufs_vreg * vreg)8371 static int ufshcd_disable_vreg(struct device *dev, struct ufs_vreg *vreg)
8372 {
8373 int ret = 0;
8374
8375 if (!vreg || !vreg->enabled || vreg->always_on)
8376 goto out;
8377
8378 ret = regulator_disable(vreg->reg);
8379
8380 if (!ret) {
8381 /* ignore errors on applying disable config */
8382 ufshcd_config_vreg(dev, vreg, false);
8383 vreg->enabled = false;
8384 } else {
8385 dev_err(dev, "%s: %s disable failed, err=%d\n",
8386 __func__, vreg->name, ret);
8387 }
8388 out:
8389 return ret;
8390 }
8391
ufshcd_setup_vreg(struct ufs_hba * hba,bool on)8392 static int ufshcd_setup_vreg(struct ufs_hba *hba, bool on)
8393 {
8394 int ret = 0;
8395 struct device *dev = hba->dev;
8396 struct ufs_vreg_info *info = &hba->vreg_info;
8397
8398 ret = ufshcd_toggle_vreg(dev, info->vcc, on);
8399 if (ret)
8400 goto out;
8401
8402 ret = ufshcd_toggle_vreg(dev, info->vccq, on);
8403 if (ret)
8404 goto out;
8405
8406 ret = ufshcd_toggle_vreg(dev, info->vccq2, on);
8407
8408 out:
8409 if (ret) {
8410 ufshcd_toggle_vreg(dev, info->vccq2, false);
8411 ufshcd_toggle_vreg(dev, info->vccq, false);
8412 ufshcd_toggle_vreg(dev, info->vcc, false);
8413 }
8414 return ret;
8415 }
8416
ufshcd_setup_hba_vreg(struct ufs_hba * hba,bool on)8417 static int ufshcd_setup_hba_vreg(struct ufs_hba *hba, bool on)
8418 {
8419 struct ufs_vreg_info *info = &hba->vreg_info;
8420
8421 return ufshcd_toggle_vreg(hba->dev, info->vdd_hba, on);
8422 }
8423
ufshcd_get_vreg(struct device * dev,struct ufs_vreg * vreg)8424 int ufshcd_get_vreg(struct device *dev, struct ufs_vreg *vreg)
8425 {
8426 int ret = 0;
8427
8428 if (!vreg)
8429 goto out;
8430
8431 vreg->reg = devm_regulator_get(dev, vreg->name);
8432 if (IS_ERR(vreg->reg)) {
8433 ret = PTR_ERR(vreg->reg);
8434 dev_err(dev, "%s: %s get failed, err=%d\n",
8435 __func__, vreg->name, ret);
8436 }
8437 out:
8438 return ret;
8439 }
8440 EXPORT_SYMBOL_GPL(ufshcd_get_vreg);
8441
ufshcd_init_vreg(struct ufs_hba * hba)8442 static int ufshcd_init_vreg(struct ufs_hba *hba)
8443 {
8444 int ret = 0;
8445 struct device *dev = hba->dev;
8446 struct ufs_vreg_info *info = &hba->vreg_info;
8447
8448 ret = ufshcd_get_vreg(dev, info->vcc);
8449 if (ret)
8450 goto out;
8451
8452 ret = ufshcd_get_vreg(dev, info->vccq);
8453 if (!ret)
8454 ret = ufshcd_get_vreg(dev, info->vccq2);
8455 out:
8456 return ret;
8457 }
8458
ufshcd_init_hba_vreg(struct ufs_hba * hba)8459 static int ufshcd_init_hba_vreg(struct ufs_hba *hba)
8460 {
8461 struct ufs_vreg_info *info = &hba->vreg_info;
8462
8463 if (info)
8464 return ufshcd_get_vreg(hba->dev, info->vdd_hba);
8465
8466 return 0;
8467 }
8468
ufshcd_setup_clocks(struct ufs_hba * hba,bool on)8469 static int ufshcd_setup_clocks(struct ufs_hba *hba, bool on)
8470 {
8471 int ret = 0;
8472 struct ufs_clk_info *clki;
8473 struct list_head *head = &hba->clk_list_head;
8474 unsigned long flags;
8475 ktime_t start = ktime_get();
8476 bool clk_state_changed = false;
8477
8478 if (list_empty(head))
8479 goto out;
8480
8481 ret = ufshcd_vops_setup_clocks(hba, on, PRE_CHANGE);
8482 if (ret)
8483 return ret;
8484
8485 list_for_each_entry(clki, head, list) {
8486 if (!IS_ERR_OR_NULL(clki->clk)) {
8487 /*
8488 * Don't disable clocks which are needed
8489 * to keep the link active.
8490 */
8491 if (ufshcd_is_link_active(hba) &&
8492 clki->keep_link_active)
8493 continue;
8494
8495 clk_state_changed = on ^ clki->enabled;
8496 if (on && !clki->enabled) {
8497 ret = clk_prepare_enable(clki->clk);
8498 if (ret) {
8499 dev_err(hba->dev, "%s: %s prepare enable failed, %d\n",
8500 __func__, clki->name, ret);
8501 goto out;
8502 }
8503 } else if (!on && clki->enabled) {
8504 clk_disable_unprepare(clki->clk);
8505 }
8506 clki->enabled = on;
8507 dev_dbg(hba->dev, "%s: clk: %s %sabled\n", __func__,
8508 clki->name, on ? "en" : "dis");
8509 }
8510 }
8511
8512 ret = ufshcd_vops_setup_clocks(hba, on, POST_CHANGE);
8513 if (ret)
8514 return ret;
8515
8516 out:
8517 if (ret) {
8518 list_for_each_entry(clki, head, list) {
8519 if (!IS_ERR_OR_NULL(clki->clk) && clki->enabled)
8520 clk_disable_unprepare(clki->clk);
8521 }
8522 } else if (!ret && on) {
8523 spin_lock_irqsave(hba->host->host_lock, flags);
8524 hba->clk_gating.state = CLKS_ON;
8525 trace_ufshcd_clk_gating(dev_name(hba->dev),
8526 hba->clk_gating.state);
8527 spin_unlock_irqrestore(hba->host->host_lock, flags);
8528 }
8529
8530 if (clk_state_changed)
8531 trace_ufshcd_profile_clk_gating(dev_name(hba->dev),
8532 (on ? "on" : "off"),
8533 ktime_to_us(ktime_sub(ktime_get(), start)), ret);
8534 return ret;
8535 }
8536
ufshcd_init_clocks(struct ufs_hba * hba)8537 static int ufshcd_init_clocks(struct ufs_hba *hba)
8538 {
8539 int ret = 0;
8540 struct ufs_clk_info *clki;
8541 struct device *dev = hba->dev;
8542 struct list_head *head = &hba->clk_list_head;
8543
8544 if (list_empty(head))
8545 goto out;
8546
8547 list_for_each_entry(clki, head, list) {
8548 if (!clki->name)
8549 continue;
8550
8551 clki->clk = devm_clk_get(dev, clki->name);
8552 if (IS_ERR(clki->clk)) {
8553 ret = PTR_ERR(clki->clk);
8554 dev_err(dev, "%s: %s clk get failed, %d\n",
8555 __func__, clki->name, ret);
8556 goto out;
8557 }
8558
8559 /*
8560 * Parse device ref clk freq as per device tree "ref_clk".
8561 * Default dev_ref_clk_freq is set to REF_CLK_FREQ_INVAL
8562 * in ufshcd_alloc_host().
8563 */
8564 if (!strcmp(clki->name, "ref_clk"))
8565 ufshcd_parse_dev_ref_clk_freq(hba, clki->clk);
8566
8567 if (clki->max_freq) {
8568 ret = clk_set_rate(clki->clk, clki->max_freq);
8569 if (ret) {
8570 dev_err(hba->dev, "%s: %s clk set rate(%dHz) failed, %d\n",
8571 __func__, clki->name,
8572 clki->max_freq, ret);
8573 goto out;
8574 }
8575 clki->curr_freq = clki->max_freq;
8576 }
8577 dev_dbg(dev, "%s: clk: %s, rate: %lu\n", __func__,
8578 clki->name, clk_get_rate(clki->clk));
8579 }
8580 out:
8581 return ret;
8582 }
8583
ufshcd_variant_hba_init(struct ufs_hba * hba)8584 static int ufshcd_variant_hba_init(struct ufs_hba *hba)
8585 {
8586 int err = 0;
8587
8588 if (!hba->vops)
8589 goto out;
8590
8591 err = ufshcd_vops_init(hba);
8592 if (err)
8593 dev_err(hba->dev, "%s: variant %s init failed err %d\n",
8594 __func__, ufshcd_get_var_name(hba), err);
8595 out:
8596 return err;
8597 }
8598
ufshcd_variant_hba_exit(struct ufs_hba * hba)8599 static void ufshcd_variant_hba_exit(struct ufs_hba *hba)
8600 {
8601 if (!hba->vops)
8602 return;
8603
8604 ufshcd_vops_exit(hba);
8605 }
8606
ufshcd_hba_init(struct ufs_hba * hba)8607 static int ufshcd_hba_init(struct ufs_hba *hba)
8608 {
8609 int err;
8610
8611 /*
8612 * Handle host controller power separately from the UFS device power
8613 * rails as it will help controlling the UFS host controller power
8614 * collapse easily which is different than UFS device power collapse.
8615 * Also, enable the host controller power before we go ahead with rest
8616 * of the initialization here.
8617 */
8618 err = ufshcd_init_hba_vreg(hba);
8619 if (err)
8620 goto out;
8621
8622 err = ufshcd_setup_hba_vreg(hba, true);
8623 if (err)
8624 goto out;
8625
8626 err = ufshcd_init_clocks(hba);
8627 if (err)
8628 goto out_disable_hba_vreg;
8629
8630 err = ufshcd_setup_clocks(hba, true);
8631 if (err)
8632 goto out_disable_hba_vreg;
8633
8634 err = ufshcd_init_vreg(hba);
8635 if (err)
8636 goto out_disable_clks;
8637
8638 err = ufshcd_setup_vreg(hba, true);
8639 if (err)
8640 goto out_disable_clks;
8641
8642 err = ufshcd_variant_hba_init(hba);
8643 if (err)
8644 goto out_disable_vreg;
8645
8646 ufs_debugfs_hba_init(hba);
8647
8648 hba->is_powered = true;
8649 goto out;
8650
8651 out_disable_vreg:
8652 ufshcd_setup_vreg(hba, false);
8653 out_disable_clks:
8654 ufshcd_setup_clocks(hba, false);
8655 out_disable_hba_vreg:
8656 ufshcd_setup_hba_vreg(hba, false);
8657 out:
8658 return err;
8659 }
8660
ufshcd_hba_exit(struct ufs_hba * hba)8661 static void ufshcd_hba_exit(struct ufs_hba *hba)
8662 {
8663 if (hba->is_powered) {
8664 ufshcd_exit_clk_scaling(hba);
8665 ufshcd_exit_clk_gating(hba);
8666 if (hba->eh_wq)
8667 destroy_workqueue(hba->eh_wq);
8668 ufs_debugfs_hba_exit(hba);
8669 ufshcd_variant_hba_exit(hba);
8670 ufshcd_setup_vreg(hba, false);
8671 ufshcd_setup_clocks(hba, false);
8672 ufshcd_setup_hba_vreg(hba, false);
8673 hba->is_powered = false;
8674 ufs_put_device_desc(hba);
8675 }
8676 }
8677
8678 /**
8679 * ufshcd_set_dev_pwr_mode - sends START STOP UNIT command to set device
8680 * power mode
8681 * @hba: per adapter instance
8682 * @pwr_mode: device power mode to set
8683 *
8684 * Returns 0 if requested power mode is set successfully
8685 * Returns < 0 if failed to set the requested power mode
8686 */
ufshcd_set_dev_pwr_mode(struct ufs_hba * hba,enum ufs_dev_pwr_mode pwr_mode)8687 static int ufshcd_set_dev_pwr_mode(struct ufs_hba *hba,
8688 enum ufs_dev_pwr_mode pwr_mode)
8689 {
8690 unsigned char cmd[6] = { START_STOP };
8691 struct scsi_sense_hdr sshdr;
8692 struct scsi_device *sdp;
8693 unsigned long flags;
8694 int ret, retries;
8695
8696 spin_lock_irqsave(hba->host->host_lock, flags);
8697 sdp = hba->sdev_ufs_device;
8698 if (sdp) {
8699 ret = scsi_device_get(sdp);
8700 if (!ret && !scsi_device_online(sdp)) {
8701 ret = -ENODEV;
8702 scsi_device_put(sdp);
8703 }
8704 } else {
8705 ret = -ENODEV;
8706 }
8707 spin_unlock_irqrestore(hba->host->host_lock, flags);
8708
8709 if (ret)
8710 return ret;
8711
8712 /*
8713 * If scsi commands fail, the scsi mid-layer schedules scsi error-
8714 * handling, which would wait for host to be resumed. Since we know
8715 * we are functional while we are here, skip host resume in error
8716 * handling context.
8717 */
8718 hba->host->eh_noresume = 1;
8719
8720 cmd[4] = pwr_mode << 4;
8721
8722 /*
8723 * Current function would be generally called from the power management
8724 * callbacks hence set the RQF_PM flag so that it doesn't resume the
8725 * already suspended childs.
8726 */
8727 for (retries = 3; retries > 0; --retries) {
8728 ret = scsi_execute(sdp, cmd, DMA_NONE, NULL, 0, NULL, &sshdr,
8729 HZ, 0, 0, RQF_PM, NULL);
8730 /*
8731 * scsi_execute() only returns a negative value if the request
8732 * queue is dying.
8733 */
8734 if (ret <= 0)
8735 break;
8736 }
8737 if (ret) {
8738 sdev_printk(KERN_WARNING, sdp,
8739 "START_STOP failed for power mode: %d, result %x\n",
8740 pwr_mode, ret);
8741 if (ret > 0) {
8742 if (scsi_sense_valid(&sshdr))
8743 scsi_print_sense_hdr(sdp, NULL, &sshdr);
8744 ret = -EIO;
8745 }
8746 }
8747
8748 if (!ret)
8749 hba->curr_dev_pwr_mode = pwr_mode;
8750
8751 scsi_device_put(sdp);
8752 hba->host->eh_noresume = 0;
8753 return ret;
8754 }
8755
ufshcd_link_state_transition(struct ufs_hba * hba,enum uic_link_state req_link_state,int check_for_bkops)8756 static int ufshcd_link_state_transition(struct ufs_hba *hba,
8757 enum uic_link_state req_link_state,
8758 int check_for_bkops)
8759 {
8760 int ret = 0;
8761
8762 if (req_link_state == hba->uic_link_state)
8763 return 0;
8764
8765 if (req_link_state == UIC_LINK_HIBERN8_STATE) {
8766 ret = ufshcd_uic_hibern8_enter(hba);
8767 if (!ret) {
8768 ufshcd_set_link_hibern8(hba);
8769 } else {
8770 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8771 __func__, ret);
8772 goto out;
8773 }
8774 }
8775 /*
8776 * If autobkops is enabled, link can't be turned off because
8777 * turning off the link would also turn off the device, except in the
8778 * case of DeepSleep where the device is expected to remain powered.
8779 */
8780 else if ((req_link_state == UIC_LINK_OFF_STATE) &&
8781 (!check_for_bkops || !hba->auto_bkops_enabled)) {
8782 /*
8783 * Let's make sure that link is in low power mode, we are doing
8784 * this currently by putting the link in Hibern8. Otherway to
8785 * put the link in low power mode is to send the DME end point
8786 * to device and then send the DME reset command to local
8787 * unipro. But putting the link in hibern8 is much faster.
8788 *
8789 * Note also that putting the link in Hibern8 is a requirement
8790 * for entering DeepSleep.
8791 */
8792 ret = ufshcd_uic_hibern8_enter(hba);
8793 if (ret) {
8794 dev_err(hba->dev, "%s: hibern8 enter failed %d\n",
8795 __func__, ret);
8796 goto out;
8797 }
8798 /*
8799 * Change controller state to "reset state" which
8800 * should also put the link in off/reset state
8801 */
8802 ufshcd_hba_stop(hba);
8803 /*
8804 * TODO: Check if we need any delay to make sure that
8805 * controller is reset
8806 */
8807 ufshcd_set_link_off(hba);
8808 }
8809
8810 out:
8811 return ret;
8812 }
8813
ufshcd_vreg_set_lpm(struct ufs_hba * hba)8814 static void ufshcd_vreg_set_lpm(struct ufs_hba *hba)
8815 {
8816 bool vcc_off = false;
8817
8818 /*
8819 * It seems some UFS devices may keep drawing more than sleep current
8820 * (atleast for 500us) from UFS rails (especially from VCCQ rail).
8821 * To avoid this situation, add 2ms delay before putting these UFS
8822 * rails in LPM mode.
8823 */
8824 if (!ufshcd_is_link_active(hba) &&
8825 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_BEFORE_LPM)
8826 usleep_range(2000, 2100);
8827
8828 /*
8829 * If UFS device is either in UFS_Sleep turn off VCC rail to save some
8830 * power.
8831 *
8832 * If UFS device and link is in OFF state, all power supplies (VCC,
8833 * VCCQ, VCCQ2) can be turned off if power on write protect is not
8834 * required. If UFS link is inactive (Hibern8 or OFF state) and device
8835 * is in sleep state, put VCCQ & VCCQ2 rails in LPM mode.
8836 *
8837 * Ignore the error returned by ufshcd_toggle_vreg() as device is anyway
8838 * in low power state which would save some power.
8839 *
8840 * If Write Booster is enabled and the device needs to flush the WB
8841 * buffer OR if bkops status is urgent for WB, keep Vcc on.
8842 */
8843 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8844 !hba->dev_info.is_lu_power_on_wp) {
8845 ufshcd_setup_vreg(hba, false);
8846 vcc_off = true;
8847 } else if (!ufshcd_is_ufs_dev_active(hba)) {
8848 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8849 vcc_off = true;
8850 if (ufshcd_is_link_hibern8(hba) || ufshcd_is_link_off(hba)) {
8851 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8852 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq2);
8853 }
8854 }
8855
8856 /*
8857 * Some UFS devices require delay after VCC power rail is turned-off.
8858 */
8859 if (vcc_off && hba->vreg_info.vcc &&
8860 hba->dev_quirks & UFS_DEVICE_QUIRK_DELAY_AFTER_LPM)
8861 usleep_range(5000, 5100);
8862 }
8863
8864 #ifdef CONFIG_PM
ufshcd_vreg_set_hpm(struct ufs_hba * hba)8865 static int ufshcd_vreg_set_hpm(struct ufs_hba *hba)
8866 {
8867 int ret = 0;
8868
8869 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba) &&
8870 !hba->dev_info.is_lu_power_on_wp) {
8871 ret = ufshcd_setup_vreg(hba, true);
8872 } else if (!ufshcd_is_ufs_dev_active(hba)) {
8873 if (!ufshcd_is_link_active(hba)) {
8874 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq);
8875 if (ret)
8876 goto vcc_disable;
8877 ret = ufshcd_config_vreg_hpm(hba, hba->vreg_info.vccq2);
8878 if (ret)
8879 goto vccq_lpm;
8880 }
8881 ret = ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, true);
8882 }
8883 goto out;
8884
8885 vccq_lpm:
8886 ufshcd_config_vreg_lpm(hba, hba->vreg_info.vccq);
8887 vcc_disable:
8888 ufshcd_toggle_vreg(hba->dev, hba->vreg_info.vcc, false);
8889 out:
8890 return ret;
8891 }
8892 #endif /* CONFIG_PM */
8893
ufshcd_hba_vreg_set_lpm(struct ufs_hba * hba)8894 static void ufshcd_hba_vreg_set_lpm(struct ufs_hba *hba)
8895 {
8896 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8897 ufshcd_setup_hba_vreg(hba, false);
8898 }
8899
ufshcd_hba_vreg_set_hpm(struct ufs_hba * hba)8900 static void ufshcd_hba_vreg_set_hpm(struct ufs_hba *hba)
8901 {
8902 if (ufshcd_is_link_off(hba) || ufshcd_can_aggressive_pc(hba))
8903 ufshcd_setup_hba_vreg(hba, true);
8904 }
8905
__ufshcd_wl_suspend(struct ufs_hba * hba,enum ufs_pm_op pm_op)8906 static int __ufshcd_wl_suspend(struct ufs_hba *hba, enum ufs_pm_op pm_op)
8907 {
8908 int ret = 0;
8909 int check_for_bkops;
8910 enum ufs_pm_level pm_lvl;
8911 enum ufs_dev_pwr_mode req_dev_pwr_mode;
8912 enum uic_link_state req_link_state;
8913
8914 hba->pm_op_in_progress = true;
8915 if (pm_op != UFS_SHUTDOWN_PM) {
8916 pm_lvl = pm_op == UFS_RUNTIME_PM ?
8917 hba->rpm_lvl : hba->spm_lvl;
8918 req_dev_pwr_mode = ufs_get_pm_lvl_to_dev_pwr_mode(pm_lvl);
8919 req_link_state = ufs_get_pm_lvl_to_link_pwr_state(pm_lvl);
8920 } else {
8921 req_dev_pwr_mode = UFS_POWERDOWN_PWR_MODE;
8922 req_link_state = UIC_LINK_OFF_STATE;
8923 }
8924
8925 ufshpb_suspend(hba);
8926
8927 /*
8928 * If we can't transition into any of the low power modes
8929 * just gate the clocks.
8930 */
8931 ufshcd_hold(hba, false);
8932 hba->clk_gating.is_suspended = true;
8933
8934 if (ufshcd_is_clkscaling_supported(hba))
8935 ufshcd_clk_scaling_suspend(hba, true);
8936
8937 if (req_dev_pwr_mode == UFS_ACTIVE_PWR_MODE &&
8938 req_link_state == UIC_LINK_ACTIVE_STATE) {
8939 goto vops_suspend;
8940 }
8941
8942 if ((req_dev_pwr_mode == hba->curr_dev_pwr_mode) &&
8943 (req_link_state == hba->uic_link_state))
8944 goto enable_scaling;
8945
8946 /* UFS device & link must be active before we enter in this function */
8947 if (!ufshcd_is_ufs_dev_active(hba) || !ufshcd_is_link_active(hba)) {
8948 ret = -EINVAL;
8949 goto enable_scaling;
8950 }
8951
8952 if (pm_op == UFS_RUNTIME_PM) {
8953 if (ufshcd_can_autobkops_during_suspend(hba)) {
8954 /*
8955 * The device is idle with no requests in the queue,
8956 * allow background operations if bkops status shows
8957 * that performance might be impacted.
8958 */
8959 ret = ufshcd_urgent_bkops(hba);
8960 if (ret) {
8961 /*
8962 * If return err in suspend flow, IO will hang.
8963 * Trigger error handler and break suspend for
8964 * error recovery.
8965 */
8966 ufshcd_force_error_recovery(hba);
8967 ret = -EBUSY;
8968 goto enable_scaling;
8969 }
8970 } else {
8971 /* make sure that auto bkops is disabled */
8972 ufshcd_disable_auto_bkops(hba);
8973 }
8974 /*
8975 * If device needs to do BKOP or WB buffer flush during
8976 * Hibern8, keep device power mode as "active power mode"
8977 * and VCC supply.
8978 */
8979 hba->dev_info.b_rpm_dev_flush_capable =
8980 hba->auto_bkops_enabled ||
8981 (((req_link_state == UIC_LINK_HIBERN8_STATE) ||
8982 ((req_link_state == UIC_LINK_ACTIVE_STATE) &&
8983 ufshcd_is_auto_hibern8_enabled(hba))) &&
8984 ufshcd_wb_need_flush(hba));
8985 }
8986
8987 flush_work(&hba->eeh_work);
8988
8989 ret = ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
8990 if (ret)
8991 goto enable_scaling;
8992
8993 if (req_dev_pwr_mode != hba->curr_dev_pwr_mode) {
8994 if (pm_op != UFS_RUNTIME_PM)
8995 /* ensure that bkops is disabled */
8996 ufshcd_disable_auto_bkops(hba);
8997
8998 if (!hba->dev_info.b_rpm_dev_flush_capable) {
8999 ret = ufshcd_set_dev_pwr_mode(hba, req_dev_pwr_mode);
9000 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9001 /*
9002 * If return err in suspend flow, IO will hang.
9003 * Trigger error handler and break suspend for
9004 * error recovery.
9005 */
9006 ufshcd_force_error_recovery(hba);
9007 ret = -EBUSY;
9008 }
9009 if (ret)
9010 goto enable_scaling;
9011 }
9012 }
9013
9014 /*
9015 * In the case of DeepSleep, the device is expected to remain powered
9016 * with the link off, so do not check for bkops.
9017 */
9018 check_for_bkops = !ufshcd_is_ufs_dev_deepsleep(hba);
9019 ret = ufshcd_link_state_transition(hba, req_link_state, check_for_bkops);
9020 if (ret && pm_op != UFS_SHUTDOWN_PM) {
9021 /*
9022 * If return err in suspend flow, IO will hang.
9023 * Trigger error handler and break suspend for
9024 * error recovery.
9025 */
9026 ufshcd_force_error_recovery(hba);
9027 ret = -EBUSY;
9028 }
9029 if (ret)
9030 goto set_dev_active;
9031
9032 vops_suspend:
9033 /*
9034 * Call vendor specific suspend callback. As these callbacks may access
9035 * vendor specific host controller register space call them before the
9036 * host clocks are ON.
9037 */
9038 ret = ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9039 if (ret)
9040 goto set_link_active;
9041 goto out;
9042
9043 set_link_active:
9044 /*
9045 * Device hardware reset is required to exit DeepSleep. Also, for
9046 * DeepSleep, the link is off so host reset and restore will be done
9047 * further below.
9048 */
9049 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9050 ufshcd_device_reset(hba);
9051 WARN_ON(!ufshcd_is_link_off(hba));
9052 }
9053 if (ufshcd_is_link_hibern8(hba) && !ufshcd_uic_hibern8_exit(hba))
9054 ufshcd_set_link_active(hba);
9055 else if (ufshcd_is_link_off(hba))
9056 ufshcd_host_reset_and_restore(hba);
9057 set_dev_active:
9058 /* Can also get here needing to exit DeepSleep */
9059 if (ufshcd_is_ufs_dev_deepsleep(hba)) {
9060 ufshcd_device_reset(hba);
9061 ufshcd_host_reset_and_restore(hba);
9062 }
9063 if (!ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE))
9064 ufshcd_disable_auto_bkops(hba);
9065 enable_scaling:
9066 if (ufshcd_is_clkscaling_supported(hba))
9067 ufshcd_clk_scaling_suspend(hba, false);
9068
9069 hba->dev_info.b_rpm_dev_flush_capable = false;
9070 out:
9071 if (hba->dev_info.b_rpm_dev_flush_capable) {
9072 schedule_delayed_work(&hba->rpm_dev_flush_recheck_work,
9073 msecs_to_jiffies(RPM_DEV_FLUSH_RECHECK_WORK_DELAY_MS));
9074 }
9075
9076 if (ret) {
9077 ufshcd_update_evt_hist(hba, UFS_EVT_WL_SUSP_ERR, (u32)ret);
9078 hba->clk_gating.is_suspended = false;
9079 ufshcd_release(hba);
9080 ufshpb_resume(hba);
9081 }
9082 hba->pm_op_in_progress = false;
9083 return ret;
9084 }
9085
9086 #ifdef CONFIG_PM
__ufshcd_wl_resume(struct ufs_hba * hba,enum ufs_pm_op pm_op)9087 static int __ufshcd_wl_resume(struct ufs_hba *hba, enum ufs_pm_op pm_op)
9088 {
9089 int ret;
9090 enum uic_link_state old_link_state = hba->uic_link_state;
9091
9092 hba->pm_op_in_progress = true;
9093
9094 /*
9095 * Call vendor specific resume callback. As these callbacks may access
9096 * vendor specific host controller register space call them when the
9097 * host clocks are ON.
9098 */
9099 ret = ufshcd_vops_resume(hba, pm_op);
9100 if (ret)
9101 goto out;
9102
9103 /* For DeepSleep, the only supported option is to have the link off */
9104 WARN_ON(ufshcd_is_ufs_dev_deepsleep(hba) && !ufshcd_is_link_off(hba));
9105
9106 if (ufshcd_is_link_hibern8(hba)) {
9107 ret = ufshcd_uic_hibern8_exit(hba);
9108 if (!ret) {
9109 ufshcd_set_link_active(hba);
9110 } else {
9111 dev_err(hba->dev, "%s: hibern8 exit failed %d\n",
9112 __func__, ret);
9113 goto vendor_suspend;
9114 }
9115 } else if (ufshcd_is_link_off(hba)) {
9116 /*
9117 * A full initialization of the host and the device is
9118 * required since the link was put to off during suspend.
9119 * Note, in the case of DeepSleep, the device will exit
9120 * DeepSleep due to device reset.
9121 */
9122 ret = ufshcd_reset_and_restore(hba);
9123 /*
9124 * ufshcd_reset_and_restore() should have already
9125 * set the link state as active
9126 */
9127 if (ret || !ufshcd_is_link_active(hba))
9128 goto vendor_suspend;
9129 }
9130
9131 if (!ufshcd_is_ufs_dev_active(hba)) {
9132 ret = ufshcd_set_dev_pwr_mode(hba, UFS_ACTIVE_PWR_MODE);
9133 if (ret)
9134 goto set_old_link_state;
9135 }
9136
9137 if (ufshcd_keep_autobkops_enabled_except_suspend(hba))
9138 ufshcd_enable_auto_bkops(hba);
9139 else
9140 /*
9141 * If BKOPs operations are urgently needed at this moment then
9142 * keep auto-bkops enabled or else disable it.
9143 */
9144 ufshcd_urgent_bkops(hba);
9145
9146 if (hba->ee_usr_mask)
9147 ufshcd_write_ee_control(hba);
9148
9149 if (ufshcd_is_clkscaling_supported(hba))
9150 ufshcd_clk_scaling_suspend(hba, false);
9151
9152 if (hba->dev_info.b_rpm_dev_flush_capable) {
9153 hba->dev_info.b_rpm_dev_flush_capable = false;
9154 cancel_delayed_work(&hba->rpm_dev_flush_recheck_work);
9155 }
9156
9157 /* Enable Auto-Hibernate if configured */
9158 ufshcd_auto_hibern8_enable(hba);
9159
9160 ufshpb_resume(hba);
9161 goto out;
9162
9163 set_old_link_state:
9164 ufshcd_link_state_transition(hba, old_link_state, 0);
9165 vendor_suspend:
9166 ufshcd_vops_suspend(hba, pm_op, PRE_CHANGE);
9167 ufshcd_vops_suspend(hba, pm_op, POST_CHANGE);
9168 out:
9169 if (ret)
9170 ufshcd_update_evt_hist(hba, UFS_EVT_WL_RES_ERR, (u32)ret);
9171 hba->clk_gating.is_suspended = false;
9172 ufshcd_release(hba);
9173 hba->pm_op_in_progress = false;
9174 return ret;
9175 }
9176
ufshcd_wl_runtime_suspend(struct device * dev)9177 static int ufshcd_wl_runtime_suspend(struct device *dev)
9178 {
9179 struct scsi_device *sdev = to_scsi_device(dev);
9180 struct ufs_hba *hba;
9181 int ret;
9182 ktime_t start = ktime_get();
9183
9184 hba = shost_priv(sdev->host);
9185
9186 ret = __ufshcd_wl_suspend(hba, UFS_RUNTIME_PM);
9187 if (ret)
9188 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9189
9190 trace_ufshcd_wl_runtime_suspend(dev_name(dev), ret,
9191 ktime_to_us(ktime_sub(ktime_get(), start)),
9192 hba->curr_dev_pwr_mode, hba->uic_link_state);
9193
9194 return ret;
9195 }
9196
ufshcd_wl_runtime_resume(struct device * dev)9197 static int ufshcd_wl_runtime_resume(struct device *dev)
9198 {
9199 struct scsi_device *sdev = to_scsi_device(dev);
9200 struct ufs_hba *hba;
9201 int ret = 0;
9202 ktime_t start = ktime_get();
9203
9204 hba = shost_priv(sdev->host);
9205
9206 ret = __ufshcd_wl_resume(hba, UFS_RUNTIME_PM);
9207 if (ret)
9208 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9209
9210 trace_ufshcd_wl_runtime_resume(dev_name(dev), ret,
9211 ktime_to_us(ktime_sub(ktime_get(), start)),
9212 hba->curr_dev_pwr_mode, hba->uic_link_state);
9213
9214 return ret;
9215 }
9216 #endif
9217
9218 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_suspend(struct device * dev)9219 static int ufshcd_wl_suspend(struct device *dev)
9220 {
9221 struct scsi_device *sdev = to_scsi_device(dev);
9222 struct ufs_hba *hba;
9223 int ret = 0;
9224 ktime_t start = ktime_get();
9225
9226 hba = shost_priv(sdev->host);
9227 down(&hba->host_sem);
9228
9229 if (pm_runtime_suspended(dev))
9230 goto out;
9231
9232 ret = __ufshcd_wl_suspend(hba, UFS_SYSTEM_PM);
9233 if (ret) {
9234 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9235 up(&hba->host_sem);
9236 }
9237
9238 out:
9239 if (!ret)
9240 hba->is_sys_suspended = true;
9241 trace_ufshcd_wl_suspend(dev_name(dev), ret,
9242 ktime_to_us(ktime_sub(ktime_get(), start)),
9243 hba->curr_dev_pwr_mode, hba->uic_link_state);
9244
9245 return ret;
9246 }
9247
ufshcd_wl_resume(struct device * dev)9248 static int ufshcd_wl_resume(struct device *dev)
9249 {
9250 struct scsi_device *sdev = to_scsi_device(dev);
9251 struct ufs_hba *hba;
9252 int ret = 0;
9253 ktime_t start = ktime_get();
9254
9255 hba = shost_priv(sdev->host);
9256
9257 if (pm_runtime_suspended(dev))
9258 goto out;
9259
9260 ret = __ufshcd_wl_resume(hba, UFS_SYSTEM_PM);
9261 if (ret)
9262 dev_err(&sdev->sdev_gendev, "%s failed: %d\n", __func__, ret);
9263 out:
9264 trace_ufshcd_wl_resume(dev_name(dev), ret,
9265 ktime_to_us(ktime_sub(ktime_get(), start)),
9266 hba->curr_dev_pwr_mode, hba->uic_link_state);
9267 if (!ret)
9268 hba->is_sys_suspended = false;
9269 up(&hba->host_sem);
9270 return ret;
9271 }
9272 #endif
9273
ufshcd_wl_shutdown(struct device * dev)9274 static void ufshcd_wl_shutdown(struct device *dev)
9275 {
9276 struct scsi_device *sdev = to_scsi_device(dev);
9277 struct ufs_hba *hba;
9278
9279 hba = shost_priv(sdev->host);
9280
9281 down(&hba->host_sem);
9282 hba->shutting_down = true;
9283 up(&hba->host_sem);
9284
9285 /* Turn on everything while shutting down */
9286 ufshcd_rpm_get_sync(hba);
9287 scsi_device_quiesce(sdev);
9288 shost_for_each_device(sdev, hba->host) {
9289 if (sdev == hba->sdev_ufs_device)
9290 continue;
9291 scsi_device_quiesce(sdev);
9292 }
9293 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9294 }
9295
9296 /**
9297 * ufshcd_suspend - helper function for suspend operations
9298 * @hba: per adapter instance
9299 *
9300 * This function will put disable irqs, turn off clocks
9301 * and set vreg and hba-vreg in lpm mode.
9302 */
ufshcd_suspend(struct ufs_hba * hba)9303 static int ufshcd_suspend(struct ufs_hba *hba)
9304 {
9305 int ret;
9306
9307 if (!hba->is_powered)
9308 return 0;
9309 /*
9310 * Disable the host irq as host controller as there won't be any
9311 * host controller transaction expected till resume.
9312 */
9313 ufshcd_disable_irq(hba);
9314 ret = ufshcd_setup_clocks(hba, false);
9315 if (ret) {
9316 ufshcd_enable_irq(hba);
9317 return ret;
9318 }
9319 if (ufshcd_is_clkgating_allowed(hba)) {
9320 hba->clk_gating.state = CLKS_OFF;
9321 trace_ufshcd_clk_gating(dev_name(hba->dev),
9322 hba->clk_gating.state);
9323 }
9324
9325 ufshcd_vreg_set_lpm(hba);
9326 /* Put the host controller in low power mode if possible */
9327 ufshcd_hba_vreg_set_lpm(hba);
9328 return ret;
9329 }
9330
9331 #ifdef CONFIG_PM
9332 /**
9333 * ufshcd_resume - helper function for resume operations
9334 * @hba: per adapter instance
9335 *
9336 * This function basically turns on the regulators, clocks and
9337 * irqs of the hba.
9338 *
9339 * Returns 0 for success and non-zero for failure
9340 */
ufshcd_resume(struct ufs_hba * hba)9341 static int ufshcd_resume(struct ufs_hba *hba)
9342 {
9343 int ret;
9344
9345 if (!hba->is_powered)
9346 return 0;
9347
9348 ufshcd_hba_vreg_set_hpm(hba);
9349 ret = ufshcd_vreg_set_hpm(hba);
9350 if (ret)
9351 goto out;
9352
9353 /* Make sure clocks are enabled before accessing controller */
9354 ret = ufshcd_setup_clocks(hba, true);
9355 if (ret)
9356 goto disable_vreg;
9357
9358 /* enable the host irq as host controller would be active soon */
9359 ufshcd_enable_irq(hba);
9360 goto out;
9361
9362 disable_vreg:
9363 ufshcd_vreg_set_lpm(hba);
9364 out:
9365 if (ret)
9366 ufshcd_update_evt_hist(hba, UFS_EVT_RESUME_ERR, (u32)ret);
9367 return ret;
9368 }
9369 #endif /* CONFIG_PM */
9370
9371 #ifdef CONFIG_PM_SLEEP
9372 /**
9373 * ufshcd_system_suspend - system suspend callback
9374 * @dev: Device associated with the UFS controller.
9375 *
9376 * Executed before putting the system into a sleep state in which the contents
9377 * of main memory are preserved.
9378 *
9379 * Returns 0 for success and non-zero for failure
9380 */
ufshcd_system_suspend(struct device * dev)9381 int ufshcd_system_suspend(struct device *dev)
9382 {
9383 struct ufs_hba *hba = dev_get_drvdata(dev);
9384 int ret = 0;
9385 ktime_t start = ktime_get();
9386
9387 if (pm_runtime_suspended(hba->dev))
9388 goto out;
9389
9390 ret = ufshcd_suspend(hba);
9391 out:
9392 trace_ufshcd_system_suspend(dev_name(hba->dev), ret,
9393 ktime_to_us(ktime_sub(ktime_get(), start)),
9394 hba->curr_dev_pwr_mode, hba->uic_link_state);
9395 return ret;
9396 }
9397 EXPORT_SYMBOL(ufshcd_system_suspend);
9398
9399 /**
9400 * ufshcd_system_resume - system resume callback
9401 * @dev: Device associated with the UFS controller.
9402 *
9403 * Executed after waking the system up from a sleep state in which the contents
9404 * of main memory were preserved.
9405 *
9406 * Returns 0 for success and non-zero for failure
9407 */
ufshcd_system_resume(struct device * dev)9408 int ufshcd_system_resume(struct device *dev)
9409 {
9410 struct ufs_hba *hba = dev_get_drvdata(dev);
9411 ktime_t start = ktime_get();
9412 int ret = 0;
9413
9414 if (pm_runtime_suspended(hba->dev))
9415 goto out;
9416
9417 ret = ufshcd_resume(hba);
9418
9419 out:
9420 trace_ufshcd_system_resume(dev_name(hba->dev), ret,
9421 ktime_to_us(ktime_sub(ktime_get(), start)),
9422 hba->curr_dev_pwr_mode, hba->uic_link_state);
9423
9424 return ret;
9425 }
9426 EXPORT_SYMBOL(ufshcd_system_resume);
9427 #endif /* CONFIG_PM_SLEEP */
9428
9429 #ifdef CONFIG_PM
9430 /**
9431 * ufshcd_runtime_suspend - runtime suspend callback
9432 * @dev: Device associated with the UFS controller.
9433 *
9434 * Check the description of ufshcd_suspend() function for more details.
9435 *
9436 * Returns 0 for success and non-zero for failure
9437 */
ufshcd_runtime_suspend(struct device * dev)9438 int ufshcd_runtime_suspend(struct device *dev)
9439 {
9440 struct ufs_hba *hba = dev_get_drvdata(dev);
9441 int ret;
9442 ktime_t start = ktime_get();
9443
9444 ret = ufshcd_suspend(hba);
9445
9446 trace_ufshcd_runtime_suspend(dev_name(hba->dev), ret,
9447 ktime_to_us(ktime_sub(ktime_get(), start)),
9448 hba->curr_dev_pwr_mode, hba->uic_link_state);
9449 return ret;
9450 }
9451 EXPORT_SYMBOL(ufshcd_runtime_suspend);
9452
9453 /**
9454 * ufshcd_runtime_resume - runtime resume routine
9455 * @dev: Device associated with the UFS controller.
9456 *
9457 * This function basically brings controller
9458 * to active state. Following operations are done in this function:
9459 *
9460 * 1. Turn on all the controller related clocks
9461 * 2. Turn ON VCC rail
9462 */
ufshcd_runtime_resume(struct device * dev)9463 int ufshcd_runtime_resume(struct device *dev)
9464 {
9465 struct ufs_hba *hba = dev_get_drvdata(dev);
9466 int ret;
9467 ktime_t start = ktime_get();
9468
9469 ret = ufshcd_resume(hba);
9470
9471 trace_ufshcd_runtime_resume(dev_name(hba->dev), ret,
9472 ktime_to_us(ktime_sub(ktime_get(), start)),
9473 hba->curr_dev_pwr_mode, hba->uic_link_state);
9474 return ret;
9475 }
9476 EXPORT_SYMBOL(ufshcd_runtime_resume);
9477 #endif /* CONFIG_PM */
9478
9479 /**
9480 * ufshcd_shutdown - shutdown routine
9481 * @hba: per adapter instance
9482 *
9483 * This function would turn off both UFS device and UFS hba
9484 * regulators. It would also disable clocks.
9485 *
9486 * Returns 0 always to allow force shutdown even in case of errors.
9487 */
ufshcd_shutdown(struct ufs_hba * hba)9488 int ufshcd_shutdown(struct ufs_hba *hba)
9489 {
9490 if (ufshcd_is_ufs_dev_poweroff(hba) && ufshcd_is_link_off(hba))
9491 ufshcd_suspend(hba);
9492
9493 hba->is_powered = false;
9494 /* allow force shutdown even in case of errors */
9495 return 0;
9496 }
9497 EXPORT_SYMBOL(ufshcd_shutdown);
9498
9499 /**
9500 * ufshcd_remove - de-allocate SCSI host and host memory space
9501 * data structure memory
9502 * @hba: per adapter instance
9503 */
ufshcd_remove(struct ufs_hba * hba)9504 void ufshcd_remove(struct ufs_hba *hba)
9505 {
9506 if (hba->sdev_ufs_device)
9507 ufshcd_rpm_get_sync(hba);
9508 ufs_hwmon_remove(hba);
9509 ufs_bsg_remove(hba);
9510 ufshpb_remove(hba);
9511 ufs_sysfs_remove_nodes(hba->dev);
9512 blk_cleanup_queue(hba->tmf_queue);
9513 blk_mq_free_tag_set(&hba->tmf_tag_set);
9514 blk_cleanup_queue(hba->cmd_queue);
9515 scsi_remove_host(hba->host);
9516 /* disable interrupts */
9517 ufshcd_disable_intr(hba, hba->intr_mask);
9518 ufshcd_hba_stop(hba);
9519 ufshcd_hba_exit(hba);
9520 }
9521 EXPORT_SYMBOL_GPL(ufshcd_remove);
9522
9523 #ifdef CONFIG_PM_SLEEP
ufshcd_system_freeze(struct device * dev)9524 int ufshcd_system_freeze(struct device *dev)
9525 {
9526
9527 return ufshcd_system_suspend(dev);
9528
9529 }
9530 EXPORT_SYMBOL_GPL(ufshcd_system_freeze);
9531
ufshcd_system_restore(struct device * dev)9532 int ufshcd_system_restore(struct device *dev)
9533 {
9534
9535 struct ufs_hba *hba = dev_get_drvdata(dev);
9536 int ret;
9537
9538 ret = ufshcd_system_resume(dev);
9539 if (ret)
9540 return ret;
9541
9542 /* Configure UTRL and UTMRL base address registers */
9543 ufshcd_writel(hba, lower_32_bits(hba->utrdl_dma_addr),
9544 REG_UTP_TRANSFER_REQ_LIST_BASE_L);
9545 ufshcd_writel(hba, upper_32_bits(hba->utrdl_dma_addr),
9546 REG_UTP_TRANSFER_REQ_LIST_BASE_H);
9547 ufshcd_writel(hba, lower_32_bits(hba->utmrdl_dma_addr),
9548 REG_UTP_TASK_REQ_LIST_BASE_L);
9549 ufshcd_writel(hba, upper_32_bits(hba->utmrdl_dma_addr),
9550 REG_UTP_TASK_REQ_LIST_BASE_H);
9551 /*
9552 * Make sure that UTRL and UTMRL base address registers
9553 * are updated with the latest queue addresses. Only after
9554 * updating these addresses, we can queue the new commands.
9555 */
9556 mb();
9557
9558 /* Resuming from hibernate, assume that link was OFF */
9559 ufshcd_set_link_off(hba);
9560
9561 return 0;
9562
9563 }
9564 EXPORT_SYMBOL_GPL(ufshcd_system_restore);
9565
ufshcd_system_thaw(struct device * dev)9566 int ufshcd_system_thaw(struct device *dev)
9567 {
9568 return ufshcd_system_resume(dev);
9569 }
9570 EXPORT_SYMBOL_GPL(ufshcd_system_thaw);
9571 #endif /* CONFIG_PM_SLEEP */
9572
9573 /**
9574 * ufshcd_dealloc_host - deallocate Host Bus Adapter (HBA)
9575 * @hba: pointer to Host Bus Adapter (HBA)
9576 */
ufshcd_dealloc_host(struct ufs_hba * hba)9577 void ufshcd_dealloc_host(struct ufs_hba *hba)
9578 {
9579 scsi_host_put(hba->host);
9580 }
9581 EXPORT_SYMBOL_GPL(ufshcd_dealloc_host);
9582
9583 /**
9584 * ufshcd_set_dma_mask - Set dma mask based on the controller
9585 * addressing capability
9586 * @hba: per adapter instance
9587 *
9588 * Returns 0 for success, non-zero for failure
9589 */
ufshcd_set_dma_mask(struct ufs_hba * hba)9590 static int ufshcd_set_dma_mask(struct ufs_hba *hba)
9591 {
9592 if (hba->capabilities & MASK_64_ADDRESSING_SUPPORT) {
9593 if (!dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(64)))
9594 return 0;
9595 }
9596 return dma_set_mask_and_coherent(hba->dev, DMA_BIT_MASK(32));
9597 }
9598
9599 /**
9600 * ufshcd_alloc_host - allocate Host Bus Adapter (HBA)
9601 * @dev: pointer to device handle
9602 * @hba_handle: driver private handle
9603 * Returns 0 on success, non-zero value on failure
9604 */
ufshcd_alloc_host(struct device * dev,struct ufs_hba ** hba_handle)9605 int ufshcd_alloc_host(struct device *dev, struct ufs_hba **hba_handle)
9606 {
9607 struct Scsi_Host *host;
9608 struct ufs_hba *hba;
9609 int err = 0;
9610
9611 if (!dev) {
9612 dev_err(dev,
9613 "Invalid memory reference for dev is NULL\n");
9614 err = -ENODEV;
9615 goto out_error;
9616 }
9617
9618 host = scsi_host_alloc(&ufshcd_driver_template,
9619 sizeof(struct ufs_hba));
9620 if (!host) {
9621 dev_err(dev, "scsi_host_alloc failed\n");
9622 err = -ENOMEM;
9623 goto out_error;
9624 }
9625 hba = shost_priv(host);
9626 hba->host = host;
9627 hba->dev = dev;
9628 hba->dev_ref_clk_freq = REF_CLK_FREQ_INVAL;
9629 hba->nop_out_timeout = NOP_OUT_TIMEOUT;
9630 hba->sg_entry_size = sizeof(struct ufshcd_sg_entry);
9631 INIT_LIST_HEAD(&hba->clk_list_head);
9632 spin_lock_init(&hba->outstanding_lock);
9633
9634 *hba_handle = hba;
9635
9636 out_error:
9637 return err;
9638 }
9639 EXPORT_SYMBOL(ufshcd_alloc_host);
9640
9641 /* This function exists because blk_mq_alloc_tag_set() requires this. */
ufshcd_queue_tmf(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * qd)9642 static blk_status_t ufshcd_queue_tmf(struct blk_mq_hw_ctx *hctx,
9643 const struct blk_mq_queue_data *qd)
9644 {
9645 WARN_ON_ONCE(true);
9646 return BLK_STS_NOTSUPP;
9647 }
9648
9649 static const struct blk_mq_ops ufshcd_tmf_ops = {
9650 .queue_rq = ufshcd_queue_tmf,
9651 };
9652
9653 /**
9654 * ufshcd_init - Driver initialization routine
9655 * @hba: per-adapter instance
9656 * @mmio_base: base register address
9657 * @irq: Interrupt line of device
9658 * Returns 0 on success, non-zero value on failure
9659 */
ufshcd_init(struct ufs_hba * hba,void __iomem * mmio_base,unsigned int irq)9660 int ufshcd_init(struct ufs_hba *hba, void __iomem *mmio_base, unsigned int irq)
9661 {
9662 int err;
9663 struct Scsi_Host *host = hba->host;
9664 struct device *dev = hba->dev;
9665 char eh_wq_name[sizeof("ufs_eh_wq_00")];
9666
9667 /*
9668 * dev_set_drvdata() must be called before any callbacks are registered
9669 * that use dev_get_drvdata() (frequency scaling, clock scaling, hwmon,
9670 * sysfs).
9671 */
9672 dev_set_drvdata(dev, hba);
9673
9674 if (!mmio_base) {
9675 dev_err(hba->dev,
9676 "Invalid memory reference for mmio_base is NULL\n");
9677 err = -ENODEV;
9678 goto out_error;
9679 }
9680
9681 hba->mmio_base = mmio_base;
9682 hba->irq = irq;
9683 hba->vps = &ufs_hba_vps;
9684
9685 err = ufshcd_hba_init(hba);
9686 if (err)
9687 goto out_error;
9688
9689 /* Read capabilities registers */
9690 err = ufshcd_hba_capabilities(hba);
9691 if (err)
9692 goto out_disable;
9693
9694 /* Get UFS version supported by the controller */
9695 hba->ufs_version = ufshcd_get_ufs_version(hba);
9696
9697 /* Get Interrupt bit mask per version */
9698 hba->intr_mask = ufshcd_get_intr_mask(hba);
9699
9700 err = ufshcd_set_dma_mask(hba);
9701 if (err) {
9702 dev_err(hba->dev, "set dma mask failed\n");
9703 goto out_disable;
9704 }
9705
9706 /* Allocate memory for host memory space */
9707 err = ufshcd_memory_alloc(hba);
9708 if (err) {
9709 dev_err(hba->dev, "Memory allocation failed\n");
9710 goto out_disable;
9711 }
9712
9713 /* Configure LRB */
9714 ufshcd_host_memory_configure(hba);
9715
9716 host->can_queue = hba->nutrs - UFSHCD_NUM_RESERVED;
9717 host->cmd_per_lun = hba->nutrs - UFSHCD_NUM_RESERVED;
9718 host->max_id = UFSHCD_MAX_ID;
9719 host->max_lun = UFS_MAX_LUNS;
9720 host->max_channel = UFSHCD_MAX_CHANNEL;
9721 host->unique_id = host->host_no;
9722 host->max_cmd_len = UFS_CDB_SIZE;
9723
9724 hba->max_pwr_info.is_valid = false;
9725
9726 if (ufshcd_use_mcq_hooks(hba)) {
9727 trace_android_vh_ufs_mcq_config(hba, &err);
9728 if (err)
9729 goto out_disable;
9730 }
9731
9732 /* Initialize work queues */
9733 snprintf(eh_wq_name, sizeof(eh_wq_name), "ufs_eh_wq_%d",
9734 hba->host->host_no);
9735 hba->eh_wq = create_singlethread_workqueue(eh_wq_name);
9736 if (!hba->eh_wq) {
9737 dev_err(hba->dev, "%s: failed to create eh workqueue\n",
9738 __func__);
9739 err = -ENOMEM;
9740 goto out_disable;
9741 }
9742 INIT_WORK(&hba->eh_work, ufshcd_err_handler);
9743 INIT_WORK(&hba->eeh_work, ufshcd_exception_event_handler);
9744
9745 sema_init(&hba->host_sem, 1);
9746
9747 /* Initialize UIC command mutex */
9748 mutex_init(&hba->uic_cmd_mutex);
9749
9750 /* Initialize mutex for device management commands */
9751 mutex_init(&hba->dev_cmd.lock);
9752
9753 /* Initialize mutex for exception event control */
9754 mutex_init(&hba->ee_ctrl_mutex);
9755
9756 init_rwsem(&hba->clk_scaling_lock);
9757
9758 ufshcd_init_clk_gating(hba);
9759
9760 ufshcd_init_clk_scaling(hba);
9761
9762 /*
9763 * In order to avoid any spurious interrupt immediately after
9764 * registering UFS controller interrupt handler, clear any pending UFS
9765 * interrupt status and disable all the UFS interrupts.
9766 */
9767 ufshcd_writel(hba, ufshcd_readl(hba, REG_INTERRUPT_STATUS),
9768 REG_INTERRUPT_STATUS);
9769 ufshcd_writel(hba, 0, REG_INTERRUPT_ENABLE);
9770 /*
9771 * Make sure that UFS interrupts are disabled and any pending interrupt
9772 * status is cleared before registering UFS interrupt handler.
9773 */
9774 mb();
9775
9776 /* IRQ registration */
9777 err = devm_request_irq(dev, irq, ufshcd_intr, IRQF_SHARED, UFSHCD, hba);
9778 if (err) {
9779 dev_err(hba->dev, "request irq failed\n");
9780 goto out_disable;
9781 } else {
9782 hba->is_irq_enabled = true;
9783 }
9784
9785 err = scsi_add_host(host, hba->dev);
9786 if (err) {
9787 dev_err(hba->dev, "scsi_add_host failed\n");
9788 goto out_disable;
9789 }
9790
9791 hba->cmd_queue = blk_mq_init_queue(&hba->host->tag_set);
9792 if (IS_ERR(hba->cmd_queue)) {
9793 err = PTR_ERR(hba->cmd_queue);
9794 goto out_remove_scsi_host;
9795 }
9796
9797 hba->tmf_tag_set = (struct blk_mq_tag_set) {
9798 .nr_hw_queues = 1,
9799 .queue_depth = hba->nutmrs,
9800 .ops = &ufshcd_tmf_ops,
9801 .flags = BLK_MQ_F_NO_SCHED,
9802 };
9803 err = blk_mq_alloc_tag_set(&hba->tmf_tag_set);
9804 if (err < 0)
9805 goto free_cmd_queue;
9806 hba->tmf_queue = blk_mq_init_queue(&hba->tmf_tag_set);
9807 if (IS_ERR(hba->tmf_queue)) {
9808 err = PTR_ERR(hba->tmf_queue);
9809 goto free_tmf_tag_set;
9810 }
9811 hba->tmf_rqs = devm_kcalloc(hba->dev, hba->nutmrs,
9812 sizeof(*hba->tmf_rqs), GFP_KERNEL);
9813 if (!hba->tmf_rqs) {
9814 err = -ENOMEM;
9815 goto free_tmf_queue;
9816 }
9817
9818 /* Reset the attached device */
9819 ufshcd_device_reset(hba);
9820
9821 ufshcd_init_crypto(hba);
9822
9823 /* Host controller enable */
9824 err = ufshcd_hba_enable(hba);
9825 if (err) {
9826 dev_err(hba->dev, "Host controller enable failed\n");
9827 ufshcd_print_evt_hist(hba);
9828 ufshcd_print_host_state(hba);
9829 goto free_tmf_queue;
9830 }
9831
9832 /*
9833 * Set the default power management level for runtime and system PM.
9834 * Default power saving mode is to keep UFS link in Hibern8 state
9835 * and UFS device in sleep state.
9836 */
9837 hba->rpm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9838 UFS_SLEEP_PWR_MODE,
9839 UIC_LINK_HIBERN8_STATE);
9840 hba->spm_lvl = ufs_get_desired_pm_lvl_for_dev_link_state(
9841 UFS_SLEEP_PWR_MODE,
9842 UIC_LINK_HIBERN8_STATE);
9843
9844 INIT_DELAYED_WORK(&hba->rpm_dev_flush_recheck_work,
9845 ufshcd_rpm_dev_flush_recheck_work);
9846
9847 /* Set the default auto-hiberate idle timer value to 150 ms */
9848 if (ufshcd_is_auto_hibern8_supported(hba) && !hba->ahit) {
9849 hba->ahit = FIELD_PREP(UFSHCI_AHIBERN8_TIMER_MASK, 150) |
9850 FIELD_PREP(UFSHCI_AHIBERN8_SCALE_MASK, 3);
9851 }
9852
9853 /* Hold auto suspend until async scan completes */
9854 pm_runtime_get_sync(dev);
9855 atomic_set(&hba->scsi_block_reqs_cnt, 0);
9856 /*
9857 * We are assuming that device wasn't put in sleep/power-down
9858 * state exclusively during the boot stage before kernel.
9859 * This assumption helps avoid doing link startup twice during
9860 * ufshcd_probe_hba().
9861 */
9862 ufshcd_set_ufs_dev_active(hba);
9863
9864 async_schedule(ufshcd_async_scan, hba);
9865 ufs_sysfs_add_nodes(hba);
9866
9867 device_enable_async_suspend(dev);
9868 return 0;
9869
9870 free_tmf_queue:
9871 blk_cleanup_queue(hba->tmf_queue);
9872 free_tmf_tag_set:
9873 blk_mq_free_tag_set(&hba->tmf_tag_set);
9874 free_cmd_queue:
9875 blk_cleanup_queue(hba->cmd_queue);
9876 out_remove_scsi_host:
9877 scsi_remove_host(hba->host);
9878 out_disable:
9879 hba->is_irq_enabled = false;
9880 ufshcd_hba_exit(hba);
9881 out_error:
9882 return err;
9883 }
9884 EXPORT_SYMBOL_GPL(ufshcd_init);
9885
ufshcd_resume_complete(struct device * dev)9886 void ufshcd_resume_complete(struct device *dev)
9887 {
9888 struct ufs_hba *hba = dev_get_drvdata(dev);
9889
9890 if (hba->complete_put) {
9891 ufshcd_rpm_put(hba);
9892 hba->complete_put = false;
9893 }
9894 }
9895 EXPORT_SYMBOL_GPL(ufshcd_resume_complete);
9896
ufshcd_suspend_prepare(struct device * dev)9897 int ufshcd_suspend_prepare(struct device *dev)
9898 {
9899 struct ufs_hba *hba = dev_get_drvdata(dev);
9900 int ret;
9901
9902 /*
9903 * SCSI assumes that runtime-pm and system-pm for scsi drivers
9904 * are same. And it doesn't wake up the device for system-suspend
9905 * if it's runtime suspended. But ufs doesn't follow that.
9906 * Refer ufshcd_resume_complete()
9907 */
9908 if (hba->sdev_ufs_device) {
9909 ret = ufshcd_rpm_get_sync(hba);
9910 if (ret < 0 && ret != -EACCES) {
9911 ufshcd_rpm_put(hba);
9912 return ret;
9913 }
9914 hba->complete_put = true;
9915 }
9916 return 0;
9917 }
9918 EXPORT_SYMBOL_GPL(ufshcd_suspend_prepare);
9919
9920 #ifdef CONFIG_PM_SLEEP
ufshcd_wl_poweroff(struct device * dev)9921 static int ufshcd_wl_poweroff(struct device *dev)
9922 {
9923 struct scsi_device *sdev = to_scsi_device(dev);
9924 struct ufs_hba *hba = shost_priv(sdev->host);
9925
9926 __ufshcd_wl_suspend(hba, UFS_SHUTDOWN_PM);
9927 return 0;
9928 }
9929 #endif
9930
ufshcd_wl_probe(struct device * dev)9931 static int ufshcd_wl_probe(struct device *dev)
9932 {
9933 struct scsi_device *sdev = to_scsi_device(dev);
9934
9935 if (!is_device_wlun(sdev))
9936 return -ENODEV;
9937
9938 blk_pm_runtime_init(sdev->request_queue, dev);
9939 pm_runtime_set_autosuspend_delay(dev, 0);
9940 pm_runtime_allow(dev);
9941
9942 return 0;
9943 }
9944
ufshcd_wl_remove(struct device * dev)9945 static int ufshcd_wl_remove(struct device *dev)
9946 {
9947 pm_runtime_forbid(dev);
9948 return 0;
9949 }
9950
9951 static const struct dev_pm_ops ufshcd_wl_pm_ops = {
9952 #ifdef CONFIG_PM_SLEEP
9953 .suspend = ufshcd_wl_suspend,
9954 .resume = ufshcd_wl_resume,
9955 .freeze = ufshcd_wl_suspend,
9956 .thaw = ufshcd_wl_resume,
9957 .poweroff = ufshcd_wl_poweroff,
9958 .restore = ufshcd_wl_resume,
9959 #endif
9960 SET_RUNTIME_PM_OPS(ufshcd_wl_runtime_suspend, ufshcd_wl_runtime_resume, NULL)
9961 };
9962
9963 /*
9964 * ufs_dev_wlun_template - describes ufs device wlun
9965 * ufs-device wlun - used to send pm commands
9966 * All luns are consumers of ufs-device wlun.
9967 *
9968 * Currently, no sd driver is present for wluns.
9969 * Hence the no specific pm operations are performed.
9970 * With ufs design, SSU should be sent to ufs-device wlun.
9971 * Hence register a scsi driver for ufs wluns only.
9972 */
9973 static struct scsi_driver ufs_dev_wlun_template = {
9974 .gendrv = {
9975 .name = "ufs_device_wlun",
9976 .owner = THIS_MODULE,
9977 .probe = ufshcd_wl_probe,
9978 .remove = ufshcd_wl_remove,
9979 .pm = &ufshcd_wl_pm_ops,
9980 .shutdown = ufshcd_wl_shutdown,
9981 },
9982 };
9983
ufshcd_core_init(void)9984 static int __init ufshcd_core_init(void)
9985 {
9986 int ret;
9987
9988 ufs_debugfs_init();
9989
9990 ret = scsi_register_driver(&ufs_dev_wlun_template.gendrv);
9991 if (ret)
9992 ufs_debugfs_exit();
9993 return ret;
9994 }
9995
ufshcd_core_exit(void)9996 static void __exit ufshcd_core_exit(void)
9997 {
9998 ufs_debugfs_exit();
9999 scsi_unregister_driver(&ufs_dev_wlun_template.gendrv);
10000 }
10001
10002 module_init(ufshcd_core_init);
10003 module_exit(ufshcd_core_exit);
10004
10005 MODULE_AUTHOR("Santosh Yaragnavi <santosh.sy@samsung.com>");
10006 MODULE_AUTHOR("Vinayak Holikatti <h.vinayak@samsung.com>");
10007 MODULE_DESCRIPTION("Generic UFS host controller driver Core");
10008 MODULE_SOFTDEP("pre: governor_simpleondemand");
10009 MODULE_LICENSE("GPL");
10010 MODULE_VERSION(UFSHCD_DRIVER_VERSION);
10011