• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/usb/core/usb.c
4  *
5  * (C) Copyright Linus Torvalds 1999
6  * (C) Copyright Johannes Erdfelt 1999-2001
7  * (C) Copyright Andreas Gal 1999
8  * (C) Copyright Gregory P. Smith 1999
9  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
10  * (C) Copyright Randy Dunlap 2000
11  * (C) Copyright David Brownell 2000-2004
12  * (C) Copyright Yggdrasil Computing, Inc. 2000
13  *     (usb_device_id matching changes by Adam J. Richter)
14  * (C) Copyright Greg Kroah-Hartman 2002-2003
15  *
16  * Released under the GPLv2 only.
17  *
18  * NOTE! This is not actually a driver at all, rather this is
19  * just a collection of helper routines that implement the
20  * generic USB things that the real drivers can use..
21  *
22  * Think of this as a "USB library" rather than anything else,
23  * with no callbacks.  Callbacks are evil.
24  */
25 
26 #include <linux/module.h>
27 #include <linux/moduleparam.h>
28 #include <linux/string.h>
29 #include <linux/bitops.h>
30 #include <linux/slab.h>
31 #include <linux/kmod.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/errno.h>
35 #include <linux/usb.h>
36 #include <linux/usb/hcd.h>
37 #include <linux/mutex.h>
38 #include <linux/workqueue.h>
39 #include <linux/debugfs.h>
40 #include <linux/usb/of.h>
41 
42 #include <asm/io.h>
43 #include <linux/scatterlist.h>
44 #include <linux/mm.h>
45 #include <linux/dma-mapping.h>
46 
47 #include "hub.h"
48 
49 const char *usbcore_name = "usbcore";
50 
51 static bool nousb;	/* Disable USB when built into kernel image */
52 
53 module_param(nousb, bool, 0444);
54 
55 /*
56  * for external read access to <nousb>
57  */
usb_disabled(void)58 int usb_disabled(void)
59 {
60 	return nousb;
61 }
62 EXPORT_SYMBOL_GPL(usb_disabled);
63 
64 #ifdef	CONFIG_PM
65 /* Default delay value, in seconds */
66 static int usb_autosuspend_delay = CONFIG_USB_AUTOSUSPEND_DELAY;
67 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
68 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
69 
70 #else
71 #define usb_autosuspend_delay		0
72 #endif
73 
match_endpoint(struct usb_endpoint_descriptor * epd,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)74 static bool match_endpoint(struct usb_endpoint_descriptor *epd,
75 		struct usb_endpoint_descriptor **bulk_in,
76 		struct usb_endpoint_descriptor **bulk_out,
77 		struct usb_endpoint_descriptor **int_in,
78 		struct usb_endpoint_descriptor **int_out)
79 {
80 	switch (usb_endpoint_type(epd)) {
81 	case USB_ENDPOINT_XFER_BULK:
82 		if (usb_endpoint_dir_in(epd)) {
83 			if (bulk_in && !*bulk_in) {
84 				*bulk_in = epd;
85 				break;
86 			}
87 		} else {
88 			if (bulk_out && !*bulk_out) {
89 				*bulk_out = epd;
90 				break;
91 			}
92 		}
93 
94 		return false;
95 	case USB_ENDPOINT_XFER_INT:
96 		if (usb_endpoint_dir_in(epd)) {
97 			if (int_in && !*int_in) {
98 				*int_in = epd;
99 				break;
100 			}
101 		} else {
102 			if (int_out && !*int_out) {
103 				*int_out = epd;
104 				break;
105 			}
106 		}
107 
108 		return false;
109 	default:
110 		return false;
111 	}
112 
113 	return (!bulk_in || *bulk_in) && (!bulk_out || *bulk_out) &&
114 			(!int_in || *int_in) && (!int_out || *int_out);
115 }
116 
117 /**
118  * usb_find_common_endpoints() -- look up common endpoint descriptors
119  * @alt:	alternate setting to search
120  * @bulk_in:	pointer to descriptor pointer, or NULL
121  * @bulk_out:	pointer to descriptor pointer, or NULL
122  * @int_in:	pointer to descriptor pointer, or NULL
123  * @int_out:	pointer to descriptor pointer, or NULL
124  *
125  * Search the alternate setting's endpoint descriptors for the first bulk-in,
126  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
127  * provided pointers (unless they are NULL).
128  *
129  * If a requested endpoint is not found, the corresponding pointer is set to
130  * NULL.
131  *
132  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
133  */
usb_find_common_endpoints(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)134 int usb_find_common_endpoints(struct usb_host_interface *alt,
135 		struct usb_endpoint_descriptor **bulk_in,
136 		struct usb_endpoint_descriptor **bulk_out,
137 		struct usb_endpoint_descriptor **int_in,
138 		struct usb_endpoint_descriptor **int_out)
139 {
140 	struct usb_endpoint_descriptor *epd;
141 	int i;
142 
143 	if (bulk_in)
144 		*bulk_in = NULL;
145 	if (bulk_out)
146 		*bulk_out = NULL;
147 	if (int_in)
148 		*int_in = NULL;
149 	if (int_out)
150 		*int_out = NULL;
151 
152 	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
153 		epd = &alt->endpoint[i].desc;
154 
155 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
156 			return 0;
157 	}
158 
159 	return -ENXIO;
160 }
161 EXPORT_SYMBOL_GPL(usb_find_common_endpoints);
162 
163 /**
164  * usb_find_common_endpoints_reverse() -- look up common endpoint descriptors
165  * @alt:	alternate setting to search
166  * @bulk_in:	pointer to descriptor pointer, or NULL
167  * @bulk_out:	pointer to descriptor pointer, or NULL
168  * @int_in:	pointer to descriptor pointer, or NULL
169  * @int_out:	pointer to descriptor pointer, or NULL
170  *
171  * Search the alternate setting's endpoint descriptors for the last bulk-in,
172  * bulk-out, interrupt-in and interrupt-out endpoints and return them in the
173  * provided pointers (unless they are NULL).
174  *
175  * If a requested endpoint is not found, the corresponding pointer is set to
176  * NULL.
177  *
178  * Return: Zero if all requested descriptors were found, or -ENXIO otherwise.
179  */
usb_find_common_endpoints_reverse(struct usb_host_interface * alt,struct usb_endpoint_descriptor ** bulk_in,struct usb_endpoint_descriptor ** bulk_out,struct usb_endpoint_descriptor ** int_in,struct usb_endpoint_descriptor ** int_out)180 int usb_find_common_endpoints_reverse(struct usb_host_interface *alt,
181 		struct usb_endpoint_descriptor **bulk_in,
182 		struct usb_endpoint_descriptor **bulk_out,
183 		struct usb_endpoint_descriptor **int_in,
184 		struct usb_endpoint_descriptor **int_out)
185 {
186 	struct usb_endpoint_descriptor *epd;
187 	int i;
188 
189 	if (bulk_in)
190 		*bulk_in = NULL;
191 	if (bulk_out)
192 		*bulk_out = NULL;
193 	if (int_in)
194 		*int_in = NULL;
195 	if (int_out)
196 		*int_out = NULL;
197 
198 	for (i = alt->desc.bNumEndpoints - 1; i >= 0; --i) {
199 		epd = &alt->endpoint[i].desc;
200 
201 		if (match_endpoint(epd, bulk_in, bulk_out, int_in, int_out))
202 			return 0;
203 	}
204 
205 	return -ENXIO;
206 }
207 EXPORT_SYMBOL_GPL(usb_find_common_endpoints_reverse);
208 
209 /**
210  * usb_find_endpoint() - Given an endpoint address, search for the endpoint's
211  * usb_host_endpoint structure in an interface's current altsetting.
212  * @intf: the interface whose current altsetting should be searched
213  * @ep_addr: the endpoint address (number and direction) to find
214  *
215  * Search the altsetting's list of endpoints for one with the specified address.
216  *
217  * Return: Pointer to the usb_host_endpoint if found, %NULL otherwise.
218  */
usb_find_endpoint(const struct usb_interface * intf,unsigned int ep_addr)219 static const struct usb_host_endpoint *usb_find_endpoint(
220 		const struct usb_interface *intf, unsigned int ep_addr)
221 {
222 	int n;
223 	const struct usb_host_endpoint *ep;
224 
225 	n = intf->cur_altsetting->desc.bNumEndpoints;
226 	ep = intf->cur_altsetting->endpoint;
227 	for (; n > 0; (--n, ++ep)) {
228 		if (ep->desc.bEndpointAddress == ep_addr)
229 			return ep;
230 	}
231 	return NULL;
232 }
233 
234 /**
235  * usb_check_bulk_endpoints - Check whether an interface's current altsetting
236  * contains a set of bulk endpoints with the given addresses.
237  * @intf: the interface whose current altsetting should be searched
238  * @ep_addrs: 0-terminated array of the endpoint addresses (number and
239  * direction) to look for
240  *
241  * Search for endpoints with the specified addresses and check their types.
242  *
243  * Return: %true if all the endpoints are found and are bulk, %false otherwise.
244  */
usb_check_bulk_endpoints(const struct usb_interface * intf,const u8 * ep_addrs)245 bool usb_check_bulk_endpoints(
246 		const struct usb_interface *intf, const u8 *ep_addrs)
247 {
248 	const struct usb_host_endpoint *ep;
249 
250 	for (; *ep_addrs; ++ep_addrs) {
251 		ep = usb_find_endpoint(intf, *ep_addrs);
252 		if (!ep || !usb_endpoint_xfer_bulk(&ep->desc))
253 			return false;
254 	}
255 	return true;
256 }
257 EXPORT_SYMBOL_GPL(usb_check_bulk_endpoints);
258 
259 /**
260  * usb_check_int_endpoints - Check whether an interface's current altsetting
261  * contains a set of interrupt endpoints with the given addresses.
262  * @intf: the interface whose current altsetting should be searched
263  * @ep_addrs: 0-terminated array of the endpoint addresses (number and
264  * direction) to look for
265  *
266  * Search for endpoints with the specified addresses and check their types.
267  *
268  * Return: %true if all the endpoints are found and are interrupt,
269  * %false otherwise.
270  */
usb_check_int_endpoints(const struct usb_interface * intf,const u8 * ep_addrs)271 bool usb_check_int_endpoints(
272 		const struct usb_interface *intf, const u8 *ep_addrs)
273 {
274 	const struct usb_host_endpoint *ep;
275 
276 	for (; *ep_addrs; ++ep_addrs) {
277 		ep = usb_find_endpoint(intf, *ep_addrs);
278 		if (!ep || !usb_endpoint_xfer_int(&ep->desc))
279 			return false;
280 	}
281 	return true;
282 }
283 EXPORT_SYMBOL_GPL(usb_check_int_endpoints);
284 
285 /**
286  * usb_find_alt_setting() - Given a configuration, find the alternate setting
287  * for the given interface.
288  * @config: the configuration to search (not necessarily the current config).
289  * @iface_num: interface number to search in
290  * @alt_num: alternate interface setting number to search for.
291  *
292  * Search the configuration's interface cache for the given alt setting.
293  *
294  * Return: The alternate setting, if found. %NULL otherwise.
295  */
usb_find_alt_setting(struct usb_host_config * config,unsigned int iface_num,unsigned int alt_num)296 struct usb_host_interface *usb_find_alt_setting(
297 		struct usb_host_config *config,
298 		unsigned int iface_num,
299 		unsigned int alt_num)
300 {
301 	struct usb_interface_cache *intf_cache = NULL;
302 	int i;
303 
304 	if (!config)
305 		return NULL;
306 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
307 		if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
308 				== iface_num) {
309 			intf_cache = config->intf_cache[i];
310 			break;
311 		}
312 	}
313 	if (!intf_cache)
314 		return NULL;
315 	for (i = 0; i < intf_cache->num_altsetting; i++)
316 		if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
317 			return &intf_cache->altsetting[i];
318 
319 	printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
320 			"config %u\n", alt_num, iface_num,
321 			config->desc.bConfigurationValue);
322 	return NULL;
323 }
324 EXPORT_SYMBOL_GPL(usb_find_alt_setting);
325 
326 /**
327  * usb_ifnum_to_if - get the interface object with a given interface number
328  * @dev: the device whose current configuration is considered
329  * @ifnum: the desired interface
330  *
331  * This walks the device descriptor for the currently active configuration
332  * to find the interface object with the particular interface number.
333  *
334  * Note that configuration descriptors are not required to assign interface
335  * numbers sequentially, so that it would be incorrect to assume that
336  * the first interface in that descriptor corresponds to interface zero.
337  * This routine helps device drivers avoid such mistakes.
338  * However, you should make sure that you do the right thing with any
339  * alternate settings available for this interfaces.
340  *
341  * Don't call this function unless you are bound to one of the interfaces
342  * on this device or you have locked the device!
343  *
344  * Return: A pointer to the interface that has @ifnum as interface number,
345  * if found. %NULL otherwise.
346  */
usb_ifnum_to_if(const struct usb_device * dev,unsigned ifnum)347 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
348 				      unsigned ifnum)
349 {
350 	struct usb_host_config *config = dev->actconfig;
351 	int i;
352 
353 	if (!config)
354 		return NULL;
355 	for (i = 0; i < config->desc.bNumInterfaces; i++)
356 		if (config->interface[i]->altsetting[0]
357 				.desc.bInterfaceNumber == ifnum)
358 			return config->interface[i];
359 
360 	return NULL;
361 }
362 EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
363 
364 /**
365  * usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
366  * @intf: the interface containing the altsetting in question
367  * @altnum: the desired alternate setting number
368  *
369  * This searches the altsetting array of the specified interface for
370  * an entry with the correct bAlternateSetting value.
371  *
372  * Note that altsettings need not be stored sequentially by number, so
373  * it would be incorrect to assume that the first altsetting entry in
374  * the array corresponds to altsetting zero.  This routine helps device
375  * drivers avoid such mistakes.
376  *
377  * Don't call this function unless you are bound to the intf interface
378  * or you have locked the device!
379  *
380  * Return: A pointer to the entry of the altsetting array of @intf that
381  * has @altnum as the alternate setting number. %NULL if not found.
382  */
usb_altnum_to_altsetting(const struct usb_interface * intf,unsigned int altnum)383 struct usb_host_interface *usb_altnum_to_altsetting(
384 					const struct usb_interface *intf,
385 					unsigned int altnum)
386 {
387 	int i;
388 
389 	for (i = 0; i < intf->num_altsetting; i++) {
390 		if (intf->altsetting[i].desc.bAlternateSetting == altnum)
391 			return &intf->altsetting[i];
392 	}
393 	return NULL;
394 }
395 EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
396 
397 struct find_interface_arg {
398 	int minor;
399 	struct device_driver *drv;
400 };
401 
__find_interface(struct device * dev,const void * data)402 static int __find_interface(struct device *dev, const void *data)
403 {
404 	const struct find_interface_arg *arg = data;
405 	struct usb_interface *intf;
406 
407 	if (!is_usb_interface(dev))
408 		return 0;
409 
410 	if (dev->driver != arg->drv)
411 		return 0;
412 	intf = to_usb_interface(dev);
413 	return intf->minor == arg->minor;
414 }
415 
416 /**
417  * usb_find_interface - find usb_interface pointer for driver and device
418  * @drv: the driver whose current configuration is considered
419  * @minor: the minor number of the desired device
420  *
421  * This walks the bus device list and returns a pointer to the interface
422  * with the matching minor and driver.  Note, this only works for devices
423  * that share the USB major number.
424  *
425  * Return: A pointer to the interface with the matching major and @minor.
426  */
usb_find_interface(struct usb_driver * drv,int minor)427 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
428 {
429 	struct find_interface_arg argb;
430 	struct device *dev;
431 
432 	argb.minor = minor;
433 	argb.drv = &drv->drvwrap.driver;
434 
435 	dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
436 
437 	/* Drop reference count from bus_find_device */
438 	put_device(dev);
439 
440 	return dev ? to_usb_interface(dev) : NULL;
441 }
442 EXPORT_SYMBOL_GPL(usb_find_interface);
443 
444 struct each_dev_arg {
445 	void *data;
446 	int (*fn)(struct usb_device *, void *);
447 };
448 
__each_dev(struct device * dev,void * data)449 static int __each_dev(struct device *dev, void *data)
450 {
451 	struct each_dev_arg *arg = (struct each_dev_arg *)data;
452 
453 	/* There are struct usb_interface on the same bus, filter them out */
454 	if (!is_usb_device(dev))
455 		return 0;
456 
457 	return arg->fn(to_usb_device(dev), arg->data);
458 }
459 
460 /**
461  * usb_for_each_dev - iterate over all USB devices in the system
462  * @data: data pointer that will be handed to the callback function
463  * @fn: callback function to be called for each USB device
464  *
465  * Iterate over all USB devices and call @fn for each, passing it @data. If it
466  * returns anything other than 0, we break the iteration prematurely and return
467  * that value.
468  */
usb_for_each_dev(void * data,int (* fn)(struct usb_device *,void *))469 int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
470 {
471 	struct each_dev_arg arg = {data, fn};
472 
473 	return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
474 }
475 EXPORT_SYMBOL_GPL(usb_for_each_dev);
476 
477 struct each_hub_arg {
478 	void *data;
479 	int (*fn)(struct device *, void *);
480 };
481 
__each_hub(struct usb_device * hdev,void * data)482 static int __each_hub(struct usb_device *hdev, void *data)
483 {
484 	struct each_hub_arg *arg = (struct each_hub_arg *)data;
485 	struct usb_hub *hub;
486 	int ret = 0;
487 	int i;
488 
489 	hub = usb_hub_to_struct_hub(hdev);
490 	if (!hub)
491 		return 0;
492 
493 	mutex_lock(&usb_port_peer_mutex);
494 
495 	for (i = 0; i < hdev->maxchild; i++) {
496 		ret = arg->fn(&hub->ports[i]->dev, arg->data);
497 		if (ret)
498 			break;
499 	}
500 
501 	mutex_unlock(&usb_port_peer_mutex);
502 
503 	return ret;
504 }
505 
506 /**
507  * usb_for_each_port - interate over all USB ports in the system
508  * @data: data pointer that will be handed to the callback function
509  * @fn: callback function to be called for each USB port
510  *
511  * Iterate over all USB ports and call @fn for each, passing it @data. If it
512  * returns anything other than 0, we break the iteration prematurely and return
513  * that value.
514  */
usb_for_each_port(void * data,int (* fn)(struct device *,void *))515 int usb_for_each_port(void *data, int (*fn)(struct device *, void *))
516 {
517 	struct each_hub_arg arg = {data, fn};
518 
519 	return usb_for_each_dev(&arg, __each_hub);
520 }
521 EXPORT_SYMBOL_GPL(usb_for_each_port);
522 
523 /**
524  * usb_release_dev - free a usb device structure when all users of it are finished.
525  * @dev: device that's been disconnected
526  *
527  * Will be called only by the device core when all users of this usb device are
528  * done.
529  */
usb_release_dev(struct device * dev)530 static void usb_release_dev(struct device *dev)
531 {
532 	struct usb_device *udev;
533 	struct usb_hcd *hcd;
534 
535 	udev = to_usb_device(dev);
536 	hcd = bus_to_hcd(udev->bus);
537 
538 	usb_destroy_configuration(udev);
539 	usb_release_bos_descriptor(udev);
540 	of_node_put(dev->of_node);
541 	usb_put_hcd(hcd);
542 	kfree(udev->product);
543 	kfree(udev->manufacturer);
544 	kfree(udev->serial);
545 	kfree(udev);
546 }
547 
usb_dev_uevent(struct device * dev,struct kobj_uevent_env * env)548 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
549 {
550 	struct usb_device *usb_dev;
551 
552 	usb_dev = to_usb_device(dev);
553 
554 	if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
555 		return -ENOMEM;
556 
557 	if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
558 		return -ENOMEM;
559 
560 	return 0;
561 }
562 
563 #ifdef	CONFIG_PM
564 
565 /* USB device Power-Management thunks.
566  * There's no need to distinguish here between quiescing a USB device
567  * and powering it down; the generic_suspend() routine takes care of
568  * it by skipping the usb_port_suspend() call for a quiesce.  And for
569  * USB interfaces there's no difference at all.
570  */
571 
usb_dev_prepare(struct device * dev)572 static int usb_dev_prepare(struct device *dev)
573 {
574 	return 0;		/* Implement eventually? */
575 }
576 
usb_dev_complete(struct device * dev)577 static void usb_dev_complete(struct device *dev)
578 {
579 	/* Currently used only for rebinding interfaces */
580 	usb_resume_complete(dev);
581 }
582 
usb_dev_suspend(struct device * dev)583 static int usb_dev_suspend(struct device *dev)
584 {
585 	return usb_suspend(dev, PMSG_SUSPEND);
586 }
587 
usb_dev_resume(struct device * dev)588 static int usb_dev_resume(struct device *dev)
589 {
590 	return usb_resume(dev, PMSG_RESUME);
591 }
592 
usb_dev_freeze(struct device * dev)593 static int usb_dev_freeze(struct device *dev)
594 {
595 	return usb_suspend(dev, PMSG_FREEZE);
596 }
597 
usb_dev_thaw(struct device * dev)598 static int usb_dev_thaw(struct device *dev)
599 {
600 	return usb_resume(dev, PMSG_THAW);
601 }
602 
usb_dev_poweroff(struct device * dev)603 static int usb_dev_poweroff(struct device *dev)
604 {
605 	return usb_suspend(dev, PMSG_HIBERNATE);
606 }
607 
usb_dev_restore(struct device * dev)608 static int usb_dev_restore(struct device *dev)
609 {
610 	return usb_resume(dev, PMSG_RESTORE);
611 }
612 
613 static const struct dev_pm_ops usb_device_pm_ops = {
614 	.prepare =	usb_dev_prepare,
615 	.complete =	usb_dev_complete,
616 	.suspend =	usb_dev_suspend,
617 	.resume =	usb_dev_resume,
618 	.freeze =	usb_dev_freeze,
619 	.thaw =		usb_dev_thaw,
620 	.poweroff =	usb_dev_poweroff,
621 	.restore =	usb_dev_restore,
622 	.runtime_suspend =	usb_runtime_suspend,
623 	.runtime_resume =	usb_runtime_resume,
624 	.runtime_idle =		usb_runtime_idle,
625 };
626 
627 #endif	/* CONFIG_PM */
628 
629 
usb_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)630 static char *usb_devnode(struct device *dev,
631 			 umode_t *mode, kuid_t *uid, kgid_t *gid)
632 {
633 	struct usb_device *usb_dev;
634 
635 	usb_dev = to_usb_device(dev);
636 	return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
637 			 usb_dev->bus->busnum, usb_dev->devnum);
638 }
639 
640 struct device_type usb_device_type = {
641 	.name =		"usb_device",
642 	.release =	usb_release_dev,
643 	.uevent =	usb_dev_uevent,
644 	.devnode = 	usb_devnode,
645 #ifdef CONFIG_PM
646 	.pm =		&usb_device_pm_ops,
647 #endif
648 };
649 
650 
651 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
usb_bus_is_wusb(struct usb_bus * bus)652 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
653 {
654 	struct usb_hcd *hcd = bus_to_hcd(bus);
655 	return hcd->wireless;
656 }
657 
usb_dev_authorized(struct usb_device * dev,struct usb_hcd * hcd)658 static bool usb_dev_authorized(struct usb_device *dev, struct usb_hcd *hcd)
659 {
660 	struct usb_hub *hub;
661 
662 	if (!dev->parent)
663 		return true; /* Root hub always ok [and always wired] */
664 
665 	switch (hcd->dev_policy) {
666 	case USB_DEVICE_AUTHORIZE_NONE:
667 	default:
668 		return false;
669 
670 	case USB_DEVICE_AUTHORIZE_ALL:
671 		return true;
672 
673 	case USB_DEVICE_AUTHORIZE_INTERNAL:
674 		hub = usb_hub_to_struct_hub(dev->parent);
675 		return hub->ports[dev->portnum - 1]->connect_type ==
676 				USB_PORT_CONNECT_TYPE_HARD_WIRED;
677 	}
678 }
679 
680 /**
681  * usb_alloc_dev - usb device constructor (usbcore-internal)
682  * @parent: hub to which device is connected; null to allocate a root hub
683  * @bus: bus used to access the device
684  * @port1: one-based index of port; ignored for root hubs
685  *
686  * Context: task context, might sleep.
687  *
688  * Only hub drivers (including virtual root hub drivers for host
689  * controllers) should ever call this.
690  *
691  * This call may not be used in a non-sleeping context.
692  *
693  * Return: On success, a pointer to the allocated usb device. %NULL on
694  * failure.
695  */
usb_alloc_dev(struct usb_device * parent,struct usb_bus * bus,unsigned port1)696 struct usb_device *usb_alloc_dev(struct usb_device *parent,
697 				 struct usb_bus *bus, unsigned port1)
698 {
699 	struct usb_device *dev;
700 	struct usb_hcd *usb_hcd = bus_to_hcd(bus);
701 	unsigned root_hub = 0;
702 	unsigned raw_port = port1;
703 
704 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
705 	if (!dev)
706 		return NULL;
707 
708 	if (!usb_get_hcd(usb_hcd)) {
709 		kfree(dev);
710 		return NULL;
711 	}
712 	/* Root hubs aren't true devices, so don't allocate HCD resources */
713 	if (usb_hcd->driver->alloc_dev && parent &&
714 		!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
715 		usb_put_hcd(bus_to_hcd(bus));
716 		kfree(dev);
717 		return NULL;
718 	}
719 
720 	device_initialize(&dev->dev);
721 	dev->dev.bus = &usb_bus_type;
722 	dev->dev.type = &usb_device_type;
723 	dev->dev.groups = usb_device_groups;
724 	set_dev_node(&dev->dev, dev_to_node(bus->sysdev));
725 	dev->state = USB_STATE_ATTACHED;
726 	dev->lpm_disable_count = 1;
727 	atomic_set(&dev->urbnum, 0);
728 
729 	INIT_LIST_HEAD(&dev->ep0.urb_list);
730 	dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
731 	dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
732 	/* ep0 maxpacket comes later, from device descriptor */
733 	usb_enable_endpoint(dev, &dev->ep0, false);
734 	dev->can_submit = 1;
735 
736 	/* Save readable and stable topology id, distinguishing devices
737 	 * by location for diagnostics, tools, driver model, etc.  The
738 	 * string is a path along hub ports, from the root.  Each device's
739 	 * dev->devpath will be stable until USB is re-cabled, and hubs
740 	 * are often labeled with these port numbers.  The name isn't
741 	 * as stable:  bus->busnum changes easily from modprobe order,
742 	 * cardbus or pci hotplugging, and so on.
743 	 */
744 	if (unlikely(!parent)) {
745 		dev->devpath[0] = '0';
746 		dev->route = 0;
747 
748 		dev->dev.parent = bus->controller;
749 		device_set_of_node_from_dev(&dev->dev, bus->sysdev);
750 		dev_set_name(&dev->dev, "usb%d", bus->busnum);
751 		root_hub = 1;
752 	} else {
753 		/* match any labeling on the hubs; it's one-based */
754 		if (parent->devpath[0] == '0') {
755 			snprintf(dev->devpath, sizeof dev->devpath,
756 				"%d", port1);
757 			/* Root ports are not counted in route string */
758 			dev->route = 0;
759 		} else {
760 			snprintf(dev->devpath, sizeof dev->devpath,
761 				"%s.%d", parent->devpath, port1);
762 			/* Route string assumes hubs have less than 16 ports */
763 			if (port1 < 15)
764 				dev->route = parent->route +
765 					(port1 << ((parent->level - 1)*4));
766 			else
767 				dev->route = parent->route +
768 					(15 << ((parent->level - 1)*4));
769 		}
770 
771 		dev->dev.parent = &parent->dev;
772 		dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
773 
774 		if (!parent->parent) {
775 			/* device under root hub's port */
776 			raw_port = usb_hcd_find_raw_port_number(usb_hcd,
777 				port1);
778 		}
779 		dev->dev.of_node = usb_of_get_device_node(parent, raw_port);
780 
781 		/* hub driver sets up TT records */
782 	}
783 
784 	dev->portnum = port1;
785 	dev->bus = bus;
786 	dev->parent = parent;
787 	INIT_LIST_HEAD(&dev->filelist);
788 
789 #ifdef	CONFIG_PM
790 	pm_runtime_set_autosuspend_delay(&dev->dev,
791 			usb_autosuspend_delay * 1000);
792 	dev->connect_time = jiffies;
793 	dev->active_duration = -jiffies;
794 #endif
795 
796 	dev->authorized = usb_dev_authorized(dev, usb_hcd);
797 	if (!root_hub)
798 		dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
799 
800 	return dev;
801 }
802 EXPORT_SYMBOL_GPL(usb_alloc_dev);
803 
804 /**
805  * usb_get_dev - increments the reference count of the usb device structure
806  * @dev: the device being referenced
807  *
808  * Each live reference to a device should be refcounted.
809  *
810  * Drivers for USB interfaces should normally record such references in
811  * their probe() methods, when they bind to an interface, and release
812  * them by calling usb_put_dev(), in their disconnect() methods.
813  *
814  * Return: A pointer to the device with the incremented reference counter.
815  */
usb_get_dev(struct usb_device * dev)816 struct usb_device *usb_get_dev(struct usb_device *dev)
817 {
818 	if (dev)
819 		get_device(&dev->dev);
820 	return dev;
821 }
822 EXPORT_SYMBOL_GPL(usb_get_dev);
823 
824 /**
825  * usb_put_dev - release a use of the usb device structure
826  * @dev: device that's been disconnected
827  *
828  * Must be called when a user of a device is finished with it.  When the last
829  * user of the device calls this function, the memory of the device is freed.
830  */
usb_put_dev(struct usb_device * dev)831 void usb_put_dev(struct usb_device *dev)
832 {
833 	if (dev)
834 		put_device(&dev->dev);
835 }
836 EXPORT_SYMBOL_GPL(usb_put_dev);
837 
838 /**
839  * usb_get_intf - increments the reference count of the usb interface structure
840  * @intf: the interface being referenced
841  *
842  * Each live reference to a interface must be refcounted.
843  *
844  * Drivers for USB interfaces should normally record such references in
845  * their probe() methods, when they bind to an interface, and release
846  * them by calling usb_put_intf(), in their disconnect() methods.
847  *
848  * Return: A pointer to the interface with the incremented reference counter.
849  */
usb_get_intf(struct usb_interface * intf)850 struct usb_interface *usb_get_intf(struct usb_interface *intf)
851 {
852 	if (intf)
853 		get_device(&intf->dev);
854 	return intf;
855 }
856 EXPORT_SYMBOL_GPL(usb_get_intf);
857 
858 /**
859  * usb_put_intf - release a use of the usb interface structure
860  * @intf: interface that's been decremented
861  *
862  * Must be called when a user of an interface is finished with it.  When the
863  * last user of the interface calls this function, the memory of the interface
864  * is freed.
865  */
usb_put_intf(struct usb_interface * intf)866 void usb_put_intf(struct usb_interface *intf)
867 {
868 	if (intf)
869 		put_device(&intf->dev);
870 }
871 EXPORT_SYMBOL_GPL(usb_put_intf);
872 
873 /**
874  * usb_intf_get_dma_device - acquire a reference on the usb interface's DMA endpoint
875  * @intf: the usb interface
876  *
877  * While a USB device cannot perform DMA operations by itself, many USB
878  * controllers can. A call to usb_intf_get_dma_device() returns the DMA endpoint
879  * for the given USB interface, if any. The returned device structure must be
880  * released with put_device().
881  *
882  * See also usb_get_dma_device().
883  *
884  * Returns: A reference to the usb interface's DMA endpoint; or NULL if none
885  *          exists.
886  */
usb_intf_get_dma_device(struct usb_interface * intf)887 struct device *usb_intf_get_dma_device(struct usb_interface *intf)
888 {
889 	struct usb_device *udev = interface_to_usbdev(intf);
890 	struct device *dmadev;
891 
892 	if (!udev->bus)
893 		return NULL;
894 
895 	dmadev = get_device(udev->bus->sysdev);
896 	if (!dmadev || !dmadev->dma_mask) {
897 		put_device(dmadev);
898 		return NULL;
899 	}
900 
901 	return dmadev;
902 }
903 EXPORT_SYMBOL_GPL(usb_intf_get_dma_device);
904 
905 /*			USB device locking
906  *
907  * USB devices and interfaces are locked using the semaphore in their
908  * embedded struct device.  The hub driver guarantees that whenever a
909  * device is connected or disconnected, drivers are called with the
910  * USB device locked as well as their particular interface.
911  *
912  * Complications arise when several devices are to be locked at the same
913  * time.  Only hub-aware drivers that are part of usbcore ever have to
914  * do this; nobody else needs to worry about it.  The rule for locking
915  * is simple:
916  *
917  *	When locking both a device and its parent, always lock the
918  *	the parent first.
919  */
920 
921 /**
922  * usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
923  * @udev: device that's being locked
924  * @iface: interface bound to the driver making the request (optional)
925  *
926  * Attempts to acquire the device lock, but fails if the device is
927  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
928  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
929  * lock, the routine polls repeatedly.  This is to prevent deadlock with
930  * disconnect; in some drivers (such as usb-storage) the disconnect()
931  * or suspend() method will block waiting for a device reset to complete.
932  *
933  * Return: A negative error code for failure, otherwise 0.
934  */
usb_lock_device_for_reset(struct usb_device * udev,const struct usb_interface * iface)935 int usb_lock_device_for_reset(struct usb_device *udev,
936 			      const struct usb_interface *iface)
937 {
938 	unsigned long jiffies_expire = jiffies + HZ;
939 
940 	if (udev->state == USB_STATE_NOTATTACHED)
941 		return -ENODEV;
942 	if (udev->state == USB_STATE_SUSPENDED)
943 		return -EHOSTUNREACH;
944 	if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
945 			iface->condition == USB_INTERFACE_UNBOUND))
946 		return -EINTR;
947 
948 	while (!usb_trylock_device(udev)) {
949 
950 		/* If we can't acquire the lock after waiting one second,
951 		 * we're probably deadlocked */
952 		if (time_after(jiffies, jiffies_expire))
953 			return -EBUSY;
954 
955 		msleep(15);
956 		if (udev->state == USB_STATE_NOTATTACHED)
957 			return -ENODEV;
958 		if (udev->state == USB_STATE_SUSPENDED)
959 			return -EHOSTUNREACH;
960 		if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
961 				iface->condition == USB_INTERFACE_UNBOUND))
962 			return -EINTR;
963 	}
964 	return 0;
965 }
966 EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
967 
968 /**
969  * usb_get_current_frame_number - return current bus frame number
970  * @dev: the device whose bus is being queried
971  *
972  * Return: The current frame number for the USB host controller used
973  * with the given USB device. This can be used when scheduling
974  * isochronous requests.
975  *
976  * Note: Different kinds of host controller have different "scheduling
977  * horizons". While one type might support scheduling only 32 frames
978  * into the future, others could support scheduling up to 1024 frames
979  * into the future.
980  *
981  */
usb_get_current_frame_number(struct usb_device * dev)982 int usb_get_current_frame_number(struct usb_device *dev)
983 {
984 	return usb_hcd_get_frame_number(dev);
985 }
986 EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
987 
988 /*-------------------------------------------------------------------*/
989 /*
990  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
991  * extra field of the interface and endpoint descriptor structs.
992  */
993 
__usb_get_extra_descriptor(char * buffer,unsigned size,unsigned char type,void ** ptr,size_t minsize)994 int __usb_get_extra_descriptor(char *buffer, unsigned size,
995 			       unsigned char type, void **ptr, size_t minsize)
996 {
997 	struct usb_descriptor_header *header;
998 
999 	while (size >= sizeof(struct usb_descriptor_header)) {
1000 		header = (struct usb_descriptor_header *)buffer;
1001 
1002 		if (header->bLength < 2 || header->bLength > size) {
1003 			printk(KERN_ERR
1004 				"%s: bogus descriptor, type %d length %d\n",
1005 				usbcore_name,
1006 				header->bDescriptorType,
1007 				header->bLength);
1008 			return -1;
1009 		}
1010 
1011 		if (header->bDescriptorType == type && header->bLength >= minsize) {
1012 			*ptr = header;
1013 			return 0;
1014 		}
1015 
1016 		buffer += header->bLength;
1017 		size -= header->bLength;
1018 	}
1019 	return -1;
1020 }
1021 EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
1022 
1023 /**
1024  * usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
1025  * @dev: device the buffer will be used with
1026  * @size: requested buffer size
1027  * @mem_flags: affect whether allocation may block
1028  * @dma: used to return DMA address of buffer
1029  *
1030  * Return: Either null (indicating no buffer could be allocated), or the
1031  * cpu-space pointer to a buffer that may be used to perform DMA to the
1032  * specified device.  Such cpu-space buffers are returned along with the DMA
1033  * address (through the pointer provided).
1034  *
1035  * Note:
1036  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
1037  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
1038  * hardware during URB completion/resubmit.  The implementation varies between
1039  * platforms, depending on details of how DMA will work to this device.
1040  * Using these buffers also eliminates cacheline sharing problems on
1041  * architectures where CPU caches are not DMA-coherent.  On systems without
1042  * bus-snooping caches, these buffers are uncached.
1043  *
1044  * When the buffer is no longer used, free it with usb_free_coherent().
1045  */
usb_alloc_coherent(struct usb_device * dev,size_t size,gfp_t mem_flags,dma_addr_t * dma)1046 void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
1047 			 dma_addr_t *dma)
1048 {
1049 	if (!dev || !dev->bus)
1050 		return NULL;
1051 	return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
1052 }
1053 EXPORT_SYMBOL_GPL(usb_alloc_coherent);
1054 
1055 /**
1056  * usb_free_coherent - free memory allocated with usb_alloc_coherent()
1057  * @dev: device the buffer was used with
1058  * @size: requested buffer size
1059  * @addr: CPU address of buffer
1060  * @dma: DMA address of buffer
1061  *
1062  * This reclaims an I/O buffer, letting it be reused.  The memory must have
1063  * been allocated using usb_alloc_coherent(), and the parameters must match
1064  * those provided in that allocation request.
1065  */
usb_free_coherent(struct usb_device * dev,size_t size,void * addr,dma_addr_t dma)1066 void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
1067 		       dma_addr_t dma)
1068 {
1069 	if (!dev || !dev->bus)
1070 		return;
1071 	if (!addr)
1072 		return;
1073 	hcd_buffer_free(dev->bus, size, addr, dma);
1074 }
1075 EXPORT_SYMBOL_GPL(usb_free_coherent);
1076 
1077 /*
1078  * Notifications of device and interface registration
1079  */
usb_bus_notify(struct notifier_block * nb,unsigned long action,void * data)1080 static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
1081 		void *data)
1082 {
1083 	struct device *dev = data;
1084 
1085 	switch (action) {
1086 	case BUS_NOTIFY_ADD_DEVICE:
1087 		if (dev->type == &usb_device_type)
1088 			(void) usb_create_sysfs_dev_files(to_usb_device(dev));
1089 		else if (dev->type == &usb_if_device_type)
1090 			usb_create_sysfs_intf_files(to_usb_interface(dev));
1091 		break;
1092 
1093 	case BUS_NOTIFY_DEL_DEVICE:
1094 		if (dev->type == &usb_device_type)
1095 			usb_remove_sysfs_dev_files(to_usb_device(dev));
1096 		else if (dev->type == &usb_if_device_type)
1097 			usb_remove_sysfs_intf_files(to_usb_interface(dev));
1098 		break;
1099 	}
1100 	return 0;
1101 }
1102 
1103 static struct notifier_block usb_bus_nb = {
1104 	.notifier_call = usb_bus_notify,
1105 };
1106 
usb_debugfs_init(void)1107 static void usb_debugfs_init(void)
1108 {
1109 	debugfs_create_file("devices", 0444, usb_debug_root, NULL,
1110 			    &usbfs_devices_fops);
1111 }
1112 
usb_debugfs_cleanup(void)1113 static void usb_debugfs_cleanup(void)
1114 {
1115 	debugfs_lookup_and_remove("devices", usb_debug_root);
1116 }
1117 
1118 /*
1119  * Init
1120  */
usb_init(void)1121 static int __init usb_init(void)
1122 {
1123 	int retval;
1124 	if (usb_disabled()) {
1125 		pr_info("%s: USB support disabled\n", usbcore_name);
1126 		return 0;
1127 	}
1128 	usb_init_pool_max();
1129 
1130 	usb_debugfs_init();
1131 
1132 	usb_acpi_register();
1133 	retval = bus_register(&usb_bus_type);
1134 	if (retval)
1135 		goto bus_register_failed;
1136 	retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
1137 	if (retval)
1138 		goto bus_notifier_failed;
1139 	retval = usb_major_init();
1140 	if (retval)
1141 		goto major_init_failed;
1142 	retval = usb_register(&usbfs_driver);
1143 	if (retval)
1144 		goto driver_register_failed;
1145 	retval = usb_devio_init();
1146 	if (retval)
1147 		goto usb_devio_init_failed;
1148 	retval = usb_hub_init();
1149 	if (retval)
1150 		goto hub_init_failed;
1151 	retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
1152 	if (!retval)
1153 		goto out;
1154 
1155 	usb_hub_cleanup();
1156 hub_init_failed:
1157 	usb_devio_cleanup();
1158 usb_devio_init_failed:
1159 	usb_deregister(&usbfs_driver);
1160 driver_register_failed:
1161 	usb_major_cleanup();
1162 major_init_failed:
1163 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1164 bus_notifier_failed:
1165 	bus_unregister(&usb_bus_type);
1166 bus_register_failed:
1167 	usb_acpi_unregister();
1168 	usb_debugfs_cleanup();
1169 out:
1170 	return retval;
1171 }
1172 
1173 /*
1174  * Cleanup
1175  */
usb_exit(void)1176 static void __exit usb_exit(void)
1177 {
1178 	/* This will matter if shutdown/reboot does exitcalls. */
1179 	if (usb_disabled())
1180 		return;
1181 
1182 	usb_release_quirk_list();
1183 	usb_deregister_device_driver(&usb_generic_driver);
1184 	usb_major_cleanup();
1185 	usb_deregister(&usbfs_driver);
1186 	usb_devio_cleanup();
1187 	usb_hub_cleanup();
1188 	bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
1189 	bus_unregister(&usb_bus_type);
1190 	usb_acpi_unregister();
1191 	usb_debugfs_cleanup();
1192 	idr_destroy(&usb_bus_idr);
1193 }
1194 
1195 subsys_initcall(usb_init);
1196 module_exit(usb_exit);
1197 MODULE_LICENSE("GPL");
1198