1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Memory-to-memory device framework for Video for Linux 2 and videobuf.
4 *
5 * Helper functions for devices that use videobuf buffers for both their
6 * source and destination.
7 *
8 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
9 * Pawel Osciak, <pawel@osciak.com>
10 * Marek Szyprowski, <m.szyprowski@samsung.com>
11 */
12 #include <linux/module.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15
16 #include <media/media-device.h>
17 #include <media/videobuf2-v4l2.h>
18 #include <media/v4l2-mem2mem.h>
19 #include <media/v4l2-dev.h>
20 #include <media/v4l2-device.h>
21 #include <media/v4l2-fh.h>
22 #include <media/v4l2-event.h>
23
24 MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
25 MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
26 MODULE_LICENSE("GPL");
27
28 static bool debug;
29 module_param(debug, bool, 0644);
30
31 #define dprintk(fmt, arg...) \
32 do { \
33 if (debug) \
34 printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
35 } while (0)
36
37
38 /* Instance is already queued on the job_queue */
39 #define TRANS_QUEUED (1 << 0)
40 /* Instance is currently running in hardware */
41 #define TRANS_RUNNING (1 << 1)
42 /* Instance is currently aborting */
43 #define TRANS_ABORT (1 << 2)
44
45
46 /* The job queue is not running new jobs */
47 #define QUEUE_PAUSED (1 << 0)
48
49
50 /* Offset base for buffers on the destination queue - used to distinguish
51 * between source and destination buffers when mmapping - they receive the same
52 * offsets but for different queues */
53 #define DST_QUEUE_OFF_BASE (1 << 30)
54
55 enum v4l2_m2m_entity_type {
56 MEM2MEM_ENT_TYPE_SOURCE,
57 MEM2MEM_ENT_TYPE_SINK,
58 MEM2MEM_ENT_TYPE_PROC
59 };
60
61 static const char * const m2m_entity_name[] = {
62 "source",
63 "sink",
64 "proc"
65 };
66
67 /**
68 * struct v4l2_m2m_dev - per-device context
69 * @source: &struct media_entity pointer with the source entity
70 * Used only when the M2M device is registered via
71 * v4l2_m2m_unregister_media_controller().
72 * @source_pad: &struct media_pad with the source pad.
73 * Used only when the M2M device is registered via
74 * v4l2_m2m_unregister_media_controller().
75 * @sink: &struct media_entity pointer with the sink entity
76 * Used only when the M2M device is registered via
77 * v4l2_m2m_unregister_media_controller().
78 * @sink_pad: &struct media_pad with the sink pad.
79 * Used only when the M2M device is registered via
80 * v4l2_m2m_unregister_media_controller().
81 * @proc: &struct media_entity pointer with the M2M device itself.
82 * @proc_pads: &struct media_pad with the @proc pads.
83 * Used only when the M2M device is registered via
84 * v4l2_m2m_unregister_media_controller().
85 * @intf_devnode: &struct media_intf devnode pointer with the interface
86 * with controls the M2M device.
87 * @curr_ctx: currently running instance
88 * @job_queue: instances queued to run
89 * @job_spinlock: protects job_queue
90 * @job_work: worker to run queued jobs.
91 * @job_queue_flags: flags of the queue status, %QUEUE_PAUSED.
92 * @m2m_ops: driver callbacks
93 */
94 struct v4l2_m2m_dev {
95 struct v4l2_m2m_ctx *curr_ctx;
96 #ifdef CONFIG_MEDIA_CONTROLLER
97 struct media_entity *source;
98 struct media_pad source_pad;
99 struct media_entity sink;
100 struct media_pad sink_pad;
101 struct media_entity proc;
102 struct media_pad proc_pads[2];
103 struct media_intf_devnode *intf_devnode;
104 #endif
105
106 struct list_head job_queue;
107 spinlock_t job_spinlock;
108 struct work_struct job_work;
109 unsigned long job_queue_flags;
110
111 const struct v4l2_m2m_ops *m2m_ops;
112 };
113
get_queue_ctx(struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)114 static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
115 enum v4l2_buf_type type)
116 {
117 if (V4L2_TYPE_IS_OUTPUT(type))
118 return &m2m_ctx->out_q_ctx;
119 else
120 return &m2m_ctx->cap_q_ctx;
121 }
122
v4l2_m2m_get_vq(struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)123 struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
124 enum v4l2_buf_type type)
125 {
126 struct v4l2_m2m_queue_ctx *q_ctx;
127
128 q_ctx = get_queue_ctx(m2m_ctx, type);
129 if (!q_ctx)
130 return NULL;
131
132 return &q_ctx->q;
133 }
134 EXPORT_SYMBOL(v4l2_m2m_get_vq);
135
v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx * q_ctx)136 struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
137 {
138 struct v4l2_m2m_buffer *b;
139 unsigned long flags;
140
141 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
142
143 if (list_empty(&q_ctx->rdy_queue)) {
144 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
145 return NULL;
146 }
147
148 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
149 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
150 return &b->vb;
151 }
152 EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
153
v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx * q_ctx)154 struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
155 {
156 struct v4l2_m2m_buffer *b;
157 unsigned long flags;
158
159 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
160
161 if (list_empty(&q_ctx->rdy_queue)) {
162 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
163 return NULL;
164 }
165
166 b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
167 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
168 return &b->vb;
169 }
170 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
171
v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx * q_ctx)172 struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
173 {
174 struct v4l2_m2m_buffer *b;
175 unsigned long flags;
176
177 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
178 if (list_empty(&q_ctx->rdy_queue)) {
179 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
180 return NULL;
181 }
182 b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
183 list_del(&b->list);
184 q_ctx->num_rdy--;
185 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
186
187 return &b->vb;
188 }
189 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
190
v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx * q_ctx,struct vb2_v4l2_buffer * vbuf)191 void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
192 struct vb2_v4l2_buffer *vbuf)
193 {
194 struct v4l2_m2m_buffer *b;
195 unsigned long flags;
196
197 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
198 b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
199 list_del(&b->list);
200 q_ctx->num_rdy--;
201 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
202 }
203 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
204
205 struct vb2_v4l2_buffer *
v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx * q_ctx,unsigned int idx)206 v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
207
208 {
209 struct v4l2_m2m_buffer *b, *tmp;
210 struct vb2_v4l2_buffer *ret = NULL;
211 unsigned long flags;
212
213 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
214 list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
215 if (b->vb.vb2_buf.index == idx) {
216 list_del(&b->list);
217 q_ctx->num_rdy--;
218 ret = &b->vb;
219 break;
220 }
221 }
222 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
223
224 return ret;
225 }
226 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
227
228 /*
229 * Scheduling handlers
230 */
231
v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev * m2m_dev)232 void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
233 {
234 unsigned long flags;
235 void *ret = NULL;
236
237 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
238 if (m2m_dev->curr_ctx)
239 ret = m2m_dev->curr_ctx->priv;
240 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
241
242 return ret;
243 }
244 EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
245
246 /**
247 * v4l2_m2m_try_run() - select next job to perform and run it if possible
248 * @m2m_dev: per-device context
249 *
250 * Get next transaction (if present) from the waiting jobs list and run it.
251 *
252 * Note that this function can run on a given v4l2_m2m_ctx context,
253 * but call .device_run for another context.
254 */
v4l2_m2m_try_run(struct v4l2_m2m_dev * m2m_dev)255 static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
256 {
257 unsigned long flags;
258
259 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
260 if (NULL != m2m_dev->curr_ctx) {
261 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
262 dprintk("Another instance is running, won't run now\n");
263 return;
264 }
265
266 if (list_empty(&m2m_dev->job_queue)) {
267 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
268 dprintk("No job pending\n");
269 return;
270 }
271
272 if (m2m_dev->job_queue_flags & QUEUE_PAUSED) {
273 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
274 dprintk("Running new jobs is paused\n");
275 return;
276 }
277
278 m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
279 struct v4l2_m2m_ctx, queue);
280 m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
281 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
282
283 dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
284 m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
285 }
286
287 /*
288 * __v4l2_m2m_try_queue() - queue a job
289 * @m2m_dev: m2m device
290 * @m2m_ctx: m2m context
291 *
292 * Check if this context is ready to queue a job.
293 *
294 * This function can run in interrupt context.
295 */
__v4l2_m2m_try_queue(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)296 static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
297 struct v4l2_m2m_ctx *m2m_ctx)
298 {
299 unsigned long flags_job;
300 struct vb2_v4l2_buffer *dst, *src;
301
302 dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
303
304 if (!m2m_ctx->out_q_ctx.q.streaming
305 || !m2m_ctx->cap_q_ctx.q.streaming) {
306 dprintk("Streaming needs to be on for both queues\n");
307 return;
308 }
309
310 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
311
312 /* If the context is aborted then don't schedule it */
313 if (m2m_ctx->job_flags & TRANS_ABORT) {
314 dprintk("Aborted context\n");
315 goto job_unlock;
316 }
317
318 if (m2m_ctx->job_flags & TRANS_QUEUED) {
319 dprintk("On job queue already\n");
320 goto job_unlock;
321 }
322
323 src = v4l2_m2m_next_src_buf(m2m_ctx);
324 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
325 if (!src && !m2m_ctx->out_q_ctx.buffered) {
326 dprintk("No input buffers available\n");
327 goto job_unlock;
328 }
329 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
330 dprintk("No output buffers available\n");
331 goto job_unlock;
332 }
333
334 m2m_ctx->new_frame = true;
335
336 if (src && dst && dst->is_held &&
337 dst->vb2_buf.copied_timestamp &&
338 dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
339 dst->is_held = false;
340 v4l2_m2m_dst_buf_remove(m2m_ctx);
341 v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE);
342 dst = v4l2_m2m_next_dst_buf(m2m_ctx);
343
344 if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
345 dprintk("No output buffers available after returning held buffer\n");
346 goto job_unlock;
347 }
348 }
349
350 if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
351 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
352 m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
353 dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
354
355 if (m2m_ctx->has_stopped) {
356 dprintk("Device has stopped\n");
357 goto job_unlock;
358 }
359
360 if (m2m_dev->m2m_ops->job_ready
361 && (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
362 dprintk("Driver not ready\n");
363 goto job_unlock;
364 }
365
366 list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
367 m2m_ctx->job_flags |= TRANS_QUEUED;
368
369 job_unlock:
370 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
371 }
372
373 /**
374 * v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
375 * @m2m_ctx: m2m context
376 *
377 * Check if this context is ready to queue a job. If suitable,
378 * run the next queued job on the mem2mem device.
379 *
380 * This function shouldn't run in interrupt context.
381 *
382 * Note that v4l2_m2m_try_schedule() can schedule one job for this context,
383 * and then run another job for another context.
384 */
v4l2_m2m_try_schedule(struct v4l2_m2m_ctx * m2m_ctx)385 void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
386 {
387 struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
388
389 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
390 v4l2_m2m_try_run(m2m_dev);
391 }
392 EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
393
394 /**
395 * v4l2_m2m_device_run_work() - run pending jobs for the context
396 * @work: Work structure used for scheduling the execution of this function.
397 */
v4l2_m2m_device_run_work(struct work_struct * work)398 static void v4l2_m2m_device_run_work(struct work_struct *work)
399 {
400 struct v4l2_m2m_dev *m2m_dev =
401 container_of(work, struct v4l2_m2m_dev, job_work);
402
403 v4l2_m2m_try_run(m2m_dev);
404 }
405
406 /**
407 * v4l2_m2m_cancel_job() - cancel pending jobs for the context
408 * @m2m_ctx: m2m context with jobs to be canceled
409 *
410 * In case of streamoff or release called on any context,
411 * 1] If the context is currently running, then abort job will be called
412 * 2] If the context is queued, then the context will be removed from
413 * the job_queue
414 */
v4l2_m2m_cancel_job(struct v4l2_m2m_ctx * m2m_ctx)415 static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
416 {
417 struct v4l2_m2m_dev *m2m_dev;
418 unsigned long flags;
419
420 m2m_dev = m2m_ctx->m2m_dev;
421 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
422
423 m2m_ctx->job_flags |= TRANS_ABORT;
424 if (m2m_ctx->job_flags & TRANS_RUNNING) {
425 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
426 if (m2m_dev->m2m_ops->job_abort)
427 m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
428 dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
429 wait_event(m2m_ctx->finished,
430 !(m2m_ctx->job_flags & TRANS_RUNNING));
431 } else if (m2m_ctx->job_flags & TRANS_QUEUED) {
432 list_del(&m2m_ctx->queue);
433 m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
434 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
435 dprintk("m2m_ctx: %p had been on queue and was removed\n",
436 m2m_ctx);
437 } else {
438 /* Do nothing, was not on queue/running */
439 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
440 }
441 }
442
443 /*
444 * Schedule the next job, called from v4l2_m2m_job_finish() or
445 * v4l2_m2m_buf_done_and_job_finish().
446 */
v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)447 static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
448 struct v4l2_m2m_ctx *m2m_ctx)
449 {
450 /*
451 * This instance might have more buffers ready, but since we do not
452 * allow more than one job on the job_queue per instance, each has
453 * to be scheduled separately after the previous one finishes.
454 */
455 __v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
456
457 /*
458 * We might be running in atomic context,
459 * but the job must be run in non-atomic context.
460 */
461 schedule_work(&m2m_dev->job_work);
462 }
463
464 /*
465 * Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
466 * v4l2_m2m_buf_done_and_job_finish().
467 */
_v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)468 static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
469 struct v4l2_m2m_ctx *m2m_ctx)
470 {
471 if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
472 dprintk("Called by an instance not currently running\n");
473 return false;
474 }
475
476 list_del(&m2m_dev->curr_ctx->queue);
477 m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
478 wake_up(&m2m_dev->curr_ctx->finished);
479 m2m_dev->curr_ctx = NULL;
480 return true;
481 }
482
v4l2_m2m_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx)483 void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
484 struct v4l2_m2m_ctx *m2m_ctx)
485 {
486 unsigned long flags;
487 bool schedule_next;
488
489 /*
490 * This function should not be used for drivers that support
491 * holding capture buffers. Those should use
492 * v4l2_m2m_buf_done_and_job_finish() instead.
493 */
494 WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
495 VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
496 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
497 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
498 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
499
500 if (schedule_next)
501 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
502 }
503 EXPORT_SYMBOL(v4l2_m2m_job_finish);
504
v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev * m2m_dev,struct v4l2_m2m_ctx * m2m_ctx,enum vb2_buffer_state state)505 void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
506 struct v4l2_m2m_ctx *m2m_ctx,
507 enum vb2_buffer_state state)
508 {
509 struct vb2_v4l2_buffer *src_buf, *dst_buf;
510 bool schedule_next = false;
511 unsigned long flags;
512
513 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
514 src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
515 dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
516
517 if (WARN_ON(!src_buf || !dst_buf))
518 goto unlock;
519 dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
520 if (!dst_buf->is_held) {
521 v4l2_m2m_dst_buf_remove(m2m_ctx);
522 v4l2_m2m_buf_done(dst_buf, state);
523 }
524 /*
525 * If the request API is being used, returning the OUTPUT
526 * (src) buffer will wake-up any process waiting on the
527 * request file descriptor.
528 *
529 * Therefore, return the CAPTURE (dst) buffer first,
530 * to avoid signalling the request file descriptor
531 * before the CAPTURE buffer is done.
532 */
533 v4l2_m2m_buf_done(src_buf, state);
534 schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
535 unlock:
536 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
537
538 if (schedule_next)
539 v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
540 }
541 EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
542
v4l2_m2m_suspend(struct v4l2_m2m_dev * m2m_dev)543 void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
544 {
545 unsigned long flags;
546 struct v4l2_m2m_ctx *curr_ctx;
547
548 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
549 m2m_dev->job_queue_flags |= QUEUE_PAUSED;
550 curr_ctx = m2m_dev->curr_ctx;
551 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
552
553 if (curr_ctx)
554 wait_event(curr_ctx->finished,
555 !(curr_ctx->job_flags & TRANS_RUNNING));
556 }
557 EXPORT_SYMBOL(v4l2_m2m_suspend);
558
v4l2_m2m_resume(struct v4l2_m2m_dev * m2m_dev)559 void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
564 m2m_dev->job_queue_flags &= ~QUEUE_PAUSED;
565 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
566
567 v4l2_m2m_try_run(m2m_dev);
568 }
569 EXPORT_SYMBOL(v4l2_m2m_resume);
570
v4l2_m2m_reqbufs(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_requestbuffers * reqbufs)571 int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
572 struct v4l2_requestbuffers *reqbufs)
573 {
574 struct vb2_queue *vq;
575 int ret;
576
577 vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
578 ret = vb2_reqbufs(vq, reqbufs);
579 /* If count == 0, then the owner has released all buffers and he
580 is no longer owner of the queue. Otherwise we have an owner. */
581 if (ret == 0)
582 vq->owner = reqbufs->count ? file->private_data : NULL;
583
584 return ret;
585 }
586 EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
587
v4l2_m2m_adjust_mem_offset(struct vb2_queue * vq,struct v4l2_buffer * buf)588 static void v4l2_m2m_adjust_mem_offset(struct vb2_queue *vq,
589 struct v4l2_buffer *buf)
590 {
591 /* Adjust MMAP memory offsets for the CAPTURE queue */
592 if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
593 if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
594 unsigned int i;
595
596 for (i = 0; i < buf->length; ++i)
597 buf->m.planes[i].m.mem_offset
598 += DST_QUEUE_OFF_BASE;
599 } else {
600 buf->m.offset += DST_QUEUE_OFF_BASE;
601 }
602 }
603 }
604
v4l2_m2m_querybuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)605 int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
606 struct v4l2_buffer *buf)
607 {
608 struct vb2_queue *vq;
609 int ret;
610
611 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
612 ret = vb2_querybuf(vq, buf);
613 if (ret)
614 return ret;
615
616 /* Adjust MMAP memory offsets for the CAPTURE queue */
617 v4l2_m2m_adjust_mem_offset(vq, buf);
618
619 return 0;
620 }
621 EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
622
623 /*
624 * This will add the LAST flag and mark the buffer management
625 * state as stopped.
626 * This is called when the last capture buffer must be flagged as LAST
627 * in draining mode from the encoder/decoder driver buf_queue() callback
628 * or from v4l2_update_last_buf_state() when a capture buffer is available.
629 */
v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_v4l2_buffer * vbuf)630 void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
631 struct vb2_v4l2_buffer *vbuf)
632 {
633 vbuf->flags |= V4L2_BUF_FLAG_LAST;
634 vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
635
636 v4l2_m2m_mark_stopped(m2m_ctx);
637 }
638 EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
639
640 /* When stop command is issued, update buffer management state */
v4l2_update_last_buf_state(struct v4l2_m2m_ctx * m2m_ctx)641 static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
642 {
643 struct vb2_v4l2_buffer *next_dst_buf;
644
645 if (m2m_ctx->is_draining)
646 return -EBUSY;
647
648 if (m2m_ctx->has_stopped)
649 return 0;
650
651 m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
652 m2m_ctx->is_draining = true;
653
654 /*
655 * The processing of the last output buffer queued before
656 * the STOP command is expected to mark the buffer management
657 * state as stopped with v4l2_m2m_mark_stopped().
658 */
659 if (m2m_ctx->last_src_buf)
660 return 0;
661
662 /*
663 * In case the output queue is empty, try to mark the last capture
664 * buffer as LAST.
665 */
666 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
667 if (!next_dst_buf) {
668 /*
669 * Wait for the next queued one in encoder/decoder driver
670 * buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
671 * helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
672 * streaming.
673 */
674 m2m_ctx->next_buf_last = true;
675 return 0;
676 }
677
678 v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
679
680 return 0;
681 }
682
683 /*
684 * Updates the encoding/decoding buffer management state, should
685 * be called from encoder/decoder drivers start_streaming()
686 */
v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)687 void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
688 struct vb2_queue *q)
689 {
690 /* If start streaming again, untag the last output buffer */
691 if (V4L2_TYPE_IS_OUTPUT(q->type))
692 m2m_ctx->last_src_buf = NULL;
693 }
694 EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
695
696 /*
697 * Updates the encoding/decoding buffer management state, should
698 * be called from encoder/decoder driver stop_streaming()
699 */
v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)700 void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
701 struct vb2_queue *q)
702 {
703 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
704 /*
705 * If in draining state, either mark next dst buffer as
706 * done or flag next one to be marked as done either
707 * in encoder/decoder driver buf_queue() callback using
708 * the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
709 * if encoder/decoder is not yet streaming
710 */
711 if (m2m_ctx->is_draining) {
712 struct vb2_v4l2_buffer *next_dst_buf;
713
714 m2m_ctx->last_src_buf = NULL;
715 next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
716 if (!next_dst_buf)
717 m2m_ctx->next_buf_last = true;
718 else
719 v4l2_m2m_last_buffer_done(m2m_ctx,
720 next_dst_buf);
721 }
722 } else {
723 v4l2_m2m_clear_state(m2m_ctx);
724 }
725 }
726 EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
727
v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_queue * q)728 static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
729 struct vb2_queue *q)
730 {
731 struct vb2_buffer *vb;
732 struct vb2_v4l2_buffer *vbuf;
733 unsigned int i;
734
735 if (WARN_ON(q->is_output))
736 return;
737 if (list_empty(&q->queued_list))
738 return;
739
740 vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
741 for (i = 0; i < vb->num_planes; i++)
742 vb2_set_plane_payload(vb, i, 0);
743
744 /*
745 * Since the buffer hasn't been queued to the ready queue,
746 * mark is active and owned before marking it LAST and DONE
747 */
748 vb->state = VB2_BUF_STATE_ACTIVE;
749 atomic_inc(&q->owned_by_drv_count);
750
751 vbuf = to_vb2_v4l2_buffer(vb);
752 vbuf->field = V4L2_FIELD_NONE;
753
754 v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
755 }
756
v4l2_m2m_qbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)757 int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
758 struct v4l2_buffer *buf)
759 {
760 struct video_device *vdev = video_devdata(file);
761 struct vb2_queue *vq;
762 int ret;
763
764 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
765 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
766 (buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
767 dprintk("%s: requests cannot be used with capture buffers\n",
768 __func__);
769 return -EPERM;
770 }
771
772 ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
773 if (ret)
774 return ret;
775
776 /* Adjust MMAP memory offsets for the CAPTURE queue */
777 v4l2_m2m_adjust_mem_offset(vq, buf);
778
779 /*
780 * If the capture queue is streaming, but streaming hasn't started
781 * on the device, but was asked to stop, mark the previously queued
782 * buffer as DONE with LAST flag since it won't be queued on the
783 * device.
784 */
785 if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
786 vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) &&
787 (v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
788 v4l2_m2m_force_last_buf_done(m2m_ctx, vq);
789 else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
790 v4l2_m2m_try_schedule(m2m_ctx);
791
792 return 0;
793 }
794 EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
795
v4l2_m2m_dqbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)796 int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
797 struct v4l2_buffer *buf)
798 {
799 struct vb2_queue *vq;
800 int ret;
801
802 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
803 ret = vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
804 if (ret)
805 return ret;
806
807 /* Adjust MMAP memory offsets for the CAPTURE queue */
808 v4l2_m2m_adjust_mem_offset(vq, buf);
809
810 return 0;
811 }
812 EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
813
v4l2_m2m_prepare_buf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_buffer * buf)814 int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
815 struct v4l2_buffer *buf)
816 {
817 struct video_device *vdev = video_devdata(file);
818 struct vb2_queue *vq;
819 int ret;
820
821 vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
822 ret = vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
823 if (ret)
824 return ret;
825
826 /* Adjust MMAP memory offsets for the CAPTURE queue */
827 v4l2_m2m_adjust_mem_offset(vq, buf);
828
829 return 0;
830 }
831 EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
832
v4l2_m2m_create_bufs(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_create_buffers * create)833 int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
834 struct v4l2_create_buffers *create)
835 {
836 struct vb2_queue *vq;
837
838 vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
839 return vb2_create_bufs(vq, create);
840 }
841 EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
842
v4l2_m2m_expbuf(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_exportbuffer * eb)843 int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
844 struct v4l2_exportbuffer *eb)
845 {
846 struct vb2_queue *vq;
847
848 vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
849 return vb2_expbuf(vq, eb);
850 }
851 EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
852
v4l2_m2m_streamon(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)853 int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
854 enum v4l2_buf_type type)
855 {
856 struct vb2_queue *vq;
857 int ret;
858
859 vq = v4l2_m2m_get_vq(m2m_ctx, type);
860 ret = vb2_streamon(vq, type);
861 if (!ret)
862 v4l2_m2m_try_schedule(m2m_ctx);
863
864 return ret;
865 }
866 EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
867
v4l2_m2m_streamoff(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,enum v4l2_buf_type type)868 int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
869 enum v4l2_buf_type type)
870 {
871 struct v4l2_m2m_dev *m2m_dev;
872 struct v4l2_m2m_queue_ctx *q_ctx;
873 unsigned long flags_job, flags;
874 int ret;
875
876 /* wait until the current context is dequeued from job_queue */
877 v4l2_m2m_cancel_job(m2m_ctx);
878
879 q_ctx = get_queue_ctx(m2m_ctx, type);
880 ret = vb2_streamoff(&q_ctx->q, type);
881 if (ret)
882 return ret;
883
884 m2m_dev = m2m_ctx->m2m_dev;
885 spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
886 /* We should not be scheduled anymore, since we're dropping a queue. */
887 if (m2m_ctx->job_flags & TRANS_QUEUED)
888 list_del(&m2m_ctx->queue);
889 m2m_ctx->job_flags = 0;
890
891 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
892 /* Drop queue, since streamoff returns device to the same state as after
893 * calling reqbufs. */
894 INIT_LIST_HEAD(&q_ctx->rdy_queue);
895 q_ctx->num_rdy = 0;
896 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
897
898 if (m2m_dev->curr_ctx == m2m_ctx) {
899 m2m_dev->curr_ctx = NULL;
900 wake_up(&m2m_ctx->finished);
901 }
902 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
903
904 return 0;
905 }
906 EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
907
v4l2_m2m_poll_for_data(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct poll_table_struct * wait)908 static __poll_t v4l2_m2m_poll_for_data(struct file *file,
909 struct v4l2_m2m_ctx *m2m_ctx,
910 struct poll_table_struct *wait)
911 {
912 struct vb2_queue *src_q, *dst_q;
913 __poll_t rc = 0;
914 unsigned long flags;
915
916 src_q = v4l2_m2m_get_src_vq(m2m_ctx);
917 dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
918
919 /*
920 * There has to be at least one buffer queued on each queued_list, which
921 * means either in driver already or waiting for driver to claim it
922 * and start processing.
923 */
924 if ((!src_q->streaming || src_q->error ||
925 list_empty(&src_q->queued_list)) &&
926 (!dst_q->streaming || dst_q->error ||
927 (list_empty(&dst_q->queued_list) && !dst_q->last_buffer_dequeued)))
928 return EPOLLERR;
929
930 spin_lock_irqsave(&src_q->done_lock, flags);
931 if (!list_empty(&src_q->done_list))
932 rc |= EPOLLOUT | EPOLLWRNORM;
933 spin_unlock_irqrestore(&src_q->done_lock, flags);
934
935 spin_lock_irqsave(&dst_q->done_lock, flags);
936 /*
937 * If the last buffer was dequeued from the capture queue, signal
938 * userspace. DQBUF(CAPTURE) will return -EPIPE.
939 */
940 if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued)
941 rc |= EPOLLIN | EPOLLRDNORM;
942 spin_unlock_irqrestore(&dst_q->done_lock, flags);
943
944 return rc;
945 }
946
v4l2_m2m_poll(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct poll_table_struct * wait)947 __poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
948 struct poll_table_struct *wait)
949 {
950 struct video_device *vfd = video_devdata(file);
951 struct vb2_queue *src_q = v4l2_m2m_get_src_vq(m2m_ctx);
952 struct vb2_queue *dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
953 __poll_t req_events = poll_requested_events(wait);
954 __poll_t rc = 0;
955
956 /*
957 * poll_wait() MUST be called on the first invocation on all the
958 * potential queues of interest, even if we are not interested in their
959 * events during this first call. Failure to do so will result in
960 * queue's events to be ignored because the poll_table won't be capable
961 * of adding new wait queues thereafter.
962 */
963 poll_wait(file, &src_q->done_wq, wait);
964 poll_wait(file, &dst_q->done_wq, wait);
965
966 if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
967 rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
968
969 if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
970 struct v4l2_fh *fh = file->private_data;
971
972 poll_wait(file, &fh->wait, wait);
973 if (v4l2_event_pending(fh))
974 rc |= EPOLLPRI;
975 }
976
977 return rc;
978 }
979 EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
980
v4l2_m2m_mmap(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct vm_area_struct * vma)981 int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
982 struct vm_area_struct *vma)
983 {
984 unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
985 struct vb2_queue *vq;
986
987 if (offset < DST_QUEUE_OFF_BASE) {
988 vq = v4l2_m2m_get_src_vq(m2m_ctx);
989 } else {
990 vq = v4l2_m2m_get_dst_vq(m2m_ctx);
991 vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
992 }
993
994 return vb2_mmap(vq, vma);
995 }
996 EXPORT_SYMBOL(v4l2_m2m_mmap);
997
998 #if defined(CONFIG_MEDIA_CONTROLLER)
v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev * m2m_dev)999 void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
1000 {
1001 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1002 media_devnode_remove(m2m_dev->intf_devnode);
1003
1004 media_entity_remove_links(m2m_dev->source);
1005 media_entity_remove_links(&m2m_dev->sink);
1006 media_entity_remove_links(&m2m_dev->proc);
1007 media_device_unregister_entity(m2m_dev->source);
1008 media_device_unregister_entity(&m2m_dev->sink);
1009 media_device_unregister_entity(&m2m_dev->proc);
1010 kfree(m2m_dev->source->name);
1011 kfree(m2m_dev->sink.name);
1012 kfree(m2m_dev->proc.name);
1013 }
1014 EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
1015
v4l2_m2m_register_entity(struct media_device * mdev,struct v4l2_m2m_dev * m2m_dev,enum v4l2_m2m_entity_type type,struct video_device * vdev,int function)1016 static int v4l2_m2m_register_entity(struct media_device *mdev,
1017 struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
1018 struct video_device *vdev, int function)
1019 {
1020 struct media_entity *entity;
1021 struct media_pad *pads;
1022 char *name;
1023 unsigned int len;
1024 int num_pads;
1025 int ret;
1026
1027 switch (type) {
1028 case MEM2MEM_ENT_TYPE_SOURCE:
1029 entity = m2m_dev->source;
1030 pads = &m2m_dev->source_pad;
1031 pads[0].flags = MEDIA_PAD_FL_SOURCE;
1032 num_pads = 1;
1033 break;
1034 case MEM2MEM_ENT_TYPE_SINK:
1035 entity = &m2m_dev->sink;
1036 pads = &m2m_dev->sink_pad;
1037 pads[0].flags = MEDIA_PAD_FL_SINK;
1038 num_pads = 1;
1039 break;
1040 case MEM2MEM_ENT_TYPE_PROC:
1041 entity = &m2m_dev->proc;
1042 pads = m2m_dev->proc_pads;
1043 pads[0].flags = MEDIA_PAD_FL_SINK;
1044 pads[1].flags = MEDIA_PAD_FL_SOURCE;
1045 num_pads = 2;
1046 break;
1047 default:
1048 return -EINVAL;
1049 }
1050
1051 entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
1052 if (type != MEM2MEM_ENT_TYPE_PROC) {
1053 entity->info.dev.major = VIDEO_MAJOR;
1054 entity->info.dev.minor = vdev->minor;
1055 }
1056 len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
1057 name = kmalloc(len, GFP_KERNEL);
1058 if (!name)
1059 return -ENOMEM;
1060 snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
1061 entity->name = name;
1062 entity->function = function;
1063
1064 ret = media_entity_pads_init(entity, num_pads, pads);
1065 if (ret)
1066 return ret;
1067 ret = media_device_register_entity(mdev, entity);
1068 if (ret)
1069 return ret;
1070
1071 return 0;
1072 }
1073
v4l2_m2m_register_media_controller(struct v4l2_m2m_dev * m2m_dev,struct video_device * vdev,int function)1074 int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
1075 struct video_device *vdev, int function)
1076 {
1077 struct media_device *mdev = vdev->v4l2_dev->mdev;
1078 struct media_link *link;
1079 int ret;
1080
1081 if (!mdev)
1082 return 0;
1083
1084 /* A memory-to-memory device consists in two
1085 * DMA engine and one video processing entities.
1086 * The DMA engine entities are linked to a V4L interface
1087 */
1088
1089 /* Create the three entities with their pads */
1090 m2m_dev->source = &vdev->entity;
1091 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1092 MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
1093 if (ret)
1094 return ret;
1095 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1096 MEM2MEM_ENT_TYPE_PROC, vdev, function);
1097 if (ret)
1098 goto err_rel_entity0;
1099 ret = v4l2_m2m_register_entity(mdev, m2m_dev,
1100 MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
1101 if (ret)
1102 goto err_rel_entity1;
1103
1104 /* Connect the three entities */
1105 ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0,
1106 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1107 if (ret)
1108 goto err_rel_entity2;
1109
1110 ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0,
1111 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1112 if (ret)
1113 goto err_rm_links0;
1114
1115 /* Create video interface */
1116 m2m_dev->intf_devnode = media_devnode_create(mdev,
1117 MEDIA_INTF_T_V4L_VIDEO, 0,
1118 VIDEO_MAJOR, vdev->minor);
1119 if (!m2m_dev->intf_devnode) {
1120 ret = -ENOMEM;
1121 goto err_rm_links1;
1122 }
1123
1124 /* Connect the two DMA engines to the interface */
1125 link = media_create_intf_link(m2m_dev->source,
1126 &m2m_dev->intf_devnode->intf,
1127 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1128 if (!link) {
1129 ret = -ENOMEM;
1130 goto err_rm_devnode;
1131 }
1132
1133 link = media_create_intf_link(&m2m_dev->sink,
1134 &m2m_dev->intf_devnode->intf,
1135 MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
1136 if (!link) {
1137 ret = -ENOMEM;
1138 goto err_rm_intf_link;
1139 }
1140 return 0;
1141
1142 err_rm_intf_link:
1143 media_remove_intf_links(&m2m_dev->intf_devnode->intf);
1144 err_rm_devnode:
1145 media_devnode_remove(m2m_dev->intf_devnode);
1146 err_rm_links1:
1147 media_entity_remove_links(&m2m_dev->sink);
1148 err_rm_links0:
1149 media_entity_remove_links(&m2m_dev->proc);
1150 media_entity_remove_links(m2m_dev->source);
1151 err_rel_entity2:
1152 media_device_unregister_entity(&m2m_dev->proc);
1153 kfree(m2m_dev->proc.name);
1154 err_rel_entity1:
1155 media_device_unregister_entity(&m2m_dev->sink);
1156 kfree(m2m_dev->sink.name);
1157 err_rel_entity0:
1158 media_device_unregister_entity(m2m_dev->source);
1159 kfree(m2m_dev->source->name);
1160 return ret;
1161 return 0;
1162 }
1163 EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
1164 #endif
1165
v4l2_m2m_init(const struct v4l2_m2m_ops * m2m_ops)1166 struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
1167 {
1168 struct v4l2_m2m_dev *m2m_dev;
1169
1170 if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
1171 return ERR_PTR(-EINVAL);
1172
1173 m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
1174 if (!m2m_dev)
1175 return ERR_PTR(-ENOMEM);
1176
1177 m2m_dev->curr_ctx = NULL;
1178 m2m_dev->m2m_ops = m2m_ops;
1179 INIT_LIST_HEAD(&m2m_dev->job_queue);
1180 spin_lock_init(&m2m_dev->job_spinlock);
1181 INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
1182
1183 return m2m_dev;
1184 }
1185 EXPORT_SYMBOL_GPL(v4l2_m2m_init);
1186
v4l2_m2m_release(struct v4l2_m2m_dev * m2m_dev)1187 void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
1188 {
1189 kfree(m2m_dev);
1190 }
1191 EXPORT_SYMBOL_GPL(v4l2_m2m_release);
1192
v4l2_m2m_ctx_init(struct v4l2_m2m_dev * m2m_dev,void * drv_priv,int (* queue_init)(void * priv,struct vb2_queue * src_vq,struct vb2_queue * dst_vq))1193 struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
1194 void *drv_priv,
1195 int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
1196 {
1197 struct v4l2_m2m_ctx *m2m_ctx;
1198 struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
1199 int ret;
1200
1201 m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
1202 if (!m2m_ctx)
1203 return ERR_PTR(-ENOMEM);
1204
1205 m2m_ctx->priv = drv_priv;
1206 m2m_ctx->m2m_dev = m2m_dev;
1207 init_waitqueue_head(&m2m_ctx->finished);
1208
1209 out_q_ctx = &m2m_ctx->out_q_ctx;
1210 cap_q_ctx = &m2m_ctx->cap_q_ctx;
1211
1212 INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
1213 INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
1214 spin_lock_init(&out_q_ctx->rdy_spinlock);
1215 spin_lock_init(&cap_q_ctx->rdy_spinlock);
1216
1217 INIT_LIST_HEAD(&m2m_ctx->queue);
1218
1219 ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
1220
1221 if (ret)
1222 goto err;
1223 /*
1224 * Both queues should use same the mutex to lock the m2m context.
1225 * This lock is used in some v4l2_m2m_* helpers.
1226 */
1227 if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
1228 ret = -EINVAL;
1229 goto err;
1230 }
1231 m2m_ctx->q_lock = out_q_ctx->q.lock;
1232
1233 return m2m_ctx;
1234 err:
1235 kfree(m2m_ctx);
1236 return ERR_PTR(ret);
1237 }
1238 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
1239
v4l2_m2m_ctx_release(struct v4l2_m2m_ctx * m2m_ctx)1240 void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
1241 {
1242 /* wait until the current context is dequeued from job_queue */
1243 v4l2_m2m_cancel_job(m2m_ctx);
1244
1245 vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
1246 vb2_queue_release(&m2m_ctx->out_q_ctx.q);
1247
1248 kfree(m2m_ctx);
1249 }
1250 EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
1251
v4l2_m2m_buf_queue(struct v4l2_m2m_ctx * m2m_ctx,struct vb2_v4l2_buffer * vbuf)1252 void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
1253 struct vb2_v4l2_buffer *vbuf)
1254 {
1255 struct v4l2_m2m_buffer *b = container_of(vbuf,
1256 struct v4l2_m2m_buffer, vb);
1257 struct v4l2_m2m_queue_ctx *q_ctx;
1258 unsigned long flags;
1259
1260 q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
1261 if (!q_ctx)
1262 return;
1263
1264 spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
1265 list_add_tail(&b->list, &q_ctx->rdy_queue);
1266 q_ctx->num_rdy++;
1267 spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
1268 }
1269 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
1270
v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer * out_vb,struct vb2_v4l2_buffer * cap_vb,bool copy_frame_flags)1271 void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
1272 struct vb2_v4l2_buffer *cap_vb,
1273 bool copy_frame_flags)
1274 {
1275 u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
1276
1277 if (copy_frame_flags)
1278 mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
1279 V4L2_BUF_FLAG_BFRAME;
1280
1281 cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
1282
1283 if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1284 cap_vb->timecode = out_vb->timecode;
1285 cap_vb->field = out_vb->field;
1286 cap_vb->flags &= ~mask;
1287 cap_vb->flags |= out_vb->flags & mask;
1288 cap_vb->vb2_buf.copied_timestamp = 1;
1289 }
1290 EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
1291
v4l2_m2m_request_queue(struct media_request * req)1292 void v4l2_m2m_request_queue(struct media_request *req)
1293 {
1294 struct media_request_object *obj, *obj_safe;
1295 struct v4l2_m2m_ctx *m2m_ctx = NULL;
1296
1297 /*
1298 * Queue all objects. Note that buffer objects are at the end of the
1299 * objects list, after all other object types. Once buffer objects
1300 * are queued, the driver might delete them immediately (if the driver
1301 * processes the buffer at once), so we have to use
1302 * list_for_each_entry_safe() to handle the case where the object we
1303 * queue is deleted.
1304 */
1305 list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
1306 struct v4l2_m2m_ctx *m2m_ctx_obj;
1307 struct vb2_buffer *vb;
1308
1309 if (!obj->ops->queue)
1310 continue;
1311
1312 if (vb2_request_object_is_buffer(obj)) {
1313 /* Sanity checks */
1314 vb = container_of(obj, struct vb2_buffer, req_obj);
1315 WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
1316 m2m_ctx_obj = container_of(vb->vb2_queue,
1317 struct v4l2_m2m_ctx,
1318 out_q_ctx.q);
1319 WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
1320 m2m_ctx = m2m_ctx_obj;
1321 }
1322
1323 /*
1324 * The buffer we queue here can in theory be immediately
1325 * unbound, hence the use of list_for_each_entry_safe()
1326 * above and why we call the queue op last.
1327 */
1328 obj->ops->queue(obj);
1329 }
1330
1331 WARN_ON(!m2m_ctx);
1332
1333 if (m2m_ctx)
1334 v4l2_m2m_try_schedule(m2m_ctx);
1335 }
1336 EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
1337
1338 /* Videobuf2 ioctl helpers */
1339
v4l2_m2m_ioctl_reqbufs(struct file * file,void * priv,struct v4l2_requestbuffers * rb)1340 int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
1341 struct v4l2_requestbuffers *rb)
1342 {
1343 struct v4l2_fh *fh = file->private_data;
1344
1345 return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
1346 }
1347 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
1348
v4l2_m2m_ioctl_create_bufs(struct file * file,void * priv,struct v4l2_create_buffers * create)1349 int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
1350 struct v4l2_create_buffers *create)
1351 {
1352 struct v4l2_fh *fh = file->private_data;
1353
1354 return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
1355 }
1356 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
1357
v4l2_m2m_ioctl_querybuf(struct file * file,void * priv,struct v4l2_buffer * buf)1358 int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
1359 struct v4l2_buffer *buf)
1360 {
1361 struct v4l2_fh *fh = file->private_data;
1362
1363 return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
1364 }
1365 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
1366
v4l2_m2m_ioctl_qbuf(struct file * file,void * priv,struct v4l2_buffer * buf)1367 int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
1368 struct v4l2_buffer *buf)
1369 {
1370 struct v4l2_fh *fh = file->private_data;
1371
1372 return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
1373 }
1374 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
1375
v4l2_m2m_ioctl_dqbuf(struct file * file,void * priv,struct v4l2_buffer * buf)1376 int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
1377 struct v4l2_buffer *buf)
1378 {
1379 struct v4l2_fh *fh = file->private_data;
1380
1381 return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
1382 }
1383 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
1384
v4l2_m2m_ioctl_prepare_buf(struct file * file,void * priv,struct v4l2_buffer * buf)1385 int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
1386 struct v4l2_buffer *buf)
1387 {
1388 struct v4l2_fh *fh = file->private_data;
1389
1390 return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
1391 }
1392 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
1393
v4l2_m2m_ioctl_expbuf(struct file * file,void * priv,struct v4l2_exportbuffer * eb)1394 int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
1395 struct v4l2_exportbuffer *eb)
1396 {
1397 struct v4l2_fh *fh = file->private_data;
1398
1399 return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
1400 }
1401 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
1402
v4l2_m2m_ioctl_streamon(struct file * file,void * priv,enum v4l2_buf_type type)1403 int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
1404 enum v4l2_buf_type type)
1405 {
1406 struct v4l2_fh *fh = file->private_data;
1407
1408 return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
1409 }
1410 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
1411
v4l2_m2m_ioctl_streamoff(struct file * file,void * priv,enum v4l2_buf_type type)1412 int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
1413 enum v4l2_buf_type type)
1414 {
1415 struct v4l2_fh *fh = file->private_data;
1416
1417 return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
1418 }
1419 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
1420
v4l2_m2m_ioctl_try_encoder_cmd(struct file * file,void * fh,struct v4l2_encoder_cmd * ec)1421 int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
1422 struct v4l2_encoder_cmd *ec)
1423 {
1424 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1425 return -EINVAL;
1426
1427 ec->flags = 0;
1428 return 0;
1429 }
1430 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
1431
v4l2_m2m_ioctl_try_decoder_cmd(struct file * file,void * fh,struct v4l2_decoder_cmd * dc)1432 int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
1433 struct v4l2_decoder_cmd *dc)
1434 {
1435 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1436 return -EINVAL;
1437
1438 dc->flags = 0;
1439
1440 if (dc->cmd == V4L2_DEC_CMD_STOP) {
1441 dc->stop.pts = 0;
1442 } else if (dc->cmd == V4L2_DEC_CMD_START) {
1443 dc->start.speed = 0;
1444 dc->start.format = V4L2_DEC_START_FMT_NONE;
1445 }
1446 return 0;
1447 }
1448 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
1449
1450 /*
1451 * Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
1452 * Should be called from the encoder driver encoder_cmd() callback
1453 */
v4l2_m2m_encoder_cmd(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_encoder_cmd * ec)1454 int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1455 struct v4l2_encoder_cmd *ec)
1456 {
1457 if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
1458 return -EINVAL;
1459
1460 if (ec->cmd == V4L2_ENC_CMD_STOP)
1461 return v4l2_update_last_buf_state(m2m_ctx);
1462
1463 if (m2m_ctx->is_draining)
1464 return -EBUSY;
1465
1466 if (m2m_ctx->has_stopped)
1467 m2m_ctx->has_stopped = false;
1468
1469 return 0;
1470 }
1471 EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
1472
1473 /*
1474 * Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
1475 * Should be called from the decoder driver decoder_cmd() callback
1476 */
v4l2_m2m_decoder_cmd(struct file * file,struct v4l2_m2m_ctx * m2m_ctx,struct v4l2_decoder_cmd * dc)1477 int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
1478 struct v4l2_decoder_cmd *dc)
1479 {
1480 if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
1481 return -EINVAL;
1482
1483 if (dc->cmd == V4L2_DEC_CMD_STOP)
1484 return v4l2_update_last_buf_state(m2m_ctx);
1485
1486 if (m2m_ctx->is_draining)
1487 return -EBUSY;
1488
1489 if (m2m_ctx->has_stopped)
1490 m2m_ctx->has_stopped = false;
1491
1492 return 0;
1493 }
1494 EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
1495
v4l2_m2m_ioctl_encoder_cmd(struct file * file,void * priv,struct v4l2_encoder_cmd * ec)1496 int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
1497 struct v4l2_encoder_cmd *ec)
1498 {
1499 struct v4l2_fh *fh = file->private_data;
1500
1501 return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
1502 }
1503 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
1504
v4l2_m2m_ioctl_decoder_cmd(struct file * file,void * priv,struct v4l2_decoder_cmd * dc)1505 int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
1506 struct v4l2_decoder_cmd *dc)
1507 {
1508 struct v4l2_fh *fh = file->private_data;
1509
1510 return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
1511 }
1512 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
1513
v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file * file,void * fh,struct v4l2_decoder_cmd * dc)1514 int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
1515 struct v4l2_decoder_cmd *dc)
1516 {
1517 if (dc->cmd != V4L2_DEC_CMD_FLUSH)
1518 return -EINVAL;
1519
1520 dc->flags = 0;
1521
1522 return 0;
1523 }
1524 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
1525
v4l2_m2m_ioctl_stateless_decoder_cmd(struct file * file,void * priv,struct v4l2_decoder_cmd * dc)1526 int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
1527 struct v4l2_decoder_cmd *dc)
1528 {
1529 struct v4l2_fh *fh = file->private_data;
1530 struct vb2_v4l2_buffer *out_vb, *cap_vb;
1531 struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
1532 unsigned long flags;
1533 int ret;
1534
1535 ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
1536 if (ret < 0)
1537 return ret;
1538
1539 spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
1540 out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx);
1541 cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx);
1542
1543 /*
1544 * If there is an out buffer pending, then clear any HOLD flag.
1545 *
1546 * By clearing this flag we ensure that when this output
1547 * buffer is processed any held capture buffer will be released.
1548 */
1549 if (out_vb) {
1550 out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
1551 } else if (cap_vb && cap_vb->is_held) {
1552 /*
1553 * If there were no output buffers, but there is a
1554 * capture buffer that is held, then release that
1555 * buffer.
1556 */
1557 cap_vb->is_held = false;
1558 v4l2_m2m_dst_buf_remove(fh->m2m_ctx);
1559 v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE);
1560 }
1561 spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
1562
1563 return 0;
1564 }
1565 EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
1566
1567 /*
1568 * v4l2_file_operations helpers. It is assumed here same lock is used
1569 * for the output and the capture buffer queue.
1570 */
1571
v4l2_m2m_fop_mmap(struct file * file,struct vm_area_struct * vma)1572 int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
1573 {
1574 struct v4l2_fh *fh = file->private_data;
1575
1576 return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
1577 }
1578 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
1579
v4l2_m2m_fop_poll(struct file * file,poll_table * wait)1580 __poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
1581 {
1582 struct v4l2_fh *fh = file->private_data;
1583 struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
1584 __poll_t ret;
1585
1586 if (m2m_ctx->q_lock)
1587 mutex_lock(m2m_ctx->q_lock);
1588
1589 ret = v4l2_m2m_poll(file, m2m_ctx, wait);
1590
1591 if (m2m_ctx->q_lock)
1592 mutex_unlock(m2m_ctx->q_lock);
1593
1594 return ret;
1595 }
1596 EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);
1597
1598