1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015 Broadcom
4 */
5
6 /**
7 * DOC: VC4 CRTC module
8 *
9 * In VC4, the Pixel Valve is what most closely corresponds to the
10 * DRM's concept of a CRTC. The PV generates video timings from the
11 * encoder's clock plus its configuration. It pulls scaled pixels from
12 * the HVS at that timing, and feeds it to the encoder.
13 *
14 * However, the DRM CRTC also collects the configuration of all the
15 * DRM planes attached to it. As a result, the CRTC is also
16 * responsible for writing the display list for the HVS channel that
17 * the CRTC will use.
18 *
19 * The 2835 has 3 different pixel valves. pv0 in the audio power
20 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI. pv2 in the
21 * image domain can feed either HDMI or the SDTV controller. The
22 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
23 * SDTV, etc.) according to which output type is chosen in the mux.
24 *
25 * For power management, the pixel valve's registers are all clocked
26 * by the AXI clock, while the timings and FIFOs make use of the
27 * output-specific clock. Since the encoders also directly consume
28 * the CPRMAN clocks, and know what timings they need, they are the
29 * ones that set the clock.
30 */
31
32 #include <linux/clk.h>
33 #include <linux/component.h>
34 #include <linux/of_device.h>
35 #include <linux/pm_runtime.h>
36
37 #include <drm/drm_atomic.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_atomic_uapi.h>
40 #include <drm/drm_fb_cma_helper.h>
41 #include <drm/drm_print.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_vblank.h>
44
45 #include "vc4_drv.h"
46 #include "vc4_hdmi.h"
47 #include "vc4_regs.h"
48
49 #define HVS_FIFO_LATENCY_PIX 6
50
51 #define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
52 #define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))
53
54 static const struct debugfs_reg32 crtc_regs[] = {
55 VC4_REG32(PV_CONTROL),
56 VC4_REG32(PV_V_CONTROL),
57 VC4_REG32(PV_VSYNCD_EVEN),
58 VC4_REG32(PV_HORZA),
59 VC4_REG32(PV_HORZB),
60 VC4_REG32(PV_VERTA),
61 VC4_REG32(PV_VERTB),
62 VC4_REG32(PV_VERTA_EVEN),
63 VC4_REG32(PV_VERTB_EVEN),
64 VC4_REG32(PV_INTEN),
65 VC4_REG32(PV_INTSTAT),
66 VC4_REG32(PV_STAT),
67 VC4_REG32(PV_HACT_ACT),
68 };
69
70 static unsigned int
vc4_crtc_get_cob_allocation(struct vc4_dev * vc4,unsigned int channel)71 vc4_crtc_get_cob_allocation(struct vc4_dev *vc4, unsigned int channel)
72 {
73 u32 dispbase = HVS_READ(SCALER_DISPBASEX(channel));
74 /* Top/base are supposed to be 4-pixel aligned, but the
75 * Raspberry Pi firmware fills the low bits (which are
76 * presumably ignored).
77 */
78 u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
79 u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;
80
81 return top - base + 4;
82 }
83
vc4_crtc_get_scanout_position(struct drm_crtc * crtc,bool in_vblank_irq,int * vpos,int * hpos,ktime_t * stime,ktime_t * etime,const struct drm_display_mode * mode)84 static bool vc4_crtc_get_scanout_position(struct drm_crtc *crtc,
85 bool in_vblank_irq,
86 int *vpos, int *hpos,
87 ktime_t *stime, ktime_t *etime,
88 const struct drm_display_mode *mode)
89 {
90 struct drm_device *dev = crtc->dev;
91 struct vc4_dev *vc4 = to_vc4_dev(dev);
92 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
93 struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
94 unsigned int cob_size;
95 u32 val;
96 int fifo_lines;
97 int vblank_lines;
98 bool ret = false;
99
100 /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
101
102 /* Get optional system timestamp before query. */
103 if (stime)
104 *stime = ktime_get();
105
106 /*
107 * Read vertical scanline which is currently composed for our
108 * pixelvalve by the HVS, and also the scaler status.
109 */
110 val = HVS_READ(SCALER_DISPSTATX(vc4_crtc_state->assigned_channel));
111
112 /* Get optional system timestamp after query. */
113 if (etime)
114 *etime = ktime_get();
115
116 /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
117
118 /* Vertical position of hvs composed scanline. */
119 *vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
120 *hpos = 0;
121
122 if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
123 *vpos /= 2;
124
125 /* Use hpos to correct for field offset in interlaced mode. */
126 if (vc4_hvs_get_fifo_frame_count(dev, vc4_crtc_state->assigned_channel) % 2)
127 *hpos += mode->crtc_htotal / 2;
128 }
129
130 cob_size = vc4_crtc_get_cob_allocation(vc4, vc4_crtc_state->assigned_channel);
131 /* This is the offset we need for translating hvs -> pv scanout pos. */
132 fifo_lines = cob_size / mode->crtc_hdisplay;
133
134 if (fifo_lines > 0)
135 ret = true;
136
137 /* HVS more than fifo_lines into frame for compositing? */
138 if (*vpos > fifo_lines) {
139 /*
140 * We are in active scanout and can get some meaningful results
141 * from HVS. The actual PV scanout can not trail behind more
142 * than fifo_lines as that is the fifo's capacity. Assume that
143 * in active scanout the HVS and PV work in lockstep wrt. HVS
144 * refilling the fifo and PV consuming from the fifo, ie.
145 * whenever the PV consumes and frees up a scanline in the
146 * fifo, the HVS will immediately refill it, therefore
147 * incrementing vpos. Therefore we choose HVS read position -
148 * fifo size in scanlines as a estimate of the real scanout
149 * position of the PV.
150 */
151 *vpos -= fifo_lines + 1;
152
153 return ret;
154 }
155
156 /*
157 * Less: This happens when we are in vblank and the HVS, after getting
158 * the VSTART restart signal from the PV, just started refilling its
159 * fifo with new lines from the top-most lines of the new framebuffers.
160 * The PV does not scan out in vblank, so does not remove lines from
161 * the fifo, so the fifo will be full quickly and the HVS has to pause.
162 * We can't get meaningful readings wrt. scanline position of the PV
163 * and need to make things up in a approximative but consistent way.
164 */
165 vblank_lines = mode->vtotal - mode->vdisplay;
166
167 if (in_vblank_irq) {
168 /*
169 * Assume the irq handler got called close to first
170 * line of vblank, so PV has about a full vblank
171 * scanlines to go, and as a base timestamp use the
172 * one taken at entry into vblank irq handler, so it
173 * is not affected by random delays due to lock
174 * contention on event_lock or vblank_time lock in
175 * the core.
176 */
177 *vpos = -vblank_lines;
178
179 if (stime)
180 *stime = vc4_crtc->t_vblank;
181 if (etime)
182 *etime = vc4_crtc->t_vblank;
183
184 /*
185 * If the HVS fifo is not yet full then we know for certain
186 * we are at the very beginning of vblank, as the hvs just
187 * started refilling, and the stime and etime timestamps
188 * truly correspond to start of vblank.
189 *
190 * Unfortunately there's no way to report this to upper levels
191 * and make it more useful.
192 */
193 } else {
194 /*
195 * No clue where we are inside vblank. Return a vpos of zero,
196 * which will cause calling code to just return the etime
197 * timestamp uncorrected. At least this is no worse than the
198 * standard fallback.
199 */
200 *vpos = 0;
201 }
202
203 return ret;
204 }
205
vc4_crtc_destroy(struct drm_crtc * crtc)206 void vc4_crtc_destroy(struct drm_crtc *crtc)
207 {
208 drm_crtc_cleanup(crtc);
209 }
210
vc4_get_fifo_full_level(struct vc4_crtc * vc4_crtc,u32 format)211 static u32 vc4_get_fifo_full_level(struct vc4_crtc *vc4_crtc, u32 format)
212 {
213 const struct vc4_crtc_data *crtc_data = vc4_crtc_to_vc4_crtc_data(vc4_crtc);
214 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
215 struct vc4_dev *vc4 = to_vc4_dev(vc4_crtc->base.dev);
216 u32 fifo_len_bytes = pv_data->fifo_depth;
217
218 /*
219 * Pixels are pulled from the HVS if the number of bytes is
220 * lower than the FIFO full level.
221 *
222 * The latency of the pixel fetch mechanism is 6 pixels, so we
223 * need to convert those 6 pixels in bytes, depending on the
224 * format, and then subtract that from the length of the FIFO
225 * to make sure we never end up in a situation where the FIFO
226 * is full.
227 */
228 switch (format) {
229 case PV_CONTROL_FORMAT_DSIV_16:
230 case PV_CONTROL_FORMAT_DSIC_16:
231 return fifo_len_bytes - 2 * HVS_FIFO_LATENCY_PIX;
232 case PV_CONTROL_FORMAT_DSIV_18:
233 return fifo_len_bytes - 14;
234 case PV_CONTROL_FORMAT_24:
235 case PV_CONTROL_FORMAT_DSIV_24:
236 default:
237 /*
238 * For some reason, the pixelvalve4 doesn't work with
239 * the usual formula and will only work with 32.
240 */
241 if (crtc_data->hvs_output == 5)
242 return 32;
243
244 /*
245 * It looks like in some situations, we will overflow
246 * the PixelValve FIFO (with the bit 10 of PV stat being
247 * set) and stall the HVS / PV, eventually resulting in
248 * a page flip timeout.
249 *
250 * Displaying the video overlay during a playback with
251 * Kodi on an RPi3 seems to be a great solution with a
252 * failure rate around 50%.
253 *
254 * Removing 1 from the FIFO full level however
255 * seems to completely remove that issue.
256 */
257 if (!vc4->hvs->hvs5)
258 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX - 1;
259
260 return fifo_len_bytes - 3 * HVS_FIFO_LATENCY_PIX;
261 }
262 }
263
vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc * vc4_crtc,u32 format)264 static u32 vc4_crtc_get_fifo_full_level_bits(struct vc4_crtc *vc4_crtc,
265 u32 format)
266 {
267 u32 level = vc4_get_fifo_full_level(vc4_crtc, format);
268 u32 ret = 0;
269
270 ret |= VC4_SET_FIELD((level >> 6),
271 PV5_CONTROL_FIFO_LEVEL_HIGH);
272
273 return ret | VC4_SET_FIELD(level & 0x3f,
274 PV_CONTROL_FIFO_LEVEL);
275 }
276
277 /*
278 * Returns the encoder attached to the CRTC.
279 *
280 * VC4 can only scan out to one encoder at a time, while the DRM core
281 * allows drivers to push pixels to more than one encoder from the
282 * same CRTC.
283 */
vc4_get_crtc_encoder(struct drm_crtc * crtc,struct drm_atomic_state * state,struct drm_connector_state * (* get_state)(struct drm_atomic_state * state,struct drm_connector * connector))284 static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc,
285 struct drm_atomic_state *state,
286 struct drm_connector_state *(*get_state)(struct drm_atomic_state *state,
287 struct drm_connector *connector))
288 {
289 struct drm_connector *connector;
290 struct drm_connector_list_iter conn_iter;
291
292 drm_connector_list_iter_begin(crtc->dev, &conn_iter);
293 drm_for_each_connector_iter(connector, &conn_iter) {
294 struct drm_connector_state *conn_state = get_state(state, connector);
295
296 if (!conn_state)
297 continue;
298
299 if (conn_state->crtc == crtc) {
300 drm_connector_list_iter_end(&conn_iter);
301 return connector->encoder;
302 }
303 }
304 drm_connector_list_iter_end(&conn_iter);
305
306 return NULL;
307 }
308
vc4_crtc_pixelvalve_reset(struct drm_crtc * crtc)309 static void vc4_crtc_pixelvalve_reset(struct drm_crtc *crtc)
310 {
311 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
312
313 /* The PV needs to be disabled before it can be flushed */
314 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) & ~PV_CONTROL_EN);
315 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_FIFO_CLR);
316 }
317
vc4_crtc_config_pv(struct drm_crtc * crtc,struct drm_atomic_state * state)318 static void vc4_crtc_config_pv(struct drm_crtc *crtc, struct drm_atomic_state *state)
319 {
320 struct drm_device *dev = crtc->dev;
321 struct vc4_dev *vc4 = to_vc4_dev(dev);
322 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
323 drm_atomic_get_new_connector_state);
324 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
325 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
326 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
327 struct drm_crtc_state *crtc_state = crtc->state;
328 struct drm_display_mode *mode = &crtc_state->adjusted_mode;
329 bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
330 u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
331 bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
332 vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
333 bool is_dsi1 = vc4_encoder->type == VC4_ENCODER_TYPE_DSI1;
334 u32 format = is_dsi1 ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
335 u8 ppc = pv_data->pixels_per_clock;
336 bool debug_dump_regs = false;
337
338 if (debug_dump_regs) {
339 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
340 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs before:\n",
341 drm_crtc_index(crtc));
342 drm_print_regset32(&p, &vc4_crtc->regset);
343 }
344
345 vc4_crtc_pixelvalve_reset(crtc);
346
347 CRTC_WRITE(PV_HORZA,
348 VC4_SET_FIELD((mode->htotal - mode->hsync_end) * pixel_rep / ppc,
349 PV_HORZA_HBP) |
350 VC4_SET_FIELD((mode->hsync_end - mode->hsync_start) * pixel_rep / ppc,
351 PV_HORZA_HSYNC));
352
353 CRTC_WRITE(PV_HORZB,
354 VC4_SET_FIELD((mode->hsync_start - mode->hdisplay) * pixel_rep / ppc,
355 PV_HORZB_HFP) |
356 VC4_SET_FIELD(mode->hdisplay * pixel_rep / ppc,
357 PV_HORZB_HACTIVE));
358
359 CRTC_WRITE(PV_VERTA,
360 VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end +
361 interlace,
362 PV_VERTA_VBP) |
363 VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
364 PV_VERTA_VSYNC));
365 CRTC_WRITE(PV_VERTB,
366 VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
367 PV_VERTB_VFP) |
368 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
369
370 if (interlace) {
371 CRTC_WRITE(PV_VERTA_EVEN,
372 VC4_SET_FIELD(mode->crtc_vtotal -
373 mode->crtc_vsync_end,
374 PV_VERTA_VBP) |
375 VC4_SET_FIELD(mode->crtc_vsync_end -
376 mode->crtc_vsync_start,
377 PV_VERTA_VSYNC));
378 CRTC_WRITE(PV_VERTB_EVEN,
379 VC4_SET_FIELD(mode->crtc_vsync_start -
380 mode->crtc_vdisplay,
381 PV_VERTB_VFP) |
382 VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));
383
384 /* We set up first field even mode for HDMI. VEC's
385 * NTSC mode would want first field odd instead, once
386 * we support it (to do so, set ODD_FIRST and put the
387 * delay in VSYNCD_EVEN instead).
388 */
389 CRTC_WRITE(PV_V_CONTROL,
390 PV_VCONTROL_CONTINUOUS |
391 (is_dsi ? PV_VCONTROL_DSI : 0) |
392 PV_VCONTROL_INTERLACE |
393 VC4_SET_FIELD(mode->htotal * pixel_rep / (2 * ppc),
394 PV_VCONTROL_ODD_DELAY));
395 CRTC_WRITE(PV_VSYNCD_EVEN, 0);
396 } else {
397 CRTC_WRITE(PV_V_CONTROL,
398 PV_VCONTROL_CONTINUOUS |
399 (is_dsi ? PV_VCONTROL_DSI : 0));
400 }
401
402 if (is_dsi)
403 CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);
404
405 if (vc4->hvs->hvs5)
406 CRTC_WRITE(PV_MUX_CFG,
407 VC4_SET_FIELD(PV_MUX_CFG_RGB_PIXEL_MUX_MODE_NO_SWAP,
408 PV_MUX_CFG_RGB_PIXEL_MUX_MODE));
409
410 CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR |
411 vc4_crtc_get_fifo_full_level_bits(vc4_crtc, format) |
412 VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
413 VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
414 PV_CONTROL_CLR_AT_START |
415 PV_CONTROL_TRIGGER_UNDERFLOW |
416 PV_CONTROL_WAIT_HSTART |
417 VC4_SET_FIELD(vc4_encoder->clock_select,
418 PV_CONTROL_CLK_SELECT));
419
420 if (debug_dump_regs) {
421 struct drm_printer p = drm_info_printer(&vc4_crtc->pdev->dev);
422 dev_info(&vc4_crtc->pdev->dev, "CRTC %d regs after:\n",
423 drm_crtc_index(crtc));
424 drm_print_regset32(&p, &vc4_crtc->regset);
425 }
426 }
427
require_hvs_enabled(struct drm_device * dev)428 static void require_hvs_enabled(struct drm_device *dev)
429 {
430 struct vc4_dev *vc4 = to_vc4_dev(dev);
431
432 WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
433 SCALER_DISPCTRL_ENABLE);
434 }
435
vc4_crtc_disable(struct drm_crtc * crtc,struct drm_encoder * encoder,struct drm_atomic_state * state,unsigned int channel)436 static int vc4_crtc_disable(struct drm_crtc *crtc,
437 struct drm_encoder *encoder,
438 struct drm_atomic_state *state,
439 unsigned int channel)
440 {
441 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
442 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
443 struct drm_device *dev = crtc->dev;
444 int ret;
445
446 CRTC_WRITE(PV_V_CONTROL,
447 CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
448 ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
449 WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");
450
451 /*
452 * This delay is needed to avoid to get a pixel stuck in an
453 * unflushable FIFO between the pixelvalve and the HDMI
454 * controllers on the BCM2711.
455 *
456 * Timing is fairly sensitive here, so mdelay is the safest
457 * approach.
458 *
459 * If it was to be reworked, the stuck pixel happens on a
460 * BCM2711 when changing mode with a good probability, so a
461 * script that changes mode on a regular basis should trigger
462 * the bug after less than 10 attempts. It manifests itself with
463 * every pixels being shifted by one to the right, and thus the
464 * last pixel of a line actually being displayed as the first
465 * pixel on the next line.
466 */
467 mdelay(20);
468
469 if (vc4_encoder && vc4_encoder->post_crtc_disable)
470 vc4_encoder->post_crtc_disable(encoder, state);
471
472 vc4_crtc_pixelvalve_reset(crtc);
473 vc4_hvs_stop_channel(dev, channel);
474
475 if (vc4_encoder && vc4_encoder->post_crtc_powerdown)
476 vc4_encoder->post_crtc_powerdown(encoder, state);
477
478 return 0;
479 }
480
vc4_crtc_get_encoder_by_type(struct drm_crtc * crtc,enum vc4_encoder_type type)481 static struct drm_encoder *vc4_crtc_get_encoder_by_type(struct drm_crtc *crtc,
482 enum vc4_encoder_type type)
483 {
484 struct drm_encoder *encoder;
485
486 drm_for_each_encoder(encoder, crtc->dev) {
487 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
488
489 if (vc4_encoder->type == type)
490 return encoder;
491 }
492
493 return NULL;
494 }
495
vc4_crtc_disable_at_boot(struct drm_crtc * crtc)496 int vc4_crtc_disable_at_boot(struct drm_crtc *crtc)
497 {
498 struct drm_device *drm = crtc->dev;
499 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
500 enum vc4_encoder_type encoder_type;
501 const struct vc4_pv_data *pv_data;
502 struct drm_encoder *encoder;
503 struct vc4_hdmi *vc4_hdmi;
504 unsigned encoder_sel;
505 int channel;
506 int ret;
507
508 if (!(of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
509 "brcm,bcm2711-pixelvalve2") ||
510 of_device_is_compatible(vc4_crtc->pdev->dev.of_node,
511 "brcm,bcm2711-pixelvalve4")))
512 return 0;
513
514 if (!(CRTC_READ(PV_CONTROL) & PV_CONTROL_EN))
515 return 0;
516
517 if (!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN))
518 return 0;
519
520 channel = vc4_hvs_get_fifo_from_output(drm, vc4_crtc->data->hvs_output);
521 if (channel < 0)
522 return 0;
523
524 encoder_sel = VC4_GET_FIELD(CRTC_READ(PV_CONTROL), PV_CONTROL_CLK_SELECT);
525 if (WARN_ON(encoder_sel != 0))
526 return 0;
527
528 pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
529 encoder_type = pv_data->encoder_types[encoder_sel];
530 encoder = vc4_crtc_get_encoder_by_type(crtc, encoder_type);
531 if (WARN_ON(!encoder))
532 return 0;
533
534 vc4_hdmi = encoder_to_vc4_hdmi(encoder);
535 ret = pm_runtime_resume_and_get(&vc4_hdmi->pdev->dev);
536 if (ret)
537 return ret;
538
539 ret = vc4_crtc_disable(crtc, encoder, NULL, channel);
540 if (ret)
541 return ret;
542
543 /*
544 * post_crtc_powerdown will have called pm_runtime_put, so we
545 * don't need it here otherwise we'll get the reference counting
546 * wrong.
547 */
548
549 return 0;
550 }
551
vc4_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)552 static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
553 struct drm_atomic_state *state)
554 {
555 struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
556 crtc);
557 struct vc4_crtc_state *old_vc4_state = to_vc4_crtc_state(old_state);
558 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
559 drm_atomic_get_old_connector_state);
560 struct drm_device *dev = crtc->dev;
561
562 require_hvs_enabled(dev);
563
564 /* Disable vblank irq handling before crtc is disabled. */
565 drm_crtc_vblank_off(crtc);
566
567 vc4_crtc_disable(crtc, encoder, state, old_vc4_state->assigned_channel);
568
569 /*
570 * Make sure we issue a vblank event after disabling the CRTC if
571 * someone was waiting it.
572 */
573 if (crtc->state->event) {
574 unsigned long flags;
575
576 spin_lock_irqsave(&dev->event_lock, flags);
577 drm_crtc_send_vblank_event(crtc, crtc->state->event);
578 crtc->state->event = NULL;
579 spin_unlock_irqrestore(&dev->event_lock, flags);
580 }
581 }
582
vc4_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)583 static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
584 struct drm_atomic_state *state)
585 {
586 struct drm_device *dev = crtc->dev;
587 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
588 struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc, state,
589 drm_atomic_get_new_connector_state);
590 struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
591
592 require_hvs_enabled(dev);
593
594 /* Enable vblank irq handling before crtc is started otherwise
595 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
596 */
597 drm_crtc_vblank_on(crtc);
598
599 vc4_hvs_atomic_enable(crtc, state);
600
601 if (vc4_encoder->pre_crtc_configure)
602 vc4_encoder->pre_crtc_configure(encoder, state);
603
604 vc4_crtc_config_pv(crtc, state);
605
606 CRTC_WRITE(PV_CONTROL, CRTC_READ(PV_CONTROL) | PV_CONTROL_EN);
607
608 if (vc4_encoder->pre_crtc_enable)
609 vc4_encoder->pre_crtc_enable(encoder, state);
610
611 /* When feeding the transposer block the pixelvalve is unneeded and
612 * should not be enabled.
613 */
614 CRTC_WRITE(PV_V_CONTROL,
615 CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
616
617 if (vc4_encoder->post_crtc_enable)
618 vc4_encoder->post_crtc_enable(encoder, state);
619 }
620
vc4_crtc_mode_valid(struct drm_crtc * crtc,const struct drm_display_mode * mode)621 static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
622 const struct drm_display_mode *mode)
623 {
624 /* Do not allow doublescan modes from user space */
625 if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
626 DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
627 crtc->base.id);
628 return MODE_NO_DBLESCAN;
629 }
630
631 return MODE_OK;
632 }
633
vc4_crtc_get_margins(struct drm_crtc_state * state,unsigned int * left,unsigned int * right,unsigned int * top,unsigned int * bottom)634 void vc4_crtc_get_margins(struct drm_crtc_state *state,
635 unsigned int *left, unsigned int *right,
636 unsigned int *top, unsigned int *bottom)
637 {
638 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
639 struct drm_connector_state *conn_state;
640 struct drm_connector *conn;
641 int i;
642
643 *left = vc4_state->margins.left;
644 *right = vc4_state->margins.right;
645 *top = vc4_state->margins.top;
646 *bottom = vc4_state->margins.bottom;
647
648 /* We have to interate over all new connector states because
649 * vc4_crtc_get_margins() might be called before
650 * vc4_crtc_atomic_check() which means margins info in vc4_crtc_state
651 * might be outdated.
652 */
653 for_each_new_connector_in_state(state->state, conn, conn_state, i) {
654 if (conn_state->crtc != state->crtc)
655 continue;
656
657 *left = conn_state->tv.margins.left;
658 *right = conn_state->tv.margins.right;
659 *top = conn_state->tv.margins.top;
660 *bottom = conn_state->tv.margins.bottom;
661 break;
662 }
663 }
664
vc4_crtc_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)665 static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
666 struct drm_atomic_state *state)
667 {
668 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
669 crtc);
670 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
671 struct drm_connector *conn;
672 struct drm_connector_state *conn_state;
673 int ret, i;
674
675 ret = vc4_hvs_atomic_check(crtc, state);
676 if (ret)
677 return ret;
678
679 for_each_new_connector_in_state(state, conn, conn_state,
680 i) {
681 if (conn_state->crtc != crtc)
682 continue;
683
684 vc4_state->margins.left = conn_state->tv.margins.left;
685 vc4_state->margins.right = conn_state->tv.margins.right;
686 vc4_state->margins.top = conn_state->tv.margins.top;
687 vc4_state->margins.bottom = conn_state->tv.margins.bottom;
688 break;
689 }
690
691 return 0;
692 }
693
vc4_enable_vblank(struct drm_crtc * crtc)694 static int vc4_enable_vblank(struct drm_crtc *crtc)
695 {
696 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
697
698 CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);
699
700 return 0;
701 }
702
vc4_disable_vblank(struct drm_crtc * crtc)703 static void vc4_disable_vblank(struct drm_crtc *crtc)
704 {
705 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
706
707 CRTC_WRITE(PV_INTEN, 0);
708 }
709
vc4_crtc_handle_page_flip(struct vc4_crtc * vc4_crtc)710 static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
711 {
712 struct drm_crtc *crtc = &vc4_crtc->base;
713 struct drm_device *dev = crtc->dev;
714 struct vc4_dev *vc4 = to_vc4_dev(dev);
715 u32 chan = vc4_crtc->current_hvs_channel;
716 unsigned long flags;
717
718 spin_lock_irqsave(&dev->event_lock, flags);
719 spin_lock(&vc4_crtc->irq_lock);
720 if (vc4_crtc->event &&
721 (vc4_crtc->current_dlist == HVS_READ(SCALER_DISPLACTX(chan)) ||
722 vc4_crtc->feeds_txp)) {
723 drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
724 vc4_crtc->event = NULL;
725 drm_crtc_vblank_put(crtc);
726
727 /* Wait for the page flip to unmask the underrun to ensure that
728 * the display list was updated by the hardware. Before that
729 * happens, the HVS will be using the previous display list with
730 * the CRTC and encoder already reconfigured, leading to
731 * underruns. This can be seen when reconfiguring the CRTC.
732 */
733 vc4_hvs_unmask_underrun(dev, chan);
734 }
735 spin_unlock(&vc4_crtc->irq_lock);
736 spin_unlock_irqrestore(&dev->event_lock, flags);
737 }
738
vc4_crtc_handle_vblank(struct vc4_crtc * crtc)739 void vc4_crtc_handle_vblank(struct vc4_crtc *crtc)
740 {
741 crtc->t_vblank = ktime_get();
742 drm_crtc_handle_vblank(&crtc->base);
743 vc4_crtc_handle_page_flip(crtc);
744 }
745
vc4_crtc_irq_handler(int irq,void * data)746 static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
747 {
748 struct vc4_crtc *vc4_crtc = data;
749 u32 stat = CRTC_READ(PV_INTSTAT);
750 irqreturn_t ret = IRQ_NONE;
751
752 if (stat & PV_INT_VFP_START) {
753 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
754 vc4_crtc_handle_vblank(vc4_crtc);
755 ret = IRQ_HANDLED;
756 }
757
758 return ret;
759 }
760
761 struct vc4_async_flip_state {
762 struct drm_crtc *crtc;
763 struct drm_framebuffer *fb;
764 struct drm_framebuffer *old_fb;
765 struct drm_pending_vblank_event *event;
766
767 struct vc4_seqno_cb cb;
768 };
769
770 /* Called when the V3D execution for the BO being flipped to is done, so that
771 * we can actually update the plane's address to point to it.
772 */
773 static void
vc4_async_page_flip_complete(struct vc4_seqno_cb * cb)774 vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
775 {
776 struct vc4_async_flip_state *flip_state =
777 container_of(cb, struct vc4_async_flip_state, cb);
778 struct drm_crtc *crtc = flip_state->crtc;
779 struct drm_device *dev = crtc->dev;
780 struct drm_plane *plane = crtc->primary;
781
782 vc4_plane_async_set_fb(plane, flip_state->fb);
783 if (flip_state->event) {
784 unsigned long flags;
785
786 spin_lock_irqsave(&dev->event_lock, flags);
787 drm_crtc_send_vblank_event(crtc, flip_state->event);
788 spin_unlock_irqrestore(&dev->event_lock, flags);
789 }
790
791 drm_crtc_vblank_put(crtc);
792 drm_framebuffer_put(flip_state->fb);
793
794 /* Decrement the BO usecnt in order to keep the inc/dec calls balanced
795 * when the planes are updated through the async update path.
796 * FIXME: we should move to generic async-page-flip when it's
797 * available, so that we can get rid of this hand-made cleanup_fb()
798 * logic.
799 */
800 if (flip_state->old_fb) {
801 struct drm_gem_cma_object *cma_bo;
802 struct vc4_bo *bo;
803
804 cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
805 bo = to_vc4_bo(&cma_bo->base);
806 vc4_bo_dec_usecnt(bo);
807 drm_framebuffer_put(flip_state->old_fb);
808 }
809
810 kfree(flip_state);
811 }
812
813 /* Implements async (non-vblank-synced) page flips.
814 *
815 * The page flip ioctl needs to return immediately, so we grab the
816 * modeset semaphore on the pipe, and queue the address update for
817 * when V3D is done with the BO being flipped to.
818 */
vc4_async_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags)819 static int vc4_async_page_flip(struct drm_crtc *crtc,
820 struct drm_framebuffer *fb,
821 struct drm_pending_vblank_event *event,
822 uint32_t flags)
823 {
824 struct drm_device *dev = crtc->dev;
825 struct drm_plane *plane = crtc->primary;
826 int ret = 0;
827 struct vc4_async_flip_state *flip_state;
828 struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
829 struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);
830
831 /* Increment the BO usecnt here, so that we never end up with an
832 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
833 * plane is later updated through the non-async path.
834 * FIXME: we should move to generic async-page-flip when it's
835 * available, so that we can get rid of this hand-made prepare_fb()
836 * logic.
837 */
838 ret = vc4_bo_inc_usecnt(bo);
839 if (ret)
840 return ret;
841
842 flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
843 if (!flip_state) {
844 vc4_bo_dec_usecnt(bo);
845 return -ENOMEM;
846 }
847
848 drm_framebuffer_get(fb);
849 flip_state->fb = fb;
850 flip_state->crtc = crtc;
851 flip_state->event = event;
852
853 /* Save the current FB before it's replaced by the new one in
854 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
855 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
856 * it consistent.
857 * FIXME: we should move to generic async-page-flip when it's
858 * available, so that we can get rid of this hand-made cleanup_fb()
859 * logic.
860 */
861 flip_state->old_fb = plane->state->fb;
862 if (flip_state->old_fb)
863 drm_framebuffer_get(flip_state->old_fb);
864
865 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
866
867 /* Immediately update the plane's legacy fb pointer, so that later
868 * modeset prep sees the state that will be present when the semaphore
869 * is released.
870 */
871 drm_atomic_set_fb_for_plane(plane->state, fb);
872
873 vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
874 vc4_async_page_flip_complete);
875
876 /* Driver takes ownership of state on successful async commit. */
877 return 0;
878 }
879
vc4_page_flip(struct drm_crtc * crtc,struct drm_framebuffer * fb,struct drm_pending_vblank_event * event,uint32_t flags,struct drm_modeset_acquire_ctx * ctx)880 int vc4_page_flip(struct drm_crtc *crtc,
881 struct drm_framebuffer *fb,
882 struct drm_pending_vblank_event *event,
883 uint32_t flags,
884 struct drm_modeset_acquire_ctx *ctx)
885 {
886 if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
887 return vc4_async_page_flip(crtc, fb, event, flags);
888 else
889 return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
890 }
891
vc4_crtc_duplicate_state(struct drm_crtc * crtc)892 struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
893 {
894 struct vc4_crtc_state *vc4_state, *old_vc4_state;
895
896 vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
897 if (!vc4_state)
898 return NULL;
899
900 old_vc4_state = to_vc4_crtc_state(crtc->state);
901 vc4_state->margins = old_vc4_state->margins;
902 vc4_state->assigned_channel = old_vc4_state->assigned_channel;
903
904 __drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
905 return &vc4_state->base;
906 }
907
vc4_crtc_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)908 void vc4_crtc_destroy_state(struct drm_crtc *crtc,
909 struct drm_crtc_state *state)
910 {
911 struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
912 struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
913
914 if (drm_mm_node_allocated(&vc4_state->mm)) {
915 unsigned long flags;
916
917 spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
918 drm_mm_remove_node(&vc4_state->mm);
919 spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
920
921 }
922
923 drm_atomic_helper_crtc_destroy_state(crtc, state);
924 }
925
vc4_crtc_reset(struct drm_crtc * crtc)926 void vc4_crtc_reset(struct drm_crtc *crtc)
927 {
928 struct vc4_crtc_state *vc4_crtc_state;
929
930 if (crtc->state)
931 vc4_crtc_destroy_state(crtc, crtc->state);
932
933 vc4_crtc_state = kzalloc(sizeof(*vc4_crtc_state), GFP_KERNEL);
934 if (!vc4_crtc_state) {
935 crtc->state = NULL;
936 return;
937 }
938
939 vc4_crtc_state->assigned_channel = VC4_HVS_CHANNEL_DISABLED;
940 __drm_atomic_helper_crtc_reset(crtc, &vc4_crtc_state->base);
941 }
942
943 static const struct drm_crtc_funcs vc4_crtc_funcs = {
944 .set_config = drm_atomic_helper_set_config,
945 .destroy = vc4_crtc_destroy,
946 .page_flip = vc4_page_flip,
947 .set_property = NULL,
948 .cursor_set = NULL, /* handled by drm_mode_cursor_universal */
949 .cursor_move = NULL, /* handled by drm_mode_cursor_universal */
950 .reset = vc4_crtc_reset,
951 .atomic_duplicate_state = vc4_crtc_duplicate_state,
952 .atomic_destroy_state = vc4_crtc_destroy_state,
953 .enable_vblank = vc4_enable_vblank,
954 .disable_vblank = vc4_disable_vblank,
955 .get_vblank_timestamp = drm_crtc_vblank_helper_get_vblank_timestamp,
956 };
957
958 static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
959 .mode_valid = vc4_crtc_mode_valid,
960 .atomic_check = vc4_crtc_atomic_check,
961 .atomic_begin = vc4_hvs_atomic_begin,
962 .atomic_flush = vc4_hvs_atomic_flush,
963 .atomic_enable = vc4_crtc_atomic_enable,
964 .atomic_disable = vc4_crtc_atomic_disable,
965 .get_scanout_position = vc4_crtc_get_scanout_position,
966 };
967
968 static const struct vc4_pv_data bcm2835_pv0_data = {
969 .base = {
970 .hvs_available_channels = BIT(0),
971 .hvs_output = 0,
972 },
973 .debugfs_name = "crtc0_regs",
974 .fifo_depth = 64,
975 .pixels_per_clock = 1,
976 .encoder_types = {
977 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
978 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
979 },
980 };
981
982 static const struct vc4_pv_data bcm2835_pv1_data = {
983 .base = {
984 .hvs_available_channels = BIT(2),
985 .hvs_output = 2,
986 },
987 .debugfs_name = "crtc1_regs",
988 .fifo_depth = 64,
989 .pixels_per_clock = 1,
990 .encoder_types = {
991 [PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
992 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
993 },
994 };
995
996 static const struct vc4_pv_data bcm2835_pv2_data = {
997 .base = {
998 .hvs_available_channels = BIT(1),
999 .hvs_output = 1,
1000 },
1001 .debugfs_name = "crtc2_regs",
1002 .fifo_depth = 64,
1003 .pixels_per_clock = 1,
1004 .encoder_types = {
1005 [PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI0,
1006 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1007 },
1008 };
1009
1010 static const struct vc4_pv_data bcm2711_pv0_data = {
1011 .base = {
1012 .hvs_available_channels = BIT(0),
1013 .hvs_output = 0,
1014 },
1015 .debugfs_name = "crtc0_regs",
1016 .fifo_depth = 64,
1017 .pixels_per_clock = 1,
1018 .encoder_types = {
1019 [0] = VC4_ENCODER_TYPE_DSI0,
1020 [1] = VC4_ENCODER_TYPE_DPI,
1021 },
1022 };
1023
1024 static const struct vc4_pv_data bcm2711_pv1_data = {
1025 .base = {
1026 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1027 .hvs_output = 3,
1028 },
1029 .debugfs_name = "crtc1_regs",
1030 .fifo_depth = 64,
1031 .pixels_per_clock = 1,
1032 .encoder_types = {
1033 [0] = VC4_ENCODER_TYPE_DSI1,
1034 [1] = VC4_ENCODER_TYPE_SMI,
1035 },
1036 };
1037
1038 static const struct vc4_pv_data bcm2711_pv2_data = {
1039 .base = {
1040 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1041 .hvs_output = 4,
1042 },
1043 .debugfs_name = "crtc2_regs",
1044 .fifo_depth = 256,
1045 .pixels_per_clock = 2,
1046 .encoder_types = {
1047 [0] = VC4_ENCODER_TYPE_HDMI0,
1048 },
1049 };
1050
1051 static const struct vc4_pv_data bcm2711_pv3_data = {
1052 .base = {
1053 .hvs_available_channels = BIT(1),
1054 .hvs_output = 1,
1055 },
1056 .debugfs_name = "crtc3_regs",
1057 .fifo_depth = 64,
1058 .pixels_per_clock = 1,
1059 .encoder_types = {
1060 [PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
1061 },
1062 };
1063
1064 static const struct vc4_pv_data bcm2711_pv4_data = {
1065 .base = {
1066 .hvs_available_channels = BIT(0) | BIT(1) | BIT(2),
1067 .hvs_output = 5,
1068 },
1069 .debugfs_name = "crtc4_regs",
1070 .fifo_depth = 64,
1071 .pixels_per_clock = 2,
1072 .encoder_types = {
1073 [0] = VC4_ENCODER_TYPE_HDMI1,
1074 },
1075 };
1076
1077 static const struct of_device_id vc4_crtc_dt_match[] = {
1078 { .compatible = "brcm,bcm2835-pixelvalve0", .data = &bcm2835_pv0_data },
1079 { .compatible = "brcm,bcm2835-pixelvalve1", .data = &bcm2835_pv1_data },
1080 { .compatible = "brcm,bcm2835-pixelvalve2", .data = &bcm2835_pv2_data },
1081 { .compatible = "brcm,bcm2711-pixelvalve0", .data = &bcm2711_pv0_data },
1082 { .compatible = "brcm,bcm2711-pixelvalve1", .data = &bcm2711_pv1_data },
1083 { .compatible = "brcm,bcm2711-pixelvalve2", .data = &bcm2711_pv2_data },
1084 { .compatible = "brcm,bcm2711-pixelvalve3", .data = &bcm2711_pv3_data },
1085 { .compatible = "brcm,bcm2711-pixelvalve4", .data = &bcm2711_pv4_data },
1086 {}
1087 };
1088
vc4_set_crtc_possible_masks(struct drm_device * drm,struct drm_crtc * crtc)1089 static void vc4_set_crtc_possible_masks(struct drm_device *drm,
1090 struct drm_crtc *crtc)
1091 {
1092 struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
1093 const struct vc4_pv_data *pv_data = vc4_crtc_to_vc4_pv_data(vc4_crtc);
1094 const enum vc4_encoder_type *encoder_types = pv_data->encoder_types;
1095 struct drm_encoder *encoder;
1096
1097 drm_for_each_encoder(encoder, drm) {
1098 struct vc4_encoder *vc4_encoder;
1099 int i;
1100
1101 if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
1102 continue;
1103
1104 vc4_encoder = to_vc4_encoder(encoder);
1105 for (i = 0; i < ARRAY_SIZE(pv_data->encoder_types); i++) {
1106 if (vc4_encoder->type == encoder_types[i]) {
1107 vc4_encoder->clock_select = i;
1108 encoder->possible_crtcs |= drm_crtc_mask(crtc);
1109 break;
1110 }
1111 }
1112 }
1113 }
1114
vc4_crtc_init(struct drm_device * drm,struct vc4_crtc * vc4_crtc,const struct drm_crtc_funcs * crtc_funcs,const struct drm_crtc_helper_funcs * crtc_helper_funcs)1115 int vc4_crtc_init(struct drm_device *drm, struct vc4_crtc *vc4_crtc,
1116 const struct drm_crtc_funcs *crtc_funcs,
1117 const struct drm_crtc_helper_funcs *crtc_helper_funcs)
1118 {
1119 struct vc4_dev *vc4 = to_vc4_dev(drm);
1120 struct drm_crtc *crtc = &vc4_crtc->base;
1121 struct drm_plane *primary_plane;
1122 unsigned int i;
1123
1124 /* For now, we create just the primary and the legacy cursor
1125 * planes. We should be able to stack more planes on easily,
1126 * but to do that we would need to compute the bandwidth
1127 * requirement of the plane configuration, and reject ones
1128 * that will take too much.
1129 */
1130 primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
1131 if (IS_ERR(primary_plane)) {
1132 dev_err(drm->dev, "failed to construct primary plane\n");
1133 return PTR_ERR(primary_plane);
1134 }
1135
1136 spin_lock_init(&vc4_crtc->irq_lock);
1137 drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
1138 crtc_funcs, NULL);
1139 drm_crtc_helper_add(crtc, crtc_helper_funcs);
1140
1141 if (!vc4->hvs->hvs5) {
1142 drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
1143
1144 drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);
1145
1146 /* We support CTM, but only for one CRTC at a time. It's therefore
1147 * implemented as private driver state in vc4_kms, not here.
1148 */
1149 drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);
1150 }
1151
1152 for (i = 0; i < crtc->gamma_size; i++) {
1153 vc4_crtc->lut_r[i] = i;
1154 vc4_crtc->lut_g[i] = i;
1155 vc4_crtc->lut_b[i] = i;
1156 }
1157
1158 return 0;
1159 }
1160
vc4_crtc_bind(struct device * dev,struct device * master,void * data)1161 static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
1162 {
1163 struct platform_device *pdev = to_platform_device(dev);
1164 struct drm_device *drm = dev_get_drvdata(master);
1165 const struct vc4_pv_data *pv_data;
1166 struct vc4_crtc *vc4_crtc;
1167 struct drm_crtc *crtc;
1168 struct drm_plane *destroy_plane, *temp;
1169 int ret;
1170
1171 vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
1172 if (!vc4_crtc)
1173 return -ENOMEM;
1174 crtc = &vc4_crtc->base;
1175
1176 pv_data = of_device_get_match_data(dev);
1177 if (!pv_data)
1178 return -ENODEV;
1179 vc4_crtc->data = &pv_data->base;
1180 vc4_crtc->pdev = pdev;
1181
1182 vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
1183 if (IS_ERR(vc4_crtc->regs))
1184 return PTR_ERR(vc4_crtc->regs);
1185
1186 vc4_crtc->regset.base = vc4_crtc->regs;
1187 vc4_crtc->regset.regs = crtc_regs;
1188 vc4_crtc->regset.nregs = ARRAY_SIZE(crtc_regs);
1189
1190 ret = vc4_crtc_init(drm, vc4_crtc,
1191 &vc4_crtc_funcs, &vc4_crtc_helper_funcs);
1192 if (ret)
1193 return ret;
1194 vc4_set_crtc_possible_masks(drm, crtc);
1195
1196 CRTC_WRITE(PV_INTEN, 0);
1197 CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
1198 ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
1199 vc4_crtc_irq_handler,
1200 IRQF_SHARED,
1201 "vc4 crtc", vc4_crtc);
1202 if (ret)
1203 goto err_destroy_planes;
1204
1205 platform_set_drvdata(pdev, vc4_crtc);
1206
1207 vc4_debugfs_add_regset32(drm, pv_data->debugfs_name,
1208 &vc4_crtc->regset);
1209
1210 return 0;
1211
1212 err_destroy_planes:
1213 list_for_each_entry_safe(destroy_plane, temp,
1214 &drm->mode_config.plane_list, head) {
1215 if (destroy_plane->possible_crtcs == drm_crtc_mask(crtc))
1216 destroy_plane->funcs->destroy(destroy_plane);
1217 }
1218
1219 return ret;
1220 }
1221
vc4_crtc_unbind(struct device * dev,struct device * master,void * data)1222 static void vc4_crtc_unbind(struct device *dev, struct device *master,
1223 void *data)
1224 {
1225 struct platform_device *pdev = to_platform_device(dev);
1226 struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);
1227
1228 vc4_crtc_destroy(&vc4_crtc->base);
1229
1230 CRTC_WRITE(PV_INTEN, 0);
1231
1232 platform_set_drvdata(pdev, NULL);
1233 }
1234
1235 static const struct component_ops vc4_crtc_ops = {
1236 .bind = vc4_crtc_bind,
1237 .unbind = vc4_crtc_unbind,
1238 };
1239
vc4_crtc_dev_probe(struct platform_device * pdev)1240 static int vc4_crtc_dev_probe(struct platform_device *pdev)
1241 {
1242 return component_add(&pdev->dev, &vc4_crtc_ops);
1243 }
1244
vc4_crtc_dev_remove(struct platform_device * pdev)1245 static int vc4_crtc_dev_remove(struct platform_device *pdev)
1246 {
1247 component_del(&pdev->dev, &vc4_crtc_ops);
1248 return 0;
1249 }
1250
1251 struct platform_driver vc4_crtc_driver = {
1252 .probe = vc4_crtc_dev_probe,
1253 .remove = vc4_crtc_dev_remove,
1254 .driver = {
1255 .name = "vc4_crtc",
1256 .of_match_table = vc4_crtc_dt_match,
1257 },
1258 };
1259