• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5 
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21 
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26 
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_vblank.h>
29 
30 #include "vc4_drv.h"
31 #include "vc4_regs.h"
32 
33 static const struct debugfs_reg32 hvs_regs[] = {
34 	VC4_REG32(SCALER_DISPCTRL),
35 	VC4_REG32(SCALER_DISPSTAT),
36 	VC4_REG32(SCALER_DISPID),
37 	VC4_REG32(SCALER_DISPECTRL),
38 	VC4_REG32(SCALER_DISPPROF),
39 	VC4_REG32(SCALER_DISPDITHER),
40 	VC4_REG32(SCALER_DISPEOLN),
41 	VC4_REG32(SCALER_DISPLIST0),
42 	VC4_REG32(SCALER_DISPLIST1),
43 	VC4_REG32(SCALER_DISPLIST2),
44 	VC4_REG32(SCALER_DISPLSTAT),
45 	VC4_REG32(SCALER_DISPLACT0),
46 	VC4_REG32(SCALER_DISPLACT1),
47 	VC4_REG32(SCALER_DISPLACT2),
48 	VC4_REG32(SCALER_DISPCTRL0),
49 	VC4_REG32(SCALER_DISPBKGND0),
50 	VC4_REG32(SCALER_DISPSTAT0),
51 	VC4_REG32(SCALER_DISPBASE0),
52 	VC4_REG32(SCALER_DISPCTRL1),
53 	VC4_REG32(SCALER_DISPBKGND1),
54 	VC4_REG32(SCALER_DISPSTAT1),
55 	VC4_REG32(SCALER_DISPBASE1),
56 	VC4_REG32(SCALER_DISPCTRL2),
57 	VC4_REG32(SCALER_DISPBKGND2),
58 	VC4_REG32(SCALER_DISPSTAT2),
59 	VC4_REG32(SCALER_DISPBASE2),
60 	VC4_REG32(SCALER_DISPALPHA2),
61 	VC4_REG32(SCALER_OLEDOFFS),
62 	VC4_REG32(SCALER_OLEDCOEF0),
63 	VC4_REG32(SCALER_OLEDCOEF1),
64 	VC4_REG32(SCALER_OLEDCOEF2),
65 };
66 
vc4_hvs_dump_state(struct drm_device * dev)67 void vc4_hvs_dump_state(struct drm_device *dev)
68 {
69 	struct vc4_dev *vc4 = to_vc4_dev(dev);
70 	struct drm_printer p = drm_info_printer(&vc4->hvs->pdev->dev);
71 	int i;
72 
73 	drm_print_regset32(&p, &vc4->hvs->regset);
74 
75 	DRM_INFO("HVS ctx:\n");
76 	for (i = 0; i < 64; i += 4) {
77 		DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
78 			 i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
79 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 0),
80 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 1),
81 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 2),
82 			 readl((u32 __iomem *)vc4->hvs->dlist + i + 3));
83 	}
84 }
85 
vc4_hvs_debugfs_underrun(struct seq_file * m,void * data)86 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
87 {
88 	struct drm_info_node *node = m->private;
89 	struct drm_device *dev = node->minor->dev;
90 	struct vc4_dev *vc4 = to_vc4_dev(dev);
91 	struct drm_printer p = drm_seq_file_printer(m);
92 
93 	drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
94 
95 	return 0;
96 }
97 
98 /* The filter kernel is composed of dwords each containing 3 9-bit
99  * signed integers packed next to each other.
100  */
101 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
102 #define VC4_PPF_FILTER_WORD(c0, c1, c2)				\
103 	((((c0) & 0x1ff) << 0) |				\
104 	 (((c1) & 0x1ff) << 9) |				\
105 	 (((c2) & 0x1ff) << 18))
106 
107 /* The whole filter kernel is arranged as the coefficients 0-16 going
108  * up, then a pad, then 17-31 going down and reversed within the
109  * dwords.  This means that a linear phase kernel (where it's
110  * symmetrical at the boundary between 15 and 16) has the last 5
111  * dwords matching the first 5, but reversed.
112  */
113 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,	\
114 				c9, c10, c11, c12, c13, c14, c15)	\
115 	{VC4_PPF_FILTER_WORD(c0, c1, c2),				\
116 	 VC4_PPF_FILTER_WORD(c3, c4, c5),				\
117 	 VC4_PPF_FILTER_WORD(c6, c7, c8),				\
118 	 VC4_PPF_FILTER_WORD(c9, c10, c11),				\
119 	 VC4_PPF_FILTER_WORD(c12, c13, c14),				\
120 	 VC4_PPF_FILTER_WORD(c15, c15, 0)}
121 
122 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
123 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
124 
125 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
126  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
127  */
128 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
129 	VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
130 				50, 82, 119, 155, 187, 213, 227);
131 
vc4_hvs_upload_linear_kernel(struct vc4_hvs * hvs,struct drm_mm_node * space,const u32 * kernel)132 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
133 					struct drm_mm_node *space,
134 					const u32 *kernel)
135 {
136 	int ret, i;
137 	u32 __iomem *dst_kernel;
138 
139 	ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
140 	if (ret) {
141 		DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
142 			  ret);
143 		return ret;
144 	}
145 
146 	dst_kernel = hvs->dlist + space->start;
147 
148 	for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
149 		if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
150 			writel(kernel[i], &dst_kernel[i]);
151 		else {
152 			writel(kernel[VC4_KERNEL_DWORDS - i - 1],
153 			       &dst_kernel[i]);
154 		}
155 	}
156 
157 	return 0;
158 }
159 
vc4_hvs_lut_load(struct drm_crtc * crtc)160 static void vc4_hvs_lut_load(struct drm_crtc *crtc)
161 {
162 	struct drm_device *dev = crtc->dev;
163 	struct vc4_dev *vc4 = to_vc4_dev(dev);
164 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
165 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
166 	u32 i;
167 
168 	/* The LUT memory is laid out with each HVS channel in order,
169 	 * each of which takes 256 writes for R, 256 for G, then 256
170 	 * for B.
171 	 */
172 	HVS_WRITE(SCALER_GAMADDR,
173 		  SCALER_GAMADDR_AUTOINC |
174 		  (vc4_state->assigned_channel * 3 * crtc->gamma_size));
175 
176 	for (i = 0; i < crtc->gamma_size; i++)
177 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
178 	for (i = 0; i < crtc->gamma_size; i++)
179 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
180 	for (i = 0; i < crtc->gamma_size; i++)
181 		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
182 }
183 
vc4_hvs_update_gamma_lut(struct drm_crtc * crtc)184 static void vc4_hvs_update_gamma_lut(struct drm_crtc *crtc)
185 {
186 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
187 	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
188 	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
189 	u32 i;
190 
191 	for (i = 0; i < length; i++) {
192 		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
193 		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
194 		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
195 	}
196 
197 	vc4_hvs_lut_load(crtc);
198 }
199 
vc4_hvs_get_fifo_frame_count(struct drm_device * dev,unsigned int fifo)200 u8 vc4_hvs_get_fifo_frame_count(struct drm_device *dev, unsigned int fifo)
201 {
202 	struct vc4_dev *vc4 = to_vc4_dev(dev);
203 	u8 field = 0;
204 
205 	switch (fifo) {
206 	case 0:
207 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
208 				      SCALER_DISPSTAT1_FRCNT0);
209 		break;
210 	case 1:
211 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
212 				      SCALER_DISPSTAT1_FRCNT1);
213 		break;
214 	case 2:
215 		field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
216 				      SCALER_DISPSTAT2_FRCNT2);
217 		break;
218 	}
219 
220 	return field;
221 }
222 
vc4_hvs_get_fifo_from_output(struct drm_device * dev,unsigned int output)223 int vc4_hvs_get_fifo_from_output(struct drm_device *dev, unsigned int output)
224 {
225 	struct vc4_dev *vc4 = to_vc4_dev(dev);
226 	u32 reg;
227 	int ret;
228 
229 	if (!vc4->hvs->hvs5)
230 		return output;
231 
232 	switch (output) {
233 	case 0:
234 		return 0;
235 
236 	case 1:
237 		return 1;
238 
239 	case 2:
240 		reg = HVS_READ(SCALER_DISPECTRL);
241 		ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
242 		if (ret == 0)
243 			return 2;
244 
245 		return 0;
246 
247 	case 3:
248 		reg = HVS_READ(SCALER_DISPCTRL);
249 		ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
250 		if (ret == 3)
251 			return -EPIPE;
252 
253 		return ret;
254 
255 	case 4:
256 		reg = HVS_READ(SCALER_DISPEOLN);
257 		ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
258 		if (ret == 3)
259 			return -EPIPE;
260 
261 		return ret;
262 
263 	case 5:
264 		reg = HVS_READ(SCALER_DISPDITHER);
265 		ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
266 		if (ret == 3)
267 			return -EPIPE;
268 
269 		return ret;
270 
271 	default:
272 		return -EPIPE;
273 	}
274 }
275 
vc4_hvs_init_channel(struct vc4_dev * vc4,struct drm_crtc * crtc,struct drm_display_mode * mode,bool oneshot)276 static int vc4_hvs_init_channel(struct vc4_dev *vc4, struct drm_crtc *crtc,
277 				struct drm_display_mode *mode, bool oneshot)
278 {
279 	struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
280 	unsigned int chan = vc4_crtc_state->assigned_channel;
281 	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
282 	u32 dispbkgndx;
283 	u32 dispctrl;
284 
285 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
286 	HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
287 	HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
288 
289 	/* Turn on the scaler, which will wait for vstart to start
290 	 * compositing.
291 	 * When feeding the transposer, we should operate in oneshot
292 	 * mode.
293 	 */
294 	dispctrl = SCALER_DISPCTRLX_ENABLE;
295 
296 	if (!vc4->hvs->hvs5)
297 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
298 					  SCALER_DISPCTRLX_WIDTH) |
299 			    VC4_SET_FIELD(mode->vdisplay,
300 					  SCALER_DISPCTRLX_HEIGHT) |
301 			    (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
302 	else
303 		dispctrl |= VC4_SET_FIELD(mode->hdisplay,
304 					  SCALER5_DISPCTRLX_WIDTH) |
305 			    VC4_SET_FIELD(mode->vdisplay,
306 					  SCALER5_DISPCTRLX_HEIGHT) |
307 			    (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
308 
309 	HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
310 
311 	dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
312 	dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
313 	dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
314 
315 	HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
316 		  SCALER_DISPBKGND_AUTOHS |
317 		  ((!vc4->hvs->hvs5) ? SCALER_DISPBKGND_GAMMA : 0) |
318 		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
319 
320 	/* Reload the LUT, since the SRAMs would have been disabled if
321 	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
322 	 */
323 	vc4_hvs_lut_load(crtc);
324 
325 	return 0;
326 }
327 
vc4_hvs_stop_channel(struct drm_device * dev,unsigned int chan)328 void vc4_hvs_stop_channel(struct drm_device *dev, unsigned int chan)
329 {
330 	struct vc4_dev *vc4 = to_vc4_dev(dev);
331 
332 	if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
333 		return;
334 
335 	HVS_WRITE(SCALER_DISPCTRLX(chan),
336 		  HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
337 	HVS_WRITE(SCALER_DISPCTRLX(chan),
338 		  HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
339 
340 	/* Once we leave, the scaler should be disabled and its fifo empty. */
341 	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
342 
343 	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
344 				   SCALER_DISPSTATX_MODE) !=
345 		     SCALER_DISPSTATX_MODE_DISABLED);
346 
347 	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
348 		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
349 		     SCALER_DISPSTATX_EMPTY);
350 }
351 
vc4_hvs_atomic_check(struct drm_crtc * crtc,struct drm_atomic_state * state)352 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
353 {
354 	struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
355 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
356 	struct drm_device *dev = crtc->dev;
357 	struct vc4_dev *vc4 = to_vc4_dev(dev);
358 	struct drm_plane *plane;
359 	unsigned long flags;
360 	const struct drm_plane_state *plane_state;
361 	u32 dlist_count = 0;
362 	int ret;
363 
364 	/* The pixelvalve can only feed one encoder (and encoders are
365 	 * 1:1 with connectors.)
366 	 */
367 	if (hweight32(crtc_state->connector_mask) > 1)
368 		return -EINVAL;
369 
370 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
371 		dlist_count += vc4_plane_dlist_size(plane_state);
372 
373 	dlist_count++; /* Account for SCALER_CTL0_END. */
374 
375 	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
376 	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
377 				 dlist_count);
378 	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
379 	if (ret)
380 		return ret;
381 
382 	return 0;
383 }
384 
vc4_hvs_update_dlist(struct drm_crtc * crtc)385 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
386 {
387 	struct drm_device *dev = crtc->dev;
388 	struct vc4_dev *vc4 = to_vc4_dev(dev);
389 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
390 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
391 	unsigned long flags;
392 
393 	if (crtc->state->event) {
394 		crtc->state->event->pipe = drm_crtc_index(crtc);
395 
396 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
397 
398 		spin_lock_irqsave(&dev->event_lock, flags);
399 
400 		if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
401 			vc4_crtc->event = crtc->state->event;
402 			crtc->state->event = NULL;
403 		}
404 
405 		HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
406 			  vc4_state->mm.start);
407 
408 		spin_unlock_irqrestore(&dev->event_lock, flags);
409 	} else {
410 		HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
411 			  vc4_state->mm.start);
412 	}
413 
414 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
415 	vc4_crtc->current_dlist = vc4_state->mm.start;
416 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
417 }
418 
vc4_hvs_atomic_begin(struct drm_crtc * crtc,struct drm_atomic_state * state)419 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
420 			  struct drm_atomic_state *state)
421 {
422 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
423 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
427 	vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
428 	spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
429 }
430 
vc4_hvs_atomic_enable(struct drm_crtc * crtc,struct drm_atomic_state * state)431 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
432 			   struct drm_atomic_state *state)
433 {
434 	struct drm_device *dev = crtc->dev;
435 	struct vc4_dev *vc4 = to_vc4_dev(dev);
436 	struct drm_display_mode *mode = &crtc->state->adjusted_mode;
437 	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
438 	bool oneshot = vc4_crtc->feeds_txp;
439 
440 	vc4_hvs_update_dlist(crtc);
441 	vc4_hvs_init_channel(vc4, crtc, mode, oneshot);
442 }
443 
vc4_hvs_atomic_disable(struct drm_crtc * crtc,struct drm_atomic_state * state)444 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
445 			    struct drm_atomic_state *state)
446 {
447 	struct drm_device *dev = crtc->dev;
448 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
449 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
450 	unsigned int chan = vc4_state->assigned_channel;
451 
452 	vc4_hvs_stop_channel(dev, chan);
453 }
454 
vc4_hvs_atomic_flush(struct drm_crtc * crtc,struct drm_atomic_state * state)455 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
456 			  struct drm_atomic_state *state)
457 {
458 	struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
459 									 crtc);
460 	struct drm_device *dev = crtc->dev;
461 	struct vc4_dev *vc4 = to_vc4_dev(dev);
462 	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
463 	struct drm_plane *plane;
464 	struct vc4_plane_state *vc4_plane_state;
465 	bool debug_dump_regs = false;
466 	bool enable_bg_fill = false;
467 	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
468 	u32 __iomem *dlist_next = dlist_start;
469 
470 	if (debug_dump_regs) {
471 		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
472 		vc4_hvs_dump_state(dev);
473 	}
474 
475 	/* Copy all the active planes' dlist contents to the hardware dlist. */
476 	drm_atomic_crtc_for_each_plane(plane, crtc) {
477 		/* Is this the first active plane? */
478 		if (dlist_next == dlist_start) {
479 			/* We need to enable background fill when a plane
480 			 * could be alpha blending from the background, i.e.
481 			 * where no other plane is underneath. It suffices to
482 			 * consider the first active plane here since we set
483 			 * needs_bg_fill such that either the first plane
484 			 * already needs it or all planes on top blend from
485 			 * the first or a lower plane.
486 			 */
487 			vc4_plane_state = to_vc4_plane_state(plane->state);
488 			enable_bg_fill = vc4_plane_state->needs_bg_fill;
489 		}
490 
491 		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
492 	}
493 
494 	writel(SCALER_CTL0_END, dlist_next);
495 	dlist_next++;
496 
497 	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
498 
499 	if (enable_bg_fill)
500 		/* This sets a black background color fill, as is the case
501 		 * with other DRM drivers.
502 		 */
503 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel),
504 			  HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel)) |
505 			  SCALER_DISPBKGND_FILL);
506 
507 	/* Only update DISPLIST if the CRTC was already running and is not
508 	 * being disabled.
509 	 * vc4_crtc_enable() takes care of updating the dlist just after
510 	 * re-enabling VBLANK interrupts and before enabling the engine.
511 	 * If the CRTC is being disabled, there's no point in updating this
512 	 * information.
513 	 */
514 	if (crtc->state->active && old_state->active)
515 		vc4_hvs_update_dlist(crtc);
516 
517 	if (crtc->state->color_mgmt_changed) {
518 		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_state->assigned_channel));
519 
520 		if (crtc->state->gamma_lut) {
521 			vc4_hvs_update_gamma_lut(crtc);
522 			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
523 		} else {
524 			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
525 			 * in hardware, which is the same as a linear lut that
526 			 * DRM expects us to use in absence of a user lut.
527 			 */
528 			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
529 		}
530 		HVS_WRITE(SCALER_DISPBKGNDX(vc4_state->assigned_channel), dispbkgndx);
531 	}
532 
533 	if (debug_dump_regs) {
534 		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
535 		vc4_hvs_dump_state(dev);
536 	}
537 }
538 
vc4_hvs_mask_underrun(struct drm_device * dev,int channel)539 void vc4_hvs_mask_underrun(struct drm_device *dev, int channel)
540 {
541 	struct vc4_dev *vc4 = to_vc4_dev(dev);
542 	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
543 
544 	dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
545 
546 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
547 }
548 
vc4_hvs_unmask_underrun(struct drm_device * dev,int channel)549 void vc4_hvs_unmask_underrun(struct drm_device *dev, int channel)
550 {
551 	struct vc4_dev *vc4 = to_vc4_dev(dev);
552 	u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
553 
554 	dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
555 
556 	HVS_WRITE(SCALER_DISPSTAT,
557 		  SCALER_DISPSTAT_EUFLOW(channel));
558 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
559 }
560 
vc4_hvs_report_underrun(struct drm_device * dev)561 static void vc4_hvs_report_underrun(struct drm_device *dev)
562 {
563 	struct vc4_dev *vc4 = to_vc4_dev(dev);
564 
565 	atomic_inc(&vc4->underrun);
566 	DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
567 }
568 
vc4_hvs_irq_handler(int irq,void * data)569 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
570 {
571 	struct drm_device *dev = data;
572 	struct vc4_dev *vc4 = to_vc4_dev(dev);
573 	irqreturn_t irqret = IRQ_NONE;
574 	int channel;
575 	u32 control;
576 	u32 status;
577 
578 	status = HVS_READ(SCALER_DISPSTAT);
579 	control = HVS_READ(SCALER_DISPCTRL);
580 
581 	for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
582 		/* Interrupt masking is not always honored, so check it here. */
583 		if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
584 		    control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
585 			vc4_hvs_mask_underrun(dev, channel);
586 			vc4_hvs_report_underrun(dev);
587 
588 			irqret = IRQ_HANDLED;
589 		}
590 	}
591 
592 	/* Clear every per-channel interrupt flag. */
593 	HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
594 				   SCALER_DISPSTAT_IRQMASK(1) |
595 				   SCALER_DISPSTAT_IRQMASK(2));
596 
597 	return irqret;
598 }
599 
vc4_hvs_bind(struct device * dev,struct device * master,void * data)600 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
601 {
602 	struct platform_device *pdev = to_platform_device(dev);
603 	struct drm_device *drm = dev_get_drvdata(master);
604 	struct vc4_dev *vc4 = to_vc4_dev(drm);
605 	struct vc4_hvs *hvs = NULL;
606 	int ret;
607 	u32 dispctrl;
608 	u32 reg;
609 
610 	hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
611 	if (!hvs)
612 		return -ENOMEM;
613 
614 	hvs->pdev = pdev;
615 
616 	if (of_device_is_compatible(pdev->dev.of_node, "brcm,bcm2711-hvs"))
617 		hvs->hvs5 = true;
618 
619 	hvs->regs = vc4_ioremap_regs(pdev, 0);
620 	if (IS_ERR(hvs->regs))
621 		return PTR_ERR(hvs->regs);
622 
623 	hvs->regset.base = hvs->regs;
624 	hvs->regset.regs = hvs_regs;
625 	hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
626 
627 	if (hvs->hvs5) {
628 		hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
629 		if (IS_ERR(hvs->core_clk)) {
630 			dev_err(&pdev->dev, "Couldn't get core clock\n");
631 			return PTR_ERR(hvs->core_clk);
632 		}
633 
634 		ret = clk_prepare_enable(hvs->core_clk);
635 		if (ret) {
636 			dev_err(&pdev->dev, "Couldn't enable the core clock\n");
637 			return ret;
638 		}
639 	}
640 
641 	if (!hvs->hvs5)
642 		hvs->dlist = hvs->regs + SCALER_DLIST_START;
643 	else
644 		hvs->dlist = hvs->regs + SCALER5_DLIST_START;
645 
646 	spin_lock_init(&hvs->mm_lock);
647 
648 	/* Set up the HVS display list memory manager.  We never
649 	 * overwrite the setup from the bootloader (just 128b out of
650 	 * our 16K), since we don't want to scramble the screen when
651 	 * transitioning from the firmware's boot setup to runtime.
652 	 */
653 	drm_mm_init(&hvs->dlist_mm,
654 		    HVS_BOOTLOADER_DLIST_END,
655 		    (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
656 
657 	/* Set up the HVS LBM memory manager.  We could have some more
658 	 * complicated data structure that allowed reuse of LBM areas
659 	 * between planes when they don't overlap on the screen, but
660 	 * for now we just allocate globally.
661 	 */
662 	if (!hvs->hvs5)
663 		/* 48k words of 2x12-bit pixels */
664 		drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
665 	else
666 		/* 60k words of 4x12-bit pixels */
667 		drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
668 
669 	/* Upload filter kernels.  We only have the one for now, so we
670 	 * keep it around for the lifetime of the driver.
671 	 */
672 	ret = vc4_hvs_upload_linear_kernel(hvs,
673 					   &hvs->mitchell_netravali_filter,
674 					   mitchell_netravali_1_3_1_3_kernel);
675 	if (ret)
676 		return ret;
677 
678 	vc4->hvs = hvs;
679 
680 	reg = HVS_READ(SCALER_DISPECTRL);
681 	reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
682 	HVS_WRITE(SCALER_DISPECTRL,
683 		  reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
684 
685 	reg = HVS_READ(SCALER_DISPCTRL);
686 	reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
687 	HVS_WRITE(SCALER_DISPCTRL,
688 		  reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
689 
690 	reg = HVS_READ(SCALER_DISPEOLN);
691 	reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
692 	HVS_WRITE(SCALER_DISPEOLN,
693 		  reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
694 
695 	reg = HVS_READ(SCALER_DISPDITHER);
696 	reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
697 	HVS_WRITE(SCALER_DISPDITHER,
698 		  reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
699 
700 	dispctrl = HVS_READ(SCALER_DISPCTRL);
701 
702 	dispctrl |= SCALER_DISPCTRL_ENABLE;
703 	dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
704 		    SCALER_DISPCTRL_DISPEIRQ(1) |
705 		    SCALER_DISPCTRL_DISPEIRQ(2);
706 
707 	dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
708 		      SCALER_DISPCTRL_SLVWREIRQ |
709 		      SCALER_DISPCTRL_SLVRDEIRQ |
710 		      SCALER_DISPCTRL_DSPEIEOF(0) |
711 		      SCALER_DISPCTRL_DSPEIEOF(1) |
712 		      SCALER_DISPCTRL_DSPEIEOF(2) |
713 		      SCALER_DISPCTRL_DSPEIEOLN(0) |
714 		      SCALER_DISPCTRL_DSPEIEOLN(1) |
715 		      SCALER_DISPCTRL_DSPEIEOLN(2) |
716 		      SCALER_DISPCTRL_DSPEISLUR(0) |
717 		      SCALER_DISPCTRL_DSPEISLUR(1) |
718 		      SCALER_DISPCTRL_DSPEISLUR(2) |
719 		      SCALER_DISPCTRL_SCLEIRQ);
720 
721 	/* Set AXI panic mode.
722 	 * VC4 panics when < 2 lines in FIFO.
723 	 * VC5 panics when less than 1 line in the FIFO.
724 	 */
725 	dispctrl &= ~(SCALER_DISPCTRL_PANIC0_MASK |
726 		      SCALER_DISPCTRL_PANIC1_MASK |
727 		      SCALER_DISPCTRL_PANIC2_MASK);
728 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC0);
729 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC1);
730 	dispctrl |= VC4_SET_FIELD(2, SCALER_DISPCTRL_PANIC2);
731 
732 	HVS_WRITE(SCALER_DISPCTRL, dispctrl);
733 
734 	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
735 			       vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
736 	if (ret)
737 		return ret;
738 
739 	vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
740 	vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
741 			     NULL);
742 
743 	return 0;
744 }
745 
vc4_hvs_unbind(struct device * dev,struct device * master,void * data)746 static void vc4_hvs_unbind(struct device *dev, struct device *master,
747 			   void *data)
748 {
749 	struct drm_device *drm = dev_get_drvdata(master);
750 	struct vc4_dev *vc4 = to_vc4_dev(drm);
751 	struct vc4_hvs *hvs = vc4->hvs;
752 
753 	if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
754 		drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
755 
756 	drm_mm_takedown(&vc4->hvs->dlist_mm);
757 	drm_mm_takedown(&vc4->hvs->lbm_mm);
758 
759 	clk_disable_unprepare(hvs->core_clk);
760 
761 	vc4->hvs = NULL;
762 }
763 
764 static const struct component_ops vc4_hvs_ops = {
765 	.bind   = vc4_hvs_bind,
766 	.unbind = vc4_hvs_unbind,
767 };
768 
vc4_hvs_dev_probe(struct platform_device * pdev)769 static int vc4_hvs_dev_probe(struct platform_device *pdev)
770 {
771 	return component_add(&pdev->dev, &vc4_hvs_ops);
772 }
773 
vc4_hvs_dev_remove(struct platform_device * pdev)774 static int vc4_hvs_dev_remove(struct platform_device *pdev)
775 {
776 	component_del(&pdev->dev, &vc4_hvs_ops);
777 	return 0;
778 }
779 
780 static const struct of_device_id vc4_hvs_dt_match[] = {
781 	{ .compatible = "brcm,bcm2711-hvs" },
782 	{ .compatible = "brcm,bcm2835-hvs" },
783 	{}
784 };
785 
786 struct platform_driver vc4_hvs_driver = {
787 	.probe = vc4_hvs_dev_probe,
788 	.remove = vc4_hvs_dev_remove,
789 	.driver = {
790 		.name = "vc4_hvs",
791 		.of_match_table = vc4_hvs_dt_match,
792 	},
793 };
794