1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2015, 2016 ARM Ltd.
4 */
5
6 #include <linux/interrupt.h>
7 #include <linux/irq.h>
8 #include <linux/kvm.h>
9 #include <linux/kvm_host.h>
10 #include <linux/list_sort.h>
11 #include <linux/nospec.h>
12
13 #include <asm/kvm_hyp.h>
14
15 #include "vgic.h"
16
17 #define CREATE_TRACE_POINTS
18 #include "trace.h"
19
20 struct vgic_global kvm_vgic_global_state __ro_after_init = {
21 .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
22 };
23
24 /*
25 * Locking order is always:
26 * kvm->lock (mutex)
27 * its->cmd_lock (mutex)
28 * its->its_lock (mutex)
29 * vgic_cpu->ap_list_lock must be taken with IRQs disabled
30 * kvm->lpi_list_lock must be taken with IRQs disabled
31 * vgic_irq->irq_lock must be taken with IRQs disabled
32 *
33 * As the ap_list_lock might be taken from the timer interrupt handler,
34 * we have to disable IRQs before taking this lock and everything lower
35 * than it.
36 *
37 * If you need to take multiple locks, always take the upper lock first,
38 * then the lower ones, e.g. first take the its_lock, then the irq_lock.
39 * If you are already holding a lock and need to take a higher one, you
40 * have to drop the lower ranking lock first and re-aquire it after having
41 * taken the upper one.
42 *
43 * When taking more than one ap_list_lock at the same time, always take the
44 * lowest numbered VCPU's ap_list_lock first, so:
45 * vcpuX->vcpu_id < vcpuY->vcpu_id:
46 * raw_spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
47 * raw_spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
48 *
49 * Since the VGIC must support injecting virtual interrupts from ISRs, we have
50 * to use the raw_spin_lock_irqsave/raw_spin_unlock_irqrestore versions of outer
51 * spinlocks for any lock that may be taken while injecting an interrupt.
52 */
53
54 /*
55 * Iterate over the VM's list of mapped LPIs to find the one with a
56 * matching interrupt ID and return a reference to the IRQ structure.
57 */
vgic_get_lpi(struct kvm * kvm,u32 intid)58 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
59 {
60 struct vgic_dist *dist = &kvm->arch.vgic;
61 struct vgic_irq *irq = NULL;
62 unsigned long flags;
63
64 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
65
66 list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
67 if (irq->intid != intid)
68 continue;
69
70 /*
71 * This increases the refcount, the caller is expected to
72 * call vgic_put_irq() later once it's finished with the IRQ.
73 */
74 vgic_get_irq_kref(irq);
75 goto out_unlock;
76 }
77 irq = NULL;
78
79 out_unlock:
80 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
81
82 return irq;
83 }
84
85 /*
86 * This looks up the virtual interrupt ID to get the corresponding
87 * struct vgic_irq. It also increases the refcount, so any caller is expected
88 * to call vgic_put_irq() once it's finished with this IRQ.
89 */
vgic_get_irq(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 intid)90 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
91 u32 intid)
92 {
93 /* SGIs and PPIs */
94 if (intid <= VGIC_MAX_PRIVATE) {
95 intid = array_index_nospec(intid, VGIC_MAX_PRIVATE + 1);
96 return &vcpu->arch.vgic_cpu.private_irqs[intid];
97 }
98
99 /* SPIs */
100 if (intid < (kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS)) {
101 intid = array_index_nospec(intid, kvm->arch.vgic.nr_spis + VGIC_NR_PRIVATE_IRQS);
102 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
103 }
104
105 /* LPIs */
106 if (intid >= VGIC_MIN_LPI)
107 return vgic_get_lpi(kvm, intid);
108
109 return NULL;
110 }
111
112 /*
113 * We can't do anything in here, because we lack the kvm pointer to
114 * lock and remove the item from the lpi_list. So we keep this function
115 * empty and use the return value of kref_put() to trigger the freeing.
116 */
vgic_irq_release(struct kref * ref)117 static void vgic_irq_release(struct kref *ref)
118 {
119 }
120
121 /*
122 * Drop the refcount on the LPI. Must be called with lpi_list_lock held.
123 */
__vgic_put_lpi_locked(struct kvm * kvm,struct vgic_irq * irq)124 void __vgic_put_lpi_locked(struct kvm *kvm, struct vgic_irq *irq)
125 {
126 struct vgic_dist *dist = &kvm->arch.vgic;
127
128 if (!kref_put(&irq->refcount, vgic_irq_release))
129 return;
130
131 list_del(&irq->lpi_list);
132 dist->lpi_list_count--;
133
134 kfree(irq);
135 }
136
vgic_put_irq(struct kvm * kvm,struct vgic_irq * irq)137 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
138 {
139 struct vgic_dist *dist = &kvm->arch.vgic;
140 unsigned long flags;
141
142 if (irq->intid < VGIC_MIN_LPI)
143 return;
144
145 raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
146 __vgic_put_lpi_locked(kvm, irq);
147 raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
148 }
149
vgic_flush_pending_lpis(struct kvm_vcpu * vcpu)150 void vgic_flush_pending_lpis(struct kvm_vcpu *vcpu)
151 {
152 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
153 struct vgic_irq *irq, *tmp;
154 unsigned long flags;
155
156 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
157
158 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
159 if (irq->intid >= VGIC_MIN_LPI) {
160 raw_spin_lock(&irq->irq_lock);
161 list_del(&irq->ap_list);
162 irq->vcpu = NULL;
163 raw_spin_unlock(&irq->irq_lock);
164 vgic_put_irq(vcpu->kvm, irq);
165 }
166 }
167
168 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
169 }
170
vgic_irq_set_phys_pending(struct vgic_irq * irq,bool pending)171 void vgic_irq_set_phys_pending(struct vgic_irq *irq, bool pending)
172 {
173 WARN_ON(irq_set_irqchip_state(irq->host_irq,
174 IRQCHIP_STATE_PENDING,
175 pending));
176 }
177
vgic_get_phys_line_level(struct vgic_irq * irq)178 bool vgic_get_phys_line_level(struct vgic_irq *irq)
179 {
180 bool line_level;
181
182 BUG_ON(!irq->hw);
183
184 if (irq->ops && irq->ops->get_input_level)
185 return irq->ops->get_input_level(irq->intid);
186
187 WARN_ON(irq_get_irqchip_state(irq->host_irq,
188 IRQCHIP_STATE_PENDING,
189 &line_level));
190 return line_level;
191 }
192
193 /* Set/Clear the physical active state */
vgic_irq_set_phys_active(struct vgic_irq * irq,bool active)194 void vgic_irq_set_phys_active(struct vgic_irq *irq, bool active)
195 {
196
197 BUG_ON(!irq->hw);
198 WARN_ON(irq_set_irqchip_state(irq->host_irq,
199 IRQCHIP_STATE_ACTIVE,
200 active));
201 }
202
203 /**
204 * kvm_vgic_target_oracle - compute the target vcpu for an irq
205 *
206 * @irq: The irq to route. Must be already locked.
207 *
208 * Based on the current state of the interrupt (enabled, pending,
209 * active, vcpu and target_vcpu), compute the next vcpu this should be
210 * given to. Return NULL if this shouldn't be injected at all.
211 *
212 * Requires the IRQ lock to be held.
213 */
vgic_target_oracle(struct vgic_irq * irq)214 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
215 {
216 lockdep_assert_held(&irq->irq_lock);
217
218 /* If the interrupt is active, it must stay on the current vcpu */
219 if (irq->active)
220 return irq->vcpu ? : irq->target_vcpu;
221
222 /*
223 * If the IRQ is not active but enabled and pending, we should direct
224 * it to its configured target VCPU.
225 * If the distributor is disabled, pending interrupts shouldn't be
226 * forwarded.
227 */
228 if (irq->enabled && irq_is_pending(irq)) {
229 if (unlikely(irq->target_vcpu &&
230 !irq->target_vcpu->kvm->arch.vgic.enabled))
231 return NULL;
232
233 return irq->target_vcpu;
234 }
235
236 /* If neither active nor pending and enabled, then this IRQ should not
237 * be queued to any VCPU.
238 */
239 return NULL;
240 }
241
242 /*
243 * The order of items in the ap_lists defines how we'll pack things in LRs as
244 * well, the first items in the list being the first things populated in the
245 * LRs.
246 *
247 * A hard rule is that active interrupts can never be pushed out of the LRs
248 * (and therefore take priority) since we cannot reliably trap on deactivation
249 * of IRQs and therefore they have to be present in the LRs.
250 *
251 * Otherwise things should be sorted by the priority field and the GIC
252 * hardware support will take care of preemption of priority groups etc.
253 *
254 * Return negative if "a" sorts before "b", 0 to preserve order, and positive
255 * to sort "b" before "a".
256 */
vgic_irq_cmp(void * priv,const struct list_head * a,const struct list_head * b)257 static int vgic_irq_cmp(void *priv, const struct list_head *a,
258 const struct list_head *b)
259 {
260 struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
261 struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
262 bool penda, pendb;
263 int ret;
264
265 /*
266 * list_sort may call this function with the same element when
267 * the list is fairly long.
268 */
269 if (unlikely(irqa == irqb))
270 return 0;
271
272 raw_spin_lock(&irqa->irq_lock);
273 raw_spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
274
275 if (irqa->active || irqb->active) {
276 ret = (int)irqb->active - (int)irqa->active;
277 goto out;
278 }
279
280 penda = irqa->enabled && irq_is_pending(irqa);
281 pendb = irqb->enabled && irq_is_pending(irqb);
282
283 if (!penda || !pendb) {
284 ret = (int)pendb - (int)penda;
285 goto out;
286 }
287
288 /* Both pending and enabled, sort by priority */
289 ret = irqa->priority - irqb->priority;
290 out:
291 raw_spin_unlock(&irqb->irq_lock);
292 raw_spin_unlock(&irqa->irq_lock);
293 return ret;
294 }
295
296 /* Must be called with the ap_list_lock held */
vgic_sort_ap_list(struct kvm_vcpu * vcpu)297 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
298 {
299 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
300
301 lockdep_assert_held(&vgic_cpu->ap_list_lock);
302
303 list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
304 }
305
306 /*
307 * Only valid injection if changing level for level-triggered IRQs or for a
308 * rising edge, and in-kernel connected IRQ lines can only be controlled by
309 * their owner.
310 */
vgic_validate_injection(struct vgic_irq * irq,bool level,void * owner)311 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
312 {
313 if (irq->owner != owner)
314 return false;
315
316 switch (irq->config) {
317 case VGIC_CONFIG_LEVEL:
318 return irq->line_level != level;
319 case VGIC_CONFIG_EDGE:
320 return level;
321 }
322
323 return false;
324 }
325
326 /*
327 * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
328 * Do the queuing if necessary, taking the right locks in the right order.
329 * Returns true when the IRQ was queued, false otherwise.
330 *
331 * Needs to be entered with the IRQ lock already held, but will return
332 * with all locks dropped.
333 */
vgic_queue_irq_unlock(struct kvm * kvm,struct vgic_irq * irq,unsigned long flags)334 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
335 unsigned long flags)
336 {
337 struct kvm_vcpu *vcpu;
338
339 lockdep_assert_held(&irq->irq_lock);
340
341 retry:
342 vcpu = vgic_target_oracle(irq);
343 if (irq->vcpu || !vcpu) {
344 /*
345 * If this IRQ is already on a VCPU's ap_list, then it
346 * cannot be moved or modified and there is no more work for
347 * us to do.
348 *
349 * Otherwise, if the irq is not pending and enabled, it does
350 * not need to be inserted into an ap_list and there is also
351 * no more work for us to do.
352 */
353 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
354
355 /*
356 * We have to kick the VCPU here, because we could be
357 * queueing an edge-triggered interrupt for which we
358 * get no EOI maintenance interrupt. In that case,
359 * while the IRQ is already on the VCPU's AP list, the
360 * VCPU could have EOI'ed the original interrupt and
361 * won't see this one until it exits for some other
362 * reason.
363 */
364 if (vcpu) {
365 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
366 kvm_vcpu_kick(vcpu);
367 }
368 return false;
369 }
370
371 /*
372 * We must unlock the irq lock to take the ap_list_lock where
373 * we are going to insert this new pending interrupt.
374 */
375 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
376
377 /* someone can do stuff here, which we re-check below */
378
379 raw_spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
380 raw_spin_lock(&irq->irq_lock);
381
382 /*
383 * Did something change behind our backs?
384 *
385 * There are two cases:
386 * 1) The irq lost its pending state or was disabled behind our
387 * backs and/or it was queued to another VCPU's ap_list.
388 * 2) Someone changed the affinity on this irq behind our
389 * backs and we are now holding the wrong ap_list_lock.
390 *
391 * In both cases, drop the locks and retry.
392 */
393
394 if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
395 raw_spin_unlock(&irq->irq_lock);
396 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock,
397 flags);
398
399 raw_spin_lock_irqsave(&irq->irq_lock, flags);
400 goto retry;
401 }
402
403 /*
404 * Grab a reference to the irq to reflect the fact that it is
405 * now in the ap_list.
406 */
407 vgic_get_irq_kref(irq);
408 list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
409 irq->vcpu = vcpu;
410
411 raw_spin_unlock(&irq->irq_lock);
412 raw_spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
413
414 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
415 kvm_vcpu_kick(vcpu);
416
417 return true;
418 }
419
420 /**
421 * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
422 * @kvm: The VM structure pointer
423 * @cpuid: The CPU for PPIs
424 * @intid: The INTID to inject a new state to.
425 * @level: Edge-triggered: true: to trigger the interrupt
426 * false: to ignore the call
427 * Level-sensitive true: raise the input signal
428 * false: lower the input signal
429 * @owner: The opaque pointer to the owner of the IRQ being raised to verify
430 * that the caller is allowed to inject this IRQ. Userspace
431 * injections will have owner == NULL.
432 *
433 * The VGIC is not concerned with devices being active-LOW or active-HIGH for
434 * level-sensitive interrupts. You can think of the level parameter as 1
435 * being HIGH and 0 being LOW and all devices being active-HIGH.
436 */
kvm_vgic_inject_irq(struct kvm * kvm,int cpuid,unsigned int intid,bool level,void * owner)437 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
438 bool level, void *owner)
439 {
440 struct kvm_vcpu *vcpu;
441 struct vgic_irq *irq;
442 unsigned long flags;
443 int ret;
444
445 trace_vgic_update_irq_pending(cpuid, intid, level);
446
447 ret = vgic_lazy_init(kvm);
448 if (ret)
449 return ret;
450
451 vcpu = kvm_get_vcpu(kvm, cpuid);
452 if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
453 return -EINVAL;
454
455 irq = vgic_get_irq(kvm, vcpu, intid);
456 if (!irq)
457 return -EINVAL;
458
459 raw_spin_lock_irqsave(&irq->irq_lock, flags);
460
461 if (!vgic_validate_injection(irq, level, owner)) {
462 /* Nothing to see here, move along... */
463 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
464 vgic_put_irq(kvm, irq);
465 return 0;
466 }
467
468 if (irq->config == VGIC_CONFIG_LEVEL)
469 irq->line_level = level;
470 else
471 irq->pending_latch = true;
472
473 vgic_queue_irq_unlock(kvm, irq, flags);
474 vgic_put_irq(kvm, irq);
475
476 return 0;
477 }
478
479 /* @irq->irq_lock must be held */
kvm_vgic_map_irq(struct kvm_vcpu * vcpu,struct vgic_irq * irq,unsigned int host_irq,struct irq_ops * ops)480 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
481 unsigned int host_irq,
482 struct irq_ops *ops)
483 {
484 struct irq_desc *desc;
485 struct irq_data *data;
486
487 /*
488 * Find the physical IRQ number corresponding to @host_irq
489 */
490 desc = irq_to_desc(host_irq);
491 if (!desc) {
492 kvm_err("%s: no interrupt descriptor\n", __func__);
493 return -EINVAL;
494 }
495 data = irq_desc_get_irq_data(desc);
496 while (data->parent_data)
497 data = data->parent_data;
498
499 irq->hw = true;
500 irq->host_irq = host_irq;
501 irq->hwintid = data->hwirq;
502 irq->ops = ops;
503 return 0;
504 }
505
506 /* @irq->irq_lock must be held */
kvm_vgic_unmap_irq(struct vgic_irq * irq)507 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
508 {
509 irq->hw = false;
510 irq->hwintid = 0;
511 irq->ops = NULL;
512 }
513
kvm_vgic_map_phys_irq(struct kvm_vcpu * vcpu,unsigned int host_irq,u32 vintid,struct irq_ops * ops)514 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
515 u32 vintid, struct irq_ops *ops)
516 {
517 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
518 unsigned long flags;
519 int ret;
520
521 BUG_ON(!irq);
522
523 raw_spin_lock_irqsave(&irq->irq_lock, flags);
524 ret = kvm_vgic_map_irq(vcpu, irq, host_irq, ops);
525 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
526 vgic_put_irq(vcpu->kvm, irq);
527
528 return ret;
529 }
530
531 /**
532 * kvm_vgic_reset_mapped_irq - Reset a mapped IRQ
533 * @vcpu: The VCPU pointer
534 * @vintid: The INTID of the interrupt
535 *
536 * Reset the active and pending states of a mapped interrupt. Kernel
537 * subsystems injecting mapped interrupts should reset their interrupt lines
538 * when we are doing a reset of the VM.
539 */
kvm_vgic_reset_mapped_irq(struct kvm_vcpu * vcpu,u32 vintid)540 void kvm_vgic_reset_mapped_irq(struct kvm_vcpu *vcpu, u32 vintid)
541 {
542 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
543 unsigned long flags;
544
545 if (!irq->hw)
546 goto out;
547
548 raw_spin_lock_irqsave(&irq->irq_lock, flags);
549 irq->active = false;
550 irq->pending_latch = false;
551 irq->line_level = false;
552 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
553 out:
554 vgic_put_irq(vcpu->kvm, irq);
555 }
556
kvm_vgic_unmap_phys_irq(struct kvm_vcpu * vcpu,unsigned int vintid)557 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
558 {
559 struct vgic_irq *irq;
560 unsigned long flags;
561
562 if (!vgic_initialized(vcpu->kvm))
563 return -EAGAIN;
564
565 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
566 BUG_ON(!irq);
567
568 raw_spin_lock_irqsave(&irq->irq_lock, flags);
569 kvm_vgic_unmap_irq(irq);
570 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
571 vgic_put_irq(vcpu->kvm, irq);
572
573 return 0;
574 }
575
576 /**
577 * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
578 *
579 * @vcpu: Pointer to the VCPU (used for PPIs)
580 * @intid: The virtual INTID identifying the interrupt (PPI or SPI)
581 * @owner: Opaque pointer to the owner
582 *
583 * Returns 0 if intid is not already used by another in-kernel device and the
584 * owner is set, otherwise returns an error code.
585 */
kvm_vgic_set_owner(struct kvm_vcpu * vcpu,unsigned int intid,void * owner)586 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
587 {
588 struct vgic_irq *irq;
589 unsigned long flags;
590 int ret = 0;
591
592 if (!vgic_initialized(vcpu->kvm))
593 return -EAGAIN;
594
595 /* SGIs and LPIs cannot be wired up to any device */
596 if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
597 return -EINVAL;
598
599 irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
600 raw_spin_lock_irqsave(&irq->irq_lock, flags);
601 if (irq->owner && irq->owner != owner)
602 ret = -EEXIST;
603 else
604 irq->owner = owner;
605 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
606
607 return ret;
608 }
609
610 /**
611 * vgic_prune_ap_list - Remove non-relevant interrupts from the list
612 *
613 * @vcpu: The VCPU pointer
614 *
615 * Go over the list of "interesting" interrupts, and prune those that we
616 * won't have to consider in the near future.
617 */
vgic_prune_ap_list(struct kvm_vcpu * vcpu)618 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
619 {
620 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
621 struct vgic_irq *irq, *tmp;
622
623 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
624
625 retry:
626 raw_spin_lock(&vgic_cpu->ap_list_lock);
627
628 list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
629 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
630 bool target_vcpu_needs_kick = false;
631
632 raw_spin_lock(&irq->irq_lock);
633
634 BUG_ON(vcpu != irq->vcpu);
635
636 target_vcpu = vgic_target_oracle(irq);
637
638 if (!target_vcpu) {
639 /*
640 * We don't need to process this interrupt any
641 * further, move it off the list.
642 */
643 list_del(&irq->ap_list);
644 irq->vcpu = NULL;
645 raw_spin_unlock(&irq->irq_lock);
646
647 /*
648 * This vgic_put_irq call matches the
649 * vgic_get_irq_kref in vgic_queue_irq_unlock,
650 * where we added the LPI to the ap_list. As
651 * we remove the irq from the list, we drop
652 * also drop the refcount.
653 */
654 vgic_put_irq(vcpu->kvm, irq);
655 continue;
656 }
657
658 if (target_vcpu == vcpu) {
659 /* We're on the right CPU */
660 raw_spin_unlock(&irq->irq_lock);
661 continue;
662 }
663
664 /* This interrupt looks like it has to be migrated. */
665
666 raw_spin_unlock(&irq->irq_lock);
667 raw_spin_unlock(&vgic_cpu->ap_list_lock);
668
669 /*
670 * Ensure locking order by always locking the smallest
671 * ID first.
672 */
673 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
674 vcpuA = vcpu;
675 vcpuB = target_vcpu;
676 } else {
677 vcpuA = target_vcpu;
678 vcpuB = vcpu;
679 }
680
681 raw_spin_lock(&vcpuA->arch.vgic_cpu.ap_list_lock);
682 raw_spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
683 SINGLE_DEPTH_NESTING);
684 raw_spin_lock(&irq->irq_lock);
685
686 /*
687 * If the affinity has been preserved, move the
688 * interrupt around. Otherwise, it means things have
689 * changed while the interrupt was unlocked, and we
690 * need to replay this.
691 *
692 * In all cases, we cannot trust the list not to have
693 * changed, so we restart from the beginning.
694 */
695 if (target_vcpu == vgic_target_oracle(irq)) {
696 struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
697
698 list_del(&irq->ap_list);
699 irq->vcpu = target_vcpu;
700 list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
701 target_vcpu_needs_kick = true;
702 }
703
704 raw_spin_unlock(&irq->irq_lock);
705 raw_spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
706 raw_spin_unlock(&vcpuA->arch.vgic_cpu.ap_list_lock);
707
708 if (target_vcpu_needs_kick) {
709 kvm_make_request(KVM_REQ_IRQ_PENDING, target_vcpu);
710 kvm_vcpu_kick(target_vcpu);
711 }
712
713 goto retry;
714 }
715
716 raw_spin_unlock(&vgic_cpu->ap_list_lock);
717 }
718
vgic_fold_lr_state(struct kvm_vcpu * vcpu)719 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
720 {
721 if (kvm_vgic_global_state.type == VGIC_V2)
722 vgic_v2_fold_lr_state(vcpu);
723 else
724 vgic_v3_fold_lr_state(vcpu);
725 }
726
727 /* Requires the irq_lock to be held. */
vgic_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)728 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
729 struct vgic_irq *irq, int lr)
730 {
731 lockdep_assert_held(&irq->irq_lock);
732
733 if (kvm_vgic_global_state.type == VGIC_V2)
734 vgic_v2_populate_lr(vcpu, irq, lr);
735 else
736 vgic_v3_populate_lr(vcpu, irq, lr);
737 }
738
vgic_clear_lr(struct kvm_vcpu * vcpu,int lr)739 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
740 {
741 if (kvm_vgic_global_state.type == VGIC_V2)
742 vgic_v2_clear_lr(vcpu, lr);
743 else
744 vgic_v3_clear_lr(vcpu, lr);
745 }
746
vgic_set_underflow(struct kvm_vcpu * vcpu)747 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
748 {
749 if (kvm_vgic_global_state.type == VGIC_V2)
750 vgic_v2_set_underflow(vcpu);
751 else
752 vgic_v3_set_underflow(vcpu);
753 }
754
755 /* Requires the ap_list_lock to be held. */
compute_ap_list_depth(struct kvm_vcpu * vcpu,bool * multi_sgi)756 static int compute_ap_list_depth(struct kvm_vcpu *vcpu,
757 bool *multi_sgi)
758 {
759 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
760 struct vgic_irq *irq;
761 int count = 0;
762
763 *multi_sgi = false;
764
765 lockdep_assert_held(&vgic_cpu->ap_list_lock);
766
767 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
768 int w;
769
770 raw_spin_lock(&irq->irq_lock);
771 /* GICv2 SGIs can count for more than one... */
772 w = vgic_irq_get_lr_count(irq);
773 raw_spin_unlock(&irq->irq_lock);
774
775 count += w;
776 *multi_sgi |= (w > 1);
777 }
778 return count;
779 }
780
781 /* Requires the VCPU's ap_list_lock to be held. */
vgic_flush_lr_state(struct kvm_vcpu * vcpu)782 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
783 {
784 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
785 struct vgic_irq *irq;
786 int count;
787 bool multi_sgi;
788 u8 prio = 0xff;
789 int i = 0;
790
791 lockdep_assert_held(&vgic_cpu->ap_list_lock);
792
793 count = compute_ap_list_depth(vcpu, &multi_sgi);
794 if (count > kvm_vgic_global_state.nr_lr || multi_sgi)
795 vgic_sort_ap_list(vcpu);
796
797 count = 0;
798
799 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
800 raw_spin_lock(&irq->irq_lock);
801
802 /*
803 * If we have multi-SGIs in the pipeline, we need to
804 * guarantee that they are all seen before any IRQ of
805 * lower priority. In that case, we need to filter out
806 * these interrupts by exiting early. This is easy as
807 * the AP list has been sorted already.
808 */
809 if (multi_sgi && irq->priority > prio) {
810 _raw_spin_unlock(&irq->irq_lock);
811 break;
812 }
813
814 if (likely(vgic_target_oracle(irq) == vcpu)) {
815 vgic_populate_lr(vcpu, irq, count++);
816
817 if (irq->source)
818 prio = irq->priority;
819 }
820
821 raw_spin_unlock(&irq->irq_lock);
822
823 if (count == kvm_vgic_global_state.nr_lr) {
824 if (!list_is_last(&irq->ap_list,
825 &vgic_cpu->ap_list_head))
826 vgic_set_underflow(vcpu);
827 break;
828 }
829 }
830
831 /* Nuke remaining LRs */
832 for (i = count ; i < kvm_vgic_global_state.nr_lr; i++)
833 vgic_clear_lr(vcpu, i);
834
835 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
836 vcpu->arch.vgic_cpu.vgic_v2.used_lrs = count;
837 else
838 vcpu->arch.vgic_cpu.vgic_v3.used_lrs = count;
839 }
840
can_access_vgic_from_kernel(void)841 static inline bool can_access_vgic_from_kernel(void)
842 {
843 /*
844 * GICv2 can always be accessed from the kernel because it is
845 * memory-mapped, and VHE systems can access GICv3 EL2 system
846 * registers.
847 */
848 return !static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif) || has_vhe();
849 }
850
vgic_save_state(struct kvm_vcpu * vcpu)851 static inline void vgic_save_state(struct kvm_vcpu *vcpu)
852 {
853 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
854 vgic_v2_save_state(vcpu);
855 else
856 __vgic_v3_save_state(&vcpu->arch.vgic_cpu.vgic_v3);
857 }
858
859 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
kvm_vgic_sync_hwstate(struct kvm_vcpu * vcpu)860 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
861 {
862 int used_lrs;
863
864 /* An empty ap_list_head implies used_lrs == 0 */
865 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
866 return;
867
868 if (can_access_vgic_from_kernel())
869 vgic_save_state(vcpu);
870
871 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
872 used_lrs = vcpu->arch.vgic_cpu.vgic_v2.used_lrs;
873 else
874 used_lrs = vcpu->arch.vgic_cpu.vgic_v3.used_lrs;
875
876 if (used_lrs)
877 vgic_fold_lr_state(vcpu);
878 vgic_prune_ap_list(vcpu);
879 }
880
vgic_restore_state(struct kvm_vcpu * vcpu)881 static inline void vgic_restore_state(struct kvm_vcpu *vcpu)
882 {
883 if (!static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
884 vgic_v2_restore_state(vcpu);
885 else
886 __vgic_v3_restore_state(&vcpu->arch.vgic_cpu.vgic_v3);
887 }
888
889 /* Flush our emulation state into the GIC hardware before entering the guest. */
kvm_vgic_flush_hwstate(struct kvm_vcpu * vcpu)890 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
891 {
892 /*
893 * If there are no virtual interrupts active or pending for this
894 * VCPU, then there is no work to do and we can bail out without
895 * taking any lock. There is a potential race with someone injecting
896 * interrupts to the VCPU, but it is a benign race as the VCPU will
897 * either observe the new interrupt before or after doing this check,
898 * and introducing additional synchronization mechanism doesn't change
899 * this.
900 *
901 * Note that we still need to go through the whole thing if anything
902 * can be directly injected (GICv4).
903 */
904 if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head) &&
905 !vgic_supports_direct_msis(vcpu->kvm))
906 return;
907
908 DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
909
910 if (!list_empty(&vcpu->arch.vgic_cpu.ap_list_head)) {
911 raw_spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
912 vgic_flush_lr_state(vcpu);
913 raw_spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
914 }
915
916 if (can_access_vgic_from_kernel())
917 vgic_restore_state(vcpu);
918
919 if (vgic_supports_direct_msis(vcpu->kvm))
920 vgic_v4_commit(vcpu);
921 }
922
kvm_vgic_load(struct kvm_vcpu * vcpu)923 void kvm_vgic_load(struct kvm_vcpu *vcpu)
924 {
925 if (unlikely(!vgic_initialized(vcpu->kvm)))
926 return;
927
928 if (kvm_vgic_global_state.type == VGIC_V2)
929 vgic_v2_load(vcpu);
930 else
931 vgic_v3_load(vcpu);
932 }
933
kvm_vgic_put(struct kvm_vcpu * vcpu,bool blocking)934 void kvm_vgic_put(struct kvm_vcpu *vcpu, bool blocking)
935 {
936 if (unlikely(!vgic_initialized(vcpu->kvm)))
937 return;
938
939 if (kvm_vgic_global_state.type == VGIC_V2)
940 vgic_v2_put(vcpu, blocking);
941 else
942 vgic_v3_put(vcpu, blocking);
943 }
944
kvm_vgic_vcpu_pending_irq(struct kvm_vcpu * vcpu)945 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
946 {
947 struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
948 struct vgic_irq *irq;
949 bool pending = false;
950 unsigned long flags;
951 struct vgic_vmcr vmcr;
952
953 if (!vcpu->kvm->arch.vgic.enabled)
954 return false;
955
956 if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
957 return true;
958
959 vgic_get_vmcr(vcpu, &vmcr);
960
961 raw_spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
962
963 list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
964 raw_spin_lock(&irq->irq_lock);
965 pending = irq_is_pending(irq) && irq->enabled &&
966 !irq->active &&
967 irq->priority < vmcr.pmr;
968 raw_spin_unlock(&irq->irq_lock);
969
970 if (pending)
971 break;
972 }
973
974 raw_spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
975
976 return pending;
977 }
978
vgic_kick_vcpus(struct kvm * kvm)979 void vgic_kick_vcpus(struct kvm *kvm)
980 {
981 struct kvm_vcpu *vcpu;
982 int c;
983
984 /*
985 * We've injected an interrupt, time to find out who deserves
986 * a good kick...
987 */
988 kvm_for_each_vcpu(c, vcpu, kvm) {
989 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
990 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
991 kvm_vcpu_kick(vcpu);
992 }
993 }
994 }
995
kvm_vgic_map_is_active(struct kvm_vcpu * vcpu,unsigned int vintid)996 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
997 {
998 struct vgic_irq *irq;
999 bool map_is_active;
1000 unsigned long flags;
1001
1002 if (!vgic_initialized(vcpu->kvm))
1003 return false;
1004
1005 irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
1006 raw_spin_lock_irqsave(&irq->irq_lock, flags);
1007 map_is_active = irq->hw && irq->active;
1008 raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
1009 vgic_put_irq(vcpu->kvm, irq);
1010
1011 return map_is_active;
1012 }
1013
1014 /*
1015 * Level-triggered mapped IRQs are special because we only observe rising
1016 * edges as input to the VGIC.
1017 *
1018 * If the guest never acked the interrupt we have to sample the physical
1019 * line and set the line level, because the device state could have changed
1020 * or we simply need to process the still pending interrupt later.
1021 *
1022 * We could also have entered the guest with the interrupt active+pending.
1023 * On the next exit, we need to re-evaluate the pending state, as it could
1024 * otherwise result in a spurious interrupt by injecting a now potentially
1025 * stale pending state.
1026 *
1027 * If this causes us to lower the level, we have to also clear the physical
1028 * active state, since we will otherwise never be told when the interrupt
1029 * becomes asserted again.
1030 *
1031 * Another case is when the interrupt requires a helping hand on
1032 * deactivation (no HW deactivation, for example).
1033 */
vgic_irq_handle_resampling(struct vgic_irq * irq,bool lr_deactivated,bool lr_pending)1034 void vgic_irq_handle_resampling(struct vgic_irq *irq,
1035 bool lr_deactivated, bool lr_pending)
1036 {
1037 if (vgic_irq_is_mapped_level(irq)) {
1038 bool resample = false;
1039
1040 if (unlikely(vgic_irq_needs_resampling(irq))) {
1041 resample = !(irq->active || irq->pending_latch);
1042 } else if (lr_pending || (lr_deactivated && irq->line_level)) {
1043 irq->line_level = vgic_get_phys_line_level(irq);
1044 resample = !irq->line_level;
1045 }
1046
1047 if (resample)
1048 vgic_irq_set_phys_active(irq, false);
1049 }
1050 }
1051