• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kcsan: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/minmax.h>
18 #include <linux/moduleparam.h>
19 #include <linux/percpu.h>
20 #include <linux/preempt.h>
21 #include <linux/sched.h>
22 #include <linux/string.h>
23 #include <linux/uaccess.h>
24 
25 #include "encoding.h"
26 #include "kcsan.h"
27 #include "permissive.h"
28 
29 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
30 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
31 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
32 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
33 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
34 
35 #ifdef MODULE_PARAM_PREFIX
36 #undef MODULE_PARAM_PREFIX
37 #endif
38 #define MODULE_PARAM_PREFIX "kcsan."
39 module_param_named(early_enable, kcsan_early_enable, bool, 0);
40 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
41 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
42 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
43 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
44 
45 bool kcsan_enabled;
46 
47 /* Per-CPU kcsan_ctx for interrupts */
48 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
49 	.disable_count		= 0,
50 	.atomic_next		= 0,
51 	.atomic_nest_count	= 0,
52 	.in_flat_atomic		= false,
53 	.access_mask		= 0,
54 	.scoped_accesses	= {LIST_POISON1, NULL},
55 };
56 
57 /*
58  * Helper macros to index into adjacent slots, starting from address slot
59  * itself, followed by the right and left slots.
60  *
61  * The purpose is 2-fold:
62  *
63  *	1. if during insertion the address slot is already occupied, check if
64  *	   any adjacent slots are free;
65  *	2. accesses that straddle a slot boundary due to size that exceeds a
66  *	   slot's range may check adjacent slots if any watchpoint matches.
67  *
68  * Note that accesses with very large size may still miss a watchpoint; however,
69  * given this should be rare, this is a reasonable trade-off to make, since this
70  * will avoid:
71  *
72  *	1. excessive contention between watchpoint checks and setup;
73  *	2. larger number of simultaneous watchpoints without sacrificing
74  *	   performance.
75  *
76  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
77  *
78  *   slot=0:  [ 1,  2,  0]
79  *   slot=9:  [10, 11,  9]
80  *   slot=63: [64, 65, 63]
81  */
82 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
83 
84 /*
85  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
86  * slot (middle) is fine if we assume that races occur rarely. The set of
87  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
88  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
89  */
90 #define SLOT_IDX_FAST(slot, i) (slot + i)
91 
92 /*
93  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
94  * able to safely update and access a watchpoint without introducing locking
95  * overhead, we encode each watchpoint as a single atomic long. The initial
96  * zero-initialized state matches INVALID_WATCHPOINT.
97  *
98  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
99  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
100  */
101 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
102 
103 /*
104  * Instructions to skip watching counter, used in should_watch(). We use a
105  * per-CPU counter to avoid excessive contention.
106  */
107 static DEFINE_PER_CPU(long, kcsan_skip);
108 
109 /* For kcsan_prandom_u32_max(). */
110 static DEFINE_PER_CPU(u32, kcsan_rand_state);
111 
find_watchpoint(unsigned long addr,size_t size,bool expect_write,long * encoded_watchpoint)112 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
113 						      size_t size,
114 						      bool expect_write,
115 						      long *encoded_watchpoint)
116 {
117 	const int slot = watchpoint_slot(addr);
118 	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
119 	atomic_long_t *watchpoint;
120 	unsigned long wp_addr_masked;
121 	size_t wp_size;
122 	bool is_write;
123 	int i;
124 
125 	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
126 
127 	for (i = 0; i < NUM_SLOTS; ++i) {
128 		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
129 		*encoded_watchpoint = atomic_long_read(watchpoint);
130 		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
131 				       &wp_size, &is_write))
132 			continue;
133 
134 		if (expect_write && !is_write)
135 			continue;
136 
137 		/* Check if the watchpoint matches the access. */
138 		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
139 			return watchpoint;
140 	}
141 
142 	return NULL;
143 }
144 
145 static inline atomic_long_t *
insert_watchpoint(unsigned long addr,size_t size,bool is_write)146 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
147 {
148 	const int slot = watchpoint_slot(addr);
149 	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
150 	atomic_long_t *watchpoint;
151 	int i;
152 
153 	/* Check slot index logic, ensuring we stay within array bounds. */
154 	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
155 	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
156 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
157 	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
158 
159 	for (i = 0; i < NUM_SLOTS; ++i) {
160 		long expect_val = INVALID_WATCHPOINT;
161 
162 		/* Try to acquire this slot. */
163 		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
164 		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
165 			return watchpoint;
166 	}
167 
168 	return NULL;
169 }
170 
171 /*
172  * Return true if watchpoint was successfully consumed, false otherwise.
173  *
174  * This may return false if:
175  *
176  *	1. another thread already consumed the watchpoint;
177  *	2. the thread that set up the watchpoint already removed it;
178  *	3. the watchpoint was removed and then re-used.
179  */
180 static __always_inline bool
try_consume_watchpoint(atomic_long_t * watchpoint,long encoded_watchpoint)181 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
182 {
183 	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
184 }
185 
186 /* Return true if watchpoint was not touched, false if already consumed. */
consume_watchpoint(atomic_long_t * watchpoint)187 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
188 {
189 	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
190 }
191 
192 /* Remove the watchpoint -- its slot may be reused after. */
remove_watchpoint(atomic_long_t * watchpoint)193 static inline void remove_watchpoint(atomic_long_t *watchpoint)
194 {
195 	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
196 }
197 
get_ctx(void)198 static __always_inline struct kcsan_ctx *get_ctx(void)
199 {
200 	/*
201 	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
202 	 * also result in calls that generate warnings in uaccess regions.
203 	 */
204 	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
205 }
206 
207 /* Check scoped accesses; never inline because this is a slow-path! */
kcsan_check_scoped_accesses(void)208 static noinline void kcsan_check_scoped_accesses(void)
209 {
210 	struct kcsan_ctx *ctx = get_ctx();
211 	struct list_head *prev_save = ctx->scoped_accesses.prev;
212 	struct kcsan_scoped_access *scoped_access;
213 
214 	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
215 	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
216 		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
217 	ctx->scoped_accesses.prev = prev_save;
218 }
219 
220 /* Rules for generic atomic accesses. Called from fast-path. */
221 static __always_inline bool
is_atomic(const volatile void * ptr,size_t size,int type,struct kcsan_ctx * ctx)222 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
223 {
224 	if (type & KCSAN_ACCESS_ATOMIC)
225 		return true;
226 
227 	/*
228 	 * Unless explicitly declared atomic, never consider an assertion access
229 	 * as atomic. This allows using them also in atomic regions, such as
230 	 * seqlocks, without implicitly changing their semantics.
231 	 */
232 	if (type & KCSAN_ACCESS_ASSERT)
233 		return false;
234 
235 	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
236 	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
237 	    !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
238 		return true; /* Assume aligned writes up to word size are atomic. */
239 
240 	if (ctx->atomic_next > 0) {
241 		/*
242 		 * Because we do not have separate contexts for nested
243 		 * interrupts, in case atomic_next is set, we simply assume that
244 		 * the outer interrupt set atomic_next. In the worst case, we
245 		 * will conservatively consider operations as atomic. This is a
246 		 * reasonable trade-off to make, since this case should be
247 		 * extremely rare; however, even if extremely rare, it could
248 		 * lead to false positives otherwise.
249 		 */
250 		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
251 			--ctx->atomic_next; /* in task, or outer interrupt */
252 		return true;
253 	}
254 
255 	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
256 }
257 
258 static __always_inline bool
should_watch(const volatile void * ptr,size_t size,int type,struct kcsan_ctx * ctx)259 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
260 {
261 	/*
262 	 * Never set up watchpoints when memory operations are atomic.
263 	 *
264 	 * Need to check this first, before kcsan_skip check below: (1) atomics
265 	 * should not count towards skipped instructions, and (2) to actually
266 	 * decrement kcsan_atomic_next for consecutive instruction stream.
267 	 */
268 	if (is_atomic(ptr, size, type, ctx))
269 		return false;
270 
271 	if (this_cpu_dec_return(kcsan_skip) >= 0)
272 		return false;
273 
274 	/*
275 	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
276 	 * via reset_kcsan_skip() to avoid underflow.
277 	 */
278 
279 	/* this operation should be watched */
280 	return true;
281 }
282 
283 /*
284  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
285  * congruential generator, using constants from "Numerical Recipes".
286  */
kcsan_prandom_u32_max(u32 ep_ro)287 static u32 kcsan_prandom_u32_max(u32 ep_ro)
288 {
289 	u32 state = this_cpu_read(kcsan_rand_state);
290 
291 	state = 1664525 * state + 1013904223;
292 	this_cpu_write(kcsan_rand_state, state);
293 
294 	return state % ep_ro;
295 }
296 
reset_kcsan_skip(void)297 static inline void reset_kcsan_skip(void)
298 {
299 	long skip_count = kcsan_skip_watch -
300 			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
301 				   kcsan_prandom_u32_max(kcsan_skip_watch) :
302 				   0);
303 	this_cpu_write(kcsan_skip, skip_count);
304 }
305 
kcsan_is_enabled(struct kcsan_ctx * ctx)306 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
307 {
308 	return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
309 }
310 
311 /* Introduce delay depending on context and configuration. */
delay_access(int type)312 static void delay_access(int type)
313 {
314 	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
315 	/* For certain access types, skew the random delay to be longer. */
316 	unsigned int skew_delay_order =
317 		(type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
318 
319 	delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
320 			       kcsan_prandom_u32_max(delay >> skew_delay_order) :
321 			       0;
322 	udelay(delay);
323 }
324 
kcsan_save_irqtrace(struct task_struct * task)325 void kcsan_save_irqtrace(struct task_struct *task)
326 {
327 #ifdef CONFIG_TRACE_IRQFLAGS
328 	task->kcsan_save_irqtrace = task->irqtrace;
329 #endif
330 }
331 
kcsan_restore_irqtrace(struct task_struct * task)332 void kcsan_restore_irqtrace(struct task_struct *task)
333 {
334 #ifdef CONFIG_TRACE_IRQFLAGS
335 	task->irqtrace = task->kcsan_save_irqtrace;
336 #endif
337 }
338 
339 /*
340  * Pull everything together: check_access() below contains the performance
341  * critical operations; the fast-path (including check_access) functions should
342  * all be inlinable by the instrumentation functions.
343  *
344  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
345  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
346  * be filtered from the stacktrace, as well as give them unique names for the
347  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
348  * since they do not access any user memory, but instrumentation is still
349  * emitted in UACCESS regions.
350  */
351 
kcsan_found_watchpoint(const volatile void * ptr,size_t size,int type,atomic_long_t * watchpoint,long encoded_watchpoint)352 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
353 					    size_t size,
354 					    int type,
355 					    atomic_long_t *watchpoint,
356 					    long encoded_watchpoint)
357 {
358 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
359 	struct kcsan_ctx *ctx = get_ctx();
360 	unsigned long flags;
361 	bool consumed;
362 
363 	/*
364 	 * We know a watchpoint exists. Let's try to keep the race-window
365 	 * between here and finally consuming the watchpoint below as small as
366 	 * possible -- avoid unneccessarily complex code until consumed.
367 	 */
368 
369 	if (!kcsan_is_enabled(ctx))
370 		return;
371 
372 	/*
373 	 * The access_mask check relies on value-change comparison. To avoid
374 	 * reporting a race where e.g. the writer set up the watchpoint, but the
375 	 * reader has access_mask!=0, we have to ignore the found watchpoint.
376 	 */
377 	if (ctx->access_mask)
378 		return;
379 
380 	/*
381 	 * If the other thread does not want to ignore the access, and there was
382 	 * a value change as a result of this thread's operation, we will still
383 	 * generate a report of unknown origin.
384 	 *
385 	 * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
386 	 */
387 	if (!is_assert && kcsan_ignore_address(ptr))
388 		return;
389 
390 	/*
391 	 * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
392 	 * avoid erroneously triggering reports if the context is disabled.
393 	 */
394 	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
395 
396 	/* keep this after try_consume_watchpoint */
397 	flags = user_access_save();
398 
399 	if (consumed) {
400 		kcsan_save_irqtrace(current);
401 		kcsan_report_set_info(ptr, size, type, watchpoint - watchpoints);
402 		kcsan_restore_irqtrace(current);
403 	} else {
404 		/*
405 		 * The other thread may not print any diagnostics, as it has
406 		 * already removed the watchpoint, or another thread consumed
407 		 * the watchpoint before this thread.
408 		 */
409 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
410 	}
411 
412 	if (is_assert)
413 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
414 	else
415 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
416 
417 	user_access_restore(flags);
418 }
419 
420 static noinline void
kcsan_setup_watchpoint(const volatile void * ptr,size_t size,int type)421 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
422 {
423 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
424 	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
425 	atomic_long_t *watchpoint;
426 	u64 old, new, diff;
427 	unsigned long access_mask;
428 	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
429 	unsigned long ua_flags = user_access_save();
430 	struct kcsan_ctx *ctx = get_ctx();
431 	unsigned long irq_flags = 0;
432 
433 	/*
434 	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
435 	 * should_watch().
436 	 */
437 	reset_kcsan_skip();
438 
439 	if (!kcsan_is_enabled(ctx))
440 		goto out;
441 
442 	/*
443 	 * Check to-ignore addresses after kcsan_is_enabled(), as we may access
444 	 * memory that is not yet initialized during early boot.
445 	 */
446 	if (!is_assert && kcsan_ignore_address(ptr))
447 		goto out;
448 
449 	if (!check_encodable((unsigned long)ptr, size)) {
450 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
451 		goto out;
452 	}
453 
454 	/*
455 	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
456 	 * runtime is entered for every memory access, and potentially useful
457 	 * information is lost if dirtied by KCSAN.
458 	 */
459 	kcsan_save_irqtrace(current);
460 	if (!kcsan_interrupt_watcher)
461 		local_irq_save(irq_flags);
462 
463 	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
464 	if (watchpoint == NULL) {
465 		/*
466 		 * Out of capacity: the size of 'watchpoints', and the frequency
467 		 * with which should_watch() returns true should be tweaked so
468 		 * that this case happens very rarely.
469 		 */
470 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
471 		goto out_unlock;
472 	}
473 
474 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
475 	atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
476 
477 	/*
478 	 * Read the current value, to later check and infer a race if the data
479 	 * was modified via a non-instrumented access, e.g. from a device.
480 	 */
481 	old = 0;
482 	switch (size) {
483 	case 1:
484 		old = READ_ONCE(*(const u8 *)ptr);
485 		break;
486 	case 2:
487 		old = READ_ONCE(*(const u16 *)ptr);
488 		break;
489 	case 4:
490 		old = READ_ONCE(*(const u32 *)ptr);
491 		break;
492 	case 8:
493 		old = READ_ONCE(*(const u64 *)ptr);
494 		break;
495 	default:
496 		break; /* ignore; we do not diff the values */
497 	}
498 
499 	/*
500 	 * Delay this thread, to increase probability of observing a racy
501 	 * conflicting access.
502 	 */
503 	delay_access(type);
504 
505 	/*
506 	 * Re-read value, and check if it is as expected; if not, we infer a
507 	 * racy access.
508 	 */
509 	access_mask = ctx->access_mask;
510 	new = 0;
511 	switch (size) {
512 	case 1:
513 		new = READ_ONCE(*(const u8 *)ptr);
514 		break;
515 	case 2:
516 		new = READ_ONCE(*(const u16 *)ptr);
517 		break;
518 	case 4:
519 		new = READ_ONCE(*(const u32 *)ptr);
520 		break;
521 	case 8:
522 		new = READ_ONCE(*(const u64 *)ptr);
523 		break;
524 	default:
525 		break; /* ignore; we do not diff the values */
526 	}
527 
528 	diff = old ^ new;
529 	if (access_mask)
530 		diff &= access_mask;
531 
532 	/*
533 	 * Check if we observed a value change.
534 	 *
535 	 * Also check if the data race should be ignored (the rules depend on
536 	 * non-zero diff); if it is to be ignored, the below rules for
537 	 * KCSAN_VALUE_CHANGE_MAYBE apply.
538 	 */
539 	if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
540 		value_change = KCSAN_VALUE_CHANGE_TRUE;
541 
542 	/* Check if this access raced with another. */
543 	if (!consume_watchpoint(watchpoint)) {
544 		/*
545 		 * Depending on the access type, map a value_change of MAYBE to
546 		 * TRUE (always report) or FALSE (never report).
547 		 */
548 		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
549 			if (access_mask != 0) {
550 				/*
551 				 * For access with access_mask, we require a
552 				 * value-change, as it is likely that races on
553 				 * ~access_mask bits are expected.
554 				 */
555 				value_change = KCSAN_VALUE_CHANGE_FALSE;
556 			} else if (size > 8 || is_assert) {
557 				/* Always assume a value-change. */
558 				value_change = KCSAN_VALUE_CHANGE_TRUE;
559 			}
560 		}
561 
562 		/*
563 		 * No need to increment 'data_races' counter, as the racing
564 		 * thread already did.
565 		 *
566 		 * Count 'assert_failures' for each failed ASSERT access,
567 		 * therefore both this thread and the racing thread may
568 		 * increment this counter.
569 		 */
570 		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
571 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
572 
573 		kcsan_report_known_origin(ptr, size, type, value_change,
574 					  watchpoint - watchpoints,
575 					  old, new, access_mask);
576 	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
577 		/* Inferring a race, since the value should not have changed. */
578 
579 		atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
580 		if (is_assert)
581 			atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
582 
583 		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
584 			kcsan_report_unknown_origin(ptr, size, type, old, new, access_mask);
585 	}
586 
587 	/*
588 	 * Remove watchpoint; must be after reporting, since the slot may be
589 	 * reused after this point.
590 	 */
591 	remove_watchpoint(watchpoint);
592 	atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
593 out_unlock:
594 	if (!kcsan_interrupt_watcher)
595 		local_irq_restore(irq_flags);
596 	kcsan_restore_irqtrace(current);
597 out:
598 	user_access_restore(ua_flags);
599 }
600 
check_access(const volatile void * ptr,size_t size,int type)601 static __always_inline void check_access(const volatile void *ptr, size_t size,
602 					 int type)
603 {
604 	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
605 	atomic_long_t *watchpoint;
606 	long encoded_watchpoint;
607 
608 	/*
609 	 * Do nothing for 0 sized check; this comparison will be optimized out
610 	 * for constant sized instrumentation (__tsan_{read,write}N).
611 	 */
612 	if (unlikely(size == 0))
613 		return;
614 
615 	/*
616 	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
617 	 * user_access_save, as the address that ptr points to is only used to
618 	 * check if a watchpoint exists; ptr is never dereferenced.
619 	 */
620 	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
621 				     &encoded_watchpoint);
622 	/*
623 	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
624 	 * slow-path, as long as no state changes that cause a race to be
625 	 * detected and reported have occurred until kcsan_is_enabled() is
626 	 * checked.
627 	 */
628 
629 	if (unlikely(watchpoint != NULL))
630 		kcsan_found_watchpoint(ptr, size, type, watchpoint,
631 				       encoded_watchpoint);
632 	else {
633 		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
634 
635 		if (unlikely(should_watch(ptr, size, type, ctx)))
636 			kcsan_setup_watchpoint(ptr, size, type);
637 		else if (unlikely(ctx->scoped_accesses.prev))
638 			kcsan_check_scoped_accesses();
639 	}
640 }
641 
642 /* === Public interface ===================================================== */
643 
kcsan_init(void)644 void __init kcsan_init(void)
645 {
646 	int cpu;
647 
648 	BUG_ON(!in_task());
649 
650 	for_each_possible_cpu(cpu)
651 		per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
652 
653 	/*
654 	 * We are in the init task, and no other tasks should be running;
655 	 * WRITE_ONCE without memory barrier is sufficient.
656 	 */
657 	if (kcsan_early_enable) {
658 		pr_info("enabled early\n");
659 		WRITE_ONCE(kcsan_enabled, true);
660 	}
661 
662 	if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
663 	    IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
664 	    IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
665 	    IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
666 		pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
667 	} else {
668 		pr_info("strict mode configured\n");
669 	}
670 }
671 
672 /* === Exported interface =================================================== */
673 
kcsan_disable_current(void)674 void kcsan_disable_current(void)
675 {
676 	++get_ctx()->disable_count;
677 }
678 EXPORT_SYMBOL(kcsan_disable_current);
679 
kcsan_enable_current(void)680 void kcsan_enable_current(void)
681 {
682 	if (get_ctx()->disable_count-- == 0) {
683 		/*
684 		 * Warn if kcsan_enable_current() calls are unbalanced with
685 		 * kcsan_disable_current() calls, which causes disable_count to
686 		 * become negative and should not happen.
687 		 */
688 		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
689 		kcsan_disable_current(); /* disable to generate warning */
690 		WARN(1, "Unbalanced %s()", __func__);
691 		kcsan_enable_current();
692 	}
693 }
694 EXPORT_SYMBOL(kcsan_enable_current);
695 
kcsan_enable_current_nowarn(void)696 void kcsan_enable_current_nowarn(void)
697 {
698 	if (get_ctx()->disable_count-- == 0)
699 		kcsan_disable_current();
700 }
701 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
702 
kcsan_nestable_atomic_begin(void)703 void kcsan_nestable_atomic_begin(void)
704 {
705 	/*
706 	 * Do *not* check and warn if we are in a flat atomic region: nestable
707 	 * and flat atomic regions are independent from each other.
708 	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
709 	 * comments.
710 	 */
711 
712 	++get_ctx()->atomic_nest_count;
713 }
714 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
715 
kcsan_nestable_atomic_end(void)716 void kcsan_nestable_atomic_end(void)
717 {
718 	if (get_ctx()->atomic_nest_count-- == 0) {
719 		/*
720 		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
721 		 * kcsan_nestable_atomic_begin() calls, which causes
722 		 * atomic_nest_count to become negative and should not happen.
723 		 */
724 		kcsan_nestable_atomic_begin(); /* restore to 0 */
725 		kcsan_disable_current(); /* disable to generate warning */
726 		WARN(1, "Unbalanced %s()", __func__);
727 		kcsan_enable_current();
728 	}
729 }
730 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
731 
kcsan_flat_atomic_begin(void)732 void kcsan_flat_atomic_begin(void)
733 {
734 	get_ctx()->in_flat_atomic = true;
735 }
736 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
737 
kcsan_flat_atomic_end(void)738 void kcsan_flat_atomic_end(void)
739 {
740 	get_ctx()->in_flat_atomic = false;
741 }
742 EXPORT_SYMBOL(kcsan_flat_atomic_end);
743 
kcsan_atomic_next(int n)744 void kcsan_atomic_next(int n)
745 {
746 	get_ctx()->atomic_next = n;
747 }
748 EXPORT_SYMBOL(kcsan_atomic_next);
749 
kcsan_set_access_mask(unsigned long mask)750 void kcsan_set_access_mask(unsigned long mask)
751 {
752 	get_ctx()->access_mask = mask;
753 }
754 EXPORT_SYMBOL(kcsan_set_access_mask);
755 
756 struct kcsan_scoped_access *
kcsan_begin_scoped_access(const volatile void * ptr,size_t size,int type,struct kcsan_scoped_access * sa)757 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
758 			  struct kcsan_scoped_access *sa)
759 {
760 	struct kcsan_ctx *ctx = get_ctx();
761 
762 	__kcsan_check_access(ptr, size, type);
763 
764 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
765 
766 	INIT_LIST_HEAD(&sa->list);
767 	sa->ptr = ptr;
768 	sa->size = size;
769 	sa->type = type;
770 
771 	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
772 		INIT_LIST_HEAD(&ctx->scoped_accesses);
773 	list_add(&sa->list, &ctx->scoped_accesses);
774 
775 	ctx->disable_count--;
776 	return sa;
777 }
778 EXPORT_SYMBOL(kcsan_begin_scoped_access);
779 
kcsan_end_scoped_access(struct kcsan_scoped_access * sa)780 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
781 {
782 	struct kcsan_ctx *ctx = get_ctx();
783 
784 	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
785 		return;
786 
787 	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
788 
789 	list_del(&sa->list);
790 	if (list_empty(&ctx->scoped_accesses))
791 		/*
792 		 * Ensure we do not enter kcsan_check_scoped_accesses()
793 		 * slow-path if unnecessary, and avoids requiring list_empty()
794 		 * in the fast-path (to avoid a READ_ONCE() and potential
795 		 * uaccess warning).
796 		 */
797 		ctx->scoped_accesses.prev = NULL;
798 
799 	ctx->disable_count--;
800 
801 	__kcsan_check_access(sa->ptr, sa->size, sa->type);
802 }
803 EXPORT_SYMBOL(kcsan_end_scoped_access);
804 
__kcsan_check_access(const volatile void * ptr,size_t size,int type)805 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
806 {
807 	check_access(ptr, size, type);
808 }
809 EXPORT_SYMBOL(__kcsan_check_access);
810 
811 /*
812  * KCSAN uses the same instrumentation that is emitted by supported compilers
813  * for ThreadSanitizer (TSAN).
814  *
815  * When enabled, the compiler emits instrumentation calls (the functions
816  * prefixed with "__tsan" below) for all loads and stores that it generated;
817  * inline asm is not instrumented.
818  *
819  * Note that, not all supported compiler versions distinguish aligned/unaligned
820  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
821  * version to the generic version, which can handle both.
822  */
823 
824 #define DEFINE_TSAN_READ_WRITE(size)                                           \
825 	void __tsan_read##size(void *ptr);                                     \
826 	void __tsan_read##size(void *ptr)                                      \
827 	{                                                                      \
828 		check_access(ptr, size, 0);                                    \
829 	}                                                                      \
830 	EXPORT_SYMBOL(__tsan_read##size);                                      \
831 	void __tsan_unaligned_read##size(void *ptr)                            \
832 		__alias(__tsan_read##size);                                    \
833 	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
834 	void __tsan_write##size(void *ptr);                                    \
835 	void __tsan_write##size(void *ptr)                                     \
836 	{                                                                      \
837 		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
838 	}                                                                      \
839 	EXPORT_SYMBOL(__tsan_write##size);                                     \
840 	void __tsan_unaligned_write##size(void *ptr)                           \
841 		__alias(__tsan_write##size);                                   \
842 	EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
843 	void __tsan_read_write##size(void *ptr);                               \
844 	void __tsan_read_write##size(void *ptr)                                \
845 	{                                                                      \
846 		check_access(ptr, size,                                        \
847 			     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
848 	}                                                                      \
849 	EXPORT_SYMBOL(__tsan_read_write##size);                                \
850 	void __tsan_unaligned_read_write##size(void *ptr)                      \
851 		__alias(__tsan_read_write##size);                              \
852 	EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
853 
854 DEFINE_TSAN_READ_WRITE(1);
855 DEFINE_TSAN_READ_WRITE(2);
856 DEFINE_TSAN_READ_WRITE(4);
857 DEFINE_TSAN_READ_WRITE(8);
858 DEFINE_TSAN_READ_WRITE(16);
859 
860 void __tsan_read_range(void *ptr, size_t size);
__tsan_read_range(void * ptr,size_t size)861 void __tsan_read_range(void *ptr, size_t size)
862 {
863 	check_access(ptr, size, 0);
864 }
865 EXPORT_SYMBOL(__tsan_read_range);
866 
867 void __tsan_write_range(void *ptr, size_t size);
__tsan_write_range(void * ptr,size_t size)868 void __tsan_write_range(void *ptr, size_t size)
869 {
870 	check_access(ptr, size, KCSAN_ACCESS_WRITE);
871 }
872 EXPORT_SYMBOL(__tsan_write_range);
873 
874 /*
875  * Use of explicit volatile is generally disallowed [1], however, volatile is
876  * still used in various concurrent context, whether in low-level
877  * synchronization primitives or for legacy reasons.
878  * [1] https://lwn.net/Articles/233479/
879  *
880  * We only consider volatile accesses atomic if they are aligned and would pass
881  * the size-check of compiletime_assert_rwonce_type().
882  */
883 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
884 	void __tsan_volatile_read##size(void *ptr);                            \
885 	void __tsan_volatile_read##size(void *ptr)                             \
886 	{                                                                      \
887 		const bool is_atomic = size <= sizeof(long long) &&            \
888 				       IS_ALIGNED((unsigned long)ptr, size);   \
889 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
890 			return;                                                \
891 		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
892 	}                                                                      \
893 	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
894 	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
895 		__alias(__tsan_volatile_read##size);                           \
896 	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
897 	void __tsan_volatile_write##size(void *ptr);                           \
898 	void __tsan_volatile_write##size(void *ptr)                            \
899 	{                                                                      \
900 		const bool is_atomic = size <= sizeof(long long) &&            \
901 				       IS_ALIGNED((unsigned long)ptr, size);   \
902 		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
903 			return;                                                \
904 		check_access(ptr, size,                                        \
905 			     KCSAN_ACCESS_WRITE |                              \
906 				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
907 	}                                                                      \
908 	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
909 	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
910 		__alias(__tsan_volatile_write##size);                          \
911 	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
912 
913 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
914 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
915 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
916 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
917 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
918 
919 /*
920  * The below are not required by KCSAN, but can still be emitted by the
921  * compiler.
922  */
923 void __tsan_func_entry(void *call_pc);
__tsan_func_entry(void * call_pc)924 void __tsan_func_entry(void *call_pc)
925 {
926 }
927 EXPORT_SYMBOL(__tsan_func_entry);
928 void __tsan_func_exit(void);
__tsan_func_exit(void)929 void __tsan_func_exit(void)
930 {
931 }
932 EXPORT_SYMBOL(__tsan_func_exit);
933 void __tsan_init(void);
__tsan_init(void)934 void __tsan_init(void)
935 {
936 }
937 EXPORT_SYMBOL(__tsan_init);
938 
939 /*
940  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
941  *
942  * Normal kernel code _should not_ be using them directly, but some
943  * architectures may implement some or all atomics using the compilers'
944  * builtins.
945  *
946  * Note: If an architecture decides to fully implement atomics using the
947  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
948  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
949  * atomic-instrumented) is no longer necessary.
950  *
951  * TSAN instrumentation replaces atomic accesses with calls to any of the below
952  * functions, whose job is to also execute the operation itself.
953  */
954 
955 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
956 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
957 	u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
958 	{                                                                                          \
959 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
960 			check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
961 		}                                                                                  \
962 		return __atomic_load_n(ptr, memorder);                                             \
963 	}                                                                                          \
964 	EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
965 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
966 	void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
967 	{                                                                                          \
968 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
969 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
970 				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
971 		}                                                                                  \
972 		__atomic_store_n(ptr, v, memorder);                                                \
973 	}                                                                                          \
974 	EXPORT_SYMBOL(__tsan_atomic##bits##_store)
975 
976 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
977 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
978 	u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
979 	{                                                                                          \
980 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
981 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
982 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
983 					     KCSAN_ACCESS_ATOMIC);                                 \
984 		}                                                                                  \
985 		return __atomic_##op##suffix(ptr, v, memorder);                                    \
986 	}                                                                                          \
987 	EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
988 
989 /*
990  * Note: CAS operations are always classified as write, even in case they
991  * fail. We cannot perform check_access() after a write, as it might lead to
992  * false positives, in cases such as:
993  *
994  *	T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
995  *
996  *	T1: if (__atomic_load_n(&p->flag, ...)) {
997  *		modify *p;
998  *		p->flag = 0;
999  *	    }
1000  *
1001  * The only downside is that, if there are 3 threads, with one CAS that
1002  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1003  * point at the wrong CAS as the source of the race. However, if we assume that
1004  * all CAS can succeed in some other execution, the data race is still valid.
1005  */
1006 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1007 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1008 							      u##bits val, int mo, int fail_mo);   \
1009 	int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1010 							      u##bits val, int mo, int fail_mo)    \
1011 	{                                                                                          \
1012 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1013 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1014 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1015 					     KCSAN_ACCESS_ATOMIC);                                 \
1016 		}                                                                                  \
1017 		return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1018 	}                                                                                          \
1019 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1020 
1021 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1022 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1023 							   int mo, int fail_mo);                   \
1024 	u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1025 							   int mo, int fail_mo)                    \
1026 	{                                                                                          \
1027 		if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1028 			check_access(ptr, bits / BITS_PER_BYTE,                                    \
1029 				     KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1030 					     KCSAN_ACCESS_ATOMIC);                                 \
1031 		}                                                                                  \
1032 		__atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1033 		return exp;                                                                        \
1034 	}                                                                                          \
1035 	EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1036 
1037 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1038 	DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1039 	DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1040 	DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1041 	DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1042 	DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1043 	DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1044 	DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1045 	DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1046 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1047 	DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1048 	DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1049 
1050 DEFINE_TSAN_ATOMIC_OPS(8);
1051 DEFINE_TSAN_ATOMIC_OPS(16);
1052 DEFINE_TSAN_ATOMIC_OPS(32);
1053 #ifdef CONFIG_64BIT
1054 DEFINE_TSAN_ATOMIC_OPS(64);
1055 #endif
1056 
1057 void __tsan_atomic_thread_fence(int memorder);
__tsan_atomic_thread_fence(int memorder)1058 void __tsan_atomic_thread_fence(int memorder)
1059 {
1060 	__atomic_thread_fence(memorder);
1061 }
1062 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1063 
1064 void __tsan_atomic_signal_fence(int memorder);
__tsan_atomic_signal_fence(int memorder)1065 void __tsan_atomic_signal_fence(int memorder) { }
1066 EXPORT_SYMBOL(__tsan_atomic_signal_fence);
1067 
1068 #ifdef __HAVE_ARCH_MEMSET
1069 void *__tsan_memset(void *s, int c, size_t count);
__tsan_memset(void * s,int c,size_t count)1070 noinline void *__tsan_memset(void *s, int c, size_t count)
1071 {
1072 	/*
1073 	 * Instead of not setting up watchpoints where accessed size is greater
1074 	 * than MAX_ENCODABLE_SIZE, truncate checked size to MAX_ENCODABLE_SIZE.
1075 	 */
1076 	size_t check_len = min_t(size_t, count, MAX_ENCODABLE_SIZE);
1077 
1078 	check_access(s, check_len, KCSAN_ACCESS_WRITE);
1079 	return memset(s, c, count);
1080 }
1081 #else
1082 void *__tsan_memset(void *s, int c, size_t count) __alias(memset);
1083 #endif
1084 EXPORT_SYMBOL(__tsan_memset);
1085 
1086 #ifdef __HAVE_ARCH_MEMMOVE
1087 void *__tsan_memmove(void *dst, const void *src, size_t len);
__tsan_memmove(void * dst,const void * src,size_t len)1088 noinline void *__tsan_memmove(void *dst, const void *src, size_t len)
1089 {
1090 	size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1091 
1092 	check_access(dst, check_len, KCSAN_ACCESS_WRITE);
1093 	check_access(src, check_len, 0);
1094 	return memmove(dst, src, len);
1095 }
1096 #else
1097 void *__tsan_memmove(void *dst, const void *src, size_t len) __alias(memmove);
1098 #endif
1099 EXPORT_SYMBOL(__tsan_memmove);
1100 
1101 #ifdef __HAVE_ARCH_MEMCPY
1102 void *__tsan_memcpy(void *dst, const void *src, size_t len);
__tsan_memcpy(void * dst,const void * src,size_t len)1103 noinline void *__tsan_memcpy(void *dst, const void *src, size_t len)
1104 {
1105 	size_t check_len = min_t(size_t, len, MAX_ENCODABLE_SIZE);
1106 
1107 	check_access(dst, check_len, KCSAN_ACCESS_WRITE);
1108 	check_access(src, check_len, 0);
1109 	return memcpy(dst, src, len);
1110 }
1111 #else
1112 void *__tsan_memcpy(void *dst, const void *src, size_t len) __alias(memcpy);
1113 #endif
1114 EXPORT_SYMBOL(__tsan_memcpy);
1115