1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60
61 enum {
62 /*
63 * worker_pool flags
64 *
65 * A bound pool is either associated or disassociated with its CPU.
66 * While associated (!DISASSOCIATED), all workers are bound to the
67 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 * is in effect.
69 *
70 * While DISASSOCIATED, the cpu may be offline and all workers have
71 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 * be executing on any CPU. The pool behaves as an unbound one.
73 *
74 * Note that DISASSOCIATED should be flipped only while holding
75 * wq_pool_attach_mutex to avoid changing binding state while
76 * worker_attach_to_pool() is in progress.
77 */
78 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
79 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
80
81 /* worker flags */
82 WORKER_DIE = 1 << 1, /* die die die */
83 WORKER_IDLE = 1 << 2, /* is idle */
84 WORKER_PREP = 1 << 3, /* preparing to run works */
85 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
86 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
87 WORKER_REBOUND = 1 << 8, /* worker was rebound */
88
89 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
90 WORKER_UNBOUND | WORKER_REBOUND,
91
92 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
93
94 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
95 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
96
97 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
98 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
99
100 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
101 /* call for help after 10ms
102 (min two ticks) */
103 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
104 CREATE_COOLDOWN = HZ, /* time to breath after fail */
105
106 /*
107 * Rescue workers are used only on emergencies and shared by
108 * all cpus. Give MIN_NICE.
109 */
110 RESCUER_NICE_LEVEL = MIN_NICE,
111 HIGHPRI_NICE_LEVEL = MIN_NICE,
112
113 WQ_NAME_LEN = 24,
114 };
115
116 /*
117 * Structure fields follow one of the following exclusion rules.
118 *
119 * I: Modifiable by initialization/destruction paths and read-only for
120 * everyone else.
121 *
122 * P: Preemption protected. Disabling preemption is enough and should
123 * only be modified and accessed from the local cpu.
124 *
125 * L: pool->lock protected. Access with pool->lock held.
126 *
127 * X: During normal operation, modification requires pool->lock and should
128 * be done only from local cpu. Either disabling preemption on local
129 * cpu or grabbing pool->lock is enough for read access. If
130 * POOL_DISASSOCIATED is set, it's identical to L.
131 *
132 * A: wq_pool_attach_mutex protected.
133 *
134 * PL: wq_pool_mutex protected.
135 *
136 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
137 *
138 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
139 *
140 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
141 * RCU for reads.
142 *
143 * WQ: wq->mutex protected.
144 *
145 * WR: wq->mutex protected for writes. RCU protected for reads.
146 *
147 * MD: wq_mayday_lock protected.
148 */
149
150 /* struct worker is defined in workqueue_internal.h */
151
152 struct worker_pool {
153 raw_spinlock_t lock; /* the pool lock */
154 int cpu; /* I: the associated cpu */
155 int node; /* I: the associated node ID */
156 int id; /* I: pool ID */
157 unsigned int flags; /* X: flags */
158
159 unsigned long watchdog_ts; /* L: watchdog timestamp */
160
161 struct list_head worklist; /* L: list of pending works */
162
163 int nr_workers; /* L: total number of workers */
164 int nr_idle; /* L: currently idle workers */
165
166 struct list_head idle_list; /* X: list of idle workers */
167 struct timer_list idle_timer; /* L: worker idle timeout */
168 struct timer_list mayday_timer; /* L: SOS timer for workers */
169
170 /* a workers is either on busy_hash or idle_list, or the manager */
171 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
172 /* L: hash of busy workers */
173
174 struct worker *manager; /* L: purely informational */
175 struct list_head workers; /* A: attached workers */
176 struct completion *detach_completion; /* all workers detached */
177
178 struct ida worker_ida; /* worker IDs for task name */
179
180 struct workqueue_attrs *attrs; /* I: worker attributes */
181 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
182 int refcnt; /* PL: refcnt for unbound pools */
183
184 /*
185 * The current concurrency level. As it's likely to be accessed
186 * from other CPUs during try_to_wake_up(), put it in a separate
187 * cacheline.
188 */
189 atomic_t nr_running ____cacheline_aligned_in_smp;
190
191 /*
192 * Destruction of pool is RCU protected to allow dereferences
193 * from get_work_pool().
194 */
195 struct rcu_head rcu;
196 } ____cacheline_aligned_in_smp;
197
198 /*
199 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
200 * of work_struct->data are used for flags and the remaining high bits
201 * point to the pwq; thus, pwqs need to be aligned at two's power of the
202 * number of flag bits.
203 */
204 struct pool_workqueue {
205 struct worker_pool *pool; /* I: the associated pool */
206 struct workqueue_struct *wq; /* I: the owning workqueue */
207 int work_color; /* L: current color */
208 int flush_color; /* L: flushing color */
209 int refcnt; /* L: reference count */
210 int nr_in_flight[WORK_NR_COLORS];
211 /* L: nr of in_flight works */
212
213 /*
214 * nr_active management and WORK_STRUCT_INACTIVE:
215 *
216 * When pwq->nr_active >= max_active, new work item is queued to
217 * pwq->inactive_works instead of pool->worklist and marked with
218 * WORK_STRUCT_INACTIVE.
219 *
220 * All work items marked with WORK_STRUCT_INACTIVE do not participate
221 * in pwq->nr_active and all work items in pwq->inactive_works are
222 * marked with WORK_STRUCT_INACTIVE. But not all WORK_STRUCT_INACTIVE
223 * work items are in pwq->inactive_works. Some of them are ready to
224 * run in pool->worklist or worker->scheduled. Those work itmes are
225 * only struct wq_barrier which is used for flush_work() and should
226 * not participate in pwq->nr_active. For non-barrier work item, it
227 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
228 */
229 int nr_active; /* L: nr of active works */
230 int max_active; /* L: max active works */
231 struct list_head inactive_works; /* L: inactive works */
232 struct list_head pwqs_node; /* WR: node on wq->pwqs */
233 struct list_head mayday_node; /* MD: node on wq->maydays */
234
235 /*
236 * Release of unbound pwq is punted to system_wq. See put_pwq()
237 * and pwq_unbound_release_workfn() for details. pool_workqueue
238 * itself is also RCU protected so that the first pwq can be
239 * determined without grabbing wq->mutex.
240 */
241 struct work_struct unbound_release_work;
242 struct rcu_head rcu;
243 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
244
245 /*
246 * Structure used to wait for workqueue flush.
247 */
248 struct wq_flusher {
249 struct list_head list; /* WQ: list of flushers */
250 int flush_color; /* WQ: flush color waiting for */
251 struct completion done; /* flush completion */
252 };
253
254 struct wq_device;
255
256 /*
257 * The externally visible workqueue. It relays the issued work items to
258 * the appropriate worker_pool through its pool_workqueues.
259 */
260 struct workqueue_struct {
261 struct list_head pwqs; /* WR: all pwqs of this wq */
262 struct list_head list; /* PR: list of all workqueues */
263
264 struct mutex mutex; /* protects this wq */
265 int work_color; /* WQ: current work color */
266 int flush_color; /* WQ: current flush color */
267 atomic_t nr_pwqs_to_flush; /* flush in progress */
268 struct wq_flusher *first_flusher; /* WQ: first flusher */
269 struct list_head flusher_queue; /* WQ: flush waiters */
270 struct list_head flusher_overflow; /* WQ: flush overflow list */
271
272 struct list_head maydays; /* MD: pwqs requesting rescue */
273 struct worker *rescuer; /* MD: rescue worker */
274
275 int nr_drainers; /* WQ: drain in progress */
276 int saved_max_active; /* WQ: saved pwq max_active */
277
278 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
279 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
280
281 #ifdef CONFIG_SYSFS
282 struct wq_device *wq_dev; /* I: for sysfs interface */
283 #endif
284 #ifdef CONFIG_LOCKDEP
285 char *lock_name;
286 struct lock_class_key key;
287 struct lockdep_map lockdep_map;
288 #endif
289 char name[WQ_NAME_LEN]; /* I: workqueue name */
290
291 /*
292 * Destruction of workqueue_struct is RCU protected to allow walking
293 * the workqueues list without grabbing wq_pool_mutex.
294 * This is used to dump all workqueues from sysrq.
295 */
296 struct rcu_head rcu;
297
298 /* hot fields used during command issue, aligned to cacheline */
299 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
300 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
301 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
302 };
303
304 static struct kmem_cache *pwq_cache;
305
306 static cpumask_var_t *wq_numa_possible_cpumask;
307 /* possible CPUs of each node */
308
309 static bool wq_disable_numa;
310 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
311
312 /* see the comment above the definition of WQ_POWER_EFFICIENT */
313 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
314 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
315
316 static bool wq_online; /* can kworkers be created yet? */
317
318 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
319
320 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
321 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
322
323 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
324 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
325 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
326 /* wait for manager to go away */
327 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
328
329 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
330 static bool workqueue_freezing; /* PL: have wqs started freezing? */
331
332 /* PL: allowable cpus for unbound wqs and work items */
333 static cpumask_var_t wq_unbound_cpumask;
334
335 /* CPU where unbound work was last round robin scheduled from this CPU */
336 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
337
338 /*
339 * Local execution of unbound work items is no longer guaranteed. The
340 * following always forces round-robin CPU selection on unbound work items
341 * to uncover usages which depend on it.
342 */
343 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
344 static bool wq_debug_force_rr_cpu = true;
345 #else
346 static bool wq_debug_force_rr_cpu = false;
347 #endif
348 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
349
350 /* the per-cpu worker pools */
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
352
353 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
354
355 /* PL: hash of all unbound pools keyed by pool->attrs */
356 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
357
358 /* I: attributes used when instantiating standard unbound pools on demand */
359 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
360
361 /* I: attributes used when instantiating ordered pools on demand */
362 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
363
364 struct workqueue_struct *system_wq __read_mostly;
365 EXPORT_SYMBOL(system_wq);
366 struct workqueue_struct *system_highpri_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_highpri_wq);
368 struct workqueue_struct *system_long_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_long_wq);
370 struct workqueue_struct *system_unbound_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_unbound_wq);
372 struct workqueue_struct *system_freezable_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_wq);
374 struct workqueue_struct *system_power_efficient_wq __read_mostly;
375 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
376 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
377 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
378
379 static int worker_thread(void *__worker);
380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
381 static void show_pwq(struct pool_workqueue *pwq);
382 static void show_one_worker_pool(struct worker_pool *pool);
383
384 #define CREATE_TRACE_POINTS
385 #include <trace/events/workqueue.h>
386
387 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
388 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
389
390 #define assert_rcu_or_pool_mutex() \
391 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
392 !lockdep_is_held(&wq_pool_mutex), \
393 "RCU or wq_pool_mutex should be held")
394
395 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
396 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
397 !lockdep_is_held(&wq->mutex) && \
398 !lockdep_is_held(&wq_pool_mutex), \
399 "RCU, wq->mutex or wq_pool_mutex should be held")
400
401 #define for_each_cpu_worker_pool(pool, cpu) \
402 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
403 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
404 (pool)++)
405
406 /**
407 * for_each_pool - iterate through all worker_pools in the system
408 * @pool: iteration cursor
409 * @pi: integer used for iteration
410 *
411 * This must be called either with wq_pool_mutex held or RCU read
412 * locked. If the pool needs to be used beyond the locking in effect, the
413 * caller is responsible for guaranteeing that the pool stays online.
414 *
415 * The if/else clause exists only for the lockdep assertion and can be
416 * ignored.
417 */
418 #define for_each_pool(pool, pi) \
419 idr_for_each_entry(&worker_pool_idr, pool, pi) \
420 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
421 else
422
423 /**
424 * for_each_pool_worker - iterate through all workers of a worker_pool
425 * @worker: iteration cursor
426 * @pool: worker_pool to iterate workers of
427 *
428 * This must be called with wq_pool_attach_mutex.
429 *
430 * The if/else clause exists only for the lockdep assertion and can be
431 * ignored.
432 */
433 #define for_each_pool_worker(worker, pool) \
434 list_for_each_entry((worker), &(pool)->workers, node) \
435 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
436 else
437
438 /**
439 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
440 * @pwq: iteration cursor
441 * @wq: the target workqueue
442 *
443 * This must be called either with wq->mutex held or RCU read locked.
444 * If the pwq needs to be used beyond the locking in effect, the caller is
445 * responsible for guaranteeing that the pwq stays online.
446 *
447 * The if/else clause exists only for the lockdep assertion and can be
448 * ignored.
449 */
450 #define for_each_pwq(pwq, wq) \
451 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
452 lockdep_is_held(&(wq->mutex)))
453
454 #ifdef CONFIG_DEBUG_OBJECTS_WORK
455
456 static const struct debug_obj_descr work_debug_descr;
457
work_debug_hint(void * addr)458 static void *work_debug_hint(void *addr)
459 {
460 return ((struct work_struct *) addr)->func;
461 }
462
work_is_static_object(void * addr)463 static bool work_is_static_object(void *addr)
464 {
465 struct work_struct *work = addr;
466
467 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
468 }
469
470 /*
471 * fixup_init is called when:
472 * - an active object is initialized
473 */
work_fixup_init(void * addr,enum debug_obj_state state)474 static bool work_fixup_init(void *addr, enum debug_obj_state state)
475 {
476 struct work_struct *work = addr;
477
478 switch (state) {
479 case ODEBUG_STATE_ACTIVE:
480 cancel_work_sync(work);
481 debug_object_init(work, &work_debug_descr);
482 return true;
483 default:
484 return false;
485 }
486 }
487
488 /*
489 * fixup_free is called when:
490 * - an active object is freed
491 */
work_fixup_free(void * addr,enum debug_obj_state state)492 static bool work_fixup_free(void *addr, enum debug_obj_state state)
493 {
494 struct work_struct *work = addr;
495
496 switch (state) {
497 case ODEBUG_STATE_ACTIVE:
498 cancel_work_sync(work);
499 debug_object_free(work, &work_debug_descr);
500 return true;
501 default:
502 return false;
503 }
504 }
505
506 static const struct debug_obj_descr work_debug_descr = {
507 .name = "work_struct",
508 .debug_hint = work_debug_hint,
509 .is_static_object = work_is_static_object,
510 .fixup_init = work_fixup_init,
511 .fixup_free = work_fixup_free,
512 };
513
debug_work_activate(struct work_struct * work)514 static inline void debug_work_activate(struct work_struct *work)
515 {
516 debug_object_activate(work, &work_debug_descr);
517 }
518
debug_work_deactivate(struct work_struct * work)519 static inline void debug_work_deactivate(struct work_struct *work)
520 {
521 debug_object_deactivate(work, &work_debug_descr);
522 }
523
__init_work(struct work_struct * work,int onstack)524 void __init_work(struct work_struct *work, int onstack)
525 {
526 if (onstack)
527 debug_object_init_on_stack(work, &work_debug_descr);
528 else
529 debug_object_init(work, &work_debug_descr);
530 }
531 EXPORT_SYMBOL_GPL(__init_work);
532
destroy_work_on_stack(struct work_struct * work)533 void destroy_work_on_stack(struct work_struct *work)
534 {
535 debug_object_free(work, &work_debug_descr);
536 }
537 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538
destroy_delayed_work_on_stack(struct delayed_work * work)539 void destroy_delayed_work_on_stack(struct delayed_work *work)
540 {
541 destroy_timer_on_stack(&work->timer);
542 debug_object_free(&work->work, &work_debug_descr);
543 }
544 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545
546 #else
debug_work_activate(struct work_struct * work)547 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)548 static inline void debug_work_deactivate(struct work_struct *work) { }
549 #endif
550
551 /**
552 * worker_pool_assign_id - allocate ID and assign it to @pool
553 * @pool: the pool pointer of interest
554 *
555 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556 * successfully, -errno on failure.
557 */
worker_pool_assign_id(struct worker_pool * pool)558 static int worker_pool_assign_id(struct worker_pool *pool)
559 {
560 int ret;
561
562 lockdep_assert_held(&wq_pool_mutex);
563
564 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
565 GFP_KERNEL);
566 if (ret >= 0) {
567 pool->id = ret;
568 return 0;
569 }
570 return ret;
571 }
572
573 /**
574 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575 * @wq: the target workqueue
576 * @node: the node ID
577 *
578 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
579 * read locked.
580 * If the pwq needs to be used beyond the locking in effect, the caller is
581 * responsible for guaranteeing that the pwq stays online.
582 *
583 * Return: The unbound pool_workqueue for @node.
584 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)585 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
586 int node)
587 {
588 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
589
590 /*
591 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
592 * delayed item is pending. The plan is to keep CPU -> NODE
593 * mapping valid and stable across CPU on/offlines. Once that
594 * happens, this workaround can be removed.
595 */
596 if (unlikely(node == NUMA_NO_NODE))
597 return wq->dfl_pwq;
598
599 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
600 }
601
work_color_to_flags(int color)602 static unsigned int work_color_to_flags(int color)
603 {
604 return color << WORK_STRUCT_COLOR_SHIFT;
605 }
606
get_work_color(unsigned long work_data)607 static int get_work_color(unsigned long work_data)
608 {
609 return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
610 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
611 }
612
work_next_color(int color)613 static int work_next_color(int color)
614 {
615 return (color + 1) % WORK_NR_COLORS;
616 }
617
618 /*
619 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
620 * contain the pointer to the queued pwq. Once execution starts, the flag
621 * is cleared and the high bits contain OFFQ flags and pool ID.
622 *
623 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
624 * and clear_work_data() can be used to set the pwq, pool or clear
625 * work->data. These functions should only be called while the work is
626 * owned - ie. while the PENDING bit is set.
627 *
628 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
629 * corresponding to a work. Pool is available once the work has been
630 * queued anywhere after initialization until it is sync canceled. pwq is
631 * available only while the work item is queued.
632 *
633 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
634 * canceled. While being canceled, a work item may have its PENDING set
635 * but stay off timer and worklist for arbitrarily long and nobody should
636 * try to steal the PENDING bit.
637 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)638 static inline void set_work_data(struct work_struct *work, unsigned long data,
639 unsigned long flags)
640 {
641 WARN_ON_ONCE(!work_pending(work));
642 atomic_long_set(&work->data, data | flags | work_static(work));
643 }
644
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)645 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
646 unsigned long extra_flags)
647 {
648 set_work_data(work, (unsigned long)pwq,
649 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
650 }
651
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)652 static void set_work_pool_and_keep_pending(struct work_struct *work,
653 int pool_id)
654 {
655 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
656 WORK_STRUCT_PENDING);
657 }
658
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)659 static void set_work_pool_and_clear_pending(struct work_struct *work,
660 int pool_id)
661 {
662 /*
663 * The following wmb is paired with the implied mb in
664 * test_and_set_bit(PENDING) and ensures all updates to @work made
665 * here are visible to and precede any updates by the next PENDING
666 * owner.
667 */
668 smp_wmb();
669 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
670 /*
671 * The following mb guarantees that previous clear of a PENDING bit
672 * will not be reordered with any speculative LOADS or STORES from
673 * work->current_func, which is executed afterwards. This possible
674 * reordering can lead to a missed execution on attempt to queue
675 * the same @work. E.g. consider this case:
676 *
677 * CPU#0 CPU#1
678 * ---------------------------- --------------------------------
679 *
680 * 1 STORE event_indicated
681 * 2 queue_work_on() {
682 * 3 test_and_set_bit(PENDING)
683 * 4 } set_..._and_clear_pending() {
684 * 5 set_work_data() # clear bit
685 * 6 smp_mb()
686 * 7 work->current_func() {
687 * 8 LOAD event_indicated
688 * }
689 *
690 * Without an explicit full barrier speculative LOAD on line 8 can
691 * be executed before CPU#0 does STORE on line 1. If that happens,
692 * CPU#0 observes the PENDING bit is still set and new execution of
693 * a @work is not queued in a hope, that CPU#1 will eventually
694 * finish the queued @work. Meanwhile CPU#1 does not see
695 * event_indicated is set, because speculative LOAD was executed
696 * before actual STORE.
697 */
698 smp_mb();
699 }
700
clear_work_data(struct work_struct * work)701 static void clear_work_data(struct work_struct *work)
702 {
703 smp_wmb(); /* see set_work_pool_and_clear_pending() */
704 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
705 }
706
work_struct_pwq(unsigned long data)707 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
708 {
709 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
710 }
711
get_work_pwq(struct work_struct * work)712 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
713 {
714 unsigned long data = atomic_long_read(&work->data);
715
716 if (data & WORK_STRUCT_PWQ)
717 return work_struct_pwq(data);
718 else
719 return NULL;
720 }
721
722 /**
723 * get_work_pool - return the worker_pool a given work was associated with
724 * @work: the work item of interest
725 *
726 * Pools are created and destroyed under wq_pool_mutex, and allows read
727 * access under RCU read lock. As such, this function should be
728 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
729 *
730 * All fields of the returned pool are accessible as long as the above
731 * mentioned locking is in effect. If the returned pool needs to be used
732 * beyond the critical section, the caller is responsible for ensuring the
733 * returned pool is and stays online.
734 *
735 * Return: The worker_pool @work was last associated with. %NULL if none.
736 */
get_work_pool(struct work_struct * work)737 static struct worker_pool *get_work_pool(struct work_struct *work)
738 {
739 unsigned long data = atomic_long_read(&work->data);
740 int pool_id;
741
742 assert_rcu_or_pool_mutex();
743
744 if (data & WORK_STRUCT_PWQ)
745 return work_struct_pwq(data)->pool;
746
747 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
748 if (pool_id == WORK_OFFQ_POOL_NONE)
749 return NULL;
750
751 return idr_find(&worker_pool_idr, pool_id);
752 }
753
754 /**
755 * get_work_pool_id - return the worker pool ID a given work is associated with
756 * @work: the work item of interest
757 *
758 * Return: The worker_pool ID @work was last associated with.
759 * %WORK_OFFQ_POOL_NONE if none.
760 */
get_work_pool_id(struct work_struct * work)761 static int get_work_pool_id(struct work_struct *work)
762 {
763 unsigned long data = atomic_long_read(&work->data);
764
765 if (data & WORK_STRUCT_PWQ)
766 return work_struct_pwq(data)->pool->id;
767
768 return data >> WORK_OFFQ_POOL_SHIFT;
769 }
770
mark_work_canceling(struct work_struct * work)771 static void mark_work_canceling(struct work_struct *work)
772 {
773 unsigned long pool_id = get_work_pool_id(work);
774
775 pool_id <<= WORK_OFFQ_POOL_SHIFT;
776 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
777 }
778
work_is_canceling(struct work_struct * work)779 static bool work_is_canceling(struct work_struct *work)
780 {
781 unsigned long data = atomic_long_read(&work->data);
782
783 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
784 }
785
786 /*
787 * Policy functions. These define the policies on how the global worker
788 * pools are managed. Unless noted otherwise, these functions assume that
789 * they're being called with pool->lock held.
790 */
791
__need_more_worker(struct worker_pool * pool)792 static bool __need_more_worker(struct worker_pool *pool)
793 {
794 return !atomic_read(&pool->nr_running);
795 }
796
797 /*
798 * Need to wake up a worker? Called from anything but currently
799 * running workers.
800 *
801 * Note that, because unbound workers never contribute to nr_running, this
802 * function will always return %true for unbound pools as long as the
803 * worklist isn't empty.
804 */
need_more_worker(struct worker_pool * pool)805 static bool need_more_worker(struct worker_pool *pool)
806 {
807 return !list_empty(&pool->worklist) && __need_more_worker(pool);
808 }
809
810 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)811 static bool may_start_working(struct worker_pool *pool)
812 {
813 return pool->nr_idle;
814 }
815
816 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)817 static bool keep_working(struct worker_pool *pool)
818 {
819 return !list_empty(&pool->worklist) &&
820 atomic_read(&pool->nr_running) <= 1;
821 }
822
823 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)824 static bool need_to_create_worker(struct worker_pool *pool)
825 {
826 return need_more_worker(pool) && !may_start_working(pool);
827 }
828
829 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)830 static bool too_many_workers(struct worker_pool *pool)
831 {
832 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
833 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
834 int nr_busy = pool->nr_workers - nr_idle;
835
836 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
837 }
838
839 /*
840 * Wake up functions.
841 */
842
843 /* Return the first idle worker. Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)844 static struct worker *first_idle_worker(struct worker_pool *pool)
845 {
846 if (unlikely(list_empty(&pool->idle_list)))
847 return NULL;
848
849 return list_first_entry(&pool->idle_list, struct worker, entry);
850 }
851
852 /**
853 * wake_up_worker - wake up an idle worker
854 * @pool: worker pool to wake worker from
855 *
856 * Wake up the first idle worker of @pool.
857 *
858 * CONTEXT:
859 * raw_spin_lock_irq(pool->lock).
860 */
wake_up_worker(struct worker_pool * pool)861 static void wake_up_worker(struct worker_pool *pool)
862 {
863 struct worker *worker = first_idle_worker(pool);
864
865 if (likely(worker))
866 wake_up_process(worker->task);
867 }
868
869 /**
870 * wq_worker_running - a worker is running again
871 * @task: task waking up
872 *
873 * This function is called when a worker returns from schedule()
874 */
wq_worker_running(struct task_struct * task)875 void wq_worker_running(struct task_struct *task)
876 {
877 struct worker *worker = kthread_data(task);
878
879 if (!worker->sleeping)
880 return;
881
882 /*
883 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
884 * and the nr_running increment below, we may ruin the nr_running reset
885 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
886 * pool. Protect against such race.
887 */
888 preempt_disable();
889 if (!(worker->flags & WORKER_NOT_RUNNING))
890 atomic_inc(&worker->pool->nr_running);
891 preempt_enable();
892 worker->sleeping = 0;
893 }
894
895 /**
896 * wq_worker_sleeping - a worker is going to sleep
897 * @task: task going to sleep
898 *
899 * This function is called from schedule() when a busy worker is
900 * going to sleep. Preemption needs to be disabled to protect ->sleeping
901 * assignment.
902 */
wq_worker_sleeping(struct task_struct * task)903 void wq_worker_sleeping(struct task_struct *task)
904 {
905 struct worker *next, *worker = kthread_data(task);
906 struct worker_pool *pool;
907
908 /*
909 * Rescuers, which may not have all the fields set up like normal
910 * workers, also reach here, let's not access anything before
911 * checking NOT_RUNNING.
912 */
913 if (worker->flags & WORKER_NOT_RUNNING)
914 return;
915
916 pool = worker->pool;
917
918 /* Return if preempted before wq_worker_running() was reached */
919 if (worker->sleeping)
920 return;
921
922 worker->sleeping = 1;
923 raw_spin_lock_irq(&pool->lock);
924
925 /*
926 * The counterpart of the following dec_and_test, implied mb,
927 * worklist not empty test sequence is in insert_work().
928 * Please read comment there.
929 *
930 * NOT_RUNNING is clear. This means that we're bound to and
931 * running on the local cpu w/ rq lock held and preemption
932 * disabled, which in turn means that none else could be
933 * manipulating idle_list, so dereferencing idle_list without pool
934 * lock is safe.
935 */
936 if (atomic_dec_and_test(&pool->nr_running) &&
937 !list_empty(&pool->worklist)) {
938 next = first_idle_worker(pool);
939 if (next)
940 wake_up_process(next->task);
941 }
942 raw_spin_unlock_irq(&pool->lock);
943 }
944
945 /**
946 * wq_worker_last_func - retrieve worker's last work function
947 * @task: Task to retrieve last work function of.
948 *
949 * Determine the last function a worker executed. This is called from
950 * the scheduler to get a worker's last known identity.
951 *
952 * CONTEXT:
953 * raw_spin_lock_irq(rq->lock)
954 *
955 * This function is called during schedule() when a kworker is going
956 * to sleep. It's used by psi to identify aggregation workers during
957 * dequeuing, to allow periodic aggregation to shut-off when that
958 * worker is the last task in the system or cgroup to go to sleep.
959 *
960 * As this function doesn't involve any workqueue-related locking, it
961 * only returns stable values when called from inside the scheduler's
962 * queuing and dequeuing paths, when @task, which must be a kworker,
963 * is guaranteed to not be processing any works.
964 *
965 * Return:
966 * The last work function %current executed as a worker, NULL if it
967 * hasn't executed any work yet.
968 */
wq_worker_last_func(struct task_struct * task)969 work_func_t wq_worker_last_func(struct task_struct *task)
970 {
971 struct worker *worker = kthread_data(task);
972
973 return worker->last_func;
974 }
975
976 /**
977 * worker_set_flags - set worker flags and adjust nr_running accordingly
978 * @worker: self
979 * @flags: flags to set
980 *
981 * Set @flags in @worker->flags and adjust nr_running accordingly.
982 *
983 * CONTEXT:
984 * raw_spin_lock_irq(pool->lock)
985 */
worker_set_flags(struct worker * worker,unsigned int flags)986 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
987 {
988 struct worker_pool *pool = worker->pool;
989
990 WARN_ON_ONCE(worker->task != current);
991
992 /* If transitioning into NOT_RUNNING, adjust nr_running. */
993 if ((flags & WORKER_NOT_RUNNING) &&
994 !(worker->flags & WORKER_NOT_RUNNING)) {
995 atomic_dec(&pool->nr_running);
996 }
997
998 worker->flags |= flags;
999 }
1000
1001 /**
1002 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
1003 * @worker: self
1004 * @flags: flags to clear
1005 *
1006 * Clear @flags in @worker->flags and adjust nr_running accordingly.
1007 *
1008 * CONTEXT:
1009 * raw_spin_lock_irq(pool->lock)
1010 */
worker_clr_flags(struct worker * worker,unsigned int flags)1011 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1012 {
1013 struct worker_pool *pool = worker->pool;
1014 unsigned int oflags = worker->flags;
1015
1016 WARN_ON_ONCE(worker->task != current);
1017
1018 worker->flags &= ~flags;
1019
1020 /*
1021 * If transitioning out of NOT_RUNNING, increment nr_running. Note
1022 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
1023 * of multiple flags, not a single flag.
1024 */
1025 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1026 if (!(worker->flags & WORKER_NOT_RUNNING))
1027 atomic_inc(&pool->nr_running);
1028 }
1029
1030 /**
1031 * find_worker_executing_work - find worker which is executing a work
1032 * @pool: pool of interest
1033 * @work: work to find worker for
1034 *
1035 * Find a worker which is executing @work on @pool by searching
1036 * @pool->busy_hash which is keyed by the address of @work. For a worker
1037 * to match, its current execution should match the address of @work and
1038 * its work function. This is to avoid unwanted dependency between
1039 * unrelated work executions through a work item being recycled while still
1040 * being executed.
1041 *
1042 * This is a bit tricky. A work item may be freed once its execution
1043 * starts and nothing prevents the freed area from being recycled for
1044 * another work item. If the same work item address ends up being reused
1045 * before the original execution finishes, workqueue will identify the
1046 * recycled work item as currently executing and make it wait until the
1047 * current execution finishes, introducing an unwanted dependency.
1048 *
1049 * This function checks the work item address and work function to avoid
1050 * false positives. Note that this isn't complete as one may construct a
1051 * work function which can introduce dependency onto itself through a
1052 * recycled work item. Well, if somebody wants to shoot oneself in the
1053 * foot that badly, there's only so much we can do, and if such deadlock
1054 * actually occurs, it should be easy to locate the culprit work function.
1055 *
1056 * CONTEXT:
1057 * raw_spin_lock_irq(pool->lock).
1058 *
1059 * Return:
1060 * Pointer to worker which is executing @work if found, %NULL
1061 * otherwise.
1062 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1063 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1064 struct work_struct *work)
1065 {
1066 struct worker *worker;
1067
1068 hash_for_each_possible(pool->busy_hash, worker, hentry,
1069 (unsigned long)work)
1070 if (worker->current_work == work &&
1071 worker->current_func == work->func)
1072 return worker;
1073
1074 return NULL;
1075 }
1076
1077 /**
1078 * move_linked_works - move linked works to a list
1079 * @work: start of series of works to be scheduled
1080 * @head: target list to append @work to
1081 * @nextp: out parameter for nested worklist walking
1082 *
1083 * Schedule linked works starting from @work to @head. Work series to
1084 * be scheduled starts at @work and includes any consecutive work with
1085 * WORK_STRUCT_LINKED set in its predecessor.
1086 *
1087 * If @nextp is not NULL, it's updated to point to the next work of
1088 * the last scheduled work. This allows move_linked_works() to be
1089 * nested inside outer list_for_each_entry_safe().
1090 *
1091 * CONTEXT:
1092 * raw_spin_lock_irq(pool->lock).
1093 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1094 static void move_linked_works(struct work_struct *work, struct list_head *head,
1095 struct work_struct **nextp)
1096 {
1097 struct work_struct *n;
1098
1099 /*
1100 * Linked worklist will always end before the end of the list,
1101 * use NULL for list head.
1102 */
1103 list_for_each_entry_safe_from(work, n, NULL, entry) {
1104 list_move_tail(&work->entry, head);
1105 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1106 break;
1107 }
1108
1109 /*
1110 * If we're already inside safe list traversal and have moved
1111 * multiple works to the scheduled queue, the next position
1112 * needs to be updated.
1113 */
1114 if (nextp)
1115 *nextp = n;
1116 }
1117
1118 /**
1119 * get_pwq - get an extra reference on the specified pool_workqueue
1120 * @pwq: pool_workqueue to get
1121 *
1122 * Obtain an extra reference on @pwq. The caller should guarantee that
1123 * @pwq has positive refcnt and be holding the matching pool->lock.
1124 */
get_pwq(struct pool_workqueue * pwq)1125 static void get_pwq(struct pool_workqueue *pwq)
1126 {
1127 lockdep_assert_held(&pwq->pool->lock);
1128 WARN_ON_ONCE(pwq->refcnt <= 0);
1129 pwq->refcnt++;
1130 }
1131
1132 /**
1133 * put_pwq - put a pool_workqueue reference
1134 * @pwq: pool_workqueue to put
1135 *
1136 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1137 * destruction. The caller should be holding the matching pool->lock.
1138 */
put_pwq(struct pool_workqueue * pwq)1139 static void put_pwq(struct pool_workqueue *pwq)
1140 {
1141 lockdep_assert_held(&pwq->pool->lock);
1142 if (likely(--pwq->refcnt))
1143 return;
1144 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1145 return;
1146 /*
1147 * @pwq can't be released under pool->lock, bounce to
1148 * pwq_unbound_release_workfn(). This never recurses on the same
1149 * pool->lock as this path is taken only for unbound workqueues and
1150 * the release work item is scheduled on a per-cpu workqueue. To
1151 * avoid lockdep warning, unbound pool->locks are given lockdep
1152 * subclass of 1 in get_unbound_pool().
1153 */
1154 schedule_work(&pwq->unbound_release_work);
1155 }
1156
1157 /**
1158 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1159 * @pwq: pool_workqueue to put (can be %NULL)
1160 *
1161 * put_pwq() with locking. This function also allows %NULL @pwq.
1162 */
put_pwq_unlocked(struct pool_workqueue * pwq)1163 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1164 {
1165 if (pwq) {
1166 /*
1167 * As both pwqs and pools are RCU protected, the
1168 * following lock operations are safe.
1169 */
1170 raw_spin_lock_irq(&pwq->pool->lock);
1171 put_pwq(pwq);
1172 raw_spin_unlock_irq(&pwq->pool->lock);
1173 }
1174 }
1175
pwq_activate_inactive_work(struct work_struct * work)1176 static void pwq_activate_inactive_work(struct work_struct *work)
1177 {
1178 struct pool_workqueue *pwq = get_work_pwq(work);
1179
1180 trace_workqueue_activate_work(work);
1181 if (list_empty(&pwq->pool->worklist))
1182 pwq->pool->watchdog_ts = jiffies;
1183 move_linked_works(work, &pwq->pool->worklist, NULL);
1184 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1185 pwq->nr_active++;
1186 }
1187
pwq_activate_first_inactive(struct pool_workqueue * pwq)1188 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1189 {
1190 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1191 struct work_struct, entry);
1192
1193 pwq_activate_inactive_work(work);
1194 }
1195
1196 /**
1197 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1198 * @pwq: pwq of interest
1199 * @work_data: work_data of work which left the queue
1200 *
1201 * A work either has completed or is removed from pending queue,
1202 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1203 *
1204 * CONTEXT:
1205 * raw_spin_lock_irq(pool->lock).
1206 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1207 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1208 {
1209 int color = get_work_color(work_data);
1210
1211 if (!(work_data & WORK_STRUCT_INACTIVE)) {
1212 pwq->nr_active--;
1213 if (!list_empty(&pwq->inactive_works)) {
1214 /* one down, submit an inactive one */
1215 if (pwq->nr_active < pwq->max_active)
1216 pwq_activate_first_inactive(pwq);
1217 }
1218 }
1219
1220 pwq->nr_in_flight[color]--;
1221
1222 /* is flush in progress and are we at the flushing tip? */
1223 if (likely(pwq->flush_color != color))
1224 goto out_put;
1225
1226 /* are there still in-flight works? */
1227 if (pwq->nr_in_flight[color])
1228 goto out_put;
1229
1230 /* this pwq is done, clear flush_color */
1231 pwq->flush_color = -1;
1232
1233 /*
1234 * If this was the last pwq, wake up the first flusher. It
1235 * will handle the rest.
1236 */
1237 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1238 complete(&pwq->wq->first_flusher->done);
1239 out_put:
1240 put_pwq(pwq);
1241 }
1242
1243 /**
1244 * try_to_grab_pending - steal work item from worklist and disable irq
1245 * @work: work item to steal
1246 * @is_dwork: @work is a delayed_work
1247 * @flags: place to store irq state
1248 *
1249 * Try to grab PENDING bit of @work. This function can handle @work in any
1250 * stable state - idle, on timer or on worklist.
1251 *
1252 * Return:
1253 *
1254 * ======== ================================================================
1255 * 1 if @work was pending and we successfully stole PENDING
1256 * 0 if @work was idle and we claimed PENDING
1257 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1258 * -ENOENT if someone else is canceling @work, this state may persist
1259 * for arbitrarily long
1260 * ======== ================================================================
1261 *
1262 * Note:
1263 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1264 * interrupted while holding PENDING and @work off queue, irq must be
1265 * disabled on entry. This, combined with delayed_work->timer being
1266 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1267 *
1268 * On successful return, >= 0, irq is disabled and the caller is
1269 * responsible for releasing it using local_irq_restore(*@flags).
1270 *
1271 * This function is safe to call from any context including IRQ handler.
1272 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1273 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1274 unsigned long *flags)
1275 {
1276 struct worker_pool *pool;
1277 struct pool_workqueue *pwq;
1278
1279 local_irq_save(*flags);
1280
1281 /* try to steal the timer if it exists */
1282 if (is_dwork) {
1283 struct delayed_work *dwork = to_delayed_work(work);
1284
1285 /*
1286 * dwork->timer is irqsafe. If del_timer() fails, it's
1287 * guaranteed that the timer is not queued anywhere and not
1288 * running on the local CPU.
1289 */
1290 if (likely(del_timer(&dwork->timer)))
1291 return 1;
1292 }
1293
1294 /* try to claim PENDING the normal way */
1295 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1296 return 0;
1297
1298 rcu_read_lock();
1299 /*
1300 * The queueing is in progress, or it is already queued. Try to
1301 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1302 */
1303 pool = get_work_pool(work);
1304 if (!pool)
1305 goto fail;
1306
1307 raw_spin_lock(&pool->lock);
1308 /*
1309 * work->data is guaranteed to point to pwq only while the work
1310 * item is queued on pwq->wq, and both updating work->data to point
1311 * to pwq on queueing and to pool on dequeueing are done under
1312 * pwq->pool->lock. This in turn guarantees that, if work->data
1313 * points to pwq which is associated with a locked pool, the work
1314 * item is currently queued on that pool.
1315 */
1316 pwq = get_work_pwq(work);
1317 if (pwq && pwq->pool == pool) {
1318 debug_work_deactivate(work);
1319
1320 /*
1321 * A cancelable inactive work item must be in the
1322 * pwq->inactive_works since a queued barrier can't be
1323 * canceled (see the comments in insert_wq_barrier()).
1324 *
1325 * An inactive work item cannot be grabbed directly because
1326 * it might have linked barrier work items which, if left
1327 * on the inactive_works list, will confuse pwq->nr_active
1328 * management later on and cause stall. Make sure the work
1329 * item is activated before grabbing.
1330 */
1331 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1332 pwq_activate_inactive_work(work);
1333
1334 list_del_init(&work->entry);
1335 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1336
1337 /* work->data points to pwq iff queued, point to pool */
1338 set_work_pool_and_keep_pending(work, pool->id);
1339
1340 raw_spin_unlock(&pool->lock);
1341 rcu_read_unlock();
1342 return 1;
1343 }
1344 raw_spin_unlock(&pool->lock);
1345 fail:
1346 rcu_read_unlock();
1347 local_irq_restore(*flags);
1348 if (work_is_canceling(work))
1349 return -ENOENT;
1350 cpu_relax();
1351 return -EAGAIN;
1352 }
1353
1354 /**
1355 * insert_work - insert a work into a pool
1356 * @pwq: pwq @work belongs to
1357 * @work: work to insert
1358 * @head: insertion point
1359 * @extra_flags: extra WORK_STRUCT_* flags to set
1360 *
1361 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1362 * work_struct flags.
1363 *
1364 * CONTEXT:
1365 * raw_spin_lock_irq(pool->lock).
1366 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1367 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1368 struct list_head *head, unsigned int extra_flags)
1369 {
1370 struct worker_pool *pool = pwq->pool;
1371
1372 /* record the work call stack in order to print it in KASAN reports */
1373 kasan_record_aux_stack_noalloc(work);
1374
1375 /* we own @work, set data and link */
1376 set_work_pwq(work, pwq, extra_flags);
1377 list_add_tail(&work->entry, head);
1378 get_pwq(pwq);
1379
1380 /*
1381 * Ensure either wq_worker_sleeping() sees the above
1382 * list_add_tail() or we see zero nr_running to avoid workers lying
1383 * around lazily while there are works to be processed.
1384 */
1385 smp_mb();
1386
1387 if (__need_more_worker(pool))
1388 wake_up_worker(pool);
1389 }
1390
1391 /*
1392 * Test whether @work is being queued from another work executing on the
1393 * same workqueue.
1394 */
is_chained_work(struct workqueue_struct * wq)1395 static bool is_chained_work(struct workqueue_struct *wq)
1396 {
1397 struct worker *worker;
1398
1399 worker = current_wq_worker();
1400 /*
1401 * Return %true iff I'm a worker executing a work item on @wq. If
1402 * I'm @worker, it's safe to dereference it without locking.
1403 */
1404 return worker && worker->current_pwq->wq == wq;
1405 }
1406
1407 /*
1408 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1409 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1410 * avoid perturbing sensitive tasks.
1411 */
wq_select_unbound_cpu(int cpu)1412 static int wq_select_unbound_cpu(int cpu)
1413 {
1414 static bool printed_dbg_warning;
1415 int new_cpu;
1416
1417 if (likely(!wq_debug_force_rr_cpu)) {
1418 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1419 return cpu;
1420 } else if (!printed_dbg_warning) {
1421 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1422 printed_dbg_warning = true;
1423 }
1424
1425 if (cpumask_empty(wq_unbound_cpumask))
1426 return cpu;
1427
1428 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1429 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1430 if (unlikely(new_cpu >= nr_cpu_ids)) {
1431 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1432 if (unlikely(new_cpu >= nr_cpu_ids))
1433 return cpu;
1434 }
1435 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1436
1437 return new_cpu;
1438 }
1439
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1440 static void __queue_work(int cpu, struct workqueue_struct *wq,
1441 struct work_struct *work)
1442 {
1443 struct pool_workqueue *pwq;
1444 struct worker_pool *last_pool;
1445 struct list_head *worklist;
1446 unsigned int work_flags;
1447 unsigned int req_cpu = cpu;
1448
1449 /*
1450 * While a work item is PENDING && off queue, a task trying to
1451 * steal the PENDING will busy-loop waiting for it to either get
1452 * queued or lose PENDING. Grabbing PENDING and queueing should
1453 * happen with IRQ disabled.
1454 */
1455 lockdep_assert_irqs_disabled();
1456
1457
1458 /* if draining, only works from the same workqueue are allowed */
1459 if (unlikely(wq->flags & __WQ_DRAINING) &&
1460 WARN_ON_ONCE(!is_chained_work(wq)))
1461 return;
1462 rcu_read_lock();
1463 retry:
1464 /* pwq which will be used unless @work is executing elsewhere */
1465 if (wq->flags & WQ_UNBOUND) {
1466 if (req_cpu == WORK_CPU_UNBOUND)
1467 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1468 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1469 } else {
1470 if (req_cpu == WORK_CPU_UNBOUND)
1471 cpu = raw_smp_processor_id();
1472 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1473 }
1474
1475 /*
1476 * If @work was previously on a different pool, it might still be
1477 * running there, in which case the work needs to be queued on that
1478 * pool to guarantee non-reentrancy.
1479 */
1480 last_pool = get_work_pool(work);
1481 if (last_pool && last_pool != pwq->pool) {
1482 struct worker *worker;
1483
1484 raw_spin_lock(&last_pool->lock);
1485
1486 worker = find_worker_executing_work(last_pool, work);
1487
1488 if (worker && worker->current_pwq->wq == wq) {
1489 pwq = worker->current_pwq;
1490 } else {
1491 /* meh... not running there, queue here */
1492 raw_spin_unlock(&last_pool->lock);
1493 raw_spin_lock(&pwq->pool->lock);
1494 }
1495 } else {
1496 raw_spin_lock(&pwq->pool->lock);
1497 }
1498
1499 /*
1500 * pwq is determined and locked. For unbound pools, we could have
1501 * raced with pwq release and it could already be dead. If its
1502 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1503 * without another pwq replacing it in the numa_pwq_tbl or while
1504 * work items are executing on it, so the retrying is guaranteed to
1505 * make forward-progress.
1506 */
1507 if (unlikely(!pwq->refcnt)) {
1508 if (wq->flags & WQ_UNBOUND) {
1509 raw_spin_unlock(&pwq->pool->lock);
1510 cpu_relax();
1511 goto retry;
1512 }
1513 /* oops */
1514 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1515 wq->name, cpu);
1516 }
1517
1518 /* pwq determined, queue */
1519 trace_workqueue_queue_work(req_cpu, pwq, work);
1520
1521 if (WARN_ON(!list_empty(&work->entry)))
1522 goto out;
1523
1524 pwq->nr_in_flight[pwq->work_color]++;
1525 work_flags = work_color_to_flags(pwq->work_color);
1526
1527 if (likely(pwq->nr_active < pwq->max_active)) {
1528 trace_workqueue_activate_work(work);
1529 pwq->nr_active++;
1530 worklist = &pwq->pool->worklist;
1531 if (list_empty(worklist))
1532 pwq->pool->watchdog_ts = jiffies;
1533 } else {
1534 work_flags |= WORK_STRUCT_INACTIVE;
1535 worklist = &pwq->inactive_works;
1536 }
1537
1538 debug_work_activate(work);
1539 insert_work(pwq, work, worklist, work_flags);
1540
1541 out:
1542 raw_spin_unlock(&pwq->pool->lock);
1543 rcu_read_unlock();
1544 }
1545
1546 /**
1547 * queue_work_on - queue work on specific cpu
1548 * @cpu: CPU number to execute work on
1549 * @wq: workqueue to use
1550 * @work: work to queue
1551 *
1552 * We queue the work to a specific CPU, the caller must ensure it
1553 * can't go away.
1554 *
1555 * Return: %false if @work was already on a queue, %true otherwise.
1556 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1557 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1558 struct work_struct *work)
1559 {
1560 bool ret = false;
1561 unsigned long flags;
1562
1563 local_irq_save(flags);
1564
1565 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1566 __queue_work(cpu, wq, work);
1567 ret = true;
1568 }
1569
1570 local_irq_restore(flags);
1571 return ret;
1572 }
1573 EXPORT_SYMBOL(queue_work_on);
1574
1575 /**
1576 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1577 * @node: NUMA node ID that we want to select a CPU from
1578 *
1579 * This function will attempt to find a "random" cpu available on a given
1580 * node. If there are no CPUs available on the given node it will return
1581 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1582 * available CPU if we need to schedule this work.
1583 */
workqueue_select_cpu_near(int node)1584 static int workqueue_select_cpu_near(int node)
1585 {
1586 int cpu;
1587
1588 /* No point in doing this if NUMA isn't enabled for workqueues */
1589 if (!wq_numa_enabled)
1590 return WORK_CPU_UNBOUND;
1591
1592 /* Delay binding to CPU if node is not valid or online */
1593 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1594 return WORK_CPU_UNBOUND;
1595
1596 /* Use local node/cpu if we are already there */
1597 cpu = raw_smp_processor_id();
1598 if (node == cpu_to_node(cpu))
1599 return cpu;
1600
1601 /* Use "random" otherwise know as "first" online CPU of node */
1602 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1603
1604 /* If CPU is valid return that, otherwise just defer */
1605 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1606 }
1607
1608 /**
1609 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1610 * @node: NUMA node that we are targeting the work for
1611 * @wq: workqueue to use
1612 * @work: work to queue
1613 *
1614 * We queue the work to a "random" CPU within a given NUMA node. The basic
1615 * idea here is to provide a way to somehow associate work with a given
1616 * NUMA node.
1617 *
1618 * This function will only make a best effort attempt at getting this onto
1619 * the right NUMA node. If no node is requested or the requested node is
1620 * offline then we just fall back to standard queue_work behavior.
1621 *
1622 * Currently the "random" CPU ends up being the first available CPU in the
1623 * intersection of cpu_online_mask and the cpumask of the node, unless we
1624 * are running on the node. In that case we just use the current CPU.
1625 *
1626 * Return: %false if @work was already on a queue, %true otherwise.
1627 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1628 bool queue_work_node(int node, struct workqueue_struct *wq,
1629 struct work_struct *work)
1630 {
1631 unsigned long flags;
1632 bool ret = false;
1633
1634 /*
1635 * This current implementation is specific to unbound workqueues.
1636 * Specifically we only return the first available CPU for a given
1637 * node instead of cycling through individual CPUs within the node.
1638 *
1639 * If this is used with a per-cpu workqueue then the logic in
1640 * workqueue_select_cpu_near would need to be updated to allow for
1641 * some round robin type logic.
1642 */
1643 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1644
1645 local_irq_save(flags);
1646
1647 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1648 int cpu = workqueue_select_cpu_near(node);
1649
1650 __queue_work(cpu, wq, work);
1651 ret = true;
1652 }
1653
1654 local_irq_restore(flags);
1655 return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(queue_work_node);
1658
delayed_work_timer_fn(struct timer_list * t)1659 void delayed_work_timer_fn(struct timer_list *t)
1660 {
1661 struct delayed_work *dwork = from_timer(dwork, t, timer);
1662
1663 /* should have been called from irqsafe timer with irq already off */
1664 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1665 }
1666 EXPORT_SYMBOL(delayed_work_timer_fn);
1667
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1668 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1669 struct delayed_work *dwork, unsigned long delay)
1670 {
1671 struct timer_list *timer = &dwork->timer;
1672 struct work_struct *work = &dwork->work;
1673
1674 WARN_ON_ONCE(!wq);
1675 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1676 WARN_ON_ONCE(timer_pending(timer));
1677 WARN_ON_ONCE(!list_empty(&work->entry));
1678
1679 /*
1680 * If @delay is 0, queue @dwork->work immediately. This is for
1681 * both optimization and correctness. The earliest @timer can
1682 * expire is on the closest next tick and delayed_work users depend
1683 * on that there's no such delay when @delay is 0.
1684 */
1685 if (!delay) {
1686 __queue_work(cpu, wq, &dwork->work);
1687 return;
1688 }
1689
1690 dwork->wq = wq;
1691 dwork->cpu = cpu;
1692 timer->expires = jiffies + delay;
1693
1694 if (unlikely(cpu != WORK_CPU_UNBOUND))
1695 add_timer_on(timer, cpu);
1696 else
1697 add_timer(timer);
1698 }
1699
1700 /**
1701 * queue_delayed_work_on - queue work on specific CPU after delay
1702 * @cpu: CPU number to execute work on
1703 * @wq: workqueue to use
1704 * @dwork: work to queue
1705 * @delay: number of jiffies to wait before queueing
1706 *
1707 * Return: %false if @work was already on a queue, %true otherwise. If
1708 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1709 * execution.
1710 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1711 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1712 struct delayed_work *dwork, unsigned long delay)
1713 {
1714 struct work_struct *work = &dwork->work;
1715 bool ret = false;
1716 unsigned long flags;
1717
1718 /* read the comment in __queue_work() */
1719 local_irq_save(flags);
1720
1721 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1722 __queue_delayed_work(cpu, wq, dwork, delay);
1723 ret = true;
1724 }
1725
1726 local_irq_restore(flags);
1727 return ret;
1728 }
1729 EXPORT_SYMBOL(queue_delayed_work_on);
1730
1731 /**
1732 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1733 * @cpu: CPU number to execute work on
1734 * @wq: workqueue to use
1735 * @dwork: work to queue
1736 * @delay: number of jiffies to wait before queueing
1737 *
1738 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1739 * modify @dwork's timer so that it expires after @delay. If @delay is
1740 * zero, @work is guaranteed to be scheduled immediately regardless of its
1741 * current state.
1742 *
1743 * Return: %false if @dwork was idle and queued, %true if @dwork was
1744 * pending and its timer was modified.
1745 *
1746 * This function is safe to call from any context including IRQ handler.
1747 * See try_to_grab_pending() for details.
1748 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1749 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1750 struct delayed_work *dwork, unsigned long delay)
1751 {
1752 unsigned long flags;
1753 int ret;
1754
1755 do {
1756 ret = try_to_grab_pending(&dwork->work, true, &flags);
1757 } while (unlikely(ret == -EAGAIN));
1758
1759 if (likely(ret >= 0)) {
1760 __queue_delayed_work(cpu, wq, dwork, delay);
1761 local_irq_restore(flags);
1762 }
1763
1764 /* -ENOENT from try_to_grab_pending() becomes %true */
1765 return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1768
rcu_work_rcufn(struct rcu_head * rcu)1769 static void rcu_work_rcufn(struct rcu_head *rcu)
1770 {
1771 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1772
1773 /* read the comment in __queue_work() */
1774 local_irq_disable();
1775 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1776 local_irq_enable();
1777 }
1778
1779 /**
1780 * queue_rcu_work - queue work after a RCU grace period
1781 * @wq: workqueue to use
1782 * @rwork: work to queue
1783 *
1784 * Return: %false if @rwork was already pending, %true otherwise. Note
1785 * that a full RCU grace period is guaranteed only after a %true return.
1786 * While @rwork is guaranteed to be executed after a %false return, the
1787 * execution may happen before a full RCU grace period has passed.
1788 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1789 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1790 {
1791 struct work_struct *work = &rwork->work;
1792
1793 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1794 rwork->wq = wq;
1795 call_rcu(&rwork->rcu, rcu_work_rcufn);
1796 return true;
1797 }
1798
1799 return false;
1800 }
1801 EXPORT_SYMBOL(queue_rcu_work);
1802
1803 /**
1804 * worker_enter_idle - enter idle state
1805 * @worker: worker which is entering idle state
1806 *
1807 * @worker is entering idle state. Update stats and idle timer if
1808 * necessary.
1809 *
1810 * LOCKING:
1811 * raw_spin_lock_irq(pool->lock).
1812 */
worker_enter_idle(struct worker * worker)1813 static void worker_enter_idle(struct worker *worker)
1814 {
1815 struct worker_pool *pool = worker->pool;
1816
1817 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1818 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1819 (worker->hentry.next || worker->hentry.pprev)))
1820 return;
1821
1822 /* can't use worker_set_flags(), also called from create_worker() */
1823 worker->flags |= WORKER_IDLE;
1824 pool->nr_idle++;
1825 worker->last_active = jiffies;
1826
1827 /* idle_list is LIFO */
1828 list_add(&worker->entry, &pool->idle_list);
1829
1830 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1831 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1832
1833 /*
1834 * Sanity check nr_running. Because unbind_workers() releases
1835 * pool->lock between setting %WORKER_UNBOUND and zapping
1836 * nr_running, the warning may trigger spuriously. Check iff
1837 * unbind is not in progress.
1838 */
1839 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1840 pool->nr_workers == pool->nr_idle &&
1841 atomic_read(&pool->nr_running));
1842 }
1843
1844 /**
1845 * worker_leave_idle - leave idle state
1846 * @worker: worker which is leaving idle state
1847 *
1848 * @worker is leaving idle state. Update stats.
1849 *
1850 * LOCKING:
1851 * raw_spin_lock_irq(pool->lock).
1852 */
worker_leave_idle(struct worker * worker)1853 static void worker_leave_idle(struct worker *worker)
1854 {
1855 struct worker_pool *pool = worker->pool;
1856
1857 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1858 return;
1859 worker_clr_flags(worker, WORKER_IDLE);
1860 pool->nr_idle--;
1861 list_del_init(&worker->entry);
1862 }
1863
alloc_worker(int node)1864 static struct worker *alloc_worker(int node)
1865 {
1866 struct worker *worker;
1867
1868 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1869 if (worker) {
1870 INIT_LIST_HEAD(&worker->entry);
1871 INIT_LIST_HEAD(&worker->scheduled);
1872 INIT_LIST_HEAD(&worker->node);
1873 /* on creation a worker is in !idle && prep state */
1874 worker->flags = WORKER_PREP;
1875 }
1876 return worker;
1877 }
1878
1879 /**
1880 * worker_attach_to_pool() - attach a worker to a pool
1881 * @worker: worker to be attached
1882 * @pool: the target pool
1883 *
1884 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1885 * cpu-binding of @worker are kept coordinated with the pool across
1886 * cpu-[un]hotplugs.
1887 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1888 static void worker_attach_to_pool(struct worker *worker,
1889 struct worker_pool *pool)
1890 {
1891 mutex_lock(&wq_pool_attach_mutex);
1892
1893 /*
1894 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1895 * stable across this function. See the comments above the flag
1896 * definition for details.
1897 */
1898 if (pool->flags & POOL_DISASSOCIATED)
1899 worker->flags |= WORKER_UNBOUND;
1900 else
1901 kthread_set_per_cpu(worker->task, pool->cpu);
1902
1903 if (worker->rescue_wq)
1904 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1905
1906 list_add_tail(&worker->node, &pool->workers);
1907 worker->pool = pool;
1908
1909 mutex_unlock(&wq_pool_attach_mutex);
1910 }
1911
1912 /**
1913 * worker_detach_from_pool() - detach a worker from its pool
1914 * @worker: worker which is attached to its pool
1915 *
1916 * Undo the attaching which had been done in worker_attach_to_pool(). The
1917 * caller worker shouldn't access to the pool after detached except it has
1918 * other reference to the pool.
1919 */
worker_detach_from_pool(struct worker * worker)1920 static void worker_detach_from_pool(struct worker *worker)
1921 {
1922 struct worker_pool *pool = worker->pool;
1923 struct completion *detach_completion = NULL;
1924
1925 mutex_lock(&wq_pool_attach_mutex);
1926
1927 kthread_set_per_cpu(worker->task, -1);
1928 list_del(&worker->node);
1929 worker->pool = NULL;
1930
1931 if (list_empty(&pool->workers))
1932 detach_completion = pool->detach_completion;
1933 mutex_unlock(&wq_pool_attach_mutex);
1934
1935 /* clear leftover flags without pool->lock after it is detached */
1936 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1937
1938 if (detach_completion)
1939 complete(detach_completion);
1940 }
1941
1942 /**
1943 * create_worker - create a new workqueue worker
1944 * @pool: pool the new worker will belong to
1945 *
1946 * Create and start a new worker which is attached to @pool.
1947 *
1948 * CONTEXT:
1949 * Might sleep. Does GFP_KERNEL allocations.
1950 *
1951 * Return:
1952 * Pointer to the newly created worker.
1953 */
create_worker(struct worker_pool * pool)1954 static struct worker *create_worker(struct worker_pool *pool)
1955 {
1956 struct worker *worker;
1957 int id;
1958 char id_buf[16];
1959
1960 /* ID is needed to determine kthread name */
1961 id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1962 if (id < 0) {
1963 pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
1964 ERR_PTR(id));
1965 return NULL;
1966 }
1967
1968 worker = alloc_worker(pool->node);
1969 if (!worker) {
1970 pr_err_once("workqueue: Failed to allocate a worker\n");
1971 goto fail;
1972 }
1973
1974 worker->id = id;
1975
1976 if (pool->cpu >= 0)
1977 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1978 pool->attrs->nice < 0 ? "H" : "");
1979 else
1980 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1981
1982 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1983 "kworker/%s", id_buf);
1984 if (IS_ERR(worker->task)) {
1985 pr_err_once("workqueue: Failed to create a worker thread: %pe",
1986 worker->task);
1987 goto fail;
1988 }
1989
1990 set_user_nice(worker->task, pool->attrs->nice);
1991 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1992
1993 /* successful, attach the worker to the pool */
1994 worker_attach_to_pool(worker, pool);
1995
1996 /* start the newly created worker */
1997 raw_spin_lock_irq(&pool->lock);
1998 worker->pool->nr_workers++;
1999 worker_enter_idle(worker);
2000 wake_up_process(worker->task);
2001 raw_spin_unlock_irq(&pool->lock);
2002
2003 return worker;
2004
2005 fail:
2006 ida_free(&pool->worker_ida, id);
2007 kfree(worker);
2008 return NULL;
2009 }
2010
2011 /**
2012 * destroy_worker - destroy a workqueue worker
2013 * @worker: worker to be destroyed
2014 *
2015 * Destroy @worker and adjust @pool stats accordingly. The worker should
2016 * be idle.
2017 *
2018 * CONTEXT:
2019 * raw_spin_lock_irq(pool->lock).
2020 */
destroy_worker(struct worker * worker)2021 static void destroy_worker(struct worker *worker)
2022 {
2023 struct worker_pool *pool = worker->pool;
2024
2025 lockdep_assert_held(&pool->lock);
2026
2027 /* sanity check frenzy */
2028 if (WARN_ON(worker->current_work) ||
2029 WARN_ON(!list_empty(&worker->scheduled)) ||
2030 WARN_ON(!(worker->flags & WORKER_IDLE)))
2031 return;
2032
2033 pool->nr_workers--;
2034 pool->nr_idle--;
2035
2036 list_del_init(&worker->entry);
2037 worker->flags |= WORKER_DIE;
2038 wake_up_process(worker->task);
2039 }
2040
idle_worker_timeout(struct timer_list * t)2041 static void idle_worker_timeout(struct timer_list *t)
2042 {
2043 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2044
2045 raw_spin_lock_irq(&pool->lock);
2046
2047 while (too_many_workers(pool)) {
2048 struct worker *worker;
2049 unsigned long expires;
2050
2051 /* idle_list is kept in LIFO order, check the last one */
2052 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2053 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2054
2055 if (time_before(jiffies, expires)) {
2056 mod_timer(&pool->idle_timer, expires);
2057 break;
2058 }
2059
2060 destroy_worker(worker);
2061 }
2062
2063 raw_spin_unlock_irq(&pool->lock);
2064 }
2065
send_mayday(struct work_struct * work)2066 static void send_mayday(struct work_struct *work)
2067 {
2068 struct pool_workqueue *pwq = get_work_pwq(work);
2069 struct workqueue_struct *wq = pwq->wq;
2070
2071 lockdep_assert_held(&wq_mayday_lock);
2072
2073 if (!wq->rescuer)
2074 return;
2075
2076 /* mayday mayday mayday */
2077 if (list_empty(&pwq->mayday_node)) {
2078 /*
2079 * If @pwq is for an unbound wq, its base ref may be put at
2080 * any time due to an attribute change. Pin @pwq until the
2081 * rescuer is done with it.
2082 */
2083 get_pwq(pwq);
2084 list_add_tail(&pwq->mayday_node, &wq->maydays);
2085 wake_up_process(wq->rescuer->task);
2086 }
2087 }
2088
pool_mayday_timeout(struct timer_list * t)2089 static void pool_mayday_timeout(struct timer_list *t)
2090 {
2091 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2092 struct work_struct *work;
2093
2094 raw_spin_lock_irq(&pool->lock);
2095 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2096
2097 if (need_to_create_worker(pool)) {
2098 /*
2099 * We've been trying to create a new worker but
2100 * haven't been successful. We might be hitting an
2101 * allocation deadlock. Send distress signals to
2102 * rescuers.
2103 */
2104 list_for_each_entry(work, &pool->worklist, entry)
2105 send_mayday(work);
2106 }
2107
2108 raw_spin_unlock(&wq_mayday_lock);
2109 raw_spin_unlock_irq(&pool->lock);
2110
2111 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2112 }
2113
2114 /**
2115 * maybe_create_worker - create a new worker if necessary
2116 * @pool: pool to create a new worker for
2117 *
2118 * Create a new worker for @pool if necessary. @pool is guaranteed to
2119 * have at least one idle worker on return from this function. If
2120 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2121 * sent to all rescuers with works scheduled on @pool to resolve
2122 * possible allocation deadlock.
2123 *
2124 * On return, need_to_create_worker() is guaranteed to be %false and
2125 * may_start_working() %true.
2126 *
2127 * LOCKING:
2128 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2129 * multiple times. Does GFP_KERNEL allocations. Called only from
2130 * manager.
2131 */
maybe_create_worker(struct worker_pool * pool)2132 static void maybe_create_worker(struct worker_pool *pool)
2133 __releases(&pool->lock)
2134 __acquires(&pool->lock)
2135 {
2136 restart:
2137 raw_spin_unlock_irq(&pool->lock);
2138
2139 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2140 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2141
2142 while (true) {
2143 if (create_worker(pool) || !need_to_create_worker(pool))
2144 break;
2145
2146 schedule_timeout_interruptible(CREATE_COOLDOWN);
2147
2148 if (!need_to_create_worker(pool))
2149 break;
2150 }
2151
2152 del_timer_sync(&pool->mayday_timer);
2153 raw_spin_lock_irq(&pool->lock);
2154 /*
2155 * This is necessary even after a new worker was just successfully
2156 * created as @pool->lock was dropped and the new worker might have
2157 * already become busy.
2158 */
2159 if (need_to_create_worker(pool))
2160 goto restart;
2161 }
2162
2163 /**
2164 * manage_workers - manage worker pool
2165 * @worker: self
2166 *
2167 * Assume the manager role and manage the worker pool @worker belongs
2168 * to. At any given time, there can be only zero or one manager per
2169 * pool. The exclusion is handled automatically by this function.
2170 *
2171 * The caller can safely start processing works on false return. On
2172 * true return, it's guaranteed that need_to_create_worker() is false
2173 * and may_start_working() is true.
2174 *
2175 * CONTEXT:
2176 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2177 * multiple times. Does GFP_KERNEL allocations.
2178 *
2179 * Return:
2180 * %false if the pool doesn't need management and the caller can safely
2181 * start processing works, %true if management function was performed and
2182 * the conditions that the caller verified before calling the function may
2183 * no longer be true.
2184 */
manage_workers(struct worker * worker)2185 static bool manage_workers(struct worker *worker)
2186 {
2187 struct worker_pool *pool = worker->pool;
2188
2189 if (pool->flags & POOL_MANAGER_ACTIVE)
2190 return false;
2191
2192 pool->flags |= POOL_MANAGER_ACTIVE;
2193 pool->manager = worker;
2194
2195 maybe_create_worker(pool);
2196
2197 pool->manager = NULL;
2198 pool->flags &= ~POOL_MANAGER_ACTIVE;
2199 rcuwait_wake_up(&manager_wait);
2200 return true;
2201 }
2202
2203 /**
2204 * process_one_work - process single work
2205 * @worker: self
2206 * @work: work to process
2207 *
2208 * Process @work. This function contains all the logics necessary to
2209 * process a single work including synchronization against and
2210 * interaction with other workers on the same cpu, queueing and
2211 * flushing. As long as context requirement is met, any worker can
2212 * call this function to process a work.
2213 *
2214 * CONTEXT:
2215 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2216 */
process_one_work(struct worker * worker,struct work_struct * work)2217 static void process_one_work(struct worker *worker, struct work_struct *work)
2218 __releases(&pool->lock)
2219 __acquires(&pool->lock)
2220 {
2221 struct pool_workqueue *pwq = get_work_pwq(work);
2222 struct worker_pool *pool = worker->pool;
2223 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2224 unsigned long work_data;
2225 struct worker *collision;
2226 #ifdef CONFIG_LOCKDEP
2227 /*
2228 * It is permissible to free the struct work_struct from
2229 * inside the function that is called from it, this we need to
2230 * take into account for lockdep too. To avoid bogus "held
2231 * lock freed" warnings as well as problems when looking into
2232 * work->lockdep_map, make a copy and use that here.
2233 */
2234 struct lockdep_map lockdep_map;
2235
2236 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2237 #endif
2238 /* ensure we're on the correct CPU */
2239 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2240 raw_smp_processor_id() != pool->cpu);
2241
2242 /*
2243 * A single work shouldn't be executed concurrently by
2244 * multiple workers on a single cpu. Check whether anyone is
2245 * already processing the work. If so, defer the work to the
2246 * currently executing one.
2247 */
2248 collision = find_worker_executing_work(pool, work);
2249 if (unlikely(collision)) {
2250 move_linked_works(work, &collision->scheduled, NULL);
2251 return;
2252 }
2253
2254 /* claim and dequeue */
2255 debug_work_deactivate(work);
2256 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2257 worker->current_work = work;
2258 worker->current_func = work->func;
2259 worker->current_pwq = pwq;
2260 work_data = *work_data_bits(work);
2261 worker->current_color = get_work_color(work_data);
2262
2263 /*
2264 * Record wq name for cmdline and debug reporting, may get
2265 * overridden through set_worker_desc().
2266 */
2267 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2268
2269 list_del_init(&work->entry);
2270
2271 /*
2272 * CPU intensive works don't participate in concurrency management.
2273 * They're the scheduler's responsibility. This takes @worker out
2274 * of concurrency management and the next code block will chain
2275 * execution of the pending work items.
2276 */
2277 if (unlikely(cpu_intensive))
2278 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2279
2280 /*
2281 * Wake up another worker if necessary. The condition is always
2282 * false for normal per-cpu workers since nr_running would always
2283 * be >= 1 at this point. This is used to chain execution of the
2284 * pending work items for WORKER_NOT_RUNNING workers such as the
2285 * UNBOUND and CPU_INTENSIVE ones.
2286 */
2287 if (need_more_worker(pool))
2288 wake_up_worker(pool);
2289
2290 /*
2291 * Record the last pool and clear PENDING which should be the last
2292 * update to @work. Also, do this inside @pool->lock so that
2293 * PENDING and queued state changes happen together while IRQ is
2294 * disabled.
2295 */
2296 set_work_pool_and_clear_pending(work, pool->id);
2297
2298 raw_spin_unlock_irq(&pool->lock);
2299
2300 lock_map_acquire(&pwq->wq->lockdep_map);
2301 lock_map_acquire(&lockdep_map);
2302 /*
2303 * Strictly speaking we should mark the invariant state without holding
2304 * any locks, that is, before these two lock_map_acquire()'s.
2305 *
2306 * However, that would result in:
2307 *
2308 * A(W1)
2309 * WFC(C)
2310 * A(W1)
2311 * C(C)
2312 *
2313 * Which would create W1->C->W1 dependencies, even though there is no
2314 * actual deadlock possible. There are two solutions, using a
2315 * read-recursive acquire on the work(queue) 'locks', but this will then
2316 * hit the lockdep limitation on recursive locks, or simply discard
2317 * these locks.
2318 *
2319 * AFAICT there is no possible deadlock scenario between the
2320 * flush_work() and complete() primitives (except for single-threaded
2321 * workqueues), so hiding them isn't a problem.
2322 */
2323 lockdep_invariant_state(true);
2324 trace_workqueue_execute_start(work);
2325 worker->current_func(work);
2326 /*
2327 * While we must be careful to not use "work" after this, the trace
2328 * point will only record its address.
2329 */
2330 trace_workqueue_execute_end(work, worker->current_func);
2331 lock_map_release(&lockdep_map);
2332 lock_map_release(&pwq->wq->lockdep_map);
2333
2334 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2335 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2336 " last function: %ps\n",
2337 current->comm, preempt_count(), task_pid_nr(current),
2338 worker->current_func);
2339 debug_show_held_locks(current);
2340 dump_stack();
2341 }
2342
2343 /*
2344 * The following prevents a kworker from hogging CPU on !PREEMPTION
2345 * kernels, where a requeueing work item waiting for something to
2346 * happen could deadlock with stop_machine as such work item could
2347 * indefinitely requeue itself while all other CPUs are trapped in
2348 * stop_machine. At the same time, report a quiescent RCU state so
2349 * the same condition doesn't freeze RCU.
2350 */
2351 cond_resched();
2352
2353 raw_spin_lock_irq(&pool->lock);
2354
2355 /* clear cpu intensive status */
2356 if (unlikely(cpu_intensive))
2357 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2358
2359 /* tag the worker for identification in schedule() */
2360 worker->last_func = worker->current_func;
2361
2362 /* we're done with it, release */
2363 hash_del(&worker->hentry);
2364 worker->current_work = NULL;
2365 worker->current_func = NULL;
2366 worker->current_pwq = NULL;
2367 worker->current_color = INT_MAX;
2368 pwq_dec_nr_in_flight(pwq, work_data);
2369 }
2370
2371 /**
2372 * process_scheduled_works - process scheduled works
2373 * @worker: self
2374 *
2375 * Process all scheduled works. Please note that the scheduled list
2376 * may change while processing a work, so this function repeatedly
2377 * fetches a work from the top and executes it.
2378 *
2379 * CONTEXT:
2380 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2381 * multiple times.
2382 */
process_scheduled_works(struct worker * worker)2383 static void process_scheduled_works(struct worker *worker)
2384 {
2385 while (!list_empty(&worker->scheduled)) {
2386 struct work_struct *work = list_first_entry(&worker->scheduled,
2387 struct work_struct, entry);
2388 process_one_work(worker, work);
2389 }
2390 }
2391
set_pf_worker(bool val)2392 static void set_pf_worker(bool val)
2393 {
2394 mutex_lock(&wq_pool_attach_mutex);
2395 if (val)
2396 current->flags |= PF_WQ_WORKER;
2397 else
2398 current->flags &= ~PF_WQ_WORKER;
2399 mutex_unlock(&wq_pool_attach_mutex);
2400 }
2401
2402 /**
2403 * worker_thread - the worker thread function
2404 * @__worker: self
2405 *
2406 * The worker thread function. All workers belong to a worker_pool -
2407 * either a per-cpu one or dynamic unbound one. These workers process all
2408 * work items regardless of their specific target workqueue. The only
2409 * exception is work items which belong to workqueues with a rescuer which
2410 * will be explained in rescuer_thread().
2411 *
2412 * Return: 0
2413 */
worker_thread(void * __worker)2414 static int worker_thread(void *__worker)
2415 {
2416 struct worker *worker = __worker;
2417 struct worker_pool *pool = worker->pool;
2418
2419 /* tell the scheduler that this is a workqueue worker */
2420 set_pf_worker(true);
2421 woke_up:
2422 raw_spin_lock_irq(&pool->lock);
2423
2424 /* am I supposed to die? */
2425 if (unlikely(worker->flags & WORKER_DIE)) {
2426 raw_spin_unlock_irq(&pool->lock);
2427 WARN_ON_ONCE(!list_empty(&worker->entry));
2428 set_pf_worker(false);
2429
2430 set_task_comm(worker->task, "kworker/dying");
2431 ida_free(&pool->worker_ida, worker->id);
2432 worker_detach_from_pool(worker);
2433 kfree(worker);
2434 return 0;
2435 }
2436
2437 worker_leave_idle(worker);
2438 recheck:
2439 /* no more worker necessary? */
2440 if (!need_more_worker(pool))
2441 goto sleep;
2442
2443 /* do we need to manage? */
2444 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2445 goto recheck;
2446
2447 /*
2448 * ->scheduled list can only be filled while a worker is
2449 * preparing to process a work or actually processing it.
2450 * Make sure nobody diddled with it while I was sleeping.
2451 */
2452 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2453
2454 /*
2455 * Finish PREP stage. We're guaranteed to have at least one idle
2456 * worker or that someone else has already assumed the manager
2457 * role. This is where @worker starts participating in concurrency
2458 * management if applicable and concurrency management is restored
2459 * after being rebound. See rebind_workers() for details.
2460 */
2461 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2462
2463 do {
2464 struct work_struct *work =
2465 list_first_entry(&pool->worklist,
2466 struct work_struct, entry);
2467
2468 pool->watchdog_ts = jiffies;
2469
2470 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2471 /* optimization path, not strictly necessary */
2472 process_one_work(worker, work);
2473 if (unlikely(!list_empty(&worker->scheduled)))
2474 process_scheduled_works(worker);
2475 } else {
2476 move_linked_works(work, &worker->scheduled, NULL);
2477 process_scheduled_works(worker);
2478 }
2479 } while (keep_working(pool));
2480
2481 worker_set_flags(worker, WORKER_PREP);
2482 sleep:
2483 /*
2484 * pool->lock is held and there's no work to process and no need to
2485 * manage, sleep. Workers are woken up only while holding
2486 * pool->lock or from local cpu, so setting the current state
2487 * before releasing pool->lock is enough to prevent losing any
2488 * event.
2489 */
2490 worker_enter_idle(worker);
2491 __set_current_state(TASK_IDLE);
2492 raw_spin_unlock_irq(&pool->lock);
2493 schedule();
2494 goto woke_up;
2495 }
2496
2497 /**
2498 * rescuer_thread - the rescuer thread function
2499 * @__rescuer: self
2500 *
2501 * Workqueue rescuer thread function. There's one rescuer for each
2502 * workqueue which has WQ_MEM_RECLAIM set.
2503 *
2504 * Regular work processing on a pool may block trying to create a new
2505 * worker which uses GFP_KERNEL allocation which has slight chance of
2506 * developing into deadlock if some works currently on the same queue
2507 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2508 * the problem rescuer solves.
2509 *
2510 * When such condition is possible, the pool summons rescuers of all
2511 * workqueues which have works queued on the pool and let them process
2512 * those works so that forward progress can be guaranteed.
2513 *
2514 * This should happen rarely.
2515 *
2516 * Return: 0
2517 */
rescuer_thread(void * __rescuer)2518 static int rescuer_thread(void *__rescuer)
2519 {
2520 struct worker *rescuer = __rescuer;
2521 struct workqueue_struct *wq = rescuer->rescue_wq;
2522 struct list_head *scheduled = &rescuer->scheduled;
2523 bool should_stop;
2524
2525 set_user_nice(current, RESCUER_NICE_LEVEL);
2526
2527 /*
2528 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2529 * doesn't participate in concurrency management.
2530 */
2531 set_pf_worker(true);
2532 repeat:
2533 set_current_state(TASK_IDLE);
2534
2535 /*
2536 * By the time the rescuer is requested to stop, the workqueue
2537 * shouldn't have any work pending, but @wq->maydays may still have
2538 * pwq(s) queued. This can happen by non-rescuer workers consuming
2539 * all the work items before the rescuer got to them. Go through
2540 * @wq->maydays processing before acting on should_stop so that the
2541 * list is always empty on exit.
2542 */
2543 should_stop = kthread_should_stop();
2544
2545 /* see whether any pwq is asking for help */
2546 raw_spin_lock_irq(&wq_mayday_lock);
2547
2548 while (!list_empty(&wq->maydays)) {
2549 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2550 struct pool_workqueue, mayday_node);
2551 struct worker_pool *pool = pwq->pool;
2552 struct work_struct *work, *n;
2553 bool first = true;
2554
2555 __set_current_state(TASK_RUNNING);
2556 list_del_init(&pwq->mayday_node);
2557
2558 raw_spin_unlock_irq(&wq_mayday_lock);
2559
2560 worker_attach_to_pool(rescuer, pool);
2561
2562 raw_spin_lock_irq(&pool->lock);
2563
2564 /*
2565 * Slurp in all works issued via this workqueue and
2566 * process'em.
2567 */
2568 WARN_ON_ONCE(!list_empty(scheduled));
2569 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2570 if (get_work_pwq(work) == pwq) {
2571 if (first)
2572 pool->watchdog_ts = jiffies;
2573 move_linked_works(work, scheduled, &n);
2574 }
2575 first = false;
2576 }
2577
2578 if (!list_empty(scheduled)) {
2579 process_scheduled_works(rescuer);
2580
2581 /*
2582 * The above execution of rescued work items could
2583 * have created more to rescue through
2584 * pwq_activate_first_inactive() or chained
2585 * queueing. Let's put @pwq back on mayday list so
2586 * that such back-to-back work items, which may be
2587 * being used to relieve memory pressure, don't
2588 * incur MAYDAY_INTERVAL delay inbetween.
2589 */
2590 if (pwq->nr_active && need_to_create_worker(pool)) {
2591 raw_spin_lock(&wq_mayday_lock);
2592 /*
2593 * Queue iff we aren't racing destruction
2594 * and somebody else hasn't queued it already.
2595 */
2596 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2597 get_pwq(pwq);
2598 list_add_tail(&pwq->mayday_node, &wq->maydays);
2599 }
2600 raw_spin_unlock(&wq_mayday_lock);
2601 }
2602 }
2603
2604 /*
2605 * Put the reference grabbed by send_mayday(). @pool won't
2606 * go away while we're still attached to it.
2607 */
2608 put_pwq(pwq);
2609
2610 /*
2611 * Leave this pool. If need_more_worker() is %true, notify a
2612 * regular worker; otherwise, we end up with 0 concurrency
2613 * and stalling the execution.
2614 */
2615 if (need_more_worker(pool))
2616 wake_up_worker(pool);
2617
2618 raw_spin_unlock_irq(&pool->lock);
2619
2620 worker_detach_from_pool(rescuer);
2621
2622 raw_spin_lock_irq(&wq_mayday_lock);
2623 }
2624
2625 raw_spin_unlock_irq(&wq_mayday_lock);
2626
2627 if (should_stop) {
2628 __set_current_state(TASK_RUNNING);
2629 set_pf_worker(false);
2630 return 0;
2631 }
2632
2633 /* rescuers should never participate in concurrency management */
2634 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2635 schedule();
2636 goto repeat;
2637 }
2638
2639 /**
2640 * check_flush_dependency - check for flush dependency sanity
2641 * @target_wq: workqueue being flushed
2642 * @target_work: work item being flushed (NULL for workqueue flushes)
2643 *
2644 * %current is trying to flush the whole @target_wq or @target_work on it.
2645 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2646 * reclaiming memory or running on a workqueue which doesn't have
2647 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2648 * a deadlock.
2649 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2650 static void check_flush_dependency(struct workqueue_struct *target_wq,
2651 struct work_struct *target_work)
2652 {
2653 work_func_t target_func = target_work ? target_work->func : NULL;
2654 struct worker *worker;
2655
2656 if (target_wq->flags & WQ_MEM_RECLAIM)
2657 return;
2658
2659 worker = current_wq_worker();
2660
2661 WARN_ONCE(current->flags & PF_MEMALLOC,
2662 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2663 current->pid, current->comm, target_wq->name, target_func);
2664 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2665 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2666 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2667 worker->current_pwq->wq->name, worker->current_func,
2668 target_wq->name, target_func);
2669 }
2670
2671 struct wq_barrier {
2672 struct work_struct work;
2673 struct completion done;
2674 struct task_struct *task; /* purely informational */
2675 };
2676
wq_barrier_func(struct work_struct * work)2677 static void wq_barrier_func(struct work_struct *work)
2678 {
2679 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2680 complete(&barr->done);
2681 }
2682
2683 /**
2684 * insert_wq_barrier - insert a barrier work
2685 * @pwq: pwq to insert barrier into
2686 * @barr: wq_barrier to insert
2687 * @target: target work to attach @barr to
2688 * @worker: worker currently executing @target, NULL if @target is not executing
2689 *
2690 * @barr is linked to @target such that @barr is completed only after
2691 * @target finishes execution. Please note that the ordering
2692 * guarantee is observed only with respect to @target and on the local
2693 * cpu.
2694 *
2695 * Currently, a queued barrier can't be canceled. This is because
2696 * try_to_grab_pending() can't determine whether the work to be
2697 * grabbed is at the head of the queue and thus can't clear LINKED
2698 * flag of the previous work while there must be a valid next work
2699 * after a work with LINKED flag set.
2700 *
2701 * Note that when @worker is non-NULL, @target may be modified
2702 * underneath us, so we can't reliably determine pwq from @target.
2703 *
2704 * CONTEXT:
2705 * raw_spin_lock_irq(pool->lock).
2706 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2707 static void insert_wq_barrier(struct pool_workqueue *pwq,
2708 struct wq_barrier *barr,
2709 struct work_struct *target, struct worker *worker)
2710 {
2711 unsigned int work_flags = 0;
2712 unsigned int work_color;
2713 struct list_head *head;
2714
2715 /*
2716 * debugobject calls are safe here even with pool->lock locked
2717 * as we know for sure that this will not trigger any of the
2718 * checks and call back into the fixup functions where we
2719 * might deadlock.
2720 */
2721 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2722 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2723
2724 init_completion_map(&barr->done, &target->lockdep_map);
2725
2726 barr->task = current;
2727
2728 /* The barrier work item does not participate in pwq->nr_active. */
2729 work_flags |= WORK_STRUCT_INACTIVE;
2730
2731 /*
2732 * If @target is currently being executed, schedule the
2733 * barrier to the worker; otherwise, put it after @target.
2734 */
2735 if (worker) {
2736 head = worker->scheduled.next;
2737 work_color = worker->current_color;
2738 } else {
2739 unsigned long *bits = work_data_bits(target);
2740
2741 head = target->entry.next;
2742 /* there can already be other linked works, inherit and set */
2743 work_flags |= *bits & WORK_STRUCT_LINKED;
2744 work_color = get_work_color(*bits);
2745 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2746 }
2747
2748 pwq->nr_in_flight[work_color]++;
2749 work_flags |= work_color_to_flags(work_color);
2750
2751 debug_work_activate(&barr->work);
2752 insert_work(pwq, &barr->work, head, work_flags);
2753 }
2754
2755 /**
2756 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2757 * @wq: workqueue being flushed
2758 * @flush_color: new flush color, < 0 for no-op
2759 * @work_color: new work color, < 0 for no-op
2760 *
2761 * Prepare pwqs for workqueue flushing.
2762 *
2763 * If @flush_color is non-negative, flush_color on all pwqs should be
2764 * -1. If no pwq has in-flight commands at the specified color, all
2765 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2766 * has in flight commands, its pwq->flush_color is set to
2767 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2768 * wakeup logic is armed and %true is returned.
2769 *
2770 * The caller should have initialized @wq->first_flusher prior to
2771 * calling this function with non-negative @flush_color. If
2772 * @flush_color is negative, no flush color update is done and %false
2773 * is returned.
2774 *
2775 * If @work_color is non-negative, all pwqs should have the same
2776 * work_color which is previous to @work_color and all will be
2777 * advanced to @work_color.
2778 *
2779 * CONTEXT:
2780 * mutex_lock(wq->mutex).
2781 *
2782 * Return:
2783 * %true if @flush_color >= 0 and there's something to flush. %false
2784 * otherwise.
2785 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2786 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2787 int flush_color, int work_color)
2788 {
2789 bool wait = false;
2790 struct pool_workqueue *pwq;
2791
2792 if (flush_color >= 0) {
2793 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2794 atomic_set(&wq->nr_pwqs_to_flush, 1);
2795 }
2796
2797 for_each_pwq(pwq, wq) {
2798 struct worker_pool *pool = pwq->pool;
2799
2800 raw_spin_lock_irq(&pool->lock);
2801
2802 if (flush_color >= 0) {
2803 WARN_ON_ONCE(pwq->flush_color != -1);
2804
2805 if (pwq->nr_in_flight[flush_color]) {
2806 pwq->flush_color = flush_color;
2807 atomic_inc(&wq->nr_pwqs_to_flush);
2808 wait = true;
2809 }
2810 }
2811
2812 if (work_color >= 0) {
2813 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2814 pwq->work_color = work_color;
2815 }
2816
2817 raw_spin_unlock_irq(&pool->lock);
2818 }
2819
2820 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2821 complete(&wq->first_flusher->done);
2822
2823 return wait;
2824 }
2825
2826 /**
2827 * flush_workqueue - ensure that any scheduled work has run to completion.
2828 * @wq: workqueue to flush
2829 *
2830 * This function sleeps until all work items which were queued on entry
2831 * have finished execution, but it is not livelocked by new incoming ones.
2832 */
flush_workqueue(struct workqueue_struct * wq)2833 void flush_workqueue(struct workqueue_struct *wq)
2834 {
2835 struct wq_flusher this_flusher = {
2836 .list = LIST_HEAD_INIT(this_flusher.list),
2837 .flush_color = -1,
2838 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2839 };
2840 int next_color;
2841
2842 if (WARN_ON(!wq_online))
2843 return;
2844
2845 lock_map_acquire(&wq->lockdep_map);
2846 lock_map_release(&wq->lockdep_map);
2847
2848 mutex_lock(&wq->mutex);
2849
2850 /*
2851 * Start-to-wait phase
2852 */
2853 next_color = work_next_color(wq->work_color);
2854
2855 if (next_color != wq->flush_color) {
2856 /*
2857 * Color space is not full. The current work_color
2858 * becomes our flush_color and work_color is advanced
2859 * by one.
2860 */
2861 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2862 this_flusher.flush_color = wq->work_color;
2863 wq->work_color = next_color;
2864
2865 if (!wq->first_flusher) {
2866 /* no flush in progress, become the first flusher */
2867 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2868
2869 wq->first_flusher = &this_flusher;
2870
2871 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2872 wq->work_color)) {
2873 /* nothing to flush, done */
2874 wq->flush_color = next_color;
2875 wq->first_flusher = NULL;
2876 goto out_unlock;
2877 }
2878 } else {
2879 /* wait in queue */
2880 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2881 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2882 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2883 }
2884 } else {
2885 /*
2886 * Oops, color space is full, wait on overflow queue.
2887 * The next flush completion will assign us
2888 * flush_color and transfer to flusher_queue.
2889 */
2890 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2891 }
2892
2893 check_flush_dependency(wq, NULL);
2894
2895 mutex_unlock(&wq->mutex);
2896
2897 wait_for_completion(&this_flusher.done);
2898
2899 /*
2900 * Wake-up-and-cascade phase
2901 *
2902 * First flushers are responsible for cascading flushes and
2903 * handling overflow. Non-first flushers can simply return.
2904 */
2905 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2906 return;
2907
2908 mutex_lock(&wq->mutex);
2909
2910 /* we might have raced, check again with mutex held */
2911 if (wq->first_flusher != &this_flusher)
2912 goto out_unlock;
2913
2914 WRITE_ONCE(wq->first_flusher, NULL);
2915
2916 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2917 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2918
2919 while (true) {
2920 struct wq_flusher *next, *tmp;
2921
2922 /* complete all the flushers sharing the current flush color */
2923 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2924 if (next->flush_color != wq->flush_color)
2925 break;
2926 list_del_init(&next->list);
2927 complete(&next->done);
2928 }
2929
2930 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2931 wq->flush_color != work_next_color(wq->work_color));
2932
2933 /* this flush_color is finished, advance by one */
2934 wq->flush_color = work_next_color(wq->flush_color);
2935
2936 /* one color has been freed, handle overflow queue */
2937 if (!list_empty(&wq->flusher_overflow)) {
2938 /*
2939 * Assign the same color to all overflowed
2940 * flushers, advance work_color and append to
2941 * flusher_queue. This is the start-to-wait
2942 * phase for these overflowed flushers.
2943 */
2944 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2945 tmp->flush_color = wq->work_color;
2946
2947 wq->work_color = work_next_color(wq->work_color);
2948
2949 list_splice_tail_init(&wq->flusher_overflow,
2950 &wq->flusher_queue);
2951 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2952 }
2953
2954 if (list_empty(&wq->flusher_queue)) {
2955 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2956 break;
2957 }
2958
2959 /*
2960 * Need to flush more colors. Make the next flusher
2961 * the new first flusher and arm pwqs.
2962 */
2963 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2964 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2965
2966 list_del_init(&next->list);
2967 wq->first_flusher = next;
2968
2969 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2970 break;
2971
2972 /*
2973 * Meh... this color is already done, clear first
2974 * flusher and repeat cascading.
2975 */
2976 wq->first_flusher = NULL;
2977 }
2978
2979 out_unlock:
2980 mutex_unlock(&wq->mutex);
2981 }
2982 EXPORT_SYMBOL(flush_workqueue);
2983
2984 /**
2985 * drain_workqueue - drain a workqueue
2986 * @wq: workqueue to drain
2987 *
2988 * Wait until the workqueue becomes empty. While draining is in progress,
2989 * only chain queueing is allowed. IOW, only currently pending or running
2990 * work items on @wq can queue further work items on it. @wq is flushed
2991 * repeatedly until it becomes empty. The number of flushing is determined
2992 * by the depth of chaining and should be relatively short. Whine if it
2993 * takes too long.
2994 */
drain_workqueue(struct workqueue_struct * wq)2995 void drain_workqueue(struct workqueue_struct *wq)
2996 {
2997 unsigned int flush_cnt = 0;
2998 struct pool_workqueue *pwq;
2999
3000 /*
3001 * __queue_work() needs to test whether there are drainers, is much
3002 * hotter than drain_workqueue() and already looks at @wq->flags.
3003 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3004 */
3005 mutex_lock(&wq->mutex);
3006 if (!wq->nr_drainers++)
3007 wq->flags |= __WQ_DRAINING;
3008 mutex_unlock(&wq->mutex);
3009 reflush:
3010 flush_workqueue(wq);
3011
3012 mutex_lock(&wq->mutex);
3013
3014 for_each_pwq(pwq, wq) {
3015 bool drained;
3016
3017 raw_spin_lock_irq(&pwq->pool->lock);
3018 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3019 raw_spin_unlock_irq(&pwq->pool->lock);
3020
3021 if (drained)
3022 continue;
3023
3024 if (++flush_cnt == 10 ||
3025 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3026 pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3027 wq->name, __func__, flush_cnt);
3028
3029 mutex_unlock(&wq->mutex);
3030 goto reflush;
3031 }
3032
3033 if (!--wq->nr_drainers)
3034 wq->flags &= ~__WQ_DRAINING;
3035 mutex_unlock(&wq->mutex);
3036 }
3037 EXPORT_SYMBOL_GPL(drain_workqueue);
3038
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3039 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3040 bool from_cancel)
3041 {
3042 struct worker *worker = NULL;
3043 struct worker_pool *pool;
3044 struct pool_workqueue *pwq;
3045
3046 might_sleep();
3047
3048 rcu_read_lock();
3049 pool = get_work_pool(work);
3050 if (!pool) {
3051 rcu_read_unlock();
3052 return false;
3053 }
3054
3055 raw_spin_lock_irq(&pool->lock);
3056 /* see the comment in try_to_grab_pending() with the same code */
3057 pwq = get_work_pwq(work);
3058 if (pwq) {
3059 if (unlikely(pwq->pool != pool))
3060 goto already_gone;
3061 } else {
3062 worker = find_worker_executing_work(pool, work);
3063 if (!worker)
3064 goto already_gone;
3065 pwq = worker->current_pwq;
3066 }
3067
3068 check_flush_dependency(pwq->wq, work);
3069
3070 insert_wq_barrier(pwq, barr, work, worker);
3071 raw_spin_unlock_irq(&pool->lock);
3072
3073 /*
3074 * Force a lock recursion deadlock when using flush_work() inside a
3075 * single-threaded or rescuer equipped workqueue.
3076 *
3077 * For single threaded workqueues the deadlock happens when the work
3078 * is after the work issuing the flush_work(). For rescuer equipped
3079 * workqueues the deadlock happens when the rescuer stalls, blocking
3080 * forward progress.
3081 */
3082 if (!from_cancel &&
3083 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3084 lock_map_acquire(&pwq->wq->lockdep_map);
3085 lock_map_release(&pwq->wq->lockdep_map);
3086 }
3087 rcu_read_unlock();
3088 return true;
3089 already_gone:
3090 raw_spin_unlock_irq(&pool->lock);
3091 rcu_read_unlock();
3092 return false;
3093 }
3094
__flush_work(struct work_struct * work,bool from_cancel)3095 static bool __flush_work(struct work_struct *work, bool from_cancel)
3096 {
3097 struct wq_barrier barr;
3098
3099 if (WARN_ON(!wq_online))
3100 return false;
3101
3102 if (WARN_ON(!work->func))
3103 return false;
3104
3105 lock_map_acquire(&work->lockdep_map);
3106 lock_map_release(&work->lockdep_map);
3107
3108 if (start_flush_work(work, &barr, from_cancel)) {
3109 wait_for_completion(&barr.done);
3110 destroy_work_on_stack(&barr.work);
3111 return true;
3112 } else {
3113 return false;
3114 }
3115 }
3116
3117 /**
3118 * flush_work - wait for a work to finish executing the last queueing instance
3119 * @work: the work to flush
3120 *
3121 * Wait until @work has finished execution. @work is guaranteed to be idle
3122 * on return if it hasn't been requeued since flush started.
3123 *
3124 * Return:
3125 * %true if flush_work() waited for the work to finish execution,
3126 * %false if it was already idle.
3127 */
flush_work(struct work_struct * work)3128 bool flush_work(struct work_struct *work)
3129 {
3130 return __flush_work(work, false);
3131 }
3132 EXPORT_SYMBOL_GPL(flush_work);
3133
3134 struct cwt_wait {
3135 wait_queue_entry_t wait;
3136 struct work_struct *work;
3137 };
3138
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3139 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3140 {
3141 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3142
3143 if (cwait->work != key)
3144 return 0;
3145 return autoremove_wake_function(wait, mode, sync, key);
3146 }
3147
__cancel_work_timer(struct work_struct * work,bool is_dwork)3148 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3149 {
3150 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3151 unsigned long flags;
3152 int ret;
3153
3154 do {
3155 ret = try_to_grab_pending(work, is_dwork, &flags);
3156 /*
3157 * If someone else is already canceling, wait for it to
3158 * finish. flush_work() doesn't work for PREEMPT_NONE
3159 * because we may get scheduled between @work's completion
3160 * and the other canceling task resuming and clearing
3161 * CANCELING - flush_work() will return false immediately
3162 * as @work is no longer busy, try_to_grab_pending() will
3163 * return -ENOENT as @work is still being canceled and the
3164 * other canceling task won't be able to clear CANCELING as
3165 * we're hogging the CPU.
3166 *
3167 * Let's wait for completion using a waitqueue. As this
3168 * may lead to the thundering herd problem, use a custom
3169 * wake function which matches @work along with exclusive
3170 * wait and wakeup.
3171 */
3172 if (unlikely(ret == -ENOENT)) {
3173 struct cwt_wait cwait;
3174
3175 init_wait(&cwait.wait);
3176 cwait.wait.func = cwt_wakefn;
3177 cwait.work = work;
3178
3179 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3180 TASK_UNINTERRUPTIBLE);
3181 if (work_is_canceling(work))
3182 schedule();
3183 finish_wait(&cancel_waitq, &cwait.wait);
3184 }
3185 } while (unlikely(ret < 0));
3186
3187 /* tell other tasks trying to grab @work to back off */
3188 mark_work_canceling(work);
3189 local_irq_restore(flags);
3190
3191 /*
3192 * This allows canceling during early boot. We know that @work
3193 * isn't executing.
3194 */
3195 if (wq_online)
3196 __flush_work(work, true);
3197
3198 clear_work_data(work);
3199
3200 /*
3201 * Paired with prepare_to_wait() above so that either
3202 * waitqueue_active() is visible here or !work_is_canceling() is
3203 * visible there.
3204 */
3205 smp_mb();
3206 if (waitqueue_active(&cancel_waitq))
3207 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3208
3209 return ret;
3210 }
3211
3212 /**
3213 * cancel_work_sync - cancel a work and wait for it to finish
3214 * @work: the work to cancel
3215 *
3216 * Cancel @work and wait for its execution to finish. This function
3217 * can be used even if the work re-queues itself or migrates to
3218 * another workqueue. On return from this function, @work is
3219 * guaranteed to be not pending or executing on any CPU.
3220 *
3221 * cancel_work_sync(&delayed_work->work) must not be used for
3222 * delayed_work's. Use cancel_delayed_work_sync() instead.
3223 *
3224 * The caller must ensure that the workqueue on which @work was last
3225 * queued can't be destroyed before this function returns.
3226 *
3227 * Return:
3228 * %true if @work was pending, %false otherwise.
3229 */
cancel_work_sync(struct work_struct * work)3230 bool cancel_work_sync(struct work_struct *work)
3231 {
3232 return __cancel_work_timer(work, false);
3233 }
3234 EXPORT_SYMBOL_GPL(cancel_work_sync);
3235
3236 /**
3237 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3238 * @dwork: the delayed work to flush
3239 *
3240 * Delayed timer is cancelled and the pending work is queued for
3241 * immediate execution. Like flush_work(), this function only
3242 * considers the last queueing instance of @dwork.
3243 *
3244 * Return:
3245 * %true if flush_work() waited for the work to finish execution,
3246 * %false if it was already idle.
3247 */
flush_delayed_work(struct delayed_work * dwork)3248 bool flush_delayed_work(struct delayed_work *dwork)
3249 {
3250 local_irq_disable();
3251 if (del_timer_sync(&dwork->timer))
3252 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3253 local_irq_enable();
3254 return flush_work(&dwork->work);
3255 }
3256 EXPORT_SYMBOL(flush_delayed_work);
3257
3258 /**
3259 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3260 * @rwork: the rcu work to flush
3261 *
3262 * Return:
3263 * %true if flush_rcu_work() waited for the work to finish execution,
3264 * %false if it was already idle.
3265 */
flush_rcu_work(struct rcu_work * rwork)3266 bool flush_rcu_work(struct rcu_work *rwork)
3267 {
3268 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3269 rcu_barrier();
3270 flush_work(&rwork->work);
3271 return true;
3272 } else {
3273 return flush_work(&rwork->work);
3274 }
3275 }
3276 EXPORT_SYMBOL(flush_rcu_work);
3277
__cancel_work(struct work_struct * work,bool is_dwork)3278 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3279 {
3280 unsigned long flags;
3281 int ret;
3282
3283 do {
3284 ret = try_to_grab_pending(work, is_dwork, &flags);
3285 } while (unlikely(ret == -EAGAIN));
3286
3287 if (unlikely(ret < 0))
3288 return false;
3289
3290 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3291 local_irq_restore(flags);
3292 return ret;
3293 }
3294
3295 /*
3296 * See cancel_delayed_work()
3297 */
cancel_work(struct work_struct * work)3298 bool cancel_work(struct work_struct *work)
3299 {
3300 return __cancel_work(work, false);
3301 }
3302 EXPORT_SYMBOL(cancel_work);
3303
3304 /**
3305 * cancel_delayed_work - cancel a delayed work
3306 * @dwork: delayed_work to cancel
3307 *
3308 * Kill off a pending delayed_work.
3309 *
3310 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3311 * pending.
3312 *
3313 * Note:
3314 * The work callback function may still be running on return, unless
3315 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3316 * use cancel_delayed_work_sync() to wait on it.
3317 *
3318 * This function is safe to call from any context including IRQ handler.
3319 */
cancel_delayed_work(struct delayed_work * dwork)3320 bool cancel_delayed_work(struct delayed_work *dwork)
3321 {
3322 return __cancel_work(&dwork->work, true);
3323 }
3324 EXPORT_SYMBOL(cancel_delayed_work);
3325
3326 /**
3327 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3328 * @dwork: the delayed work cancel
3329 *
3330 * This is cancel_work_sync() for delayed works.
3331 *
3332 * Return:
3333 * %true if @dwork was pending, %false otherwise.
3334 */
cancel_delayed_work_sync(struct delayed_work * dwork)3335 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3336 {
3337 return __cancel_work_timer(&dwork->work, true);
3338 }
3339 EXPORT_SYMBOL(cancel_delayed_work_sync);
3340
3341 /**
3342 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3343 * @func: the function to call
3344 *
3345 * schedule_on_each_cpu() executes @func on each online CPU using the
3346 * system workqueue and blocks until all CPUs have completed.
3347 * schedule_on_each_cpu() is very slow.
3348 *
3349 * Return:
3350 * 0 on success, -errno on failure.
3351 */
schedule_on_each_cpu(work_func_t func)3352 int schedule_on_each_cpu(work_func_t func)
3353 {
3354 int cpu;
3355 struct work_struct __percpu *works;
3356
3357 works = alloc_percpu(struct work_struct);
3358 if (!works)
3359 return -ENOMEM;
3360
3361 cpus_read_lock();
3362
3363 for_each_online_cpu(cpu) {
3364 struct work_struct *work = per_cpu_ptr(works, cpu);
3365
3366 INIT_WORK(work, func);
3367 schedule_work_on(cpu, work);
3368 }
3369
3370 for_each_online_cpu(cpu)
3371 flush_work(per_cpu_ptr(works, cpu));
3372
3373 cpus_read_unlock();
3374 free_percpu(works);
3375 return 0;
3376 }
3377
3378 /**
3379 * execute_in_process_context - reliably execute the routine with user context
3380 * @fn: the function to execute
3381 * @ew: guaranteed storage for the execute work structure (must
3382 * be available when the work executes)
3383 *
3384 * Executes the function immediately if process context is available,
3385 * otherwise schedules the function for delayed execution.
3386 *
3387 * Return: 0 - function was executed
3388 * 1 - function was scheduled for execution
3389 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3390 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3391 {
3392 if (!in_interrupt()) {
3393 fn(&ew->work);
3394 return 0;
3395 }
3396
3397 INIT_WORK(&ew->work, fn);
3398 schedule_work(&ew->work);
3399
3400 return 1;
3401 }
3402 EXPORT_SYMBOL_GPL(execute_in_process_context);
3403
3404 /**
3405 * free_workqueue_attrs - free a workqueue_attrs
3406 * @attrs: workqueue_attrs to free
3407 *
3408 * Undo alloc_workqueue_attrs().
3409 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3410 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3411 {
3412 if (attrs) {
3413 free_cpumask_var(attrs->cpumask);
3414 kfree(attrs);
3415 }
3416 }
3417
3418 /**
3419 * alloc_workqueue_attrs - allocate a workqueue_attrs
3420 *
3421 * Allocate a new workqueue_attrs, initialize with default settings and
3422 * return it.
3423 *
3424 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3425 */
alloc_workqueue_attrs(void)3426 struct workqueue_attrs *alloc_workqueue_attrs(void)
3427 {
3428 struct workqueue_attrs *attrs;
3429
3430 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3431 if (!attrs)
3432 goto fail;
3433 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3434 goto fail;
3435
3436 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3437 return attrs;
3438 fail:
3439 free_workqueue_attrs(attrs);
3440 return NULL;
3441 }
3442
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3443 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3444 const struct workqueue_attrs *from)
3445 {
3446 to->nice = from->nice;
3447 cpumask_copy(to->cpumask, from->cpumask);
3448 /*
3449 * Unlike hash and equality test, this function doesn't ignore
3450 * ->no_numa as it is used for both pool and wq attrs. Instead,
3451 * get_unbound_pool() explicitly clears ->no_numa after copying.
3452 */
3453 to->no_numa = from->no_numa;
3454 }
3455
3456 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3457 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3458 {
3459 u32 hash = 0;
3460
3461 hash = jhash_1word(attrs->nice, hash);
3462 hash = jhash(cpumask_bits(attrs->cpumask),
3463 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3464 return hash;
3465 }
3466
3467 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3468 static bool wqattrs_equal(const struct workqueue_attrs *a,
3469 const struct workqueue_attrs *b)
3470 {
3471 if (a->nice != b->nice)
3472 return false;
3473 if (!cpumask_equal(a->cpumask, b->cpumask))
3474 return false;
3475 return true;
3476 }
3477
3478 /**
3479 * init_worker_pool - initialize a newly zalloc'd worker_pool
3480 * @pool: worker_pool to initialize
3481 *
3482 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3483 *
3484 * Return: 0 on success, -errno on failure. Even on failure, all fields
3485 * inside @pool proper are initialized and put_unbound_pool() can be called
3486 * on @pool safely to release it.
3487 */
init_worker_pool(struct worker_pool * pool)3488 static int init_worker_pool(struct worker_pool *pool)
3489 {
3490 raw_spin_lock_init(&pool->lock);
3491 pool->id = -1;
3492 pool->cpu = -1;
3493 pool->node = NUMA_NO_NODE;
3494 pool->flags |= POOL_DISASSOCIATED;
3495 pool->watchdog_ts = jiffies;
3496 INIT_LIST_HEAD(&pool->worklist);
3497 INIT_LIST_HEAD(&pool->idle_list);
3498 hash_init(pool->busy_hash);
3499
3500 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3501
3502 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3503
3504 INIT_LIST_HEAD(&pool->workers);
3505
3506 ida_init(&pool->worker_ida);
3507 INIT_HLIST_NODE(&pool->hash_node);
3508 pool->refcnt = 1;
3509
3510 /* shouldn't fail above this point */
3511 pool->attrs = alloc_workqueue_attrs();
3512 if (!pool->attrs)
3513 return -ENOMEM;
3514 return 0;
3515 }
3516
3517 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3518 static void wq_init_lockdep(struct workqueue_struct *wq)
3519 {
3520 char *lock_name;
3521
3522 lockdep_register_key(&wq->key);
3523 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3524 if (!lock_name)
3525 lock_name = wq->name;
3526
3527 wq->lock_name = lock_name;
3528 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3529 }
3530
wq_unregister_lockdep(struct workqueue_struct * wq)3531 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3532 {
3533 lockdep_unregister_key(&wq->key);
3534 }
3535
wq_free_lockdep(struct workqueue_struct * wq)3536 static void wq_free_lockdep(struct workqueue_struct *wq)
3537 {
3538 if (wq->lock_name != wq->name)
3539 kfree(wq->lock_name);
3540 }
3541 #else
wq_init_lockdep(struct workqueue_struct * wq)3542 static void wq_init_lockdep(struct workqueue_struct *wq)
3543 {
3544 }
3545
wq_unregister_lockdep(struct workqueue_struct * wq)3546 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3547 {
3548 }
3549
wq_free_lockdep(struct workqueue_struct * wq)3550 static void wq_free_lockdep(struct workqueue_struct *wq)
3551 {
3552 }
3553 #endif
3554
rcu_free_wq(struct rcu_head * rcu)3555 static void rcu_free_wq(struct rcu_head *rcu)
3556 {
3557 struct workqueue_struct *wq =
3558 container_of(rcu, struct workqueue_struct, rcu);
3559
3560 wq_free_lockdep(wq);
3561
3562 if (!(wq->flags & WQ_UNBOUND))
3563 free_percpu(wq->cpu_pwqs);
3564 else
3565 free_workqueue_attrs(wq->unbound_attrs);
3566
3567 kfree(wq);
3568 }
3569
rcu_free_pool(struct rcu_head * rcu)3570 static void rcu_free_pool(struct rcu_head *rcu)
3571 {
3572 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3573
3574 ida_destroy(&pool->worker_ida);
3575 free_workqueue_attrs(pool->attrs);
3576 kfree(pool);
3577 }
3578
3579 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3580 static bool wq_manager_inactive(struct worker_pool *pool)
3581 {
3582 raw_spin_lock_irq(&pool->lock);
3583
3584 if (pool->flags & POOL_MANAGER_ACTIVE) {
3585 raw_spin_unlock_irq(&pool->lock);
3586 return false;
3587 }
3588 return true;
3589 }
3590
3591 /**
3592 * put_unbound_pool - put a worker_pool
3593 * @pool: worker_pool to put
3594 *
3595 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3596 * safe manner. get_unbound_pool() calls this function on its failure path
3597 * and this function should be able to release pools which went through,
3598 * successfully or not, init_worker_pool().
3599 *
3600 * Should be called with wq_pool_mutex held.
3601 */
put_unbound_pool(struct worker_pool * pool)3602 static void put_unbound_pool(struct worker_pool *pool)
3603 {
3604 DECLARE_COMPLETION_ONSTACK(detach_completion);
3605 struct worker *worker;
3606
3607 lockdep_assert_held(&wq_pool_mutex);
3608
3609 if (--pool->refcnt)
3610 return;
3611
3612 /* sanity checks */
3613 if (WARN_ON(!(pool->cpu < 0)) ||
3614 WARN_ON(!list_empty(&pool->worklist)))
3615 return;
3616
3617 /* release id and unhash */
3618 if (pool->id >= 0)
3619 idr_remove(&worker_pool_idr, pool->id);
3620 hash_del(&pool->hash_node);
3621
3622 /*
3623 * Become the manager and destroy all workers. This prevents
3624 * @pool's workers from blocking on attach_mutex. We're the last
3625 * manager and @pool gets freed with the flag set.
3626 * Because of how wq_manager_inactive() works, we will hold the
3627 * spinlock after a successful wait.
3628 */
3629 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3630 TASK_UNINTERRUPTIBLE);
3631 pool->flags |= POOL_MANAGER_ACTIVE;
3632
3633 while ((worker = first_idle_worker(pool)))
3634 destroy_worker(worker);
3635 WARN_ON(pool->nr_workers || pool->nr_idle);
3636 raw_spin_unlock_irq(&pool->lock);
3637
3638 mutex_lock(&wq_pool_attach_mutex);
3639 if (!list_empty(&pool->workers))
3640 pool->detach_completion = &detach_completion;
3641 mutex_unlock(&wq_pool_attach_mutex);
3642
3643 if (pool->detach_completion)
3644 wait_for_completion(pool->detach_completion);
3645
3646 /* shut down the timers */
3647 del_timer_sync(&pool->idle_timer);
3648 del_timer_sync(&pool->mayday_timer);
3649
3650 /* RCU protected to allow dereferences from get_work_pool() */
3651 call_rcu(&pool->rcu, rcu_free_pool);
3652 }
3653
3654 /**
3655 * get_unbound_pool - get a worker_pool with the specified attributes
3656 * @attrs: the attributes of the worker_pool to get
3657 *
3658 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3659 * reference count and return it. If there already is a matching
3660 * worker_pool, it will be used; otherwise, this function attempts to
3661 * create a new one.
3662 *
3663 * Should be called with wq_pool_mutex held.
3664 *
3665 * Return: On success, a worker_pool with the same attributes as @attrs.
3666 * On failure, %NULL.
3667 */
get_unbound_pool(const struct workqueue_attrs * attrs)3668 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3669 {
3670 u32 hash = wqattrs_hash(attrs);
3671 struct worker_pool *pool;
3672 int node;
3673 int target_node = NUMA_NO_NODE;
3674
3675 lockdep_assert_held(&wq_pool_mutex);
3676
3677 /* do we already have a matching pool? */
3678 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3679 if (wqattrs_equal(pool->attrs, attrs)) {
3680 pool->refcnt++;
3681 return pool;
3682 }
3683 }
3684
3685 /* if cpumask is contained inside a NUMA node, we belong to that node */
3686 if (wq_numa_enabled) {
3687 for_each_node(node) {
3688 if (cpumask_subset(attrs->cpumask,
3689 wq_numa_possible_cpumask[node])) {
3690 target_node = node;
3691 break;
3692 }
3693 }
3694 }
3695
3696 /* nope, create a new one */
3697 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3698 if (!pool || init_worker_pool(pool) < 0)
3699 goto fail;
3700
3701 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3702 copy_workqueue_attrs(pool->attrs, attrs);
3703 pool->node = target_node;
3704
3705 /*
3706 * no_numa isn't a worker_pool attribute, always clear it. See
3707 * 'struct workqueue_attrs' comments for detail.
3708 */
3709 pool->attrs->no_numa = false;
3710
3711 if (worker_pool_assign_id(pool) < 0)
3712 goto fail;
3713
3714 /* create and start the initial worker */
3715 if (wq_online && !create_worker(pool))
3716 goto fail;
3717
3718 /* install */
3719 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3720
3721 return pool;
3722 fail:
3723 if (pool)
3724 put_unbound_pool(pool);
3725 return NULL;
3726 }
3727
rcu_free_pwq(struct rcu_head * rcu)3728 static void rcu_free_pwq(struct rcu_head *rcu)
3729 {
3730 kmem_cache_free(pwq_cache,
3731 container_of(rcu, struct pool_workqueue, rcu));
3732 }
3733
3734 /*
3735 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3736 * and needs to be destroyed.
3737 */
pwq_unbound_release_workfn(struct work_struct * work)3738 static void pwq_unbound_release_workfn(struct work_struct *work)
3739 {
3740 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3741 unbound_release_work);
3742 struct workqueue_struct *wq = pwq->wq;
3743 struct worker_pool *pool = pwq->pool;
3744 bool is_last = false;
3745
3746 /*
3747 * when @pwq is not linked, it doesn't hold any reference to the
3748 * @wq, and @wq is invalid to access.
3749 */
3750 if (!list_empty(&pwq->pwqs_node)) {
3751 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3752 return;
3753
3754 mutex_lock(&wq->mutex);
3755 list_del_rcu(&pwq->pwqs_node);
3756 is_last = list_empty(&wq->pwqs);
3757 mutex_unlock(&wq->mutex);
3758 }
3759
3760 mutex_lock(&wq_pool_mutex);
3761 put_unbound_pool(pool);
3762 mutex_unlock(&wq_pool_mutex);
3763
3764 call_rcu(&pwq->rcu, rcu_free_pwq);
3765
3766 /*
3767 * If we're the last pwq going away, @wq is already dead and no one
3768 * is gonna access it anymore. Schedule RCU free.
3769 */
3770 if (is_last) {
3771 wq_unregister_lockdep(wq);
3772 call_rcu(&wq->rcu, rcu_free_wq);
3773 }
3774 }
3775
3776 /**
3777 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3778 * @pwq: target pool_workqueue
3779 *
3780 * If @pwq isn't freezing, set @pwq->max_active to the associated
3781 * workqueue's saved_max_active and activate inactive work items
3782 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3783 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3784 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3785 {
3786 struct workqueue_struct *wq = pwq->wq;
3787 bool freezable = wq->flags & WQ_FREEZABLE;
3788 unsigned long flags;
3789
3790 /* for @wq->saved_max_active */
3791 lockdep_assert_held(&wq->mutex);
3792
3793 /* fast exit for non-freezable wqs */
3794 if (!freezable && pwq->max_active == wq->saved_max_active)
3795 return;
3796
3797 /* this function can be called during early boot w/ irq disabled */
3798 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3799
3800 /*
3801 * During [un]freezing, the caller is responsible for ensuring that
3802 * this function is called at least once after @workqueue_freezing
3803 * is updated and visible.
3804 */
3805 if (!freezable || !workqueue_freezing) {
3806 bool kick = false;
3807
3808 pwq->max_active = wq->saved_max_active;
3809
3810 while (!list_empty(&pwq->inactive_works) &&
3811 pwq->nr_active < pwq->max_active) {
3812 pwq_activate_first_inactive(pwq);
3813 kick = true;
3814 }
3815
3816 /*
3817 * Need to kick a worker after thawed or an unbound wq's
3818 * max_active is bumped. In realtime scenarios, always kicking a
3819 * worker will cause interference on the isolated cpu cores, so
3820 * let's kick iff work items were activated.
3821 */
3822 if (kick)
3823 wake_up_worker(pwq->pool);
3824 } else {
3825 pwq->max_active = 0;
3826 }
3827
3828 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3829 }
3830
3831 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3832 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3833 struct worker_pool *pool)
3834 {
3835 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3836
3837 memset(pwq, 0, sizeof(*pwq));
3838
3839 pwq->pool = pool;
3840 pwq->wq = wq;
3841 pwq->flush_color = -1;
3842 pwq->refcnt = 1;
3843 INIT_LIST_HEAD(&pwq->inactive_works);
3844 INIT_LIST_HEAD(&pwq->pwqs_node);
3845 INIT_LIST_HEAD(&pwq->mayday_node);
3846 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3847 }
3848
3849 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3850 static void link_pwq(struct pool_workqueue *pwq)
3851 {
3852 struct workqueue_struct *wq = pwq->wq;
3853
3854 lockdep_assert_held(&wq->mutex);
3855
3856 /* may be called multiple times, ignore if already linked */
3857 if (!list_empty(&pwq->pwqs_node))
3858 return;
3859
3860 /* set the matching work_color */
3861 pwq->work_color = wq->work_color;
3862
3863 /* sync max_active to the current setting */
3864 pwq_adjust_max_active(pwq);
3865
3866 /* link in @pwq */
3867 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3868 }
3869
3870 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3871 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3872 const struct workqueue_attrs *attrs)
3873 {
3874 struct worker_pool *pool;
3875 struct pool_workqueue *pwq;
3876
3877 lockdep_assert_held(&wq_pool_mutex);
3878
3879 pool = get_unbound_pool(attrs);
3880 if (!pool)
3881 return NULL;
3882
3883 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3884 if (!pwq) {
3885 put_unbound_pool(pool);
3886 return NULL;
3887 }
3888
3889 init_pwq(pwq, wq, pool);
3890 return pwq;
3891 }
3892
3893 /**
3894 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3895 * @attrs: the wq_attrs of the default pwq of the target workqueue
3896 * @node: the target NUMA node
3897 * @cpu_going_down: if >= 0, the CPU to consider as offline
3898 * @cpumask: outarg, the resulting cpumask
3899 *
3900 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3901 * @cpu_going_down is >= 0, that cpu is considered offline during
3902 * calculation. The result is stored in @cpumask.
3903 *
3904 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3905 * enabled and @node has online CPUs requested by @attrs, the returned
3906 * cpumask is the intersection of the possible CPUs of @node and
3907 * @attrs->cpumask.
3908 *
3909 * The caller is responsible for ensuring that the cpumask of @node stays
3910 * stable.
3911 *
3912 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3913 * %false if equal.
3914 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3915 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3916 int cpu_going_down, cpumask_t *cpumask)
3917 {
3918 if (!wq_numa_enabled || attrs->no_numa)
3919 goto use_dfl;
3920
3921 /* does @node have any online CPUs @attrs wants? */
3922 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3923 if (cpu_going_down >= 0)
3924 cpumask_clear_cpu(cpu_going_down, cpumask);
3925
3926 if (cpumask_empty(cpumask))
3927 goto use_dfl;
3928
3929 /* yeap, return possible CPUs in @node that @attrs wants */
3930 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3931
3932 if (cpumask_empty(cpumask)) {
3933 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3934 "possible intersect\n");
3935 return false;
3936 }
3937
3938 return !cpumask_equal(cpumask, attrs->cpumask);
3939
3940 use_dfl:
3941 cpumask_copy(cpumask, attrs->cpumask);
3942 return false;
3943 }
3944
3945 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3946 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3947 int node,
3948 struct pool_workqueue *pwq)
3949 {
3950 struct pool_workqueue *old_pwq;
3951
3952 lockdep_assert_held(&wq_pool_mutex);
3953 lockdep_assert_held(&wq->mutex);
3954
3955 /* link_pwq() can handle duplicate calls */
3956 link_pwq(pwq);
3957
3958 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3959 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3960 return old_pwq;
3961 }
3962
3963 /* context to store the prepared attrs & pwqs before applying */
3964 struct apply_wqattrs_ctx {
3965 struct workqueue_struct *wq; /* target workqueue */
3966 struct workqueue_attrs *attrs; /* attrs to apply */
3967 struct list_head list; /* queued for batching commit */
3968 struct pool_workqueue *dfl_pwq;
3969 struct pool_workqueue *pwq_tbl[];
3970 };
3971
3972 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3973 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3974 {
3975 if (ctx) {
3976 int node;
3977
3978 for_each_node(node)
3979 put_pwq_unlocked(ctx->pwq_tbl[node]);
3980 put_pwq_unlocked(ctx->dfl_pwq);
3981
3982 free_workqueue_attrs(ctx->attrs);
3983
3984 kfree(ctx);
3985 }
3986 }
3987
3988 /* allocate the attrs and pwqs for later installation */
3989 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3990 apply_wqattrs_prepare(struct workqueue_struct *wq,
3991 const struct workqueue_attrs *attrs)
3992 {
3993 struct apply_wqattrs_ctx *ctx;
3994 struct workqueue_attrs *new_attrs, *tmp_attrs;
3995 int node;
3996
3997 lockdep_assert_held(&wq_pool_mutex);
3998
3999 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4000
4001 new_attrs = alloc_workqueue_attrs();
4002 tmp_attrs = alloc_workqueue_attrs();
4003 if (!ctx || !new_attrs || !tmp_attrs)
4004 goto out_free;
4005
4006 /*
4007 * Calculate the attrs of the default pwq.
4008 * If the user configured cpumask doesn't overlap with the
4009 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4010 */
4011 copy_workqueue_attrs(new_attrs, attrs);
4012 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
4013 if (unlikely(cpumask_empty(new_attrs->cpumask)))
4014 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
4015
4016 /*
4017 * We may create multiple pwqs with differing cpumasks. Make a
4018 * copy of @new_attrs which will be modified and used to obtain
4019 * pools.
4020 */
4021 copy_workqueue_attrs(tmp_attrs, new_attrs);
4022
4023 /*
4024 * If something goes wrong during CPU up/down, we'll fall back to
4025 * the default pwq covering whole @attrs->cpumask. Always create
4026 * it even if we don't use it immediately.
4027 */
4028 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4029 if (!ctx->dfl_pwq)
4030 goto out_free;
4031
4032 for_each_node(node) {
4033 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4034 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4035 if (!ctx->pwq_tbl[node])
4036 goto out_free;
4037 } else {
4038 ctx->dfl_pwq->refcnt++;
4039 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4040 }
4041 }
4042
4043 /* save the user configured attrs and sanitize it. */
4044 copy_workqueue_attrs(new_attrs, attrs);
4045 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4046 ctx->attrs = new_attrs;
4047
4048 ctx->wq = wq;
4049 free_workqueue_attrs(tmp_attrs);
4050 return ctx;
4051
4052 out_free:
4053 free_workqueue_attrs(tmp_attrs);
4054 free_workqueue_attrs(new_attrs);
4055 apply_wqattrs_cleanup(ctx);
4056 return NULL;
4057 }
4058
4059 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4060 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4061 {
4062 int node;
4063
4064 /* all pwqs have been created successfully, let's install'em */
4065 mutex_lock(&ctx->wq->mutex);
4066
4067 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4068
4069 /* save the previous pwq and install the new one */
4070 for_each_node(node)
4071 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4072 ctx->pwq_tbl[node]);
4073
4074 /* @dfl_pwq might not have been used, ensure it's linked */
4075 link_pwq(ctx->dfl_pwq);
4076 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4077
4078 mutex_unlock(&ctx->wq->mutex);
4079 }
4080
apply_wqattrs_lock(void)4081 static void apply_wqattrs_lock(void)
4082 {
4083 /* CPUs should stay stable across pwq creations and installations */
4084 cpus_read_lock();
4085 mutex_lock(&wq_pool_mutex);
4086 }
4087
apply_wqattrs_unlock(void)4088 static void apply_wqattrs_unlock(void)
4089 {
4090 mutex_unlock(&wq_pool_mutex);
4091 cpus_read_unlock();
4092 }
4093
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4094 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4095 const struct workqueue_attrs *attrs)
4096 {
4097 struct apply_wqattrs_ctx *ctx;
4098
4099 /* only unbound workqueues can change attributes */
4100 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4101 return -EINVAL;
4102
4103 /* creating multiple pwqs breaks ordering guarantee */
4104 if (!list_empty(&wq->pwqs)) {
4105 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4106 return -EINVAL;
4107
4108 wq->flags &= ~__WQ_ORDERED;
4109 }
4110
4111 ctx = apply_wqattrs_prepare(wq, attrs);
4112 if (!ctx)
4113 return -ENOMEM;
4114
4115 /* the ctx has been prepared successfully, let's commit it */
4116 apply_wqattrs_commit(ctx);
4117 apply_wqattrs_cleanup(ctx);
4118
4119 return 0;
4120 }
4121
4122 /**
4123 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4124 * @wq: the target workqueue
4125 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4126 *
4127 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4128 * machines, this function maps a separate pwq to each NUMA node with
4129 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4130 * NUMA node it was issued on. Older pwqs are released as in-flight work
4131 * items finish. Note that a work item which repeatedly requeues itself
4132 * back-to-back will stay on its current pwq.
4133 *
4134 * Performs GFP_KERNEL allocations.
4135 *
4136 * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4137 *
4138 * Return: 0 on success and -errno on failure.
4139 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4140 int apply_workqueue_attrs(struct workqueue_struct *wq,
4141 const struct workqueue_attrs *attrs)
4142 {
4143 int ret;
4144
4145 lockdep_assert_cpus_held();
4146
4147 mutex_lock(&wq_pool_mutex);
4148 ret = apply_workqueue_attrs_locked(wq, attrs);
4149 mutex_unlock(&wq_pool_mutex);
4150
4151 return ret;
4152 }
4153
4154 /**
4155 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4156 * @wq: the target workqueue
4157 * @cpu: the CPU coming up or going down
4158 * @online: whether @cpu is coming up or going down
4159 *
4160 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4161 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4162 * @wq accordingly.
4163 *
4164 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4165 * falls back to @wq->dfl_pwq which may not be optimal but is always
4166 * correct.
4167 *
4168 * Note that when the last allowed CPU of a NUMA node goes offline for a
4169 * workqueue with a cpumask spanning multiple nodes, the workers which were
4170 * already executing the work items for the workqueue will lose their CPU
4171 * affinity and may execute on any CPU. This is similar to how per-cpu
4172 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4173 * affinity, it's the user's responsibility to flush the work item from
4174 * CPU_DOWN_PREPARE.
4175 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4176 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4177 bool online)
4178 {
4179 int node = cpu_to_node(cpu);
4180 int cpu_off = online ? -1 : cpu;
4181 struct pool_workqueue *old_pwq = NULL, *pwq;
4182 struct workqueue_attrs *target_attrs;
4183 cpumask_t *cpumask;
4184
4185 lockdep_assert_held(&wq_pool_mutex);
4186
4187 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4188 wq->unbound_attrs->no_numa)
4189 return;
4190
4191 /*
4192 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4193 * Let's use a preallocated one. The following buf is protected by
4194 * CPU hotplug exclusion.
4195 */
4196 target_attrs = wq_update_unbound_numa_attrs_buf;
4197 cpumask = target_attrs->cpumask;
4198
4199 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4200 pwq = unbound_pwq_by_node(wq, node);
4201
4202 /*
4203 * Let's determine what needs to be done. If the target cpumask is
4204 * different from the default pwq's, we need to compare it to @pwq's
4205 * and create a new one if they don't match. If the target cpumask
4206 * equals the default pwq's, the default pwq should be used.
4207 */
4208 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4209 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4210 return;
4211 } else {
4212 goto use_dfl_pwq;
4213 }
4214
4215 /* create a new pwq */
4216 pwq = alloc_unbound_pwq(wq, target_attrs);
4217 if (!pwq) {
4218 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4219 wq->name);
4220 goto use_dfl_pwq;
4221 }
4222
4223 /* Install the new pwq. */
4224 mutex_lock(&wq->mutex);
4225 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4226 goto out_unlock;
4227
4228 use_dfl_pwq:
4229 mutex_lock(&wq->mutex);
4230 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4231 get_pwq(wq->dfl_pwq);
4232 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4233 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4234 out_unlock:
4235 mutex_unlock(&wq->mutex);
4236 put_pwq_unlocked(old_pwq);
4237 }
4238
alloc_and_link_pwqs(struct workqueue_struct * wq)4239 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4240 {
4241 bool highpri = wq->flags & WQ_HIGHPRI;
4242 int cpu, ret;
4243
4244 if (!(wq->flags & WQ_UNBOUND)) {
4245 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4246 if (!wq->cpu_pwqs)
4247 return -ENOMEM;
4248
4249 for_each_possible_cpu(cpu) {
4250 struct pool_workqueue *pwq =
4251 per_cpu_ptr(wq->cpu_pwqs, cpu);
4252 struct worker_pool *cpu_pools =
4253 per_cpu(cpu_worker_pools, cpu);
4254
4255 init_pwq(pwq, wq, &cpu_pools[highpri]);
4256
4257 mutex_lock(&wq->mutex);
4258 link_pwq(pwq);
4259 mutex_unlock(&wq->mutex);
4260 }
4261 return 0;
4262 }
4263
4264 cpus_read_lock();
4265 if (wq->flags & __WQ_ORDERED) {
4266 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4267 /* there should only be single pwq for ordering guarantee */
4268 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4269 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4270 "ordering guarantee broken for workqueue %s\n", wq->name);
4271 } else {
4272 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4273 }
4274 cpus_read_unlock();
4275
4276 return ret;
4277 }
4278
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4279 static int wq_clamp_max_active(int max_active, unsigned int flags,
4280 const char *name)
4281 {
4282 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4283
4284 if (max_active < 1 || max_active > lim)
4285 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4286 max_active, name, 1, lim);
4287
4288 return clamp_val(max_active, 1, lim);
4289 }
4290
4291 /*
4292 * Workqueues which may be used during memory reclaim should have a rescuer
4293 * to guarantee forward progress.
4294 */
init_rescuer(struct workqueue_struct * wq)4295 static int init_rescuer(struct workqueue_struct *wq)
4296 {
4297 struct worker *rescuer;
4298 int ret;
4299
4300 if (!(wq->flags & WQ_MEM_RECLAIM))
4301 return 0;
4302
4303 rescuer = alloc_worker(NUMA_NO_NODE);
4304 if (!rescuer)
4305 return -ENOMEM;
4306
4307 rescuer->rescue_wq = wq;
4308 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4309 if (IS_ERR(rescuer->task)) {
4310 ret = PTR_ERR(rescuer->task);
4311 kfree(rescuer);
4312 return ret;
4313 }
4314
4315 wq->rescuer = rescuer;
4316 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4317 wake_up_process(rescuer->task);
4318
4319 return 0;
4320 }
4321
4322 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4323 struct workqueue_struct *alloc_workqueue(const char *fmt,
4324 unsigned int flags,
4325 int max_active, ...)
4326 {
4327 size_t tbl_size = 0;
4328 va_list args;
4329 struct workqueue_struct *wq;
4330 struct pool_workqueue *pwq;
4331
4332 /*
4333 * Unbound && max_active == 1 used to imply ordered, which is no
4334 * longer the case on NUMA machines due to per-node pools. While
4335 * alloc_ordered_workqueue() is the right way to create an ordered
4336 * workqueue, keep the previous behavior to avoid subtle breakages
4337 * on NUMA.
4338 */
4339 if ((flags & WQ_UNBOUND) && max_active == 1)
4340 flags |= __WQ_ORDERED;
4341
4342 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4343 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4344 flags |= WQ_UNBOUND;
4345
4346 /* allocate wq and format name */
4347 if (flags & WQ_UNBOUND)
4348 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4349
4350 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4351 if (!wq)
4352 return NULL;
4353
4354 if (flags & WQ_UNBOUND) {
4355 wq->unbound_attrs = alloc_workqueue_attrs();
4356 if (!wq->unbound_attrs)
4357 goto err_free_wq;
4358 }
4359
4360 va_start(args, max_active);
4361 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4362 va_end(args);
4363
4364 max_active = max_active ?: WQ_DFL_ACTIVE;
4365 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4366
4367 /* init wq */
4368 wq->flags = flags;
4369 wq->saved_max_active = max_active;
4370 mutex_init(&wq->mutex);
4371 atomic_set(&wq->nr_pwqs_to_flush, 0);
4372 INIT_LIST_HEAD(&wq->pwqs);
4373 INIT_LIST_HEAD(&wq->flusher_queue);
4374 INIT_LIST_HEAD(&wq->flusher_overflow);
4375 INIT_LIST_HEAD(&wq->maydays);
4376
4377 wq_init_lockdep(wq);
4378 INIT_LIST_HEAD(&wq->list);
4379
4380 if (alloc_and_link_pwqs(wq) < 0)
4381 goto err_unreg_lockdep;
4382
4383 if (wq_online && init_rescuer(wq) < 0)
4384 goto err_destroy;
4385
4386 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4387 goto err_destroy;
4388
4389 /*
4390 * wq_pool_mutex protects global freeze state and workqueues list.
4391 * Grab it, adjust max_active and add the new @wq to workqueues
4392 * list.
4393 */
4394 mutex_lock(&wq_pool_mutex);
4395
4396 mutex_lock(&wq->mutex);
4397 for_each_pwq(pwq, wq)
4398 pwq_adjust_max_active(pwq);
4399 mutex_unlock(&wq->mutex);
4400
4401 list_add_tail_rcu(&wq->list, &workqueues);
4402
4403 mutex_unlock(&wq_pool_mutex);
4404
4405 return wq;
4406
4407 err_unreg_lockdep:
4408 wq_unregister_lockdep(wq);
4409 wq_free_lockdep(wq);
4410 err_free_wq:
4411 free_workqueue_attrs(wq->unbound_attrs);
4412 kfree(wq);
4413 return NULL;
4414 err_destroy:
4415 destroy_workqueue(wq);
4416 return NULL;
4417 }
4418 EXPORT_SYMBOL_GPL(alloc_workqueue);
4419
pwq_busy(struct pool_workqueue * pwq)4420 static bool pwq_busy(struct pool_workqueue *pwq)
4421 {
4422 int i;
4423
4424 for (i = 0; i < WORK_NR_COLORS; i++)
4425 if (pwq->nr_in_flight[i])
4426 return true;
4427
4428 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4429 return true;
4430 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4431 return true;
4432
4433 return false;
4434 }
4435
4436 /**
4437 * destroy_workqueue - safely terminate a workqueue
4438 * @wq: target workqueue
4439 *
4440 * Safely destroy a workqueue. All work currently pending will be done first.
4441 */
destroy_workqueue(struct workqueue_struct * wq)4442 void destroy_workqueue(struct workqueue_struct *wq)
4443 {
4444 struct pool_workqueue *pwq;
4445 int node;
4446
4447 /*
4448 * Remove it from sysfs first so that sanity check failure doesn't
4449 * lead to sysfs name conflicts.
4450 */
4451 workqueue_sysfs_unregister(wq);
4452
4453 /* drain it before proceeding with destruction */
4454 drain_workqueue(wq);
4455
4456 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4457 if (wq->rescuer) {
4458 struct worker *rescuer = wq->rescuer;
4459
4460 /* this prevents new queueing */
4461 raw_spin_lock_irq(&wq_mayday_lock);
4462 wq->rescuer = NULL;
4463 raw_spin_unlock_irq(&wq_mayday_lock);
4464
4465 /* rescuer will empty maydays list before exiting */
4466 kthread_stop(rescuer->task);
4467 kfree(rescuer);
4468 }
4469
4470 /*
4471 * Sanity checks - grab all the locks so that we wait for all
4472 * in-flight operations which may do put_pwq().
4473 */
4474 mutex_lock(&wq_pool_mutex);
4475 mutex_lock(&wq->mutex);
4476 for_each_pwq(pwq, wq) {
4477 raw_spin_lock_irq(&pwq->pool->lock);
4478 if (WARN_ON(pwq_busy(pwq))) {
4479 pr_warn("%s: %s has the following busy pwq\n",
4480 __func__, wq->name);
4481 show_pwq(pwq);
4482 raw_spin_unlock_irq(&pwq->pool->lock);
4483 mutex_unlock(&wq->mutex);
4484 mutex_unlock(&wq_pool_mutex);
4485 show_one_workqueue(wq);
4486 return;
4487 }
4488 raw_spin_unlock_irq(&pwq->pool->lock);
4489 }
4490 mutex_unlock(&wq->mutex);
4491
4492 /*
4493 * wq list is used to freeze wq, remove from list after
4494 * flushing is complete in case freeze races us.
4495 */
4496 list_del_rcu(&wq->list);
4497 mutex_unlock(&wq_pool_mutex);
4498
4499 if (!(wq->flags & WQ_UNBOUND)) {
4500 wq_unregister_lockdep(wq);
4501 /*
4502 * The base ref is never dropped on per-cpu pwqs. Directly
4503 * schedule RCU free.
4504 */
4505 call_rcu(&wq->rcu, rcu_free_wq);
4506 } else {
4507 /*
4508 * We're the sole accessor of @wq at this point. Directly
4509 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4510 * @wq will be freed when the last pwq is released.
4511 */
4512 for_each_node(node) {
4513 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4514 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4515 put_pwq_unlocked(pwq);
4516 }
4517
4518 /*
4519 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4520 * put. Don't access it afterwards.
4521 */
4522 pwq = wq->dfl_pwq;
4523 wq->dfl_pwq = NULL;
4524 put_pwq_unlocked(pwq);
4525 }
4526 }
4527 EXPORT_SYMBOL_GPL(destroy_workqueue);
4528
4529 /**
4530 * workqueue_set_max_active - adjust max_active of a workqueue
4531 * @wq: target workqueue
4532 * @max_active: new max_active value.
4533 *
4534 * Set max_active of @wq to @max_active.
4535 *
4536 * CONTEXT:
4537 * Don't call from IRQ context.
4538 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4539 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4540 {
4541 struct pool_workqueue *pwq;
4542
4543 /* disallow meddling with max_active for ordered workqueues */
4544 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4545 return;
4546
4547 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4548
4549 mutex_lock(&wq->mutex);
4550
4551 wq->flags &= ~__WQ_ORDERED;
4552 wq->saved_max_active = max_active;
4553
4554 for_each_pwq(pwq, wq)
4555 pwq_adjust_max_active(pwq);
4556
4557 mutex_unlock(&wq->mutex);
4558 }
4559 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4560
4561 /**
4562 * current_work - retrieve %current task's work struct
4563 *
4564 * Determine if %current task is a workqueue worker and what it's working on.
4565 * Useful to find out the context that the %current task is running in.
4566 *
4567 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4568 */
current_work(void)4569 struct work_struct *current_work(void)
4570 {
4571 struct worker *worker = current_wq_worker();
4572
4573 return worker ? worker->current_work : NULL;
4574 }
4575 EXPORT_SYMBOL(current_work);
4576
4577 /**
4578 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4579 *
4580 * Determine whether %current is a workqueue rescuer. Can be used from
4581 * work functions to determine whether it's being run off the rescuer task.
4582 *
4583 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4584 */
current_is_workqueue_rescuer(void)4585 bool current_is_workqueue_rescuer(void)
4586 {
4587 struct worker *worker = current_wq_worker();
4588
4589 return worker && worker->rescue_wq;
4590 }
4591
4592 /**
4593 * workqueue_congested - test whether a workqueue is congested
4594 * @cpu: CPU in question
4595 * @wq: target workqueue
4596 *
4597 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4598 * no synchronization around this function and the test result is
4599 * unreliable and only useful as advisory hints or for debugging.
4600 *
4601 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4602 * Note that both per-cpu and unbound workqueues may be associated with
4603 * multiple pool_workqueues which have separate congested states. A
4604 * workqueue being congested on one CPU doesn't mean the workqueue is also
4605 * contested on other CPUs / NUMA nodes.
4606 *
4607 * Return:
4608 * %true if congested, %false otherwise.
4609 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4610 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4611 {
4612 struct pool_workqueue *pwq;
4613 bool ret;
4614
4615 rcu_read_lock();
4616 preempt_disable();
4617
4618 if (cpu == WORK_CPU_UNBOUND)
4619 cpu = smp_processor_id();
4620
4621 if (!(wq->flags & WQ_UNBOUND))
4622 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4623 else
4624 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4625
4626 ret = !list_empty(&pwq->inactive_works);
4627 preempt_enable();
4628 rcu_read_unlock();
4629
4630 return ret;
4631 }
4632 EXPORT_SYMBOL_GPL(workqueue_congested);
4633
4634 /**
4635 * work_busy - test whether a work is currently pending or running
4636 * @work: the work to be tested
4637 *
4638 * Test whether @work is currently pending or running. There is no
4639 * synchronization around this function and the test result is
4640 * unreliable and only useful as advisory hints or for debugging.
4641 *
4642 * Return:
4643 * OR'd bitmask of WORK_BUSY_* bits.
4644 */
work_busy(struct work_struct * work)4645 unsigned int work_busy(struct work_struct *work)
4646 {
4647 struct worker_pool *pool;
4648 unsigned long flags;
4649 unsigned int ret = 0;
4650
4651 if (work_pending(work))
4652 ret |= WORK_BUSY_PENDING;
4653
4654 rcu_read_lock();
4655 pool = get_work_pool(work);
4656 if (pool) {
4657 raw_spin_lock_irqsave(&pool->lock, flags);
4658 if (find_worker_executing_work(pool, work))
4659 ret |= WORK_BUSY_RUNNING;
4660 raw_spin_unlock_irqrestore(&pool->lock, flags);
4661 }
4662 rcu_read_unlock();
4663
4664 return ret;
4665 }
4666 EXPORT_SYMBOL_GPL(work_busy);
4667
4668 /**
4669 * set_worker_desc - set description for the current work item
4670 * @fmt: printf-style format string
4671 * @...: arguments for the format string
4672 *
4673 * This function can be called by a running work function to describe what
4674 * the work item is about. If the worker task gets dumped, this
4675 * information will be printed out together to help debugging. The
4676 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4677 */
set_worker_desc(const char * fmt,...)4678 void set_worker_desc(const char *fmt, ...)
4679 {
4680 struct worker *worker = current_wq_worker();
4681 va_list args;
4682
4683 if (worker) {
4684 va_start(args, fmt);
4685 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4686 va_end(args);
4687 }
4688 }
4689 EXPORT_SYMBOL_GPL(set_worker_desc);
4690
4691 /**
4692 * print_worker_info - print out worker information and description
4693 * @log_lvl: the log level to use when printing
4694 * @task: target task
4695 *
4696 * If @task is a worker and currently executing a work item, print out the
4697 * name of the workqueue being serviced and worker description set with
4698 * set_worker_desc() by the currently executing work item.
4699 *
4700 * This function can be safely called on any task as long as the
4701 * task_struct itself is accessible. While safe, this function isn't
4702 * synchronized and may print out mixups or garbages of limited length.
4703 */
print_worker_info(const char * log_lvl,struct task_struct * task)4704 void print_worker_info(const char *log_lvl, struct task_struct *task)
4705 {
4706 work_func_t *fn = NULL;
4707 char name[WQ_NAME_LEN] = { };
4708 char desc[WORKER_DESC_LEN] = { };
4709 struct pool_workqueue *pwq = NULL;
4710 struct workqueue_struct *wq = NULL;
4711 struct worker *worker;
4712
4713 if (!(task->flags & PF_WQ_WORKER))
4714 return;
4715
4716 /*
4717 * This function is called without any synchronization and @task
4718 * could be in any state. Be careful with dereferences.
4719 */
4720 worker = kthread_probe_data(task);
4721
4722 /*
4723 * Carefully copy the associated workqueue's workfn, name and desc.
4724 * Keep the original last '\0' in case the original is garbage.
4725 */
4726 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4727 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4728 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4729 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4730 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4731
4732 if (fn || name[0] || desc[0]) {
4733 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4734 if (strcmp(name, desc))
4735 pr_cont(" (%s)", desc);
4736 pr_cont("\n");
4737 }
4738 }
4739
pr_cont_pool_info(struct worker_pool * pool)4740 static void pr_cont_pool_info(struct worker_pool *pool)
4741 {
4742 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4743 if (pool->node != NUMA_NO_NODE)
4744 pr_cont(" node=%d", pool->node);
4745 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4746 }
4747
pr_cont_work(bool comma,struct work_struct * work)4748 static void pr_cont_work(bool comma, struct work_struct *work)
4749 {
4750 if (work->func == wq_barrier_func) {
4751 struct wq_barrier *barr;
4752
4753 barr = container_of(work, struct wq_barrier, work);
4754
4755 pr_cont("%s BAR(%d)", comma ? "," : "",
4756 task_pid_nr(barr->task));
4757 } else {
4758 pr_cont("%s %ps", comma ? "," : "", work->func);
4759 }
4760 }
4761
show_pwq(struct pool_workqueue * pwq)4762 static void show_pwq(struct pool_workqueue *pwq)
4763 {
4764 struct worker_pool *pool = pwq->pool;
4765 struct work_struct *work;
4766 struct worker *worker;
4767 bool has_in_flight = false, has_pending = false;
4768 int bkt;
4769
4770 pr_info(" pwq %d:", pool->id);
4771 pr_cont_pool_info(pool);
4772
4773 pr_cont(" active=%d/%d refcnt=%d%s\n",
4774 pwq->nr_active, pwq->max_active, pwq->refcnt,
4775 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4776
4777 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4778 if (worker->current_pwq == pwq) {
4779 has_in_flight = true;
4780 break;
4781 }
4782 }
4783 if (has_in_flight) {
4784 bool comma = false;
4785
4786 pr_info(" in-flight:");
4787 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4788 if (worker->current_pwq != pwq)
4789 continue;
4790
4791 pr_cont("%s %d%s:%ps", comma ? "," : "",
4792 task_pid_nr(worker->task),
4793 worker->rescue_wq ? "(RESCUER)" : "",
4794 worker->current_func);
4795 list_for_each_entry(work, &worker->scheduled, entry)
4796 pr_cont_work(false, work);
4797 comma = true;
4798 }
4799 pr_cont("\n");
4800 }
4801
4802 list_for_each_entry(work, &pool->worklist, entry) {
4803 if (get_work_pwq(work) == pwq) {
4804 has_pending = true;
4805 break;
4806 }
4807 }
4808 if (has_pending) {
4809 bool comma = false;
4810
4811 pr_info(" pending:");
4812 list_for_each_entry(work, &pool->worklist, entry) {
4813 if (get_work_pwq(work) != pwq)
4814 continue;
4815
4816 pr_cont_work(comma, work);
4817 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4818 }
4819 pr_cont("\n");
4820 }
4821
4822 if (!list_empty(&pwq->inactive_works)) {
4823 bool comma = false;
4824
4825 pr_info(" inactive:");
4826 list_for_each_entry(work, &pwq->inactive_works, entry) {
4827 pr_cont_work(comma, work);
4828 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4829 }
4830 pr_cont("\n");
4831 }
4832 }
4833
4834 /**
4835 * show_one_workqueue - dump state of specified workqueue
4836 * @wq: workqueue whose state will be printed
4837 */
show_one_workqueue(struct workqueue_struct * wq)4838 void show_one_workqueue(struct workqueue_struct *wq)
4839 {
4840 struct pool_workqueue *pwq;
4841 bool idle = true;
4842 unsigned long flags;
4843
4844 for_each_pwq(pwq, wq) {
4845 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4846 idle = false;
4847 break;
4848 }
4849 }
4850 if (idle) /* Nothing to print for idle workqueue */
4851 return;
4852
4853 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4854
4855 for_each_pwq(pwq, wq) {
4856 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4857 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4858 /*
4859 * Defer printing to avoid deadlocks in console
4860 * drivers that queue work while holding locks
4861 * also taken in their write paths.
4862 */
4863 printk_deferred_enter();
4864 show_pwq(pwq);
4865 printk_deferred_exit();
4866 }
4867 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4868 /*
4869 * We could be printing a lot from atomic context, e.g.
4870 * sysrq-t -> show_all_workqueues(). Avoid triggering
4871 * hard lockup.
4872 */
4873 touch_nmi_watchdog();
4874 }
4875
4876 }
4877
4878 /**
4879 * show_one_worker_pool - dump state of specified worker pool
4880 * @pool: worker pool whose state will be printed
4881 */
show_one_worker_pool(struct worker_pool * pool)4882 static void show_one_worker_pool(struct worker_pool *pool)
4883 {
4884 struct worker *worker;
4885 bool first = true;
4886 unsigned long flags;
4887 unsigned long hung = 0;
4888
4889 raw_spin_lock_irqsave(&pool->lock, flags);
4890 if (pool->nr_workers == pool->nr_idle)
4891 goto next_pool;
4892
4893 /* How long the first pending work is waiting for a worker. */
4894 if (!list_empty(&pool->worklist))
4895 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
4896
4897 /*
4898 * Defer printing to avoid deadlocks in console drivers that
4899 * queue work while holding locks also taken in their write
4900 * paths.
4901 */
4902 printk_deferred_enter();
4903 pr_info("pool %d:", pool->id);
4904 pr_cont_pool_info(pool);
4905 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
4906 if (pool->manager)
4907 pr_cont(" manager: %d",
4908 task_pid_nr(pool->manager->task));
4909 list_for_each_entry(worker, &pool->idle_list, entry) {
4910 pr_cont(" %s%d", first ? "idle: " : "",
4911 task_pid_nr(worker->task));
4912 first = false;
4913 }
4914 pr_cont("\n");
4915 printk_deferred_exit();
4916 next_pool:
4917 raw_spin_unlock_irqrestore(&pool->lock, flags);
4918 /*
4919 * We could be printing a lot from atomic context, e.g.
4920 * sysrq-t -> show_all_workqueues(). Avoid triggering
4921 * hard lockup.
4922 */
4923 touch_nmi_watchdog();
4924
4925 }
4926
4927 /**
4928 * show_all_workqueues - dump workqueue state
4929 *
4930 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4931 * all busy workqueues and pools.
4932 */
show_all_workqueues(void)4933 void show_all_workqueues(void)
4934 {
4935 struct workqueue_struct *wq;
4936 struct worker_pool *pool;
4937 int pi;
4938
4939 rcu_read_lock();
4940
4941 pr_info("Showing busy workqueues and worker pools:\n");
4942
4943 list_for_each_entry_rcu(wq, &workqueues, list)
4944 show_one_workqueue(wq);
4945
4946 for_each_pool(pool, pi)
4947 show_one_worker_pool(pool);
4948
4949 rcu_read_unlock();
4950 }
4951
4952 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4953 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4954 {
4955 int off;
4956
4957 /* always show the actual comm */
4958 off = strscpy(buf, task->comm, size);
4959 if (off < 0)
4960 return;
4961
4962 /* stabilize PF_WQ_WORKER and worker pool association */
4963 mutex_lock(&wq_pool_attach_mutex);
4964
4965 if (task->flags & PF_WQ_WORKER) {
4966 struct worker *worker = kthread_data(task);
4967 struct worker_pool *pool = worker->pool;
4968
4969 if (pool) {
4970 raw_spin_lock_irq(&pool->lock);
4971 /*
4972 * ->desc tracks information (wq name or
4973 * set_worker_desc()) for the latest execution. If
4974 * current, prepend '+', otherwise '-'.
4975 */
4976 if (worker->desc[0] != '\0') {
4977 if (worker->current_work)
4978 scnprintf(buf + off, size - off, "+%s",
4979 worker->desc);
4980 else
4981 scnprintf(buf + off, size - off, "-%s",
4982 worker->desc);
4983 }
4984 raw_spin_unlock_irq(&pool->lock);
4985 }
4986 }
4987
4988 mutex_unlock(&wq_pool_attach_mutex);
4989 }
4990 EXPORT_SYMBOL_GPL(wq_worker_comm);
4991
4992 #ifdef CONFIG_SMP
4993
4994 /*
4995 * CPU hotplug.
4996 *
4997 * There are two challenges in supporting CPU hotplug. Firstly, there
4998 * are a lot of assumptions on strong associations among work, pwq and
4999 * pool which make migrating pending and scheduled works very
5000 * difficult to implement without impacting hot paths. Secondly,
5001 * worker pools serve mix of short, long and very long running works making
5002 * blocked draining impractical.
5003 *
5004 * This is solved by allowing the pools to be disassociated from the CPU
5005 * running as an unbound one and allowing it to be reattached later if the
5006 * cpu comes back online.
5007 */
5008
unbind_workers(int cpu)5009 static void unbind_workers(int cpu)
5010 {
5011 struct worker_pool *pool;
5012 struct worker *worker;
5013
5014 for_each_cpu_worker_pool(pool, cpu) {
5015 mutex_lock(&wq_pool_attach_mutex);
5016 raw_spin_lock_irq(&pool->lock);
5017
5018 /*
5019 * We've blocked all attach/detach operations. Make all workers
5020 * unbound and set DISASSOCIATED. Before this, all workers
5021 * except for the ones which are still executing works from
5022 * before the last CPU down must be on the cpu. After
5023 * this, they may become diasporas.
5024 */
5025 for_each_pool_worker(worker, pool)
5026 worker->flags |= WORKER_UNBOUND;
5027
5028 pool->flags |= POOL_DISASSOCIATED;
5029
5030 raw_spin_unlock_irq(&pool->lock);
5031
5032 for_each_pool_worker(worker, pool) {
5033 kthread_set_per_cpu(worker->task, -1);
5034 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5035 }
5036
5037 mutex_unlock(&wq_pool_attach_mutex);
5038
5039 /*
5040 * Call schedule() so that we cross rq->lock and thus can
5041 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
5042 * This is necessary as scheduler callbacks may be invoked
5043 * from other cpus.
5044 */
5045 schedule();
5046
5047 /*
5048 * Sched callbacks are disabled now. Zap nr_running.
5049 * After this, nr_running stays zero and need_more_worker()
5050 * and keep_working() are always true as long as the
5051 * worklist is not empty. This pool now behaves as an
5052 * unbound (in terms of concurrency management) pool which
5053 * are served by workers tied to the pool.
5054 */
5055 atomic_set(&pool->nr_running, 0);
5056
5057 /*
5058 * With concurrency management just turned off, a busy
5059 * worker blocking could lead to lengthy stalls. Kick off
5060 * unbound chain execution of currently pending work items.
5061 */
5062 raw_spin_lock_irq(&pool->lock);
5063 wake_up_worker(pool);
5064 raw_spin_unlock_irq(&pool->lock);
5065 }
5066 }
5067
5068 /**
5069 * rebind_workers - rebind all workers of a pool to the associated CPU
5070 * @pool: pool of interest
5071 *
5072 * @pool->cpu is coming online. Rebind all workers to the CPU.
5073 */
rebind_workers(struct worker_pool * pool)5074 static void rebind_workers(struct worker_pool *pool)
5075 {
5076 struct worker *worker;
5077
5078 lockdep_assert_held(&wq_pool_attach_mutex);
5079
5080 /*
5081 * Restore CPU affinity of all workers. As all idle workers should
5082 * be on the run-queue of the associated CPU before any local
5083 * wake-ups for concurrency management happen, restore CPU affinity
5084 * of all workers first and then clear UNBOUND. As we're called
5085 * from CPU_ONLINE, the following shouldn't fail.
5086 */
5087 for_each_pool_worker(worker, pool) {
5088 kthread_set_per_cpu(worker->task, pool->cpu);
5089 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5090 pool->attrs->cpumask) < 0);
5091 }
5092
5093 raw_spin_lock_irq(&pool->lock);
5094
5095 pool->flags &= ~POOL_DISASSOCIATED;
5096
5097 for_each_pool_worker(worker, pool) {
5098 unsigned int worker_flags = worker->flags;
5099
5100 /*
5101 * A bound idle worker should actually be on the runqueue
5102 * of the associated CPU for local wake-ups targeting it to
5103 * work. Kick all idle workers so that they migrate to the
5104 * associated CPU. Doing this in the same loop as
5105 * replacing UNBOUND with REBOUND is safe as no worker will
5106 * be bound before @pool->lock is released.
5107 */
5108 if (worker_flags & WORKER_IDLE)
5109 wake_up_process(worker->task);
5110
5111 /*
5112 * We want to clear UNBOUND but can't directly call
5113 * worker_clr_flags() or adjust nr_running. Atomically
5114 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5115 * @worker will clear REBOUND using worker_clr_flags() when
5116 * it initiates the next execution cycle thus restoring
5117 * concurrency management. Note that when or whether
5118 * @worker clears REBOUND doesn't affect correctness.
5119 *
5120 * WRITE_ONCE() is necessary because @worker->flags may be
5121 * tested without holding any lock in
5122 * wq_worker_running(). Without it, NOT_RUNNING test may
5123 * fail incorrectly leading to premature concurrency
5124 * management operations.
5125 */
5126 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5127 worker_flags |= WORKER_REBOUND;
5128 worker_flags &= ~WORKER_UNBOUND;
5129 WRITE_ONCE(worker->flags, worker_flags);
5130 }
5131
5132 raw_spin_unlock_irq(&pool->lock);
5133 }
5134
5135 /**
5136 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5137 * @pool: unbound pool of interest
5138 * @cpu: the CPU which is coming up
5139 *
5140 * An unbound pool may end up with a cpumask which doesn't have any online
5141 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5142 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5143 * online CPU before, cpus_allowed of all its workers should be restored.
5144 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5145 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5146 {
5147 static cpumask_t cpumask;
5148 struct worker *worker;
5149
5150 lockdep_assert_held(&wq_pool_attach_mutex);
5151
5152 /* is @cpu allowed for @pool? */
5153 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5154 return;
5155
5156 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5157
5158 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5159 for_each_pool_worker(worker, pool)
5160 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5161 }
5162
workqueue_prepare_cpu(unsigned int cpu)5163 int workqueue_prepare_cpu(unsigned int cpu)
5164 {
5165 struct worker_pool *pool;
5166
5167 for_each_cpu_worker_pool(pool, cpu) {
5168 if (pool->nr_workers)
5169 continue;
5170 if (!create_worker(pool))
5171 return -ENOMEM;
5172 }
5173 return 0;
5174 }
5175
workqueue_online_cpu(unsigned int cpu)5176 int workqueue_online_cpu(unsigned int cpu)
5177 {
5178 struct worker_pool *pool;
5179 struct workqueue_struct *wq;
5180 int pi;
5181
5182 mutex_lock(&wq_pool_mutex);
5183
5184 for_each_pool(pool, pi) {
5185 mutex_lock(&wq_pool_attach_mutex);
5186
5187 if (pool->cpu == cpu)
5188 rebind_workers(pool);
5189 else if (pool->cpu < 0)
5190 restore_unbound_workers_cpumask(pool, cpu);
5191
5192 mutex_unlock(&wq_pool_attach_mutex);
5193 }
5194
5195 /* update NUMA affinity of unbound workqueues */
5196 list_for_each_entry(wq, &workqueues, list)
5197 wq_update_unbound_numa(wq, cpu, true);
5198
5199 mutex_unlock(&wq_pool_mutex);
5200 return 0;
5201 }
5202
workqueue_offline_cpu(unsigned int cpu)5203 int workqueue_offline_cpu(unsigned int cpu)
5204 {
5205 struct workqueue_struct *wq;
5206
5207 /* unbinding per-cpu workers should happen on the local CPU */
5208 if (WARN_ON(cpu != smp_processor_id()))
5209 return -1;
5210
5211 unbind_workers(cpu);
5212
5213 /* update NUMA affinity of unbound workqueues */
5214 mutex_lock(&wq_pool_mutex);
5215 list_for_each_entry(wq, &workqueues, list)
5216 wq_update_unbound_numa(wq, cpu, false);
5217 mutex_unlock(&wq_pool_mutex);
5218
5219 return 0;
5220 }
5221
5222 struct work_for_cpu {
5223 struct work_struct work;
5224 long (*fn)(void *);
5225 void *arg;
5226 long ret;
5227 };
5228
work_for_cpu_fn(struct work_struct * work)5229 static void work_for_cpu_fn(struct work_struct *work)
5230 {
5231 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5232
5233 wfc->ret = wfc->fn(wfc->arg);
5234 }
5235
5236 /**
5237 * work_on_cpu - run a function in thread context on a particular cpu
5238 * @cpu: the cpu to run on
5239 * @fn: the function to run
5240 * @arg: the function arg
5241 *
5242 * It is up to the caller to ensure that the cpu doesn't go offline.
5243 * The caller must not hold any locks which would prevent @fn from completing.
5244 *
5245 * Return: The value @fn returns.
5246 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5247 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5248 {
5249 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5250
5251 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5252 schedule_work_on(cpu, &wfc.work);
5253 flush_work(&wfc.work);
5254 destroy_work_on_stack(&wfc.work);
5255 return wfc.ret;
5256 }
5257 EXPORT_SYMBOL_GPL(work_on_cpu);
5258
5259 /**
5260 * work_on_cpu_safe - run a function in thread context on a particular cpu
5261 * @cpu: the cpu to run on
5262 * @fn: the function to run
5263 * @arg: the function argument
5264 *
5265 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5266 * any locks which would prevent @fn from completing.
5267 *
5268 * Return: The value @fn returns.
5269 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5270 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5271 {
5272 long ret = -ENODEV;
5273
5274 cpus_read_lock();
5275 if (cpu_online(cpu))
5276 ret = work_on_cpu(cpu, fn, arg);
5277 cpus_read_unlock();
5278 return ret;
5279 }
5280 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5281 #endif /* CONFIG_SMP */
5282
5283 #ifdef CONFIG_FREEZER
5284
5285 /**
5286 * freeze_workqueues_begin - begin freezing workqueues
5287 *
5288 * Start freezing workqueues. After this function returns, all freezable
5289 * workqueues will queue new works to their inactive_works list instead of
5290 * pool->worklist.
5291 *
5292 * CONTEXT:
5293 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5294 */
freeze_workqueues_begin(void)5295 void freeze_workqueues_begin(void)
5296 {
5297 struct workqueue_struct *wq;
5298 struct pool_workqueue *pwq;
5299
5300 mutex_lock(&wq_pool_mutex);
5301
5302 WARN_ON_ONCE(workqueue_freezing);
5303 workqueue_freezing = true;
5304
5305 list_for_each_entry(wq, &workqueues, list) {
5306 mutex_lock(&wq->mutex);
5307 for_each_pwq(pwq, wq)
5308 pwq_adjust_max_active(pwq);
5309 mutex_unlock(&wq->mutex);
5310 }
5311
5312 mutex_unlock(&wq_pool_mutex);
5313 }
5314
5315 /**
5316 * freeze_workqueues_busy - are freezable workqueues still busy?
5317 *
5318 * Check whether freezing is complete. This function must be called
5319 * between freeze_workqueues_begin() and thaw_workqueues().
5320 *
5321 * CONTEXT:
5322 * Grabs and releases wq_pool_mutex.
5323 *
5324 * Return:
5325 * %true if some freezable workqueues are still busy. %false if freezing
5326 * is complete.
5327 */
freeze_workqueues_busy(void)5328 bool freeze_workqueues_busy(void)
5329 {
5330 bool busy = false;
5331 struct workqueue_struct *wq;
5332 struct pool_workqueue *pwq;
5333
5334 mutex_lock(&wq_pool_mutex);
5335
5336 WARN_ON_ONCE(!workqueue_freezing);
5337
5338 list_for_each_entry(wq, &workqueues, list) {
5339 if (!(wq->flags & WQ_FREEZABLE))
5340 continue;
5341 /*
5342 * nr_active is monotonically decreasing. It's safe
5343 * to peek without lock.
5344 */
5345 rcu_read_lock();
5346 for_each_pwq(pwq, wq) {
5347 WARN_ON_ONCE(pwq->nr_active < 0);
5348 if (pwq->nr_active) {
5349 busy = true;
5350 rcu_read_unlock();
5351 goto out_unlock;
5352 }
5353 }
5354 rcu_read_unlock();
5355 }
5356 out_unlock:
5357 mutex_unlock(&wq_pool_mutex);
5358 return busy;
5359 }
5360
5361 /**
5362 * thaw_workqueues - thaw workqueues
5363 *
5364 * Thaw workqueues. Normal queueing is restored and all collected
5365 * frozen works are transferred to their respective pool worklists.
5366 *
5367 * CONTEXT:
5368 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5369 */
thaw_workqueues(void)5370 void thaw_workqueues(void)
5371 {
5372 struct workqueue_struct *wq;
5373 struct pool_workqueue *pwq;
5374
5375 mutex_lock(&wq_pool_mutex);
5376
5377 if (!workqueue_freezing)
5378 goto out_unlock;
5379
5380 workqueue_freezing = false;
5381
5382 /* restore max_active and repopulate worklist */
5383 list_for_each_entry(wq, &workqueues, list) {
5384 mutex_lock(&wq->mutex);
5385 for_each_pwq(pwq, wq)
5386 pwq_adjust_max_active(pwq);
5387 mutex_unlock(&wq->mutex);
5388 }
5389
5390 out_unlock:
5391 mutex_unlock(&wq_pool_mutex);
5392 }
5393 #endif /* CONFIG_FREEZER */
5394
workqueue_apply_unbound_cpumask(void)5395 static int workqueue_apply_unbound_cpumask(void)
5396 {
5397 LIST_HEAD(ctxs);
5398 int ret = 0;
5399 struct workqueue_struct *wq;
5400 struct apply_wqattrs_ctx *ctx, *n;
5401
5402 lockdep_assert_held(&wq_pool_mutex);
5403
5404 list_for_each_entry(wq, &workqueues, list) {
5405 if (!(wq->flags & WQ_UNBOUND))
5406 continue;
5407
5408 /* creating multiple pwqs breaks ordering guarantee */
5409 if (!list_empty(&wq->pwqs)) {
5410 if (wq->flags & __WQ_ORDERED_EXPLICIT)
5411 continue;
5412 wq->flags &= ~__WQ_ORDERED;
5413 }
5414
5415 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5416 if (!ctx) {
5417 ret = -ENOMEM;
5418 break;
5419 }
5420
5421 list_add_tail(&ctx->list, &ctxs);
5422 }
5423
5424 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5425 if (!ret)
5426 apply_wqattrs_commit(ctx);
5427 apply_wqattrs_cleanup(ctx);
5428 }
5429
5430 return ret;
5431 }
5432
5433 /**
5434 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5435 * @cpumask: the cpumask to set
5436 *
5437 * The low-level workqueues cpumask is a global cpumask that limits
5438 * the affinity of all unbound workqueues. This function check the @cpumask
5439 * and apply it to all unbound workqueues and updates all pwqs of them.
5440 *
5441 * Return: 0 - Success
5442 * -EINVAL - Invalid @cpumask
5443 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5444 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5445 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5446 {
5447 int ret = -EINVAL;
5448 cpumask_var_t saved_cpumask;
5449
5450 /*
5451 * Not excluding isolated cpus on purpose.
5452 * If the user wishes to include them, we allow that.
5453 */
5454 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5455 if (!cpumask_empty(cpumask)) {
5456 apply_wqattrs_lock();
5457 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5458 ret = 0;
5459 goto out_unlock;
5460 }
5461
5462 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5463 ret = -ENOMEM;
5464 goto out_unlock;
5465 }
5466
5467 /* save the old wq_unbound_cpumask. */
5468 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5469
5470 /* update wq_unbound_cpumask at first and apply it to wqs. */
5471 cpumask_copy(wq_unbound_cpumask, cpumask);
5472 ret = workqueue_apply_unbound_cpumask();
5473
5474 /* restore the wq_unbound_cpumask when failed. */
5475 if (ret < 0)
5476 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5477
5478 free_cpumask_var(saved_cpumask);
5479 out_unlock:
5480 apply_wqattrs_unlock();
5481 }
5482
5483 return ret;
5484 }
5485
5486 #ifdef CONFIG_SYSFS
5487 /*
5488 * Workqueues with WQ_SYSFS flag set is visible to userland via
5489 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5490 * following attributes.
5491 *
5492 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5493 * max_active RW int : maximum number of in-flight work items
5494 *
5495 * Unbound workqueues have the following extra attributes.
5496 *
5497 * pool_ids RO int : the associated pool IDs for each node
5498 * nice RW int : nice value of the workers
5499 * cpumask RW mask : bitmask of allowed CPUs for the workers
5500 * numa RW bool : whether enable NUMA affinity
5501 */
5502 struct wq_device {
5503 struct workqueue_struct *wq;
5504 struct device dev;
5505 };
5506
dev_to_wq(struct device * dev)5507 static struct workqueue_struct *dev_to_wq(struct device *dev)
5508 {
5509 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5510
5511 return wq_dev->wq;
5512 }
5513
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5514 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5515 char *buf)
5516 {
5517 struct workqueue_struct *wq = dev_to_wq(dev);
5518
5519 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5520 }
5521 static DEVICE_ATTR_RO(per_cpu);
5522
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5523 static ssize_t max_active_show(struct device *dev,
5524 struct device_attribute *attr, char *buf)
5525 {
5526 struct workqueue_struct *wq = dev_to_wq(dev);
5527
5528 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5529 }
5530
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5531 static ssize_t max_active_store(struct device *dev,
5532 struct device_attribute *attr, const char *buf,
5533 size_t count)
5534 {
5535 struct workqueue_struct *wq = dev_to_wq(dev);
5536 int val;
5537
5538 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5539 return -EINVAL;
5540
5541 workqueue_set_max_active(wq, val);
5542 return count;
5543 }
5544 static DEVICE_ATTR_RW(max_active);
5545
5546 static struct attribute *wq_sysfs_attrs[] = {
5547 &dev_attr_per_cpu.attr,
5548 &dev_attr_max_active.attr,
5549 NULL,
5550 };
5551 ATTRIBUTE_GROUPS(wq_sysfs);
5552
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5553 static ssize_t wq_pool_ids_show(struct device *dev,
5554 struct device_attribute *attr, char *buf)
5555 {
5556 struct workqueue_struct *wq = dev_to_wq(dev);
5557 const char *delim = "";
5558 int node, written = 0;
5559
5560 cpus_read_lock();
5561 rcu_read_lock();
5562 for_each_node(node) {
5563 written += scnprintf(buf + written, PAGE_SIZE - written,
5564 "%s%d:%d", delim, node,
5565 unbound_pwq_by_node(wq, node)->pool->id);
5566 delim = " ";
5567 }
5568 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5569 rcu_read_unlock();
5570 cpus_read_unlock();
5571
5572 return written;
5573 }
5574
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5575 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5576 char *buf)
5577 {
5578 struct workqueue_struct *wq = dev_to_wq(dev);
5579 int written;
5580
5581 mutex_lock(&wq->mutex);
5582 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5583 mutex_unlock(&wq->mutex);
5584
5585 return written;
5586 }
5587
5588 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5589 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5590 {
5591 struct workqueue_attrs *attrs;
5592
5593 lockdep_assert_held(&wq_pool_mutex);
5594
5595 attrs = alloc_workqueue_attrs();
5596 if (!attrs)
5597 return NULL;
5598
5599 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5600 return attrs;
5601 }
5602
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5603 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5604 const char *buf, size_t count)
5605 {
5606 struct workqueue_struct *wq = dev_to_wq(dev);
5607 struct workqueue_attrs *attrs;
5608 int ret = -ENOMEM;
5609
5610 apply_wqattrs_lock();
5611
5612 attrs = wq_sysfs_prep_attrs(wq);
5613 if (!attrs)
5614 goto out_unlock;
5615
5616 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5617 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5618 ret = apply_workqueue_attrs_locked(wq, attrs);
5619 else
5620 ret = -EINVAL;
5621
5622 out_unlock:
5623 apply_wqattrs_unlock();
5624 free_workqueue_attrs(attrs);
5625 return ret ?: count;
5626 }
5627
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5628 static ssize_t wq_cpumask_show(struct device *dev,
5629 struct device_attribute *attr, char *buf)
5630 {
5631 struct workqueue_struct *wq = dev_to_wq(dev);
5632 int written;
5633
5634 mutex_lock(&wq->mutex);
5635 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5636 cpumask_pr_args(wq->unbound_attrs->cpumask));
5637 mutex_unlock(&wq->mutex);
5638 return written;
5639 }
5640
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5641 static ssize_t wq_cpumask_store(struct device *dev,
5642 struct device_attribute *attr,
5643 const char *buf, size_t count)
5644 {
5645 struct workqueue_struct *wq = dev_to_wq(dev);
5646 struct workqueue_attrs *attrs;
5647 int ret = -ENOMEM;
5648
5649 apply_wqattrs_lock();
5650
5651 attrs = wq_sysfs_prep_attrs(wq);
5652 if (!attrs)
5653 goto out_unlock;
5654
5655 ret = cpumask_parse(buf, attrs->cpumask);
5656 if (!ret)
5657 ret = apply_workqueue_attrs_locked(wq, attrs);
5658
5659 out_unlock:
5660 apply_wqattrs_unlock();
5661 free_workqueue_attrs(attrs);
5662 return ret ?: count;
5663 }
5664
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5665 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5666 char *buf)
5667 {
5668 struct workqueue_struct *wq = dev_to_wq(dev);
5669 int written;
5670
5671 mutex_lock(&wq->mutex);
5672 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5673 !wq->unbound_attrs->no_numa);
5674 mutex_unlock(&wq->mutex);
5675
5676 return written;
5677 }
5678
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5679 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5680 const char *buf, size_t count)
5681 {
5682 struct workqueue_struct *wq = dev_to_wq(dev);
5683 struct workqueue_attrs *attrs;
5684 int v, ret = -ENOMEM;
5685
5686 apply_wqattrs_lock();
5687
5688 attrs = wq_sysfs_prep_attrs(wq);
5689 if (!attrs)
5690 goto out_unlock;
5691
5692 ret = -EINVAL;
5693 if (sscanf(buf, "%d", &v) == 1) {
5694 attrs->no_numa = !v;
5695 ret = apply_workqueue_attrs_locked(wq, attrs);
5696 }
5697
5698 out_unlock:
5699 apply_wqattrs_unlock();
5700 free_workqueue_attrs(attrs);
5701 return ret ?: count;
5702 }
5703
5704 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5705 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5706 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5707 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5708 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5709 __ATTR_NULL,
5710 };
5711
5712 static struct bus_type wq_subsys = {
5713 .name = "workqueue",
5714 .dev_groups = wq_sysfs_groups,
5715 };
5716
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5717 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5718 struct device_attribute *attr, char *buf)
5719 {
5720 int written;
5721
5722 mutex_lock(&wq_pool_mutex);
5723 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5724 cpumask_pr_args(wq_unbound_cpumask));
5725 mutex_unlock(&wq_pool_mutex);
5726
5727 return written;
5728 }
5729
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5730 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5731 struct device_attribute *attr, const char *buf, size_t count)
5732 {
5733 cpumask_var_t cpumask;
5734 int ret;
5735
5736 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5737 return -ENOMEM;
5738
5739 ret = cpumask_parse(buf, cpumask);
5740 if (!ret)
5741 ret = workqueue_set_unbound_cpumask(cpumask);
5742
5743 free_cpumask_var(cpumask);
5744 return ret ? ret : count;
5745 }
5746
5747 static struct device_attribute wq_sysfs_cpumask_attr =
5748 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5749 wq_unbound_cpumask_store);
5750
wq_sysfs_init(void)5751 static int __init wq_sysfs_init(void)
5752 {
5753 int err;
5754
5755 err = subsys_virtual_register(&wq_subsys, NULL);
5756 if (err)
5757 return err;
5758
5759 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5760 }
5761 core_initcall(wq_sysfs_init);
5762
wq_device_release(struct device * dev)5763 static void wq_device_release(struct device *dev)
5764 {
5765 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5766
5767 kfree(wq_dev);
5768 }
5769
5770 /**
5771 * workqueue_sysfs_register - make a workqueue visible in sysfs
5772 * @wq: the workqueue to register
5773 *
5774 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5775 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5776 * which is the preferred method.
5777 *
5778 * Workqueue user should use this function directly iff it wants to apply
5779 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5780 * apply_workqueue_attrs() may race against userland updating the
5781 * attributes.
5782 *
5783 * Return: 0 on success, -errno on failure.
5784 */
workqueue_sysfs_register(struct workqueue_struct * wq)5785 int workqueue_sysfs_register(struct workqueue_struct *wq)
5786 {
5787 struct wq_device *wq_dev;
5788 int ret;
5789
5790 /*
5791 * Adjusting max_active or creating new pwqs by applying
5792 * attributes breaks ordering guarantee. Disallow exposing ordered
5793 * workqueues.
5794 */
5795 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5796 return -EINVAL;
5797
5798 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5799 if (!wq_dev)
5800 return -ENOMEM;
5801
5802 wq_dev->wq = wq;
5803 wq_dev->dev.bus = &wq_subsys;
5804 wq_dev->dev.release = wq_device_release;
5805 dev_set_name(&wq_dev->dev, "%s", wq->name);
5806
5807 /*
5808 * unbound_attrs are created separately. Suppress uevent until
5809 * everything is ready.
5810 */
5811 dev_set_uevent_suppress(&wq_dev->dev, true);
5812
5813 ret = device_register(&wq_dev->dev);
5814 if (ret) {
5815 put_device(&wq_dev->dev);
5816 wq->wq_dev = NULL;
5817 return ret;
5818 }
5819
5820 if (wq->flags & WQ_UNBOUND) {
5821 struct device_attribute *attr;
5822
5823 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5824 ret = device_create_file(&wq_dev->dev, attr);
5825 if (ret) {
5826 device_unregister(&wq_dev->dev);
5827 wq->wq_dev = NULL;
5828 return ret;
5829 }
5830 }
5831 }
5832
5833 dev_set_uevent_suppress(&wq_dev->dev, false);
5834 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5835 return 0;
5836 }
5837
5838 /**
5839 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5840 * @wq: the workqueue to unregister
5841 *
5842 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5843 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5844 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5845 {
5846 struct wq_device *wq_dev = wq->wq_dev;
5847
5848 if (!wq->wq_dev)
5849 return;
5850
5851 wq->wq_dev = NULL;
5852 device_unregister(&wq_dev->dev);
5853 }
5854 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5855 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5856 #endif /* CONFIG_SYSFS */
5857
5858 /*
5859 * Workqueue watchdog.
5860 *
5861 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5862 * flush dependency, a concurrency managed work item which stays RUNNING
5863 * indefinitely. Workqueue stalls can be very difficult to debug as the
5864 * usual warning mechanisms don't trigger and internal workqueue state is
5865 * largely opaque.
5866 *
5867 * Workqueue watchdog monitors all worker pools periodically and dumps
5868 * state if some pools failed to make forward progress for a while where
5869 * forward progress is defined as the first item on ->worklist changing.
5870 *
5871 * This mechanism is controlled through the kernel parameter
5872 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5873 * corresponding sysfs parameter file.
5874 */
5875 #ifdef CONFIG_WQ_WATCHDOG
5876
5877 static unsigned long wq_watchdog_thresh = 30;
5878 static struct timer_list wq_watchdog_timer;
5879
5880 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5881 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5882
wq_watchdog_reset_touched(void)5883 static void wq_watchdog_reset_touched(void)
5884 {
5885 int cpu;
5886
5887 wq_watchdog_touched = jiffies;
5888 for_each_possible_cpu(cpu)
5889 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5890 }
5891
wq_watchdog_timer_fn(struct timer_list * unused)5892 static void wq_watchdog_timer_fn(struct timer_list *unused)
5893 {
5894 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5895 bool lockup_detected = false;
5896 unsigned long now = jiffies;
5897 struct worker_pool *pool;
5898 int pi;
5899
5900 if (!thresh)
5901 return;
5902
5903 rcu_read_lock();
5904
5905 for_each_pool(pool, pi) {
5906 unsigned long pool_ts, touched, ts;
5907
5908 if (list_empty(&pool->worklist))
5909 continue;
5910
5911 /*
5912 * If a virtual machine is stopped by the host it can look to
5913 * the watchdog like a stall.
5914 */
5915 kvm_check_and_clear_guest_paused();
5916
5917 /* get the latest of pool and touched timestamps */
5918 if (pool->cpu >= 0)
5919 touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5920 else
5921 touched = READ_ONCE(wq_watchdog_touched);
5922 pool_ts = READ_ONCE(pool->watchdog_ts);
5923
5924 if (time_after(pool_ts, touched))
5925 ts = pool_ts;
5926 else
5927 ts = touched;
5928
5929 /* did we stall? */
5930 if (time_after(now, ts + thresh)) {
5931 lockup_detected = true;
5932 pr_emerg("BUG: workqueue lockup - pool");
5933 pr_cont_pool_info(pool);
5934 pr_cont(" stuck for %us!\n",
5935 jiffies_to_msecs(now - pool_ts) / 1000);
5936 trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5937 }
5938 }
5939
5940 rcu_read_unlock();
5941
5942 if (lockup_detected)
5943 show_all_workqueues();
5944
5945 wq_watchdog_reset_touched();
5946 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5947 }
5948
wq_watchdog_touch(int cpu)5949 notrace void wq_watchdog_touch(int cpu)
5950 {
5951 if (cpu >= 0)
5952 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5953
5954 wq_watchdog_touched = jiffies;
5955 }
5956
wq_watchdog_set_thresh(unsigned long thresh)5957 static void wq_watchdog_set_thresh(unsigned long thresh)
5958 {
5959 wq_watchdog_thresh = 0;
5960 del_timer_sync(&wq_watchdog_timer);
5961
5962 if (thresh) {
5963 wq_watchdog_thresh = thresh;
5964 wq_watchdog_reset_touched();
5965 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5966 }
5967 }
5968
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5969 static int wq_watchdog_param_set_thresh(const char *val,
5970 const struct kernel_param *kp)
5971 {
5972 unsigned long thresh;
5973 int ret;
5974
5975 ret = kstrtoul(val, 0, &thresh);
5976 if (ret)
5977 return ret;
5978
5979 if (system_wq)
5980 wq_watchdog_set_thresh(thresh);
5981 else
5982 wq_watchdog_thresh = thresh;
5983
5984 return 0;
5985 }
5986
5987 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5988 .set = wq_watchdog_param_set_thresh,
5989 .get = param_get_ulong,
5990 };
5991
5992 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5993 0644);
5994
wq_watchdog_init(void)5995 static void wq_watchdog_init(void)
5996 {
5997 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5998 wq_watchdog_set_thresh(wq_watchdog_thresh);
5999 }
6000
6001 #else /* CONFIG_WQ_WATCHDOG */
6002
wq_watchdog_init(void)6003 static inline void wq_watchdog_init(void) { }
6004
6005 #endif /* CONFIG_WQ_WATCHDOG */
6006
wq_numa_init(void)6007 static void __init wq_numa_init(void)
6008 {
6009 cpumask_var_t *tbl;
6010 int node, cpu;
6011
6012 if (num_possible_nodes() <= 1)
6013 return;
6014
6015 if (wq_disable_numa) {
6016 pr_info("workqueue: NUMA affinity support disabled\n");
6017 return;
6018 }
6019
6020 for_each_possible_cpu(cpu) {
6021 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6022 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6023 return;
6024 }
6025 }
6026
6027 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6028 BUG_ON(!wq_update_unbound_numa_attrs_buf);
6029
6030 /*
6031 * We want masks of possible CPUs of each node which isn't readily
6032 * available. Build one from cpu_to_node() which should have been
6033 * fully initialized by now.
6034 */
6035 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6036 BUG_ON(!tbl);
6037
6038 for_each_node(node)
6039 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6040 node_online(node) ? node : NUMA_NO_NODE));
6041
6042 for_each_possible_cpu(cpu) {
6043 node = cpu_to_node(cpu);
6044 cpumask_set_cpu(cpu, tbl[node]);
6045 }
6046
6047 wq_numa_possible_cpumask = tbl;
6048 wq_numa_enabled = true;
6049 }
6050
6051 /**
6052 * workqueue_init_early - early init for workqueue subsystem
6053 *
6054 * This is the first half of two-staged workqueue subsystem initialization
6055 * and invoked as soon as the bare basics - memory allocation, cpumasks and
6056 * idr are up. It sets up all the data structures and system workqueues
6057 * and allows early boot code to create workqueues and queue/cancel work
6058 * items. Actual work item execution starts only after kthreads can be
6059 * created and scheduled right before early initcalls.
6060 */
workqueue_init_early(void)6061 void __init workqueue_init_early(void)
6062 {
6063 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6064 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6065 int i, cpu;
6066
6067 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6068
6069 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6070 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6071
6072 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6073
6074 /* initialize CPU pools */
6075 for_each_possible_cpu(cpu) {
6076 struct worker_pool *pool;
6077
6078 i = 0;
6079 for_each_cpu_worker_pool(pool, cpu) {
6080 BUG_ON(init_worker_pool(pool));
6081 pool->cpu = cpu;
6082 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6083 pool->attrs->nice = std_nice[i++];
6084 pool->node = cpu_to_node(cpu);
6085
6086 /* alloc pool ID */
6087 mutex_lock(&wq_pool_mutex);
6088 BUG_ON(worker_pool_assign_id(pool));
6089 mutex_unlock(&wq_pool_mutex);
6090 }
6091 }
6092
6093 /* create default unbound and ordered wq attrs */
6094 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6095 struct workqueue_attrs *attrs;
6096
6097 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6098 attrs->nice = std_nice[i];
6099 unbound_std_wq_attrs[i] = attrs;
6100
6101 /*
6102 * An ordered wq should have only one pwq as ordering is
6103 * guaranteed by max_active which is enforced by pwqs.
6104 * Turn off NUMA so that dfl_pwq is used for all nodes.
6105 */
6106 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6107 attrs->nice = std_nice[i];
6108 attrs->no_numa = true;
6109 ordered_wq_attrs[i] = attrs;
6110 }
6111
6112 system_wq = alloc_workqueue("events", 0, 0);
6113 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6114 system_long_wq = alloc_workqueue("events_long", 0, 0);
6115 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6116 WQ_UNBOUND_MAX_ACTIVE);
6117 system_freezable_wq = alloc_workqueue("events_freezable",
6118 WQ_FREEZABLE, 0);
6119 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6120 WQ_POWER_EFFICIENT, 0);
6121 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6122 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6123 0);
6124 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6125 !system_unbound_wq || !system_freezable_wq ||
6126 !system_power_efficient_wq ||
6127 !system_freezable_power_efficient_wq);
6128 }
6129
6130 /**
6131 * workqueue_init - bring workqueue subsystem fully online
6132 *
6133 * This is the latter half of two-staged workqueue subsystem initialization
6134 * and invoked as soon as kthreads can be created and scheduled.
6135 * Workqueues have been created and work items queued on them, but there
6136 * are no kworkers executing the work items yet. Populate the worker pools
6137 * with the initial workers and enable future kworker creations.
6138 */
workqueue_init(void)6139 void __init workqueue_init(void)
6140 {
6141 struct workqueue_struct *wq;
6142 struct worker_pool *pool;
6143 int cpu, bkt;
6144
6145 /*
6146 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6147 * CPU to node mapping may not be available that early on some
6148 * archs such as power and arm64. As per-cpu pools created
6149 * previously could be missing node hint and unbound pools NUMA
6150 * affinity, fix them up.
6151 *
6152 * Also, while iterating workqueues, create rescuers if requested.
6153 */
6154 wq_numa_init();
6155
6156 mutex_lock(&wq_pool_mutex);
6157
6158 for_each_possible_cpu(cpu) {
6159 for_each_cpu_worker_pool(pool, cpu) {
6160 pool->node = cpu_to_node(cpu);
6161 }
6162 }
6163
6164 list_for_each_entry(wq, &workqueues, list) {
6165 wq_update_unbound_numa(wq, smp_processor_id(), true);
6166 WARN(init_rescuer(wq),
6167 "workqueue: failed to create early rescuer for %s",
6168 wq->name);
6169 }
6170
6171 mutex_unlock(&wq_pool_mutex);
6172
6173 /* create the initial workers */
6174 for_each_online_cpu(cpu) {
6175 for_each_cpu_worker_pool(pool, cpu) {
6176 pool->flags &= ~POOL_DISASSOCIATED;
6177 BUG_ON(!create_worker(pool));
6178 }
6179 }
6180
6181 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6182 BUG_ON(!create_worker(pool));
6183
6184 wq_online = true;
6185 wq_watchdog_init();
6186 }
6187