• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/workqueue.c - generic async execution with shared worker pool
4  *
5  * Copyright (C) 2002		Ingo Molnar
6  *
7  *   Derived from the taskqueue/keventd code by:
8  *     David Woodhouse <dwmw2@infradead.org>
9  *     Andrew Morton
10  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
11  *     Theodore Ts'o <tytso@mit.edu>
12  *
13  * Made to use alloc_percpu by Christoph Lameter.
14  *
15  * Copyright (C) 2010		SUSE Linux Products GmbH
16  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
17  *
18  * This is the generic async execution mechanism.  Work items as are
19  * executed in process context.  The worker pool is shared and
20  * automatically managed.  There are two worker pools for each CPU (one for
21  * normal work items and the other for high priority ones) and some extra
22  * pools for workqueues which are not bound to any specific CPU - the
23  * number of these backing pools is dynamic.
24  *
25  * Please read Documentation/core-api/workqueue.rst for details.
26  */
27 
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54 
55 #include "workqueue_internal.h"
56 
57 #include <trace/hooks/wqlockup.h>
58 /* events/workqueue.h uses default TRACE_INCLUDE_PATH */
59 #undef TRACE_INCLUDE_PATH
60 
61 enum {
62 	/*
63 	 * worker_pool flags
64 	 *
65 	 * A bound pool is either associated or disassociated with its CPU.
66 	 * While associated (!DISASSOCIATED), all workers are bound to the
67 	 * CPU and none has %WORKER_UNBOUND set and concurrency management
68 	 * is in effect.
69 	 *
70 	 * While DISASSOCIATED, the cpu may be offline and all workers have
71 	 * %WORKER_UNBOUND set and concurrency management disabled, and may
72 	 * be executing on any CPU.  The pool behaves as an unbound one.
73 	 *
74 	 * Note that DISASSOCIATED should be flipped only while holding
75 	 * wq_pool_attach_mutex to avoid changing binding state while
76 	 * worker_attach_to_pool() is in progress.
77 	 */
78 	POOL_MANAGER_ACTIVE	= 1 << 0,	/* being managed */
79 	POOL_DISASSOCIATED	= 1 << 2,	/* cpu can't serve workers */
80 
81 	/* worker flags */
82 	WORKER_DIE		= 1 << 1,	/* die die die */
83 	WORKER_IDLE		= 1 << 2,	/* is idle */
84 	WORKER_PREP		= 1 << 3,	/* preparing to run works */
85 	WORKER_CPU_INTENSIVE	= 1 << 6,	/* cpu intensive */
86 	WORKER_UNBOUND		= 1 << 7,	/* worker is unbound */
87 	WORKER_REBOUND		= 1 << 8,	/* worker was rebound */
88 
89 	WORKER_NOT_RUNNING	= WORKER_PREP | WORKER_CPU_INTENSIVE |
90 				  WORKER_UNBOUND | WORKER_REBOUND,
91 
92 	NR_STD_WORKER_POOLS	= 2,		/* # standard pools per cpu */
93 
94 	UNBOUND_POOL_HASH_ORDER	= 6,		/* hashed by pool->attrs */
95 	BUSY_WORKER_HASH_ORDER	= 6,		/* 64 pointers */
96 
97 	MAX_IDLE_WORKERS_RATIO	= 4,		/* 1/4 of busy can be idle */
98 	IDLE_WORKER_TIMEOUT	= 300 * HZ,	/* keep idle ones for 5 mins */
99 
100 	MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
101 						/* call for help after 10ms
102 						   (min two ticks) */
103 	MAYDAY_INTERVAL		= HZ / 10,	/* and then every 100ms */
104 	CREATE_COOLDOWN		= HZ,		/* time to breath after fail */
105 
106 	/*
107 	 * Rescue workers are used only on emergencies and shared by
108 	 * all cpus.  Give MIN_NICE.
109 	 */
110 	RESCUER_NICE_LEVEL	= MIN_NICE,
111 	HIGHPRI_NICE_LEVEL	= MIN_NICE,
112 
113 	WQ_NAME_LEN		= 24,
114 };
115 
116 /*
117  * Structure fields follow one of the following exclusion rules.
118  *
119  * I: Modifiable by initialization/destruction paths and read-only for
120  *    everyone else.
121  *
122  * P: Preemption protected.  Disabling preemption is enough and should
123  *    only be modified and accessed from the local cpu.
124  *
125  * L: pool->lock protected.  Access with pool->lock held.
126  *
127  * X: During normal operation, modification requires pool->lock and should
128  *    be done only from local cpu.  Either disabling preemption on local
129  *    cpu or grabbing pool->lock is enough for read access.  If
130  *    POOL_DISASSOCIATED is set, it's identical to L.
131  *
132  * A: wq_pool_attach_mutex protected.
133  *
134  * PL: wq_pool_mutex protected.
135  *
136  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
137  *
138  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
139  *
140  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
141  *      RCU for reads.
142  *
143  * WQ: wq->mutex protected.
144  *
145  * WR: wq->mutex protected for writes.  RCU protected for reads.
146  *
147  * MD: wq_mayday_lock protected.
148  */
149 
150 /* struct worker is defined in workqueue_internal.h */
151 
152 struct worker_pool {
153 	raw_spinlock_t		lock;		/* the pool lock */
154 	int			cpu;		/* I: the associated cpu */
155 	int			node;		/* I: the associated node ID */
156 	int			id;		/* I: pool ID */
157 	unsigned int		flags;		/* X: flags */
158 
159 	unsigned long		watchdog_ts;	/* L: watchdog timestamp */
160 
161 	struct list_head	worklist;	/* L: list of pending works */
162 
163 	int			nr_workers;	/* L: total number of workers */
164 	int			nr_idle;	/* L: currently idle workers */
165 
166 	struct list_head	idle_list;	/* X: list of idle workers */
167 	struct timer_list	idle_timer;	/* L: worker idle timeout */
168 	struct timer_list	mayday_timer;	/* L: SOS timer for workers */
169 
170 	/* a workers is either on busy_hash or idle_list, or the manager */
171 	DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
172 						/* L: hash of busy workers */
173 
174 	struct worker		*manager;	/* L: purely informational */
175 	struct list_head	workers;	/* A: attached workers */
176 	struct completion	*detach_completion; /* all workers detached */
177 
178 	struct ida		worker_ida;	/* worker IDs for task name */
179 
180 	struct workqueue_attrs	*attrs;		/* I: worker attributes */
181 	struct hlist_node	hash_node;	/* PL: unbound_pool_hash node */
182 	int			refcnt;		/* PL: refcnt for unbound pools */
183 
184 	/*
185 	 * The current concurrency level.  As it's likely to be accessed
186 	 * from other CPUs during try_to_wake_up(), put it in a separate
187 	 * cacheline.
188 	 */
189 	atomic_t		nr_running ____cacheline_aligned_in_smp;
190 
191 	/*
192 	 * Destruction of pool is RCU protected to allow dereferences
193 	 * from get_work_pool().
194 	 */
195 	struct rcu_head		rcu;
196 } ____cacheline_aligned_in_smp;
197 
198 /*
199  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
200  * of work_struct->data are used for flags and the remaining high bits
201  * point to the pwq; thus, pwqs need to be aligned at two's power of the
202  * number of flag bits.
203  */
204 struct pool_workqueue {
205 	struct worker_pool	*pool;		/* I: the associated pool */
206 	struct workqueue_struct *wq;		/* I: the owning workqueue */
207 	int			work_color;	/* L: current color */
208 	int			flush_color;	/* L: flushing color */
209 	int			refcnt;		/* L: reference count */
210 	int			nr_in_flight[WORK_NR_COLORS];
211 						/* L: nr of in_flight works */
212 
213 	/*
214 	 * nr_active management and WORK_STRUCT_INACTIVE:
215 	 *
216 	 * When pwq->nr_active >= max_active, new work item is queued to
217 	 * pwq->inactive_works instead of pool->worklist and marked with
218 	 * WORK_STRUCT_INACTIVE.
219 	 *
220 	 * All work items marked with WORK_STRUCT_INACTIVE do not participate
221 	 * in pwq->nr_active and all work items in pwq->inactive_works are
222 	 * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
223 	 * work items are in pwq->inactive_works.  Some of them are ready to
224 	 * run in pool->worklist or worker->scheduled.  Those work itmes are
225 	 * only struct wq_barrier which is used for flush_work() and should
226 	 * not participate in pwq->nr_active.  For non-barrier work item, it
227 	 * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
228 	 */
229 	int			nr_active;	/* L: nr of active works */
230 	int			max_active;	/* L: max active works */
231 	struct list_head	inactive_works;	/* L: inactive works */
232 	struct list_head	pwqs_node;	/* WR: node on wq->pwqs */
233 	struct list_head	mayday_node;	/* MD: node on wq->maydays */
234 
235 	/*
236 	 * Release of unbound pwq is punted to system_wq.  See put_pwq()
237 	 * and pwq_unbound_release_workfn() for details.  pool_workqueue
238 	 * itself is also RCU protected so that the first pwq can be
239 	 * determined without grabbing wq->mutex.
240 	 */
241 	struct work_struct	unbound_release_work;
242 	struct rcu_head		rcu;
243 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
244 
245 /*
246  * Structure used to wait for workqueue flush.
247  */
248 struct wq_flusher {
249 	struct list_head	list;		/* WQ: list of flushers */
250 	int			flush_color;	/* WQ: flush color waiting for */
251 	struct completion	done;		/* flush completion */
252 };
253 
254 struct wq_device;
255 
256 /*
257  * The externally visible workqueue.  It relays the issued work items to
258  * the appropriate worker_pool through its pool_workqueues.
259  */
260 struct workqueue_struct {
261 	struct list_head	pwqs;		/* WR: all pwqs of this wq */
262 	struct list_head	list;		/* PR: list of all workqueues */
263 
264 	struct mutex		mutex;		/* protects this wq */
265 	int			work_color;	/* WQ: current work color */
266 	int			flush_color;	/* WQ: current flush color */
267 	atomic_t		nr_pwqs_to_flush; /* flush in progress */
268 	struct wq_flusher	*first_flusher;	/* WQ: first flusher */
269 	struct list_head	flusher_queue;	/* WQ: flush waiters */
270 	struct list_head	flusher_overflow; /* WQ: flush overflow list */
271 
272 	struct list_head	maydays;	/* MD: pwqs requesting rescue */
273 	struct worker		*rescuer;	/* MD: rescue worker */
274 
275 	int			nr_drainers;	/* WQ: drain in progress */
276 	int			saved_max_active; /* WQ: saved pwq max_active */
277 
278 	struct workqueue_attrs	*unbound_attrs;	/* PW: only for unbound wqs */
279 	struct pool_workqueue	*dfl_pwq;	/* PW: only for unbound wqs */
280 
281 #ifdef CONFIG_SYSFS
282 	struct wq_device	*wq_dev;	/* I: for sysfs interface */
283 #endif
284 #ifdef CONFIG_LOCKDEP
285 	char			*lock_name;
286 	struct lock_class_key	key;
287 	struct lockdep_map	lockdep_map;
288 #endif
289 	char			name[WQ_NAME_LEN]; /* I: workqueue name */
290 
291 	/*
292 	 * Destruction of workqueue_struct is RCU protected to allow walking
293 	 * the workqueues list without grabbing wq_pool_mutex.
294 	 * This is used to dump all workqueues from sysrq.
295 	 */
296 	struct rcu_head		rcu;
297 
298 	/* hot fields used during command issue, aligned to cacheline */
299 	unsigned int		flags ____cacheline_aligned; /* WQ: WQ_* flags */
300 	struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
301 	struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
302 };
303 
304 static struct kmem_cache *pwq_cache;
305 
306 static cpumask_var_t *wq_numa_possible_cpumask;
307 					/* possible CPUs of each node */
308 
309 static bool wq_disable_numa;
310 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
311 
312 /* see the comment above the definition of WQ_POWER_EFFICIENT */
313 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
314 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
315 
316 static bool wq_online;			/* can kworkers be created yet? */
317 
318 static bool wq_numa_enabled;		/* unbound NUMA affinity enabled */
319 
320 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
321 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
322 
323 static DEFINE_MUTEX(wq_pool_mutex);	/* protects pools and workqueues list */
324 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
325 static DEFINE_RAW_SPINLOCK(wq_mayday_lock);	/* protects wq->maydays list */
326 /* wait for manager to go away */
327 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
328 
329 static LIST_HEAD(workqueues);		/* PR: list of all workqueues */
330 static bool workqueue_freezing;		/* PL: have wqs started freezing? */
331 
332 /* PL: allowable cpus for unbound wqs and work items */
333 static cpumask_var_t wq_unbound_cpumask;
334 
335 /* CPU where unbound work was last round robin scheduled from this CPU */
336 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
337 
338 /*
339  * Local execution of unbound work items is no longer guaranteed.  The
340  * following always forces round-robin CPU selection on unbound work items
341  * to uncover usages which depend on it.
342  */
343 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
344 static bool wq_debug_force_rr_cpu = true;
345 #else
346 static bool wq_debug_force_rr_cpu = false;
347 #endif
348 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
349 
350 /* the per-cpu worker pools */
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
352 
353 static DEFINE_IDR(worker_pool_idr);	/* PR: idr of all pools */
354 
355 /* PL: hash of all unbound pools keyed by pool->attrs */
356 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
357 
358 /* I: attributes used when instantiating standard unbound pools on demand */
359 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
360 
361 /* I: attributes used when instantiating ordered pools on demand */
362 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
363 
364 struct workqueue_struct *system_wq __read_mostly;
365 EXPORT_SYMBOL(system_wq);
366 struct workqueue_struct *system_highpri_wq __read_mostly;
367 EXPORT_SYMBOL_GPL(system_highpri_wq);
368 struct workqueue_struct *system_long_wq __read_mostly;
369 EXPORT_SYMBOL_GPL(system_long_wq);
370 struct workqueue_struct *system_unbound_wq __read_mostly;
371 EXPORT_SYMBOL_GPL(system_unbound_wq);
372 struct workqueue_struct *system_freezable_wq __read_mostly;
373 EXPORT_SYMBOL_GPL(system_freezable_wq);
374 struct workqueue_struct *system_power_efficient_wq __read_mostly;
375 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
376 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
377 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
378 
379 static int worker_thread(void *__worker);
380 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
381 static void show_pwq(struct pool_workqueue *pwq);
382 static void show_one_worker_pool(struct worker_pool *pool);
383 
384 #define CREATE_TRACE_POINTS
385 #include <trace/events/workqueue.h>
386 
387 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_start);
388 EXPORT_TRACEPOINT_SYMBOL_GPL(workqueue_execute_end);
389 
390 #define assert_rcu_or_pool_mutex()					\
391 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
392 			 !lockdep_is_held(&wq_pool_mutex),		\
393 			 "RCU or wq_pool_mutex should be held")
394 
395 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)			\
396 	RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&			\
397 			 !lockdep_is_held(&wq->mutex) &&		\
398 			 !lockdep_is_held(&wq_pool_mutex),		\
399 			 "RCU, wq->mutex or wq_pool_mutex should be held")
400 
401 #define for_each_cpu_worker_pool(pool, cpu)				\
402 	for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];		\
403 	     (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
404 	     (pool)++)
405 
406 /**
407  * for_each_pool - iterate through all worker_pools in the system
408  * @pool: iteration cursor
409  * @pi: integer used for iteration
410  *
411  * This must be called either with wq_pool_mutex held or RCU read
412  * locked.  If the pool needs to be used beyond the locking in effect, the
413  * caller is responsible for guaranteeing that the pool stays online.
414  *
415  * The if/else clause exists only for the lockdep assertion and can be
416  * ignored.
417  */
418 #define for_each_pool(pool, pi)						\
419 	idr_for_each_entry(&worker_pool_idr, pool, pi)			\
420 		if (({ assert_rcu_or_pool_mutex(); false; })) { }	\
421 		else
422 
423 /**
424  * for_each_pool_worker - iterate through all workers of a worker_pool
425  * @worker: iteration cursor
426  * @pool: worker_pool to iterate workers of
427  *
428  * This must be called with wq_pool_attach_mutex.
429  *
430  * The if/else clause exists only for the lockdep assertion and can be
431  * ignored.
432  */
433 #define for_each_pool_worker(worker, pool)				\
434 	list_for_each_entry((worker), &(pool)->workers, node)		\
435 		if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
436 		else
437 
438 /**
439  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
440  * @pwq: iteration cursor
441  * @wq: the target workqueue
442  *
443  * This must be called either with wq->mutex held or RCU read locked.
444  * If the pwq needs to be used beyond the locking in effect, the caller is
445  * responsible for guaranteeing that the pwq stays online.
446  *
447  * The if/else clause exists only for the lockdep assertion and can be
448  * ignored.
449  */
450 #define for_each_pwq(pwq, wq)						\
451 	list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,		\
452 				 lockdep_is_held(&(wq->mutex)))
453 
454 #ifdef CONFIG_DEBUG_OBJECTS_WORK
455 
456 static const struct debug_obj_descr work_debug_descr;
457 
work_debug_hint(void * addr)458 static void *work_debug_hint(void *addr)
459 {
460 	return ((struct work_struct *) addr)->func;
461 }
462 
work_is_static_object(void * addr)463 static bool work_is_static_object(void *addr)
464 {
465 	struct work_struct *work = addr;
466 
467 	return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
468 }
469 
470 /*
471  * fixup_init is called when:
472  * - an active object is initialized
473  */
work_fixup_init(void * addr,enum debug_obj_state state)474 static bool work_fixup_init(void *addr, enum debug_obj_state state)
475 {
476 	struct work_struct *work = addr;
477 
478 	switch (state) {
479 	case ODEBUG_STATE_ACTIVE:
480 		cancel_work_sync(work);
481 		debug_object_init(work, &work_debug_descr);
482 		return true;
483 	default:
484 		return false;
485 	}
486 }
487 
488 /*
489  * fixup_free is called when:
490  * - an active object is freed
491  */
work_fixup_free(void * addr,enum debug_obj_state state)492 static bool work_fixup_free(void *addr, enum debug_obj_state state)
493 {
494 	struct work_struct *work = addr;
495 
496 	switch (state) {
497 	case ODEBUG_STATE_ACTIVE:
498 		cancel_work_sync(work);
499 		debug_object_free(work, &work_debug_descr);
500 		return true;
501 	default:
502 		return false;
503 	}
504 }
505 
506 static const struct debug_obj_descr work_debug_descr = {
507 	.name		= "work_struct",
508 	.debug_hint	= work_debug_hint,
509 	.is_static_object = work_is_static_object,
510 	.fixup_init	= work_fixup_init,
511 	.fixup_free	= work_fixup_free,
512 };
513 
debug_work_activate(struct work_struct * work)514 static inline void debug_work_activate(struct work_struct *work)
515 {
516 	debug_object_activate(work, &work_debug_descr);
517 }
518 
debug_work_deactivate(struct work_struct * work)519 static inline void debug_work_deactivate(struct work_struct *work)
520 {
521 	debug_object_deactivate(work, &work_debug_descr);
522 }
523 
__init_work(struct work_struct * work,int onstack)524 void __init_work(struct work_struct *work, int onstack)
525 {
526 	if (onstack)
527 		debug_object_init_on_stack(work, &work_debug_descr);
528 	else
529 		debug_object_init(work, &work_debug_descr);
530 }
531 EXPORT_SYMBOL_GPL(__init_work);
532 
destroy_work_on_stack(struct work_struct * work)533 void destroy_work_on_stack(struct work_struct *work)
534 {
535 	debug_object_free(work, &work_debug_descr);
536 }
537 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
538 
destroy_delayed_work_on_stack(struct delayed_work * work)539 void destroy_delayed_work_on_stack(struct delayed_work *work)
540 {
541 	destroy_timer_on_stack(&work->timer);
542 	debug_object_free(&work->work, &work_debug_descr);
543 }
544 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
545 
546 #else
debug_work_activate(struct work_struct * work)547 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)548 static inline void debug_work_deactivate(struct work_struct *work) { }
549 #endif
550 
551 /**
552  * worker_pool_assign_id - allocate ID and assign it to @pool
553  * @pool: the pool pointer of interest
554  *
555  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
556  * successfully, -errno on failure.
557  */
worker_pool_assign_id(struct worker_pool * pool)558 static int worker_pool_assign_id(struct worker_pool *pool)
559 {
560 	int ret;
561 
562 	lockdep_assert_held(&wq_pool_mutex);
563 
564 	ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
565 			GFP_KERNEL);
566 	if (ret >= 0) {
567 		pool->id = ret;
568 		return 0;
569 	}
570 	return ret;
571 }
572 
573 /**
574  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
575  * @wq: the target workqueue
576  * @node: the node ID
577  *
578  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
579  * read locked.
580  * If the pwq needs to be used beyond the locking in effect, the caller is
581  * responsible for guaranteeing that the pwq stays online.
582  *
583  * Return: The unbound pool_workqueue for @node.
584  */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)585 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
586 						  int node)
587 {
588 	assert_rcu_or_wq_mutex_or_pool_mutex(wq);
589 
590 	/*
591 	 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
592 	 * delayed item is pending.  The plan is to keep CPU -> NODE
593 	 * mapping valid and stable across CPU on/offlines.  Once that
594 	 * happens, this workaround can be removed.
595 	 */
596 	if (unlikely(node == NUMA_NO_NODE))
597 		return wq->dfl_pwq;
598 
599 	return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
600 }
601 
work_color_to_flags(int color)602 static unsigned int work_color_to_flags(int color)
603 {
604 	return color << WORK_STRUCT_COLOR_SHIFT;
605 }
606 
get_work_color(unsigned long work_data)607 static int get_work_color(unsigned long work_data)
608 {
609 	return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
610 		((1 << WORK_STRUCT_COLOR_BITS) - 1);
611 }
612 
work_next_color(int color)613 static int work_next_color(int color)
614 {
615 	return (color + 1) % WORK_NR_COLORS;
616 }
617 
618 /*
619  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
620  * contain the pointer to the queued pwq.  Once execution starts, the flag
621  * is cleared and the high bits contain OFFQ flags and pool ID.
622  *
623  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
624  * and clear_work_data() can be used to set the pwq, pool or clear
625  * work->data.  These functions should only be called while the work is
626  * owned - ie. while the PENDING bit is set.
627  *
628  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
629  * corresponding to a work.  Pool is available once the work has been
630  * queued anywhere after initialization until it is sync canceled.  pwq is
631  * available only while the work item is queued.
632  *
633  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
634  * canceled.  While being canceled, a work item may have its PENDING set
635  * but stay off timer and worklist for arbitrarily long and nobody should
636  * try to steal the PENDING bit.
637  */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)638 static inline void set_work_data(struct work_struct *work, unsigned long data,
639 				 unsigned long flags)
640 {
641 	WARN_ON_ONCE(!work_pending(work));
642 	atomic_long_set(&work->data, data | flags | work_static(work));
643 }
644 
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)645 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
646 			 unsigned long extra_flags)
647 {
648 	set_work_data(work, (unsigned long)pwq,
649 		      WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
650 }
651 
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)652 static void set_work_pool_and_keep_pending(struct work_struct *work,
653 					   int pool_id)
654 {
655 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
656 		      WORK_STRUCT_PENDING);
657 }
658 
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)659 static void set_work_pool_and_clear_pending(struct work_struct *work,
660 					    int pool_id)
661 {
662 	/*
663 	 * The following wmb is paired with the implied mb in
664 	 * test_and_set_bit(PENDING) and ensures all updates to @work made
665 	 * here are visible to and precede any updates by the next PENDING
666 	 * owner.
667 	 */
668 	smp_wmb();
669 	set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
670 	/*
671 	 * The following mb guarantees that previous clear of a PENDING bit
672 	 * will not be reordered with any speculative LOADS or STORES from
673 	 * work->current_func, which is executed afterwards.  This possible
674 	 * reordering can lead to a missed execution on attempt to queue
675 	 * the same @work.  E.g. consider this case:
676 	 *
677 	 *   CPU#0                         CPU#1
678 	 *   ----------------------------  --------------------------------
679 	 *
680 	 * 1  STORE event_indicated
681 	 * 2  queue_work_on() {
682 	 * 3    test_and_set_bit(PENDING)
683 	 * 4 }                             set_..._and_clear_pending() {
684 	 * 5                                 set_work_data() # clear bit
685 	 * 6                                 smp_mb()
686 	 * 7                               work->current_func() {
687 	 * 8				      LOAD event_indicated
688 	 *				   }
689 	 *
690 	 * Without an explicit full barrier speculative LOAD on line 8 can
691 	 * be executed before CPU#0 does STORE on line 1.  If that happens,
692 	 * CPU#0 observes the PENDING bit is still set and new execution of
693 	 * a @work is not queued in a hope, that CPU#1 will eventually
694 	 * finish the queued @work.  Meanwhile CPU#1 does not see
695 	 * event_indicated is set, because speculative LOAD was executed
696 	 * before actual STORE.
697 	 */
698 	smp_mb();
699 }
700 
clear_work_data(struct work_struct * work)701 static void clear_work_data(struct work_struct *work)
702 {
703 	smp_wmb();	/* see set_work_pool_and_clear_pending() */
704 	set_work_data(work, WORK_STRUCT_NO_POOL, 0);
705 }
706 
work_struct_pwq(unsigned long data)707 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
708 {
709 	return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
710 }
711 
get_work_pwq(struct work_struct * work)712 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
713 {
714 	unsigned long data = atomic_long_read(&work->data);
715 
716 	if (data & WORK_STRUCT_PWQ)
717 		return work_struct_pwq(data);
718 	else
719 		return NULL;
720 }
721 
722 /**
723  * get_work_pool - return the worker_pool a given work was associated with
724  * @work: the work item of interest
725  *
726  * Pools are created and destroyed under wq_pool_mutex, and allows read
727  * access under RCU read lock.  As such, this function should be
728  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
729  *
730  * All fields of the returned pool are accessible as long as the above
731  * mentioned locking is in effect.  If the returned pool needs to be used
732  * beyond the critical section, the caller is responsible for ensuring the
733  * returned pool is and stays online.
734  *
735  * Return: The worker_pool @work was last associated with.  %NULL if none.
736  */
get_work_pool(struct work_struct * work)737 static struct worker_pool *get_work_pool(struct work_struct *work)
738 {
739 	unsigned long data = atomic_long_read(&work->data);
740 	int pool_id;
741 
742 	assert_rcu_or_pool_mutex();
743 
744 	if (data & WORK_STRUCT_PWQ)
745 		return work_struct_pwq(data)->pool;
746 
747 	pool_id = data >> WORK_OFFQ_POOL_SHIFT;
748 	if (pool_id == WORK_OFFQ_POOL_NONE)
749 		return NULL;
750 
751 	return idr_find(&worker_pool_idr, pool_id);
752 }
753 
754 /**
755  * get_work_pool_id - return the worker pool ID a given work is associated with
756  * @work: the work item of interest
757  *
758  * Return: The worker_pool ID @work was last associated with.
759  * %WORK_OFFQ_POOL_NONE if none.
760  */
get_work_pool_id(struct work_struct * work)761 static int get_work_pool_id(struct work_struct *work)
762 {
763 	unsigned long data = atomic_long_read(&work->data);
764 
765 	if (data & WORK_STRUCT_PWQ)
766 		return work_struct_pwq(data)->pool->id;
767 
768 	return data >> WORK_OFFQ_POOL_SHIFT;
769 }
770 
mark_work_canceling(struct work_struct * work)771 static void mark_work_canceling(struct work_struct *work)
772 {
773 	unsigned long pool_id = get_work_pool_id(work);
774 
775 	pool_id <<= WORK_OFFQ_POOL_SHIFT;
776 	set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
777 }
778 
work_is_canceling(struct work_struct * work)779 static bool work_is_canceling(struct work_struct *work)
780 {
781 	unsigned long data = atomic_long_read(&work->data);
782 
783 	return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
784 }
785 
786 /*
787  * Policy functions.  These define the policies on how the global worker
788  * pools are managed.  Unless noted otherwise, these functions assume that
789  * they're being called with pool->lock held.
790  */
791 
__need_more_worker(struct worker_pool * pool)792 static bool __need_more_worker(struct worker_pool *pool)
793 {
794 	return !atomic_read(&pool->nr_running);
795 }
796 
797 /*
798  * Need to wake up a worker?  Called from anything but currently
799  * running workers.
800  *
801  * Note that, because unbound workers never contribute to nr_running, this
802  * function will always return %true for unbound pools as long as the
803  * worklist isn't empty.
804  */
need_more_worker(struct worker_pool * pool)805 static bool need_more_worker(struct worker_pool *pool)
806 {
807 	return !list_empty(&pool->worklist) && __need_more_worker(pool);
808 }
809 
810 /* Can I start working?  Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)811 static bool may_start_working(struct worker_pool *pool)
812 {
813 	return pool->nr_idle;
814 }
815 
816 /* Do I need to keep working?  Called from currently running workers. */
keep_working(struct worker_pool * pool)817 static bool keep_working(struct worker_pool *pool)
818 {
819 	return !list_empty(&pool->worklist) &&
820 		atomic_read(&pool->nr_running) <= 1;
821 }
822 
823 /* Do we need a new worker?  Called from manager. */
need_to_create_worker(struct worker_pool * pool)824 static bool need_to_create_worker(struct worker_pool *pool)
825 {
826 	return need_more_worker(pool) && !may_start_working(pool);
827 }
828 
829 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)830 static bool too_many_workers(struct worker_pool *pool)
831 {
832 	bool managing = pool->flags & POOL_MANAGER_ACTIVE;
833 	int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
834 	int nr_busy = pool->nr_workers - nr_idle;
835 
836 	return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
837 }
838 
839 /*
840  * Wake up functions.
841  */
842 
843 /* Return the first idle worker.  Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)844 static struct worker *first_idle_worker(struct worker_pool *pool)
845 {
846 	if (unlikely(list_empty(&pool->idle_list)))
847 		return NULL;
848 
849 	return list_first_entry(&pool->idle_list, struct worker, entry);
850 }
851 
852 /**
853  * wake_up_worker - wake up an idle worker
854  * @pool: worker pool to wake worker from
855  *
856  * Wake up the first idle worker of @pool.
857  *
858  * CONTEXT:
859  * raw_spin_lock_irq(pool->lock).
860  */
wake_up_worker(struct worker_pool * pool)861 static void wake_up_worker(struct worker_pool *pool)
862 {
863 	struct worker *worker = first_idle_worker(pool);
864 
865 	if (likely(worker))
866 		wake_up_process(worker->task);
867 }
868 
869 /**
870  * wq_worker_running - a worker is running again
871  * @task: task waking up
872  *
873  * This function is called when a worker returns from schedule()
874  */
wq_worker_running(struct task_struct * task)875 void wq_worker_running(struct task_struct *task)
876 {
877 	struct worker *worker = kthread_data(task);
878 
879 	if (!worker->sleeping)
880 		return;
881 
882 	/*
883 	 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
884 	 * and the nr_running increment below, we may ruin the nr_running reset
885 	 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
886 	 * pool. Protect against such race.
887 	 */
888 	preempt_disable();
889 	if (!(worker->flags & WORKER_NOT_RUNNING))
890 		atomic_inc(&worker->pool->nr_running);
891 	preempt_enable();
892 	worker->sleeping = 0;
893 }
894 
895 /**
896  * wq_worker_sleeping - a worker is going to sleep
897  * @task: task going to sleep
898  *
899  * This function is called from schedule() when a busy worker is
900  * going to sleep. Preemption needs to be disabled to protect ->sleeping
901  * assignment.
902  */
wq_worker_sleeping(struct task_struct * task)903 void wq_worker_sleeping(struct task_struct *task)
904 {
905 	struct worker *next, *worker = kthread_data(task);
906 	struct worker_pool *pool;
907 
908 	/*
909 	 * Rescuers, which may not have all the fields set up like normal
910 	 * workers, also reach here, let's not access anything before
911 	 * checking NOT_RUNNING.
912 	 */
913 	if (worker->flags & WORKER_NOT_RUNNING)
914 		return;
915 
916 	pool = worker->pool;
917 
918 	/* Return if preempted before wq_worker_running() was reached */
919 	if (worker->sleeping)
920 		return;
921 
922 	worker->sleeping = 1;
923 	raw_spin_lock_irq(&pool->lock);
924 
925 	/*
926 	 * The counterpart of the following dec_and_test, implied mb,
927 	 * worklist not empty test sequence is in insert_work().
928 	 * Please read comment there.
929 	 *
930 	 * NOT_RUNNING is clear.  This means that we're bound to and
931 	 * running on the local cpu w/ rq lock held and preemption
932 	 * disabled, which in turn means that none else could be
933 	 * manipulating idle_list, so dereferencing idle_list without pool
934 	 * lock is safe.
935 	 */
936 	if (atomic_dec_and_test(&pool->nr_running) &&
937 	    !list_empty(&pool->worklist)) {
938 		next = first_idle_worker(pool);
939 		if (next)
940 			wake_up_process(next->task);
941 	}
942 	raw_spin_unlock_irq(&pool->lock);
943 }
944 
945 /**
946  * wq_worker_last_func - retrieve worker's last work function
947  * @task: Task to retrieve last work function of.
948  *
949  * Determine the last function a worker executed. This is called from
950  * the scheduler to get a worker's last known identity.
951  *
952  * CONTEXT:
953  * raw_spin_lock_irq(rq->lock)
954  *
955  * This function is called during schedule() when a kworker is going
956  * to sleep. It's used by psi to identify aggregation workers during
957  * dequeuing, to allow periodic aggregation to shut-off when that
958  * worker is the last task in the system or cgroup to go to sleep.
959  *
960  * As this function doesn't involve any workqueue-related locking, it
961  * only returns stable values when called from inside the scheduler's
962  * queuing and dequeuing paths, when @task, which must be a kworker,
963  * is guaranteed to not be processing any works.
964  *
965  * Return:
966  * The last work function %current executed as a worker, NULL if it
967  * hasn't executed any work yet.
968  */
wq_worker_last_func(struct task_struct * task)969 work_func_t wq_worker_last_func(struct task_struct *task)
970 {
971 	struct worker *worker = kthread_data(task);
972 
973 	return worker->last_func;
974 }
975 
976 /**
977  * worker_set_flags - set worker flags and adjust nr_running accordingly
978  * @worker: self
979  * @flags: flags to set
980  *
981  * Set @flags in @worker->flags and adjust nr_running accordingly.
982  *
983  * CONTEXT:
984  * raw_spin_lock_irq(pool->lock)
985  */
worker_set_flags(struct worker * worker,unsigned int flags)986 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
987 {
988 	struct worker_pool *pool = worker->pool;
989 
990 	WARN_ON_ONCE(worker->task != current);
991 
992 	/* If transitioning into NOT_RUNNING, adjust nr_running. */
993 	if ((flags & WORKER_NOT_RUNNING) &&
994 	    !(worker->flags & WORKER_NOT_RUNNING)) {
995 		atomic_dec(&pool->nr_running);
996 	}
997 
998 	worker->flags |= flags;
999 }
1000 
1001 /**
1002  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
1003  * @worker: self
1004  * @flags: flags to clear
1005  *
1006  * Clear @flags in @worker->flags and adjust nr_running accordingly.
1007  *
1008  * CONTEXT:
1009  * raw_spin_lock_irq(pool->lock)
1010  */
worker_clr_flags(struct worker * worker,unsigned int flags)1011 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
1012 {
1013 	struct worker_pool *pool = worker->pool;
1014 	unsigned int oflags = worker->flags;
1015 
1016 	WARN_ON_ONCE(worker->task != current);
1017 
1018 	worker->flags &= ~flags;
1019 
1020 	/*
1021 	 * If transitioning out of NOT_RUNNING, increment nr_running.  Note
1022 	 * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
1023 	 * of multiple flags, not a single flag.
1024 	 */
1025 	if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1026 		if (!(worker->flags & WORKER_NOT_RUNNING))
1027 			atomic_inc(&pool->nr_running);
1028 }
1029 
1030 /**
1031  * find_worker_executing_work - find worker which is executing a work
1032  * @pool: pool of interest
1033  * @work: work to find worker for
1034  *
1035  * Find a worker which is executing @work on @pool by searching
1036  * @pool->busy_hash which is keyed by the address of @work.  For a worker
1037  * to match, its current execution should match the address of @work and
1038  * its work function.  This is to avoid unwanted dependency between
1039  * unrelated work executions through a work item being recycled while still
1040  * being executed.
1041  *
1042  * This is a bit tricky.  A work item may be freed once its execution
1043  * starts and nothing prevents the freed area from being recycled for
1044  * another work item.  If the same work item address ends up being reused
1045  * before the original execution finishes, workqueue will identify the
1046  * recycled work item as currently executing and make it wait until the
1047  * current execution finishes, introducing an unwanted dependency.
1048  *
1049  * This function checks the work item address and work function to avoid
1050  * false positives.  Note that this isn't complete as one may construct a
1051  * work function which can introduce dependency onto itself through a
1052  * recycled work item.  Well, if somebody wants to shoot oneself in the
1053  * foot that badly, there's only so much we can do, and if such deadlock
1054  * actually occurs, it should be easy to locate the culprit work function.
1055  *
1056  * CONTEXT:
1057  * raw_spin_lock_irq(pool->lock).
1058  *
1059  * Return:
1060  * Pointer to worker which is executing @work if found, %NULL
1061  * otherwise.
1062  */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1063 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1064 						 struct work_struct *work)
1065 {
1066 	struct worker *worker;
1067 
1068 	hash_for_each_possible(pool->busy_hash, worker, hentry,
1069 			       (unsigned long)work)
1070 		if (worker->current_work == work &&
1071 		    worker->current_func == work->func)
1072 			return worker;
1073 
1074 	return NULL;
1075 }
1076 
1077 /**
1078  * move_linked_works - move linked works to a list
1079  * @work: start of series of works to be scheduled
1080  * @head: target list to append @work to
1081  * @nextp: out parameter for nested worklist walking
1082  *
1083  * Schedule linked works starting from @work to @head.  Work series to
1084  * be scheduled starts at @work and includes any consecutive work with
1085  * WORK_STRUCT_LINKED set in its predecessor.
1086  *
1087  * If @nextp is not NULL, it's updated to point to the next work of
1088  * the last scheduled work.  This allows move_linked_works() to be
1089  * nested inside outer list_for_each_entry_safe().
1090  *
1091  * CONTEXT:
1092  * raw_spin_lock_irq(pool->lock).
1093  */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1094 static void move_linked_works(struct work_struct *work, struct list_head *head,
1095 			      struct work_struct **nextp)
1096 {
1097 	struct work_struct *n;
1098 
1099 	/*
1100 	 * Linked worklist will always end before the end of the list,
1101 	 * use NULL for list head.
1102 	 */
1103 	list_for_each_entry_safe_from(work, n, NULL, entry) {
1104 		list_move_tail(&work->entry, head);
1105 		if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1106 			break;
1107 	}
1108 
1109 	/*
1110 	 * If we're already inside safe list traversal and have moved
1111 	 * multiple works to the scheduled queue, the next position
1112 	 * needs to be updated.
1113 	 */
1114 	if (nextp)
1115 		*nextp = n;
1116 }
1117 
1118 /**
1119  * get_pwq - get an extra reference on the specified pool_workqueue
1120  * @pwq: pool_workqueue to get
1121  *
1122  * Obtain an extra reference on @pwq.  The caller should guarantee that
1123  * @pwq has positive refcnt and be holding the matching pool->lock.
1124  */
get_pwq(struct pool_workqueue * pwq)1125 static void get_pwq(struct pool_workqueue *pwq)
1126 {
1127 	lockdep_assert_held(&pwq->pool->lock);
1128 	WARN_ON_ONCE(pwq->refcnt <= 0);
1129 	pwq->refcnt++;
1130 }
1131 
1132 /**
1133  * put_pwq - put a pool_workqueue reference
1134  * @pwq: pool_workqueue to put
1135  *
1136  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
1137  * destruction.  The caller should be holding the matching pool->lock.
1138  */
put_pwq(struct pool_workqueue * pwq)1139 static void put_pwq(struct pool_workqueue *pwq)
1140 {
1141 	lockdep_assert_held(&pwq->pool->lock);
1142 	if (likely(--pwq->refcnt))
1143 		return;
1144 	if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1145 		return;
1146 	/*
1147 	 * @pwq can't be released under pool->lock, bounce to
1148 	 * pwq_unbound_release_workfn().  This never recurses on the same
1149 	 * pool->lock as this path is taken only for unbound workqueues and
1150 	 * the release work item is scheduled on a per-cpu workqueue.  To
1151 	 * avoid lockdep warning, unbound pool->locks are given lockdep
1152 	 * subclass of 1 in get_unbound_pool().
1153 	 */
1154 	schedule_work(&pwq->unbound_release_work);
1155 }
1156 
1157 /**
1158  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1159  * @pwq: pool_workqueue to put (can be %NULL)
1160  *
1161  * put_pwq() with locking.  This function also allows %NULL @pwq.
1162  */
put_pwq_unlocked(struct pool_workqueue * pwq)1163 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1164 {
1165 	if (pwq) {
1166 		/*
1167 		 * As both pwqs and pools are RCU protected, the
1168 		 * following lock operations are safe.
1169 		 */
1170 		raw_spin_lock_irq(&pwq->pool->lock);
1171 		put_pwq(pwq);
1172 		raw_spin_unlock_irq(&pwq->pool->lock);
1173 	}
1174 }
1175 
pwq_activate_inactive_work(struct work_struct * work)1176 static void pwq_activate_inactive_work(struct work_struct *work)
1177 {
1178 	struct pool_workqueue *pwq = get_work_pwq(work);
1179 
1180 	trace_workqueue_activate_work(work);
1181 	if (list_empty(&pwq->pool->worklist))
1182 		pwq->pool->watchdog_ts = jiffies;
1183 	move_linked_works(work, &pwq->pool->worklist, NULL);
1184 	__clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1185 	pwq->nr_active++;
1186 }
1187 
pwq_activate_first_inactive(struct pool_workqueue * pwq)1188 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1189 {
1190 	struct work_struct *work = list_first_entry(&pwq->inactive_works,
1191 						    struct work_struct, entry);
1192 
1193 	pwq_activate_inactive_work(work);
1194 }
1195 
1196 /**
1197  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1198  * @pwq: pwq of interest
1199  * @work_data: work_data of work which left the queue
1200  *
1201  * A work either has completed or is removed from pending queue,
1202  * decrement nr_in_flight of its pwq and handle workqueue flushing.
1203  *
1204  * CONTEXT:
1205  * raw_spin_lock_irq(pool->lock).
1206  */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,unsigned long work_data)1207 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
1208 {
1209 	int color = get_work_color(work_data);
1210 
1211 	if (!(work_data & WORK_STRUCT_INACTIVE)) {
1212 		pwq->nr_active--;
1213 		if (!list_empty(&pwq->inactive_works)) {
1214 			/* one down, submit an inactive one */
1215 			if (pwq->nr_active < pwq->max_active)
1216 				pwq_activate_first_inactive(pwq);
1217 		}
1218 	}
1219 
1220 	pwq->nr_in_flight[color]--;
1221 
1222 	/* is flush in progress and are we at the flushing tip? */
1223 	if (likely(pwq->flush_color != color))
1224 		goto out_put;
1225 
1226 	/* are there still in-flight works? */
1227 	if (pwq->nr_in_flight[color])
1228 		goto out_put;
1229 
1230 	/* this pwq is done, clear flush_color */
1231 	pwq->flush_color = -1;
1232 
1233 	/*
1234 	 * If this was the last pwq, wake up the first flusher.  It
1235 	 * will handle the rest.
1236 	 */
1237 	if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1238 		complete(&pwq->wq->first_flusher->done);
1239 out_put:
1240 	put_pwq(pwq);
1241 }
1242 
1243 /**
1244  * try_to_grab_pending - steal work item from worklist and disable irq
1245  * @work: work item to steal
1246  * @is_dwork: @work is a delayed_work
1247  * @flags: place to store irq state
1248  *
1249  * Try to grab PENDING bit of @work.  This function can handle @work in any
1250  * stable state - idle, on timer or on worklist.
1251  *
1252  * Return:
1253  *
1254  *  ========	================================================================
1255  *  1		if @work was pending and we successfully stole PENDING
1256  *  0		if @work was idle and we claimed PENDING
1257  *  -EAGAIN	if PENDING couldn't be grabbed at the moment, safe to busy-retry
1258  *  -ENOENT	if someone else is canceling @work, this state may persist
1259  *		for arbitrarily long
1260  *  ========	================================================================
1261  *
1262  * Note:
1263  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
1264  * interrupted while holding PENDING and @work off queue, irq must be
1265  * disabled on entry.  This, combined with delayed_work->timer being
1266  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1267  *
1268  * On successful return, >= 0, irq is disabled and the caller is
1269  * responsible for releasing it using local_irq_restore(*@flags).
1270  *
1271  * This function is safe to call from any context including IRQ handler.
1272  */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1273 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1274 			       unsigned long *flags)
1275 {
1276 	struct worker_pool *pool;
1277 	struct pool_workqueue *pwq;
1278 
1279 	local_irq_save(*flags);
1280 
1281 	/* try to steal the timer if it exists */
1282 	if (is_dwork) {
1283 		struct delayed_work *dwork = to_delayed_work(work);
1284 
1285 		/*
1286 		 * dwork->timer is irqsafe.  If del_timer() fails, it's
1287 		 * guaranteed that the timer is not queued anywhere and not
1288 		 * running on the local CPU.
1289 		 */
1290 		if (likely(del_timer(&dwork->timer)))
1291 			return 1;
1292 	}
1293 
1294 	/* try to claim PENDING the normal way */
1295 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1296 		return 0;
1297 
1298 	rcu_read_lock();
1299 	/*
1300 	 * The queueing is in progress, or it is already queued. Try to
1301 	 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1302 	 */
1303 	pool = get_work_pool(work);
1304 	if (!pool)
1305 		goto fail;
1306 
1307 	raw_spin_lock(&pool->lock);
1308 	/*
1309 	 * work->data is guaranteed to point to pwq only while the work
1310 	 * item is queued on pwq->wq, and both updating work->data to point
1311 	 * to pwq on queueing and to pool on dequeueing are done under
1312 	 * pwq->pool->lock.  This in turn guarantees that, if work->data
1313 	 * points to pwq which is associated with a locked pool, the work
1314 	 * item is currently queued on that pool.
1315 	 */
1316 	pwq = get_work_pwq(work);
1317 	if (pwq && pwq->pool == pool) {
1318 		debug_work_deactivate(work);
1319 
1320 		/*
1321 		 * A cancelable inactive work item must be in the
1322 		 * pwq->inactive_works since a queued barrier can't be
1323 		 * canceled (see the comments in insert_wq_barrier()).
1324 		 *
1325 		 * An inactive work item cannot be grabbed directly because
1326 		 * it might have linked barrier work items which, if left
1327 		 * on the inactive_works list, will confuse pwq->nr_active
1328 		 * management later on and cause stall.  Make sure the work
1329 		 * item is activated before grabbing.
1330 		 */
1331 		if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1332 			pwq_activate_inactive_work(work);
1333 
1334 		list_del_init(&work->entry);
1335 		pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
1336 
1337 		/* work->data points to pwq iff queued, point to pool */
1338 		set_work_pool_and_keep_pending(work, pool->id);
1339 
1340 		raw_spin_unlock(&pool->lock);
1341 		rcu_read_unlock();
1342 		return 1;
1343 	}
1344 	raw_spin_unlock(&pool->lock);
1345 fail:
1346 	rcu_read_unlock();
1347 	local_irq_restore(*flags);
1348 	if (work_is_canceling(work))
1349 		return -ENOENT;
1350 	cpu_relax();
1351 	return -EAGAIN;
1352 }
1353 
1354 /**
1355  * insert_work - insert a work into a pool
1356  * @pwq: pwq @work belongs to
1357  * @work: work to insert
1358  * @head: insertion point
1359  * @extra_flags: extra WORK_STRUCT_* flags to set
1360  *
1361  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
1362  * work_struct flags.
1363  *
1364  * CONTEXT:
1365  * raw_spin_lock_irq(pool->lock).
1366  */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1367 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1368 			struct list_head *head, unsigned int extra_flags)
1369 {
1370 	struct worker_pool *pool = pwq->pool;
1371 
1372 	/* record the work call stack in order to print it in KASAN reports */
1373 	kasan_record_aux_stack_noalloc(work);
1374 
1375 	/* we own @work, set data and link */
1376 	set_work_pwq(work, pwq, extra_flags);
1377 	list_add_tail(&work->entry, head);
1378 	get_pwq(pwq);
1379 
1380 	/*
1381 	 * Ensure either wq_worker_sleeping() sees the above
1382 	 * list_add_tail() or we see zero nr_running to avoid workers lying
1383 	 * around lazily while there are works to be processed.
1384 	 */
1385 	smp_mb();
1386 
1387 	if (__need_more_worker(pool))
1388 		wake_up_worker(pool);
1389 }
1390 
1391 /*
1392  * Test whether @work is being queued from another work executing on the
1393  * same workqueue.
1394  */
is_chained_work(struct workqueue_struct * wq)1395 static bool is_chained_work(struct workqueue_struct *wq)
1396 {
1397 	struct worker *worker;
1398 
1399 	worker = current_wq_worker();
1400 	/*
1401 	 * Return %true iff I'm a worker executing a work item on @wq.  If
1402 	 * I'm @worker, it's safe to dereference it without locking.
1403 	 */
1404 	return worker && worker->current_pwq->wq == wq;
1405 }
1406 
1407 /*
1408  * When queueing an unbound work item to a wq, prefer local CPU if allowed
1409  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
1410  * avoid perturbing sensitive tasks.
1411  */
wq_select_unbound_cpu(int cpu)1412 static int wq_select_unbound_cpu(int cpu)
1413 {
1414 	static bool printed_dbg_warning;
1415 	int new_cpu;
1416 
1417 	if (likely(!wq_debug_force_rr_cpu)) {
1418 		if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1419 			return cpu;
1420 	} else if (!printed_dbg_warning) {
1421 		pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1422 		printed_dbg_warning = true;
1423 	}
1424 
1425 	if (cpumask_empty(wq_unbound_cpumask))
1426 		return cpu;
1427 
1428 	new_cpu = __this_cpu_read(wq_rr_cpu_last);
1429 	new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1430 	if (unlikely(new_cpu >= nr_cpu_ids)) {
1431 		new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1432 		if (unlikely(new_cpu >= nr_cpu_ids))
1433 			return cpu;
1434 	}
1435 	__this_cpu_write(wq_rr_cpu_last, new_cpu);
1436 
1437 	return new_cpu;
1438 }
1439 
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1440 static void __queue_work(int cpu, struct workqueue_struct *wq,
1441 			 struct work_struct *work)
1442 {
1443 	struct pool_workqueue *pwq;
1444 	struct worker_pool *last_pool;
1445 	struct list_head *worklist;
1446 	unsigned int work_flags;
1447 	unsigned int req_cpu = cpu;
1448 
1449 	/*
1450 	 * While a work item is PENDING && off queue, a task trying to
1451 	 * steal the PENDING will busy-loop waiting for it to either get
1452 	 * queued or lose PENDING.  Grabbing PENDING and queueing should
1453 	 * happen with IRQ disabled.
1454 	 */
1455 	lockdep_assert_irqs_disabled();
1456 
1457 
1458 	/* if draining, only works from the same workqueue are allowed */
1459 	if (unlikely(wq->flags & __WQ_DRAINING) &&
1460 	    WARN_ON_ONCE(!is_chained_work(wq)))
1461 		return;
1462 	rcu_read_lock();
1463 retry:
1464 	/* pwq which will be used unless @work is executing elsewhere */
1465 	if (wq->flags & WQ_UNBOUND) {
1466 		if (req_cpu == WORK_CPU_UNBOUND)
1467 			cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1468 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1469 	} else {
1470 		if (req_cpu == WORK_CPU_UNBOUND)
1471 			cpu = raw_smp_processor_id();
1472 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1473 	}
1474 
1475 	/*
1476 	 * If @work was previously on a different pool, it might still be
1477 	 * running there, in which case the work needs to be queued on that
1478 	 * pool to guarantee non-reentrancy.
1479 	 */
1480 	last_pool = get_work_pool(work);
1481 	if (last_pool && last_pool != pwq->pool) {
1482 		struct worker *worker;
1483 
1484 		raw_spin_lock(&last_pool->lock);
1485 
1486 		worker = find_worker_executing_work(last_pool, work);
1487 
1488 		if (worker && worker->current_pwq->wq == wq) {
1489 			pwq = worker->current_pwq;
1490 		} else {
1491 			/* meh... not running there, queue here */
1492 			raw_spin_unlock(&last_pool->lock);
1493 			raw_spin_lock(&pwq->pool->lock);
1494 		}
1495 	} else {
1496 		raw_spin_lock(&pwq->pool->lock);
1497 	}
1498 
1499 	/*
1500 	 * pwq is determined and locked.  For unbound pools, we could have
1501 	 * raced with pwq release and it could already be dead.  If its
1502 	 * refcnt is zero, repeat pwq selection.  Note that pwqs never die
1503 	 * without another pwq replacing it in the numa_pwq_tbl or while
1504 	 * work items are executing on it, so the retrying is guaranteed to
1505 	 * make forward-progress.
1506 	 */
1507 	if (unlikely(!pwq->refcnt)) {
1508 		if (wq->flags & WQ_UNBOUND) {
1509 			raw_spin_unlock(&pwq->pool->lock);
1510 			cpu_relax();
1511 			goto retry;
1512 		}
1513 		/* oops */
1514 		WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1515 			  wq->name, cpu);
1516 	}
1517 
1518 	/* pwq determined, queue */
1519 	trace_workqueue_queue_work(req_cpu, pwq, work);
1520 
1521 	if (WARN_ON(!list_empty(&work->entry)))
1522 		goto out;
1523 
1524 	pwq->nr_in_flight[pwq->work_color]++;
1525 	work_flags = work_color_to_flags(pwq->work_color);
1526 
1527 	if (likely(pwq->nr_active < pwq->max_active)) {
1528 		trace_workqueue_activate_work(work);
1529 		pwq->nr_active++;
1530 		worklist = &pwq->pool->worklist;
1531 		if (list_empty(worklist))
1532 			pwq->pool->watchdog_ts = jiffies;
1533 	} else {
1534 		work_flags |= WORK_STRUCT_INACTIVE;
1535 		worklist = &pwq->inactive_works;
1536 	}
1537 
1538 	debug_work_activate(work);
1539 	insert_work(pwq, work, worklist, work_flags);
1540 
1541 out:
1542 	raw_spin_unlock(&pwq->pool->lock);
1543 	rcu_read_unlock();
1544 }
1545 
1546 /**
1547  * queue_work_on - queue work on specific cpu
1548  * @cpu: CPU number to execute work on
1549  * @wq: workqueue to use
1550  * @work: work to queue
1551  *
1552  * We queue the work to a specific CPU, the caller must ensure it
1553  * can't go away.
1554  *
1555  * Return: %false if @work was already on a queue, %true otherwise.
1556  */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1557 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1558 		   struct work_struct *work)
1559 {
1560 	bool ret = false;
1561 	unsigned long flags;
1562 
1563 	local_irq_save(flags);
1564 
1565 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1566 		__queue_work(cpu, wq, work);
1567 		ret = true;
1568 	}
1569 
1570 	local_irq_restore(flags);
1571 	return ret;
1572 }
1573 EXPORT_SYMBOL(queue_work_on);
1574 
1575 /**
1576  * workqueue_select_cpu_near - Select a CPU based on NUMA node
1577  * @node: NUMA node ID that we want to select a CPU from
1578  *
1579  * This function will attempt to find a "random" cpu available on a given
1580  * node. If there are no CPUs available on the given node it will return
1581  * WORK_CPU_UNBOUND indicating that we should just schedule to any
1582  * available CPU if we need to schedule this work.
1583  */
workqueue_select_cpu_near(int node)1584 static int workqueue_select_cpu_near(int node)
1585 {
1586 	int cpu;
1587 
1588 	/* No point in doing this if NUMA isn't enabled for workqueues */
1589 	if (!wq_numa_enabled)
1590 		return WORK_CPU_UNBOUND;
1591 
1592 	/* Delay binding to CPU if node is not valid or online */
1593 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1594 		return WORK_CPU_UNBOUND;
1595 
1596 	/* Use local node/cpu if we are already there */
1597 	cpu = raw_smp_processor_id();
1598 	if (node == cpu_to_node(cpu))
1599 		return cpu;
1600 
1601 	/* Use "random" otherwise know as "first" online CPU of node */
1602 	cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1603 
1604 	/* If CPU is valid return that, otherwise just defer */
1605 	return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1606 }
1607 
1608 /**
1609  * queue_work_node - queue work on a "random" cpu for a given NUMA node
1610  * @node: NUMA node that we are targeting the work for
1611  * @wq: workqueue to use
1612  * @work: work to queue
1613  *
1614  * We queue the work to a "random" CPU within a given NUMA node. The basic
1615  * idea here is to provide a way to somehow associate work with a given
1616  * NUMA node.
1617  *
1618  * This function will only make a best effort attempt at getting this onto
1619  * the right NUMA node. If no node is requested or the requested node is
1620  * offline then we just fall back to standard queue_work behavior.
1621  *
1622  * Currently the "random" CPU ends up being the first available CPU in the
1623  * intersection of cpu_online_mask and the cpumask of the node, unless we
1624  * are running on the node. In that case we just use the current CPU.
1625  *
1626  * Return: %false if @work was already on a queue, %true otherwise.
1627  */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1628 bool queue_work_node(int node, struct workqueue_struct *wq,
1629 		     struct work_struct *work)
1630 {
1631 	unsigned long flags;
1632 	bool ret = false;
1633 
1634 	/*
1635 	 * This current implementation is specific to unbound workqueues.
1636 	 * Specifically we only return the first available CPU for a given
1637 	 * node instead of cycling through individual CPUs within the node.
1638 	 *
1639 	 * If this is used with a per-cpu workqueue then the logic in
1640 	 * workqueue_select_cpu_near would need to be updated to allow for
1641 	 * some round robin type logic.
1642 	 */
1643 	WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1644 
1645 	local_irq_save(flags);
1646 
1647 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1648 		int cpu = workqueue_select_cpu_near(node);
1649 
1650 		__queue_work(cpu, wq, work);
1651 		ret = true;
1652 	}
1653 
1654 	local_irq_restore(flags);
1655 	return ret;
1656 }
1657 EXPORT_SYMBOL_GPL(queue_work_node);
1658 
delayed_work_timer_fn(struct timer_list * t)1659 void delayed_work_timer_fn(struct timer_list *t)
1660 {
1661 	struct delayed_work *dwork = from_timer(dwork, t, timer);
1662 
1663 	/* should have been called from irqsafe timer with irq already off */
1664 	__queue_work(dwork->cpu, dwork->wq, &dwork->work);
1665 }
1666 EXPORT_SYMBOL(delayed_work_timer_fn);
1667 
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1668 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1669 				struct delayed_work *dwork, unsigned long delay)
1670 {
1671 	struct timer_list *timer = &dwork->timer;
1672 	struct work_struct *work = &dwork->work;
1673 
1674 	WARN_ON_ONCE(!wq);
1675 	WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1676 	WARN_ON_ONCE(timer_pending(timer));
1677 	WARN_ON_ONCE(!list_empty(&work->entry));
1678 
1679 	/*
1680 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1681 	 * both optimization and correctness.  The earliest @timer can
1682 	 * expire is on the closest next tick and delayed_work users depend
1683 	 * on that there's no such delay when @delay is 0.
1684 	 */
1685 	if (!delay) {
1686 		__queue_work(cpu, wq, &dwork->work);
1687 		return;
1688 	}
1689 
1690 	dwork->wq = wq;
1691 	dwork->cpu = cpu;
1692 	timer->expires = jiffies + delay;
1693 
1694 	if (unlikely(cpu != WORK_CPU_UNBOUND))
1695 		add_timer_on(timer, cpu);
1696 	else
1697 		add_timer(timer);
1698 }
1699 
1700 /**
1701  * queue_delayed_work_on - queue work on specific CPU after delay
1702  * @cpu: CPU number to execute work on
1703  * @wq: workqueue to use
1704  * @dwork: work to queue
1705  * @delay: number of jiffies to wait before queueing
1706  *
1707  * Return: %false if @work was already on a queue, %true otherwise.  If
1708  * @delay is zero and @dwork is idle, it will be scheduled for immediate
1709  * execution.
1710  */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1711 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1712 			   struct delayed_work *dwork, unsigned long delay)
1713 {
1714 	struct work_struct *work = &dwork->work;
1715 	bool ret = false;
1716 	unsigned long flags;
1717 
1718 	/* read the comment in __queue_work() */
1719 	local_irq_save(flags);
1720 
1721 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1722 		__queue_delayed_work(cpu, wq, dwork, delay);
1723 		ret = true;
1724 	}
1725 
1726 	local_irq_restore(flags);
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL(queue_delayed_work_on);
1730 
1731 /**
1732  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1733  * @cpu: CPU number to execute work on
1734  * @wq: workqueue to use
1735  * @dwork: work to queue
1736  * @delay: number of jiffies to wait before queueing
1737  *
1738  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1739  * modify @dwork's timer so that it expires after @delay.  If @delay is
1740  * zero, @work is guaranteed to be scheduled immediately regardless of its
1741  * current state.
1742  *
1743  * Return: %false if @dwork was idle and queued, %true if @dwork was
1744  * pending and its timer was modified.
1745  *
1746  * This function is safe to call from any context including IRQ handler.
1747  * See try_to_grab_pending() for details.
1748  */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1749 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1750 			 struct delayed_work *dwork, unsigned long delay)
1751 {
1752 	unsigned long flags;
1753 	int ret;
1754 
1755 	do {
1756 		ret = try_to_grab_pending(&dwork->work, true, &flags);
1757 	} while (unlikely(ret == -EAGAIN));
1758 
1759 	if (likely(ret >= 0)) {
1760 		__queue_delayed_work(cpu, wq, dwork, delay);
1761 		local_irq_restore(flags);
1762 	}
1763 
1764 	/* -ENOENT from try_to_grab_pending() becomes %true */
1765 	return ret;
1766 }
1767 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1768 
rcu_work_rcufn(struct rcu_head * rcu)1769 static void rcu_work_rcufn(struct rcu_head *rcu)
1770 {
1771 	struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1772 
1773 	/* read the comment in __queue_work() */
1774 	local_irq_disable();
1775 	__queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1776 	local_irq_enable();
1777 }
1778 
1779 /**
1780  * queue_rcu_work - queue work after a RCU grace period
1781  * @wq: workqueue to use
1782  * @rwork: work to queue
1783  *
1784  * Return: %false if @rwork was already pending, %true otherwise.  Note
1785  * that a full RCU grace period is guaranteed only after a %true return.
1786  * While @rwork is guaranteed to be executed after a %false return, the
1787  * execution may happen before a full RCU grace period has passed.
1788  */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1789 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1790 {
1791 	struct work_struct *work = &rwork->work;
1792 
1793 	if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1794 		rwork->wq = wq;
1795 		call_rcu(&rwork->rcu, rcu_work_rcufn);
1796 		return true;
1797 	}
1798 
1799 	return false;
1800 }
1801 EXPORT_SYMBOL(queue_rcu_work);
1802 
1803 /**
1804  * worker_enter_idle - enter idle state
1805  * @worker: worker which is entering idle state
1806  *
1807  * @worker is entering idle state.  Update stats and idle timer if
1808  * necessary.
1809  *
1810  * LOCKING:
1811  * raw_spin_lock_irq(pool->lock).
1812  */
worker_enter_idle(struct worker * worker)1813 static void worker_enter_idle(struct worker *worker)
1814 {
1815 	struct worker_pool *pool = worker->pool;
1816 
1817 	if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1818 	    WARN_ON_ONCE(!list_empty(&worker->entry) &&
1819 			 (worker->hentry.next || worker->hentry.pprev)))
1820 		return;
1821 
1822 	/* can't use worker_set_flags(), also called from create_worker() */
1823 	worker->flags |= WORKER_IDLE;
1824 	pool->nr_idle++;
1825 	worker->last_active = jiffies;
1826 
1827 	/* idle_list is LIFO */
1828 	list_add(&worker->entry, &pool->idle_list);
1829 
1830 	if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1831 		mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1832 
1833 	/*
1834 	 * Sanity check nr_running.  Because unbind_workers() releases
1835 	 * pool->lock between setting %WORKER_UNBOUND and zapping
1836 	 * nr_running, the warning may trigger spuriously.  Check iff
1837 	 * unbind is not in progress.
1838 	 */
1839 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1840 		     pool->nr_workers == pool->nr_idle &&
1841 		     atomic_read(&pool->nr_running));
1842 }
1843 
1844 /**
1845  * worker_leave_idle - leave idle state
1846  * @worker: worker which is leaving idle state
1847  *
1848  * @worker is leaving idle state.  Update stats.
1849  *
1850  * LOCKING:
1851  * raw_spin_lock_irq(pool->lock).
1852  */
worker_leave_idle(struct worker * worker)1853 static void worker_leave_idle(struct worker *worker)
1854 {
1855 	struct worker_pool *pool = worker->pool;
1856 
1857 	if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1858 		return;
1859 	worker_clr_flags(worker, WORKER_IDLE);
1860 	pool->nr_idle--;
1861 	list_del_init(&worker->entry);
1862 }
1863 
alloc_worker(int node)1864 static struct worker *alloc_worker(int node)
1865 {
1866 	struct worker *worker;
1867 
1868 	worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1869 	if (worker) {
1870 		INIT_LIST_HEAD(&worker->entry);
1871 		INIT_LIST_HEAD(&worker->scheduled);
1872 		INIT_LIST_HEAD(&worker->node);
1873 		/* on creation a worker is in !idle && prep state */
1874 		worker->flags = WORKER_PREP;
1875 	}
1876 	return worker;
1877 }
1878 
1879 /**
1880  * worker_attach_to_pool() - attach a worker to a pool
1881  * @worker: worker to be attached
1882  * @pool: the target pool
1883  *
1884  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
1885  * cpu-binding of @worker are kept coordinated with the pool across
1886  * cpu-[un]hotplugs.
1887  */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1888 static void worker_attach_to_pool(struct worker *worker,
1889 				   struct worker_pool *pool)
1890 {
1891 	mutex_lock(&wq_pool_attach_mutex);
1892 
1893 	/*
1894 	 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1895 	 * stable across this function.  See the comments above the flag
1896 	 * definition for details.
1897 	 */
1898 	if (pool->flags & POOL_DISASSOCIATED)
1899 		worker->flags |= WORKER_UNBOUND;
1900 	else
1901 		kthread_set_per_cpu(worker->task, pool->cpu);
1902 
1903 	if (worker->rescue_wq)
1904 		set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1905 
1906 	list_add_tail(&worker->node, &pool->workers);
1907 	worker->pool = pool;
1908 
1909 	mutex_unlock(&wq_pool_attach_mutex);
1910 }
1911 
1912 /**
1913  * worker_detach_from_pool() - detach a worker from its pool
1914  * @worker: worker which is attached to its pool
1915  *
1916  * Undo the attaching which had been done in worker_attach_to_pool().  The
1917  * caller worker shouldn't access to the pool after detached except it has
1918  * other reference to the pool.
1919  */
worker_detach_from_pool(struct worker * worker)1920 static void worker_detach_from_pool(struct worker *worker)
1921 {
1922 	struct worker_pool *pool = worker->pool;
1923 	struct completion *detach_completion = NULL;
1924 
1925 	mutex_lock(&wq_pool_attach_mutex);
1926 
1927 	kthread_set_per_cpu(worker->task, -1);
1928 	list_del(&worker->node);
1929 	worker->pool = NULL;
1930 
1931 	if (list_empty(&pool->workers))
1932 		detach_completion = pool->detach_completion;
1933 	mutex_unlock(&wq_pool_attach_mutex);
1934 
1935 	/* clear leftover flags without pool->lock after it is detached */
1936 	worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1937 
1938 	if (detach_completion)
1939 		complete(detach_completion);
1940 }
1941 
1942 /**
1943  * create_worker - create a new workqueue worker
1944  * @pool: pool the new worker will belong to
1945  *
1946  * Create and start a new worker which is attached to @pool.
1947  *
1948  * CONTEXT:
1949  * Might sleep.  Does GFP_KERNEL allocations.
1950  *
1951  * Return:
1952  * Pointer to the newly created worker.
1953  */
create_worker(struct worker_pool * pool)1954 static struct worker *create_worker(struct worker_pool *pool)
1955 {
1956 	struct worker *worker;
1957 	int id;
1958 	char id_buf[16];
1959 
1960 	/* ID is needed to determine kthread name */
1961 	id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
1962 	if (id < 0) {
1963 		pr_err_once("workqueue: Failed to allocate a worker ID: %pe\n",
1964 			    ERR_PTR(id));
1965 		return NULL;
1966 	}
1967 
1968 	worker = alloc_worker(pool->node);
1969 	if (!worker) {
1970 		pr_err_once("workqueue: Failed to allocate a worker\n");
1971 		goto fail;
1972 	}
1973 
1974 	worker->id = id;
1975 
1976 	if (pool->cpu >= 0)
1977 		snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1978 			 pool->attrs->nice < 0  ? "H" : "");
1979 	else
1980 		snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1981 
1982 	worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1983 					      "kworker/%s", id_buf);
1984 	if (IS_ERR(worker->task)) {
1985 		pr_err_once("workqueue: Failed to create a worker thread: %pe",
1986 			    worker->task);
1987 		goto fail;
1988 	}
1989 
1990 	set_user_nice(worker->task, pool->attrs->nice);
1991 	kthread_bind_mask(worker->task, pool->attrs->cpumask);
1992 
1993 	/* successful, attach the worker to the pool */
1994 	worker_attach_to_pool(worker, pool);
1995 
1996 	/* start the newly created worker */
1997 	raw_spin_lock_irq(&pool->lock);
1998 	worker->pool->nr_workers++;
1999 	worker_enter_idle(worker);
2000 	wake_up_process(worker->task);
2001 	raw_spin_unlock_irq(&pool->lock);
2002 
2003 	return worker;
2004 
2005 fail:
2006 	ida_free(&pool->worker_ida, id);
2007 	kfree(worker);
2008 	return NULL;
2009 }
2010 
2011 /**
2012  * destroy_worker - destroy a workqueue worker
2013  * @worker: worker to be destroyed
2014  *
2015  * Destroy @worker and adjust @pool stats accordingly.  The worker should
2016  * be idle.
2017  *
2018  * CONTEXT:
2019  * raw_spin_lock_irq(pool->lock).
2020  */
destroy_worker(struct worker * worker)2021 static void destroy_worker(struct worker *worker)
2022 {
2023 	struct worker_pool *pool = worker->pool;
2024 
2025 	lockdep_assert_held(&pool->lock);
2026 
2027 	/* sanity check frenzy */
2028 	if (WARN_ON(worker->current_work) ||
2029 	    WARN_ON(!list_empty(&worker->scheduled)) ||
2030 	    WARN_ON(!(worker->flags & WORKER_IDLE)))
2031 		return;
2032 
2033 	pool->nr_workers--;
2034 	pool->nr_idle--;
2035 
2036 	list_del_init(&worker->entry);
2037 	worker->flags |= WORKER_DIE;
2038 	wake_up_process(worker->task);
2039 }
2040 
idle_worker_timeout(struct timer_list * t)2041 static void idle_worker_timeout(struct timer_list *t)
2042 {
2043 	struct worker_pool *pool = from_timer(pool, t, idle_timer);
2044 
2045 	raw_spin_lock_irq(&pool->lock);
2046 
2047 	while (too_many_workers(pool)) {
2048 		struct worker *worker;
2049 		unsigned long expires;
2050 
2051 		/* idle_list is kept in LIFO order, check the last one */
2052 		worker = list_entry(pool->idle_list.prev, struct worker, entry);
2053 		expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2054 
2055 		if (time_before(jiffies, expires)) {
2056 			mod_timer(&pool->idle_timer, expires);
2057 			break;
2058 		}
2059 
2060 		destroy_worker(worker);
2061 	}
2062 
2063 	raw_spin_unlock_irq(&pool->lock);
2064 }
2065 
send_mayday(struct work_struct * work)2066 static void send_mayday(struct work_struct *work)
2067 {
2068 	struct pool_workqueue *pwq = get_work_pwq(work);
2069 	struct workqueue_struct *wq = pwq->wq;
2070 
2071 	lockdep_assert_held(&wq_mayday_lock);
2072 
2073 	if (!wq->rescuer)
2074 		return;
2075 
2076 	/* mayday mayday mayday */
2077 	if (list_empty(&pwq->mayday_node)) {
2078 		/*
2079 		 * If @pwq is for an unbound wq, its base ref may be put at
2080 		 * any time due to an attribute change.  Pin @pwq until the
2081 		 * rescuer is done with it.
2082 		 */
2083 		get_pwq(pwq);
2084 		list_add_tail(&pwq->mayday_node, &wq->maydays);
2085 		wake_up_process(wq->rescuer->task);
2086 	}
2087 }
2088 
pool_mayday_timeout(struct timer_list * t)2089 static void pool_mayday_timeout(struct timer_list *t)
2090 {
2091 	struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2092 	struct work_struct *work;
2093 
2094 	raw_spin_lock_irq(&pool->lock);
2095 	raw_spin_lock(&wq_mayday_lock);		/* for wq->maydays */
2096 
2097 	if (need_to_create_worker(pool)) {
2098 		/*
2099 		 * We've been trying to create a new worker but
2100 		 * haven't been successful.  We might be hitting an
2101 		 * allocation deadlock.  Send distress signals to
2102 		 * rescuers.
2103 		 */
2104 		list_for_each_entry(work, &pool->worklist, entry)
2105 			send_mayday(work);
2106 	}
2107 
2108 	raw_spin_unlock(&wq_mayday_lock);
2109 	raw_spin_unlock_irq(&pool->lock);
2110 
2111 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2112 }
2113 
2114 /**
2115  * maybe_create_worker - create a new worker if necessary
2116  * @pool: pool to create a new worker for
2117  *
2118  * Create a new worker for @pool if necessary.  @pool is guaranteed to
2119  * have at least one idle worker on return from this function.  If
2120  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2121  * sent to all rescuers with works scheduled on @pool to resolve
2122  * possible allocation deadlock.
2123  *
2124  * On return, need_to_create_worker() is guaranteed to be %false and
2125  * may_start_working() %true.
2126  *
2127  * LOCKING:
2128  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2129  * multiple times.  Does GFP_KERNEL allocations.  Called only from
2130  * manager.
2131  */
maybe_create_worker(struct worker_pool * pool)2132 static void maybe_create_worker(struct worker_pool *pool)
2133 __releases(&pool->lock)
2134 __acquires(&pool->lock)
2135 {
2136 restart:
2137 	raw_spin_unlock_irq(&pool->lock);
2138 
2139 	/* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2140 	mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2141 
2142 	while (true) {
2143 		if (create_worker(pool) || !need_to_create_worker(pool))
2144 			break;
2145 
2146 		schedule_timeout_interruptible(CREATE_COOLDOWN);
2147 
2148 		if (!need_to_create_worker(pool))
2149 			break;
2150 	}
2151 
2152 	del_timer_sync(&pool->mayday_timer);
2153 	raw_spin_lock_irq(&pool->lock);
2154 	/*
2155 	 * This is necessary even after a new worker was just successfully
2156 	 * created as @pool->lock was dropped and the new worker might have
2157 	 * already become busy.
2158 	 */
2159 	if (need_to_create_worker(pool))
2160 		goto restart;
2161 }
2162 
2163 /**
2164  * manage_workers - manage worker pool
2165  * @worker: self
2166  *
2167  * Assume the manager role and manage the worker pool @worker belongs
2168  * to.  At any given time, there can be only zero or one manager per
2169  * pool.  The exclusion is handled automatically by this function.
2170  *
2171  * The caller can safely start processing works on false return.  On
2172  * true return, it's guaranteed that need_to_create_worker() is false
2173  * and may_start_working() is true.
2174  *
2175  * CONTEXT:
2176  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2177  * multiple times.  Does GFP_KERNEL allocations.
2178  *
2179  * Return:
2180  * %false if the pool doesn't need management and the caller can safely
2181  * start processing works, %true if management function was performed and
2182  * the conditions that the caller verified before calling the function may
2183  * no longer be true.
2184  */
manage_workers(struct worker * worker)2185 static bool manage_workers(struct worker *worker)
2186 {
2187 	struct worker_pool *pool = worker->pool;
2188 
2189 	if (pool->flags & POOL_MANAGER_ACTIVE)
2190 		return false;
2191 
2192 	pool->flags |= POOL_MANAGER_ACTIVE;
2193 	pool->manager = worker;
2194 
2195 	maybe_create_worker(pool);
2196 
2197 	pool->manager = NULL;
2198 	pool->flags &= ~POOL_MANAGER_ACTIVE;
2199 	rcuwait_wake_up(&manager_wait);
2200 	return true;
2201 }
2202 
2203 /**
2204  * process_one_work - process single work
2205  * @worker: self
2206  * @work: work to process
2207  *
2208  * Process @work.  This function contains all the logics necessary to
2209  * process a single work including synchronization against and
2210  * interaction with other workers on the same cpu, queueing and
2211  * flushing.  As long as context requirement is met, any worker can
2212  * call this function to process a work.
2213  *
2214  * CONTEXT:
2215  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2216  */
process_one_work(struct worker * worker,struct work_struct * work)2217 static void process_one_work(struct worker *worker, struct work_struct *work)
2218 __releases(&pool->lock)
2219 __acquires(&pool->lock)
2220 {
2221 	struct pool_workqueue *pwq = get_work_pwq(work);
2222 	struct worker_pool *pool = worker->pool;
2223 	bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2224 	unsigned long work_data;
2225 	struct worker *collision;
2226 #ifdef CONFIG_LOCKDEP
2227 	/*
2228 	 * It is permissible to free the struct work_struct from
2229 	 * inside the function that is called from it, this we need to
2230 	 * take into account for lockdep too.  To avoid bogus "held
2231 	 * lock freed" warnings as well as problems when looking into
2232 	 * work->lockdep_map, make a copy and use that here.
2233 	 */
2234 	struct lockdep_map lockdep_map;
2235 
2236 	lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2237 #endif
2238 	/* ensure we're on the correct CPU */
2239 	WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2240 		     raw_smp_processor_id() != pool->cpu);
2241 
2242 	/*
2243 	 * A single work shouldn't be executed concurrently by
2244 	 * multiple workers on a single cpu.  Check whether anyone is
2245 	 * already processing the work.  If so, defer the work to the
2246 	 * currently executing one.
2247 	 */
2248 	collision = find_worker_executing_work(pool, work);
2249 	if (unlikely(collision)) {
2250 		move_linked_works(work, &collision->scheduled, NULL);
2251 		return;
2252 	}
2253 
2254 	/* claim and dequeue */
2255 	debug_work_deactivate(work);
2256 	hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2257 	worker->current_work = work;
2258 	worker->current_func = work->func;
2259 	worker->current_pwq = pwq;
2260 	work_data = *work_data_bits(work);
2261 	worker->current_color = get_work_color(work_data);
2262 
2263 	/*
2264 	 * Record wq name for cmdline and debug reporting, may get
2265 	 * overridden through set_worker_desc().
2266 	 */
2267 	strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2268 
2269 	list_del_init(&work->entry);
2270 
2271 	/*
2272 	 * CPU intensive works don't participate in concurrency management.
2273 	 * They're the scheduler's responsibility.  This takes @worker out
2274 	 * of concurrency management and the next code block will chain
2275 	 * execution of the pending work items.
2276 	 */
2277 	if (unlikely(cpu_intensive))
2278 		worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2279 
2280 	/*
2281 	 * Wake up another worker if necessary.  The condition is always
2282 	 * false for normal per-cpu workers since nr_running would always
2283 	 * be >= 1 at this point.  This is used to chain execution of the
2284 	 * pending work items for WORKER_NOT_RUNNING workers such as the
2285 	 * UNBOUND and CPU_INTENSIVE ones.
2286 	 */
2287 	if (need_more_worker(pool))
2288 		wake_up_worker(pool);
2289 
2290 	/*
2291 	 * Record the last pool and clear PENDING which should be the last
2292 	 * update to @work.  Also, do this inside @pool->lock so that
2293 	 * PENDING and queued state changes happen together while IRQ is
2294 	 * disabled.
2295 	 */
2296 	set_work_pool_and_clear_pending(work, pool->id);
2297 
2298 	raw_spin_unlock_irq(&pool->lock);
2299 
2300 	lock_map_acquire(&pwq->wq->lockdep_map);
2301 	lock_map_acquire(&lockdep_map);
2302 	/*
2303 	 * Strictly speaking we should mark the invariant state without holding
2304 	 * any locks, that is, before these two lock_map_acquire()'s.
2305 	 *
2306 	 * However, that would result in:
2307 	 *
2308 	 *   A(W1)
2309 	 *   WFC(C)
2310 	 *		A(W1)
2311 	 *		C(C)
2312 	 *
2313 	 * Which would create W1->C->W1 dependencies, even though there is no
2314 	 * actual deadlock possible. There are two solutions, using a
2315 	 * read-recursive acquire on the work(queue) 'locks', but this will then
2316 	 * hit the lockdep limitation on recursive locks, or simply discard
2317 	 * these locks.
2318 	 *
2319 	 * AFAICT there is no possible deadlock scenario between the
2320 	 * flush_work() and complete() primitives (except for single-threaded
2321 	 * workqueues), so hiding them isn't a problem.
2322 	 */
2323 	lockdep_invariant_state(true);
2324 	trace_workqueue_execute_start(work);
2325 	worker->current_func(work);
2326 	/*
2327 	 * While we must be careful to not use "work" after this, the trace
2328 	 * point will only record its address.
2329 	 */
2330 	trace_workqueue_execute_end(work, worker->current_func);
2331 	lock_map_release(&lockdep_map);
2332 	lock_map_release(&pwq->wq->lockdep_map);
2333 
2334 	if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2335 		pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2336 		       "     last function: %ps\n",
2337 		       current->comm, preempt_count(), task_pid_nr(current),
2338 		       worker->current_func);
2339 		debug_show_held_locks(current);
2340 		dump_stack();
2341 	}
2342 
2343 	/*
2344 	 * The following prevents a kworker from hogging CPU on !PREEMPTION
2345 	 * kernels, where a requeueing work item waiting for something to
2346 	 * happen could deadlock with stop_machine as such work item could
2347 	 * indefinitely requeue itself while all other CPUs are trapped in
2348 	 * stop_machine. At the same time, report a quiescent RCU state so
2349 	 * the same condition doesn't freeze RCU.
2350 	 */
2351 	cond_resched();
2352 
2353 	raw_spin_lock_irq(&pool->lock);
2354 
2355 	/* clear cpu intensive status */
2356 	if (unlikely(cpu_intensive))
2357 		worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2358 
2359 	/* tag the worker for identification in schedule() */
2360 	worker->last_func = worker->current_func;
2361 
2362 	/* we're done with it, release */
2363 	hash_del(&worker->hentry);
2364 	worker->current_work = NULL;
2365 	worker->current_func = NULL;
2366 	worker->current_pwq = NULL;
2367 	worker->current_color = INT_MAX;
2368 	pwq_dec_nr_in_flight(pwq, work_data);
2369 }
2370 
2371 /**
2372  * process_scheduled_works - process scheduled works
2373  * @worker: self
2374  *
2375  * Process all scheduled works.  Please note that the scheduled list
2376  * may change while processing a work, so this function repeatedly
2377  * fetches a work from the top and executes it.
2378  *
2379  * CONTEXT:
2380  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2381  * multiple times.
2382  */
process_scheduled_works(struct worker * worker)2383 static void process_scheduled_works(struct worker *worker)
2384 {
2385 	while (!list_empty(&worker->scheduled)) {
2386 		struct work_struct *work = list_first_entry(&worker->scheduled,
2387 						struct work_struct, entry);
2388 		process_one_work(worker, work);
2389 	}
2390 }
2391 
set_pf_worker(bool val)2392 static void set_pf_worker(bool val)
2393 {
2394 	mutex_lock(&wq_pool_attach_mutex);
2395 	if (val)
2396 		current->flags |= PF_WQ_WORKER;
2397 	else
2398 		current->flags &= ~PF_WQ_WORKER;
2399 	mutex_unlock(&wq_pool_attach_mutex);
2400 }
2401 
2402 /**
2403  * worker_thread - the worker thread function
2404  * @__worker: self
2405  *
2406  * The worker thread function.  All workers belong to a worker_pool -
2407  * either a per-cpu one or dynamic unbound one.  These workers process all
2408  * work items regardless of their specific target workqueue.  The only
2409  * exception is work items which belong to workqueues with a rescuer which
2410  * will be explained in rescuer_thread().
2411  *
2412  * Return: 0
2413  */
worker_thread(void * __worker)2414 static int worker_thread(void *__worker)
2415 {
2416 	struct worker *worker = __worker;
2417 	struct worker_pool *pool = worker->pool;
2418 
2419 	/* tell the scheduler that this is a workqueue worker */
2420 	set_pf_worker(true);
2421 woke_up:
2422 	raw_spin_lock_irq(&pool->lock);
2423 
2424 	/* am I supposed to die? */
2425 	if (unlikely(worker->flags & WORKER_DIE)) {
2426 		raw_spin_unlock_irq(&pool->lock);
2427 		WARN_ON_ONCE(!list_empty(&worker->entry));
2428 		set_pf_worker(false);
2429 
2430 		set_task_comm(worker->task, "kworker/dying");
2431 		ida_free(&pool->worker_ida, worker->id);
2432 		worker_detach_from_pool(worker);
2433 		kfree(worker);
2434 		return 0;
2435 	}
2436 
2437 	worker_leave_idle(worker);
2438 recheck:
2439 	/* no more worker necessary? */
2440 	if (!need_more_worker(pool))
2441 		goto sleep;
2442 
2443 	/* do we need to manage? */
2444 	if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2445 		goto recheck;
2446 
2447 	/*
2448 	 * ->scheduled list can only be filled while a worker is
2449 	 * preparing to process a work or actually processing it.
2450 	 * Make sure nobody diddled with it while I was sleeping.
2451 	 */
2452 	WARN_ON_ONCE(!list_empty(&worker->scheduled));
2453 
2454 	/*
2455 	 * Finish PREP stage.  We're guaranteed to have at least one idle
2456 	 * worker or that someone else has already assumed the manager
2457 	 * role.  This is where @worker starts participating in concurrency
2458 	 * management if applicable and concurrency management is restored
2459 	 * after being rebound.  See rebind_workers() for details.
2460 	 */
2461 	worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2462 
2463 	do {
2464 		struct work_struct *work =
2465 			list_first_entry(&pool->worklist,
2466 					 struct work_struct, entry);
2467 
2468 		pool->watchdog_ts = jiffies;
2469 
2470 		if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2471 			/* optimization path, not strictly necessary */
2472 			process_one_work(worker, work);
2473 			if (unlikely(!list_empty(&worker->scheduled)))
2474 				process_scheduled_works(worker);
2475 		} else {
2476 			move_linked_works(work, &worker->scheduled, NULL);
2477 			process_scheduled_works(worker);
2478 		}
2479 	} while (keep_working(pool));
2480 
2481 	worker_set_flags(worker, WORKER_PREP);
2482 sleep:
2483 	/*
2484 	 * pool->lock is held and there's no work to process and no need to
2485 	 * manage, sleep.  Workers are woken up only while holding
2486 	 * pool->lock or from local cpu, so setting the current state
2487 	 * before releasing pool->lock is enough to prevent losing any
2488 	 * event.
2489 	 */
2490 	worker_enter_idle(worker);
2491 	__set_current_state(TASK_IDLE);
2492 	raw_spin_unlock_irq(&pool->lock);
2493 	schedule();
2494 	goto woke_up;
2495 }
2496 
2497 /**
2498  * rescuer_thread - the rescuer thread function
2499  * @__rescuer: self
2500  *
2501  * Workqueue rescuer thread function.  There's one rescuer for each
2502  * workqueue which has WQ_MEM_RECLAIM set.
2503  *
2504  * Regular work processing on a pool may block trying to create a new
2505  * worker which uses GFP_KERNEL allocation which has slight chance of
2506  * developing into deadlock if some works currently on the same queue
2507  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
2508  * the problem rescuer solves.
2509  *
2510  * When such condition is possible, the pool summons rescuers of all
2511  * workqueues which have works queued on the pool and let them process
2512  * those works so that forward progress can be guaranteed.
2513  *
2514  * This should happen rarely.
2515  *
2516  * Return: 0
2517  */
rescuer_thread(void * __rescuer)2518 static int rescuer_thread(void *__rescuer)
2519 {
2520 	struct worker *rescuer = __rescuer;
2521 	struct workqueue_struct *wq = rescuer->rescue_wq;
2522 	struct list_head *scheduled = &rescuer->scheduled;
2523 	bool should_stop;
2524 
2525 	set_user_nice(current, RESCUER_NICE_LEVEL);
2526 
2527 	/*
2528 	 * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
2529 	 * doesn't participate in concurrency management.
2530 	 */
2531 	set_pf_worker(true);
2532 repeat:
2533 	set_current_state(TASK_IDLE);
2534 
2535 	/*
2536 	 * By the time the rescuer is requested to stop, the workqueue
2537 	 * shouldn't have any work pending, but @wq->maydays may still have
2538 	 * pwq(s) queued.  This can happen by non-rescuer workers consuming
2539 	 * all the work items before the rescuer got to them.  Go through
2540 	 * @wq->maydays processing before acting on should_stop so that the
2541 	 * list is always empty on exit.
2542 	 */
2543 	should_stop = kthread_should_stop();
2544 
2545 	/* see whether any pwq is asking for help */
2546 	raw_spin_lock_irq(&wq_mayday_lock);
2547 
2548 	while (!list_empty(&wq->maydays)) {
2549 		struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2550 					struct pool_workqueue, mayday_node);
2551 		struct worker_pool *pool = pwq->pool;
2552 		struct work_struct *work, *n;
2553 		bool first = true;
2554 
2555 		__set_current_state(TASK_RUNNING);
2556 		list_del_init(&pwq->mayday_node);
2557 
2558 		raw_spin_unlock_irq(&wq_mayday_lock);
2559 
2560 		worker_attach_to_pool(rescuer, pool);
2561 
2562 		raw_spin_lock_irq(&pool->lock);
2563 
2564 		/*
2565 		 * Slurp in all works issued via this workqueue and
2566 		 * process'em.
2567 		 */
2568 		WARN_ON_ONCE(!list_empty(scheduled));
2569 		list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2570 			if (get_work_pwq(work) == pwq) {
2571 				if (first)
2572 					pool->watchdog_ts = jiffies;
2573 				move_linked_works(work, scheduled, &n);
2574 			}
2575 			first = false;
2576 		}
2577 
2578 		if (!list_empty(scheduled)) {
2579 			process_scheduled_works(rescuer);
2580 
2581 			/*
2582 			 * The above execution of rescued work items could
2583 			 * have created more to rescue through
2584 			 * pwq_activate_first_inactive() or chained
2585 			 * queueing.  Let's put @pwq back on mayday list so
2586 			 * that such back-to-back work items, which may be
2587 			 * being used to relieve memory pressure, don't
2588 			 * incur MAYDAY_INTERVAL delay inbetween.
2589 			 */
2590 			if (pwq->nr_active && need_to_create_worker(pool)) {
2591 				raw_spin_lock(&wq_mayday_lock);
2592 				/*
2593 				 * Queue iff we aren't racing destruction
2594 				 * and somebody else hasn't queued it already.
2595 				 */
2596 				if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2597 					get_pwq(pwq);
2598 					list_add_tail(&pwq->mayday_node, &wq->maydays);
2599 				}
2600 				raw_spin_unlock(&wq_mayday_lock);
2601 			}
2602 		}
2603 
2604 		/*
2605 		 * Put the reference grabbed by send_mayday().  @pool won't
2606 		 * go away while we're still attached to it.
2607 		 */
2608 		put_pwq(pwq);
2609 
2610 		/*
2611 		 * Leave this pool.  If need_more_worker() is %true, notify a
2612 		 * regular worker; otherwise, we end up with 0 concurrency
2613 		 * and stalling the execution.
2614 		 */
2615 		if (need_more_worker(pool))
2616 			wake_up_worker(pool);
2617 
2618 		raw_spin_unlock_irq(&pool->lock);
2619 
2620 		worker_detach_from_pool(rescuer);
2621 
2622 		raw_spin_lock_irq(&wq_mayday_lock);
2623 	}
2624 
2625 	raw_spin_unlock_irq(&wq_mayday_lock);
2626 
2627 	if (should_stop) {
2628 		__set_current_state(TASK_RUNNING);
2629 		set_pf_worker(false);
2630 		return 0;
2631 	}
2632 
2633 	/* rescuers should never participate in concurrency management */
2634 	WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2635 	schedule();
2636 	goto repeat;
2637 }
2638 
2639 /**
2640  * check_flush_dependency - check for flush dependency sanity
2641  * @target_wq: workqueue being flushed
2642  * @target_work: work item being flushed (NULL for workqueue flushes)
2643  *
2644  * %current is trying to flush the whole @target_wq or @target_work on it.
2645  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2646  * reclaiming memory or running on a workqueue which doesn't have
2647  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2648  * a deadlock.
2649  */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2650 static void check_flush_dependency(struct workqueue_struct *target_wq,
2651 				   struct work_struct *target_work)
2652 {
2653 	work_func_t target_func = target_work ? target_work->func : NULL;
2654 	struct worker *worker;
2655 
2656 	if (target_wq->flags & WQ_MEM_RECLAIM)
2657 		return;
2658 
2659 	worker = current_wq_worker();
2660 
2661 	WARN_ONCE(current->flags & PF_MEMALLOC,
2662 		  "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2663 		  current->pid, current->comm, target_wq->name, target_func);
2664 	WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2665 			      (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2666 		  "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2667 		  worker->current_pwq->wq->name, worker->current_func,
2668 		  target_wq->name, target_func);
2669 }
2670 
2671 struct wq_barrier {
2672 	struct work_struct	work;
2673 	struct completion	done;
2674 	struct task_struct	*task;	/* purely informational */
2675 };
2676 
wq_barrier_func(struct work_struct * work)2677 static void wq_barrier_func(struct work_struct *work)
2678 {
2679 	struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2680 	complete(&barr->done);
2681 }
2682 
2683 /**
2684  * insert_wq_barrier - insert a barrier work
2685  * @pwq: pwq to insert barrier into
2686  * @barr: wq_barrier to insert
2687  * @target: target work to attach @barr to
2688  * @worker: worker currently executing @target, NULL if @target is not executing
2689  *
2690  * @barr is linked to @target such that @barr is completed only after
2691  * @target finishes execution.  Please note that the ordering
2692  * guarantee is observed only with respect to @target and on the local
2693  * cpu.
2694  *
2695  * Currently, a queued barrier can't be canceled.  This is because
2696  * try_to_grab_pending() can't determine whether the work to be
2697  * grabbed is at the head of the queue and thus can't clear LINKED
2698  * flag of the previous work while there must be a valid next work
2699  * after a work with LINKED flag set.
2700  *
2701  * Note that when @worker is non-NULL, @target may be modified
2702  * underneath us, so we can't reliably determine pwq from @target.
2703  *
2704  * CONTEXT:
2705  * raw_spin_lock_irq(pool->lock).
2706  */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2707 static void insert_wq_barrier(struct pool_workqueue *pwq,
2708 			      struct wq_barrier *barr,
2709 			      struct work_struct *target, struct worker *worker)
2710 {
2711 	unsigned int work_flags = 0;
2712 	unsigned int work_color;
2713 	struct list_head *head;
2714 
2715 	/*
2716 	 * debugobject calls are safe here even with pool->lock locked
2717 	 * as we know for sure that this will not trigger any of the
2718 	 * checks and call back into the fixup functions where we
2719 	 * might deadlock.
2720 	 */
2721 	INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2722 	__set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2723 
2724 	init_completion_map(&barr->done, &target->lockdep_map);
2725 
2726 	barr->task = current;
2727 
2728 	/* The barrier work item does not participate in pwq->nr_active. */
2729 	work_flags |= WORK_STRUCT_INACTIVE;
2730 
2731 	/*
2732 	 * If @target is currently being executed, schedule the
2733 	 * barrier to the worker; otherwise, put it after @target.
2734 	 */
2735 	if (worker) {
2736 		head = worker->scheduled.next;
2737 		work_color = worker->current_color;
2738 	} else {
2739 		unsigned long *bits = work_data_bits(target);
2740 
2741 		head = target->entry.next;
2742 		/* there can already be other linked works, inherit and set */
2743 		work_flags |= *bits & WORK_STRUCT_LINKED;
2744 		work_color = get_work_color(*bits);
2745 		__set_bit(WORK_STRUCT_LINKED_BIT, bits);
2746 	}
2747 
2748 	pwq->nr_in_flight[work_color]++;
2749 	work_flags |= work_color_to_flags(work_color);
2750 
2751 	debug_work_activate(&barr->work);
2752 	insert_work(pwq, &barr->work, head, work_flags);
2753 }
2754 
2755 /**
2756  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2757  * @wq: workqueue being flushed
2758  * @flush_color: new flush color, < 0 for no-op
2759  * @work_color: new work color, < 0 for no-op
2760  *
2761  * Prepare pwqs for workqueue flushing.
2762  *
2763  * If @flush_color is non-negative, flush_color on all pwqs should be
2764  * -1.  If no pwq has in-flight commands at the specified color, all
2765  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
2766  * has in flight commands, its pwq->flush_color is set to
2767  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2768  * wakeup logic is armed and %true is returned.
2769  *
2770  * The caller should have initialized @wq->first_flusher prior to
2771  * calling this function with non-negative @flush_color.  If
2772  * @flush_color is negative, no flush color update is done and %false
2773  * is returned.
2774  *
2775  * If @work_color is non-negative, all pwqs should have the same
2776  * work_color which is previous to @work_color and all will be
2777  * advanced to @work_color.
2778  *
2779  * CONTEXT:
2780  * mutex_lock(wq->mutex).
2781  *
2782  * Return:
2783  * %true if @flush_color >= 0 and there's something to flush.  %false
2784  * otherwise.
2785  */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2786 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2787 				      int flush_color, int work_color)
2788 {
2789 	bool wait = false;
2790 	struct pool_workqueue *pwq;
2791 
2792 	if (flush_color >= 0) {
2793 		WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2794 		atomic_set(&wq->nr_pwqs_to_flush, 1);
2795 	}
2796 
2797 	for_each_pwq(pwq, wq) {
2798 		struct worker_pool *pool = pwq->pool;
2799 
2800 		raw_spin_lock_irq(&pool->lock);
2801 
2802 		if (flush_color >= 0) {
2803 			WARN_ON_ONCE(pwq->flush_color != -1);
2804 
2805 			if (pwq->nr_in_flight[flush_color]) {
2806 				pwq->flush_color = flush_color;
2807 				atomic_inc(&wq->nr_pwqs_to_flush);
2808 				wait = true;
2809 			}
2810 		}
2811 
2812 		if (work_color >= 0) {
2813 			WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2814 			pwq->work_color = work_color;
2815 		}
2816 
2817 		raw_spin_unlock_irq(&pool->lock);
2818 	}
2819 
2820 	if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2821 		complete(&wq->first_flusher->done);
2822 
2823 	return wait;
2824 }
2825 
2826 /**
2827  * flush_workqueue - ensure that any scheduled work has run to completion.
2828  * @wq: workqueue to flush
2829  *
2830  * This function sleeps until all work items which were queued on entry
2831  * have finished execution, but it is not livelocked by new incoming ones.
2832  */
flush_workqueue(struct workqueue_struct * wq)2833 void flush_workqueue(struct workqueue_struct *wq)
2834 {
2835 	struct wq_flusher this_flusher = {
2836 		.list = LIST_HEAD_INIT(this_flusher.list),
2837 		.flush_color = -1,
2838 		.done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2839 	};
2840 	int next_color;
2841 
2842 	if (WARN_ON(!wq_online))
2843 		return;
2844 
2845 	lock_map_acquire(&wq->lockdep_map);
2846 	lock_map_release(&wq->lockdep_map);
2847 
2848 	mutex_lock(&wq->mutex);
2849 
2850 	/*
2851 	 * Start-to-wait phase
2852 	 */
2853 	next_color = work_next_color(wq->work_color);
2854 
2855 	if (next_color != wq->flush_color) {
2856 		/*
2857 		 * Color space is not full.  The current work_color
2858 		 * becomes our flush_color and work_color is advanced
2859 		 * by one.
2860 		 */
2861 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2862 		this_flusher.flush_color = wq->work_color;
2863 		wq->work_color = next_color;
2864 
2865 		if (!wq->first_flusher) {
2866 			/* no flush in progress, become the first flusher */
2867 			WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2868 
2869 			wq->first_flusher = &this_flusher;
2870 
2871 			if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2872 						       wq->work_color)) {
2873 				/* nothing to flush, done */
2874 				wq->flush_color = next_color;
2875 				wq->first_flusher = NULL;
2876 				goto out_unlock;
2877 			}
2878 		} else {
2879 			/* wait in queue */
2880 			WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2881 			list_add_tail(&this_flusher.list, &wq->flusher_queue);
2882 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2883 		}
2884 	} else {
2885 		/*
2886 		 * Oops, color space is full, wait on overflow queue.
2887 		 * The next flush completion will assign us
2888 		 * flush_color and transfer to flusher_queue.
2889 		 */
2890 		list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2891 	}
2892 
2893 	check_flush_dependency(wq, NULL);
2894 
2895 	mutex_unlock(&wq->mutex);
2896 
2897 	wait_for_completion(&this_flusher.done);
2898 
2899 	/*
2900 	 * Wake-up-and-cascade phase
2901 	 *
2902 	 * First flushers are responsible for cascading flushes and
2903 	 * handling overflow.  Non-first flushers can simply return.
2904 	 */
2905 	if (READ_ONCE(wq->first_flusher) != &this_flusher)
2906 		return;
2907 
2908 	mutex_lock(&wq->mutex);
2909 
2910 	/* we might have raced, check again with mutex held */
2911 	if (wq->first_flusher != &this_flusher)
2912 		goto out_unlock;
2913 
2914 	WRITE_ONCE(wq->first_flusher, NULL);
2915 
2916 	WARN_ON_ONCE(!list_empty(&this_flusher.list));
2917 	WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2918 
2919 	while (true) {
2920 		struct wq_flusher *next, *tmp;
2921 
2922 		/* complete all the flushers sharing the current flush color */
2923 		list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2924 			if (next->flush_color != wq->flush_color)
2925 				break;
2926 			list_del_init(&next->list);
2927 			complete(&next->done);
2928 		}
2929 
2930 		WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2931 			     wq->flush_color != work_next_color(wq->work_color));
2932 
2933 		/* this flush_color is finished, advance by one */
2934 		wq->flush_color = work_next_color(wq->flush_color);
2935 
2936 		/* one color has been freed, handle overflow queue */
2937 		if (!list_empty(&wq->flusher_overflow)) {
2938 			/*
2939 			 * Assign the same color to all overflowed
2940 			 * flushers, advance work_color and append to
2941 			 * flusher_queue.  This is the start-to-wait
2942 			 * phase for these overflowed flushers.
2943 			 */
2944 			list_for_each_entry(tmp, &wq->flusher_overflow, list)
2945 				tmp->flush_color = wq->work_color;
2946 
2947 			wq->work_color = work_next_color(wq->work_color);
2948 
2949 			list_splice_tail_init(&wq->flusher_overflow,
2950 					      &wq->flusher_queue);
2951 			flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2952 		}
2953 
2954 		if (list_empty(&wq->flusher_queue)) {
2955 			WARN_ON_ONCE(wq->flush_color != wq->work_color);
2956 			break;
2957 		}
2958 
2959 		/*
2960 		 * Need to flush more colors.  Make the next flusher
2961 		 * the new first flusher and arm pwqs.
2962 		 */
2963 		WARN_ON_ONCE(wq->flush_color == wq->work_color);
2964 		WARN_ON_ONCE(wq->flush_color != next->flush_color);
2965 
2966 		list_del_init(&next->list);
2967 		wq->first_flusher = next;
2968 
2969 		if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2970 			break;
2971 
2972 		/*
2973 		 * Meh... this color is already done, clear first
2974 		 * flusher and repeat cascading.
2975 		 */
2976 		wq->first_flusher = NULL;
2977 	}
2978 
2979 out_unlock:
2980 	mutex_unlock(&wq->mutex);
2981 }
2982 EXPORT_SYMBOL(flush_workqueue);
2983 
2984 /**
2985  * drain_workqueue - drain a workqueue
2986  * @wq: workqueue to drain
2987  *
2988  * Wait until the workqueue becomes empty.  While draining is in progress,
2989  * only chain queueing is allowed.  IOW, only currently pending or running
2990  * work items on @wq can queue further work items on it.  @wq is flushed
2991  * repeatedly until it becomes empty.  The number of flushing is determined
2992  * by the depth of chaining and should be relatively short.  Whine if it
2993  * takes too long.
2994  */
drain_workqueue(struct workqueue_struct * wq)2995 void drain_workqueue(struct workqueue_struct *wq)
2996 {
2997 	unsigned int flush_cnt = 0;
2998 	struct pool_workqueue *pwq;
2999 
3000 	/*
3001 	 * __queue_work() needs to test whether there are drainers, is much
3002 	 * hotter than drain_workqueue() and already looks at @wq->flags.
3003 	 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
3004 	 */
3005 	mutex_lock(&wq->mutex);
3006 	if (!wq->nr_drainers++)
3007 		wq->flags |= __WQ_DRAINING;
3008 	mutex_unlock(&wq->mutex);
3009 reflush:
3010 	flush_workqueue(wq);
3011 
3012 	mutex_lock(&wq->mutex);
3013 
3014 	for_each_pwq(pwq, wq) {
3015 		bool drained;
3016 
3017 		raw_spin_lock_irq(&pwq->pool->lock);
3018 		drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
3019 		raw_spin_unlock_irq(&pwq->pool->lock);
3020 
3021 		if (drained)
3022 			continue;
3023 
3024 		if (++flush_cnt == 10 ||
3025 		    (flush_cnt % 100 == 0 && flush_cnt <= 1000))
3026 			pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
3027 				wq->name, __func__, flush_cnt);
3028 
3029 		mutex_unlock(&wq->mutex);
3030 		goto reflush;
3031 	}
3032 
3033 	if (!--wq->nr_drainers)
3034 		wq->flags &= ~__WQ_DRAINING;
3035 	mutex_unlock(&wq->mutex);
3036 }
3037 EXPORT_SYMBOL_GPL(drain_workqueue);
3038 
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)3039 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
3040 			     bool from_cancel)
3041 {
3042 	struct worker *worker = NULL;
3043 	struct worker_pool *pool;
3044 	struct pool_workqueue *pwq;
3045 
3046 	might_sleep();
3047 
3048 	rcu_read_lock();
3049 	pool = get_work_pool(work);
3050 	if (!pool) {
3051 		rcu_read_unlock();
3052 		return false;
3053 	}
3054 
3055 	raw_spin_lock_irq(&pool->lock);
3056 	/* see the comment in try_to_grab_pending() with the same code */
3057 	pwq = get_work_pwq(work);
3058 	if (pwq) {
3059 		if (unlikely(pwq->pool != pool))
3060 			goto already_gone;
3061 	} else {
3062 		worker = find_worker_executing_work(pool, work);
3063 		if (!worker)
3064 			goto already_gone;
3065 		pwq = worker->current_pwq;
3066 	}
3067 
3068 	check_flush_dependency(pwq->wq, work);
3069 
3070 	insert_wq_barrier(pwq, barr, work, worker);
3071 	raw_spin_unlock_irq(&pool->lock);
3072 
3073 	/*
3074 	 * Force a lock recursion deadlock when using flush_work() inside a
3075 	 * single-threaded or rescuer equipped workqueue.
3076 	 *
3077 	 * For single threaded workqueues the deadlock happens when the work
3078 	 * is after the work issuing the flush_work(). For rescuer equipped
3079 	 * workqueues the deadlock happens when the rescuer stalls, blocking
3080 	 * forward progress.
3081 	 */
3082 	if (!from_cancel &&
3083 	    (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3084 		lock_map_acquire(&pwq->wq->lockdep_map);
3085 		lock_map_release(&pwq->wq->lockdep_map);
3086 	}
3087 	rcu_read_unlock();
3088 	return true;
3089 already_gone:
3090 	raw_spin_unlock_irq(&pool->lock);
3091 	rcu_read_unlock();
3092 	return false;
3093 }
3094 
__flush_work(struct work_struct * work,bool from_cancel)3095 static bool __flush_work(struct work_struct *work, bool from_cancel)
3096 {
3097 	struct wq_barrier barr;
3098 
3099 	if (WARN_ON(!wq_online))
3100 		return false;
3101 
3102 	if (WARN_ON(!work->func))
3103 		return false;
3104 
3105 	lock_map_acquire(&work->lockdep_map);
3106 	lock_map_release(&work->lockdep_map);
3107 
3108 	if (start_flush_work(work, &barr, from_cancel)) {
3109 		wait_for_completion(&barr.done);
3110 		destroy_work_on_stack(&barr.work);
3111 		return true;
3112 	} else {
3113 		return false;
3114 	}
3115 }
3116 
3117 /**
3118  * flush_work - wait for a work to finish executing the last queueing instance
3119  * @work: the work to flush
3120  *
3121  * Wait until @work has finished execution.  @work is guaranteed to be idle
3122  * on return if it hasn't been requeued since flush started.
3123  *
3124  * Return:
3125  * %true if flush_work() waited for the work to finish execution,
3126  * %false if it was already idle.
3127  */
flush_work(struct work_struct * work)3128 bool flush_work(struct work_struct *work)
3129 {
3130 	return __flush_work(work, false);
3131 }
3132 EXPORT_SYMBOL_GPL(flush_work);
3133 
3134 struct cwt_wait {
3135 	wait_queue_entry_t		wait;
3136 	struct work_struct	*work;
3137 };
3138 
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3139 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3140 {
3141 	struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3142 
3143 	if (cwait->work != key)
3144 		return 0;
3145 	return autoremove_wake_function(wait, mode, sync, key);
3146 }
3147 
__cancel_work_timer(struct work_struct * work,bool is_dwork)3148 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3149 {
3150 	static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3151 	unsigned long flags;
3152 	int ret;
3153 
3154 	do {
3155 		ret = try_to_grab_pending(work, is_dwork, &flags);
3156 		/*
3157 		 * If someone else is already canceling, wait for it to
3158 		 * finish.  flush_work() doesn't work for PREEMPT_NONE
3159 		 * because we may get scheduled between @work's completion
3160 		 * and the other canceling task resuming and clearing
3161 		 * CANCELING - flush_work() will return false immediately
3162 		 * as @work is no longer busy, try_to_grab_pending() will
3163 		 * return -ENOENT as @work is still being canceled and the
3164 		 * other canceling task won't be able to clear CANCELING as
3165 		 * we're hogging the CPU.
3166 		 *
3167 		 * Let's wait for completion using a waitqueue.  As this
3168 		 * may lead to the thundering herd problem, use a custom
3169 		 * wake function which matches @work along with exclusive
3170 		 * wait and wakeup.
3171 		 */
3172 		if (unlikely(ret == -ENOENT)) {
3173 			struct cwt_wait cwait;
3174 
3175 			init_wait(&cwait.wait);
3176 			cwait.wait.func = cwt_wakefn;
3177 			cwait.work = work;
3178 
3179 			prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3180 						  TASK_UNINTERRUPTIBLE);
3181 			if (work_is_canceling(work))
3182 				schedule();
3183 			finish_wait(&cancel_waitq, &cwait.wait);
3184 		}
3185 	} while (unlikely(ret < 0));
3186 
3187 	/* tell other tasks trying to grab @work to back off */
3188 	mark_work_canceling(work);
3189 	local_irq_restore(flags);
3190 
3191 	/*
3192 	 * This allows canceling during early boot.  We know that @work
3193 	 * isn't executing.
3194 	 */
3195 	if (wq_online)
3196 		__flush_work(work, true);
3197 
3198 	clear_work_data(work);
3199 
3200 	/*
3201 	 * Paired with prepare_to_wait() above so that either
3202 	 * waitqueue_active() is visible here or !work_is_canceling() is
3203 	 * visible there.
3204 	 */
3205 	smp_mb();
3206 	if (waitqueue_active(&cancel_waitq))
3207 		__wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3208 
3209 	return ret;
3210 }
3211 
3212 /**
3213  * cancel_work_sync - cancel a work and wait for it to finish
3214  * @work: the work to cancel
3215  *
3216  * Cancel @work and wait for its execution to finish.  This function
3217  * can be used even if the work re-queues itself or migrates to
3218  * another workqueue.  On return from this function, @work is
3219  * guaranteed to be not pending or executing on any CPU.
3220  *
3221  * cancel_work_sync(&delayed_work->work) must not be used for
3222  * delayed_work's.  Use cancel_delayed_work_sync() instead.
3223  *
3224  * The caller must ensure that the workqueue on which @work was last
3225  * queued can't be destroyed before this function returns.
3226  *
3227  * Return:
3228  * %true if @work was pending, %false otherwise.
3229  */
cancel_work_sync(struct work_struct * work)3230 bool cancel_work_sync(struct work_struct *work)
3231 {
3232 	return __cancel_work_timer(work, false);
3233 }
3234 EXPORT_SYMBOL_GPL(cancel_work_sync);
3235 
3236 /**
3237  * flush_delayed_work - wait for a dwork to finish executing the last queueing
3238  * @dwork: the delayed work to flush
3239  *
3240  * Delayed timer is cancelled and the pending work is queued for
3241  * immediate execution.  Like flush_work(), this function only
3242  * considers the last queueing instance of @dwork.
3243  *
3244  * Return:
3245  * %true if flush_work() waited for the work to finish execution,
3246  * %false if it was already idle.
3247  */
flush_delayed_work(struct delayed_work * dwork)3248 bool flush_delayed_work(struct delayed_work *dwork)
3249 {
3250 	local_irq_disable();
3251 	if (del_timer_sync(&dwork->timer))
3252 		__queue_work(dwork->cpu, dwork->wq, &dwork->work);
3253 	local_irq_enable();
3254 	return flush_work(&dwork->work);
3255 }
3256 EXPORT_SYMBOL(flush_delayed_work);
3257 
3258 /**
3259  * flush_rcu_work - wait for a rwork to finish executing the last queueing
3260  * @rwork: the rcu work to flush
3261  *
3262  * Return:
3263  * %true if flush_rcu_work() waited for the work to finish execution,
3264  * %false if it was already idle.
3265  */
flush_rcu_work(struct rcu_work * rwork)3266 bool flush_rcu_work(struct rcu_work *rwork)
3267 {
3268 	if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3269 		rcu_barrier();
3270 		flush_work(&rwork->work);
3271 		return true;
3272 	} else {
3273 		return flush_work(&rwork->work);
3274 	}
3275 }
3276 EXPORT_SYMBOL(flush_rcu_work);
3277 
__cancel_work(struct work_struct * work,bool is_dwork)3278 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3279 {
3280 	unsigned long flags;
3281 	int ret;
3282 
3283 	do {
3284 		ret = try_to_grab_pending(work, is_dwork, &flags);
3285 	} while (unlikely(ret == -EAGAIN));
3286 
3287 	if (unlikely(ret < 0))
3288 		return false;
3289 
3290 	set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3291 	local_irq_restore(flags);
3292 	return ret;
3293 }
3294 
3295 /*
3296  * See cancel_delayed_work()
3297  */
cancel_work(struct work_struct * work)3298 bool cancel_work(struct work_struct *work)
3299 {
3300 	return __cancel_work(work, false);
3301 }
3302 EXPORT_SYMBOL(cancel_work);
3303 
3304 /**
3305  * cancel_delayed_work - cancel a delayed work
3306  * @dwork: delayed_work to cancel
3307  *
3308  * Kill off a pending delayed_work.
3309  *
3310  * Return: %true if @dwork was pending and canceled; %false if it wasn't
3311  * pending.
3312  *
3313  * Note:
3314  * The work callback function may still be running on return, unless
3315  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
3316  * use cancel_delayed_work_sync() to wait on it.
3317  *
3318  * This function is safe to call from any context including IRQ handler.
3319  */
cancel_delayed_work(struct delayed_work * dwork)3320 bool cancel_delayed_work(struct delayed_work *dwork)
3321 {
3322 	return __cancel_work(&dwork->work, true);
3323 }
3324 EXPORT_SYMBOL(cancel_delayed_work);
3325 
3326 /**
3327  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3328  * @dwork: the delayed work cancel
3329  *
3330  * This is cancel_work_sync() for delayed works.
3331  *
3332  * Return:
3333  * %true if @dwork was pending, %false otherwise.
3334  */
cancel_delayed_work_sync(struct delayed_work * dwork)3335 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3336 {
3337 	return __cancel_work_timer(&dwork->work, true);
3338 }
3339 EXPORT_SYMBOL(cancel_delayed_work_sync);
3340 
3341 /**
3342  * schedule_on_each_cpu - execute a function synchronously on each online CPU
3343  * @func: the function to call
3344  *
3345  * schedule_on_each_cpu() executes @func on each online CPU using the
3346  * system workqueue and blocks until all CPUs have completed.
3347  * schedule_on_each_cpu() is very slow.
3348  *
3349  * Return:
3350  * 0 on success, -errno on failure.
3351  */
schedule_on_each_cpu(work_func_t func)3352 int schedule_on_each_cpu(work_func_t func)
3353 {
3354 	int cpu;
3355 	struct work_struct __percpu *works;
3356 
3357 	works = alloc_percpu(struct work_struct);
3358 	if (!works)
3359 		return -ENOMEM;
3360 
3361 	cpus_read_lock();
3362 
3363 	for_each_online_cpu(cpu) {
3364 		struct work_struct *work = per_cpu_ptr(works, cpu);
3365 
3366 		INIT_WORK(work, func);
3367 		schedule_work_on(cpu, work);
3368 	}
3369 
3370 	for_each_online_cpu(cpu)
3371 		flush_work(per_cpu_ptr(works, cpu));
3372 
3373 	cpus_read_unlock();
3374 	free_percpu(works);
3375 	return 0;
3376 }
3377 
3378 /**
3379  * execute_in_process_context - reliably execute the routine with user context
3380  * @fn:		the function to execute
3381  * @ew:		guaranteed storage for the execute work structure (must
3382  *		be available when the work executes)
3383  *
3384  * Executes the function immediately if process context is available,
3385  * otherwise schedules the function for delayed execution.
3386  *
3387  * Return:	0 - function was executed
3388  *		1 - function was scheduled for execution
3389  */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3390 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3391 {
3392 	if (!in_interrupt()) {
3393 		fn(&ew->work);
3394 		return 0;
3395 	}
3396 
3397 	INIT_WORK(&ew->work, fn);
3398 	schedule_work(&ew->work);
3399 
3400 	return 1;
3401 }
3402 EXPORT_SYMBOL_GPL(execute_in_process_context);
3403 
3404 /**
3405  * free_workqueue_attrs - free a workqueue_attrs
3406  * @attrs: workqueue_attrs to free
3407  *
3408  * Undo alloc_workqueue_attrs().
3409  */
free_workqueue_attrs(struct workqueue_attrs * attrs)3410 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3411 {
3412 	if (attrs) {
3413 		free_cpumask_var(attrs->cpumask);
3414 		kfree(attrs);
3415 	}
3416 }
3417 
3418 /**
3419  * alloc_workqueue_attrs - allocate a workqueue_attrs
3420  *
3421  * Allocate a new workqueue_attrs, initialize with default settings and
3422  * return it.
3423  *
3424  * Return: The allocated new workqueue_attr on success. %NULL on failure.
3425  */
alloc_workqueue_attrs(void)3426 struct workqueue_attrs *alloc_workqueue_attrs(void)
3427 {
3428 	struct workqueue_attrs *attrs;
3429 
3430 	attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3431 	if (!attrs)
3432 		goto fail;
3433 	if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3434 		goto fail;
3435 
3436 	cpumask_copy(attrs->cpumask, cpu_possible_mask);
3437 	return attrs;
3438 fail:
3439 	free_workqueue_attrs(attrs);
3440 	return NULL;
3441 }
3442 
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3443 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3444 				 const struct workqueue_attrs *from)
3445 {
3446 	to->nice = from->nice;
3447 	cpumask_copy(to->cpumask, from->cpumask);
3448 	/*
3449 	 * Unlike hash and equality test, this function doesn't ignore
3450 	 * ->no_numa as it is used for both pool and wq attrs.  Instead,
3451 	 * get_unbound_pool() explicitly clears ->no_numa after copying.
3452 	 */
3453 	to->no_numa = from->no_numa;
3454 }
3455 
3456 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3457 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3458 {
3459 	u32 hash = 0;
3460 
3461 	hash = jhash_1word(attrs->nice, hash);
3462 	hash = jhash(cpumask_bits(attrs->cpumask),
3463 		     BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3464 	return hash;
3465 }
3466 
3467 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3468 static bool wqattrs_equal(const struct workqueue_attrs *a,
3469 			  const struct workqueue_attrs *b)
3470 {
3471 	if (a->nice != b->nice)
3472 		return false;
3473 	if (!cpumask_equal(a->cpumask, b->cpumask))
3474 		return false;
3475 	return true;
3476 }
3477 
3478 /**
3479  * init_worker_pool - initialize a newly zalloc'd worker_pool
3480  * @pool: worker_pool to initialize
3481  *
3482  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
3483  *
3484  * Return: 0 on success, -errno on failure.  Even on failure, all fields
3485  * inside @pool proper are initialized and put_unbound_pool() can be called
3486  * on @pool safely to release it.
3487  */
init_worker_pool(struct worker_pool * pool)3488 static int init_worker_pool(struct worker_pool *pool)
3489 {
3490 	raw_spin_lock_init(&pool->lock);
3491 	pool->id = -1;
3492 	pool->cpu = -1;
3493 	pool->node = NUMA_NO_NODE;
3494 	pool->flags |= POOL_DISASSOCIATED;
3495 	pool->watchdog_ts = jiffies;
3496 	INIT_LIST_HEAD(&pool->worklist);
3497 	INIT_LIST_HEAD(&pool->idle_list);
3498 	hash_init(pool->busy_hash);
3499 
3500 	timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3501 
3502 	timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3503 
3504 	INIT_LIST_HEAD(&pool->workers);
3505 
3506 	ida_init(&pool->worker_ida);
3507 	INIT_HLIST_NODE(&pool->hash_node);
3508 	pool->refcnt = 1;
3509 
3510 	/* shouldn't fail above this point */
3511 	pool->attrs = alloc_workqueue_attrs();
3512 	if (!pool->attrs)
3513 		return -ENOMEM;
3514 	return 0;
3515 }
3516 
3517 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3518 static void wq_init_lockdep(struct workqueue_struct *wq)
3519 {
3520 	char *lock_name;
3521 
3522 	lockdep_register_key(&wq->key);
3523 	lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3524 	if (!lock_name)
3525 		lock_name = wq->name;
3526 
3527 	wq->lock_name = lock_name;
3528 	lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3529 }
3530 
wq_unregister_lockdep(struct workqueue_struct * wq)3531 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3532 {
3533 	lockdep_unregister_key(&wq->key);
3534 }
3535 
wq_free_lockdep(struct workqueue_struct * wq)3536 static void wq_free_lockdep(struct workqueue_struct *wq)
3537 {
3538 	if (wq->lock_name != wq->name)
3539 		kfree(wq->lock_name);
3540 }
3541 #else
wq_init_lockdep(struct workqueue_struct * wq)3542 static void wq_init_lockdep(struct workqueue_struct *wq)
3543 {
3544 }
3545 
wq_unregister_lockdep(struct workqueue_struct * wq)3546 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3547 {
3548 }
3549 
wq_free_lockdep(struct workqueue_struct * wq)3550 static void wq_free_lockdep(struct workqueue_struct *wq)
3551 {
3552 }
3553 #endif
3554 
rcu_free_wq(struct rcu_head * rcu)3555 static void rcu_free_wq(struct rcu_head *rcu)
3556 {
3557 	struct workqueue_struct *wq =
3558 		container_of(rcu, struct workqueue_struct, rcu);
3559 
3560 	wq_free_lockdep(wq);
3561 
3562 	if (!(wq->flags & WQ_UNBOUND))
3563 		free_percpu(wq->cpu_pwqs);
3564 	else
3565 		free_workqueue_attrs(wq->unbound_attrs);
3566 
3567 	kfree(wq);
3568 }
3569 
rcu_free_pool(struct rcu_head * rcu)3570 static void rcu_free_pool(struct rcu_head *rcu)
3571 {
3572 	struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3573 
3574 	ida_destroy(&pool->worker_ida);
3575 	free_workqueue_attrs(pool->attrs);
3576 	kfree(pool);
3577 }
3578 
3579 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3580 static bool wq_manager_inactive(struct worker_pool *pool)
3581 {
3582 	raw_spin_lock_irq(&pool->lock);
3583 
3584 	if (pool->flags & POOL_MANAGER_ACTIVE) {
3585 		raw_spin_unlock_irq(&pool->lock);
3586 		return false;
3587 	}
3588 	return true;
3589 }
3590 
3591 /**
3592  * put_unbound_pool - put a worker_pool
3593  * @pool: worker_pool to put
3594  *
3595  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
3596  * safe manner.  get_unbound_pool() calls this function on its failure path
3597  * and this function should be able to release pools which went through,
3598  * successfully or not, init_worker_pool().
3599  *
3600  * Should be called with wq_pool_mutex held.
3601  */
put_unbound_pool(struct worker_pool * pool)3602 static void put_unbound_pool(struct worker_pool *pool)
3603 {
3604 	DECLARE_COMPLETION_ONSTACK(detach_completion);
3605 	struct worker *worker;
3606 
3607 	lockdep_assert_held(&wq_pool_mutex);
3608 
3609 	if (--pool->refcnt)
3610 		return;
3611 
3612 	/* sanity checks */
3613 	if (WARN_ON(!(pool->cpu < 0)) ||
3614 	    WARN_ON(!list_empty(&pool->worklist)))
3615 		return;
3616 
3617 	/* release id and unhash */
3618 	if (pool->id >= 0)
3619 		idr_remove(&worker_pool_idr, pool->id);
3620 	hash_del(&pool->hash_node);
3621 
3622 	/*
3623 	 * Become the manager and destroy all workers.  This prevents
3624 	 * @pool's workers from blocking on attach_mutex.  We're the last
3625 	 * manager and @pool gets freed with the flag set.
3626 	 * Because of how wq_manager_inactive() works, we will hold the
3627 	 * spinlock after a successful wait.
3628 	 */
3629 	rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3630 			   TASK_UNINTERRUPTIBLE);
3631 	pool->flags |= POOL_MANAGER_ACTIVE;
3632 
3633 	while ((worker = first_idle_worker(pool)))
3634 		destroy_worker(worker);
3635 	WARN_ON(pool->nr_workers || pool->nr_idle);
3636 	raw_spin_unlock_irq(&pool->lock);
3637 
3638 	mutex_lock(&wq_pool_attach_mutex);
3639 	if (!list_empty(&pool->workers))
3640 		pool->detach_completion = &detach_completion;
3641 	mutex_unlock(&wq_pool_attach_mutex);
3642 
3643 	if (pool->detach_completion)
3644 		wait_for_completion(pool->detach_completion);
3645 
3646 	/* shut down the timers */
3647 	del_timer_sync(&pool->idle_timer);
3648 	del_timer_sync(&pool->mayday_timer);
3649 
3650 	/* RCU protected to allow dereferences from get_work_pool() */
3651 	call_rcu(&pool->rcu, rcu_free_pool);
3652 }
3653 
3654 /**
3655  * get_unbound_pool - get a worker_pool with the specified attributes
3656  * @attrs: the attributes of the worker_pool to get
3657  *
3658  * Obtain a worker_pool which has the same attributes as @attrs, bump the
3659  * reference count and return it.  If there already is a matching
3660  * worker_pool, it will be used; otherwise, this function attempts to
3661  * create a new one.
3662  *
3663  * Should be called with wq_pool_mutex held.
3664  *
3665  * Return: On success, a worker_pool with the same attributes as @attrs.
3666  * On failure, %NULL.
3667  */
get_unbound_pool(const struct workqueue_attrs * attrs)3668 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3669 {
3670 	u32 hash = wqattrs_hash(attrs);
3671 	struct worker_pool *pool;
3672 	int node;
3673 	int target_node = NUMA_NO_NODE;
3674 
3675 	lockdep_assert_held(&wq_pool_mutex);
3676 
3677 	/* do we already have a matching pool? */
3678 	hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3679 		if (wqattrs_equal(pool->attrs, attrs)) {
3680 			pool->refcnt++;
3681 			return pool;
3682 		}
3683 	}
3684 
3685 	/* if cpumask is contained inside a NUMA node, we belong to that node */
3686 	if (wq_numa_enabled) {
3687 		for_each_node(node) {
3688 			if (cpumask_subset(attrs->cpumask,
3689 					   wq_numa_possible_cpumask[node])) {
3690 				target_node = node;
3691 				break;
3692 			}
3693 		}
3694 	}
3695 
3696 	/* nope, create a new one */
3697 	pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3698 	if (!pool || init_worker_pool(pool) < 0)
3699 		goto fail;
3700 
3701 	lockdep_set_subclass(&pool->lock, 1);	/* see put_pwq() */
3702 	copy_workqueue_attrs(pool->attrs, attrs);
3703 	pool->node = target_node;
3704 
3705 	/*
3706 	 * no_numa isn't a worker_pool attribute, always clear it.  See
3707 	 * 'struct workqueue_attrs' comments for detail.
3708 	 */
3709 	pool->attrs->no_numa = false;
3710 
3711 	if (worker_pool_assign_id(pool) < 0)
3712 		goto fail;
3713 
3714 	/* create and start the initial worker */
3715 	if (wq_online && !create_worker(pool))
3716 		goto fail;
3717 
3718 	/* install */
3719 	hash_add(unbound_pool_hash, &pool->hash_node, hash);
3720 
3721 	return pool;
3722 fail:
3723 	if (pool)
3724 		put_unbound_pool(pool);
3725 	return NULL;
3726 }
3727 
rcu_free_pwq(struct rcu_head * rcu)3728 static void rcu_free_pwq(struct rcu_head *rcu)
3729 {
3730 	kmem_cache_free(pwq_cache,
3731 			container_of(rcu, struct pool_workqueue, rcu));
3732 }
3733 
3734 /*
3735  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3736  * and needs to be destroyed.
3737  */
pwq_unbound_release_workfn(struct work_struct * work)3738 static void pwq_unbound_release_workfn(struct work_struct *work)
3739 {
3740 	struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3741 						  unbound_release_work);
3742 	struct workqueue_struct *wq = pwq->wq;
3743 	struct worker_pool *pool = pwq->pool;
3744 	bool is_last = false;
3745 
3746 	/*
3747 	 * when @pwq is not linked, it doesn't hold any reference to the
3748 	 * @wq, and @wq is invalid to access.
3749 	 */
3750 	if (!list_empty(&pwq->pwqs_node)) {
3751 		if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3752 			return;
3753 
3754 		mutex_lock(&wq->mutex);
3755 		list_del_rcu(&pwq->pwqs_node);
3756 		is_last = list_empty(&wq->pwqs);
3757 		mutex_unlock(&wq->mutex);
3758 	}
3759 
3760 	mutex_lock(&wq_pool_mutex);
3761 	put_unbound_pool(pool);
3762 	mutex_unlock(&wq_pool_mutex);
3763 
3764 	call_rcu(&pwq->rcu, rcu_free_pwq);
3765 
3766 	/*
3767 	 * If we're the last pwq going away, @wq is already dead and no one
3768 	 * is gonna access it anymore.  Schedule RCU free.
3769 	 */
3770 	if (is_last) {
3771 		wq_unregister_lockdep(wq);
3772 		call_rcu(&wq->rcu, rcu_free_wq);
3773 	}
3774 }
3775 
3776 /**
3777  * pwq_adjust_max_active - update a pwq's max_active to the current setting
3778  * @pwq: target pool_workqueue
3779  *
3780  * If @pwq isn't freezing, set @pwq->max_active to the associated
3781  * workqueue's saved_max_active and activate inactive work items
3782  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
3783  */
pwq_adjust_max_active(struct pool_workqueue * pwq)3784 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3785 {
3786 	struct workqueue_struct *wq = pwq->wq;
3787 	bool freezable = wq->flags & WQ_FREEZABLE;
3788 	unsigned long flags;
3789 
3790 	/* for @wq->saved_max_active */
3791 	lockdep_assert_held(&wq->mutex);
3792 
3793 	/* fast exit for non-freezable wqs */
3794 	if (!freezable && pwq->max_active == wq->saved_max_active)
3795 		return;
3796 
3797 	/* this function can be called during early boot w/ irq disabled */
3798 	raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3799 
3800 	/*
3801 	 * During [un]freezing, the caller is responsible for ensuring that
3802 	 * this function is called at least once after @workqueue_freezing
3803 	 * is updated and visible.
3804 	 */
3805 	if (!freezable || !workqueue_freezing) {
3806 		bool kick = false;
3807 
3808 		pwq->max_active = wq->saved_max_active;
3809 
3810 		while (!list_empty(&pwq->inactive_works) &&
3811 		       pwq->nr_active < pwq->max_active) {
3812 			pwq_activate_first_inactive(pwq);
3813 			kick = true;
3814 		}
3815 
3816 		/*
3817 		 * Need to kick a worker after thawed or an unbound wq's
3818 		 * max_active is bumped. In realtime scenarios, always kicking a
3819 		 * worker will cause interference on the isolated cpu cores, so
3820 		 * let's kick iff work items were activated.
3821 		 */
3822 		if (kick)
3823 			wake_up_worker(pwq->pool);
3824 	} else {
3825 		pwq->max_active = 0;
3826 	}
3827 
3828 	raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3829 }
3830 
3831 /* initialize newly allocated @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3832 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3833 		     struct worker_pool *pool)
3834 {
3835 	BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3836 
3837 	memset(pwq, 0, sizeof(*pwq));
3838 
3839 	pwq->pool = pool;
3840 	pwq->wq = wq;
3841 	pwq->flush_color = -1;
3842 	pwq->refcnt = 1;
3843 	INIT_LIST_HEAD(&pwq->inactive_works);
3844 	INIT_LIST_HEAD(&pwq->pwqs_node);
3845 	INIT_LIST_HEAD(&pwq->mayday_node);
3846 	INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3847 }
3848 
3849 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3850 static void link_pwq(struct pool_workqueue *pwq)
3851 {
3852 	struct workqueue_struct *wq = pwq->wq;
3853 
3854 	lockdep_assert_held(&wq->mutex);
3855 
3856 	/* may be called multiple times, ignore if already linked */
3857 	if (!list_empty(&pwq->pwqs_node))
3858 		return;
3859 
3860 	/* set the matching work_color */
3861 	pwq->work_color = wq->work_color;
3862 
3863 	/* sync max_active to the current setting */
3864 	pwq_adjust_max_active(pwq);
3865 
3866 	/* link in @pwq */
3867 	list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3868 }
3869 
3870 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3871 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3872 					const struct workqueue_attrs *attrs)
3873 {
3874 	struct worker_pool *pool;
3875 	struct pool_workqueue *pwq;
3876 
3877 	lockdep_assert_held(&wq_pool_mutex);
3878 
3879 	pool = get_unbound_pool(attrs);
3880 	if (!pool)
3881 		return NULL;
3882 
3883 	pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3884 	if (!pwq) {
3885 		put_unbound_pool(pool);
3886 		return NULL;
3887 	}
3888 
3889 	init_pwq(pwq, wq, pool);
3890 	return pwq;
3891 }
3892 
3893 /**
3894  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3895  * @attrs: the wq_attrs of the default pwq of the target workqueue
3896  * @node: the target NUMA node
3897  * @cpu_going_down: if >= 0, the CPU to consider as offline
3898  * @cpumask: outarg, the resulting cpumask
3899  *
3900  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
3901  * @cpu_going_down is >= 0, that cpu is considered offline during
3902  * calculation.  The result is stored in @cpumask.
3903  *
3904  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
3905  * enabled and @node has online CPUs requested by @attrs, the returned
3906  * cpumask is the intersection of the possible CPUs of @node and
3907  * @attrs->cpumask.
3908  *
3909  * The caller is responsible for ensuring that the cpumask of @node stays
3910  * stable.
3911  *
3912  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3913  * %false if equal.
3914  */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3915 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3916 				 int cpu_going_down, cpumask_t *cpumask)
3917 {
3918 	if (!wq_numa_enabled || attrs->no_numa)
3919 		goto use_dfl;
3920 
3921 	/* does @node have any online CPUs @attrs wants? */
3922 	cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3923 	if (cpu_going_down >= 0)
3924 		cpumask_clear_cpu(cpu_going_down, cpumask);
3925 
3926 	if (cpumask_empty(cpumask))
3927 		goto use_dfl;
3928 
3929 	/* yeap, return possible CPUs in @node that @attrs wants */
3930 	cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3931 
3932 	if (cpumask_empty(cpumask)) {
3933 		pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3934 				"possible intersect\n");
3935 		return false;
3936 	}
3937 
3938 	return !cpumask_equal(cpumask, attrs->cpumask);
3939 
3940 use_dfl:
3941 	cpumask_copy(cpumask, attrs->cpumask);
3942 	return false;
3943 }
3944 
3945 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3946 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3947 						   int node,
3948 						   struct pool_workqueue *pwq)
3949 {
3950 	struct pool_workqueue *old_pwq;
3951 
3952 	lockdep_assert_held(&wq_pool_mutex);
3953 	lockdep_assert_held(&wq->mutex);
3954 
3955 	/* link_pwq() can handle duplicate calls */
3956 	link_pwq(pwq);
3957 
3958 	old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3959 	rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3960 	return old_pwq;
3961 }
3962 
3963 /* context to store the prepared attrs & pwqs before applying */
3964 struct apply_wqattrs_ctx {
3965 	struct workqueue_struct	*wq;		/* target workqueue */
3966 	struct workqueue_attrs	*attrs;		/* attrs to apply */
3967 	struct list_head	list;		/* queued for batching commit */
3968 	struct pool_workqueue	*dfl_pwq;
3969 	struct pool_workqueue	*pwq_tbl[];
3970 };
3971 
3972 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3973 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3974 {
3975 	if (ctx) {
3976 		int node;
3977 
3978 		for_each_node(node)
3979 			put_pwq_unlocked(ctx->pwq_tbl[node]);
3980 		put_pwq_unlocked(ctx->dfl_pwq);
3981 
3982 		free_workqueue_attrs(ctx->attrs);
3983 
3984 		kfree(ctx);
3985 	}
3986 }
3987 
3988 /* allocate the attrs and pwqs for later installation */
3989 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3990 apply_wqattrs_prepare(struct workqueue_struct *wq,
3991 		      const struct workqueue_attrs *attrs)
3992 {
3993 	struct apply_wqattrs_ctx *ctx;
3994 	struct workqueue_attrs *new_attrs, *tmp_attrs;
3995 	int node;
3996 
3997 	lockdep_assert_held(&wq_pool_mutex);
3998 
3999 	ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
4000 
4001 	new_attrs = alloc_workqueue_attrs();
4002 	tmp_attrs = alloc_workqueue_attrs();
4003 	if (!ctx || !new_attrs || !tmp_attrs)
4004 		goto out_free;
4005 
4006 	/*
4007 	 * Calculate the attrs of the default pwq.
4008 	 * If the user configured cpumask doesn't overlap with the
4009 	 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
4010 	 */
4011 	copy_workqueue_attrs(new_attrs, attrs);
4012 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
4013 	if (unlikely(cpumask_empty(new_attrs->cpumask)))
4014 		cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
4015 
4016 	/*
4017 	 * We may create multiple pwqs with differing cpumasks.  Make a
4018 	 * copy of @new_attrs which will be modified and used to obtain
4019 	 * pools.
4020 	 */
4021 	copy_workqueue_attrs(tmp_attrs, new_attrs);
4022 
4023 	/*
4024 	 * If something goes wrong during CPU up/down, we'll fall back to
4025 	 * the default pwq covering whole @attrs->cpumask.  Always create
4026 	 * it even if we don't use it immediately.
4027 	 */
4028 	ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
4029 	if (!ctx->dfl_pwq)
4030 		goto out_free;
4031 
4032 	for_each_node(node) {
4033 		if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
4034 			ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
4035 			if (!ctx->pwq_tbl[node])
4036 				goto out_free;
4037 		} else {
4038 			ctx->dfl_pwq->refcnt++;
4039 			ctx->pwq_tbl[node] = ctx->dfl_pwq;
4040 		}
4041 	}
4042 
4043 	/* save the user configured attrs and sanitize it. */
4044 	copy_workqueue_attrs(new_attrs, attrs);
4045 	cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
4046 	ctx->attrs = new_attrs;
4047 
4048 	ctx->wq = wq;
4049 	free_workqueue_attrs(tmp_attrs);
4050 	return ctx;
4051 
4052 out_free:
4053 	free_workqueue_attrs(tmp_attrs);
4054 	free_workqueue_attrs(new_attrs);
4055 	apply_wqattrs_cleanup(ctx);
4056 	return NULL;
4057 }
4058 
4059 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)4060 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4061 {
4062 	int node;
4063 
4064 	/* all pwqs have been created successfully, let's install'em */
4065 	mutex_lock(&ctx->wq->mutex);
4066 
4067 	copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4068 
4069 	/* save the previous pwq and install the new one */
4070 	for_each_node(node)
4071 		ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4072 							  ctx->pwq_tbl[node]);
4073 
4074 	/* @dfl_pwq might not have been used, ensure it's linked */
4075 	link_pwq(ctx->dfl_pwq);
4076 	swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4077 
4078 	mutex_unlock(&ctx->wq->mutex);
4079 }
4080 
apply_wqattrs_lock(void)4081 static void apply_wqattrs_lock(void)
4082 {
4083 	/* CPUs should stay stable across pwq creations and installations */
4084 	cpus_read_lock();
4085 	mutex_lock(&wq_pool_mutex);
4086 }
4087 
apply_wqattrs_unlock(void)4088 static void apply_wqattrs_unlock(void)
4089 {
4090 	mutex_unlock(&wq_pool_mutex);
4091 	cpus_read_unlock();
4092 }
4093 
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4094 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4095 					const struct workqueue_attrs *attrs)
4096 {
4097 	struct apply_wqattrs_ctx *ctx;
4098 
4099 	/* only unbound workqueues can change attributes */
4100 	if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4101 		return -EINVAL;
4102 
4103 	/* creating multiple pwqs breaks ordering guarantee */
4104 	if (!list_empty(&wq->pwqs)) {
4105 		if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4106 			return -EINVAL;
4107 
4108 		wq->flags &= ~__WQ_ORDERED;
4109 	}
4110 
4111 	ctx = apply_wqattrs_prepare(wq, attrs);
4112 	if (!ctx)
4113 		return -ENOMEM;
4114 
4115 	/* the ctx has been prepared successfully, let's commit it */
4116 	apply_wqattrs_commit(ctx);
4117 	apply_wqattrs_cleanup(ctx);
4118 
4119 	return 0;
4120 }
4121 
4122 /**
4123  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4124  * @wq: the target workqueue
4125  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4126  *
4127  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
4128  * machines, this function maps a separate pwq to each NUMA node with
4129  * possibles CPUs in @attrs->cpumask so that work items are affine to the
4130  * NUMA node it was issued on.  Older pwqs are released as in-flight work
4131  * items finish.  Note that a work item which repeatedly requeues itself
4132  * back-to-back will stay on its current pwq.
4133  *
4134  * Performs GFP_KERNEL allocations.
4135  *
4136  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
4137  *
4138  * Return: 0 on success and -errno on failure.
4139  */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4140 int apply_workqueue_attrs(struct workqueue_struct *wq,
4141 			  const struct workqueue_attrs *attrs)
4142 {
4143 	int ret;
4144 
4145 	lockdep_assert_cpus_held();
4146 
4147 	mutex_lock(&wq_pool_mutex);
4148 	ret = apply_workqueue_attrs_locked(wq, attrs);
4149 	mutex_unlock(&wq_pool_mutex);
4150 
4151 	return ret;
4152 }
4153 
4154 /**
4155  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4156  * @wq: the target workqueue
4157  * @cpu: the CPU coming up or going down
4158  * @online: whether @cpu is coming up or going down
4159  *
4160  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4161  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
4162  * @wq accordingly.
4163  *
4164  * If NUMA affinity can't be adjusted due to memory allocation failure, it
4165  * falls back to @wq->dfl_pwq which may not be optimal but is always
4166  * correct.
4167  *
4168  * Note that when the last allowed CPU of a NUMA node goes offline for a
4169  * workqueue with a cpumask spanning multiple nodes, the workers which were
4170  * already executing the work items for the workqueue will lose their CPU
4171  * affinity and may execute on any CPU.  This is similar to how per-cpu
4172  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
4173  * affinity, it's the user's responsibility to flush the work item from
4174  * CPU_DOWN_PREPARE.
4175  */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4176 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4177 				   bool online)
4178 {
4179 	int node = cpu_to_node(cpu);
4180 	int cpu_off = online ? -1 : cpu;
4181 	struct pool_workqueue *old_pwq = NULL, *pwq;
4182 	struct workqueue_attrs *target_attrs;
4183 	cpumask_t *cpumask;
4184 
4185 	lockdep_assert_held(&wq_pool_mutex);
4186 
4187 	if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4188 	    wq->unbound_attrs->no_numa)
4189 		return;
4190 
4191 	/*
4192 	 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4193 	 * Let's use a preallocated one.  The following buf is protected by
4194 	 * CPU hotplug exclusion.
4195 	 */
4196 	target_attrs = wq_update_unbound_numa_attrs_buf;
4197 	cpumask = target_attrs->cpumask;
4198 
4199 	copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4200 	pwq = unbound_pwq_by_node(wq, node);
4201 
4202 	/*
4203 	 * Let's determine what needs to be done.  If the target cpumask is
4204 	 * different from the default pwq's, we need to compare it to @pwq's
4205 	 * and create a new one if they don't match.  If the target cpumask
4206 	 * equals the default pwq's, the default pwq should be used.
4207 	 */
4208 	if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4209 		if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4210 			return;
4211 	} else {
4212 		goto use_dfl_pwq;
4213 	}
4214 
4215 	/* create a new pwq */
4216 	pwq = alloc_unbound_pwq(wq, target_attrs);
4217 	if (!pwq) {
4218 		pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4219 			wq->name);
4220 		goto use_dfl_pwq;
4221 	}
4222 
4223 	/* Install the new pwq. */
4224 	mutex_lock(&wq->mutex);
4225 	old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4226 	goto out_unlock;
4227 
4228 use_dfl_pwq:
4229 	mutex_lock(&wq->mutex);
4230 	raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4231 	get_pwq(wq->dfl_pwq);
4232 	raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4233 	old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4234 out_unlock:
4235 	mutex_unlock(&wq->mutex);
4236 	put_pwq_unlocked(old_pwq);
4237 }
4238 
alloc_and_link_pwqs(struct workqueue_struct * wq)4239 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4240 {
4241 	bool highpri = wq->flags & WQ_HIGHPRI;
4242 	int cpu, ret;
4243 
4244 	if (!(wq->flags & WQ_UNBOUND)) {
4245 		wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4246 		if (!wq->cpu_pwqs)
4247 			return -ENOMEM;
4248 
4249 		for_each_possible_cpu(cpu) {
4250 			struct pool_workqueue *pwq =
4251 				per_cpu_ptr(wq->cpu_pwqs, cpu);
4252 			struct worker_pool *cpu_pools =
4253 				per_cpu(cpu_worker_pools, cpu);
4254 
4255 			init_pwq(pwq, wq, &cpu_pools[highpri]);
4256 
4257 			mutex_lock(&wq->mutex);
4258 			link_pwq(pwq);
4259 			mutex_unlock(&wq->mutex);
4260 		}
4261 		return 0;
4262 	}
4263 
4264 	cpus_read_lock();
4265 	if (wq->flags & __WQ_ORDERED) {
4266 		ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4267 		/* there should only be single pwq for ordering guarantee */
4268 		WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4269 			      wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4270 		     "ordering guarantee broken for workqueue %s\n", wq->name);
4271 	} else {
4272 		ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4273 	}
4274 	cpus_read_unlock();
4275 
4276 	return ret;
4277 }
4278 
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4279 static int wq_clamp_max_active(int max_active, unsigned int flags,
4280 			       const char *name)
4281 {
4282 	int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4283 
4284 	if (max_active < 1 || max_active > lim)
4285 		pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4286 			max_active, name, 1, lim);
4287 
4288 	return clamp_val(max_active, 1, lim);
4289 }
4290 
4291 /*
4292  * Workqueues which may be used during memory reclaim should have a rescuer
4293  * to guarantee forward progress.
4294  */
init_rescuer(struct workqueue_struct * wq)4295 static int init_rescuer(struct workqueue_struct *wq)
4296 {
4297 	struct worker *rescuer;
4298 	int ret;
4299 
4300 	if (!(wq->flags & WQ_MEM_RECLAIM))
4301 		return 0;
4302 
4303 	rescuer = alloc_worker(NUMA_NO_NODE);
4304 	if (!rescuer)
4305 		return -ENOMEM;
4306 
4307 	rescuer->rescue_wq = wq;
4308 	rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4309 	if (IS_ERR(rescuer->task)) {
4310 		ret = PTR_ERR(rescuer->task);
4311 		kfree(rescuer);
4312 		return ret;
4313 	}
4314 
4315 	wq->rescuer = rescuer;
4316 	kthread_bind_mask(rescuer->task, cpu_possible_mask);
4317 	wake_up_process(rescuer->task);
4318 
4319 	return 0;
4320 }
4321 
4322 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4323 struct workqueue_struct *alloc_workqueue(const char *fmt,
4324 					 unsigned int flags,
4325 					 int max_active, ...)
4326 {
4327 	size_t tbl_size = 0;
4328 	va_list args;
4329 	struct workqueue_struct *wq;
4330 	struct pool_workqueue *pwq;
4331 
4332 	/*
4333 	 * Unbound && max_active == 1 used to imply ordered, which is no
4334 	 * longer the case on NUMA machines due to per-node pools.  While
4335 	 * alloc_ordered_workqueue() is the right way to create an ordered
4336 	 * workqueue, keep the previous behavior to avoid subtle breakages
4337 	 * on NUMA.
4338 	 */
4339 	if ((flags & WQ_UNBOUND) && max_active == 1)
4340 		flags |= __WQ_ORDERED;
4341 
4342 	/* see the comment above the definition of WQ_POWER_EFFICIENT */
4343 	if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4344 		flags |= WQ_UNBOUND;
4345 
4346 	/* allocate wq and format name */
4347 	if (flags & WQ_UNBOUND)
4348 		tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4349 
4350 	wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4351 	if (!wq)
4352 		return NULL;
4353 
4354 	if (flags & WQ_UNBOUND) {
4355 		wq->unbound_attrs = alloc_workqueue_attrs();
4356 		if (!wq->unbound_attrs)
4357 			goto err_free_wq;
4358 	}
4359 
4360 	va_start(args, max_active);
4361 	vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4362 	va_end(args);
4363 
4364 	max_active = max_active ?: WQ_DFL_ACTIVE;
4365 	max_active = wq_clamp_max_active(max_active, flags, wq->name);
4366 
4367 	/* init wq */
4368 	wq->flags = flags;
4369 	wq->saved_max_active = max_active;
4370 	mutex_init(&wq->mutex);
4371 	atomic_set(&wq->nr_pwqs_to_flush, 0);
4372 	INIT_LIST_HEAD(&wq->pwqs);
4373 	INIT_LIST_HEAD(&wq->flusher_queue);
4374 	INIT_LIST_HEAD(&wq->flusher_overflow);
4375 	INIT_LIST_HEAD(&wq->maydays);
4376 
4377 	wq_init_lockdep(wq);
4378 	INIT_LIST_HEAD(&wq->list);
4379 
4380 	if (alloc_and_link_pwqs(wq) < 0)
4381 		goto err_unreg_lockdep;
4382 
4383 	if (wq_online && init_rescuer(wq) < 0)
4384 		goto err_destroy;
4385 
4386 	if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4387 		goto err_destroy;
4388 
4389 	/*
4390 	 * wq_pool_mutex protects global freeze state and workqueues list.
4391 	 * Grab it, adjust max_active and add the new @wq to workqueues
4392 	 * list.
4393 	 */
4394 	mutex_lock(&wq_pool_mutex);
4395 
4396 	mutex_lock(&wq->mutex);
4397 	for_each_pwq(pwq, wq)
4398 		pwq_adjust_max_active(pwq);
4399 	mutex_unlock(&wq->mutex);
4400 
4401 	list_add_tail_rcu(&wq->list, &workqueues);
4402 
4403 	mutex_unlock(&wq_pool_mutex);
4404 
4405 	return wq;
4406 
4407 err_unreg_lockdep:
4408 	wq_unregister_lockdep(wq);
4409 	wq_free_lockdep(wq);
4410 err_free_wq:
4411 	free_workqueue_attrs(wq->unbound_attrs);
4412 	kfree(wq);
4413 	return NULL;
4414 err_destroy:
4415 	destroy_workqueue(wq);
4416 	return NULL;
4417 }
4418 EXPORT_SYMBOL_GPL(alloc_workqueue);
4419 
pwq_busy(struct pool_workqueue * pwq)4420 static bool pwq_busy(struct pool_workqueue *pwq)
4421 {
4422 	int i;
4423 
4424 	for (i = 0; i < WORK_NR_COLORS; i++)
4425 		if (pwq->nr_in_flight[i])
4426 			return true;
4427 
4428 	if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4429 		return true;
4430 	if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4431 		return true;
4432 
4433 	return false;
4434 }
4435 
4436 /**
4437  * destroy_workqueue - safely terminate a workqueue
4438  * @wq: target workqueue
4439  *
4440  * Safely destroy a workqueue. All work currently pending will be done first.
4441  */
destroy_workqueue(struct workqueue_struct * wq)4442 void destroy_workqueue(struct workqueue_struct *wq)
4443 {
4444 	struct pool_workqueue *pwq;
4445 	int node;
4446 
4447 	/*
4448 	 * Remove it from sysfs first so that sanity check failure doesn't
4449 	 * lead to sysfs name conflicts.
4450 	 */
4451 	workqueue_sysfs_unregister(wq);
4452 
4453 	/* drain it before proceeding with destruction */
4454 	drain_workqueue(wq);
4455 
4456 	/* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4457 	if (wq->rescuer) {
4458 		struct worker *rescuer = wq->rescuer;
4459 
4460 		/* this prevents new queueing */
4461 		raw_spin_lock_irq(&wq_mayday_lock);
4462 		wq->rescuer = NULL;
4463 		raw_spin_unlock_irq(&wq_mayday_lock);
4464 
4465 		/* rescuer will empty maydays list before exiting */
4466 		kthread_stop(rescuer->task);
4467 		kfree(rescuer);
4468 	}
4469 
4470 	/*
4471 	 * Sanity checks - grab all the locks so that we wait for all
4472 	 * in-flight operations which may do put_pwq().
4473 	 */
4474 	mutex_lock(&wq_pool_mutex);
4475 	mutex_lock(&wq->mutex);
4476 	for_each_pwq(pwq, wq) {
4477 		raw_spin_lock_irq(&pwq->pool->lock);
4478 		if (WARN_ON(pwq_busy(pwq))) {
4479 			pr_warn("%s: %s has the following busy pwq\n",
4480 				__func__, wq->name);
4481 			show_pwq(pwq);
4482 			raw_spin_unlock_irq(&pwq->pool->lock);
4483 			mutex_unlock(&wq->mutex);
4484 			mutex_unlock(&wq_pool_mutex);
4485 			show_one_workqueue(wq);
4486 			return;
4487 		}
4488 		raw_spin_unlock_irq(&pwq->pool->lock);
4489 	}
4490 	mutex_unlock(&wq->mutex);
4491 
4492 	/*
4493 	 * wq list is used to freeze wq, remove from list after
4494 	 * flushing is complete in case freeze races us.
4495 	 */
4496 	list_del_rcu(&wq->list);
4497 	mutex_unlock(&wq_pool_mutex);
4498 
4499 	if (!(wq->flags & WQ_UNBOUND)) {
4500 		wq_unregister_lockdep(wq);
4501 		/*
4502 		 * The base ref is never dropped on per-cpu pwqs.  Directly
4503 		 * schedule RCU free.
4504 		 */
4505 		call_rcu(&wq->rcu, rcu_free_wq);
4506 	} else {
4507 		/*
4508 		 * We're the sole accessor of @wq at this point.  Directly
4509 		 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4510 		 * @wq will be freed when the last pwq is released.
4511 		 */
4512 		for_each_node(node) {
4513 			pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4514 			RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4515 			put_pwq_unlocked(pwq);
4516 		}
4517 
4518 		/*
4519 		 * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
4520 		 * put.  Don't access it afterwards.
4521 		 */
4522 		pwq = wq->dfl_pwq;
4523 		wq->dfl_pwq = NULL;
4524 		put_pwq_unlocked(pwq);
4525 	}
4526 }
4527 EXPORT_SYMBOL_GPL(destroy_workqueue);
4528 
4529 /**
4530  * workqueue_set_max_active - adjust max_active of a workqueue
4531  * @wq: target workqueue
4532  * @max_active: new max_active value.
4533  *
4534  * Set max_active of @wq to @max_active.
4535  *
4536  * CONTEXT:
4537  * Don't call from IRQ context.
4538  */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4539 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4540 {
4541 	struct pool_workqueue *pwq;
4542 
4543 	/* disallow meddling with max_active for ordered workqueues */
4544 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4545 		return;
4546 
4547 	max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4548 
4549 	mutex_lock(&wq->mutex);
4550 
4551 	wq->flags &= ~__WQ_ORDERED;
4552 	wq->saved_max_active = max_active;
4553 
4554 	for_each_pwq(pwq, wq)
4555 		pwq_adjust_max_active(pwq);
4556 
4557 	mutex_unlock(&wq->mutex);
4558 }
4559 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4560 
4561 /**
4562  * current_work - retrieve %current task's work struct
4563  *
4564  * Determine if %current task is a workqueue worker and what it's working on.
4565  * Useful to find out the context that the %current task is running in.
4566  *
4567  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4568  */
current_work(void)4569 struct work_struct *current_work(void)
4570 {
4571 	struct worker *worker = current_wq_worker();
4572 
4573 	return worker ? worker->current_work : NULL;
4574 }
4575 EXPORT_SYMBOL(current_work);
4576 
4577 /**
4578  * current_is_workqueue_rescuer - is %current workqueue rescuer?
4579  *
4580  * Determine whether %current is a workqueue rescuer.  Can be used from
4581  * work functions to determine whether it's being run off the rescuer task.
4582  *
4583  * Return: %true if %current is a workqueue rescuer. %false otherwise.
4584  */
current_is_workqueue_rescuer(void)4585 bool current_is_workqueue_rescuer(void)
4586 {
4587 	struct worker *worker = current_wq_worker();
4588 
4589 	return worker && worker->rescue_wq;
4590 }
4591 
4592 /**
4593  * workqueue_congested - test whether a workqueue is congested
4594  * @cpu: CPU in question
4595  * @wq: target workqueue
4596  *
4597  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
4598  * no synchronization around this function and the test result is
4599  * unreliable and only useful as advisory hints or for debugging.
4600  *
4601  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4602  * Note that both per-cpu and unbound workqueues may be associated with
4603  * multiple pool_workqueues which have separate congested states.  A
4604  * workqueue being congested on one CPU doesn't mean the workqueue is also
4605  * contested on other CPUs / NUMA nodes.
4606  *
4607  * Return:
4608  * %true if congested, %false otherwise.
4609  */
workqueue_congested(int cpu,struct workqueue_struct * wq)4610 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4611 {
4612 	struct pool_workqueue *pwq;
4613 	bool ret;
4614 
4615 	rcu_read_lock();
4616 	preempt_disable();
4617 
4618 	if (cpu == WORK_CPU_UNBOUND)
4619 		cpu = smp_processor_id();
4620 
4621 	if (!(wq->flags & WQ_UNBOUND))
4622 		pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4623 	else
4624 		pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4625 
4626 	ret = !list_empty(&pwq->inactive_works);
4627 	preempt_enable();
4628 	rcu_read_unlock();
4629 
4630 	return ret;
4631 }
4632 EXPORT_SYMBOL_GPL(workqueue_congested);
4633 
4634 /**
4635  * work_busy - test whether a work is currently pending or running
4636  * @work: the work to be tested
4637  *
4638  * Test whether @work is currently pending or running.  There is no
4639  * synchronization around this function and the test result is
4640  * unreliable and only useful as advisory hints or for debugging.
4641  *
4642  * Return:
4643  * OR'd bitmask of WORK_BUSY_* bits.
4644  */
work_busy(struct work_struct * work)4645 unsigned int work_busy(struct work_struct *work)
4646 {
4647 	struct worker_pool *pool;
4648 	unsigned long flags;
4649 	unsigned int ret = 0;
4650 
4651 	if (work_pending(work))
4652 		ret |= WORK_BUSY_PENDING;
4653 
4654 	rcu_read_lock();
4655 	pool = get_work_pool(work);
4656 	if (pool) {
4657 		raw_spin_lock_irqsave(&pool->lock, flags);
4658 		if (find_worker_executing_work(pool, work))
4659 			ret |= WORK_BUSY_RUNNING;
4660 		raw_spin_unlock_irqrestore(&pool->lock, flags);
4661 	}
4662 	rcu_read_unlock();
4663 
4664 	return ret;
4665 }
4666 EXPORT_SYMBOL_GPL(work_busy);
4667 
4668 /**
4669  * set_worker_desc - set description for the current work item
4670  * @fmt: printf-style format string
4671  * @...: arguments for the format string
4672  *
4673  * This function can be called by a running work function to describe what
4674  * the work item is about.  If the worker task gets dumped, this
4675  * information will be printed out together to help debugging.  The
4676  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4677  */
set_worker_desc(const char * fmt,...)4678 void set_worker_desc(const char *fmt, ...)
4679 {
4680 	struct worker *worker = current_wq_worker();
4681 	va_list args;
4682 
4683 	if (worker) {
4684 		va_start(args, fmt);
4685 		vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4686 		va_end(args);
4687 	}
4688 }
4689 EXPORT_SYMBOL_GPL(set_worker_desc);
4690 
4691 /**
4692  * print_worker_info - print out worker information and description
4693  * @log_lvl: the log level to use when printing
4694  * @task: target task
4695  *
4696  * If @task is a worker and currently executing a work item, print out the
4697  * name of the workqueue being serviced and worker description set with
4698  * set_worker_desc() by the currently executing work item.
4699  *
4700  * This function can be safely called on any task as long as the
4701  * task_struct itself is accessible.  While safe, this function isn't
4702  * synchronized and may print out mixups or garbages of limited length.
4703  */
print_worker_info(const char * log_lvl,struct task_struct * task)4704 void print_worker_info(const char *log_lvl, struct task_struct *task)
4705 {
4706 	work_func_t *fn = NULL;
4707 	char name[WQ_NAME_LEN] = { };
4708 	char desc[WORKER_DESC_LEN] = { };
4709 	struct pool_workqueue *pwq = NULL;
4710 	struct workqueue_struct *wq = NULL;
4711 	struct worker *worker;
4712 
4713 	if (!(task->flags & PF_WQ_WORKER))
4714 		return;
4715 
4716 	/*
4717 	 * This function is called without any synchronization and @task
4718 	 * could be in any state.  Be careful with dereferences.
4719 	 */
4720 	worker = kthread_probe_data(task);
4721 
4722 	/*
4723 	 * Carefully copy the associated workqueue's workfn, name and desc.
4724 	 * Keep the original last '\0' in case the original is garbage.
4725 	 */
4726 	copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4727 	copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4728 	copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4729 	copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4730 	copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4731 
4732 	if (fn || name[0] || desc[0]) {
4733 		printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4734 		if (strcmp(name, desc))
4735 			pr_cont(" (%s)", desc);
4736 		pr_cont("\n");
4737 	}
4738 }
4739 
pr_cont_pool_info(struct worker_pool * pool)4740 static void pr_cont_pool_info(struct worker_pool *pool)
4741 {
4742 	pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4743 	if (pool->node != NUMA_NO_NODE)
4744 		pr_cont(" node=%d", pool->node);
4745 	pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4746 }
4747 
pr_cont_work(bool comma,struct work_struct * work)4748 static void pr_cont_work(bool comma, struct work_struct *work)
4749 {
4750 	if (work->func == wq_barrier_func) {
4751 		struct wq_barrier *barr;
4752 
4753 		barr = container_of(work, struct wq_barrier, work);
4754 
4755 		pr_cont("%s BAR(%d)", comma ? "," : "",
4756 			task_pid_nr(barr->task));
4757 	} else {
4758 		pr_cont("%s %ps", comma ? "," : "", work->func);
4759 	}
4760 }
4761 
show_pwq(struct pool_workqueue * pwq)4762 static void show_pwq(struct pool_workqueue *pwq)
4763 {
4764 	struct worker_pool *pool = pwq->pool;
4765 	struct work_struct *work;
4766 	struct worker *worker;
4767 	bool has_in_flight = false, has_pending = false;
4768 	int bkt;
4769 
4770 	pr_info("  pwq %d:", pool->id);
4771 	pr_cont_pool_info(pool);
4772 
4773 	pr_cont(" active=%d/%d refcnt=%d%s\n",
4774 		pwq->nr_active, pwq->max_active, pwq->refcnt,
4775 		!list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4776 
4777 	hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4778 		if (worker->current_pwq == pwq) {
4779 			has_in_flight = true;
4780 			break;
4781 		}
4782 	}
4783 	if (has_in_flight) {
4784 		bool comma = false;
4785 
4786 		pr_info("    in-flight:");
4787 		hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4788 			if (worker->current_pwq != pwq)
4789 				continue;
4790 
4791 			pr_cont("%s %d%s:%ps", comma ? "," : "",
4792 				task_pid_nr(worker->task),
4793 				worker->rescue_wq ? "(RESCUER)" : "",
4794 				worker->current_func);
4795 			list_for_each_entry(work, &worker->scheduled, entry)
4796 				pr_cont_work(false, work);
4797 			comma = true;
4798 		}
4799 		pr_cont("\n");
4800 	}
4801 
4802 	list_for_each_entry(work, &pool->worklist, entry) {
4803 		if (get_work_pwq(work) == pwq) {
4804 			has_pending = true;
4805 			break;
4806 		}
4807 	}
4808 	if (has_pending) {
4809 		bool comma = false;
4810 
4811 		pr_info("    pending:");
4812 		list_for_each_entry(work, &pool->worklist, entry) {
4813 			if (get_work_pwq(work) != pwq)
4814 				continue;
4815 
4816 			pr_cont_work(comma, work);
4817 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4818 		}
4819 		pr_cont("\n");
4820 	}
4821 
4822 	if (!list_empty(&pwq->inactive_works)) {
4823 		bool comma = false;
4824 
4825 		pr_info("    inactive:");
4826 		list_for_each_entry(work, &pwq->inactive_works, entry) {
4827 			pr_cont_work(comma, work);
4828 			comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4829 		}
4830 		pr_cont("\n");
4831 	}
4832 }
4833 
4834 /**
4835  * show_one_workqueue - dump state of specified workqueue
4836  * @wq: workqueue whose state will be printed
4837  */
show_one_workqueue(struct workqueue_struct * wq)4838 void show_one_workqueue(struct workqueue_struct *wq)
4839 {
4840 	struct pool_workqueue *pwq;
4841 	bool idle = true;
4842 	unsigned long flags;
4843 
4844 	for_each_pwq(pwq, wq) {
4845 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4846 			idle = false;
4847 			break;
4848 		}
4849 	}
4850 	if (idle) /* Nothing to print for idle workqueue */
4851 		return;
4852 
4853 	pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4854 
4855 	for_each_pwq(pwq, wq) {
4856 		raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4857 		if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4858 			/*
4859 			 * Defer printing to avoid deadlocks in console
4860 			 * drivers that queue work while holding locks
4861 			 * also taken in their write paths.
4862 			 */
4863 			printk_deferred_enter();
4864 			show_pwq(pwq);
4865 			printk_deferred_exit();
4866 		}
4867 		raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4868 		/*
4869 		 * We could be printing a lot from atomic context, e.g.
4870 		 * sysrq-t -> show_all_workqueues(). Avoid triggering
4871 		 * hard lockup.
4872 		 */
4873 		touch_nmi_watchdog();
4874 	}
4875 
4876 }
4877 
4878 /**
4879  * show_one_worker_pool - dump state of specified worker pool
4880  * @pool: worker pool whose state will be printed
4881  */
show_one_worker_pool(struct worker_pool * pool)4882 static void show_one_worker_pool(struct worker_pool *pool)
4883 {
4884 	struct worker *worker;
4885 	bool first = true;
4886 	unsigned long flags;
4887 	unsigned long hung = 0;
4888 
4889 	raw_spin_lock_irqsave(&pool->lock, flags);
4890 	if (pool->nr_workers == pool->nr_idle)
4891 		goto next_pool;
4892 
4893 	/* How long the first pending work is waiting for a worker. */
4894 	if (!list_empty(&pool->worklist))
4895 		hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
4896 
4897 	/*
4898 	 * Defer printing to avoid deadlocks in console drivers that
4899 	 * queue work while holding locks also taken in their write
4900 	 * paths.
4901 	 */
4902 	printk_deferred_enter();
4903 	pr_info("pool %d:", pool->id);
4904 	pr_cont_pool_info(pool);
4905 	pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
4906 	if (pool->manager)
4907 		pr_cont(" manager: %d",
4908 			task_pid_nr(pool->manager->task));
4909 	list_for_each_entry(worker, &pool->idle_list, entry) {
4910 		pr_cont(" %s%d", first ? "idle: " : "",
4911 			task_pid_nr(worker->task));
4912 		first = false;
4913 	}
4914 	pr_cont("\n");
4915 	printk_deferred_exit();
4916 next_pool:
4917 	raw_spin_unlock_irqrestore(&pool->lock, flags);
4918 	/*
4919 	 * We could be printing a lot from atomic context, e.g.
4920 	 * sysrq-t -> show_all_workqueues(). Avoid triggering
4921 	 * hard lockup.
4922 	 */
4923 	touch_nmi_watchdog();
4924 
4925 }
4926 
4927 /**
4928  * show_all_workqueues - dump workqueue state
4929  *
4930  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4931  * all busy workqueues and pools.
4932  */
show_all_workqueues(void)4933 void show_all_workqueues(void)
4934 {
4935 	struct workqueue_struct *wq;
4936 	struct worker_pool *pool;
4937 	int pi;
4938 
4939 	rcu_read_lock();
4940 
4941 	pr_info("Showing busy workqueues and worker pools:\n");
4942 
4943 	list_for_each_entry_rcu(wq, &workqueues, list)
4944 		show_one_workqueue(wq);
4945 
4946 	for_each_pool(pool, pi)
4947 		show_one_worker_pool(pool);
4948 
4949 	rcu_read_unlock();
4950 }
4951 
4952 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4953 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4954 {
4955 	int off;
4956 
4957 	/* always show the actual comm */
4958 	off = strscpy(buf, task->comm, size);
4959 	if (off < 0)
4960 		return;
4961 
4962 	/* stabilize PF_WQ_WORKER and worker pool association */
4963 	mutex_lock(&wq_pool_attach_mutex);
4964 
4965 	if (task->flags & PF_WQ_WORKER) {
4966 		struct worker *worker = kthread_data(task);
4967 		struct worker_pool *pool = worker->pool;
4968 
4969 		if (pool) {
4970 			raw_spin_lock_irq(&pool->lock);
4971 			/*
4972 			 * ->desc tracks information (wq name or
4973 			 * set_worker_desc()) for the latest execution.  If
4974 			 * current, prepend '+', otherwise '-'.
4975 			 */
4976 			if (worker->desc[0] != '\0') {
4977 				if (worker->current_work)
4978 					scnprintf(buf + off, size - off, "+%s",
4979 						  worker->desc);
4980 				else
4981 					scnprintf(buf + off, size - off, "-%s",
4982 						  worker->desc);
4983 			}
4984 			raw_spin_unlock_irq(&pool->lock);
4985 		}
4986 	}
4987 
4988 	mutex_unlock(&wq_pool_attach_mutex);
4989 }
4990 EXPORT_SYMBOL_GPL(wq_worker_comm);
4991 
4992 #ifdef CONFIG_SMP
4993 
4994 /*
4995  * CPU hotplug.
4996  *
4997  * There are two challenges in supporting CPU hotplug.  Firstly, there
4998  * are a lot of assumptions on strong associations among work, pwq and
4999  * pool which make migrating pending and scheduled works very
5000  * difficult to implement without impacting hot paths.  Secondly,
5001  * worker pools serve mix of short, long and very long running works making
5002  * blocked draining impractical.
5003  *
5004  * This is solved by allowing the pools to be disassociated from the CPU
5005  * running as an unbound one and allowing it to be reattached later if the
5006  * cpu comes back online.
5007  */
5008 
unbind_workers(int cpu)5009 static void unbind_workers(int cpu)
5010 {
5011 	struct worker_pool *pool;
5012 	struct worker *worker;
5013 
5014 	for_each_cpu_worker_pool(pool, cpu) {
5015 		mutex_lock(&wq_pool_attach_mutex);
5016 		raw_spin_lock_irq(&pool->lock);
5017 
5018 		/*
5019 		 * We've blocked all attach/detach operations. Make all workers
5020 		 * unbound and set DISASSOCIATED.  Before this, all workers
5021 		 * except for the ones which are still executing works from
5022 		 * before the last CPU down must be on the cpu.  After
5023 		 * this, they may become diasporas.
5024 		 */
5025 		for_each_pool_worker(worker, pool)
5026 			worker->flags |= WORKER_UNBOUND;
5027 
5028 		pool->flags |= POOL_DISASSOCIATED;
5029 
5030 		raw_spin_unlock_irq(&pool->lock);
5031 
5032 		for_each_pool_worker(worker, pool) {
5033 			kthread_set_per_cpu(worker->task, -1);
5034 			WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
5035 		}
5036 
5037 		mutex_unlock(&wq_pool_attach_mutex);
5038 
5039 		/*
5040 		 * Call schedule() so that we cross rq->lock and thus can
5041 		 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
5042 		 * This is necessary as scheduler callbacks may be invoked
5043 		 * from other cpus.
5044 		 */
5045 		schedule();
5046 
5047 		/*
5048 		 * Sched callbacks are disabled now.  Zap nr_running.
5049 		 * After this, nr_running stays zero and need_more_worker()
5050 		 * and keep_working() are always true as long as the
5051 		 * worklist is not empty.  This pool now behaves as an
5052 		 * unbound (in terms of concurrency management) pool which
5053 		 * are served by workers tied to the pool.
5054 		 */
5055 		atomic_set(&pool->nr_running, 0);
5056 
5057 		/*
5058 		 * With concurrency management just turned off, a busy
5059 		 * worker blocking could lead to lengthy stalls.  Kick off
5060 		 * unbound chain execution of currently pending work items.
5061 		 */
5062 		raw_spin_lock_irq(&pool->lock);
5063 		wake_up_worker(pool);
5064 		raw_spin_unlock_irq(&pool->lock);
5065 	}
5066 }
5067 
5068 /**
5069  * rebind_workers - rebind all workers of a pool to the associated CPU
5070  * @pool: pool of interest
5071  *
5072  * @pool->cpu is coming online.  Rebind all workers to the CPU.
5073  */
rebind_workers(struct worker_pool * pool)5074 static void rebind_workers(struct worker_pool *pool)
5075 {
5076 	struct worker *worker;
5077 
5078 	lockdep_assert_held(&wq_pool_attach_mutex);
5079 
5080 	/*
5081 	 * Restore CPU affinity of all workers.  As all idle workers should
5082 	 * be on the run-queue of the associated CPU before any local
5083 	 * wake-ups for concurrency management happen, restore CPU affinity
5084 	 * of all workers first and then clear UNBOUND.  As we're called
5085 	 * from CPU_ONLINE, the following shouldn't fail.
5086 	 */
5087 	for_each_pool_worker(worker, pool) {
5088 		kthread_set_per_cpu(worker->task, pool->cpu);
5089 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
5090 						  pool->attrs->cpumask) < 0);
5091 	}
5092 
5093 	raw_spin_lock_irq(&pool->lock);
5094 
5095 	pool->flags &= ~POOL_DISASSOCIATED;
5096 
5097 	for_each_pool_worker(worker, pool) {
5098 		unsigned int worker_flags = worker->flags;
5099 
5100 		/*
5101 		 * A bound idle worker should actually be on the runqueue
5102 		 * of the associated CPU for local wake-ups targeting it to
5103 		 * work.  Kick all idle workers so that they migrate to the
5104 		 * associated CPU.  Doing this in the same loop as
5105 		 * replacing UNBOUND with REBOUND is safe as no worker will
5106 		 * be bound before @pool->lock is released.
5107 		 */
5108 		if (worker_flags & WORKER_IDLE)
5109 			wake_up_process(worker->task);
5110 
5111 		/*
5112 		 * We want to clear UNBOUND but can't directly call
5113 		 * worker_clr_flags() or adjust nr_running.  Atomically
5114 		 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5115 		 * @worker will clear REBOUND using worker_clr_flags() when
5116 		 * it initiates the next execution cycle thus restoring
5117 		 * concurrency management.  Note that when or whether
5118 		 * @worker clears REBOUND doesn't affect correctness.
5119 		 *
5120 		 * WRITE_ONCE() is necessary because @worker->flags may be
5121 		 * tested without holding any lock in
5122 		 * wq_worker_running().  Without it, NOT_RUNNING test may
5123 		 * fail incorrectly leading to premature concurrency
5124 		 * management operations.
5125 		 */
5126 		WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5127 		worker_flags |= WORKER_REBOUND;
5128 		worker_flags &= ~WORKER_UNBOUND;
5129 		WRITE_ONCE(worker->flags, worker_flags);
5130 	}
5131 
5132 	raw_spin_unlock_irq(&pool->lock);
5133 }
5134 
5135 /**
5136  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5137  * @pool: unbound pool of interest
5138  * @cpu: the CPU which is coming up
5139  *
5140  * An unbound pool may end up with a cpumask which doesn't have any online
5141  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
5142  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
5143  * online CPU before, cpus_allowed of all its workers should be restored.
5144  */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5145 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5146 {
5147 	static cpumask_t cpumask;
5148 	struct worker *worker;
5149 
5150 	lockdep_assert_held(&wq_pool_attach_mutex);
5151 
5152 	/* is @cpu allowed for @pool? */
5153 	if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5154 		return;
5155 
5156 	cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5157 
5158 	/* as we're called from CPU_ONLINE, the following shouldn't fail */
5159 	for_each_pool_worker(worker, pool)
5160 		WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5161 }
5162 
workqueue_prepare_cpu(unsigned int cpu)5163 int workqueue_prepare_cpu(unsigned int cpu)
5164 {
5165 	struct worker_pool *pool;
5166 
5167 	for_each_cpu_worker_pool(pool, cpu) {
5168 		if (pool->nr_workers)
5169 			continue;
5170 		if (!create_worker(pool))
5171 			return -ENOMEM;
5172 	}
5173 	return 0;
5174 }
5175 
workqueue_online_cpu(unsigned int cpu)5176 int workqueue_online_cpu(unsigned int cpu)
5177 {
5178 	struct worker_pool *pool;
5179 	struct workqueue_struct *wq;
5180 	int pi;
5181 
5182 	mutex_lock(&wq_pool_mutex);
5183 
5184 	for_each_pool(pool, pi) {
5185 		mutex_lock(&wq_pool_attach_mutex);
5186 
5187 		if (pool->cpu == cpu)
5188 			rebind_workers(pool);
5189 		else if (pool->cpu < 0)
5190 			restore_unbound_workers_cpumask(pool, cpu);
5191 
5192 		mutex_unlock(&wq_pool_attach_mutex);
5193 	}
5194 
5195 	/* update NUMA affinity of unbound workqueues */
5196 	list_for_each_entry(wq, &workqueues, list)
5197 		wq_update_unbound_numa(wq, cpu, true);
5198 
5199 	mutex_unlock(&wq_pool_mutex);
5200 	return 0;
5201 }
5202 
workqueue_offline_cpu(unsigned int cpu)5203 int workqueue_offline_cpu(unsigned int cpu)
5204 {
5205 	struct workqueue_struct *wq;
5206 
5207 	/* unbinding per-cpu workers should happen on the local CPU */
5208 	if (WARN_ON(cpu != smp_processor_id()))
5209 		return -1;
5210 
5211 	unbind_workers(cpu);
5212 
5213 	/* update NUMA affinity of unbound workqueues */
5214 	mutex_lock(&wq_pool_mutex);
5215 	list_for_each_entry(wq, &workqueues, list)
5216 		wq_update_unbound_numa(wq, cpu, false);
5217 	mutex_unlock(&wq_pool_mutex);
5218 
5219 	return 0;
5220 }
5221 
5222 struct work_for_cpu {
5223 	struct work_struct work;
5224 	long (*fn)(void *);
5225 	void *arg;
5226 	long ret;
5227 };
5228 
work_for_cpu_fn(struct work_struct * work)5229 static void work_for_cpu_fn(struct work_struct *work)
5230 {
5231 	struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5232 
5233 	wfc->ret = wfc->fn(wfc->arg);
5234 }
5235 
5236 /**
5237  * work_on_cpu - run a function in thread context on a particular cpu
5238  * @cpu: the cpu to run on
5239  * @fn: the function to run
5240  * @arg: the function arg
5241  *
5242  * It is up to the caller to ensure that the cpu doesn't go offline.
5243  * The caller must not hold any locks which would prevent @fn from completing.
5244  *
5245  * Return: The value @fn returns.
5246  */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5247 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5248 {
5249 	struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5250 
5251 	INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5252 	schedule_work_on(cpu, &wfc.work);
5253 	flush_work(&wfc.work);
5254 	destroy_work_on_stack(&wfc.work);
5255 	return wfc.ret;
5256 }
5257 EXPORT_SYMBOL_GPL(work_on_cpu);
5258 
5259 /**
5260  * work_on_cpu_safe - run a function in thread context on a particular cpu
5261  * @cpu: the cpu to run on
5262  * @fn:  the function to run
5263  * @arg: the function argument
5264  *
5265  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5266  * any locks which would prevent @fn from completing.
5267  *
5268  * Return: The value @fn returns.
5269  */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5270 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5271 {
5272 	long ret = -ENODEV;
5273 
5274 	cpus_read_lock();
5275 	if (cpu_online(cpu))
5276 		ret = work_on_cpu(cpu, fn, arg);
5277 	cpus_read_unlock();
5278 	return ret;
5279 }
5280 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5281 #endif /* CONFIG_SMP */
5282 
5283 #ifdef CONFIG_FREEZER
5284 
5285 /**
5286  * freeze_workqueues_begin - begin freezing workqueues
5287  *
5288  * Start freezing workqueues.  After this function returns, all freezable
5289  * workqueues will queue new works to their inactive_works list instead of
5290  * pool->worklist.
5291  *
5292  * CONTEXT:
5293  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5294  */
freeze_workqueues_begin(void)5295 void freeze_workqueues_begin(void)
5296 {
5297 	struct workqueue_struct *wq;
5298 	struct pool_workqueue *pwq;
5299 
5300 	mutex_lock(&wq_pool_mutex);
5301 
5302 	WARN_ON_ONCE(workqueue_freezing);
5303 	workqueue_freezing = true;
5304 
5305 	list_for_each_entry(wq, &workqueues, list) {
5306 		mutex_lock(&wq->mutex);
5307 		for_each_pwq(pwq, wq)
5308 			pwq_adjust_max_active(pwq);
5309 		mutex_unlock(&wq->mutex);
5310 	}
5311 
5312 	mutex_unlock(&wq_pool_mutex);
5313 }
5314 
5315 /**
5316  * freeze_workqueues_busy - are freezable workqueues still busy?
5317  *
5318  * Check whether freezing is complete.  This function must be called
5319  * between freeze_workqueues_begin() and thaw_workqueues().
5320  *
5321  * CONTEXT:
5322  * Grabs and releases wq_pool_mutex.
5323  *
5324  * Return:
5325  * %true if some freezable workqueues are still busy.  %false if freezing
5326  * is complete.
5327  */
freeze_workqueues_busy(void)5328 bool freeze_workqueues_busy(void)
5329 {
5330 	bool busy = false;
5331 	struct workqueue_struct *wq;
5332 	struct pool_workqueue *pwq;
5333 
5334 	mutex_lock(&wq_pool_mutex);
5335 
5336 	WARN_ON_ONCE(!workqueue_freezing);
5337 
5338 	list_for_each_entry(wq, &workqueues, list) {
5339 		if (!(wq->flags & WQ_FREEZABLE))
5340 			continue;
5341 		/*
5342 		 * nr_active is monotonically decreasing.  It's safe
5343 		 * to peek without lock.
5344 		 */
5345 		rcu_read_lock();
5346 		for_each_pwq(pwq, wq) {
5347 			WARN_ON_ONCE(pwq->nr_active < 0);
5348 			if (pwq->nr_active) {
5349 				busy = true;
5350 				rcu_read_unlock();
5351 				goto out_unlock;
5352 			}
5353 		}
5354 		rcu_read_unlock();
5355 	}
5356 out_unlock:
5357 	mutex_unlock(&wq_pool_mutex);
5358 	return busy;
5359 }
5360 
5361 /**
5362  * thaw_workqueues - thaw workqueues
5363  *
5364  * Thaw workqueues.  Normal queueing is restored and all collected
5365  * frozen works are transferred to their respective pool worklists.
5366  *
5367  * CONTEXT:
5368  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5369  */
thaw_workqueues(void)5370 void thaw_workqueues(void)
5371 {
5372 	struct workqueue_struct *wq;
5373 	struct pool_workqueue *pwq;
5374 
5375 	mutex_lock(&wq_pool_mutex);
5376 
5377 	if (!workqueue_freezing)
5378 		goto out_unlock;
5379 
5380 	workqueue_freezing = false;
5381 
5382 	/* restore max_active and repopulate worklist */
5383 	list_for_each_entry(wq, &workqueues, list) {
5384 		mutex_lock(&wq->mutex);
5385 		for_each_pwq(pwq, wq)
5386 			pwq_adjust_max_active(pwq);
5387 		mutex_unlock(&wq->mutex);
5388 	}
5389 
5390 out_unlock:
5391 	mutex_unlock(&wq_pool_mutex);
5392 }
5393 #endif /* CONFIG_FREEZER */
5394 
workqueue_apply_unbound_cpumask(void)5395 static int workqueue_apply_unbound_cpumask(void)
5396 {
5397 	LIST_HEAD(ctxs);
5398 	int ret = 0;
5399 	struct workqueue_struct *wq;
5400 	struct apply_wqattrs_ctx *ctx, *n;
5401 
5402 	lockdep_assert_held(&wq_pool_mutex);
5403 
5404 	list_for_each_entry(wq, &workqueues, list) {
5405 		if (!(wq->flags & WQ_UNBOUND))
5406 			continue;
5407 
5408 		/* creating multiple pwqs breaks ordering guarantee */
5409 		if (!list_empty(&wq->pwqs)) {
5410 			if (wq->flags & __WQ_ORDERED_EXPLICIT)
5411 				continue;
5412 			wq->flags &= ~__WQ_ORDERED;
5413 		}
5414 
5415 		ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5416 		if (!ctx) {
5417 			ret = -ENOMEM;
5418 			break;
5419 		}
5420 
5421 		list_add_tail(&ctx->list, &ctxs);
5422 	}
5423 
5424 	list_for_each_entry_safe(ctx, n, &ctxs, list) {
5425 		if (!ret)
5426 			apply_wqattrs_commit(ctx);
5427 		apply_wqattrs_cleanup(ctx);
5428 	}
5429 
5430 	return ret;
5431 }
5432 
5433 /**
5434  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5435  *  @cpumask: the cpumask to set
5436  *
5437  *  The low-level workqueues cpumask is a global cpumask that limits
5438  *  the affinity of all unbound workqueues.  This function check the @cpumask
5439  *  and apply it to all unbound workqueues and updates all pwqs of them.
5440  *
5441  *  Return:	0	- Success
5442  *  		-EINVAL	- Invalid @cpumask
5443  *  		-ENOMEM	- Failed to allocate memory for attrs or pwqs.
5444  */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5445 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5446 {
5447 	int ret = -EINVAL;
5448 	cpumask_var_t saved_cpumask;
5449 
5450 	/*
5451 	 * Not excluding isolated cpus on purpose.
5452 	 * If the user wishes to include them, we allow that.
5453 	 */
5454 	cpumask_and(cpumask, cpumask, cpu_possible_mask);
5455 	if (!cpumask_empty(cpumask)) {
5456 		apply_wqattrs_lock();
5457 		if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5458 			ret = 0;
5459 			goto out_unlock;
5460 		}
5461 
5462 		if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5463 			ret = -ENOMEM;
5464 			goto out_unlock;
5465 		}
5466 
5467 		/* save the old wq_unbound_cpumask. */
5468 		cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5469 
5470 		/* update wq_unbound_cpumask at first and apply it to wqs. */
5471 		cpumask_copy(wq_unbound_cpumask, cpumask);
5472 		ret = workqueue_apply_unbound_cpumask();
5473 
5474 		/* restore the wq_unbound_cpumask when failed. */
5475 		if (ret < 0)
5476 			cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5477 
5478 		free_cpumask_var(saved_cpumask);
5479 out_unlock:
5480 		apply_wqattrs_unlock();
5481 	}
5482 
5483 	return ret;
5484 }
5485 
5486 #ifdef CONFIG_SYSFS
5487 /*
5488  * Workqueues with WQ_SYSFS flag set is visible to userland via
5489  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
5490  * following attributes.
5491  *
5492  *  per_cpu	RO bool	: whether the workqueue is per-cpu or unbound
5493  *  max_active	RW int	: maximum number of in-flight work items
5494  *
5495  * Unbound workqueues have the following extra attributes.
5496  *
5497  *  pool_ids	RO int	: the associated pool IDs for each node
5498  *  nice	RW int	: nice value of the workers
5499  *  cpumask	RW mask	: bitmask of allowed CPUs for the workers
5500  *  numa	RW bool	: whether enable NUMA affinity
5501  */
5502 struct wq_device {
5503 	struct workqueue_struct		*wq;
5504 	struct device			dev;
5505 };
5506 
dev_to_wq(struct device * dev)5507 static struct workqueue_struct *dev_to_wq(struct device *dev)
5508 {
5509 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5510 
5511 	return wq_dev->wq;
5512 }
5513 
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5514 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5515 			    char *buf)
5516 {
5517 	struct workqueue_struct *wq = dev_to_wq(dev);
5518 
5519 	return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5520 }
5521 static DEVICE_ATTR_RO(per_cpu);
5522 
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5523 static ssize_t max_active_show(struct device *dev,
5524 			       struct device_attribute *attr, char *buf)
5525 {
5526 	struct workqueue_struct *wq = dev_to_wq(dev);
5527 
5528 	return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5529 }
5530 
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5531 static ssize_t max_active_store(struct device *dev,
5532 				struct device_attribute *attr, const char *buf,
5533 				size_t count)
5534 {
5535 	struct workqueue_struct *wq = dev_to_wq(dev);
5536 	int val;
5537 
5538 	if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5539 		return -EINVAL;
5540 
5541 	workqueue_set_max_active(wq, val);
5542 	return count;
5543 }
5544 static DEVICE_ATTR_RW(max_active);
5545 
5546 static struct attribute *wq_sysfs_attrs[] = {
5547 	&dev_attr_per_cpu.attr,
5548 	&dev_attr_max_active.attr,
5549 	NULL,
5550 };
5551 ATTRIBUTE_GROUPS(wq_sysfs);
5552 
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5553 static ssize_t wq_pool_ids_show(struct device *dev,
5554 				struct device_attribute *attr, char *buf)
5555 {
5556 	struct workqueue_struct *wq = dev_to_wq(dev);
5557 	const char *delim = "";
5558 	int node, written = 0;
5559 
5560 	cpus_read_lock();
5561 	rcu_read_lock();
5562 	for_each_node(node) {
5563 		written += scnprintf(buf + written, PAGE_SIZE - written,
5564 				     "%s%d:%d", delim, node,
5565 				     unbound_pwq_by_node(wq, node)->pool->id);
5566 		delim = " ";
5567 	}
5568 	written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5569 	rcu_read_unlock();
5570 	cpus_read_unlock();
5571 
5572 	return written;
5573 }
5574 
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5575 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5576 			    char *buf)
5577 {
5578 	struct workqueue_struct *wq = dev_to_wq(dev);
5579 	int written;
5580 
5581 	mutex_lock(&wq->mutex);
5582 	written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5583 	mutex_unlock(&wq->mutex);
5584 
5585 	return written;
5586 }
5587 
5588 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5589 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5590 {
5591 	struct workqueue_attrs *attrs;
5592 
5593 	lockdep_assert_held(&wq_pool_mutex);
5594 
5595 	attrs = alloc_workqueue_attrs();
5596 	if (!attrs)
5597 		return NULL;
5598 
5599 	copy_workqueue_attrs(attrs, wq->unbound_attrs);
5600 	return attrs;
5601 }
5602 
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5603 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5604 			     const char *buf, size_t count)
5605 {
5606 	struct workqueue_struct *wq = dev_to_wq(dev);
5607 	struct workqueue_attrs *attrs;
5608 	int ret = -ENOMEM;
5609 
5610 	apply_wqattrs_lock();
5611 
5612 	attrs = wq_sysfs_prep_attrs(wq);
5613 	if (!attrs)
5614 		goto out_unlock;
5615 
5616 	if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5617 	    attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5618 		ret = apply_workqueue_attrs_locked(wq, attrs);
5619 	else
5620 		ret = -EINVAL;
5621 
5622 out_unlock:
5623 	apply_wqattrs_unlock();
5624 	free_workqueue_attrs(attrs);
5625 	return ret ?: count;
5626 }
5627 
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5628 static ssize_t wq_cpumask_show(struct device *dev,
5629 			       struct device_attribute *attr, char *buf)
5630 {
5631 	struct workqueue_struct *wq = dev_to_wq(dev);
5632 	int written;
5633 
5634 	mutex_lock(&wq->mutex);
5635 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5636 			    cpumask_pr_args(wq->unbound_attrs->cpumask));
5637 	mutex_unlock(&wq->mutex);
5638 	return written;
5639 }
5640 
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5641 static ssize_t wq_cpumask_store(struct device *dev,
5642 				struct device_attribute *attr,
5643 				const char *buf, size_t count)
5644 {
5645 	struct workqueue_struct *wq = dev_to_wq(dev);
5646 	struct workqueue_attrs *attrs;
5647 	int ret = -ENOMEM;
5648 
5649 	apply_wqattrs_lock();
5650 
5651 	attrs = wq_sysfs_prep_attrs(wq);
5652 	if (!attrs)
5653 		goto out_unlock;
5654 
5655 	ret = cpumask_parse(buf, attrs->cpumask);
5656 	if (!ret)
5657 		ret = apply_workqueue_attrs_locked(wq, attrs);
5658 
5659 out_unlock:
5660 	apply_wqattrs_unlock();
5661 	free_workqueue_attrs(attrs);
5662 	return ret ?: count;
5663 }
5664 
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5665 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5666 			    char *buf)
5667 {
5668 	struct workqueue_struct *wq = dev_to_wq(dev);
5669 	int written;
5670 
5671 	mutex_lock(&wq->mutex);
5672 	written = scnprintf(buf, PAGE_SIZE, "%d\n",
5673 			    !wq->unbound_attrs->no_numa);
5674 	mutex_unlock(&wq->mutex);
5675 
5676 	return written;
5677 }
5678 
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5679 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5680 			     const char *buf, size_t count)
5681 {
5682 	struct workqueue_struct *wq = dev_to_wq(dev);
5683 	struct workqueue_attrs *attrs;
5684 	int v, ret = -ENOMEM;
5685 
5686 	apply_wqattrs_lock();
5687 
5688 	attrs = wq_sysfs_prep_attrs(wq);
5689 	if (!attrs)
5690 		goto out_unlock;
5691 
5692 	ret = -EINVAL;
5693 	if (sscanf(buf, "%d", &v) == 1) {
5694 		attrs->no_numa = !v;
5695 		ret = apply_workqueue_attrs_locked(wq, attrs);
5696 	}
5697 
5698 out_unlock:
5699 	apply_wqattrs_unlock();
5700 	free_workqueue_attrs(attrs);
5701 	return ret ?: count;
5702 }
5703 
5704 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5705 	__ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5706 	__ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5707 	__ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5708 	__ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5709 	__ATTR_NULL,
5710 };
5711 
5712 static struct bus_type wq_subsys = {
5713 	.name				= "workqueue",
5714 	.dev_groups			= wq_sysfs_groups,
5715 };
5716 
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5717 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5718 		struct device_attribute *attr, char *buf)
5719 {
5720 	int written;
5721 
5722 	mutex_lock(&wq_pool_mutex);
5723 	written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5724 			    cpumask_pr_args(wq_unbound_cpumask));
5725 	mutex_unlock(&wq_pool_mutex);
5726 
5727 	return written;
5728 }
5729 
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5730 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5731 		struct device_attribute *attr, const char *buf, size_t count)
5732 {
5733 	cpumask_var_t cpumask;
5734 	int ret;
5735 
5736 	if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5737 		return -ENOMEM;
5738 
5739 	ret = cpumask_parse(buf, cpumask);
5740 	if (!ret)
5741 		ret = workqueue_set_unbound_cpumask(cpumask);
5742 
5743 	free_cpumask_var(cpumask);
5744 	return ret ? ret : count;
5745 }
5746 
5747 static struct device_attribute wq_sysfs_cpumask_attr =
5748 	__ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5749 	       wq_unbound_cpumask_store);
5750 
wq_sysfs_init(void)5751 static int __init wq_sysfs_init(void)
5752 {
5753 	int err;
5754 
5755 	err = subsys_virtual_register(&wq_subsys, NULL);
5756 	if (err)
5757 		return err;
5758 
5759 	return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5760 }
5761 core_initcall(wq_sysfs_init);
5762 
wq_device_release(struct device * dev)5763 static void wq_device_release(struct device *dev)
5764 {
5765 	struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5766 
5767 	kfree(wq_dev);
5768 }
5769 
5770 /**
5771  * workqueue_sysfs_register - make a workqueue visible in sysfs
5772  * @wq: the workqueue to register
5773  *
5774  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5775  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5776  * which is the preferred method.
5777  *
5778  * Workqueue user should use this function directly iff it wants to apply
5779  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5780  * apply_workqueue_attrs() may race against userland updating the
5781  * attributes.
5782  *
5783  * Return: 0 on success, -errno on failure.
5784  */
workqueue_sysfs_register(struct workqueue_struct * wq)5785 int workqueue_sysfs_register(struct workqueue_struct *wq)
5786 {
5787 	struct wq_device *wq_dev;
5788 	int ret;
5789 
5790 	/*
5791 	 * Adjusting max_active or creating new pwqs by applying
5792 	 * attributes breaks ordering guarantee.  Disallow exposing ordered
5793 	 * workqueues.
5794 	 */
5795 	if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5796 		return -EINVAL;
5797 
5798 	wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5799 	if (!wq_dev)
5800 		return -ENOMEM;
5801 
5802 	wq_dev->wq = wq;
5803 	wq_dev->dev.bus = &wq_subsys;
5804 	wq_dev->dev.release = wq_device_release;
5805 	dev_set_name(&wq_dev->dev, "%s", wq->name);
5806 
5807 	/*
5808 	 * unbound_attrs are created separately.  Suppress uevent until
5809 	 * everything is ready.
5810 	 */
5811 	dev_set_uevent_suppress(&wq_dev->dev, true);
5812 
5813 	ret = device_register(&wq_dev->dev);
5814 	if (ret) {
5815 		put_device(&wq_dev->dev);
5816 		wq->wq_dev = NULL;
5817 		return ret;
5818 	}
5819 
5820 	if (wq->flags & WQ_UNBOUND) {
5821 		struct device_attribute *attr;
5822 
5823 		for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5824 			ret = device_create_file(&wq_dev->dev, attr);
5825 			if (ret) {
5826 				device_unregister(&wq_dev->dev);
5827 				wq->wq_dev = NULL;
5828 				return ret;
5829 			}
5830 		}
5831 	}
5832 
5833 	dev_set_uevent_suppress(&wq_dev->dev, false);
5834 	kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5835 	return 0;
5836 }
5837 
5838 /**
5839  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5840  * @wq: the workqueue to unregister
5841  *
5842  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5843  */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5844 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5845 {
5846 	struct wq_device *wq_dev = wq->wq_dev;
5847 
5848 	if (!wq->wq_dev)
5849 		return;
5850 
5851 	wq->wq_dev = NULL;
5852 	device_unregister(&wq_dev->dev);
5853 }
5854 #else	/* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5855 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)	{ }
5856 #endif	/* CONFIG_SYSFS */
5857 
5858 /*
5859  * Workqueue watchdog.
5860  *
5861  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5862  * flush dependency, a concurrency managed work item which stays RUNNING
5863  * indefinitely.  Workqueue stalls can be very difficult to debug as the
5864  * usual warning mechanisms don't trigger and internal workqueue state is
5865  * largely opaque.
5866  *
5867  * Workqueue watchdog monitors all worker pools periodically and dumps
5868  * state if some pools failed to make forward progress for a while where
5869  * forward progress is defined as the first item on ->worklist changing.
5870  *
5871  * This mechanism is controlled through the kernel parameter
5872  * "workqueue.watchdog_thresh" which can be updated at runtime through the
5873  * corresponding sysfs parameter file.
5874  */
5875 #ifdef CONFIG_WQ_WATCHDOG
5876 
5877 static unsigned long wq_watchdog_thresh = 30;
5878 static struct timer_list wq_watchdog_timer;
5879 
5880 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5881 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5882 
wq_watchdog_reset_touched(void)5883 static void wq_watchdog_reset_touched(void)
5884 {
5885 	int cpu;
5886 
5887 	wq_watchdog_touched = jiffies;
5888 	for_each_possible_cpu(cpu)
5889 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5890 }
5891 
wq_watchdog_timer_fn(struct timer_list * unused)5892 static void wq_watchdog_timer_fn(struct timer_list *unused)
5893 {
5894 	unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5895 	bool lockup_detected = false;
5896 	unsigned long now = jiffies;
5897 	struct worker_pool *pool;
5898 	int pi;
5899 
5900 	if (!thresh)
5901 		return;
5902 
5903 	rcu_read_lock();
5904 
5905 	for_each_pool(pool, pi) {
5906 		unsigned long pool_ts, touched, ts;
5907 
5908 		if (list_empty(&pool->worklist))
5909 			continue;
5910 
5911 		/*
5912 		 * If a virtual machine is stopped by the host it can look to
5913 		 * the watchdog like a stall.
5914 		 */
5915 		kvm_check_and_clear_guest_paused();
5916 
5917 		/* get the latest of pool and touched timestamps */
5918 		if (pool->cpu >= 0)
5919 			touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
5920 		else
5921 			touched = READ_ONCE(wq_watchdog_touched);
5922 		pool_ts = READ_ONCE(pool->watchdog_ts);
5923 
5924 		if (time_after(pool_ts, touched))
5925 			ts = pool_ts;
5926 		else
5927 			ts = touched;
5928 
5929 		/* did we stall? */
5930 		if (time_after(now, ts + thresh)) {
5931 			lockup_detected = true;
5932 			pr_emerg("BUG: workqueue lockup - pool");
5933 			pr_cont_pool_info(pool);
5934 			pr_cont(" stuck for %us!\n",
5935 				jiffies_to_msecs(now - pool_ts) / 1000);
5936 			trace_android_vh_wq_lockup_pool(pool->cpu, pool_ts);
5937 		}
5938 	}
5939 
5940 	rcu_read_unlock();
5941 
5942 	if (lockup_detected)
5943 		show_all_workqueues();
5944 
5945 	wq_watchdog_reset_touched();
5946 	mod_timer(&wq_watchdog_timer, jiffies + thresh);
5947 }
5948 
wq_watchdog_touch(int cpu)5949 notrace void wq_watchdog_touch(int cpu)
5950 {
5951 	if (cpu >= 0)
5952 		per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5953 
5954 	wq_watchdog_touched = jiffies;
5955 }
5956 
wq_watchdog_set_thresh(unsigned long thresh)5957 static void wq_watchdog_set_thresh(unsigned long thresh)
5958 {
5959 	wq_watchdog_thresh = 0;
5960 	del_timer_sync(&wq_watchdog_timer);
5961 
5962 	if (thresh) {
5963 		wq_watchdog_thresh = thresh;
5964 		wq_watchdog_reset_touched();
5965 		mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5966 	}
5967 }
5968 
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5969 static int wq_watchdog_param_set_thresh(const char *val,
5970 					const struct kernel_param *kp)
5971 {
5972 	unsigned long thresh;
5973 	int ret;
5974 
5975 	ret = kstrtoul(val, 0, &thresh);
5976 	if (ret)
5977 		return ret;
5978 
5979 	if (system_wq)
5980 		wq_watchdog_set_thresh(thresh);
5981 	else
5982 		wq_watchdog_thresh = thresh;
5983 
5984 	return 0;
5985 }
5986 
5987 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5988 	.set	= wq_watchdog_param_set_thresh,
5989 	.get	= param_get_ulong,
5990 };
5991 
5992 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5993 		0644);
5994 
wq_watchdog_init(void)5995 static void wq_watchdog_init(void)
5996 {
5997 	timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5998 	wq_watchdog_set_thresh(wq_watchdog_thresh);
5999 }
6000 
6001 #else	/* CONFIG_WQ_WATCHDOG */
6002 
wq_watchdog_init(void)6003 static inline void wq_watchdog_init(void) { }
6004 
6005 #endif	/* CONFIG_WQ_WATCHDOG */
6006 
wq_numa_init(void)6007 static void __init wq_numa_init(void)
6008 {
6009 	cpumask_var_t *tbl;
6010 	int node, cpu;
6011 
6012 	if (num_possible_nodes() <= 1)
6013 		return;
6014 
6015 	if (wq_disable_numa) {
6016 		pr_info("workqueue: NUMA affinity support disabled\n");
6017 		return;
6018 	}
6019 
6020 	for_each_possible_cpu(cpu) {
6021 		if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
6022 			pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
6023 			return;
6024 		}
6025 	}
6026 
6027 	wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
6028 	BUG_ON(!wq_update_unbound_numa_attrs_buf);
6029 
6030 	/*
6031 	 * We want masks of possible CPUs of each node which isn't readily
6032 	 * available.  Build one from cpu_to_node() which should have been
6033 	 * fully initialized by now.
6034 	 */
6035 	tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
6036 	BUG_ON(!tbl);
6037 
6038 	for_each_node(node)
6039 		BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
6040 				node_online(node) ? node : NUMA_NO_NODE));
6041 
6042 	for_each_possible_cpu(cpu) {
6043 		node = cpu_to_node(cpu);
6044 		cpumask_set_cpu(cpu, tbl[node]);
6045 	}
6046 
6047 	wq_numa_possible_cpumask = tbl;
6048 	wq_numa_enabled = true;
6049 }
6050 
6051 /**
6052  * workqueue_init_early - early init for workqueue subsystem
6053  *
6054  * This is the first half of two-staged workqueue subsystem initialization
6055  * and invoked as soon as the bare basics - memory allocation, cpumasks and
6056  * idr are up.  It sets up all the data structures and system workqueues
6057  * and allows early boot code to create workqueues and queue/cancel work
6058  * items.  Actual work item execution starts only after kthreads can be
6059  * created and scheduled right before early initcalls.
6060  */
workqueue_init_early(void)6061 void __init workqueue_init_early(void)
6062 {
6063 	int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
6064 	int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
6065 	int i, cpu;
6066 
6067 	BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
6068 
6069 	BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
6070 	cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
6071 
6072 	pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
6073 
6074 	/* initialize CPU pools */
6075 	for_each_possible_cpu(cpu) {
6076 		struct worker_pool *pool;
6077 
6078 		i = 0;
6079 		for_each_cpu_worker_pool(pool, cpu) {
6080 			BUG_ON(init_worker_pool(pool));
6081 			pool->cpu = cpu;
6082 			cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
6083 			pool->attrs->nice = std_nice[i++];
6084 			pool->node = cpu_to_node(cpu);
6085 
6086 			/* alloc pool ID */
6087 			mutex_lock(&wq_pool_mutex);
6088 			BUG_ON(worker_pool_assign_id(pool));
6089 			mutex_unlock(&wq_pool_mutex);
6090 		}
6091 	}
6092 
6093 	/* create default unbound and ordered wq attrs */
6094 	for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
6095 		struct workqueue_attrs *attrs;
6096 
6097 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6098 		attrs->nice = std_nice[i];
6099 		unbound_std_wq_attrs[i] = attrs;
6100 
6101 		/*
6102 		 * An ordered wq should have only one pwq as ordering is
6103 		 * guaranteed by max_active which is enforced by pwqs.
6104 		 * Turn off NUMA so that dfl_pwq is used for all nodes.
6105 		 */
6106 		BUG_ON(!(attrs = alloc_workqueue_attrs()));
6107 		attrs->nice = std_nice[i];
6108 		attrs->no_numa = true;
6109 		ordered_wq_attrs[i] = attrs;
6110 	}
6111 
6112 	system_wq = alloc_workqueue("events", 0, 0);
6113 	system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6114 	system_long_wq = alloc_workqueue("events_long", 0, 0);
6115 	system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6116 					    WQ_UNBOUND_MAX_ACTIVE);
6117 	system_freezable_wq = alloc_workqueue("events_freezable",
6118 					      WQ_FREEZABLE, 0);
6119 	system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6120 					      WQ_POWER_EFFICIENT, 0);
6121 	system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6122 					      WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6123 					      0);
6124 	BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6125 	       !system_unbound_wq || !system_freezable_wq ||
6126 	       !system_power_efficient_wq ||
6127 	       !system_freezable_power_efficient_wq);
6128 }
6129 
6130 /**
6131  * workqueue_init - bring workqueue subsystem fully online
6132  *
6133  * This is the latter half of two-staged workqueue subsystem initialization
6134  * and invoked as soon as kthreads can be created and scheduled.
6135  * Workqueues have been created and work items queued on them, but there
6136  * are no kworkers executing the work items yet.  Populate the worker pools
6137  * with the initial workers and enable future kworker creations.
6138  */
workqueue_init(void)6139 void __init workqueue_init(void)
6140 {
6141 	struct workqueue_struct *wq;
6142 	struct worker_pool *pool;
6143 	int cpu, bkt;
6144 
6145 	/*
6146 	 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6147 	 * CPU to node mapping may not be available that early on some
6148 	 * archs such as power and arm64.  As per-cpu pools created
6149 	 * previously could be missing node hint and unbound pools NUMA
6150 	 * affinity, fix them up.
6151 	 *
6152 	 * Also, while iterating workqueues, create rescuers if requested.
6153 	 */
6154 	wq_numa_init();
6155 
6156 	mutex_lock(&wq_pool_mutex);
6157 
6158 	for_each_possible_cpu(cpu) {
6159 		for_each_cpu_worker_pool(pool, cpu) {
6160 			pool->node = cpu_to_node(cpu);
6161 		}
6162 	}
6163 
6164 	list_for_each_entry(wq, &workqueues, list) {
6165 		wq_update_unbound_numa(wq, smp_processor_id(), true);
6166 		WARN(init_rescuer(wq),
6167 		     "workqueue: failed to create early rescuer for %s",
6168 		     wq->name);
6169 	}
6170 
6171 	mutex_unlock(&wq_pool_mutex);
6172 
6173 	/* create the initial workers */
6174 	for_each_online_cpu(cpu) {
6175 		for_each_cpu_worker_pool(pool, cpu) {
6176 			pool->flags &= ~POOL_DISASSOCIATED;
6177 			BUG_ON(!create_worker(pool));
6178 		}
6179 	}
6180 
6181 	hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6182 		BUG_ON(!create_worker(pool));
6183 
6184 	wq_online = true;
6185 	wq_watchdog_init();
6186 }
6187