• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "volumes.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32 
33 static struct kmem_cache *extent_state_cache;
34 static struct kmem_cache *extent_buffer_cache;
35 static struct bio_set btrfs_bioset;
36 
extent_state_in_tree(const struct extent_state * state)37 static inline bool extent_state_in_tree(const struct extent_state *state)
38 {
39 	return !RB_EMPTY_NODE(&state->rb_node);
40 }
41 
42 #ifdef CONFIG_BTRFS_DEBUG
43 static LIST_HEAD(states);
44 static DEFINE_SPINLOCK(leak_lock);
45 
btrfs_leak_debug_add(spinlock_t * lock,struct list_head * new,struct list_head * head)46 static inline void btrfs_leak_debug_add(spinlock_t *lock,
47 					struct list_head *new,
48 					struct list_head *head)
49 {
50 	unsigned long flags;
51 
52 	spin_lock_irqsave(lock, flags);
53 	list_add(new, head);
54 	spin_unlock_irqrestore(lock, flags);
55 }
56 
btrfs_leak_debug_del(spinlock_t * lock,struct list_head * entry)57 static inline void btrfs_leak_debug_del(spinlock_t *lock,
58 					struct list_head *entry)
59 {
60 	unsigned long flags;
61 
62 	spin_lock_irqsave(lock, flags);
63 	list_del(entry);
64 	spin_unlock_irqrestore(lock, flags);
65 }
66 
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)67 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
68 {
69 	struct extent_buffer *eb;
70 	unsigned long flags;
71 
72 	/*
73 	 * If we didn't get into open_ctree our allocated_ebs will not be
74 	 * initialized, so just skip this.
75 	 */
76 	if (!fs_info->allocated_ebs.next)
77 		return;
78 
79 	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
80 	while (!list_empty(&fs_info->allocated_ebs)) {
81 		eb = list_first_entry(&fs_info->allocated_ebs,
82 				      struct extent_buffer, leak_list);
83 		pr_err(
84 	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
85 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
86 		       btrfs_header_owner(eb));
87 		list_del(&eb->leak_list);
88 		kmem_cache_free(extent_buffer_cache, eb);
89 	}
90 	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 }
92 
btrfs_extent_state_leak_debug_check(void)93 static inline void btrfs_extent_state_leak_debug_check(void)
94 {
95 	struct extent_state *state;
96 
97 	while (!list_empty(&states)) {
98 		state = list_entry(states.next, struct extent_state, leak_list);
99 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
100 		       state->start, state->end, state->state,
101 		       extent_state_in_tree(state),
102 		       refcount_read(&state->refs));
103 		list_del(&state->leak_list);
104 		kmem_cache_free(extent_state_cache, state);
105 	}
106 }
107 
108 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
109 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)110 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
111 		struct extent_io_tree *tree, u64 start, u64 end)
112 {
113 	struct inode *inode = tree->private_data;
114 	u64 isize;
115 
116 	if (!inode || !is_data_inode(inode))
117 		return;
118 
119 	isize = i_size_read(inode);
120 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
121 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
122 		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
123 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
124 	}
125 }
126 #else
127 #define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
128 #define btrfs_leak_debug_del(lock, entry)	do {} while (0)
129 #define btrfs_extent_state_leak_debug_check()	do {} while (0)
130 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
131 #endif
132 
133 struct tree_entry {
134 	u64 start;
135 	u64 end;
136 	struct rb_node rb_node;
137 };
138 
139 struct extent_page_data {
140 	struct btrfs_bio_ctrl bio_ctrl;
141 	/* tells writepage not to lock the state bits for this range
142 	 * it still does the unlocking
143 	 */
144 	unsigned int extent_locked:1;
145 
146 	/* tells the submit_bio code to use REQ_SYNC */
147 	unsigned int sync_io:1;
148 };
149 
add_extent_changeset(struct extent_state * state,u32 bits,struct extent_changeset * changeset,int set)150 static int add_extent_changeset(struct extent_state *state, u32 bits,
151 				 struct extent_changeset *changeset,
152 				 int set)
153 {
154 	int ret;
155 
156 	if (!changeset)
157 		return 0;
158 	if (set && (state->state & bits) == bits)
159 		return 0;
160 	if (!set && (state->state & bits) == 0)
161 		return 0;
162 	changeset->bytes_changed += state->end - state->start + 1;
163 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
164 			GFP_ATOMIC);
165 	return ret;
166 }
167 
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)168 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
169 				unsigned long bio_flags)
170 {
171 	blk_status_t ret = 0;
172 	struct extent_io_tree *tree = bio->bi_private;
173 
174 	bio->bi_private = NULL;
175 
176 	/* Caller should ensure the bio has at least some range added */
177 	ASSERT(bio->bi_iter.bi_size);
178 	if (is_data_inode(tree->private_data))
179 		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
180 					    bio_flags);
181 	else
182 		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
183 						mirror_num, bio_flags);
184 
185 	return blk_status_to_errno(ret);
186 }
187 
188 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)189 static void end_write_bio(struct extent_page_data *epd, int ret)
190 {
191 	struct bio *bio = epd->bio_ctrl.bio;
192 
193 	if (bio) {
194 		bio->bi_status = errno_to_blk_status(ret);
195 		bio_endio(bio);
196 		epd->bio_ctrl.bio = NULL;
197 	}
198 }
199 
200 /*
201  * Submit bio from extent page data via submit_one_bio
202  *
203  * Return 0 if everything is OK.
204  * Return <0 for error.
205  */
flush_write_bio(struct extent_page_data * epd)206 static int __must_check flush_write_bio(struct extent_page_data *epd)
207 {
208 	int ret = 0;
209 	struct bio *bio = epd->bio_ctrl.bio;
210 
211 	if (bio) {
212 		ret = submit_one_bio(bio, 0, 0);
213 		/*
214 		 * Clean up of epd->bio is handled by its endio function.
215 		 * And endio is either triggered by successful bio execution
216 		 * or the error handler of submit bio hook.
217 		 * So at this point, no matter what happened, we don't need
218 		 * to clean up epd->bio.
219 		 */
220 		epd->bio_ctrl.bio = NULL;
221 	}
222 	return ret;
223 }
224 
extent_state_cache_init(void)225 int __init extent_state_cache_init(void)
226 {
227 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
228 			sizeof(struct extent_state), 0,
229 			SLAB_MEM_SPREAD, NULL);
230 	if (!extent_state_cache)
231 		return -ENOMEM;
232 	return 0;
233 }
234 
extent_io_init(void)235 int __init extent_io_init(void)
236 {
237 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
238 			sizeof(struct extent_buffer), 0,
239 			SLAB_MEM_SPREAD, NULL);
240 	if (!extent_buffer_cache)
241 		return -ENOMEM;
242 
243 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
244 			offsetof(struct btrfs_io_bio, bio),
245 			BIOSET_NEED_BVECS))
246 		goto free_buffer_cache;
247 
248 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
249 		goto free_bioset;
250 
251 	return 0;
252 
253 free_bioset:
254 	bioset_exit(&btrfs_bioset);
255 
256 free_buffer_cache:
257 	kmem_cache_destroy(extent_buffer_cache);
258 	extent_buffer_cache = NULL;
259 	return -ENOMEM;
260 }
261 
extent_state_cache_exit(void)262 void __cold extent_state_cache_exit(void)
263 {
264 	btrfs_extent_state_leak_debug_check();
265 	kmem_cache_destroy(extent_state_cache);
266 }
267 
extent_io_exit(void)268 void __cold extent_io_exit(void)
269 {
270 	/*
271 	 * Make sure all delayed rcu free are flushed before we
272 	 * destroy caches.
273 	 */
274 	rcu_barrier();
275 	kmem_cache_destroy(extent_buffer_cache);
276 	bioset_exit(&btrfs_bioset);
277 }
278 
279 /*
280  * For the file_extent_tree, we want to hold the inode lock when we lookup and
281  * update the disk_i_size, but lockdep will complain because our io_tree we hold
282  * the tree lock and get the inode lock when setting delalloc.  These two things
283  * are unrelated, so make a class for the file_extent_tree so we don't get the
284  * two locking patterns mixed up.
285  */
286 static struct lock_class_key file_extent_tree_class;
287 
extent_io_tree_init(struct btrfs_fs_info * fs_info,struct extent_io_tree * tree,unsigned int owner,void * private_data)288 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
289 			 struct extent_io_tree *tree, unsigned int owner,
290 			 void *private_data)
291 {
292 	tree->fs_info = fs_info;
293 	tree->state = RB_ROOT;
294 	tree->dirty_bytes = 0;
295 	spin_lock_init(&tree->lock);
296 	tree->private_data = private_data;
297 	tree->owner = owner;
298 	if (owner == IO_TREE_INODE_FILE_EXTENT)
299 		lockdep_set_class(&tree->lock, &file_extent_tree_class);
300 }
301 
extent_io_tree_release(struct extent_io_tree * tree)302 void extent_io_tree_release(struct extent_io_tree *tree)
303 {
304 	spin_lock(&tree->lock);
305 	/*
306 	 * Do a single barrier for the waitqueue_active check here, the state
307 	 * of the waitqueue should not change once extent_io_tree_release is
308 	 * called.
309 	 */
310 	smp_mb();
311 	while (!RB_EMPTY_ROOT(&tree->state)) {
312 		struct rb_node *node;
313 		struct extent_state *state;
314 
315 		node = rb_first(&tree->state);
316 		state = rb_entry(node, struct extent_state, rb_node);
317 		rb_erase(&state->rb_node, &tree->state);
318 		RB_CLEAR_NODE(&state->rb_node);
319 		/*
320 		 * btree io trees aren't supposed to have tasks waiting for
321 		 * changes in the flags of extent states ever.
322 		 */
323 		ASSERT(!waitqueue_active(&state->wq));
324 		free_extent_state(state);
325 
326 		cond_resched_lock(&tree->lock);
327 	}
328 	spin_unlock(&tree->lock);
329 }
330 
alloc_extent_state(gfp_t mask)331 static struct extent_state *alloc_extent_state(gfp_t mask)
332 {
333 	struct extent_state *state;
334 
335 	/*
336 	 * The given mask might be not appropriate for the slab allocator,
337 	 * drop the unsupported bits
338 	 */
339 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
340 	state = kmem_cache_alloc(extent_state_cache, mask);
341 	if (!state)
342 		return state;
343 	state->state = 0;
344 	state->failrec = NULL;
345 	RB_CLEAR_NODE(&state->rb_node);
346 	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
347 	refcount_set(&state->refs, 1);
348 	init_waitqueue_head(&state->wq);
349 	trace_alloc_extent_state(state, mask, _RET_IP_);
350 	return state;
351 }
352 
free_extent_state(struct extent_state * state)353 void free_extent_state(struct extent_state *state)
354 {
355 	if (!state)
356 		return;
357 	if (refcount_dec_and_test(&state->refs)) {
358 		WARN_ON(extent_state_in_tree(state));
359 		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
360 		trace_free_extent_state(state, _RET_IP_);
361 		kmem_cache_free(extent_state_cache, state);
362 	}
363 }
364 
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)365 static struct rb_node *tree_insert(struct rb_root *root,
366 				   struct rb_node *search_start,
367 				   u64 offset,
368 				   struct rb_node *node,
369 				   struct rb_node ***p_in,
370 				   struct rb_node **parent_in)
371 {
372 	struct rb_node **p;
373 	struct rb_node *parent = NULL;
374 	struct tree_entry *entry;
375 
376 	if (p_in && parent_in) {
377 		p = *p_in;
378 		parent = *parent_in;
379 		goto do_insert;
380 	}
381 
382 	p = search_start ? &search_start : &root->rb_node;
383 	while (*p) {
384 		parent = *p;
385 		entry = rb_entry(parent, struct tree_entry, rb_node);
386 
387 		if (offset < entry->start)
388 			p = &(*p)->rb_left;
389 		else if (offset > entry->end)
390 			p = &(*p)->rb_right;
391 		else
392 			return parent;
393 	}
394 
395 do_insert:
396 	rb_link_node(node, parent, p);
397 	rb_insert_color(node, root);
398 	return NULL;
399 }
400 
401 /**
402  * Search @tree for an entry that contains @offset. Such entry would have
403  * entry->start <= offset && entry->end >= offset.
404  *
405  * @tree:       the tree to search
406  * @offset:     offset that should fall within an entry in @tree
407  * @next_ret:   pointer to the first entry whose range ends after @offset
408  * @prev_ret:   pointer to the first entry whose range begins before @offset
409  * @p_ret:      pointer where new node should be anchored (used when inserting an
410  *	        entry in the tree)
411  * @parent_ret: points to entry which would have been the parent of the entry,
412  *               containing @offset
413  *
414  * This function returns a pointer to the entry that contains @offset byte
415  * address. If no such entry exists, then NULL is returned and the other
416  * pointer arguments to the function are filled, otherwise the found entry is
417  * returned and other pointers are left untouched.
418  */
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** next_ret,struct rb_node ** prev_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)419 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
420 				      struct rb_node **next_ret,
421 				      struct rb_node **prev_ret,
422 				      struct rb_node ***p_ret,
423 				      struct rb_node **parent_ret)
424 {
425 	struct rb_root *root = &tree->state;
426 	struct rb_node **n = &root->rb_node;
427 	struct rb_node *prev = NULL;
428 	struct rb_node *orig_prev = NULL;
429 	struct tree_entry *entry;
430 	struct tree_entry *prev_entry = NULL;
431 
432 	while (*n) {
433 		prev = *n;
434 		entry = rb_entry(prev, struct tree_entry, rb_node);
435 		prev_entry = entry;
436 
437 		if (offset < entry->start)
438 			n = &(*n)->rb_left;
439 		else if (offset > entry->end)
440 			n = &(*n)->rb_right;
441 		else
442 			return *n;
443 	}
444 
445 	if (p_ret)
446 		*p_ret = n;
447 	if (parent_ret)
448 		*parent_ret = prev;
449 
450 	if (next_ret) {
451 		orig_prev = prev;
452 		while (prev && offset > prev_entry->end) {
453 			prev = rb_next(prev);
454 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 		}
456 		*next_ret = prev;
457 		prev = orig_prev;
458 	}
459 
460 	if (prev_ret) {
461 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
462 		while (prev && offset < prev_entry->start) {
463 			prev = rb_prev(prev);
464 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
465 		}
466 		*prev_ret = prev;
467 	}
468 	return NULL;
469 }
470 
471 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)472 tree_search_for_insert(struct extent_io_tree *tree,
473 		       u64 offset,
474 		       struct rb_node ***p_ret,
475 		       struct rb_node **parent_ret)
476 {
477 	struct rb_node *next= NULL;
478 	struct rb_node *ret;
479 
480 	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
481 	if (!ret)
482 		return next;
483 	return ret;
484 }
485 
tree_search(struct extent_io_tree * tree,u64 offset)486 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
487 					  u64 offset)
488 {
489 	return tree_search_for_insert(tree, offset, NULL, NULL);
490 }
491 
492 /*
493  * utility function to look for merge candidates inside a given range.
494  * Any extents with matching state are merged together into a single
495  * extent in the tree.  Extents with EXTENT_IO in their state field
496  * are not merged because the end_io handlers need to be able to do
497  * operations on them without sleeping (or doing allocations/splits).
498  *
499  * This should be called with the tree lock held.
500  */
merge_state(struct extent_io_tree * tree,struct extent_state * state)501 static void merge_state(struct extent_io_tree *tree,
502 		        struct extent_state *state)
503 {
504 	struct extent_state *other;
505 	struct rb_node *other_node;
506 
507 	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
508 		return;
509 
510 	other_node = rb_prev(&state->rb_node);
511 	if (other_node) {
512 		other = rb_entry(other_node, struct extent_state, rb_node);
513 		if (other->end == state->start - 1 &&
514 		    other->state == state->state) {
515 			if (tree->private_data &&
516 			    is_data_inode(tree->private_data))
517 				btrfs_merge_delalloc_extent(tree->private_data,
518 							    state, other);
519 			state->start = other->start;
520 			rb_erase(&other->rb_node, &tree->state);
521 			RB_CLEAR_NODE(&other->rb_node);
522 			free_extent_state(other);
523 		}
524 	}
525 	other_node = rb_next(&state->rb_node);
526 	if (other_node) {
527 		other = rb_entry(other_node, struct extent_state, rb_node);
528 		if (other->start == state->end + 1 &&
529 		    other->state == state->state) {
530 			if (tree->private_data &&
531 			    is_data_inode(tree->private_data))
532 				btrfs_merge_delalloc_extent(tree->private_data,
533 							    state, other);
534 			state->end = other->end;
535 			rb_erase(&other->rb_node, &tree->state);
536 			RB_CLEAR_NODE(&other->rb_node);
537 			free_extent_state(other);
538 		}
539 	}
540 }
541 
542 static void set_state_bits(struct extent_io_tree *tree,
543 			   struct extent_state *state, u32 *bits,
544 			   struct extent_changeset *changeset);
545 
546 /*
547  * insert an extent_state struct into the tree.  'bits' are set on the
548  * struct before it is inserted.
549  *
550  * This may return -EEXIST if the extent is already there, in which case the
551  * state struct is freed.
552  *
553  * The tree lock is not taken internally.  This is a utility function and
554  * probably isn't what you want to call (see set/clear_extent_bit).
555  */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,u32 * bits,struct extent_changeset * changeset)556 static int insert_state(struct extent_io_tree *tree,
557 			struct extent_state *state, u64 start, u64 end,
558 			struct rb_node ***p,
559 			struct rb_node **parent,
560 			u32 *bits, struct extent_changeset *changeset)
561 {
562 	struct rb_node *node;
563 
564 	if (end < start) {
565 		btrfs_err(tree->fs_info,
566 			"insert state: end < start %llu %llu", end, start);
567 		WARN_ON(1);
568 	}
569 	state->start = start;
570 	state->end = end;
571 
572 	set_state_bits(tree, state, bits, changeset);
573 
574 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
575 	if (node) {
576 		struct extent_state *found;
577 		found = rb_entry(node, struct extent_state, rb_node);
578 		btrfs_err(tree->fs_info,
579 		       "found node %llu %llu on insert of %llu %llu",
580 		       found->start, found->end, start, end);
581 		return -EEXIST;
582 	}
583 	merge_state(tree, state);
584 	return 0;
585 }
586 
587 /*
588  * split a given extent state struct in two, inserting the preallocated
589  * struct 'prealloc' as the newly created second half.  'split' indicates an
590  * offset inside 'orig' where it should be split.
591  *
592  * Before calling,
593  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
594  * are two extent state structs in the tree:
595  * prealloc: [orig->start, split - 1]
596  * orig: [ split, orig->end ]
597  *
598  * The tree locks are not taken by this function. They need to be held
599  * by the caller.
600  */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)601 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
602 		       struct extent_state *prealloc, u64 split)
603 {
604 	struct rb_node *node;
605 
606 	if (tree->private_data && is_data_inode(tree->private_data))
607 		btrfs_split_delalloc_extent(tree->private_data, orig, split);
608 
609 	prealloc->start = orig->start;
610 	prealloc->end = split - 1;
611 	prealloc->state = orig->state;
612 	orig->start = split;
613 
614 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
615 			   &prealloc->rb_node, NULL, NULL);
616 	if (node) {
617 		free_extent_state(prealloc);
618 		return -EEXIST;
619 	}
620 	return 0;
621 }
622 
next_state(struct extent_state * state)623 static struct extent_state *next_state(struct extent_state *state)
624 {
625 	struct rb_node *next = rb_next(&state->rb_node);
626 	if (next)
627 		return rb_entry(next, struct extent_state, rb_node);
628 	else
629 		return NULL;
630 }
631 
632 /*
633  * utility function to clear some bits in an extent state struct.
634  * it will optionally wake up anyone waiting on this state (wake == 1).
635  *
636  * If no bits are set on the state struct after clearing things, the
637  * struct is freed and removed from the tree
638  */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,u32 * bits,int wake,struct extent_changeset * changeset)639 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
640 					    struct extent_state *state,
641 					    u32 *bits, int wake,
642 					    struct extent_changeset *changeset)
643 {
644 	struct extent_state *next;
645 	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
646 	int ret;
647 
648 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
649 		u64 range = state->end - state->start + 1;
650 		WARN_ON(range > tree->dirty_bytes);
651 		tree->dirty_bytes -= range;
652 	}
653 
654 	if (tree->private_data && is_data_inode(tree->private_data))
655 		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
656 
657 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
658 	BUG_ON(ret < 0);
659 	state->state &= ~bits_to_clear;
660 	if (wake)
661 		wake_up(&state->wq);
662 	if (state->state == 0) {
663 		next = next_state(state);
664 		if (extent_state_in_tree(state)) {
665 			rb_erase(&state->rb_node, &tree->state);
666 			RB_CLEAR_NODE(&state->rb_node);
667 			free_extent_state(state);
668 		} else {
669 			WARN_ON(1);
670 		}
671 	} else {
672 		merge_state(tree, state);
673 		next = next_state(state);
674 	}
675 	return next;
676 }
677 
678 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)679 alloc_extent_state_atomic(struct extent_state *prealloc)
680 {
681 	if (!prealloc)
682 		prealloc = alloc_extent_state(GFP_ATOMIC);
683 
684 	return prealloc;
685 }
686 
extent_io_tree_panic(struct extent_io_tree * tree,int err)687 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
688 {
689 	btrfs_panic(tree->fs_info, err,
690 	"locking error: extent tree was modified by another thread while locked");
691 }
692 
693 /*
694  * clear some bits on a range in the tree.  This may require splitting
695  * or inserting elements in the tree, so the gfp mask is used to
696  * indicate which allocations or sleeping are allowed.
697  *
698  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
699  * the given range from the tree regardless of state (ie for truncate).
700  *
701  * the range [start, end] is inclusive.
702  *
703  * This takes the tree lock, and returns 0 on success and < 0 on error.
704  */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)705 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 		       u32 bits, int wake, int delete,
707 		       struct extent_state **cached_state,
708 		       gfp_t mask, struct extent_changeset *changeset)
709 {
710 	struct extent_state *state;
711 	struct extent_state *cached;
712 	struct extent_state *prealloc = NULL;
713 	struct rb_node *node;
714 	u64 last_end;
715 	int err;
716 	int clear = 0;
717 
718 	btrfs_debug_check_extent_io_range(tree, start, end);
719 	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
720 
721 	if (bits & EXTENT_DELALLOC)
722 		bits |= EXTENT_NORESERVE;
723 
724 	if (delete)
725 		bits |= ~EXTENT_CTLBITS;
726 
727 	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
728 		clear = 1;
729 again:
730 	if (!prealloc && gfpflags_allow_blocking(mask)) {
731 		/*
732 		 * Don't care for allocation failure here because we might end
733 		 * up not needing the pre-allocated extent state at all, which
734 		 * is the case if we only have in the tree extent states that
735 		 * cover our input range and don't cover too any other range.
736 		 * If we end up needing a new extent state we allocate it later.
737 		 */
738 		prealloc = alloc_extent_state(mask);
739 	}
740 
741 	spin_lock(&tree->lock);
742 	if (cached_state) {
743 		cached = *cached_state;
744 
745 		if (clear) {
746 			*cached_state = NULL;
747 			cached_state = NULL;
748 		}
749 
750 		if (cached && extent_state_in_tree(cached) &&
751 		    cached->start <= start && cached->end > start) {
752 			if (clear)
753 				refcount_dec(&cached->refs);
754 			state = cached;
755 			goto hit_next;
756 		}
757 		if (clear)
758 			free_extent_state(cached);
759 	}
760 	/*
761 	 * this search will find the extents that end after
762 	 * our range starts
763 	 */
764 	node = tree_search(tree, start);
765 	if (!node)
766 		goto out;
767 	state = rb_entry(node, struct extent_state, rb_node);
768 hit_next:
769 	if (state->start > end)
770 		goto out;
771 	WARN_ON(state->end < start);
772 	last_end = state->end;
773 
774 	/* the state doesn't have the wanted bits, go ahead */
775 	if (!(state->state & bits)) {
776 		state = next_state(state);
777 		goto next;
778 	}
779 
780 	/*
781 	 *     | ---- desired range ---- |
782 	 *  | state | or
783 	 *  | ------------- state -------------- |
784 	 *
785 	 * We need to split the extent we found, and may flip
786 	 * bits on second half.
787 	 *
788 	 * If the extent we found extends past our range, we
789 	 * just split and search again.  It'll get split again
790 	 * the next time though.
791 	 *
792 	 * If the extent we found is inside our range, we clear
793 	 * the desired bit on it.
794 	 */
795 
796 	if (state->start < start) {
797 		prealloc = alloc_extent_state_atomic(prealloc);
798 		BUG_ON(!prealloc);
799 		err = split_state(tree, state, prealloc, start);
800 		if (err)
801 			extent_io_tree_panic(tree, err);
802 
803 		prealloc = NULL;
804 		if (err)
805 			goto out;
806 		if (state->end <= end) {
807 			state = clear_state_bit(tree, state, &bits, wake,
808 						changeset);
809 			goto next;
810 		}
811 		goto search_again;
812 	}
813 	/*
814 	 * | ---- desired range ---- |
815 	 *                        | state |
816 	 * We need to split the extent, and clear the bit
817 	 * on the first half
818 	 */
819 	if (state->start <= end && state->end > end) {
820 		prealloc = alloc_extent_state_atomic(prealloc);
821 		BUG_ON(!prealloc);
822 		err = split_state(tree, state, prealloc, end + 1);
823 		if (err)
824 			extent_io_tree_panic(tree, err);
825 
826 		if (wake)
827 			wake_up(&state->wq);
828 
829 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
830 
831 		prealloc = NULL;
832 		goto out;
833 	}
834 
835 	state = clear_state_bit(tree, state, &bits, wake, changeset);
836 next:
837 	if (last_end == (u64)-1)
838 		goto out;
839 	start = last_end + 1;
840 	if (start <= end && state && !need_resched())
841 		goto hit_next;
842 
843 search_again:
844 	if (start > end)
845 		goto out;
846 	spin_unlock(&tree->lock);
847 	if (gfpflags_allow_blocking(mask))
848 		cond_resched();
849 	goto again;
850 
851 out:
852 	spin_unlock(&tree->lock);
853 	if (prealloc)
854 		free_extent_state(prealloc);
855 
856 	return 0;
857 
858 }
859 
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)860 static void wait_on_state(struct extent_io_tree *tree,
861 			  struct extent_state *state)
862 		__releases(tree->lock)
863 		__acquires(tree->lock)
864 {
865 	DEFINE_WAIT(wait);
866 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
867 	spin_unlock(&tree->lock);
868 	schedule();
869 	spin_lock(&tree->lock);
870 	finish_wait(&state->wq, &wait);
871 }
872 
873 /*
874  * waits for one or more bits to clear on a range in the state tree.
875  * The range [start, end] is inclusive.
876  * The tree lock is taken by this function
877  */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits)878 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
879 			    u32 bits)
880 {
881 	struct extent_state *state;
882 	struct rb_node *node;
883 
884 	btrfs_debug_check_extent_io_range(tree, start, end);
885 
886 	spin_lock(&tree->lock);
887 again:
888 	while (1) {
889 		/*
890 		 * this search will find all the extents that end after
891 		 * our range starts
892 		 */
893 		node = tree_search(tree, start);
894 process_node:
895 		if (!node)
896 			break;
897 
898 		state = rb_entry(node, struct extent_state, rb_node);
899 
900 		if (state->start > end)
901 			goto out;
902 
903 		if (state->state & bits) {
904 			start = state->start;
905 			refcount_inc(&state->refs);
906 			wait_on_state(tree, state);
907 			free_extent_state(state);
908 			goto again;
909 		}
910 		start = state->end + 1;
911 
912 		if (start > end)
913 			break;
914 
915 		if (!cond_resched_lock(&tree->lock)) {
916 			node = rb_next(node);
917 			goto process_node;
918 		}
919 	}
920 out:
921 	spin_unlock(&tree->lock);
922 }
923 
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,u32 * bits,struct extent_changeset * changeset)924 static void set_state_bits(struct extent_io_tree *tree,
925 			   struct extent_state *state,
926 			   u32 *bits, struct extent_changeset *changeset)
927 {
928 	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
929 	int ret;
930 
931 	if (tree->private_data && is_data_inode(tree->private_data))
932 		btrfs_set_delalloc_extent(tree->private_data, state, bits);
933 
934 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
935 		u64 range = state->end - state->start + 1;
936 		tree->dirty_bytes += range;
937 	}
938 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
939 	BUG_ON(ret < 0);
940 	state->state |= bits_to_set;
941 }
942 
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)943 static void cache_state_if_flags(struct extent_state *state,
944 				 struct extent_state **cached_ptr,
945 				 unsigned flags)
946 {
947 	if (cached_ptr && !(*cached_ptr)) {
948 		if (!flags || (state->state & flags)) {
949 			*cached_ptr = state;
950 			refcount_inc(&state->refs);
951 		}
952 	}
953 }
954 
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)955 static void cache_state(struct extent_state *state,
956 			struct extent_state **cached_ptr)
957 {
958 	return cache_state_if_flags(state, cached_ptr,
959 				    EXTENT_LOCKED | EXTENT_BOUNDARY);
960 }
961 
962 /*
963  * set some bits on a range in the tree.  This may require allocations or
964  * sleeping, so the gfp mask is used to indicate what is allowed.
965  *
966  * If any of the exclusive bits are set, this will fail with -EEXIST if some
967  * part of the range already has the desired bits set.  The start of the
968  * existing range is returned in failed_start in this case.
969  *
970  * [start, end] is inclusive This takes the tree lock.
971  */
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u32 exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)972 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
973 		   u32 exclusive_bits, u64 *failed_start,
974 		   struct extent_state **cached_state, gfp_t mask,
975 		   struct extent_changeset *changeset)
976 {
977 	struct extent_state *state;
978 	struct extent_state *prealloc = NULL;
979 	struct rb_node *node;
980 	struct rb_node **p;
981 	struct rb_node *parent;
982 	int err = 0;
983 	u64 last_start;
984 	u64 last_end;
985 
986 	btrfs_debug_check_extent_io_range(tree, start, end);
987 	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
988 
989 	if (exclusive_bits)
990 		ASSERT(failed_start);
991 	else
992 		ASSERT(failed_start == NULL);
993 again:
994 	if (!prealloc && gfpflags_allow_blocking(mask)) {
995 		/*
996 		 * Don't care for allocation failure here because we might end
997 		 * up not needing the pre-allocated extent state at all, which
998 		 * is the case if we only have in the tree extent states that
999 		 * cover our input range and don't cover too any other range.
1000 		 * If we end up needing a new extent state we allocate it later.
1001 		 */
1002 		prealloc = alloc_extent_state(mask);
1003 	}
1004 
1005 	spin_lock(&tree->lock);
1006 	if (cached_state && *cached_state) {
1007 		state = *cached_state;
1008 		if (state->start <= start && state->end > start &&
1009 		    extent_state_in_tree(state)) {
1010 			node = &state->rb_node;
1011 			goto hit_next;
1012 		}
1013 	}
1014 	/*
1015 	 * this search will find all the extents that end after
1016 	 * our range starts.
1017 	 */
1018 	node = tree_search_for_insert(tree, start, &p, &parent);
1019 	if (!node) {
1020 		prealloc = alloc_extent_state_atomic(prealloc);
1021 		BUG_ON(!prealloc);
1022 		err = insert_state(tree, prealloc, start, end,
1023 				   &p, &parent, &bits, changeset);
1024 		if (err)
1025 			extent_io_tree_panic(tree, err);
1026 
1027 		cache_state(prealloc, cached_state);
1028 		prealloc = NULL;
1029 		goto out;
1030 	}
1031 	state = rb_entry(node, struct extent_state, rb_node);
1032 hit_next:
1033 	last_start = state->start;
1034 	last_end = state->end;
1035 
1036 	/*
1037 	 * | ---- desired range ---- |
1038 	 * | state |
1039 	 *
1040 	 * Just lock what we found and keep going
1041 	 */
1042 	if (state->start == start && state->end <= end) {
1043 		if (state->state & exclusive_bits) {
1044 			*failed_start = state->start;
1045 			err = -EEXIST;
1046 			goto out;
1047 		}
1048 
1049 		set_state_bits(tree, state, &bits, changeset);
1050 		cache_state(state, cached_state);
1051 		merge_state(tree, state);
1052 		if (last_end == (u64)-1)
1053 			goto out;
1054 		start = last_end + 1;
1055 		state = next_state(state);
1056 		if (start < end && state && state->start == start &&
1057 		    !need_resched())
1058 			goto hit_next;
1059 		goto search_again;
1060 	}
1061 
1062 	/*
1063 	 *     | ---- desired range ---- |
1064 	 * | state |
1065 	 *   or
1066 	 * | ------------- state -------------- |
1067 	 *
1068 	 * We need to split the extent we found, and may flip bits on
1069 	 * second half.
1070 	 *
1071 	 * If the extent we found extends past our
1072 	 * range, we just split and search again.  It'll get split
1073 	 * again the next time though.
1074 	 *
1075 	 * If the extent we found is inside our range, we set the
1076 	 * desired bit on it.
1077 	 */
1078 	if (state->start < start) {
1079 		if (state->state & exclusive_bits) {
1080 			*failed_start = start;
1081 			err = -EEXIST;
1082 			goto out;
1083 		}
1084 
1085 		/*
1086 		 * If this extent already has all the bits we want set, then
1087 		 * skip it, not necessary to split it or do anything with it.
1088 		 */
1089 		if ((state->state & bits) == bits) {
1090 			start = state->end + 1;
1091 			cache_state(state, cached_state);
1092 			goto search_again;
1093 		}
1094 
1095 		prealloc = alloc_extent_state_atomic(prealloc);
1096 		BUG_ON(!prealloc);
1097 		err = split_state(tree, state, prealloc, start);
1098 		if (err)
1099 			extent_io_tree_panic(tree, err);
1100 
1101 		prealloc = NULL;
1102 		if (err)
1103 			goto out;
1104 		if (state->end <= end) {
1105 			set_state_bits(tree, state, &bits, changeset);
1106 			cache_state(state, cached_state);
1107 			merge_state(tree, state);
1108 			if (last_end == (u64)-1)
1109 				goto out;
1110 			start = last_end + 1;
1111 			state = next_state(state);
1112 			if (start < end && state && state->start == start &&
1113 			    !need_resched())
1114 				goto hit_next;
1115 		}
1116 		goto search_again;
1117 	}
1118 	/*
1119 	 * | ---- desired range ---- |
1120 	 *     | state | or               | state |
1121 	 *
1122 	 * There's a hole, we need to insert something in it and
1123 	 * ignore the extent we found.
1124 	 */
1125 	if (state->start > start) {
1126 		u64 this_end;
1127 		if (end < last_start)
1128 			this_end = end;
1129 		else
1130 			this_end = last_start - 1;
1131 
1132 		prealloc = alloc_extent_state_atomic(prealloc);
1133 		BUG_ON(!prealloc);
1134 
1135 		/*
1136 		 * Avoid to free 'prealloc' if it can be merged with
1137 		 * the later extent.
1138 		 */
1139 		err = insert_state(tree, prealloc, start, this_end,
1140 				   NULL, NULL, &bits, changeset);
1141 		if (err)
1142 			extent_io_tree_panic(tree, err);
1143 
1144 		cache_state(prealloc, cached_state);
1145 		prealloc = NULL;
1146 		start = this_end + 1;
1147 		goto search_again;
1148 	}
1149 	/*
1150 	 * | ---- desired range ---- |
1151 	 *                        | state |
1152 	 * We need to split the extent, and set the bit
1153 	 * on the first half
1154 	 */
1155 	if (state->start <= end && state->end > end) {
1156 		if (state->state & exclusive_bits) {
1157 			*failed_start = start;
1158 			err = -EEXIST;
1159 			goto out;
1160 		}
1161 
1162 		prealloc = alloc_extent_state_atomic(prealloc);
1163 		BUG_ON(!prealloc);
1164 		err = split_state(tree, state, prealloc, end + 1);
1165 		if (err)
1166 			extent_io_tree_panic(tree, err);
1167 
1168 		set_state_bits(tree, prealloc, &bits, changeset);
1169 		cache_state(prealloc, cached_state);
1170 		merge_state(tree, prealloc);
1171 		prealloc = NULL;
1172 		goto out;
1173 	}
1174 
1175 search_again:
1176 	if (start > end)
1177 		goto out;
1178 	spin_unlock(&tree->lock);
1179 	if (gfpflags_allow_blocking(mask))
1180 		cond_resched();
1181 	goto again;
1182 
1183 out:
1184 	spin_unlock(&tree->lock);
1185 	if (prealloc)
1186 		free_extent_state(prealloc);
1187 
1188 	return err;
1189 
1190 }
1191 
1192 /**
1193  * convert_extent_bit - convert all bits in a given range from one bit to
1194  * 			another
1195  * @tree:	the io tree to search
1196  * @start:	the start offset in bytes
1197  * @end:	the end offset in bytes (inclusive)
1198  * @bits:	the bits to set in this range
1199  * @clear_bits:	the bits to clear in this range
1200  * @cached_state:	state that we're going to cache
1201  *
1202  * This will go through and set bits for the given range.  If any states exist
1203  * already in this range they are set with the given bit and cleared of the
1204  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1205  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1206  * boundary bits like LOCK.
1207  *
1208  * All allocations are done with GFP_NOFS.
1209  */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u32 clear_bits,struct extent_state ** cached_state)1210 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1211 		       u32 bits, u32 clear_bits,
1212 		       struct extent_state **cached_state)
1213 {
1214 	struct extent_state *state;
1215 	struct extent_state *prealloc = NULL;
1216 	struct rb_node *node;
1217 	struct rb_node **p;
1218 	struct rb_node *parent;
1219 	int err = 0;
1220 	u64 last_start;
1221 	u64 last_end;
1222 	bool first_iteration = true;
1223 
1224 	btrfs_debug_check_extent_io_range(tree, start, end);
1225 	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1226 				       clear_bits);
1227 
1228 again:
1229 	if (!prealloc) {
1230 		/*
1231 		 * Best effort, don't worry if extent state allocation fails
1232 		 * here for the first iteration. We might have a cached state
1233 		 * that matches exactly the target range, in which case no
1234 		 * extent state allocations are needed. We'll only know this
1235 		 * after locking the tree.
1236 		 */
1237 		prealloc = alloc_extent_state(GFP_NOFS);
1238 		if (!prealloc && !first_iteration)
1239 			return -ENOMEM;
1240 	}
1241 
1242 	spin_lock(&tree->lock);
1243 	if (cached_state && *cached_state) {
1244 		state = *cached_state;
1245 		if (state->start <= start && state->end > start &&
1246 		    extent_state_in_tree(state)) {
1247 			node = &state->rb_node;
1248 			goto hit_next;
1249 		}
1250 	}
1251 
1252 	/*
1253 	 * this search will find all the extents that end after
1254 	 * our range starts.
1255 	 */
1256 	node = tree_search_for_insert(tree, start, &p, &parent);
1257 	if (!node) {
1258 		prealloc = alloc_extent_state_atomic(prealloc);
1259 		if (!prealloc) {
1260 			err = -ENOMEM;
1261 			goto out;
1262 		}
1263 		err = insert_state(tree, prealloc, start, end,
1264 				   &p, &parent, &bits, NULL);
1265 		if (err)
1266 			extent_io_tree_panic(tree, err);
1267 		cache_state(prealloc, cached_state);
1268 		prealloc = NULL;
1269 		goto out;
1270 	}
1271 	state = rb_entry(node, struct extent_state, rb_node);
1272 hit_next:
1273 	last_start = state->start;
1274 	last_end = state->end;
1275 
1276 	/*
1277 	 * | ---- desired range ---- |
1278 	 * | state |
1279 	 *
1280 	 * Just lock what we found and keep going
1281 	 */
1282 	if (state->start == start && state->end <= end) {
1283 		set_state_bits(tree, state, &bits, NULL);
1284 		cache_state(state, cached_state);
1285 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1286 		if (last_end == (u64)-1)
1287 			goto out;
1288 		start = last_end + 1;
1289 		if (start < end && state && state->start == start &&
1290 		    !need_resched())
1291 			goto hit_next;
1292 		goto search_again;
1293 	}
1294 
1295 	/*
1296 	 *     | ---- desired range ---- |
1297 	 * | state |
1298 	 *   or
1299 	 * | ------------- state -------------- |
1300 	 *
1301 	 * We need to split the extent we found, and may flip bits on
1302 	 * second half.
1303 	 *
1304 	 * If the extent we found extends past our
1305 	 * range, we just split and search again.  It'll get split
1306 	 * again the next time though.
1307 	 *
1308 	 * If the extent we found is inside our range, we set the
1309 	 * desired bit on it.
1310 	 */
1311 	if (state->start < start) {
1312 		prealloc = alloc_extent_state_atomic(prealloc);
1313 		if (!prealloc) {
1314 			err = -ENOMEM;
1315 			goto out;
1316 		}
1317 		err = split_state(tree, state, prealloc, start);
1318 		if (err)
1319 			extent_io_tree_panic(tree, err);
1320 		prealloc = NULL;
1321 		if (err)
1322 			goto out;
1323 		if (state->end <= end) {
1324 			set_state_bits(tree, state, &bits, NULL);
1325 			cache_state(state, cached_state);
1326 			state = clear_state_bit(tree, state, &clear_bits, 0,
1327 						NULL);
1328 			if (last_end == (u64)-1)
1329 				goto out;
1330 			start = last_end + 1;
1331 			if (start < end && state && state->start == start &&
1332 			    !need_resched())
1333 				goto hit_next;
1334 		}
1335 		goto search_again;
1336 	}
1337 	/*
1338 	 * | ---- desired range ---- |
1339 	 *     | state | or               | state |
1340 	 *
1341 	 * There's a hole, we need to insert something in it and
1342 	 * ignore the extent we found.
1343 	 */
1344 	if (state->start > start) {
1345 		u64 this_end;
1346 		if (end < last_start)
1347 			this_end = end;
1348 		else
1349 			this_end = last_start - 1;
1350 
1351 		prealloc = alloc_extent_state_atomic(prealloc);
1352 		if (!prealloc) {
1353 			err = -ENOMEM;
1354 			goto out;
1355 		}
1356 
1357 		/*
1358 		 * Avoid to free 'prealloc' if it can be merged with
1359 		 * the later extent.
1360 		 */
1361 		err = insert_state(tree, prealloc, start, this_end,
1362 				   NULL, NULL, &bits, NULL);
1363 		if (err)
1364 			extent_io_tree_panic(tree, err);
1365 		cache_state(prealloc, cached_state);
1366 		prealloc = NULL;
1367 		start = this_end + 1;
1368 		goto search_again;
1369 	}
1370 	/*
1371 	 * | ---- desired range ---- |
1372 	 *                        | state |
1373 	 * We need to split the extent, and set the bit
1374 	 * on the first half
1375 	 */
1376 	if (state->start <= end && state->end > end) {
1377 		prealloc = alloc_extent_state_atomic(prealloc);
1378 		if (!prealloc) {
1379 			err = -ENOMEM;
1380 			goto out;
1381 		}
1382 
1383 		err = split_state(tree, state, prealloc, end + 1);
1384 		if (err)
1385 			extent_io_tree_panic(tree, err);
1386 
1387 		set_state_bits(tree, prealloc, &bits, NULL);
1388 		cache_state(prealloc, cached_state);
1389 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1390 		prealloc = NULL;
1391 		goto out;
1392 	}
1393 
1394 search_again:
1395 	if (start > end)
1396 		goto out;
1397 	spin_unlock(&tree->lock);
1398 	cond_resched();
1399 	first_iteration = false;
1400 	goto again;
1401 
1402 out:
1403 	spin_unlock(&tree->lock);
1404 	if (prealloc)
1405 		free_extent_state(prealloc);
1406 
1407 	return err;
1408 }
1409 
1410 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1411 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412 			   u32 bits, struct extent_changeset *changeset)
1413 {
1414 	/*
1415 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1416 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1417 	 * either fail with -EEXIST or changeset will record the whole
1418 	 * range.
1419 	 */
1420 	BUG_ON(bits & EXTENT_LOCKED);
1421 
1422 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1423 			      changeset);
1424 }
1425 
set_extent_bits_nowait(struct extent_io_tree * tree,u64 start,u64 end,u32 bits)1426 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1427 			   u32 bits)
1428 {
1429 	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1430 			      GFP_NOWAIT, NULL);
1431 }
1432 
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int wake,int delete,struct extent_state ** cached)1433 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1434 		     u32 bits, int wake, int delete,
1435 		     struct extent_state **cached)
1436 {
1437 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1438 				  cached, GFP_NOFS, NULL);
1439 }
1440 
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1441 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1442 		u32 bits, struct extent_changeset *changeset)
1443 {
1444 	/*
1445 	 * Don't support EXTENT_LOCKED case, same reason as
1446 	 * set_record_extent_bits().
1447 	 */
1448 	BUG_ON(bits & EXTENT_LOCKED);
1449 
1450 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1451 				  changeset);
1452 }
1453 
1454 /*
1455  * either insert or lock state struct between start and end use mask to tell
1456  * us if waiting is desired.
1457  */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1458 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1459 		     struct extent_state **cached_state)
1460 {
1461 	int err;
1462 	u64 failed_start;
1463 
1464 	while (1) {
1465 		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1466 				     EXTENT_LOCKED, &failed_start,
1467 				     cached_state, GFP_NOFS, NULL);
1468 		if (err == -EEXIST) {
1469 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1470 			start = failed_start;
1471 		} else
1472 			break;
1473 		WARN_ON(start > end);
1474 	}
1475 	return err;
1476 }
1477 
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1478 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1479 {
1480 	int err;
1481 	u64 failed_start;
1482 
1483 	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1484 			     &failed_start, NULL, GFP_NOFS, NULL);
1485 	if (err == -EEXIST) {
1486 		if (failed_start > start)
1487 			clear_extent_bit(tree, start, failed_start - 1,
1488 					 EXTENT_LOCKED, 1, 0, NULL);
1489 		return 0;
1490 	}
1491 	return 1;
1492 }
1493 
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1494 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1495 {
1496 	unsigned long index = start >> PAGE_SHIFT;
1497 	unsigned long end_index = end >> PAGE_SHIFT;
1498 	struct page *page;
1499 
1500 	while (index <= end_index) {
1501 		page = find_get_page(inode->i_mapping, index);
1502 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1503 		clear_page_dirty_for_io(page);
1504 		put_page(page);
1505 		index++;
1506 	}
1507 }
1508 
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1509 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1510 {
1511 	unsigned long index = start >> PAGE_SHIFT;
1512 	unsigned long end_index = end >> PAGE_SHIFT;
1513 	struct page *page;
1514 
1515 	while (index <= end_index) {
1516 		page = find_get_page(inode->i_mapping, index);
1517 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1518 		__set_page_dirty_nobuffers(page);
1519 		account_page_redirty(page);
1520 		put_page(page);
1521 		index++;
1522 	}
1523 }
1524 
1525 /* find the first state struct with 'bits' set after 'start', and
1526  * return it.  tree->lock must be held.  NULL will returned if
1527  * nothing was found after 'start'
1528  */
1529 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,u32 bits)1530 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1531 {
1532 	struct rb_node *node;
1533 	struct extent_state *state;
1534 
1535 	/*
1536 	 * this search will find all the extents that end after
1537 	 * our range starts.
1538 	 */
1539 	node = tree_search(tree, start);
1540 	if (!node)
1541 		goto out;
1542 
1543 	while (1) {
1544 		state = rb_entry(node, struct extent_state, rb_node);
1545 		if (state->end >= start && (state->state & bits))
1546 			return state;
1547 
1548 		node = rb_next(node);
1549 		if (!node)
1550 			break;
1551 	}
1552 out:
1553 	return NULL;
1554 }
1555 
1556 /*
1557  * Find the first offset in the io tree with one or more @bits set.
1558  *
1559  * Note: If there are multiple bits set in @bits, any of them will match.
1560  *
1561  * Return 0 if we find something, and update @start_ret and @end_ret.
1562  * Return 1 if we found nothing.
1563  */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits,struct extent_state ** cached_state)1564 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1565 			  u64 *start_ret, u64 *end_ret, u32 bits,
1566 			  struct extent_state **cached_state)
1567 {
1568 	struct extent_state *state;
1569 	int ret = 1;
1570 
1571 	spin_lock(&tree->lock);
1572 	if (cached_state && *cached_state) {
1573 		state = *cached_state;
1574 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1575 			while ((state = next_state(state)) != NULL) {
1576 				if (state->state & bits)
1577 					goto got_it;
1578 			}
1579 			free_extent_state(*cached_state);
1580 			*cached_state = NULL;
1581 			goto out;
1582 		}
1583 		free_extent_state(*cached_state);
1584 		*cached_state = NULL;
1585 	}
1586 
1587 	state = find_first_extent_bit_state(tree, start, bits);
1588 got_it:
1589 	if (state) {
1590 		cache_state_if_flags(state, cached_state, 0);
1591 		*start_ret = state->start;
1592 		*end_ret = state->end;
1593 		ret = 0;
1594 	}
1595 out:
1596 	spin_unlock(&tree->lock);
1597 	return ret;
1598 }
1599 
1600 /**
1601  * Find a contiguous area of bits
1602  *
1603  * @tree:      io tree to check
1604  * @start:     offset to start the search from
1605  * @start_ret: the first offset we found with the bits set
1606  * @end_ret:   the final contiguous range of the bits that were set
1607  * @bits:      bits to look for
1608  *
1609  * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1610  * to set bits appropriately, and then merge them again.  During this time it
1611  * will drop the tree->lock, so use this helper if you want to find the actual
1612  * contiguous area for given bits.  We will search to the first bit we find, and
1613  * then walk down the tree until we find a non-contiguous area.  The area
1614  * returned will be the full contiguous area with the bits set.
1615  */
find_contiguous_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)1616 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1617 			       u64 *start_ret, u64 *end_ret, u32 bits)
1618 {
1619 	struct extent_state *state;
1620 	int ret = 1;
1621 
1622 	spin_lock(&tree->lock);
1623 	state = find_first_extent_bit_state(tree, start, bits);
1624 	if (state) {
1625 		*start_ret = state->start;
1626 		*end_ret = state->end;
1627 		while ((state = next_state(state)) != NULL) {
1628 			if (state->start > (*end_ret + 1))
1629 				break;
1630 			*end_ret = state->end;
1631 		}
1632 		ret = 0;
1633 	}
1634 	spin_unlock(&tree->lock);
1635 	return ret;
1636 }
1637 
1638 /**
1639  * Find the first range that has @bits not set. This range could start before
1640  * @start.
1641  *
1642  * @tree:      the tree to search
1643  * @start:     offset at/after which the found extent should start
1644  * @start_ret: records the beginning of the range
1645  * @end_ret:   records the end of the range (inclusive)
1646  * @bits:      the set of bits which must be unset
1647  *
1648  * Since unallocated range is also considered one which doesn't have the bits
1649  * set it's possible that @end_ret contains -1, this happens in case the range
1650  * spans (last_range_end, end of device]. In this case it's up to the caller to
1651  * trim @end_ret to the appropriate size.
1652  */
find_first_clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)1653 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1654 				 u64 *start_ret, u64 *end_ret, u32 bits)
1655 {
1656 	struct extent_state *state;
1657 	struct rb_node *node, *prev = NULL, *next;
1658 
1659 	spin_lock(&tree->lock);
1660 
1661 	/* Find first extent with bits cleared */
1662 	while (1) {
1663 		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1664 		if (!node && !next && !prev) {
1665 			/*
1666 			 * Tree is completely empty, send full range and let
1667 			 * caller deal with it
1668 			 */
1669 			*start_ret = 0;
1670 			*end_ret = -1;
1671 			goto out;
1672 		} else if (!node && !next) {
1673 			/*
1674 			 * We are past the last allocated chunk, set start at
1675 			 * the end of the last extent.
1676 			 */
1677 			state = rb_entry(prev, struct extent_state, rb_node);
1678 			*start_ret = state->end + 1;
1679 			*end_ret = -1;
1680 			goto out;
1681 		} else if (!node) {
1682 			node = next;
1683 		}
1684 		/*
1685 		 * At this point 'node' either contains 'start' or start is
1686 		 * before 'node'
1687 		 */
1688 		state = rb_entry(node, struct extent_state, rb_node);
1689 
1690 		if (in_range(start, state->start, state->end - state->start + 1)) {
1691 			if (state->state & bits) {
1692 				/*
1693 				 * |--range with bits sets--|
1694 				 *    |
1695 				 *    start
1696 				 */
1697 				start = state->end + 1;
1698 			} else {
1699 				/*
1700 				 * 'start' falls within a range that doesn't
1701 				 * have the bits set, so take its start as
1702 				 * the beginning of the desired range
1703 				 *
1704 				 * |--range with bits cleared----|
1705 				 *      |
1706 				 *      start
1707 				 */
1708 				*start_ret = state->start;
1709 				break;
1710 			}
1711 		} else {
1712 			/*
1713 			 * |---prev range---|---hole/unset---|---node range---|
1714 			 *                          |
1715 			 *                        start
1716 			 *
1717 			 *                        or
1718 			 *
1719 			 * |---hole/unset--||--first node--|
1720 			 * 0   |
1721 			 *    start
1722 			 */
1723 			if (prev) {
1724 				state = rb_entry(prev, struct extent_state,
1725 						 rb_node);
1726 				*start_ret = state->end + 1;
1727 			} else {
1728 				*start_ret = 0;
1729 			}
1730 			break;
1731 		}
1732 	}
1733 
1734 	/*
1735 	 * Find the longest stretch from start until an entry which has the
1736 	 * bits set
1737 	 */
1738 	while (1) {
1739 		state = rb_entry(node, struct extent_state, rb_node);
1740 		if (state->end >= start && !(state->state & bits)) {
1741 			*end_ret = state->end;
1742 		} else {
1743 			*end_ret = state->start - 1;
1744 			break;
1745 		}
1746 
1747 		node = rb_next(node);
1748 		if (!node)
1749 			break;
1750 	}
1751 out:
1752 	spin_unlock(&tree->lock);
1753 }
1754 
1755 /*
1756  * find a contiguous range of bytes in the file marked as delalloc, not
1757  * more than 'max_bytes'.  start and end are used to return the range,
1758  *
1759  * true is returned if we find something, false if nothing was in the tree
1760  */
btrfs_find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1761 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1762 			       u64 *end, u64 max_bytes,
1763 			       struct extent_state **cached_state)
1764 {
1765 	struct rb_node *node;
1766 	struct extent_state *state;
1767 	u64 cur_start = *start;
1768 	bool found = false;
1769 	u64 total_bytes = 0;
1770 
1771 	spin_lock(&tree->lock);
1772 
1773 	/*
1774 	 * this search will find all the extents that end after
1775 	 * our range starts.
1776 	 */
1777 	node = tree_search(tree, cur_start);
1778 	if (!node) {
1779 		*end = (u64)-1;
1780 		goto out;
1781 	}
1782 
1783 	while (1) {
1784 		state = rb_entry(node, struct extent_state, rb_node);
1785 		if (found && (state->start != cur_start ||
1786 			      (state->state & EXTENT_BOUNDARY))) {
1787 			goto out;
1788 		}
1789 		if (!(state->state & EXTENT_DELALLOC)) {
1790 			if (!found)
1791 				*end = state->end;
1792 			goto out;
1793 		}
1794 		if (!found) {
1795 			*start = state->start;
1796 			*cached_state = state;
1797 			refcount_inc(&state->refs);
1798 		}
1799 		found = true;
1800 		*end = state->end;
1801 		cur_start = state->end + 1;
1802 		node = rb_next(node);
1803 		total_bytes += state->end - state->start + 1;
1804 		if (total_bytes >= max_bytes)
1805 			break;
1806 		if (!node)
1807 			break;
1808 	}
1809 out:
1810 	spin_unlock(&tree->lock);
1811 	return found;
1812 }
1813 
1814 /*
1815  * Process one page for __process_pages_contig().
1816  *
1817  * Return >0 if we hit @page == @locked_page.
1818  * Return 0 if we updated the page status.
1819  * Return -EGAIN if the we need to try again.
1820  * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1821  */
process_one_page(struct btrfs_fs_info * fs_info,struct address_space * mapping,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)1822 static int process_one_page(struct btrfs_fs_info *fs_info,
1823 			    struct address_space *mapping,
1824 			    struct page *page, struct page *locked_page,
1825 			    unsigned long page_ops, u64 start, u64 end)
1826 {
1827 	u32 len;
1828 
1829 	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1830 	len = end + 1 - start;
1831 
1832 	if (page_ops & PAGE_SET_ORDERED)
1833 		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1834 	if (page_ops & PAGE_SET_ERROR)
1835 		btrfs_page_clamp_set_error(fs_info, page, start, len);
1836 	if (page_ops & PAGE_START_WRITEBACK) {
1837 		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1838 		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1839 	}
1840 	if (page_ops & PAGE_END_WRITEBACK)
1841 		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1842 
1843 	if (page == locked_page)
1844 		return 1;
1845 
1846 	if (page_ops & PAGE_LOCK) {
1847 		int ret;
1848 
1849 		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1850 		if (ret)
1851 			return ret;
1852 		if (!PageDirty(page) || page->mapping != mapping) {
1853 			btrfs_page_end_writer_lock(fs_info, page, start, len);
1854 			return -EAGAIN;
1855 		}
1856 	}
1857 	if (page_ops & PAGE_UNLOCK)
1858 		btrfs_page_end_writer_lock(fs_info, page, start, len);
1859 	return 0;
1860 }
1861 
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops,u64 * processed_end)1862 static int __process_pages_contig(struct address_space *mapping,
1863 				  struct page *locked_page,
1864 				  u64 start, u64 end, unsigned long page_ops,
1865 				  u64 *processed_end)
1866 {
1867 	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1868 	pgoff_t start_index = start >> PAGE_SHIFT;
1869 	pgoff_t end_index = end >> PAGE_SHIFT;
1870 	pgoff_t index = start_index;
1871 	unsigned long nr_pages = end_index - start_index + 1;
1872 	unsigned long pages_processed = 0;
1873 	struct page *pages[16];
1874 	int err = 0;
1875 	int i;
1876 
1877 	if (page_ops & PAGE_LOCK) {
1878 		ASSERT(page_ops == PAGE_LOCK);
1879 		ASSERT(processed_end && *processed_end == start);
1880 	}
1881 
1882 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1883 		mapping_set_error(mapping, -EIO);
1884 
1885 	while (nr_pages > 0) {
1886 		int found_pages;
1887 
1888 		found_pages = find_get_pages_contig(mapping, index,
1889 				     min_t(unsigned long,
1890 				     nr_pages, ARRAY_SIZE(pages)), pages);
1891 		if (found_pages == 0) {
1892 			/*
1893 			 * Only if we're going to lock these pages, we can find
1894 			 * nothing at @index.
1895 			 */
1896 			ASSERT(page_ops & PAGE_LOCK);
1897 			err = -EAGAIN;
1898 			goto out;
1899 		}
1900 
1901 		for (i = 0; i < found_pages; i++) {
1902 			int process_ret;
1903 
1904 			process_ret = process_one_page(fs_info, mapping,
1905 					pages[i], locked_page, page_ops,
1906 					start, end);
1907 			if (process_ret < 0) {
1908 				for (; i < found_pages; i++)
1909 					put_page(pages[i]);
1910 				err = -EAGAIN;
1911 				goto out;
1912 			}
1913 			put_page(pages[i]);
1914 			pages_processed++;
1915 		}
1916 		nr_pages -= found_pages;
1917 		index += found_pages;
1918 		cond_resched();
1919 	}
1920 out:
1921 	if (err && processed_end) {
1922 		/*
1923 		 * Update @processed_end. I know this is awful since it has
1924 		 * two different return value patterns (inclusive vs exclusive).
1925 		 *
1926 		 * But the exclusive pattern is necessary if @start is 0, or we
1927 		 * underflow and check against processed_end won't work as
1928 		 * expected.
1929 		 */
1930 		if (pages_processed)
1931 			*processed_end = min(end,
1932 			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1933 		else
1934 			*processed_end = start;
1935 	}
1936 	return err;
1937 }
1938 
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1939 static noinline void __unlock_for_delalloc(struct inode *inode,
1940 					   struct page *locked_page,
1941 					   u64 start, u64 end)
1942 {
1943 	unsigned long index = start >> PAGE_SHIFT;
1944 	unsigned long end_index = end >> PAGE_SHIFT;
1945 
1946 	ASSERT(locked_page);
1947 	if (index == locked_page->index && end_index == index)
1948 		return;
1949 
1950 	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1951 			       PAGE_UNLOCK, NULL);
1952 }
1953 
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1954 static noinline int lock_delalloc_pages(struct inode *inode,
1955 					struct page *locked_page,
1956 					u64 delalloc_start,
1957 					u64 delalloc_end)
1958 {
1959 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1960 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1961 	u64 processed_end = delalloc_start;
1962 	int ret;
1963 
1964 	ASSERT(locked_page);
1965 	if (index == locked_page->index && index == end_index)
1966 		return 0;
1967 
1968 	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1969 				     delalloc_end, PAGE_LOCK, &processed_end);
1970 	if (ret == -EAGAIN && processed_end > delalloc_start)
1971 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1972 				      processed_end);
1973 	return ret;
1974 }
1975 
1976 /*
1977  * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1978  * more than @max_bytes.  @Start and @end are used to return the range,
1979  *
1980  * Return: true if we find something
1981  *         false if nothing was in the tree
1982  */
1983 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)1984 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1985 				    struct page *locked_page, u64 *start,
1986 				    u64 *end)
1987 {
1988 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1989 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1990 	/* The sanity tests may not set a valid fs_info. */
1991 	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
1992 	u64 delalloc_start;
1993 	u64 delalloc_end;
1994 	bool found;
1995 	struct extent_state *cached_state = NULL;
1996 	int ret;
1997 	int loops = 0;
1998 
1999 again:
2000 	/* step one, find a bunch of delalloc bytes starting at start */
2001 	delalloc_start = *start;
2002 	delalloc_end = 0;
2003 	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2004 					  max_bytes, &cached_state);
2005 	if (!found || delalloc_end <= *start) {
2006 		*start = delalloc_start;
2007 		*end = delalloc_end;
2008 		free_extent_state(cached_state);
2009 		return false;
2010 	}
2011 
2012 	/*
2013 	 * start comes from the offset of locked_page.  We have to lock
2014 	 * pages in order, so we can't process delalloc bytes before
2015 	 * locked_page
2016 	 */
2017 	if (delalloc_start < *start)
2018 		delalloc_start = *start;
2019 
2020 	/*
2021 	 * make sure to limit the number of pages we try to lock down
2022 	 */
2023 	if (delalloc_end + 1 - delalloc_start > max_bytes)
2024 		delalloc_end = delalloc_start + max_bytes - 1;
2025 
2026 	/* step two, lock all the pages after the page that has start */
2027 	ret = lock_delalloc_pages(inode, locked_page,
2028 				  delalloc_start, delalloc_end);
2029 	ASSERT(!ret || ret == -EAGAIN);
2030 	if (ret == -EAGAIN) {
2031 		/* some of the pages are gone, lets avoid looping by
2032 		 * shortening the size of the delalloc range we're searching
2033 		 */
2034 		free_extent_state(cached_state);
2035 		cached_state = NULL;
2036 		if (!loops) {
2037 			max_bytes = PAGE_SIZE;
2038 			loops = 1;
2039 			goto again;
2040 		} else {
2041 			found = false;
2042 			goto out_failed;
2043 		}
2044 	}
2045 
2046 	/* step three, lock the state bits for the whole range */
2047 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2048 
2049 	/* then test to make sure it is all still delalloc */
2050 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2051 			     EXTENT_DELALLOC, 1, cached_state);
2052 	if (!ret) {
2053 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2054 				     &cached_state);
2055 		__unlock_for_delalloc(inode, locked_page,
2056 			      delalloc_start, delalloc_end);
2057 		cond_resched();
2058 		goto again;
2059 	}
2060 	free_extent_state(cached_state);
2061 	*start = delalloc_start;
2062 	*end = delalloc_end;
2063 out_failed:
2064 	return found;
2065 }
2066 
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)2067 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2068 				  struct page *locked_page,
2069 				  u32 clear_bits, unsigned long page_ops)
2070 {
2071 	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2072 
2073 	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2074 			       start, end, page_ops, NULL);
2075 }
2076 
2077 /*
2078  * count the number of bytes in the tree that have a given bit(s)
2079  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2080  * cached.  The total number found is returned.
2081  */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,u32 bits,int contig)2082 u64 count_range_bits(struct extent_io_tree *tree,
2083 		     u64 *start, u64 search_end, u64 max_bytes,
2084 		     u32 bits, int contig)
2085 {
2086 	struct rb_node *node;
2087 	struct extent_state *state;
2088 	u64 cur_start = *start;
2089 	u64 total_bytes = 0;
2090 	u64 last = 0;
2091 	int found = 0;
2092 
2093 	if (WARN_ON(search_end <= cur_start))
2094 		return 0;
2095 
2096 	spin_lock(&tree->lock);
2097 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2098 		total_bytes = tree->dirty_bytes;
2099 		goto out;
2100 	}
2101 	/*
2102 	 * this search will find all the extents that end after
2103 	 * our range starts.
2104 	 */
2105 	node = tree_search(tree, cur_start);
2106 	if (!node)
2107 		goto out;
2108 
2109 	while (1) {
2110 		state = rb_entry(node, struct extent_state, rb_node);
2111 		if (state->start > search_end)
2112 			break;
2113 		if (contig && found && state->start > last + 1)
2114 			break;
2115 		if (state->end >= cur_start && (state->state & bits) == bits) {
2116 			total_bytes += min(search_end, state->end) + 1 -
2117 				       max(cur_start, state->start);
2118 			if (total_bytes >= max_bytes)
2119 				break;
2120 			if (!found) {
2121 				*start = max(cur_start, state->start);
2122 				found = 1;
2123 			}
2124 			last = state->end;
2125 		} else if (contig && found) {
2126 			break;
2127 		}
2128 		node = rb_next(node);
2129 		if (!node)
2130 			break;
2131 	}
2132 out:
2133 	spin_unlock(&tree->lock);
2134 	return total_bytes;
2135 }
2136 
2137 /*
2138  * set the private field for a given byte offset in the tree.  If there isn't
2139  * an extent_state there already, this does nothing.
2140  */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)2141 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2142 		      struct io_failure_record *failrec)
2143 {
2144 	struct rb_node *node;
2145 	struct extent_state *state;
2146 	int ret = 0;
2147 
2148 	spin_lock(&tree->lock);
2149 	/*
2150 	 * this search will find all the extents that end after
2151 	 * our range starts.
2152 	 */
2153 	node = tree_search(tree, start);
2154 	if (!node) {
2155 		ret = -ENOENT;
2156 		goto out;
2157 	}
2158 	state = rb_entry(node, struct extent_state, rb_node);
2159 	if (state->start != start) {
2160 		ret = -ENOENT;
2161 		goto out;
2162 	}
2163 	state->failrec = failrec;
2164 out:
2165 	spin_unlock(&tree->lock);
2166 	return ret;
2167 }
2168 
get_state_failrec(struct extent_io_tree * tree,u64 start)2169 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2170 {
2171 	struct rb_node *node;
2172 	struct extent_state *state;
2173 	struct io_failure_record *failrec;
2174 
2175 	spin_lock(&tree->lock);
2176 	/*
2177 	 * this search will find all the extents that end after
2178 	 * our range starts.
2179 	 */
2180 	node = tree_search(tree, start);
2181 	if (!node) {
2182 		failrec = ERR_PTR(-ENOENT);
2183 		goto out;
2184 	}
2185 	state = rb_entry(node, struct extent_state, rb_node);
2186 	if (state->start != start) {
2187 		failrec = ERR_PTR(-ENOENT);
2188 		goto out;
2189 	}
2190 
2191 	failrec = state->failrec;
2192 out:
2193 	spin_unlock(&tree->lock);
2194 	return failrec;
2195 }
2196 
2197 /*
2198  * searches a range in the state tree for a given mask.
2199  * If 'filled' == 1, this returns 1 only if every extent in the tree
2200  * has the bits set.  Otherwise, 1 is returned if any bit in the
2201  * range is found set.
2202  */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int filled,struct extent_state * cached)2203 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2204 		   u32 bits, int filled, struct extent_state *cached)
2205 {
2206 	struct extent_state *state = NULL;
2207 	struct rb_node *node;
2208 	int bitset = 0;
2209 
2210 	spin_lock(&tree->lock);
2211 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2212 	    cached->end > start)
2213 		node = &cached->rb_node;
2214 	else
2215 		node = tree_search(tree, start);
2216 	while (node && start <= end) {
2217 		state = rb_entry(node, struct extent_state, rb_node);
2218 
2219 		if (filled && state->start > start) {
2220 			bitset = 0;
2221 			break;
2222 		}
2223 
2224 		if (state->start > end)
2225 			break;
2226 
2227 		if (state->state & bits) {
2228 			bitset = 1;
2229 			if (!filled)
2230 				break;
2231 		} else if (filled) {
2232 			bitset = 0;
2233 			break;
2234 		}
2235 
2236 		if (state->end == (u64)-1)
2237 			break;
2238 
2239 		start = state->end + 1;
2240 		if (start > end)
2241 			break;
2242 		node = rb_next(node);
2243 		if (!node) {
2244 			if (filled)
2245 				bitset = 0;
2246 			break;
2247 		}
2248 	}
2249 	spin_unlock(&tree->lock);
2250 	return bitset;
2251 }
2252 
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)2253 int free_io_failure(struct extent_io_tree *failure_tree,
2254 		    struct extent_io_tree *io_tree,
2255 		    struct io_failure_record *rec)
2256 {
2257 	int ret;
2258 	int err = 0;
2259 
2260 	set_state_failrec(failure_tree, rec->start, NULL);
2261 	ret = clear_extent_bits(failure_tree, rec->start,
2262 				rec->start + rec->len - 1,
2263 				EXTENT_LOCKED | EXTENT_DIRTY);
2264 	if (ret)
2265 		err = ret;
2266 
2267 	ret = clear_extent_bits(io_tree, rec->start,
2268 				rec->start + rec->len - 1,
2269 				EXTENT_DAMAGED);
2270 	if (ret && !err)
2271 		err = ret;
2272 
2273 	kfree(rec);
2274 	return err;
2275 }
2276 
2277 /*
2278  * this bypasses the standard btrfs submit functions deliberately, as
2279  * the standard behavior is to write all copies in a raid setup. here we only
2280  * want to write the one bad copy. so we do the mapping for ourselves and issue
2281  * submit_bio directly.
2282  * to avoid any synchronization issues, wait for the data after writing, which
2283  * actually prevents the read that triggered the error from finishing.
2284  * currently, there can be no more than two copies of every data bit. thus,
2285  * exactly one rewrite is required.
2286  */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2287 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2288 		      u64 length, u64 logical, struct page *page,
2289 		      unsigned int pg_offset, int mirror_num)
2290 {
2291 	struct bio *bio;
2292 	struct btrfs_device *dev;
2293 	u64 map_length = 0;
2294 	u64 sector;
2295 	struct btrfs_io_context *bioc = NULL;
2296 	int ret;
2297 
2298 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2299 	BUG_ON(!mirror_num);
2300 
2301 	if (btrfs_is_zoned(fs_info))
2302 		return btrfs_repair_one_zone(fs_info, logical);
2303 
2304 	bio = btrfs_io_bio_alloc(1);
2305 	bio->bi_iter.bi_size = 0;
2306 	map_length = length;
2307 
2308 	/*
2309 	 * Avoid races with device replace and make sure our bioc has devices
2310 	 * associated to its stripes that don't go away while we are doing the
2311 	 * read repair operation.
2312 	 */
2313 	btrfs_bio_counter_inc_blocked(fs_info);
2314 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2315 		/*
2316 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2317 		 * to update all raid stripes, but here we just want to correct
2318 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2319 		 * stripe's dev and sector.
2320 		 */
2321 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2322 				      &map_length, &bioc, 0);
2323 		if (ret) {
2324 			btrfs_bio_counter_dec(fs_info);
2325 			bio_put(bio);
2326 			return -EIO;
2327 		}
2328 		ASSERT(bioc->mirror_num == 1);
2329 	} else {
2330 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2331 				      &map_length, &bioc, mirror_num);
2332 		if (ret) {
2333 			btrfs_bio_counter_dec(fs_info);
2334 			bio_put(bio);
2335 			return -EIO;
2336 		}
2337 		BUG_ON(mirror_num != bioc->mirror_num);
2338 	}
2339 
2340 	sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
2341 	bio->bi_iter.bi_sector = sector;
2342 	dev = bioc->stripes[bioc->mirror_num - 1].dev;
2343 	btrfs_put_bioc(bioc);
2344 	if (!dev || !dev->bdev ||
2345 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2346 		btrfs_bio_counter_dec(fs_info);
2347 		bio_put(bio);
2348 		return -EIO;
2349 	}
2350 	bio_set_dev(bio, dev->bdev);
2351 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2352 	bio_add_page(bio, page, length, pg_offset);
2353 
2354 	if (btrfsic_submit_bio_wait(bio)) {
2355 		/* try to remap that extent elsewhere? */
2356 		btrfs_bio_counter_dec(fs_info);
2357 		bio_put(bio);
2358 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2359 		return -EIO;
2360 	}
2361 
2362 	btrfs_info_rl_in_rcu(fs_info,
2363 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2364 				  ino, start,
2365 				  rcu_str_deref(dev->name), sector);
2366 	btrfs_bio_counter_dec(fs_info);
2367 	bio_put(bio);
2368 	return 0;
2369 }
2370 
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)2371 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2372 {
2373 	struct btrfs_fs_info *fs_info = eb->fs_info;
2374 	u64 start = eb->start;
2375 	int i, num_pages = num_extent_pages(eb);
2376 	int ret = 0;
2377 
2378 	if (sb_rdonly(fs_info->sb))
2379 		return -EROFS;
2380 
2381 	for (i = 0; i < num_pages; i++) {
2382 		struct page *p = eb->pages[i];
2383 
2384 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2385 					start - page_offset(p), mirror_num);
2386 		if (ret)
2387 			break;
2388 		start += PAGE_SIZE;
2389 	}
2390 
2391 	return ret;
2392 }
2393 
2394 /*
2395  * each time an IO finishes, we do a fast check in the IO failure tree
2396  * to see if we need to process or clean up an io_failure_record
2397  */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2398 int clean_io_failure(struct btrfs_fs_info *fs_info,
2399 		     struct extent_io_tree *failure_tree,
2400 		     struct extent_io_tree *io_tree, u64 start,
2401 		     struct page *page, u64 ino, unsigned int pg_offset)
2402 {
2403 	u64 private;
2404 	struct io_failure_record *failrec;
2405 	struct extent_state *state;
2406 	int num_copies;
2407 	int ret;
2408 
2409 	private = 0;
2410 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2411 			       EXTENT_DIRTY, 0);
2412 	if (!ret)
2413 		return 0;
2414 
2415 	failrec = get_state_failrec(failure_tree, start);
2416 	if (IS_ERR(failrec))
2417 		return 0;
2418 
2419 	BUG_ON(!failrec->this_mirror);
2420 
2421 	if (sb_rdonly(fs_info->sb))
2422 		goto out;
2423 
2424 	spin_lock(&io_tree->lock);
2425 	state = find_first_extent_bit_state(io_tree,
2426 					    failrec->start,
2427 					    EXTENT_LOCKED);
2428 	spin_unlock(&io_tree->lock);
2429 
2430 	if (state && state->start <= failrec->start &&
2431 	    state->end >= failrec->start + failrec->len - 1) {
2432 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2433 					      failrec->len);
2434 		if (num_copies > 1)  {
2435 			repair_io_failure(fs_info, ino, start, failrec->len,
2436 					  failrec->logical, page, pg_offset,
2437 					  failrec->failed_mirror);
2438 		}
2439 	}
2440 
2441 out:
2442 	free_io_failure(failure_tree, io_tree, failrec);
2443 
2444 	return 0;
2445 }
2446 
2447 /*
2448  * Can be called when
2449  * - hold extent lock
2450  * - under ordered extent
2451  * - the inode is freeing
2452  */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2453 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2454 {
2455 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2456 	struct io_failure_record *failrec;
2457 	struct extent_state *state, *next;
2458 
2459 	if (RB_EMPTY_ROOT(&failure_tree->state))
2460 		return;
2461 
2462 	spin_lock(&failure_tree->lock);
2463 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2464 	while (state) {
2465 		if (state->start > end)
2466 			break;
2467 
2468 		ASSERT(state->end <= end);
2469 
2470 		next = next_state(state);
2471 
2472 		failrec = state->failrec;
2473 		free_extent_state(state);
2474 		kfree(failrec);
2475 
2476 		state = next;
2477 	}
2478 	spin_unlock(&failure_tree->lock);
2479 }
2480 
btrfs_get_io_failure_record(struct inode * inode,u64 start)2481 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2482 							     u64 start)
2483 {
2484 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2485 	struct io_failure_record *failrec;
2486 	struct extent_map *em;
2487 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2488 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2489 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2490 	const u32 sectorsize = fs_info->sectorsize;
2491 	int ret;
2492 	u64 logical;
2493 
2494 	failrec = get_state_failrec(failure_tree, start);
2495 	if (!IS_ERR(failrec)) {
2496 		btrfs_debug(fs_info,
2497 	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2498 			failrec->logical, failrec->start, failrec->len);
2499 		/*
2500 		 * when data can be on disk more than twice, add to failrec here
2501 		 * (e.g. with a list for failed_mirror) to make
2502 		 * clean_io_failure() clean all those errors at once.
2503 		 */
2504 
2505 		return failrec;
2506 	}
2507 
2508 	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2509 	if (!failrec)
2510 		return ERR_PTR(-ENOMEM);
2511 
2512 	failrec->start = start;
2513 	failrec->len = sectorsize;
2514 	failrec->this_mirror = 0;
2515 	failrec->bio_flags = 0;
2516 
2517 	read_lock(&em_tree->lock);
2518 	em = lookup_extent_mapping(em_tree, start, failrec->len);
2519 	if (!em) {
2520 		read_unlock(&em_tree->lock);
2521 		kfree(failrec);
2522 		return ERR_PTR(-EIO);
2523 	}
2524 
2525 	if (em->start > start || em->start + em->len <= start) {
2526 		free_extent_map(em);
2527 		em = NULL;
2528 	}
2529 	read_unlock(&em_tree->lock);
2530 	if (!em) {
2531 		kfree(failrec);
2532 		return ERR_PTR(-EIO);
2533 	}
2534 
2535 	logical = start - em->start;
2536 	logical = em->block_start + logical;
2537 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2538 		logical = em->block_start;
2539 		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2540 		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2541 	}
2542 
2543 	btrfs_debug(fs_info,
2544 		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2545 		    logical, start, failrec->len);
2546 
2547 	failrec->logical = logical;
2548 	free_extent_map(em);
2549 
2550 	/* Set the bits in the private failure tree */
2551 	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2552 			      EXTENT_LOCKED | EXTENT_DIRTY);
2553 	if (ret >= 0) {
2554 		ret = set_state_failrec(failure_tree, start, failrec);
2555 		/* Set the bits in the inode's tree */
2556 		ret = set_extent_bits(tree, start, start + sectorsize - 1,
2557 				      EXTENT_DAMAGED);
2558 	} else if (ret < 0) {
2559 		kfree(failrec);
2560 		return ERR_PTR(ret);
2561 	}
2562 
2563 	return failrec;
2564 }
2565 
btrfs_check_repairable(struct inode * inode,struct io_failure_record * failrec,int failed_mirror)2566 static bool btrfs_check_repairable(struct inode *inode,
2567 				   struct io_failure_record *failrec,
2568 				   int failed_mirror)
2569 {
2570 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2571 	int num_copies;
2572 
2573 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2574 	if (num_copies == 1) {
2575 		/*
2576 		 * we only have a single copy of the data, so don't bother with
2577 		 * all the retry and error correction code that follows. no
2578 		 * matter what the error is, it is very likely to persist.
2579 		 */
2580 		btrfs_debug(fs_info,
2581 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2582 			num_copies, failrec->this_mirror, failed_mirror);
2583 		return false;
2584 	}
2585 
2586 	/* The failure record should only contain one sector */
2587 	ASSERT(failrec->len == fs_info->sectorsize);
2588 
2589 	/*
2590 	 * There are two premises:
2591 	 * a) deliver good data to the caller
2592 	 * b) correct the bad sectors on disk
2593 	 *
2594 	 * Since we're only doing repair for one sector, we only need to get
2595 	 * a good copy of the failed sector and if we succeed, we have setup
2596 	 * everything for repair_io_failure to do the rest for us.
2597 	 */
2598 	failrec->failed_mirror = failed_mirror;
2599 	failrec->this_mirror++;
2600 	if (failrec->this_mirror == failed_mirror)
2601 		failrec->this_mirror++;
2602 
2603 	if (failrec->this_mirror > num_copies) {
2604 		btrfs_debug(fs_info,
2605 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2606 			num_copies, failrec->this_mirror, failed_mirror);
2607 		return false;
2608 	}
2609 
2610 	return true;
2611 }
2612 
btrfs_repair_one_sector(struct inode * inode,struct bio * failed_bio,u32 bio_offset,struct page * page,unsigned int pgoff,u64 start,int failed_mirror,submit_bio_hook_t * submit_bio_hook)2613 int btrfs_repair_one_sector(struct inode *inode,
2614 			    struct bio *failed_bio, u32 bio_offset,
2615 			    struct page *page, unsigned int pgoff,
2616 			    u64 start, int failed_mirror,
2617 			    submit_bio_hook_t *submit_bio_hook)
2618 {
2619 	struct io_failure_record *failrec;
2620 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2621 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2622 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2623 	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2624 	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2625 	struct bio *repair_bio;
2626 	struct btrfs_io_bio *repair_io_bio;
2627 	blk_status_t status;
2628 
2629 	btrfs_debug(fs_info,
2630 		   "repair read error: read error at %llu", start);
2631 
2632 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2633 
2634 	failrec = btrfs_get_io_failure_record(inode, start);
2635 	if (IS_ERR(failrec))
2636 		return PTR_ERR(failrec);
2637 
2638 
2639 	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2640 		free_io_failure(failure_tree, tree, failrec);
2641 		return -EIO;
2642 	}
2643 
2644 	repair_bio = btrfs_io_bio_alloc(1);
2645 	repair_io_bio = btrfs_io_bio(repair_bio);
2646 	repair_bio->bi_opf = REQ_OP_READ;
2647 	repair_bio->bi_end_io = failed_bio->bi_end_io;
2648 	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2649 	repair_bio->bi_private = failed_bio->bi_private;
2650 
2651 	if (failed_io_bio->csum) {
2652 		const u32 csum_size = fs_info->csum_size;
2653 
2654 		repair_io_bio->csum = repair_io_bio->csum_inline;
2655 		memcpy(repair_io_bio->csum,
2656 		       failed_io_bio->csum + csum_size * icsum, csum_size);
2657 	}
2658 
2659 	bio_add_page(repair_bio, page, failrec->len, pgoff);
2660 	repair_io_bio->logical = failrec->start;
2661 	repair_io_bio->iter = repair_bio->bi_iter;
2662 
2663 	btrfs_debug(btrfs_sb(inode->i_sb),
2664 		    "repair read error: submitting new read to mirror %d",
2665 		    failrec->this_mirror);
2666 
2667 	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2668 				 failrec->bio_flags);
2669 	if (status) {
2670 		free_io_failure(failure_tree, tree, failrec);
2671 		bio_put(repair_bio);
2672 	}
2673 	return blk_status_to_errno(status);
2674 }
2675 
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)2676 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2677 {
2678 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2679 
2680 	ASSERT(page_offset(page) <= start &&
2681 	       start + len <= page_offset(page) + PAGE_SIZE);
2682 
2683 	if (uptodate) {
2684 		if (fsverity_active(page->mapping->host) &&
2685 		    !PageError(page) &&
2686 		    !PageUptodate(page) &&
2687 		    start < i_size_read(page->mapping->host) &&
2688 		    !fsverity_verify_page(page)) {
2689 			btrfs_page_set_error(fs_info, page, start, len);
2690 		} else {
2691 			btrfs_page_set_uptodate(fs_info, page, start, len);
2692 		}
2693 	} else {
2694 		btrfs_page_clear_uptodate(fs_info, page, start, len);
2695 		btrfs_page_set_error(fs_info, page, start, len);
2696 	}
2697 
2698 	if (fs_info->sectorsize == PAGE_SIZE)
2699 		unlock_page(page);
2700 	else
2701 		btrfs_subpage_end_reader(fs_info, page, start, len);
2702 }
2703 
submit_read_repair(struct inode * inode,struct bio * failed_bio,u32 bio_offset,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,unsigned int error_bitmap,submit_bio_hook_t * submit_bio_hook)2704 static blk_status_t submit_read_repair(struct inode *inode,
2705 				      struct bio *failed_bio, u32 bio_offset,
2706 				      struct page *page, unsigned int pgoff,
2707 				      u64 start, u64 end, int failed_mirror,
2708 				      unsigned int error_bitmap,
2709 				      submit_bio_hook_t *submit_bio_hook)
2710 {
2711 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2712 	const u32 sectorsize = fs_info->sectorsize;
2713 	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2714 	int error = 0;
2715 	int i;
2716 
2717 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2718 
2719 	/* We're here because we had some read errors or csum mismatch */
2720 	ASSERT(error_bitmap);
2721 
2722 	/*
2723 	 * We only get called on buffered IO, thus page must be mapped and bio
2724 	 * must not be cloned.
2725 	 */
2726 	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2727 
2728 	/* Iterate through all the sectors in the range */
2729 	for (i = 0; i < nr_bits; i++) {
2730 		const unsigned int offset = i * sectorsize;
2731 		struct extent_state *cached = NULL;
2732 		bool uptodate = false;
2733 		int ret;
2734 
2735 		if (!(error_bitmap & (1U << i))) {
2736 			/*
2737 			 * This sector has no error, just end the page read
2738 			 * and unlock the range.
2739 			 */
2740 			uptodate = true;
2741 			goto next;
2742 		}
2743 
2744 		ret = btrfs_repair_one_sector(inode, failed_bio,
2745 				bio_offset + offset,
2746 				page, pgoff + offset, start + offset,
2747 				failed_mirror, submit_bio_hook);
2748 		if (!ret) {
2749 			/*
2750 			 * We have submitted the read repair, the page release
2751 			 * will be handled by the endio function of the
2752 			 * submitted repair bio.
2753 			 * Thus we don't need to do any thing here.
2754 			 */
2755 			continue;
2756 		}
2757 		/*
2758 		 * Repair failed, just record the error but still continue.
2759 		 * Or the remaining sectors will not be properly unlocked.
2760 		 */
2761 		if (!error)
2762 			error = ret;
2763 next:
2764 		end_page_read(page, uptodate, start + offset, sectorsize);
2765 		if (uptodate)
2766 			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2767 					start + offset,
2768 					start + offset + sectorsize - 1,
2769 					&cached, GFP_ATOMIC);
2770 		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2771 				start + offset,
2772 				start + offset + sectorsize - 1,
2773 				&cached);
2774 	}
2775 	return errno_to_blk_status(error);
2776 }
2777 
2778 /* lots and lots of room for performance fixes in the end_bio funcs */
2779 
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2780 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2781 {
2782 	struct btrfs_inode *inode;
2783 	const bool uptodate = (err == 0);
2784 	int ret = 0;
2785 
2786 	ASSERT(page && page->mapping);
2787 	inode = BTRFS_I(page->mapping->host);
2788 	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2789 
2790 	if (!uptodate) {
2791 		const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2792 		u32 len;
2793 
2794 		ASSERT(end + 1 - start <= U32_MAX);
2795 		len = end + 1 - start;
2796 
2797 		btrfs_page_clear_uptodate(fs_info, page, start, len);
2798 		btrfs_page_set_error(fs_info, page, start, len);
2799 		ret = err < 0 ? err : -EIO;
2800 		mapping_set_error(page->mapping, ret);
2801 	}
2802 }
2803 
2804 /*
2805  * after a writepage IO is done, we need to:
2806  * clear the uptodate bits on error
2807  * clear the writeback bits in the extent tree for this IO
2808  * end_page_writeback if the page has no more pending IO
2809  *
2810  * Scheduling is not allowed, so the extent state tree is expected
2811  * to have one and only one object corresponding to this IO.
2812  */
end_bio_extent_writepage(struct bio * bio)2813 static void end_bio_extent_writepage(struct bio *bio)
2814 {
2815 	int error = blk_status_to_errno(bio->bi_status);
2816 	struct bio_vec *bvec;
2817 	u64 start;
2818 	u64 end;
2819 	struct bvec_iter_all iter_all;
2820 	bool first_bvec = true;
2821 
2822 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2823 	bio_for_each_segment_all(bvec, bio, iter_all) {
2824 		struct page *page = bvec->bv_page;
2825 		struct inode *inode = page->mapping->host;
2826 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2827 		const u32 sectorsize = fs_info->sectorsize;
2828 
2829 		/* Our read/write should always be sector aligned. */
2830 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2831 			btrfs_err(fs_info,
2832 		"partial page write in btrfs with offset %u and length %u",
2833 				  bvec->bv_offset, bvec->bv_len);
2834 		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2835 			btrfs_info(fs_info,
2836 		"incomplete page write with offset %u and length %u",
2837 				   bvec->bv_offset, bvec->bv_len);
2838 
2839 		start = page_offset(page) + bvec->bv_offset;
2840 		end = start + bvec->bv_len - 1;
2841 
2842 		if (first_bvec) {
2843 			btrfs_record_physical_zoned(inode, start, bio);
2844 			first_bvec = false;
2845 		}
2846 
2847 		end_extent_writepage(page, error, start, end);
2848 
2849 		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2850 	}
2851 
2852 	bio_put(bio);
2853 }
2854 
2855 /*
2856  * Record previously processed extent range
2857  *
2858  * For endio_readpage_release_extent() to handle a full extent range, reducing
2859  * the extent io operations.
2860  */
2861 struct processed_extent {
2862 	struct btrfs_inode *inode;
2863 	/* Start of the range in @inode */
2864 	u64 start;
2865 	/* End of the range in @inode */
2866 	u64 end;
2867 	bool uptodate;
2868 };
2869 
2870 /*
2871  * Try to release processed extent range
2872  *
2873  * May not release the extent range right now if the current range is
2874  * contiguous to processed extent.
2875  *
2876  * Will release processed extent when any of @inode, @uptodate, the range is
2877  * no longer contiguous to the processed range.
2878  *
2879  * Passing @inode == NULL will force processed extent to be released.
2880  */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)2881 static void endio_readpage_release_extent(struct processed_extent *processed,
2882 			      struct btrfs_inode *inode, u64 start, u64 end,
2883 			      bool uptodate)
2884 {
2885 	struct extent_state *cached = NULL;
2886 	struct extent_io_tree *tree;
2887 
2888 	/* The first extent, initialize @processed */
2889 	if (!processed->inode)
2890 		goto update;
2891 
2892 	/*
2893 	 * Contiguous to processed extent, just uptodate the end.
2894 	 *
2895 	 * Several things to notice:
2896 	 *
2897 	 * - bio can be merged as long as on-disk bytenr is contiguous
2898 	 *   This means we can have page belonging to other inodes, thus need to
2899 	 *   check if the inode still matches.
2900 	 * - bvec can contain range beyond current page for multi-page bvec
2901 	 *   Thus we need to do processed->end + 1 >= start check
2902 	 */
2903 	if (processed->inode == inode && processed->uptodate == uptodate &&
2904 	    processed->end + 1 >= start && end >= processed->end) {
2905 		processed->end = end;
2906 		return;
2907 	}
2908 
2909 	tree = &processed->inode->io_tree;
2910 	/*
2911 	 * Now we don't have range contiguous to the processed range, release
2912 	 * the processed range now.
2913 	 */
2914 	if (processed->uptodate && tree->track_uptodate)
2915 		set_extent_uptodate(tree, processed->start, processed->end,
2916 				    &cached, GFP_ATOMIC);
2917 	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2918 				    &cached);
2919 
2920 update:
2921 	/* Update processed to current range */
2922 	processed->inode = inode;
2923 	processed->start = start;
2924 	processed->end = end;
2925 	processed->uptodate = uptodate;
2926 }
2927 
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)2928 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2929 {
2930 	ASSERT(PageLocked(page));
2931 	if (fs_info->sectorsize == PAGE_SIZE)
2932 		return;
2933 
2934 	ASSERT(PagePrivate(page));
2935 	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2936 }
2937 
2938 /*
2939  * Find extent buffer for a givne bytenr.
2940  *
2941  * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2942  * in endio context.
2943  */
find_extent_buffer_readpage(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)2944 static struct extent_buffer *find_extent_buffer_readpage(
2945 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2946 {
2947 	struct extent_buffer *eb;
2948 
2949 	/*
2950 	 * For regular sectorsize, we can use page->private to grab extent
2951 	 * buffer
2952 	 */
2953 	if (fs_info->sectorsize == PAGE_SIZE) {
2954 		ASSERT(PagePrivate(page) && page->private);
2955 		return (struct extent_buffer *)page->private;
2956 	}
2957 
2958 	/* For subpage case, we need to lookup buffer radix tree */
2959 	rcu_read_lock();
2960 	eb = radix_tree_lookup(&fs_info->buffer_radix,
2961 			       bytenr >> fs_info->sectorsize_bits);
2962 	rcu_read_unlock();
2963 	ASSERT(eb);
2964 	return eb;
2965 }
2966 
2967 /*
2968  * after a readpage IO is done, we need to:
2969  * clear the uptodate bits on error
2970  * set the uptodate bits if things worked
2971  * set the page up to date if all extents in the tree are uptodate
2972  * clear the lock bit in the extent tree
2973  * unlock the page if there are no other extents locked for it
2974  *
2975  * Scheduling is not allowed, so the extent state tree is expected
2976  * to have one and only one object corresponding to this IO.
2977  */
end_bio_extent_readpage(struct bio * bio)2978 static void end_bio_extent_readpage(struct bio *bio)
2979 {
2980 	struct bio_vec *bvec;
2981 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2982 	struct extent_io_tree *tree, *failure_tree;
2983 	struct processed_extent processed = { 0 };
2984 	/*
2985 	 * The offset to the beginning of a bio, since one bio can never be
2986 	 * larger than UINT_MAX, u32 here is enough.
2987 	 */
2988 	u32 bio_offset = 0;
2989 	int mirror;
2990 	int ret;
2991 	struct bvec_iter_all iter_all;
2992 
2993 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2994 	bio_for_each_segment_all(bvec, bio, iter_all) {
2995 		bool uptodate = !bio->bi_status;
2996 		struct page *page = bvec->bv_page;
2997 		struct inode *inode = page->mapping->host;
2998 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2999 		const u32 sectorsize = fs_info->sectorsize;
3000 		unsigned int error_bitmap = (unsigned int)-1;
3001 		u64 start;
3002 		u64 end;
3003 		u32 len;
3004 
3005 		btrfs_debug(fs_info,
3006 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3007 			bio->bi_iter.bi_sector, bio->bi_status,
3008 			io_bio->mirror_num);
3009 		tree = &BTRFS_I(inode)->io_tree;
3010 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3011 
3012 		/*
3013 		 * We always issue full-sector reads, but if some block in a
3014 		 * page fails to read, blk_update_request() will advance
3015 		 * bv_offset and adjust bv_len to compensate.  Print a warning
3016 		 * for unaligned offsets, and an error if they don't add up to
3017 		 * a full sector.
3018 		 */
3019 		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3020 			btrfs_err(fs_info,
3021 		"partial page read in btrfs with offset %u and length %u",
3022 				  bvec->bv_offset, bvec->bv_len);
3023 		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3024 				     sectorsize))
3025 			btrfs_info(fs_info,
3026 		"incomplete page read with offset %u and length %u",
3027 				   bvec->bv_offset, bvec->bv_len);
3028 
3029 		start = page_offset(page) + bvec->bv_offset;
3030 		end = start + bvec->bv_len - 1;
3031 		len = bvec->bv_len;
3032 
3033 		mirror = io_bio->mirror_num;
3034 		if (likely(uptodate)) {
3035 			if (is_data_inode(inode)) {
3036 				error_bitmap = btrfs_verify_data_csum(io_bio,
3037 						bio_offset, page, start, end);
3038 				ret = error_bitmap;
3039 			} else {
3040 				ret = btrfs_validate_metadata_buffer(io_bio,
3041 					page, start, end, mirror);
3042 			}
3043 			if (ret)
3044 				uptodate = false;
3045 			else
3046 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
3047 						 failure_tree, tree, start,
3048 						 page,
3049 						 btrfs_ino(BTRFS_I(inode)), 0);
3050 		}
3051 
3052 		if (likely(uptodate))
3053 			goto readpage_ok;
3054 
3055 		if (is_data_inode(inode)) {
3056 			/*
3057 			 * btrfs_submit_read_repair() will handle all the good
3058 			 * and bad sectors, we just continue to the next bvec.
3059 			 */
3060 			submit_read_repair(inode, bio, bio_offset, page,
3061 					   start - page_offset(page), start,
3062 					   end, mirror, error_bitmap,
3063 					   btrfs_submit_data_bio);
3064 
3065 			ASSERT(bio_offset + len > bio_offset);
3066 			bio_offset += len;
3067 			continue;
3068 		} else {
3069 			struct extent_buffer *eb;
3070 
3071 			eb = find_extent_buffer_readpage(fs_info, page, start);
3072 			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3073 			eb->read_mirror = mirror;
3074 			atomic_dec(&eb->io_pages);
3075 			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3076 					       &eb->bflags))
3077 				btree_readahead_hook(eb, -EIO);
3078 		}
3079 readpage_ok:
3080 		if (likely(uptodate)) {
3081 			loff_t i_size = i_size_read(inode);
3082 			pgoff_t end_index = i_size >> PAGE_SHIFT;
3083 
3084 			/*
3085 			 * Zero out the remaining part if this range straddles
3086 			 * i_size.
3087 			 *
3088 			 * Here we should only zero the range inside the bvec,
3089 			 * not touch anything else.
3090 			 *
3091 			 * NOTE: i_size is exclusive while end is inclusive.
3092 			 */
3093 			if (page->index == end_index && i_size <= end) {
3094 				u32 zero_start = max(offset_in_page(i_size),
3095 						     offset_in_page(start));
3096 
3097 				zero_user_segment(page, zero_start,
3098 						  offset_in_page(end) + 1);
3099 			}
3100 		}
3101 		ASSERT(bio_offset + len > bio_offset);
3102 		bio_offset += len;
3103 
3104 		/* Update page status and unlock */
3105 		end_page_read(page, uptodate, start, len);
3106 		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3107 					      start, end, PageUptodate(page));
3108 	}
3109 	/* Release the last extent */
3110 	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3111 	btrfs_io_bio_free_csum(io_bio);
3112 	bio_put(bio);
3113 }
3114 
3115 /*
3116  * Initialize the members up to but not including 'bio'. Use after allocating a
3117  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3118  * 'bio' because use of __GFP_ZERO is not supported.
3119  */
btrfs_io_bio_init(struct btrfs_io_bio * btrfs_bio)3120 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3121 {
3122 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
3123 }
3124 
3125 /*
3126  * The following helpers allocate a bio. As it's backed by a bioset, it'll
3127  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3128  * for the appropriate container_of magic
3129  */
btrfs_bio_alloc(u64 first_byte)3130 struct bio *btrfs_bio_alloc(u64 first_byte)
3131 {
3132 	struct bio *bio;
3133 
3134 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3135 	bio->bi_iter.bi_sector = first_byte >> 9;
3136 	btrfs_io_bio_init(btrfs_io_bio(bio));
3137 	return bio;
3138 }
3139 
btrfs_bio_clone(struct bio * bio)3140 struct bio *btrfs_bio_clone(struct bio *bio)
3141 {
3142 	struct btrfs_io_bio *btrfs_bio;
3143 	struct bio *new;
3144 
3145 	/* Bio allocation backed by a bioset does not fail */
3146 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3147 	btrfs_bio = btrfs_io_bio(new);
3148 	btrfs_io_bio_init(btrfs_bio);
3149 	btrfs_bio->iter = bio->bi_iter;
3150 	return new;
3151 }
3152 
btrfs_io_bio_alloc(unsigned int nr_iovecs)3153 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3154 {
3155 	struct bio *bio;
3156 
3157 	/* Bio allocation backed by a bioset does not fail */
3158 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3159 	btrfs_io_bio_init(btrfs_io_bio(bio));
3160 	return bio;
3161 }
3162 
btrfs_bio_clone_partial(struct bio * orig,u64 offset,u64 size)3163 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3164 {
3165 	struct bio *bio;
3166 	struct btrfs_io_bio *btrfs_bio;
3167 
3168 	ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3169 
3170 	/* this will never fail when it's backed by a bioset */
3171 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3172 	ASSERT(bio);
3173 
3174 	btrfs_bio = btrfs_io_bio(bio);
3175 	btrfs_io_bio_init(btrfs_bio);
3176 
3177 	bio_trim(bio, offset >> 9, size >> 9);
3178 	btrfs_bio->iter = bio->bi_iter;
3179 	return bio;
3180 }
3181 
3182 /**
3183  * Attempt to add a page to bio
3184  *
3185  * @bio:	destination bio
3186  * @page:	page to add to the bio
3187  * @disk_bytenr:  offset of the new bio or to check whether we are adding
3188  *                a contiguous page to the previous one
3189  * @pg_offset:	starting offset in the page
3190  * @size:	portion of page that we want to write
3191  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3192  * @bio_flags:	flags of the current bio to see if we can merge them
3193  *
3194  * Attempt to add a page to bio considering stripe alignment etc.
3195  *
3196  * Return >= 0 for the number of bytes added to the bio.
3197  * Can return 0 if the current bio is already at stripe/zone boundary.
3198  * Return <0 for error.
3199  */
btrfs_bio_add_page(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int size,unsigned int pg_offset,unsigned long bio_flags)3200 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3201 			      struct page *page,
3202 			      u64 disk_bytenr, unsigned int size,
3203 			      unsigned int pg_offset,
3204 			      unsigned long bio_flags)
3205 {
3206 	struct bio *bio = bio_ctrl->bio;
3207 	u32 bio_size = bio->bi_iter.bi_size;
3208 	u32 real_size;
3209 	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3210 	bool contig;
3211 	int ret;
3212 
3213 	ASSERT(bio);
3214 	/* The limit should be calculated when bio_ctrl->bio is allocated */
3215 	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3216 	if (bio_ctrl->bio_flags != bio_flags)
3217 		return 0;
3218 
3219 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3220 		contig = bio->bi_iter.bi_sector == sector;
3221 	else
3222 		contig = bio_end_sector(bio) == sector;
3223 	if (!contig)
3224 		return 0;
3225 
3226 	real_size = min(bio_ctrl->len_to_oe_boundary,
3227 			bio_ctrl->len_to_stripe_boundary) - bio_size;
3228 	real_size = min(real_size, size);
3229 
3230 	/*
3231 	 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3232 	 * bio will still execute its endio function on the page!
3233 	 */
3234 	if (real_size == 0)
3235 		return 0;
3236 
3237 	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3238 		ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3239 	else
3240 		ret = bio_add_page(bio, page, real_size, pg_offset);
3241 
3242 	return ret;
3243 }
3244 
calc_bio_boundaries(struct btrfs_bio_ctrl * bio_ctrl,struct btrfs_inode * inode,u64 file_offset)3245 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3246 			       struct btrfs_inode *inode, u64 file_offset)
3247 {
3248 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3249 	struct btrfs_io_geometry geom;
3250 	struct btrfs_ordered_extent *ordered;
3251 	struct extent_map *em;
3252 	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3253 	int ret;
3254 
3255 	/*
3256 	 * Pages for compressed extent are never submitted to disk directly,
3257 	 * thus it has no real boundary, just set them to U32_MAX.
3258 	 *
3259 	 * The split happens for real compressed bio, which happens in
3260 	 * btrfs_submit_compressed_read/write().
3261 	 */
3262 	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3263 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3264 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3265 		return 0;
3266 	}
3267 	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3268 	if (IS_ERR(em))
3269 		return PTR_ERR(em);
3270 	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3271 				    logical, &geom);
3272 	free_extent_map(em);
3273 	if (ret < 0) {
3274 		return ret;
3275 	}
3276 	if (geom.len > U32_MAX)
3277 		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3278 	else
3279 		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3280 
3281 	if (!btrfs_is_zoned(fs_info) ||
3282 	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3283 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3284 		return 0;
3285 	}
3286 
3287 	/* Ordered extent not yet created, so we're good */
3288 	ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3289 	if (!ordered) {
3290 		bio_ctrl->len_to_oe_boundary = U32_MAX;
3291 		return 0;
3292 	}
3293 
3294 	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3295 		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3296 	btrfs_put_ordered_extent(ordered);
3297 	return 0;
3298 }
3299 
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,struct writeback_control * wbc,unsigned int opf,bio_end_io_t end_io_func,u64 disk_bytenr,u32 offset,u64 file_offset,unsigned long bio_flags)3300 static int alloc_new_bio(struct btrfs_inode *inode,
3301 			 struct btrfs_bio_ctrl *bio_ctrl,
3302 			 struct writeback_control *wbc,
3303 			 unsigned int opf,
3304 			 bio_end_io_t end_io_func,
3305 			 u64 disk_bytenr, u32 offset, u64 file_offset,
3306 			 unsigned long bio_flags)
3307 {
3308 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3309 	struct bio *bio;
3310 	int ret;
3311 
3312 	/*
3313 	 * For compressed page range, its disk_bytenr is always @disk_bytenr
3314 	 * passed in, no matter if we have added any range into previous bio.
3315 	 */
3316 	if (bio_flags & EXTENT_BIO_COMPRESSED)
3317 		bio = btrfs_bio_alloc(disk_bytenr);
3318 	else
3319 		bio = btrfs_bio_alloc(disk_bytenr + offset);
3320 	bio_ctrl->bio = bio;
3321 	bio_ctrl->bio_flags = bio_flags;
3322 	bio->bi_end_io = end_io_func;
3323 	bio->bi_private = &inode->io_tree;
3324 	bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3325 	bio->bi_opf = opf;
3326 	ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3327 	if (ret < 0)
3328 		goto error;
3329 	if (wbc) {
3330 		struct block_device *bdev;
3331 
3332 		bdev = fs_info->fs_devices->latest_dev->bdev;
3333 		bio_set_dev(bio, bdev);
3334 		wbc_init_bio(wbc, bio);
3335 	}
3336 	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3337 		struct btrfs_device *device;
3338 
3339 		device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3340 						fs_info->sectorsize);
3341 		if (IS_ERR(device)) {
3342 			ret = PTR_ERR(device);
3343 			goto error;
3344 		}
3345 
3346 		btrfs_io_bio(bio)->device = device;
3347 	}
3348 	return 0;
3349 error:
3350 	bio_ctrl->bio = NULL;
3351 	bio->bi_status = errno_to_blk_status(ret);
3352 	bio_endio(bio);
3353 	return ret;
3354 }
3355 
3356 /*
3357  * @opf:	bio REQ_OP_* and REQ_* flags as one value
3358  * @wbc:	optional writeback control for io accounting
3359  * @page:	page to add to the bio
3360  * @disk_bytenr: logical bytenr where the write will be
3361  * @size:	portion of page that we want to write to
3362  * @pg_offset:	offset of the new bio or to check whether we are adding
3363  *              a contiguous page to the previous one
3364  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3365  * @end_io_func:     end_io callback for new bio
3366  * @mirror_num:	     desired mirror to read/write
3367  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3368  * @bio_flags:	flags of the current bio to see if we can merge them
3369  */
submit_extent_page(unsigned int opf,struct writeback_control * wbc,struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,size_t size,unsigned long pg_offset,bio_end_io_t end_io_func,int mirror_num,unsigned long bio_flags,bool force_bio_submit)3370 static int submit_extent_page(unsigned int opf,
3371 			      struct writeback_control *wbc,
3372 			      struct btrfs_bio_ctrl *bio_ctrl,
3373 			      struct page *page, u64 disk_bytenr,
3374 			      size_t size, unsigned long pg_offset,
3375 			      bio_end_io_t end_io_func,
3376 			      int mirror_num,
3377 			      unsigned long bio_flags,
3378 			      bool force_bio_submit)
3379 {
3380 	int ret = 0;
3381 	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3382 	unsigned int cur = pg_offset;
3383 
3384 	ASSERT(bio_ctrl);
3385 
3386 	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3387 	       pg_offset + size <= PAGE_SIZE);
3388 	if (force_bio_submit && bio_ctrl->bio) {
3389 		ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3390 		bio_ctrl->bio = NULL;
3391 		if (ret < 0)
3392 			return ret;
3393 	}
3394 
3395 	while (cur < pg_offset + size) {
3396 		u32 offset = cur - pg_offset;
3397 		int added;
3398 
3399 		/* Allocate new bio if needed */
3400 		if (!bio_ctrl->bio) {
3401 			ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3402 					    end_io_func, disk_bytenr, offset,
3403 					    page_offset(page) + cur,
3404 					    bio_flags);
3405 			if (ret < 0)
3406 				return ret;
3407 		}
3408 		/*
3409 		 * We must go through btrfs_bio_add_page() to ensure each
3410 		 * page range won't cross various boundaries.
3411 		 */
3412 		if (bio_flags & EXTENT_BIO_COMPRESSED)
3413 			added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3414 					size - offset, pg_offset + offset,
3415 					bio_flags);
3416 		else
3417 			added = btrfs_bio_add_page(bio_ctrl, page,
3418 					disk_bytenr + offset, size - offset,
3419 					pg_offset + offset, bio_flags);
3420 
3421 		/* Metadata page range should never be split */
3422 		if (!is_data_inode(&inode->vfs_inode))
3423 			ASSERT(added == 0 || added == size - offset);
3424 
3425 		/* At least we added some page, update the account */
3426 		if (wbc && added)
3427 			wbc_account_cgroup_owner(wbc, page, added);
3428 
3429 		/* We have reached boundary, submit right now */
3430 		if (added < size - offset) {
3431 			/* The bio should contain some page(s) */
3432 			ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3433 			ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3434 					bio_ctrl->bio_flags);
3435 			bio_ctrl->bio = NULL;
3436 			if (ret < 0)
3437 				return ret;
3438 		}
3439 		cur += added;
3440 	}
3441 	return 0;
3442 }
3443 
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)3444 static int attach_extent_buffer_page(struct extent_buffer *eb,
3445 				     struct page *page,
3446 				     struct btrfs_subpage *prealloc)
3447 {
3448 	struct btrfs_fs_info *fs_info = eb->fs_info;
3449 	int ret = 0;
3450 
3451 	/*
3452 	 * If the page is mapped to btree inode, we should hold the private
3453 	 * lock to prevent race.
3454 	 * For cloned or dummy extent buffers, their pages are not mapped and
3455 	 * will not race with any other ebs.
3456 	 */
3457 	if (page->mapping)
3458 		lockdep_assert_held(&page->mapping->private_lock);
3459 
3460 	if (fs_info->sectorsize == PAGE_SIZE) {
3461 		if (!PagePrivate(page))
3462 			attach_page_private(page, eb);
3463 		else
3464 			WARN_ON(page->private != (unsigned long)eb);
3465 		return 0;
3466 	}
3467 
3468 	/* Already mapped, just free prealloc */
3469 	if (PagePrivate(page)) {
3470 		btrfs_free_subpage(prealloc);
3471 		return 0;
3472 	}
3473 
3474 	if (prealloc)
3475 		/* Has preallocated memory for subpage */
3476 		attach_page_private(page, prealloc);
3477 	else
3478 		/* Do new allocation to attach subpage */
3479 		ret = btrfs_attach_subpage(fs_info, page,
3480 					   BTRFS_SUBPAGE_METADATA);
3481 	return ret;
3482 }
3483 
set_page_extent_mapped(struct page * page)3484 int set_page_extent_mapped(struct page *page)
3485 {
3486 	struct btrfs_fs_info *fs_info;
3487 
3488 	ASSERT(page->mapping);
3489 
3490 	if (PagePrivate(page))
3491 		return 0;
3492 
3493 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3494 
3495 	if (fs_info->sectorsize < PAGE_SIZE)
3496 		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3497 
3498 	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3499 	return 0;
3500 }
3501 
clear_page_extent_mapped(struct page * page)3502 void clear_page_extent_mapped(struct page *page)
3503 {
3504 	struct btrfs_fs_info *fs_info;
3505 
3506 	ASSERT(page->mapping);
3507 
3508 	if (!PagePrivate(page))
3509 		return;
3510 
3511 	fs_info = btrfs_sb(page->mapping->host->i_sb);
3512 	if (fs_info->sectorsize < PAGE_SIZE)
3513 		return btrfs_detach_subpage(fs_info, page);
3514 
3515 	detach_page_private(page);
3516 }
3517 
3518 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)3519 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3520 		 u64 start, u64 len, struct extent_map **em_cached)
3521 {
3522 	struct extent_map *em;
3523 
3524 	if (em_cached && *em_cached) {
3525 		em = *em_cached;
3526 		if (extent_map_in_tree(em) && start >= em->start &&
3527 		    start < extent_map_end(em)) {
3528 			refcount_inc(&em->refs);
3529 			return em;
3530 		}
3531 
3532 		free_extent_map(em);
3533 		*em_cached = NULL;
3534 	}
3535 
3536 	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3537 	if (em_cached && !IS_ERR_OR_NULL(em)) {
3538 		BUG_ON(*em_cached);
3539 		refcount_inc(&em->refs);
3540 		*em_cached = em;
3541 	}
3542 	return em;
3543 }
3544 /*
3545  * basic readpage implementation.  Locked extent state structs are inserted
3546  * into the tree that are removed when the IO is done (by the end_io
3547  * handlers)
3548  * XXX JDM: This needs looking at to ensure proper page locking
3549  * return 0 on success, otherwise return error
3550  */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,unsigned int read_flags,u64 * prev_em_start)3551 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3552 		      struct btrfs_bio_ctrl *bio_ctrl,
3553 		      unsigned int read_flags, u64 *prev_em_start)
3554 {
3555 	struct inode *inode = page->mapping->host;
3556 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3557 	u64 start = page_offset(page);
3558 	const u64 end = start + PAGE_SIZE - 1;
3559 	u64 cur = start;
3560 	u64 extent_offset;
3561 	u64 last_byte = i_size_read(inode);
3562 	u64 block_start;
3563 	u64 cur_end;
3564 	struct extent_map *em;
3565 	int ret = 0;
3566 	size_t pg_offset = 0;
3567 	size_t iosize;
3568 	size_t blocksize = inode->i_sb->s_blocksize;
3569 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3570 
3571 	ret = set_page_extent_mapped(page);
3572 	if (ret < 0) {
3573 		unlock_extent(tree, start, end);
3574 		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3575 		unlock_page(page);
3576 		goto out;
3577 	}
3578 
3579 	if (!PageUptodate(page)) {
3580 		if (cleancache_get_page(page) == 0) {
3581 			BUG_ON(blocksize != PAGE_SIZE);
3582 			unlock_extent(tree, start, end);
3583 			unlock_page(page);
3584 			goto out;
3585 		}
3586 	}
3587 
3588 	if (page->index == last_byte >> PAGE_SHIFT) {
3589 		size_t zero_offset = offset_in_page(last_byte);
3590 
3591 		if (zero_offset) {
3592 			iosize = PAGE_SIZE - zero_offset;
3593 			memzero_page(page, zero_offset, iosize);
3594 			flush_dcache_page(page);
3595 		}
3596 	}
3597 	begin_page_read(fs_info, page);
3598 	while (cur <= end) {
3599 		unsigned long this_bio_flag = 0;
3600 		bool force_bio_submit = false;
3601 		u64 disk_bytenr;
3602 
3603 		if (cur >= last_byte) {
3604 			struct extent_state *cached = NULL;
3605 
3606 			iosize = PAGE_SIZE - pg_offset;
3607 			memzero_page(page, pg_offset, iosize);
3608 			flush_dcache_page(page);
3609 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3610 					    &cached, GFP_NOFS);
3611 			unlock_extent_cached(tree, cur,
3612 					     cur + iosize - 1, &cached);
3613 			end_page_read(page, true, cur, iosize);
3614 			break;
3615 		}
3616 		em = __get_extent_map(inode, page, pg_offset, cur,
3617 				      end - cur + 1, em_cached);
3618 		if (IS_ERR_OR_NULL(em)) {
3619 			unlock_extent(tree, cur, end);
3620 			end_page_read(page, false, cur, end + 1 - cur);
3621 			break;
3622 		}
3623 		extent_offset = cur - em->start;
3624 		BUG_ON(extent_map_end(em) <= cur);
3625 		BUG_ON(end < cur);
3626 
3627 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3628 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3629 			extent_set_compress_type(&this_bio_flag,
3630 						 em->compress_type);
3631 		}
3632 
3633 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3634 		cur_end = min(extent_map_end(em) - 1, end);
3635 		iosize = ALIGN(iosize, blocksize);
3636 		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3637 			disk_bytenr = em->block_start;
3638 		else
3639 			disk_bytenr = em->block_start + extent_offset;
3640 		block_start = em->block_start;
3641 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3642 			block_start = EXTENT_MAP_HOLE;
3643 
3644 		/*
3645 		 * If we have a file range that points to a compressed extent
3646 		 * and it's followed by a consecutive file range that points
3647 		 * to the same compressed extent (possibly with a different
3648 		 * offset and/or length, so it either points to the whole extent
3649 		 * or only part of it), we must make sure we do not submit a
3650 		 * single bio to populate the pages for the 2 ranges because
3651 		 * this makes the compressed extent read zero out the pages
3652 		 * belonging to the 2nd range. Imagine the following scenario:
3653 		 *
3654 		 *  File layout
3655 		 *  [0 - 8K]                     [8K - 24K]
3656 		 *    |                               |
3657 		 *    |                               |
3658 		 * points to extent X,         points to extent X,
3659 		 * offset 4K, length of 8K     offset 0, length 16K
3660 		 *
3661 		 * [extent X, compressed length = 4K uncompressed length = 16K]
3662 		 *
3663 		 * If the bio to read the compressed extent covers both ranges,
3664 		 * it will decompress extent X into the pages belonging to the
3665 		 * first range and then it will stop, zeroing out the remaining
3666 		 * pages that belong to the other range that points to extent X.
3667 		 * So here we make sure we submit 2 bios, one for the first
3668 		 * range and another one for the third range. Both will target
3669 		 * the same physical extent from disk, but we can't currently
3670 		 * make the compressed bio endio callback populate the pages
3671 		 * for both ranges because each compressed bio is tightly
3672 		 * coupled with a single extent map, and each range can have
3673 		 * an extent map with a different offset value relative to the
3674 		 * uncompressed data of our extent and different lengths. This
3675 		 * is a corner case so we prioritize correctness over
3676 		 * non-optimal behavior (submitting 2 bios for the same extent).
3677 		 */
3678 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3679 		    prev_em_start && *prev_em_start != (u64)-1 &&
3680 		    *prev_em_start != em->start)
3681 			force_bio_submit = true;
3682 
3683 		if (prev_em_start)
3684 			*prev_em_start = em->start;
3685 
3686 		free_extent_map(em);
3687 		em = NULL;
3688 
3689 		/* we've found a hole, just zero and go on */
3690 		if (block_start == EXTENT_MAP_HOLE) {
3691 			struct extent_state *cached = NULL;
3692 
3693 			memzero_page(page, pg_offset, iosize);
3694 			flush_dcache_page(page);
3695 
3696 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3697 					    &cached, GFP_NOFS);
3698 			unlock_extent_cached(tree, cur,
3699 					     cur + iosize - 1, &cached);
3700 			end_page_read(page, true, cur, iosize);
3701 			cur = cur + iosize;
3702 			pg_offset += iosize;
3703 			continue;
3704 		}
3705 		/* the get_extent function already copied into the page */
3706 		if (test_range_bit(tree, cur, cur_end,
3707 				   EXTENT_UPTODATE, 1, NULL)) {
3708 			unlock_extent(tree, cur, cur + iosize - 1);
3709 			end_page_read(page, true, cur, iosize);
3710 			cur = cur + iosize;
3711 			pg_offset += iosize;
3712 			continue;
3713 		}
3714 		/* we have an inline extent but it didn't get marked up
3715 		 * to date.  Error out
3716 		 */
3717 		if (block_start == EXTENT_MAP_INLINE) {
3718 			unlock_extent(tree, cur, cur + iosize - 1);
3719 			end_page_read(page, false, cur, iosize);
3720 			cur = cur + iosize;
3721 			pg_offset += iosize;
3722 			continue;
3723 		}
3724 
3725 		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3726 					 bio_ctrl, page, disk_bytenr, iosize,
3727 					 pg_offset,
3728 					 end_bio_extent_readpage, 0,
3729 					 this_bio_flag,
3730 					 force_bio_submit);
3731 		if (ret) {
3732 			/*
3733 			 * We have to unlock the remaining range, or the page
3734 			 * will never be unlocked.
3735 			 */
3736 			unlock_extent(tree, cur, end);
3737 			end_page_read(page, false, cur, end + 1 - cur);
3738 			goto out;
3739 		}
3740 		cur = cur + iosize;
3741 		pg_offset += iosize;
3742 	}
3743 out:
3744 	return ret;
3745 }
3746 
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)3747 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3748 					u64 start, u64 end,
3749 					struct extent_map **em_cached,
3750 					struct btrfs_bio_ctrl *bio_ctrl,
3751 					u64 *prev_em_start)
3752 {
3753 	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3754 	int index;
3755 
3756 	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3757 
3758 	for (index = 0; index < nr_pages; index++) {
3759 		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3760 				  REQ_RAHEAD, prev_em_start);
3761 		put_page(pages[index]);
3762 	}
3763 }
3764 
update_nr_written(struct writeback_control * wbc,unsigned long nr_written)3765 static void update_nr_written(struct writeback_control *wbc,
3766 			      unsigned long nr_written)
3767 {
3768 	wbc->nr_to_write -= nr_written;
3769 }
3770 
3771 /*
3772  * helper for __extent_writepage, doing all of the delayed allocation setup.
3773  *
3774  * This returns 1 if btrfs_run_delalloc_range function did all the work required
3775  * to write the page (copy into inline extent).  In this case the IO has
3776  * been started and the page is already unlocked.
3777  *
3778  * This returns 0 if all went well (page still locked)
3779  * This returns < 0 if there were errors (page still locked)
3780  */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,unsigned long * nr_written)3781 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3782 		struct page *page, struct writeback_control *wbc,
3783 		unsigned long *nr_written)
3784 {
3785 	u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3786 	bool found;
3787 	u64 delalloc_start = page_offset(page);
3788 	u64 delalloc_to_write = 0;
3789 	u64 delalloc_end = 0;
3790 	int ret;
3791 	int page_started = 0;
3792 
3793 
3794 	while (delalloc_end < page_end) {
3795 		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3796 					       &delalloc_start,
3797 					       &delalloc_end);
3798 		if (!found) {
3799 			delalloc_start = delalloc_end + 1;
3800 			continue;
3801 		}
3802 		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3803 				delalloc_end, &page_started, nr_written, wbc);
3804 		if (ret) {
3805 			btrfs_page_set_error(inode->root->fs_info, page,
3806 					     page_offset(page), PAGE_SIZE);
3807 			return ret;
3808 		}
3809 		/*
3810 		 * delalloc_end is already one less than the total length, so
3811 		 * we don't subtract one from PAGE_SIZE
3812 		 */
3813 		delalloc_to_write += (delalloc_end - delalloc_start +
3814 				      PAGE_SIZE) >> PAGE_SHIFT;
3815 		delalloc_start = delalloc_end + 1;
3816 	}
3817 	if (wbc->nr_to_write < delalloc_to_write) {
3818 		int thresh = 8192;
3819 
3820 		if (delalloc_to_write < thresh * 2)
3821 			thresh = delalloc_to_write;
3822 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3823 					 thresh);
3824 	}
3825 
3826 	/* did the fill delalloc function already unlock and start
3827 	 * the IO?
3828 	 */
3829 	if (page_started) {
3830 		/*
3831 		 * we've unlocked the page, so we can't update
3832 		 * the mapping's writeback index, just update
3833 		 * nr_to_write.
3834 		 */
3835 		wbc->nr_to_write -= *nr_written;
3836 		return 1;
3837 	}
3838 
3839 	return 0;
3840 }
3841 
3842 /*
3843  * Find the first byte we need to write.
3844  *
3845  * For subpage, one page can contain several sectors, and
3846  * __extent_writepage_io() will just grab all extent maps in the page
3847  * range and try to submit all non-inline/non-compressed extents.
3848  *
3849  * This is a big problem for subpage, we shouldn't re-submit already written
3850  * data at all.
3851  * This function will lookup subpage dirty bit to find which range we really
3852  * need to submit.
3853  *
3854  * Return the next dirty range in [@start, @end).
3855  * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3856  */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)3857 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3858 				 struct page *page, u64 *start, u64 *end)
3859 {
3860 	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3861 	u64 orig_start = *start;
3862 	/* Declare as unsigned long so we can use bitmap ops */
3863 	unsigned long dirty_bitmap;
3864 	unsigned long flags;
3865 	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3866 	int range_start_bit = nbits;
3867 	int range_end_bit;
3868 
3869 	/*
3870 	 * For regular sector size == page size case, since one page only
3871 	 * contains one sector, we return the page offset directly.
3872 	 */
3873 	if (fs_info->sectorsize == PAGE_SIZE) {
3874 		*start = page_offset(page);
3875 		*end = page_offset(page) + PAGE_SIZE;
3876 		return;
3877 	}
3878 
3879 	/* We should have the page locked, but just in case */
3880 	spin_lock_irqsave(&subpage->lock, flags);
3881 	dirty_bitmap = subpage->dirty_bitmap;
3882 	spin_unlock_irqrestore(&subpage->lock, flags);
3883 
3884 	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3885 			       BTRFS_SUBPAGE_BITMAP_SIZE);
3886 	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3887 	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3888 }
3889 
3890 /*
3891  * helper for __extent_writepage.  This calls the writepage start hooks,
3892  * and does the loop to map the page into extents and bios.
3893  *
3894  * We return 1 if the IO is started and the page is unlocked,
3895  * 0 if all went well (page still locked)
3896  * < 0 if there were errors (page still locked)
3897  */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,int * nr_ret)3898 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3899 				 struct page *page,
3900 				 struct writeback_control *wbc,
3901 				 struct extent_page_data *epd,
3902 				 loff_t i_size,
3903 				 unsigned long nr_written,
3904 				 int *nr_ret)
3905 {
3906 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3907 	u64 cur = page_offset(page);
3908 	u64 end = cur + PAGE_SIZE - 1;
3909 	u64 extent_offset;
3910 	u64 block_start;
3911 	struct extent_map *em;
3912 	int saved_ret = 0;
3913 	int ret = 0;
3914 	int nr = 0;
3915 	u32 opf = REQ_OP_WRITE;
3916 	const unsigned int write_flags = wbc_to_write_flags(wbc);
3917 	bool has_error = false;
3918 	bool compressed;
3919 
3920 	ret = btrfs_writepage_cow_fixup(page);
3921 	if (ret) {
3922 		/* Fixup worker will requeue */
3923 		redirty_page_for_writepage(wbc, page);
3924 		update_nr_written(wbc, nr_written);
3925 		unlock_page(page);
3926 		return 1;
3927 	}
3928 
3929 	/*
3930 	 * we don't want to touch the inode after unlocking the page,
3931 	 * so we update the mapping writeback index now
3932 	 */
3933 	update_nr_written(wbc, nr_written + 1);
3934 
3935 	while (cur <= end) {
3936 		u64 disk_bytenr;
3937 		u64 em_end;
3938 		u64 dirty_range_start = cur;
3939 		u64 dirty_range_end;
3940 		u32 iosize;
3941 
3942 		if (cur >= i_size) {
3943 			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3944 							     end, true);
3945 			/*
3946 			 * This range is beyond i_size, thus we don't need to
3947 			 * bother writing back.
3948 			 * But we still need to clear the dirty subpage bit, or
3949 			 * the next time the page gets dirtied, we will try to
3950 			 * writeback the sectors with subpage dirty bits,
3951 			 * causing writeback without ordered extent.
3952 			 */
3953 			btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3954 			break;
3955 		}
3956 
3957 		find_next_dirty_byte(fs_info, page, &dirty_range_start,
3958 				     &dirty_range_end);
3959 		if (cur < dirty_range_start) {
3960 			cur = dirty_range_start;
3961 			continue;
3962 		}
3963 
3964 		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3965 		if (IS_ERR_OR_NULL(em)) {
3966 			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3967 			ret = PTR_ERR_OR_ZERO(em);
3968 			has_error = true;
3969 			if (!saved_ret)
3970 				saved_ret = ret;
3971 			break;
3972 		}
3973 
3974 		extent_offset = cur - em->start;
3975 		em_end = extent_map_end(em);
3976 		ASSERT(cur <= em_end);
3977 		ASSERT(cur < end);
3978 		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3979 		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3980 		block_start = em->block_start;
3981 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3982 		disk_bytenr = em->block_start + extent_offset;
3983 
3984 		/*
3985 		 * Note that em_end from extent_map_end() and dirty_range_end from
3986 		 * find_next_dirty_byte() are all exclusive
3987 		 */
3988 		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3989 
3990 		if (btrfs_use_zone_append(inode, em->block_start))
3991 			opf = REQ_OP_ZONE_APPEND;
3992 
3993 		free_extent_map(em);
3994 		em = NULL;
3995 
3996 		/*
3997 		 * compressed and inline extents are written through other
3998 		 * paths in the FS
3999 		 */
4000 		if (compressed || block_start == EXTENT_MAP_HOLE ||
4001 		    block_start == EXTENT_MAP_INLINE) {
4002 			if (compressed)
4003 				nr++;
4004 			else
4005 				btrfs_writepage_endio_finish_ordered(inode,
4006 						page, cur, cur + iosize - 1, true);
4007 			btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4008 			cur += iosize;
4009 			continue;
4010 		}
4011 
4012 		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4013 		if (!PageWriteback(page)) {
4014 			btrfs_err(inode->root->fs_info,
4015 				   "page %lu not writeback, cur %llu end %llu",
4016 			       page->index, cur, end);
4017 		}
4018 
4019 		/*
4020 		 * Although the PageDirty bit is cleared before entering this
4021 		 * function, subpage dirty bit is not cleared.
4022 		 * So clear subpage dirty bit here so next time we won't submit
4023 		 * page for range already written to disk.
4024 		 */
4025 		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4026 
4027 		ret = submit_extent_page(opf | write_flags, wbc,
4028 					 &epd->bio_ctrl, page,
4029 					 disk_bytenr, iosize,
4030 					 cur - page_offset(page),
4031 					 end_bio_extent_writepage,
4032 					 0, 0, false);
4033 		if (ret) {
4034 			has_error = true;
4035 			if (!saved_ret)
4036 				saved_ret = ret;
4037 
4038 			btrfs_page_set_error(fs_info, page, cur, iosize);
4039 			if (PageWriteback(page))
4040 				btrfs_page_clear_writeback(fs_info, page, cur,
4041 							   iosize);
4042 		}
4043 
4044 		cur += iosize;
4045 		nr++;
4046 	}
4047 	/*
4048 	 * If we finish without problem, we should not only clear page dirty,
4049 	 * but also empty subpage dirty bits
4050 	 */
4051 	if (!has_error)
4052 		btrfs_page_assert_not_dirty(fs_info, page);
4053 	else
4054 		ret = saved_ret;
4055 	*nr_ret = nr;
4056 	return ret;
4057 }
4058 
4059 /*
4060  * the writepage semantics are similar to regular writepage.  extent
4061  * records are inserted to lock ranges in the tree, and as dirty areas
4062  * are found, they are marked writeback.  Then the lock bits are removed
4063  * and the end_io handler clears the writeback ranges
4064  *
4065  * Return 0 if everything goes well.
4066  * Return <0 for error.
4067  */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)4068 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4069 			      struct extent_page_data *epd)
4070 {
4071 	struct inode *inode = page->mapping->host;
4072 	const u64 page_start = page_offset(page);
4073 	const u64 page_end = page_start + PAGE_SIZE - 1;
4074 	int ret;
4075 	int nr = 0;
4076 	size_t pg_offset;
4077 	loff_t i_size = i_size_read(inode);
4078 	unsigned long end_index = i_size >> PAGE_SHIFT;
4079 	unsigned long nr_written = 0;
4080 
4081 	trace___extent_writepage(page, inode, wbc);
4082 
4083 	WARN_ON(!PageLocked(page));
4084 
4085 	btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4086 			       page_offset(page), PAGE_SIZE);
4087 
4088 	pg_offset = offset_in_page(i_size);
4089 	if (page->index > end_index ||
4090 	   (page->index == end_index && !pg_offset)) {
4091 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
4092 		unlock_page(page);
4093 		return 0;
4094 	}
4095 
4096 	if (page->index == end_index) {
4097 		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4098 		flush_dcache_page(page);
4099 	}
4100 
4101 	ret = set_page_extent_mapped(page);
4102 	if (ret < 0) {
4103 		SetPageError(page);
4104 		goto done;
4105 	}
4106 
4107 	if (!epd->extent_locked) {
4108 		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, &nr_written);
4109 		if (ret == 1)
4110 			return 0;
4111 		if (ret)
4112 			goto done;
4113 	}
4114 
4115 	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4116 				    nr_written, &nr);
4117 	if (ret == 1)
4118 		return 0;
4119 
4120 done:
4121 	if (nr == 0) {
4122 		/* make sure the mapping tag for page dirty gets cleared */
4123 		set_page_writeback(page);
4124 		end_page_writeback(page);
4125 	}
4126 	/*
4127 	 * Here we used to have a check for PageError() and then set @ret and
4128 	 * call end_extent_writepage().
4129 	 *
4130 	 * But in fact setting @ret here will cause different error paths
4131 	 * between subpage and regular sectorsize.
4132 	 *
4133 	 * For regular page size, we never submit current page, but only add
4134 	 * current page to current bio.
4135 	 * The bio submission can only happen in next page.
4136 	 * Thus if we hit the PageError() branch, @ret is already set to
4137 	 * non-zero value and will not get updated for regular sectorsize.
4138 	 *
4139 	 * But for subpage case, it's possible we submit part of current page,
4140 	 * thus can get PageError() set by submitted bio of the same page,
4141 	 * while our @ret is still 0.
4142 	 *
4143 	 * So here we unify the behavior and don't set @ret.
4144 	 * Error can still be properly passed to higher layer as page will
4145 	 * be set error, here we just don't handle the IO failure.
4146 	 *
4147 	 * NOTE: This is just a hotfix for subpage.
4148 	 * The root fix will be properly ending ordered extent when we hit
4149 	 * an error during writeback.
4150 	 *
4151 	 * But that needs a bigger refactoring, as we not only need to grab the
4152 	 * submitted OE, but also need to know exactly at which bytenr we hit
4153 	 * the error.
4154 	 * Currently the full page based __extent_writepage_io() is not
4155 	 * capable of that.
4156 	 */
4157 	if (PageError(page))
4158 		end_extent_writepage(page, ret, page_start, page_end);
4159 	unlock_page(page);
4160 	ASSERT(ret <= 0);
4161 	return ret;
4162 }
4163 
wait_on_extent_buffer_writeback(struct extent_buffer * eb)4164 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4165 {
4166 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4167 		       TASK_UNINTERRUPTIBLE);
4168 }
4169 
end_extent_buffer_writeback(struct extent_buffer * eb)4170 static void end_extent_buffer_writeback(struct extent_buffer *eb)
4171 {
4172 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4173 	smp_mb__after_atomic();
4174 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4175 }
4176 
4177 /*
4178  * Lock extent buffer status and pages for writeback.
4179  *
4180  * May try to flush write bio if we can't get the lock.
4181  *
4182  * Return  0 if the extent buffer doesn't need to be submitted.
4183  *           (E.g. the extent buffer is not dirty)
4184  * Return >0 is the extent buffer is submitted to bio.
4185  * Return <0 if something went wrong, no page is locked.
4186  */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)4187 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4188 			  struct extent_page_data *epd)
4189 {
4190 	struct btrfs_fs_info *fs_info = eb->fs_info;
4191 	int i, num_pages, failed_page_nr;
4192 	int flush = 0;
4193 	int ret = 0;
4194 
4195 	if (!btrfs_try_tree_write_lock(eb)) {
4196 		ret = flush_write_bio(epd);
4197 		if (ret < 0)
4198 			return ret;
4199 		flush = 1;
4200 		btrfs_tree_lock(eb);
4201 	}
4202 
4203 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4204 		btrfs_tree_unlock(eb);
4205 		if (!epd->sync_io)
4206 			return 0;
4207 		if (!flush) {
4208 			ret = flush_write_bio(epd);
4209 			if (ret < 0)
4210 				return ret;
4211 			flush = 1;
4212 		}
4213 		while (1) {
4214 			wait_on_extent_buffer_writeback(eb);
4215 			btrfs_tree_lock(eb);
4216 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4217 				break;
4218 			btrfs_tree_unlock(eb);
4219 		}
4220 	}
4221 
4222 	/*
4223 	 * We need to do this to prevent races in people who check if the eb is
4224 	 * under IO since we can end up having no IO bits set for a short period
4225 	 * of time.
4226 	 */
4227 	spin_lock(&eb->refs_lock);
4228 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4229 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4230 		spin_unlock(&eb->refs_lock);
4231 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4232 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4233 					 -eb->len,
4234 					 fs_info->dirty_metadata_batch);
4235 		ret = 1;
4236 	} else {
4237 		spin_unlock(&eb->refs_lock);
4238 	}
4239 
4240 	btrfs_tree_unlock(eb);
4241 
4242 	/*
4243 	 * Either we don't need to submit any tree block, or we're submitting
4244 	 * subpage eb.
4245 	 * Subpage metadata doesn't use page locking at all, so we can skip
4246 	 * the page locking.
4247 	 */
4248 	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4249 		return ret;
4250 
4251 	num_pages = num_extent_pages(eb);
4252 	for (i = 0; i < num_pages; i++) {
4253 		struct page *p = eb->pages[i];
4254 
4255 		if (!trylock_page(p)) {
4256 			if (!flush) {
4257 				int err;
4258 
4259 				err = flush_write_bio(epd);
4260 				if (err < 0) {
4261 					ret = err;
4262 					failed_page_nr = i;
4263 					goto err_unlock;
4264 				}
4265 				flush = 1;
4266 			}
4267 			lock_page(p);
4268 		}
4269 	}
4270 
4271 	return ret;
4272 err_unlock:
4273 	/* Unlock already locked pages */
4274 	for (i = 0; i < failed_page_nr; i++)
4275 		unlock_page(eb->pages[i]);
4276 	/*
4277 	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4278 	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4279 	 * be made and undo everything done before.
4280 	 */
4281 	btrfs_tree_lock(eb);
4282 	spin_lock(&eb->refs_lock);
4283 	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4284 	end_extent_buffer_writeback(eb);
4285 	spin_unlock(&eb->refs_lock);
4286 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4287 				 fs_info->dirty_metadata_batch);
4288 	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4289 	btrfs_tree_unlock(eb);
4290 	return ret;
4291 }
4292 
set_btree_ioerr(struct page * page,struct extent_buffer * eb)4293 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4294 {
4295 	struct btrfs_fs_info *fs_info = eb->fs_info;
4296 
4297 	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4298 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4299 		return;
4300 
4301 	/*
4302 	 * A read may stumble upon this buffer later, make sure that it gets an
4303 	 * error and knows there was an error.
4304 	 */
4305 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4306 
4307 	/*
4308 	 * If we error out, we should add back the dirty_metadata_bytes
4309 	 * to make it consistent.
4310 	 */
4311 	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4312 				 eb->len, fs_info->dirty_metadata_batch);
4313 
4314 	/*
4315 	 * If writeback for a btree extent that doesn't belong to a log tree
4316 	 * failed, increment the counter transaction->eb_write_errors.
4317 	 * We do this because while the transaction is running and before it's
4318 	 * committing (when we call filemap_fdata[write|wait]_range against
4319 	 * the btree inode), we might have
4320 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4321 	 * returns an error or an error happens during writeback, when we're
4322 	 * committing the transaction we wouldn't know about it, since the pages
4323 	 * can be no longer dirty nor marked anymore for writeback (if a
4324 	 * subsequent modification to the extent buffer didn't happen before the
4325 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4326 	 * able to find the pages tagged with SetPageError at transaction
4327 	 * commit time. So if this happens we must abort the transaction,
4328 	 * otherwise we commit a super block with btree roots that point to
4329 	 * btree nodes/leafs whose content on disk is invalid - either garbage
4330 	 * or the content of some node/leaf from a past generation that got
4331 	 * cowed or deleted and is no longer valid.
4332 	 *
4333 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4334 	 * not be enough - we need to distinguish between log tree extents vs
4335 	 * non-log tree extents, and the next filemap_fdatawait_range() call
4336 	 * will catch and clear such errors in the mapping - and that call might
4337 	 * be from a log sync and not from a transaction commit. Also, checking
4338 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4339 	 * not done and would not be reliable - the eb might have been released
4340 	 * from memory and reading it back again means that flag would not be
4341 	 * set (since it's a runtime flag, not persisted on disk).
4342 	 *
4343 	 * Using the flags below in the btree inode also makes us achieve the
4344 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4345 	 * writeback for all dirty pages and before filemap_fdatawait_range()
4346 	 * is called, the writeback for all dirty pages had already finished
4347 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4348 	 * filemap_fdatawait_range() would return success, as it could not know
4349 	 * that writeback errors happened (the pages were no longer tagged for
4350 	 * writeback).
4351 	 */
4352 	switch (eb->log_index) {
4353 	case -1:
4354 		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4355 		break;
4356 	case 0:
4357 		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4358 		break;
4359 	case 1:
4360 		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4361 		break;
4362 	default:
4363 		BUG(); /* unexpected, logic error */
4364 	}
4365 }
4366 
4367 /*
4368  * The endio specific version which won't touch any unsafe spinlock in endio
4369  * context.
4370  */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)4371 static struct extent_buffer *find_extent_buffer_nolock(
4372 		struct btrfs_fs_info *fs_info, u64 start)
4373 {
4374 	struct extent_buffer *eb;
4375 
4376 	rcu_read_lock();
4377 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4378 			       start >> fs_info->sectorsize_bits);
4379 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4380 		rcu_read_unlock();
4381 		return eb;
4382 	}
4383 	rcu_read_unlock();
4384 	return NULL;
4385 }
4386 
4387 /*
4388  * The endio function for subpage extent buffer write.
4389  *
4390  * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4391  * after all extent buffers in the page has finished their writeback.
4392  */
end_bio_subpage_eb_writepage(struct bio * bio)4393 static void end_bio_subpage_eb_writepage(struct bio *bio)
4394 {
4395 	struct btrfs_fs_info *fs_info;
4396 	struct bio_vec *bvec;
4397 	struct bvec_iter_all iter_all;
4398 
4399 	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4400 	ASSERT(fs_info->sectorsize < PAGE_SIZE);
4401 
4402 	ASSERT(!bio_flagged(bio, BIO_CLONED));
4403 	bio_for_each_segment_all(bvec, bio, iter_all) {
4404 		struct page *page = bvec->bv_page;
4405 		u64 bvec_start = page_offset(page) + bvec->bv_offset;
4406 		u64 bvec_end = bvec_start + bvec->bv_len - 1;
4407 		u64 cur_bytenr = bvec_start;
4408 
4409 		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4410 
4411 		/* Iterate through all extent buffers in the range */
4412 		while (cur_bytenr <= bvec_end) {
4413 			struct extent_buffer *eb;
4414 			int done;
4415 
4416 			/*
4417 			 * Here we can't use find_extent_buffer(), as it may
4418 			 * try to lock eb->refs_lock, which is not safe in endio
4419 			 * context.
4420 			 */
4421 			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4422 			ASSERT(eb);
4423 
4424 			cur_bytenr = eb->start + eb->len;
4425 
4426 			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4427 			done = atomic_dec_and_test(&eb->io_pages);
4428 			ASSERT(done);
4429 
4430 			if (bio->bi_status ||
4431 			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4432 				ClearPageUptodate(page);
4433 				set_btree_ioerr(page, eb);
4434 			}
4435 
4436 			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4437 						      eb->len);
4438 			end_extent_buffer_writeback(eb);
4439 			/*
4440 			 * free_extent_buffer() will grab spinlock which is not
4441 			 * safe in endio context. Thus here we manually dec
4442 			 * the ref.
4443 			 */
4444 			atomic_dec(&eb->refs);
4445 		}
4446 	}
4447 	bio_put(bio);
4448 }
4449 
end_bio_extent_buffer_writepage(struct bio * bio)4450 static void end_bio_extent_buffer_writepage(struct bio *bio)
4451 {
4452 	struct bio_vec *bvec;
4453 	struct extent_buffer *eb;
4454 	int done;
4455 	struct bvec_iter_all iter_all;
4456 
4457 	ASSERT(!bio_flagged(bio, BIO_CLONED));
4458 	bio_for_each_segment_all(bvec, bio, iter_all) {
4459 		struct page *page = bvec->bv_page;
4460 
4461 		eb = (struct extent_buffer *)page->private;
4462 		BUG_ON(!eb);
4463 		done = atomic_dec_and_test(&eb->io_pages);
4464 
4465 		if (bio->bi_status ||
4466 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4467 			ClearPageUptodate(page);
4468 			set_btree_ioerr(page, eb);
4469 		}
4470 
4471 		end_page_writeback(page);
4472 
4473 		if (!done)
4474 			continue;
4475 
4476 		end_extent_buffer_writeback(eb);
4477 	}
4478 
4479 	bio_put(bio);
4480 }
4481 
prepare_eb_write(struct extent_buffer * eb)4482 static void prepare_eb_write(struct extent_buffer *eb)
4483 {
4484 	u32 nritems;
4485 	unsigned long start;
4486 	unsigned long end;
4487 
4488 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4489 	atomic_set(&eb->io_pages, num_extent_pages(eb));
4490 
4491 	/* Set btree blocks beyond nritems with 0 to avoid stale content */
4492 	nritems = btrfs_header_nritems(eb);
4493 	if (btrfs_header_level(eb) > 0) {
4494 		end = btrfs_node_key_ptr_offset(nritems);
4495 		memzero_extent_buffer(eb, end, eb->len - end);
4496 	} else {
4497 		/*
4498 		 * Leaf:
4499 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4500 		 */
4501 		start = btrfs_item_nr_offset(nritems);
4502 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4503 		memzero_extent_buffer(eb, start, end - start);
4504 	}
4505 }
4506 
4507 /*
4508  * Unlike the work in write_one_eb(), we rely completely on extent locking.
4509  * Page locking is only utilized at minimum to keep the VMM code happy.
4510  */
write_one_subpage_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)4511 static int write_one_subpage_eb(struct extent_buffer *eb,
4512 				struct writeback_control *wbc,
4513 				struct extent_page_data *epd)
4514 {
4515 	struct btrfs_fs_info *fs_info = eb->fs_info;
4516 	struct page *page = eb->pages[0];
4517 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4518 	bool no_dirty_ebs = false;
4519 	int ret;
4520 
4521 	prepare_eb_write(eb);
4522 
4523 	/* clear_page_dirty_for_io() in subpage helper needs page locked */
4524 	lock_page(page);
4525 	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4526 
4527 	/* Check if this is the last dirty bit to update nr_written */
4528 	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4529 							  eb->start, eb->len);
4530 	if (no_dirty_ebs)
4531 		clear_page_dirty_for_io(page);
4532 
4533 	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4534 			&epd->bio_ctrl, page, eb->start, eb->len,
4535 			eb->start - page_offset(page),
4536 			end_bio_subpage_eb_writepage, 0, 0, false);
4537 	if (ret) {
4538 		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4539 		set_btree_ioerr(page, eb);
4540 		unlock_page(page);
4541 
4542 		if (atomic_dec_and_test(&eb->io_pages))
4543 			end_extent_buffer_writeback(eb);
4544 		return -EIO;
4545 	}
4546 	unlock_page(page);
4547 	/*
4548 	 * Submission finished without problem, if no range of the page is
4549 	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4550 	 */
4551 	if (no_dirty_ebs)
4552 		update_nr_written(wbc, 1);
4553 	return ret;
4554 }
4555 
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)4556 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4557 			struct writeback_control *wbc,
4558 			struct extent_page_data *epd)
4559 {
4560 	u64 disk_bytenr = eb->start;
4561 	int i, num_pages;
4562 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4563 	int ret = 0;
4564 
4565 	prepare_eb_write(eb);
4566 
4567 	num_pages = num_extent_pages(eb);
4568 	for (i = 0; i < num_pages; i++) {
4569 		struct page *p = eb->pages[i];
4570 
4571 		clear_page_dirty_for_io(p);
4572 		set_page_writeback(p);
4573 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4574 					 &epd->bio_ctrl, p, disk_bytenr,
4575 					 PAGE_SIZE, 0,
4576 					 end_bio_extent_buffer_writepage,
4577 					 0, 0, false);
4578 		if (ret) {
4579 			set_btree_ioerr(p, eb);
4580 			if (PageWriteback(p))
4581 				end_page_writeback(p);
4582 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4583 				end_extent_buffer_writeback(eb);
4584 			ret = -EIO;
4585 			break;
4586 		}
4587 		disk_bytenr += PAGE_SIZE;
4588 		update_nr_written(wbc, 1);
4589 		unlock_page(p);
4590 	}
4591 
4592 	if (unlikely(ret)) {
4593 		for (; i < num_pages; i++) {
4594 			struct page *p = eb->pages[i];
4595 			clear_page_dirty_for_io(p);
4596 			unlock_page(p);
4597 		}
4598 	}
4599 
4600 	return ret;
4601 }
4602 
4603 /*
4604  * Submit one subpage btree page.
4605  *
4606  * The main difference to submit_eb_page() is:
4607  * - Page locking
4608  *   For subpage, we don't rely on page locking at all.
4609  *
4610  * - Flush write bio
4611  *   We only flush bio if we may be unable to fit current extent buffers into
4612  *   current bio.
4613  *
4614  * Return >=0 for the number of submitted extent buffers.
4615  * Return <0 for fatal error.
4616  */
submit_eb_subpage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)4617 static int submit_eb_subpage(struct page *page,
4618 			     struct writeback_control *wbc,
4619 			     struct extent_page_data *epd)
4620 {
4621 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4622 	int submitted = 0;
4623 	u64 page_start = page_offset(page);
4624 	int bit_start = 0;
4625 	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4626 	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4627 	int ret;
4628 
4629 	/* Lock and write each dirty extent buffers in the range */
4630 	while (bit_start < nbits) {
4631 		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4632 		struct extent_buffer *eb;
4633 		unsigned long flags;
4634 		u64 start;
4635 
4636 		/*
4637 		 * Take private lock to ensure the subpage won't be detached
4638 		 * in the meantime.
4639 		 */
4640 		spin_lock(&page->mapping->private_lock);
4641 		if (!PagePrivate(page)) {
4642 			spin_unlock(&page->mapping->private_lock);
4643 			break;
4644 		}
4645 		spin_lock_irqsave(&subpage->lock, flags);
4646 		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
4647 			spin_unlock_irqrestore(&subpage->lock, flags);
4648 			spin_unlock(&page->mapping->private_lock);
4649 			bit_start++;
4650 			continue;
4651 		}
4652 
4653 		start = page_start + bit_start * fs_info->sectorsize;
4654 		bit_start += sectors_per_node;
4655 
4656 		/*
4657 		 * Here we just want to grab the eb without touching extra
4658 		 * spin locks, so call find_extent_buffer_nolock().
4659 		 */
4660 		eb = find_extent_buffer_nolock(fs_info, start);
4661 		spin_unlock_irqrestore(&subpage->lock, flags);
4662 		spin_unlock(&page->mapping->private_lock);
4663 
4664 		/*
4665 		 * The eb has already reached 0 refs thus find_extent_buffer()
4666 		 * doesn't return it. We don't need to write back such eb
4667 		 * anyway.
4668 		 */
4669 		if (!eb)
4670 			continue;
4671 
4672 		ret = lock_extent_buffer_for_io(eb, epd);
4673 		if (ret == 0) {
4674 			free_extent_buffer(eb);
4675 			continue;
4676 		}
4677 		if (ret < 0) {
4678 			free_extent_buffer(eb);
4679 			goto cleanup;
4680 		}
4681 		ret = write_one_subpage_eb(eb, wbc, epd);
4682 		free_extent_buffer(eb);
4683 		if (ret < 0)
4684 			goto cleanup;
4685 		submitted++;
4686 	}
4687 	return submitted;
4688 
4689 cleanup:
4690 	/* We hit error, end bio for the submitted extent buffers */
4691 	end_write_bio(epd, ret);
4692 	return ret;
4693 }
4694 
4695 /*
4696  * Submit all page(s) of one extent buffer.
4697  *
4698  * @page:	the page of one extent buffer
4699  * @eb_context:	to determine if we need to submit this page, if current page
4700  *		belongs to this eb, we don't need to submit
4701  *
4702  * The caller should pass each page in their bytenr order, and here we use
4703  * @eb_context to determine if we have submitted pages of one extent buffer.
4704  *
4705  * If we have, we just skip until we hit a new page that doesn't belong to
4706  * current @eb_context.
4707  *
4708  * If not, we submit all the page(s) of the extent buffer.
4709  *
4710  * Return >0 if we have submitted the extent buffer successfully.
4711  * Return 0 if we don't need to submit the page, as it's already submitted by
4712  * previous call.
4713  * Return <0 for fatal error.
4714  */
submit_eb_page(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,struct extent_buffer ** eb_context)4715 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4716 			  struct extent_page_data *epd,
4717 			  struct extent_buffer **eb_context)
4718 {
4719 	struct address_space *mapping = page->mapping;
4720 	struct btrfs_block_group *cache = NULL;
4721 	struct extent_buffer *eb;
4722 	int ret;
4723 
4724 	if (!PagePrivate(page))
4725 		return 0;
4726 
4727 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4728 		return submit_eb_subpage(page, wbc, epd);
4729 
4730 	spin_lock(&mapping->private_lock);
4731 	if (!PagePrivate(page)) {
4732 		spin_unlock(&mapping->private_lock);
4733 		return 0;
4734 	}
4735 
4736 	eb = (struct extent_buffer *)page->private;
4737 
4738 	/*
4739 	 * Shouldn't happen and normally this would be a BUG_ON but no point
4740 	 * crashing the machine for something we can survive anyway.
4741 	 */
4742 	if (WARN_ON(!eb)) {
4743 		spin_unlock(&mapping->private_lock);
4744 		return 0;
4745 	}
4746 
4747 	if (eb == *eb_context) {
4748 		spin_unlock(&mapping->private_lock);
4749 		return 0;
4750 	}
4751 	ret = atomic_inc_not_zero(&eb->refs);
4752 	spin_unlock(&mapping->private_lock);
4753 	if (!ret)
4754 		return 0;
4755 
4756 	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4757 		/*
4758 		 * If for_sync, this hole will be filled with
4759 		 * trasnsaction commit.
4760 		 */
4761 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4762 			ret = -EAGAIN;
4763 		else
4764 			ret = 0;
4765 		free_extent_buffer(eb);
4766 		return ret;
4767 	}
4768 
4769 	*eb_context = eb;
4770 
4771 	ret = lock_extent_buffer_for_io(eb, epd);
4772 	if (ret <= 0) {
4773 		btrfs_revert_meta_write_pointer(cache, eb);
4774 		if (cache)
4775 			btrfs_put_block_group(cache);
4776 		free_extent_buffer(eb);
4777 		return ret;
4778 	}
4779 	if (cache)
4780 		btrfs_put_block_group(cache);
4781 	ret = write_one_eb(eb, wbc, epd);
4782 	free_extent_buffer(eb);
4783 	if (ret < 0)
4784 		return ret;
4785 	return 1;
4786 }
4787 
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)4788 int btree_write_cache_pages(struct address_space *mapping,
4789 				   struct writeback_control *wbc)
4790 {
4791 	struct extent_buffer *eb_context = NULL;
4792 	struct extent_page_data epd = {
4793 		.bio_ctrl = { 0 },
4794 		.extent_locked = 0,
4795 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4796 	};
4797 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4798 	int ret = 0;
4799 	int done = 0;
4800 	int nr_to_write_done = 0;
4801 	struct pagevec pvec;
4802 	int nr_pages;
4803 	pgoff_t index;
4804 	pgoff_t end;		/* Inclusive */
4805 	int scanned = 0;
4806 	xa_mark_t tag;
4807 
4808 	pagevec_init(&pvec);
4809 	if (wbc->range_cyclic) {
4810 		index = mapping->writeback_index; /* Start from prev offset */
4811 		end = -1;
4812 		/*
4813 		 * Start from the beginning does not need to cycle over the
4814 		 * range, mark it as scanned.
4815 		 */
4816 		scanned = (index == 0);
4817 	} else {
4818 		index = wbc->range_start >> PAGE_SHIFT;
4819 		end = wbc->range_end >> PAGE_SHIFT;
4820 		scanned = 1;
4821 	}
4822 	if (wbc->sync_mode == WB_SYNC_ALL)
4823 		tag = PAGECACHE_TAG_TOWRITE;
4824 	else
4825 		tag = PAGECACHE_TAG_DIRTY;
4826 	btrfs_zoned_meta_io_lock(fs_info);
4827 retry:
4828 	if (wbc->sync_mode == WB_SYNC_ALL)
4829 		tag_pages_for_writeback(mapping, index, end);
4830 	while (!done && !nr_to_write_done && (index <= end) &&
4831 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4832 			tag))) {
4833 		unsigned i;
4834 
4835 		for (i = 0; i < nr_pages; i++) {
4836 			struct page *page = pvec.pages[i];
4837 
4838 			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4839 			if (ret == 0)
4840 				continue;
4841 			if (ret < 0) {
4842 				done = 1;
4843 				break;
4844 			}
4845 
4846 			/*
4847 			 * The filesystem may choose to bump up nr_to_write.
4848 			 * We have to make sure to honor the new nr_to_write
4849 			 * at any time.
4850 			 */
4851 			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
4852 					    wbc->nr_to_write <= 0);
4853 		}
4854 		pagevec_release(&pvec);
4855 		cond_resched();
4856 	}
4857 	if (!scanned && !done) {
4858 		/*
4859 		 * We hit the last page and there is more work to be done: wrap
4860 		 * back to the start of the file
4861 		 */
4862 		scanned = 1;
4863 		index = 0;
4864 		goto retry;
4865 	}
4866 	if (ret < 0) {
4867 		end_write_bio(&epd, ret);
4868 		goto out;
4869 	}
4870 	/*
4871 	 * If something went wrong, don't allow any metadata write bio to be
4872 	 * submitted.
4873 	 *
4874 	 * This would prevent use-after-free if we had dirty pages not
4875 	 * cleaned up, which can still happen by fuzzed images.
4876 	 *
4877 	 * - Bad extent tree
4878 	 *   Allowing existing tree block to be allocated for other trees.
4879 	 *
4880 	 * - Log tree operations
4881 	 *   Exiting tree blocks get allocated to log tree, bumps its
4882 	 *   generation, then get cleaned in tree re-balance.
4883 	 *   Such tree block will not be written back, since it's clean,
4884 	 *   thus no WRITTEN flag set.
4885 	 *   And after log writes back, this tree block is not traced by
4886 	 *   any dirty extent_io_tree.
4887 	 *
4888 	 * - Offending tree block gets re-dirtied from its original owner
4889 	 *   Since it has bumped generation, no WRITTEN flag, it can be
4890 	 *   reused without COWing. This tree block will not be traced
4891 	 *   by btrfs_transaction::dirty_pages.
4892 	 *
4893 	 *   Now such dirty tree block will not be cleaned by any dirty
4894 	 *   extent io tree. Thus we don't want to submit such wild eb
4895 	 *   if the fs already has error.
4896 	 */
4897 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4898 		ret = flush_write_bio(&epd);
4899 	} else {
4900 		ret = -EROFS;
4901 		end_write_bio(&epd, ret);
4902 	}
4903 out:
4904 	btrfs_zoned_meta_io_unlock(fs_info);
4905 	return ret;
4906 }
4907 
4908 /**
4909  * Walk the list of dirty pages of the given address space and write all of them.
4910  *
4911  * @mapping: address space structure to write
4912  * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4913  * @epd:     holds context for the write, namely the bio
4914  *
4915  * If a page is already under I/O, write_cache_pages() skips it, even
4916  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4917  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4918  * and msync() need to guarantee that all the data which was dirty at the time
4919  * the call was made get new I/O started against them.  If wbc->sync_mode is
4920  * WB_SYNC_ALL then we were called for data integrity and we must wait for
4921  * existing IO to complete.
4922  */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)4923 static int extent_write_cache_pages(struct address_space *mapping,
4924 			     struct writeback_control *wbc,
4925 			     struct extent_page_data *epd)
4926 {
4927 	struct inode *inode = mapping->host;
4928 	int ret = 0;
4929 	int done = 0;
4930 	int nr_to_write_done = 0;
4931 	struct pagevec pvec;
4932 	int nr_pages;
4933 	pgoff_t index;
4934 	pgoff_t end;		/* Inclusive */
4935 	pgoff_t done_index;
4936 	int range_whole = 0;
4937 	int scanned = 0;
4938 	xa_mark_t tag;
4939 
4940 	/*
4941 	 * We have to hold onto the inode so that ordered extents can do their
4942 	 * work when the IO finishes.  The alternative to this is failing to add
4943 	 * an ordered extent if the igrab() fails there and that is a huge pain
4944 	 * to deal with, so instead just hold onto the inode throughout the
4945 	 * writepages operation.  If it fails here we are freeing up the inode
4946 	 * anyway and we'd rather not waste our time writing out stuff that is
4947 	 * going to be truncated anyway.
4948 	 */
4949 	if (!igrab(inode))
4950 		return 0;
4951 
4952 	pagevec_init(&pvec);
4953 	if (wbc->range_cyclic) {
4954 		index = mapping->writeback_index; /* Start from prev offset */
4955 		end = -1;
4956 		/*
4957 		 * Start from the beginning does not need to cycle over the
4958 		 * range, mark it as scanned.
4959 		 */
4960 		scanned = (index == 0);
4961 	} else {
4962 		index = wbc->range_start >> PAGE_SHIFT;
4963 		end = wbc->range_end >> PAGE_SHIFT;
4964 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4965 			range_whole = 1;
4966 		scanned = 1;
4967 	}
4968 
4969 	/*
4970 	 * We do the tagged writepage as long as the snapshot flush bit is set
4971 	 * and we are the first one who do the filemap_flush() on this inode.
4972 	 *
4973 	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4974 	 * not race in and drop the bit.
4975 	 */
4976 	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4977 	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4978 			       &BTRFS_I(inode)->runtime_flags))
4979 		wbc->tagged_writepages = 1;
4980 
4981 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4982 		tag = PAGECACHE_TAG_TOWRITE;
4983 	else
4984 		tag = PAGECACHE_TAG_DIRTY;
4985 retry:
4986 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4987 		tag_pages_for_writeback(mapping, index, end);
4988 	done_index = index;
4989 	while (!done && !nr_to_write_done && (index <= end) &&
4990 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4991 						&index, end, tag))) {
4992 		unsigned i;
4993 
4994 		for (i = 0; i < nr_pages; i++) {
4995 			struct page *page = pvec.pages[i];
4996 
4997 			done_index = page->index + 1;
4998 			/*
4999 			 * At this point we hold neither the i_pages lock nor
5000 			 * the page lock: the page may be truncated or
5001 			 * invalidated (changing page->mapping to NULL),
5002 			 * or even swizzled back from swapper_space to
5003 			 * tmpfs file mapping
5004 			 */
5005 			if (!trylock_page(page)) {
5006 				ret = flush_write_bio(epd);
5007 				BUG_ON(ret < 0);
5008 				lock_page(page);
5009 			}
5010 
5011 			if (unlikely(page->mapping != mapping)) {
5012 				unlock_page(page);
5013 				continue;
5014 			}
5015 
5016 			if (wbc->sync_mode != WB_SYNC_NONE) {
5017 				if (PageWriteback(page)) {
5018 					ret = flush_write_bio(epd);
5019 					BUG_ON(ret < 0);
5020 				}
5021 				wait_on_page_writeback(page);
5022 			}
5023 
5024 			if (PageWriteback(page) ||
5025 			    !clear_page_dirty_for_io(page)) {
5026 				unlock_page(page);
5027 				continue;
5028 			}
5029 
5030 			ret = __extent_writepage(page, wbc, epd);
5031 			if (ret < 0) {
5032 				done = 1;
5033 				break;
5034 			}
5035 
5036 			/*
5037 			 * the filesystem may choose to bump up nr_to_write.
5038 			 * We have to make sure to honor the new nr_to_write
5039 			 * at any time
5040 			 */
5041 			nr_to_write_done = wbc->nr_to_write <= 0;
5042 		}
5043 		pagevec_release(&pvec);
5044 		cond_resched();
5045 	}
5046 	if (!scanned && !done) {
5047 		/*
5048 		 * We hit the last page and there is more work to be done: wrap
5049 		 * back to the start of the file
5050 		 */
5051 		scanned = 1;
5052 		index = 0;
5053 
5054 		/*
5055 		 * If we're looping we could run into a page that is locked by a
5056 		 * writer and that writer could be waiting on writeback for a
5057 		 * page in our current bio, and thus deadlock, so flush the
5058 		 * write bio here.
5059 		 */
5060 		ret = flush_write_bio(epd);
5061 		if (!ret)
5062 			goto retry;
5063 	}
5064 
5065 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5066 		mapping->writeback_index = done_index;
5067 
5068 	btrfs_add_delayed_iput(inode);
5069 	return ret;
5070 }
5071 
extent_write_full_page(struct page * page,struct writeback_control * wbc)5072 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5073 {
5074 	int ret;
5075 	struct extent_page_data epd = {
5076 		.bio_ctrl = { 0 },
5077 		.extent_locked = 0,
5078 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5079 	};
5080 
5081 	ret = __extent_writepage(page, wbc, &epd);
5082 	ASSERT(ret <= 0);
5083 	if (ret < 0) {
5084 		end_write_bio(&epd, ret);
5085 		return ret;
5086 	}
5087 
5088 	ret = flush_write_bio(&epd);
5089 	ASSERT(ret <= 0);
5090 	return ret;
5091 }
5092 
extent_write_locked_range(struct inode * inode,u64 start,u64 end,int mode)5093 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
5094 			      int mode)
5095 {
5096 	int ret = 0;
5097 	struct address_space *mapping = inode->i_mapping;
5098 	struct page *page;
5099 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
5100 		PAGE_SHIFT;
5101 
5102 	struct extent_page_data epd = {
5103 		.bio_ctrl = { 0 },
5104 		.extent_locked = 1,
5105 		.sync_io = mode == WB_SYNC_ALL,
5106 	};
5107 	struct writeback_control wbc_writepages = {
5108 		.sync_mode	= mode,
5109 		.nr_to_write	= nr_pages * 2,
5110 		.range_start	= start,
5111 		.range_end	= end + 1,
5112 		/* We're called from an async helper function */
5113 		.punt_to_cgroup	= 1,
5114 		.no_cgroup_owner = 1,
5115 	};
5116 
5117 	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5118 	while (start <= end) {
5119 		page = find_get_page(mapping, start >> PAGE_SHIFT);
5120 		if (clear_page_dirty_for_io(page))
5121 			ret = __extent_writepage(page, &wbc_writepages, &epd);
5122 		else {
5123 			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
5124 					page, start, start + PAGE_SIZE - 1, true);
5125 			unlock_page(page);
5126 		}
5127 		put_page(page);
5128 		start += PAGE_SIZE;
5129 	}
5130 
5131 	ASSERT(ret <= 0);
5132 	if (ret == 0)
5133 		ret = flush_write_bio(&epd);
5134 	else
5135 		end_write_bio(&epd, ret);
5136 
5137 	wbc_detach_inode(&wbc_writepages);
5138 	return ret;
5139 }
5140 
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)5141 int extent_writepages(struct address_space *mapping,
5142 		      struct writeback_control *wbc)
5143 {
5144 	struct inode *inode = mapping->host;
5145 	int ret = 0;
5146 	struct extent_page_data epd = {
5147 		.bio_ctrl = { 0 },
5148 		.extent_locked = 0,
5149 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5150 	};
5151 
5152 	/*
5153 	 * Allow only a single thread to do the reloc work in zoned mode to
5154 	 * protect the write pointer updates.
5155 	 */
5156 	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
5157 	ret = extent_write_cache_pages(mapping, wbc, &epd);
5158 	ASSERT(ret <= 0);
5159 	if (ret < 0) {
5160 		btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5161 		end_write_bio(&epd, ret);
5162 		return ret;
5163 	}
5164 	ret = flush_write_bio(&epd);
5165 	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
5166 	return ret;
5167 }
5168 
extent_readahead(struct readahead_control * rac)5169 void extent_readahead(struct readahead_control *rac)
5170 {
5171 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
5172 	struct page *pagepool[16];
5173 	struct extent_map *em_cached = NULL;
5174 	u64 prev_em_start = (u64)-1;
5175 	int nr;
5176 
5177 	while ((nr = readahead_page_batch(rac, pagepool))) {
5178 		u64 contig_start = readahead_pos(rac);
5179 		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5180 
5181 		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5182 				&em_cached, &bio_ctrl, &prev_em_start);
5183 	}
5184 
5185 	if (em_cached)
5186 		free_extent_map(em_cached);
5187 
5188 	if (bio_ctrl.bio) {
5189 		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5190 			return;
5191 	}
5192 }
5193 
5194 /*
5195  * basic invalidatepage code, this waits on any locked or writeback
5196  * ranges corresponding to the page, and then deletes any extent state
5197  * records from the tree
5198  */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)5199 int extent_invalidatepage(struct extent_io_tree *tree,
5200 			  struct page *page, unsigned long offset)
5201 {
5202 	struct extent_state *cached_state = NULL;
5203 	u64 start = page_offset(page);
5204 	u64 end = start + PAGE_SIZE - 1;
5205 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5206 
5207 	/* This function is only called for the btree inode */
5208 	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5209 
5210 	start += ALIGN(offset, blocksize);
5211 	if (start > end)
5212 		return 0;
5213 
5214 	lock_extent_bits(tree, start, end, &cached_state);
5215 	wait_on_page_writeback(page);
5216 
5217 	/*
5218 	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5219 	 * so here we only need to unlock the extent range to free any
5220 	 * existing extent state.
5221 	 */
5222 	unlock_extent_cached(tree, start, end, &cached_state);
5223 	return 0;
5224 }
5225 
5226 /*
5227  * a helper for releasepage, this tests for areas of the page that
5228  * are locked or under IO and drops the related state bits if it is safe
5229  * to drop the page.
5230  */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)5231 static int try_release_extent_state(struct extent_io_tree *tree,
5232 				    struct page *page, gfp_t mask)
5233 {
5234 	u64 start = page_offset(page);
5235 	u64 end = start + PAGE_SIZE - 1;
5236 	int ret = 1;
5237 
5238 	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5239 		ret = 0;
5240 	} else {
5241 		/*
5242 		 * At this point we can safely clear everything except the
5243 		 * locked bit, the nodatasum bit and the delalloc new bit.
5244 		 * The delalloc new bit will be cleared by ordered extent
5245 		 * completion.
5246 		 */
5247 		ret = __clear_extent_bit(tree, start, end,
5248 			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5249 			 0, 0, NULL, mask, NULL);
5250 
5251 		/* if clear_extent_bit failed for enomem reasons,
5252 		 * we can't allow the release to continue.
5253 		 */
5254 		if (ret < 0)
5255 			ret = 0;
5256 		else
5257 			ret = 1;
5258 	}
5259 	return ret;
5260 }
5261 
5262 /*
5263  * a helper for releasepage.  As long as there are no locked extents
5264  * in the range corresponding to the page, both state records and extent
5265  * map records are removed
5266  */
try_release_extent_mapping(struct page * page,gfp_t mask)5267 int try_release_extent_mapping(struct page *page, gfp_t mask)
5268 {
5269 	struct extent_map *em;
5270 	u64 start = page_offset(page);
5271 	u64 end = start + PAGE_SIZE - 1;
5272 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5273 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
5274 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5275 
5276 	if (gfpflags_allow_blocking(mask) &&
5277 	    page->mapping->host->i_size > SZ_16M) {
5278 		u64 len;
5279 		while (start <= end) {
5280 			struct btrfs_fs_info *fs_info;
5281 			u64 cur_gen;
5282 
5283 			len = end - start + 1;
5284 			write_lock(&map->lock);
5285 			em = lookup_extent_mapping(map, start, len);
5286 			if (!em) {
5287 				write_unlock(&map->lock);
5288 				break;
5289 			}
5290 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5291 			    em->start != start) {
5292 				write_unlock(&map->lock);
5293 				free_extent_map(em);
5294 				break;
5295 			}
5296 			if (test_range_bit(tree, em->start,
5297 					   extent_map_end(em) - 1,
5298 					   EXTENT_LOCKED, 0, NULL))
5299 				goto next;
5300 			/*
5301 			 * If it's not in the list of modified extents, used
5302 			 * by a fast fsync, we can remove it. If it's being
5303 			 * logged we can safely remove it since fsync took an
5304 			 * extra reference on the em.
5305 			 */
5306 			if (list_empty(&em->list) ||
5307 			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5308 				goto remove_em;
5309 			/*
5310 			 * If it's in the list of modified extents, remove it
5311 			 * only if its generation is older then the current one,
5312 			 * in which case we don't need it for a fast fsync.
5313 			 * Otherwise don't remove it, we could be racing with an
5314 			 * ongoing fast fsync that could miss the new extent.
5315 			 */
5316 			fs_info = btrfs_inode->root->fs_info;
5317 			spin_lock(&fs_info->trans_lock);
5318 			cur_gen = fs_info->generation;
5319 			spin_unlock(&fs_info->trans_lock);
5320 			if (em->generation >= cur_gen)
5321 				goto next;
5322 remove_em:
5323 			/*
5324 			 * We only remove extent maps that are not in the list of
5325 			 * modified extents or that are in the list but with a
5326 			 * generation lower then the current generation, so there
5327 			 * is no need to set the full fsync flag on the inode (it
5328 			 * hurts the fsync performance for workloads with a data
5329 			 * size that exceeds or is close to the system's memory).
5330 			 */
5331 			remove_extent_mapping(map, em);
5332 			/* once for the rb tree */
5333 			free_extent_map(em);
5334 next:
5335 			start = extent_map_end(em);
5336 			write_unlock(&map->lock);
5337 
5338 			/* once for us */
5339 			free_extent_map(em);
5340 
5341 			cond_resched(); /* Allow large-extent preemption. */
5342 		}
5343 	}
5344 	return try_release_extent_state(tree, page, mask);
5345 }
5346 
5347 /*
5348  * helper function for fiemap, which doesn't want to see any holes.
5349  * This maps until we find something past 'last'
5350  */
get_extent_skip_holes(struct btrfs_inode * inode,u64 offset,u64 last)5351 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5352 						u64 offset, u64 last)
5353 {
5354 	u64 sectorsize = btrfs_inode_sectorsize(inode);
5355 	struct extent_map *em;
5356 	u64 len;
5357 
5358 	if (offset >= last)
5359 		return NULL;
5360 
5361 	while (1) {
5362 		len = last - offset;
5363 		if (len == 0)
5364 			break;
5365 		len = ALIGN(len, sectorsize);
5366 		em = btrfs_get_extent_fiemap(inode, offset, len);
5367 		if (IS_ERR_OR_NULL(em))
5368 			return em;
5369 
5370 		/* if this isn't a hole return it */
5371 		if (em->block_start != EXTENT_MAP_HOLE)
5372 			return em;
5373 
5374 		/* this is a hole, advance to the next extent */
5375 		offset = extent_map_end(em);
5376 		free_extent_map(em);
5377 		if (offset >= last)
5378 			break;
5379 	}
5380 	return NULL;
5381 }
5382 
5383 /*
5384  * To cache previous fiemap extent
5385  *
5386  * Will be used for merging fiemap extent
5387  */
5388 struct fiemap_cache {
5389 	u64 offset;
5390 	u64 phys;
5391 	u64 len;
5392 	u32 flags;
5393 	bool cached;
5394 };
5395 
5396 /*
5397  * Helper to submit fiemap extent.
5398  *
5399  * Will try to merge current fiemap extent specified by @offset, @phys,
5400  * @len and @flags with cached one.
5401  * And only when we fails to merge, cached one will be submitted as
5402  * fiemap extent.
5403  *
5404  * Return value is the same as fiemap_fill_next_extent().
5405  */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)5406 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5407 				struct fiemap_cache *cache,
5408 				u64 offset, u64 phys, u64 len, u32 flags)
5409 {
5410 	int ret = 0;
5411 
5412 	if (!cache->cached)
5413 		goto assign;
5414 
5415 	/*
5416 	 * Sanity check, extent_fiemap() should have ensured that new
5417 	 * fiemap extent won't overlap with cached one.
5418 	 * Not recoverable.
5419 	 *
5420 	 * NOTE: Physical address can overlap, due to compression
5421 	 */
5422 	if (cache->offset + cache->len > offset) {
5423 		WARN_ON(1);
5424 		return -EINVAL;
5425 	}
5426 
5427 	/*
5428 	 * Only merges fiemap extents if
5429 	 * 1) Their logical addresses are continuous
5430 	 *
5431 	 * 2) Their physical addresses are continuous
5432 	 *    So truly compressed (physical size smaller than logical size)
5433 	 *    extents won't get merged with each other
5434 	 *
5435 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
5436 	 *    So regular extent won't get merged with prealloc extent
5437 	 */
5438 	if (cache->offset + cache->len  == offset &&
5439 	    cache->phys + cache->len == phys  &&
5440 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5441 			(flags & ~FIEMAP_EXTENT_LAST)) {
5442 		cache->len += len;
5443 		cache->flags |= flags;
5444 		goto try_submit_last;
5445 	}
5446 
5447 	/* Not mergeable, need to submit cached one */
5448 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5449 				      cache->len, cache->flags);
5450 	cache->cached = false;
5451 	if (ret)
5452 		return ret;
5453 assign:
5454 	cache->cached = true;
5455 	cache->offset = offset;
5456 	cache->phys = phys;
5457 	cache->len = len;
5458 	cache->flags = flags;
5459 try_submit_last:
5460 	if (cache->flags & FIEMAP_EXTENT_LAST) {
5461 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5462 				cache->phys, cache->len, cache->flags);
5463 		cache->cached = false;
5464 	}
5465 	return ret;
5466 }
5467 
5468 /*
5469  * Emit last fiemap cache
5470  *
5471  * The last fiemap cache may still be cached in the following case:
5472  * 0		      4k		    8k
5473  * |<- Fiemap range ->|
5474  * |<------------  First extent ----------->|
5475  *
5476  * In this case, the first extent range will be cached but not emitted.
5477  * So we must emit it before ending extent_fiemap().
5478  */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)5479 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5480 				  struct fiemap_cache *cache)
5481 {
5482 	int ret;
5483 
5484 	if (!cache->cached)
5485 		return 0;
5486 
5487 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5488 				      cache->len, cache->flags);
5489 	cache->cached = false;
5490 	if (ret > 0)
5491 		ret = 0;
5492 	return ret;
5493 }
5494 
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)5495 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5496 		  u64 start, u64 len)
5497 {
5498 	int ret = 0;
5499 	u64 off;
5500 	u64 max = start + len;
5501 	u32 flags = 0;
5502 	u32 found_type;
5503 	u64 last;
5504 	u64 last_for_get_extent = 0;
5505 	u64 disko = 0;
5506 	u64 isize = i_size_read(&inode->vfs_inode);
5507 	struct btrfs_key found_key;
5508 	struct extent_map *em = NULL;
5509 	struct extent_state *cached_state = NULL;
5510 	struct btrfs_path *path;
5511 	struct btrfs_root *root = inode->root;
5512 	struct fiemap_cache cache = { 0 };
5513 	struct ulist *roots;
5514 	struct ulist *tmp_ulist;
5515 	int end = 0;
5516 	u64 em_start = 0;
5517 	u64 em_len = 0;
5518 	u64 em_end = 0;
5519 
5520 	if (len == 0)
5521 		return -EINVAL;
5522 
5523 	path = btrfs_alloc_path();
5524 	if (!path)
5525 		return -ENOMEM;
5526 
5527 	roots = ulist_alloc(GFP_KERNEL);
5528 	tmp_ulist = ulist_alloc(GFP_KERNEL);
5529 	if (!roots || !tmp_ulist) {
5530 		ret = -ENOMEM;
5531 		goto out_free_ulist;
5532 	}
5533 
5534 	/*
5535 	 * We can't initialize that to 'start' as this could miss extents due
5536 	 * to extent item merging
5537 	 */
5538 	off = 0;
5539 	start = round_down(start, btrfs_inode_sectorsize(inode));
5540 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5541 
5542 	/*
5543 	 * lookup the last file extent.  We're not using i_size here
5544 	 * because there might be preallocation past i_size
5545 	 */
5546 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5547 				       0);
5548 	if (ret < 0) {
5549 		goto out_free_ulist;
5550 	} else {
5551 		WARN_ON(!ret);
5552 		if (ret == 1)
5553 			ret = 0;
5554 	}
5555 
5556 	path->slots[0]--;
5557 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5558 	found_type = found_key.type;
5559 
5560 	/* No extents, but there might be delalloc bits */
5561 	if (found_key.objectid != btrfs_ino(inode) ||
5562 	    found_type != BTRFS_EXTENT_DATA_KEY) {
5563 		/* have to trust i_size as the end */
5564 		last = (u64)-1;
5565 		last_for_get_extent = isize;
5566 	} else {
5567 		/*
5568 		 * remember the start of the last extent.  There are a
5569 		 * bunch of different factors that go into the length of the
5570 		 * extent, so its much less complex to remember where it started
5571 		 */
5572 		last = found_key.offset;
5573 		last_for_get_extent = last + 1;
5574 	}
5575 	btrfs_release_path(path);
5576 
5577 	/*
5578 	 * we might have some extents allocated but more delalloc past those
5579 	 * extents.  so, we trust isize unless the start of the last extent is
5580 	 * beyond isize
5581 	 */
5582 	if (last < isize) {
5583 		last = (u64)-1;
5584 		last_for_get_extent = isize;
5585 	}
5586 
5587 	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5588 			 &cached_state);
5589 
5590 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5591 	if (!em)
5592 		goto out;
5593 	if (IS_ERR(em)) {
5594 		ret = PTR_ERR(em);
5595 		goto out;
5596 	}
5597 
5598 	while (!end) {
5599 		u64 offset_in_extent = 0;
5600 
5601 		/* break if the extent we found is outside the range */
5602 		if (em->start >= max || extent_map_end(em) < off)
5603 			break;
5604 
5605 		/*
5606 		 * get_extent may return an extent that starts before our
5607 		 * requested range.  We have to make sure the ranges
5608 		 * we return to fiemap always move forward and don't
5609 		 * overlap, so adjust the offsets here
5610 		 */
5611 		em_start = max(em->start, off);
5612 
5613 		/*
5614 		 * record the offset from the start of the extent
5615 		 * for adjusting the disk offset below.  Only do this if the
5616 		 * extent isn't compressed since our in ram offset may be past
5617 		 * what we have actually allocated on disk.
5618 		 */
5619 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5620 			offset_in_extent = em_start - em->start;
5621 		em_end = extent_map_end(em);
5622 		em_len = em_end - em_start;
5623 		flags = 0;
5624 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5625 			disko = em->block_start + offset_in_extent;
5626 		else
5627 			disko = 0;
5628 
5629 		/*
5630 		 * bump off for our next call to get_extent
5631 		 */
5632 		off = extent_map_end(em);
5633 		if (off >= max)
5634 			end = 1;
5635 
5636 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5637 			end = 1;
5638 			flags |= FIEMAP_EXTENT_LAST;
5639 		} else if (em->block_start == EXTENT_MAP_INLINE) {
5640 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5641 				  FIEMAP_EXTENT_NOT_ALIGNED);
5642 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5643 			flags |= (FIEMAP_EXTENT_DELALLOC |
5644 				  FIEMAP_EXTENT_UNKNOWN);
5645 		} else if (fieinfo->fi_extents_max) {
5646 			u64 bytenr = em->block_start -
5647 				(em->start - em->orig_start);
5648 
5649 			/*
5650 			 * As btrfs supports shared space, this information
5651 			 * can be exported to userspace tools via
5652 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5653 			 * then we're just getting a count and we can skip the
5654 			 * lookup stuff.
5655 			 */
5656 			ret = btrfs_check_shared(root, btrfs_ino(inode),
5657 						 bytenr, roots, tmp_ulist);
5658 			if (ret < 0)
5659 				goto out_free;
5660 			if (ret)
5661 				flags |= FIEMAP_EXTENT_SHARED;
5662 			ret = 0;
5663 		}
5664 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5665 			flags |= FIEMAP_EXTENT_ENCODED;
5666 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5667 			flags |= FIEMAP_EXTENT_UNWRITTEN;
5668 
5669 		free_extent_map(em);
5670 		em = NULL;
5671 		if ((em_start >= last) || em_len == (u64)-1 ||
5672 		   (last == (u64)-1 && isize <= em_end)) {
5673 			flags |= FIEMAP_EXTENT_LAST;
5674 			end = 1;
5675 		}
5676 
5677 		/* now scan forward to see if this is really the last extent. */
5678 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5679 		if (IS_ERR(em)) {
5680 			ret = PTR_ERR(em);
5681 			goto out;
5682 		}
5683 		if (!em) {
5684 			flags |= FIEMAP_EXTENT_LAST;
5685 			end = 1;
5686 		}
5687 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5688 					   em_len, flags);
5689 		if (ret) {
5690 			if (ret == 1)
5691 				ret = 0;
5692 			goto out_free;
5693 		}
5694 	}
5695 out_free:
5696 	if (!ret)
5697 		ret = emit_last_fiemap_cache(fieinfo, &cache);
5698 	free_extent_map(em);
5699 out:
5700 	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5701 			     &cached_state);
5702 
5703 out_free_ulist:
5704 	btrfs_free_path(path);
5705 	ulist_free(roots);
5706 	ulist_free(tmp_ulist);
5707 	return ret;
5708 }
5709 
__free_extent_buffer(struct extent_buffer * eb)5710 static void __free_extent_buffer(struct extent_buffer *eb)
5711 {
5712 	kmem_cache_free(extent_buffer_cache, eb);
5713 }
5714 
extent_buffer_under_io(const struct extent_buffer * eb)5715 int extent_buffer_under_io(const struct extent_buffer *eb)
5716 {
5717 	return (atomic_read(&eb->io_pages) ||
5718 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5719 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5720 }
5721 
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)5722 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5723 {
5724 	struct btrfs_subpage *subpage;
5725 
5726 	lockdep_assert_held(&page->mapping->private_lock);
5727 
5728 	if (PagePrivate(page)) {
5729 		subpage = (struct btrfs_subpage *)page->private;
5730 		if (atomic_read(&subpage->eb_refs))
5731 			return true;
5732 		/*
5733 		 * Even there is no eb refs here, we may still have
5734 		 * end_page_read() call relying on page::private.
5735 		 */
5736 		if (atomic_read(&subpage->readers))
5737 			return true;
5738 	}
5739 	return false;
5740 }
5741 
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)5742 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5743 {
5744 	struct btrfs_fs_info *fs_info = eb->fs_info;
5745 	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5746 
5747 	/*
5748 	 * For mapped eb, we're going to change the page private, which should
5749 	 * be done under the private_lock.
5750 	 */
5751 	if (mapped)
5752 		spin_lock(&page->mapping->private_lock);
5753 
5754 	if (!PagePrivate(page)) {
5755 		if (mapped)
5756 			spin_unlock(&page->mapping->private_lock);
5757 		return;
5758 	}
5759 
5760 	if (fs_info->sectorsize == PAGE_SIZE) {
5761 		/*
5762 		 * We do this since we'll remove the pages after we've
5763 		 * removed the eb from the radix tree, so we could race
5764 		 * and have this page now attached to the new eb.  So
5765 		 * only clear page_private if it's still connected to
5766 		 * this eb.
5767 		 */
5768 		if (PagePrivate(page) &&
5769 		    page->private == (unsigned long)eb) {
5770 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5771 			BUG_ON(PageDirty(page));
5772 			BUG_ON(PageWriteback(page));
5773 			/*
5774 			 * We need to make sure we haven't be attached
5775 			 * to a new eb.
5776 			 */
5777 			detach_page_private(page);
5778 		}
5779 		if (mapped)
5780 			spin_unlock(&page->mapping->private_lock);
5781 		return;
5782 	}
5783 
5784 	/*
5785 	 * For subpage, we can have dummy eb with page private.  In this case,
5786 	 * we can directly detach the private as such page is only attached to
5787 	 * one dummy eb, no sharing.
5788 	 */
5789 	if (!mapped) {
5790 		btrfs_detach_subpage(fs_info, page);
5791 		return;
5792 	}
5793 
5794 	btrfs_page_dec_eb_refs(fs_info, page);
5795 
5796 	/*
5797 	 * We can only detach the page private if there are no other ebs in the
5798 	 * page range and no unfinished IO.
5799 	 */
5800 	if (!page_range_has_eb(fs_info, page))
5801 		btrfs_detach_subpage(fs_info, page);
5802 
5803 	spin_unlock(&page->mapping->private_lock);
5804 }
5805 
5806 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)5807 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5808 {
5809 	int i;
5810 	int num_pages;
5811 
5812 	ASSERT(!extent_buffer_under_io(eb));
5813 
5814 	num_pages = num_extent_pages(eb);
5815 	for (i = 0; i < num_pages; i++) {
5816 		struct page *page = eb->pages[i];
5817 
5818 		if (!page)
5819 			continue;
5820 
5821 		detach_extent_buffer_page(eb, page);
5822 
5823 		/* One for when we allocated the page */
5824 		put_page(page);
5825 	}
5826 }
5827 
5828 /*
5829  * Helper for releasing the extent buffer.
5830  */
btrfs_release_extent_buffer(struct extent_buffer * eb)5831 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5832 {
5833 	btrfs_release_extent_buffer_pages(eb);
5834 	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5835 	__free_extent_buffer(eb);
5836 }
5837 
5838 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5839 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5840 		      unsigned long len)
5841 {
5842 	struct extent_buffer *eb = NULL;
5843 
5844 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5845 	eb->start = start;
5846 	eb->len = len;
5847 	eb->fs_info = fs_info;
5848 	eb->bflags = 0;
5849 	init_rwsem(&eb->lock);
5850 
5851 	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5852 			     &fs_info->allocated_ebs);
5853 	INIT_LIST_HEAD(&eb->release_list);
5854 
5855 	spin_lock_init(&eb->refs_lock);
5856 	atomic_set(&eb->refs, 1);
5857 	atomic_set(&eb->io_pages, 0);
5858 
5859 	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5860 
5861 	return eb;
5862 }
5863 
btrfs_clone_extent_buffer(const struct extent_buffer * src)5864 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5865 {
5866 	int i;
5867 	struct page *p;
5868 	struct extent_buffer *new;
5869 	int num_pages = num_extent_pages(src);
5870 
5871 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5872 	if (new == NULL)
5873 		return NULL;
5874 
5875 	/*
5876 	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5877 	 * btrfs_release_extent_buffer() have different behavior for
5878 	 * UNMAPPED subpage extent buffer.
5879 	 */
5880 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5881 
5882 	for (i = 0; i < num_pages; i++) {
5883 		int ret;
5884 
5885 		p = alloc_page(GFP_NOFS);
5886 		if (!p) {
5887 			btrfs_release_extent_buffer(new);
5888 			return NULL;
5889 		}
5890 		ret = attach_extent_buffer_page(new, p, NULL);
5891 		if (ret < 0) {
5892 			put_page(p);
5893 			btrfs_release_extent_buffer(new);
5894 			return NULL;
5895 		}
5896 		WARN_ON(PageDirty(p));
5897 		new->pages[i] = p;
5898 		copy_page(page_address(p), page_address(src->pages[i]));
5899 	}
5900 	set_extent_buffer_uptodate(new);
5901 
5902 	return new;
5903 }
5904 
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5905 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5906 						  u64 start, unsigned long len)
5907 {
5908 	struct extent_buffer *eb;
5909 	int num_pages;
5910 	int i;
5911 
5912 	eb = __alloc_extent_buffer(fs_info, start, len);
5913 	if (!eb)
5914 		return NULL;
5915 
5916 	num_pages = num_extent_pages(eb);
5917 	for (i = 0; i < num_pages; i++) {
5918 		int ret;
5919 
5920 		eb->pages[i] = alloc_page(GFP_NOFS);
5921 		if (!eb->pages[i])
5922 			goto err;
5923 		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5924 		if (ret < 0)
5925 			goto err;
5926 	}
5927 	set_extent_buffer_uptodate(eb);
5928 	btrfs_set_header_nritems(eb, 0);
5929 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5930 
5931 	return eb;
5932 err:
5933 	for (; i > 0; i--) {
5934 		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5935 		__free_page(eb->pages[i - 1]);
5936 	}
5937 	__free_extent_buffer(eb);
5938 	return NULL;
5939 }
5940 
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5941 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5942 						u64 start)
5943 {
5944 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5945 }
5946 
check_buffer_tree_ref(struct extent_buffer * eb)5947 static void check_buffer_tree_ref(struct extent_buffer *eb)
5948 {
5949 	int refs;
5950 	/*
5951 	 * The TREE_REF bit is first set when the extent_buffer is added
5952 	 * to the radix tree. It is also reset, if unset, when a new reference
5953 	 * is created by find_extent_buffer.
5954 	 *
5955 	 * It is only cleared in two cases: freeing the last non-tree
5956 	 * reference to the extent_buffer when its STALE bit is set or
5957 	 * calling releasepage when the tree reference is the only reference.
5958 	 *
5959 	 * In both cases, care is taken to ensure that the extent_buffer's
5960 	 * pages are not under io. However, releasepage can be concurrently
5961 	 * called with creating new references, which is prone to race
5962 	 * conditions between the calls to check_buffer_tree_ref in those
5963 	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5964 	 *
5965 	 * The actual lifetime of the extent_buffer in the radix tree is
5966 	 * adequately protected by the refcount, but the TREE_REF bit and
5967 	 * its corresponding reference are not. To protect against this
5968 	 * class of races, we call check_buffer_tree_ref from the codepaths
5969 	 * which trigger io after they set eb->io_pages. Note that once io is
5970 	 * initiated, TREE_REF can no longer be cleared, so that is the
5971 	 * moment at which any such race is best fixed.
5972 	 */
5973 	refs = atomic_read(&eb->refs);
5974 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5975 		return;
5976 
5977 	spin_lock(&eb->refs_lock);
5978 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5979 		atomic_inc(&eb->refs);
5980 	spin_unlock(&eb->refs_lock);
5981 }
5982 
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)5983 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5984 		struct page *accessed)
5985 {
5986 	int num_pages, i;
5987 
5988 	check_buffer_tree_ref(eb);
5989 
5990 	num_pages = num_extent_pages(eb);
5991 	for (i = 0; i < num_pages; i++) {
5992 		struct page *p = eb->pages[i];
5993 
5994 		if (p != accessed)
5995 			mark_page_accessed(p);
5996 	}
5997 }
5998 
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5999 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6000 					 u64 start)
6001 {
6002 	struct extent_buffer *eb;
6003 
6004 	eb = find_extent_buffer_nolock(fs_info, start);
6005 	if (!eb)
6006 		return NULL;
6007 	/*
6008 	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6009 	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6010 	 * another task running free_extent_buffer() might have seen that flag
6011 	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6012 	 * writeback flags not set) and it's still in the tree (flag
6013 	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6014 	 * decrementing the extent buffer's reference count twice.  So here we
6015 	 * could race and increment the eb's reference count, clear its stale
6016 	 * flag, mark it as dirty and drop our reference before the other task
6017 	 * finishes executing free_extent_buffer, which would later result in
6018 	 * an attempt to free an extent buffer that is dirty.
6019 	 */
6020 	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6021 		spin_lock(&eb->refs_lock);
6022 		spin_unlock(&eb->refs_lock);
6023 	}
6024 	mark_extent_buffer_accessed(eb, NULL);
6025 	return eb;
6026 }
6027 
6028 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)6029 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6030 					u64 start)
6031 {
6032 	struct extent_buffer *eb, *exists = NULL;
6033 	int ret;
6034 
6035 	eb = find_extent_buffer(fs_info, start);
6036 	if (eb)
6037 		return eb;
6038 	eb = alloc_dummy_extent_buffer(fs_info, start);
6039 	if (!eb)
6040 		return ERR_PTR(-ENOMEM);
6041 	eb->fs_info = fs_info;
6042 again:
6043 	ret = radix_tree_preload(GFP_NOFS);
6044 	if (ret) {
6045 		exists = ERR_PTR(ret);
6046 		goto free_eb;
6047 	}
6048 	spin_lock(&fs_info->buffer_lock);
6049 	ret = radix_tree_insert(&fs_info->buffer_radix,
6050 				start >> fs_info->sectorsize_bits, eb);
6051 	spin_unlock(&fs_info->buffer_lock);
6052 	radix_tree_preload_end();
6053 	if (ret == -EEXIST) {
6054 		exists = find_extent_buffer(fs_info, start);
6055 		if (exists)
6056 			goto free_eb;
6057 		else
6058 			goto again;
6059 	}
6060 	check_buffer_tree_ref(eb);
6061 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6062 
6063 	return eb;
6064 free_eb:
6065 	btrfs_release_extent_buffer(eb);
6066 	return exists;
6067 }
6068 #endif
6069 
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)6070 static struct extent_buffer *grab_extent_buffer(
6071 		struct btrfs_fs_info *fs_info, struct page *page)
6072 {
6073 	struct extent_buffer *exists;
6074 
6075 	/*
6076 	 * For subpage case, we completely rely on radix tree to ensure we
6077 	 * don't try to insert two ebs for the same bytenr.  So here we always
6078 	 * return NULL and just continue.
6079 	 */
6080 	if (fs_info->sectorsize < PAGE_SIZE)
6081 		return NULL;
6082 
6083 	/* Page not yet attached to an extent buffer */
6084 	if (!PagePrivate(page))
6085 		return NULL;
6086 
6087 	/*
6088 	 * We could have already allocated an eb for this page and attached one
6089 	 * so lets see if we can get a ref on the existing eb, and if we can we
6090 	 * know it's good and we can just return that one, else we know we can
6091 	 * just overwrite page->private.
6092 	 */
6093 	exists = (struct extent_buffer *)page->private;
6094 	if (atomic_inc_not_zero(&exists->refs))
6095 		return exists;
6096 
6097 	WARN_ON(PageDirty(page));
6098 	detach_page_private(page);
6099 	return NULL;
6100 }
6101 
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)6102 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6103 					  u64 start, u64 owner_root, int level)
6104 {
6105 	unsigned long len = fs_info->nodesize;
6106 	int num_pages;
6107 	int i;
6108 	unsigned long index = start >> PAGE_SHIFT;
6109 	struct extent_buffer *eb;
6110 	struct extent_buffer *exists = NULL;
6111 	struct page *p;
6112 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
6113 	u64 lockdep_owner = owner_root;
6114 	int uptodate = 1;
6115 	int ret;
6116 
6117 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6118 		btrfs_err(fs_info, "bad tree block start %llu", start);
6119 		return ERR_PTR(-EINVAL);
6120 	}
6121 
6122 #if BITS_PER_LONG == 32
6123 	if (start >= MAX_LFS_FILESIZE) {
6124 		btrfs_err_rl(fs_info,
6125 		"extent buffer %llu is beyond 32bit page cache limit", start);
6126 		btrfs_err_32bit_limit(fs_info);
6127 		return ERR_PTR(-EOVERFLOW);
6128 	}
6129 	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6130 		btrfs_warn_32bit_limit(fs_info);
6131 #endif
6132 
6133 	if (fs_info->sectorsize < PAGE_SIZE &&
6134 	    offset_in_page(start) + len > PAGE_SIZE) {
6135 		btrfs_err(fs_info,
6136 		"tree block crosses page boundary, start %llu nodesize %lu",
6137 			  start, len);
6138 		return ERR_PTR(-EINVAL);
6139 	}
6140 
6141 	eb = find_extent_buffer(fs_info, start);
6142 	if (eb)
6143 		return eb;
6144 
6145 	eb = __alloc_extent_buffer(fs_info, start, len);
6146 	if (!eb)
6147 		return ERR_PTR(-ENOMEM);
6148 
6149 	/*
6150 	 * The reloc trees are just snapshots, so we need them to appear to be
6151 	 * just like any other fs tree WRT lockdep.
6152 	 */
6153 	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
6154 		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
6155 
6156 	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
6157 
6158 	num_pages = num_extent_pages(eb);
6159 	for (i = 0; i < num_pages; i++, index++) {
6160 		struct btrfs_subpage *prealloc = NULL;
6161 
6162 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6163 		if (!p) {
6164 			exists = ERR_PTR(-ENOMEM);
6165 			goto free_eb;
6166 		}
6167 
6168 		/*
6169 		 * Preallocate page->private for subpage case, so that we won't
6170 		 * allocate memory with private_lock hold.  The memory will be
6171 		 * freed by attach_extent_buffer_page() or freed manually if
6172 		 * we exit earlier.
6173 		 *
6174 		 * Although we have ensured one subpage eb can only have one
6175 		 * page, but it may change in the future for 16K page size
6176 		 * support, so we still preallocate the memory in the loop.
6177 		 */
6178 		ret = btrfs_alloc_subpage(fs_info, &prealloc,
6179 					  BTRFS_SUBPAGE_METADATA);
6180 		if (ret < 0) {
6181 			unlock_page(p);
6182 			put_page(p);
6183 			exists = ERR_PTR(ret);
6184 			goto free_eb;
6185 		}
6186 
6187 		spin_lock(&mapping->private_lock);
6188 		exists = grab_extent_buffer(fs_info, p);
6189 		if (exists) {
6190 			spin_unlock(&mapping->private_lock);
6191 			unlock_page(p);
6192 			put_page(p);
6193 			mark_extent_buffer_accessed(exists, p);
6194 			btrfs_free_subpage(prealloc);
6195 			goto free_eb;
6196 		}
6197 		/* Should not fail, as we have preallocated the memory */
6198 		ret = attach_extent_buffer_page(eb, p, prealloc);
6199 		ASSERT(!ret);
6200 		/*
6201 		 * To inform we have extra eb under allocation, so that
6202 		 * detach_extent_buffer_page() won't release the page private
6203 		 * when the eb hasn't yet been inserted into radix tree.
6204 		 *
6205 		 * The ref will be decreased when the eb released the page, in
6206 		 * detach_extent_buffer_page().
6207 		 * Thus needs no special handling in error path.
6208 		 */
6209 		btrfs_page_inc_eb_refs(fs_info, p);
6210 		spin_unlock(&mapping->private_lock);
6211 
6212 		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6213 		eb->pages[i] = p;
6214 		if (!PageUptodate(p))
6215 			uptodate = 0;
6216 
6217 		/*
6218 		 * We can't unlock the pages just yet since the extent buffer
6219 		 * hasn't been properly inserted in the radix tree, this
6220 		 * opens a race with btree_releasepage which can free a page
6221 		 * while we are still filling in all pages for the buffer and
6222 		 * we could crash.
6223 		 */
6224 	}
6225 	if (uptodate)
6226 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6227 again:
6228 	ret = radix_tree_preload(GFP_NOFS);
6229 	if (ret) {
6230 		exists = ERR_PTR(ret);
6231 		goto free_eb;
6232 	}
6233 
6234 	spin_lock(&fs_info->buffer_lock);
6235 	ret = radix_tree_insert(&fs_info->buffer_radix,
6236 				start >> fs_info->sectorsize_bits, eb);
6237 	spin_unlock(&fs_info->buffer_lock);
6238 	radix_tree_preload_end();
6239 	if (ret == -EEXIST) {
6240 		exists = find_extent_buffer(fs_info, start);
6241 		if (exists)
6242 			goto free_eb;
6243 		else
6244 			goto again;
6245 	}
6246 	/* add one reference for the tree */
6247 	check_buffer_tree_ref(eb);
6248 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6249 
6250 	/*
6251 	 * Now it's safe to unlock the pages because any calls to
6252 	 * btree_releasepage will correctly detect that a page belongs to a
6253 	 * live buffer and won't free them prematurely.
6254 	 */
6255 	for (i = 0; i < num_pages; i++)
6256 		unlock_page(eb->pages[i]);
6257 	return eb;
6258 
6259 free_eb:
6260 	WARN_ON(!atomic_dec_and_test(&eb->refs));
6261 	for (i = 0; i < num_pages; i++) {
6262 		if (eb->pages[i])
6263 			unlock_page(eb->pages[i]);
6264 	}
6265 
6266 	btrfs_release_extent_buffer(eb);
6267 	return exists;
6268 }
6269 
btrfs_release_extent_buffer_rcu(struct rcu_head * head)6270 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6271 {
6272 	struct extent_buffer *eb =
6273 			container_of(head, struct extent_buffer, rcu_head);
6274 
6275 	__free_extent_buffer(eb);
6276 }
6277 
release_extent_buffer(struct extent_buffer * eb)6278 static int release_extent_buffer(struct extent_buffer *eb)
6279 	__releases(&eb->refs_lock)
6280 {
6281 	lockdep_assert_held(&eb->refs_lock);
6282 
6283 	WARN_ON(atomic_read(&eb->refs) == 0);
6284 	if (atomic_dec_and_test(&eb->refs)) {
6285 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6286 			struct btrfs_fs_info *fs_info = eb->fs_info;
6287 
6288 			spin_unlock(&eb->refs_lock);
6289 
6290 			spin_lock(&fs_info->buffer_lock);
6291 			radix_tree_delete(&fs_info->buffer_radix,
6292 					  eb->start >> fs_info->sectorsize_bits);
6293 			spin_unlock(&fs_info->buffer_lock);
6294 		} else {
6295 			spin_unlock(&eb->refs_lock);
6296 		}
6297 
6298 		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6299 		/* Should be safe to release our pages at this point */
6300 		btrfs_release_extent_buffer_pages(eb);
6301 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6302 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6303 			__free_extent_buffer(eb);
6304 			return 1;
6305 		}
6306 #endif
6307 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6308 		return 1;
6309 	}
6310 	spin_unlock(&eb->refs_lock);
6311 
6312 	return 0;
6313 }
6314 
free_extent_buffer(struct extent_buffer * eb)6315 void free_extent_buffer(struct extent_buffer *eb)
6316 {
6317 	int refs;
6318 	int old;
6319 	if (!eb)
6320 		return;
6321 
6322 	while (1) {
6323 		refs = atomic_read(&eb->refs);
6324 		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6325 		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6326 			refs == 1))
6327 			break;
6328 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6329 		if (old == refs)
6330 			return;
6331 	}
6332 
6333 	spin_lock(&eb->refs_lock);
6334 	if (atomic_read(&eb->refs) == 2 &&
6335 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6336 	    !extent_buffer_under_io(eb) &&
6337 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6338 		atomic_dec(&eb->refs);
6339 
6340 	/*
6341 	 * I know this is terrible, but it's temporary until we stop tracking
6342 	 * the uptodate bits and such for the extent buffers.
6343 	 */
6344 	release_extent_buffer(eb);
6345 }
6346 
free_extent_buffer_stale(struct extent_buffer * eb)6347 void free_extent_buffer_stale(struct extent_buffer *eb)
6348 {
6349 	if (!eb)
6350 		return;
6351 
6352 	spin_lock(&eb->refs_lock);
6353 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6354 
6355 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6356 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6357 		atomic_dec(&eb->refs);
6358 	release_extent_buffer(eb);
6359 }
6360 
btree_clear_page_dirty(struct page * page)6361 static void btree_clear_page_dirty(struct page *page)
6362 {
6363 	ASSERT(PageDirty(page));
6364 	ASSERT(PageLocked(page));
6365 	clear_page_dirty_for_io(page);
6366 	xa_lock_irq(&page->mapping->i_pages);
6367 	if (!PageDirty(page))
6368 		__xa_clear_mark(&page->mapping->i_pages,
6369 				page_index(page), PAGECACHE_TAG_DIRTY);
6370 	xa_unlock_irq(&page->mapping->i_pages);
6371 }
6372 
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)6373 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6374 {
6375 	struct btrfs_fs_info *fs_info = eb->fs_info;
6376 	struct page *page = eb->pages[0];
6377 	bool last;
6378 
6379 	/* btree_clear_page_dirty() needs page locked */
6380 	lock_page(page);
6381 	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6382 						  eb->len);
6383 	if (last)
6384 		btree_clear_page_dirty(page);
6385 	unlock_page(page);
6386 	WARN_ON(atomic_read(&eb->refs) == 0);
6387 }
6388 
clear_extent_buffer_dirty(const struct extent_buffer * eb)6389 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6390 {
6391 	int i;
6392 	int num_pages;
6393 	struct page *page;
6394 
6395 	if (eb->fs_info->sectorsize < PAGE_SIZE)
6396 		return clear_subpage_extent_buffer_dirty(eb);
6397 
6398 	num_pages = num_extent_pages(eb);
6399 
6400 	for (i = 0; i < num_pages; i++) {
6401 		page = eb->pages[i];
6402 		if (!PageDirty(page))
6403 			continue;
6404 		lock_page(page);
6405 		btree_clear_page_dirty(page);
6406 		ClearPageError(page);
6407 		unlock_page(page);
6408 	}
6409 	WARN_ON(atomic_read(&eb->refs) == 0);
6410 }
6411 
set_extent_buffer_dirty(struct extent_buffer * eb)6412 bool set_extent_buffer_dirty(struct extent_buffer *eb)
6413 {
6414 	int i;
6415 	int num_pages;
6416 	bool was_dirty;
6417 
6418 	check_buffer_tree_ref(eb);
6419 
6420 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6421 
6422 	num_pages = num_extent_pages(eb);
6423 	WARN_ON(atomic_read(&eb->refs) == 0);
6424 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6425 
6426 	if (!was_dirty) {
6427 		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6428 
6429 		/*
6430 		 * For subpage case, we can have other extent buffers in the
6431 		 * same page, and in clear_subpage_extent_buffer_dirty() we
6432 		 * have to clear page dirty without subpage lock held.
6433 		 * This can cause race where our page gets dirty cleared after
6434 		 * we just set it.
6435 		 *
6436 		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6437 		 * its page for other reasons, we can use page lock to prevent
6438 		 * the above race.
6439 		 */
6440 		if (subpage)
6441 			lock_page(eb->pages[0]);
6442 		for (i = 0; i < num_pages; i++)
6443 			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6444 					     eb->start, eb->len);
6445 		if (subpage)
6446 			unlock_page(eb->pages[0]);
6447 	}
6448 #ifdef CONFIG_BTRFS_DEBUG
6449 	for (i = 0; i < num_pages; i++)
6450 		ASSERT(PageDirty(eb->pages[i]));
6451 #endif
6452 
6453 	return was_dirty;
6454 }
6455 
clear_extent_buffer_uptodate(struct extent_buffer * eb)6456 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6457 {
6458 	struct btrfs_fs_info *fs_info = eb->fs_info;
6459 	struct page *page;
6460 	int num_pages;
6461 	int i;
6462 
6463 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6464 	num_pages = num_extent_pages(eb);
6465 	for (i = 0; i < num_pages; i++) {
6466 		page = eb->pages[i];
6467 		if (page)
6468 			btrfs_page_clear_uptodate(fs_info, page,
6469 						  eb->start, eb->len);
6470 	}
6471 }
6472 
set_extent_buffer_uptodate(struct extent_buffer * eb)6473 void set_extent_buffer_uptodate(struct extent_buffer *eb)
6474 {
6475 	struct btrfs_fs_info *fs_info = eb->fs_info;
6476 	struct page *page;
6477 	int num_pages;
6478 	int i;
6479 
6480 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6481 	num_pages = num_extent_pages(eb);
6482 	for (i = 0; i < num_pages; i++) {
6483 		page = eb->pages[i];
6484 		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6485 	}
6486 }
6487 
read_extent_buffer_subpage(struct extent_buffer * eb,int wait,int mirror_num)6488 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6489 				      int mirror_num)
6490 {
6491 	struct btrfs_fs_info *fs_info = eb->fs_info;
6492 	struct extent_io_tree *io_tree;
6493 	struct page *page = eb->pages[0];
6494 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6495 	int ret = 0;
6496 
6497 	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6498 	ASSERT(PagePrivate(page));
6499 	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6500 
6501 	if (wait == WAIT_NONE) {
6502 		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6503 			return -EAGAIN;
6504 	} else {
6505 		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6506 		if (ret < 0)
6507 			return ret;
6508 	}
6509 
6510 	ret = 0;
6511 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6512 	    PageUptodate(page) ||
6513 	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6514 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6515 		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6516 		return ret;
6517 	}
6518 
6519 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6520 	eb->read_mirror = 0;
6521 	atomic_set(&eb->io_pages, 1);
6522 	check_buffer_tree_ref(eb);
6523 	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6524 
6525 	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6526 	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6527 				 page, eb->start, eb->len,
6528 				 eb->start - page_offset(page),
6529 				 end_bio_extent_readpage, mirror_num, 0,
6530 				 true);
6531 	if (ret) {
6532 		/*
6533 		 * In the endio function, if we hit something wrong we will
6534 		 * increase the io_pages, so here we need to decrease it for
6535 		 * error path.
6536 		 */
6537 		atomic_dec(&eb->io_pages);
6538 	}
6539 	if (bio_ctrl.bio) {
6540 		int tmp;
6541 
6542 		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6543 		bio_ctrl.bio = NULL;
6544 		if (tmp < 0)
6545 			return tmp;
6546 	}
6547 	if (ret || wait != WAIT_COMPLETE)
6548 		return ret;
6549 
6550 	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6551 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6552 		ret = -EIO;
6553 	return ret;
6554 }
6555 
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)6556 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6557 {
6558 	int i;
6559 	struct page *page;
6560 	int err;
6561 	int ret = 0;
6562 	int locked_pages = 0;
6563 	int all_uptodate = 1;
6564 	int num_pages;
6565 	unsigned long num_reads = 0;
6566 	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6567 
6568 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6569 		return 0;
6570 
6571 	/*
6572 	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6573 	 * operation, which could potentially still be in flight.  In this case
6574 	 * we simply want to return an error.
6575 	 */
6576 	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6577 		return -EIO;
6578 
6579 	if (eb->fs_info->sectorsize < PAGE_SIZE)
6580 		return read_extent_buffer_subpage(eb, wait, mirror_num);
6581 
6582 	num_pages = num_extent_pages(eb);
6583 	for (i = 0; i < num_pages; i++) {
6584 		page = eb->pages[i];
6585 		if (wait == WAIT_NONE) {
6586 			/*
6587 			 * WAIT_NONE is only utilized by readahead. If we can't
6588 			 * acquire the lock atomically it means either the eb
6589 			 * is being read out or under modification.
6590 			 * Either way the eb will be or has been cached,
6591 			 * readahead can exit safely.
6592 			 */
6593 			if (!trylock_page(page))
6594 				goto unlock_exit;
6595 		} else {
6596 			lock_page(page);
6597 		}
6598 		locked_pages++;
6599 	}
6600 	/*
6601 	 * We need to firstly lock all pages to make sure that
6602 	 * the uptodate bit of our pages won't be affected by
6603 	 * clear_extent_buffer_uptodate().
6604 	 */
6605 	for (i = 0; i < num_pages; i++) {
6606 		page = eb->pages[i];
6607 		if (!PageUptodate(page)) {
6608 			num_reads++;
6609 			all_uptodate = 0;
6610 		}
6611 	}
6612 
6613 	if (all_uptodate) {
6614 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6615 		goto unlock_exit;
6616 	}
6617 
6618 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6619 	eb->read_mirror = 0;
6620 	atomic_set(&eb->io_pages, num_reads);
6621 	/*
6622 	 * It is possible for releasepage to clear the TREE_REF bit before we
6623 	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6624 	 */
6625 	check_buffer_tree_ref(eb);
6626 	for (i = 0; i < num_pages; i++) {
6627 		page = eb->pages[i];
6628 
6629 		if (!PageUptodate(page)) {
6630 			if (ret) {
6631 				atomic_dec(&eb->io_pages);
6632 				unlock_page(page);
6633 				continue;
6634 			}
6635 
6636 			ClearPageError(page);
6637 			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6638 					 &bio_ctrl, page, page_offset(page),
6639 					 PAGE_SIZE, 0, end_bio_extent_readpage,
6640 					 mirror_num, 0, false);
6641 			if (err) {
6642 				/*
6643 				 * We failed to submit the bio so it's the
6644 				 * caller's responsibility to perform cleanup
6645 				 * i.e unlock page/set error bit.
6646 				 */
6647 				ret = err;
6648 				SetPageError(page);
6649 				unlock_page(page);
6650 				atomic_dec(&eb->io_pages);
6651 			}
6652 		} else {
6653 			unlock_page(page);
6654 		}
6655 	}
6656 
6657 	if (bio_ctrl.bio) {
6658 		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6659 		bio_ctrl.bio = NULL;
6660 		if (err)
6661 			return err;
6662 	}
6663 
6664 	if (ret || wait != WAIT_COMPLETE)
6665 		return ret;
6666 
6667 	for (i = 0; i < num_pages; i++) {
6668 		page = eb->pages[i];
6669 		wait_on_page_locked(page);
6670 		if (!PageUptodate(page))
6671 			ret = -EIO;
6672 	}
6673 
6674 	return ret;
6675 
6676 unlock_exit:
6677 	while (locked_pages > 0) {
6678 		locked_pages--;
6679 		page = eb->pages[locked_pages];
6680 		unlock_page(page);
6681 	}
6682 	return ret;
6683 }
6684 
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)6685 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6686 			    unsigned long len)
6687 {
6688 	btrfs_warn(eb->fs_info,
6689 		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6690 		eb->start, eb->len, start, len);
6691 	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6692 
6693 	return true;
6694 }
6695 
6696 /*
6697  * Check if the [start, start + len) range is valid before reading/writing
6698  * the eb.
6699  * NOTE: @start and @len are offset inside the eb, not logical address.
6700  *
6701  * Caller should not touch the dst/src memory if this function returns error.
6702  */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)6703 static inline int check_eb_range(const struct extent_buffer *eb,
6704 				 unsigned long start, unsigned long len)
6705 {
6706 	unsigned long offset;
6707 
6708 	/* start, start + len should not go beyond eb->len nor overflow */
6709 	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6710 		return report_eb_range(eb, start, len);
6711 
6712 	return false;
6713 }
6714 
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)6715 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6716 			unsigned long start, unsigned long len)
6717 {
6718 	size_t cur;
6719 	size_t offset;
6720 	struct page *page;
6721 	char *kaddr;
6722 	char *dst = (char *)dstv;
6723 	unsigned long i = get_eb_page_index(start);
6724 
6725 	if (check_eb_range(eb, start, len)) {
6726 		/*
6727 		 * Invalid range hit, reset the memory, so callers won't get
6728 		 * some random garbage for their uninitialzed memory.
6729 		 */
6730 		memset(dstv, 0, len);
6731 		return;
6732 	}
6733 
6734 	offset = get_eb_offset_in_page(eb, start);
6735 
6736 	while (len > 0) {
6737 		page = eb->pages[i];
6738 
6739 		cur = min(len, (PAGE_SIZE - offset));
6740 		kaddr = page_address(page);
6741 		memcpy(dst, kaddr + offset, cur);
6742 
6743 		dst += cur;
6744 		len -= cur;
6745 		offset = 0;
6746 		i++;
6747 	}
6748 }
6749 
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)6750 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6751 				       void __user *dstv,
6752 				       unsigned long start, unsigned long len)
6753 {
6754 	size_t cur;
6755 	size_t offset;
6756 	struct page *page;
6757 	char *kaddr;
6758 	char __user *dst = (char __user *)dstv;
6759 	unsigned long i = get_eb_page_index(start);
6760 	int ret = 0;
6761 
6762 	WARN_ON(start > eb->len);
6763 	WARN_ON(start + len > eb->start + eb->len);
6764 
6765 	offset = get_eb_offset_in_page(eb, start);
6766 
6767 	while (len > 0) {
6768 		page = eb->pages[i];
6769 
6770 		cur = min(len, (PAGE_SIZE - offset));
6771 		kaddr = page_address(page);
6772 		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6773 			ret = -EFAULT;
6774 			break;
6775 		}
6776 
6777 		dst += cur;
6778 		len -= cur;
6779 		offset = 0;
6780 		i++;
6781 	}
6782 
6783 	return ret;
6784 }
6785 
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)6786 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6787 			 unsigned long start, unsigned long len)
6788 {
6789 	size_t cur;
6790 	size_t offset;
6791 	struct page *page;
6792 	char *kaddr;
6793 	char *ptr = (char *)ptrv;
6794 	unsigned long i = get_eb_page_index(start);
6795 	int ret = 0;
6796 
6797 	if (check_eb_range(eb, start, len))
6798 		return -EINVAL;
6799 
6800 	offset = get_eb_offset_in_page(eb, start);
6801 
6802 	while (len > 0) {
6803 		page = eb->pages[i];
6804 
6805 		cur = min(len, (PAGE_SIZE - offset));
6806 
6807 		kaddr = page_address(page);
6808 		ret = memcmp(ptr, kaddr + offset, cur);
6809 		if (ret)
6810 			break;
6811 
6812 		ptr += cur;
6813 		len -= cur;
6814 		offset = 0;
6815 		i++;
6816 	}
6817 	return ret;
6818 }
6819 
6820 /*
6821  * Check that the extent buffer is uptodate.
6822  *
6823  * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6824  * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6825  */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)6826 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6827 				    struct page *page)
6828 {
6829 	struct btrfs_fs_info *fs_info = eb->fs_info;
6830 
6831 	/*
6832 	 * If we are using the commit root we could potentially clear a page
6833 	 * Uptodate while we're using the extent buffer that we've previously
6834 	 * looked up.  We don't want to complain in this case, as the page was
6835 	 * valid before, we just didn't write it out.  Instead we want to catch
6836 	 * the case where we didn't actually read the block properly, which
6837 	 * would have !PageUptodate && !PageError, as we clear PageError before
6838 	 * reading.
6839 	 */
6840 	if (fs_info->sectorsize < PAGE_SIZE) {
6841 		bool uptodate, error;
6842 
6843 		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6844 						       eb->start, eb->len);
6845 		error = btrfs_subpage_test_error(fs_info, page, eb->start, eb->len);
6846 		WARN_ON(!uptodate && !error);
6847 	} else {
6848 		WARN_ON(!PageUptodate(page) && !PageError(page));
6849 	}
6850 }
6851 
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)6852 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6853 		const void *srcv)
6854 {
6855 	char *kaddr;
6856 
6857 	assert_eb_page_uptodate(eb, eb->pages[0]);
6858 	kaddr = page_address(eb->pages[0]) +
6859 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6860 						   chunk_tree_uuid));
6861 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6862 }
6863 
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)6864 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6865 {
6866 	char *kaddr;
6867 
6868 	assert_eb_page_uptodate(eb, eb->pages[0]);
6869 	kaddr = page_address(eb->pages[0]) +
6870 		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6871 	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6872 }
6873 
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)6874 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6875 			 unsigned long start, unsigned long len)
6876 {
6877 	size_t cur;
6878 	size_t offset;
6879 	struct page *page;
6880 	char *kaddr;
6881 	char *src = (char *)srcv;
6882 	unsigned long i = get_eb_page_index(start);
6883 
6884 	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6885 
6886 	if (check_eb_range(eb, start, len))
6887 		return;
6888 
6889 	offset = get_eb_offset_in_page(eb, start);
6890 
6891 	while (len > 0) {
6892 		page = eb->pages[i];
6893 		assert_eb_page_uptodate(eb, page);
6894 
6895 		cur = min(len, PAGE_SIZE - offset);
6896 		kaddr = page_address(page);
6897 		memcpy(kaddr + offset, src, cur);
6898 
6899 		src += cur;
6900 		len -= cur;
6901 		offset = 0;
6902 		i++;
6903 	}
6904 }
6905 
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)6906 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6907 		unsigned long len)
6908 {
6909 	size_t cur;
6910 	size_t offset;
6911 	struct page *page;
6912 	char *kaddr;
6913 	unsigned long i = get_eb_page_index(start);
6914 
6915 	if (check_eb_range(eb, start, len))
6916 		return;
6917 
6918 	offset = get_eb_offset_in_page(eb, start);
6919 
6920 	while (len > 0) {
6921 		page = eb->pages[i];
6922 		assert_eb_page_uptodate(eb, page);
6923 
6924 		cur = min(len, PAGE_SIZE - offset);
6925 		kaddr = page_address(page);
6926 		memset(kaddr + offset, 0, cur);
6927 
6928 		len -= cur;
6929 		offset = 0;
6930 		i++;
6931 	}
6932 }
6933 
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)6934 void copy_extent_buffer_full(const struct extent_buffer *dst,
6935 			     const struct extent_buffer *src)
6936 {
6937 	int i;
6938 	int num_pages;
6939 
6940 	ASSERT(dst->len == src->len);
6941 
6942 	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6943 		num_pages = num_extent_pages(dst);
6944 		for (i = 0; i < num_pages; i++)
6945 			copy_page(page_address(dst->pages[i]),
6946 				  page_address(src->pages[i]));
6947 	} else {
6948 		size_t src_offset = get_eb_offset_in_page(src, 0);
6949 		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6950 
6951 		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6952 		memcpy(page_address(dst->pages[0]) + dst_offset,
6953 		       page_address(src->pages[0]) + src_offset,
6954 		       src->len);
6955 	}
6956 }
6957 
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6958 void copy_extent_buffer(const struct extent_buffer *dst,
6959 			const struct extent_buffer *src,
6960 			unsigned long dst_offset, unsigned long src_offset,
6961 			unsigned long len)
6962 {
6963 	u64 dst_len = dst->len;
6964 	size_t cur;
6965 	size_t offset;
6966 	struct page *page;
6967 	char *kaddr;
6968 	unsigned long i = get_eb_page_index(dst_offset);
6969 
6970 	if (check_eb_range(dst, dst_offset, len) ||
6971 	    check_eb_range(src, src_offset, len))
6972 		return;
6973 
6974 	WARN_ON(src->len != dst_len);
6975 
6976 	offset = get_eb_offset_in_page(dst, dst_offset);
6977 
6978 	while (len > 0) {
6979 		page = dst->pages[i];
6980 		assert_eb_page_uptodate(dst, page);
6981 
6982 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6983 
6984 		kaddr = page_address(page);
6985 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6986 
6987 		src_offset += cur;
6988 		len -= cur;
6989 		offset = 0;
6990 		i++;
6991 	}
6992 }
6993 
6994 /*
6995  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6996  * given bit number
6997  * @eb: the extent buffer
6998  * @start: offset of the bitmap item in the extent buffer
6999  * @nr: bit number
7000  * @page_index: return index of the page in the extent buffer that contains the
7001  * given bit number
7002  * @page_offset: return offset into the page given by page_index
7003  *
7004  * This helper hides the ugliness of finding the byte in an extent buffer which
7005  * contains a given bit.
7006  */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)7007 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7008 				    unsigned long start, unsigned long nr,
7009 				    unsigned long *page_index,
7010 				    size_t *page_offset)
7011 {
7012 	size_t byte_offset = BIT_BYTE(nr);
7013 	size_t offset;
7014 
7015 	/*
7016 	 * The byte we want is the offset of the extent buffer + the offset of
7017 	 * the bitmap item in the extent buffer + the offset of the byte in the
7018 	 * bitmap item.
7019 	 */
7020 	offset = start + offset_in_page(eb->start) + byte_offset;
7021 
7022 	*page_index = offset >> PAGE_SHIFT;
7023 	*page_offset = offset_in_page(offset);
7024 }
7025 
7026 /**
7027  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7028  * @eb: the extent buffer
7029  * @start: offset of the bitmap item in the extent buffer
7030  * @nr: bit number to test
7031  */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)7032 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7033 			   unsigned long nr)
7034 {
7035 	u8 *kaddr;
7036 	struct page *page;
7037 	unsigned long i;
7038 	size_t offset;
7039 
7040 	eb_bitmap_offset(eb, start, nr, &i, &offset);
7041 	page = eb->pages[i];
7042 	assert_eb_page_uptodate(eb, page);
7043 	kaddr = page_address(page);
7044 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7045 }
7046 
7047 /**
7048  * extent_buffer_bitmap_set - set an area of a bitmap
7049  * @eb: the extent buffer
7050  * @start: offset of the bitmap item in the extent buffer
7051  * @pos: bit number of the first bit
7052  * @len: number of bits to set
7053  */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)7054 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7055 			      unsigned long pos, unsigned long len)
7056 {
7057 	u8 *kaddr;
7058 	struct page *page;
7059 	unsigned long i;
7060 	size_t offset;
7061 	const unsigned int size = pos + len;
7062 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7063 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7064 
7065 	eb_bitmap_offset(eb, start, pos, &i, &offset);
7066 	page = eb->pages[i];
7067 	assert_eb_page_uptodate(eb, page);
7068 	kaddr = page_address(page);
7069 
7070 	while (len >= bits_to_set) {
7071 		kaddr[offset] |= mask_to_set;
7072 		len -= bits_to_set;
7073 		bits_to_set = BITS_PER_BYTE;
7074 		mask_to_set = ~0;
7075 		if (++offset >= PAGE_SIZE && len > 0) {
7076 			offset = 0;
7077 			page = eb->pages[++i];
7078 			assert_eb_page_uptodate(eb, page);
7079 			kaddr = page_address(page);
7080 		}
7081 	}
7082 	if (len) {
7083 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7084 		kaddr[offset] |= mask_to_set;
7085 	}
7086 }
7087 
7088 
7089 /**
7090  * extent_buffer_bitmap_clear - clear an area of a bitmap
7091  * @eb: the extent buffer
7092  * @start: offset of the bitmap item in the extent buffer
7093  * @pos: bit number of the first bit
7094  * @len: number of bits to clear
7095  */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)7096 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7097 				unsigned long start, unsigned long pos,
7098 				unsigned long len)
7099 {
7100 	u8 *kaddr;
7101 	struct page *page;
7102 	unsigned long i;
7103 	size_t offset;
7104 	const unsigned int size = pos + len;
7105 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7106 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7107 
7108 	eb_bitmap_offset(eb, start, pos, &i, &offset);
7109 	page = eb->pages[i];
7110 	assert_eb_page_uptodate(eb, page);
7111 	kaddr = page_address(page);
7112 
7113 	while (len >= bits_to_clear) {
7114 		kaddr[offset] &= ~mask_to_clear;
7115 		len -= bits_to_clear;
7116 		bits_to_clear = BITS_PER_BYTE;
7117 		mask_to_clear = ~0;
7118 		if (++offset >= PAGE_SIZE && len > 0) {
7119 			offset = 0;
7120 			page = eb->pages[++i];
7121 			assert_eb_page_uptodate(eb, page);
7122 			kaddr = page_address(page);
7123 		}
7124 	}
7125 	if (len) {
7126 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7127 		kaddr[offset] &= ~mask_to_clear;
7128 	}
7129 }
7130 
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)7131 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7132 {
7133 	unsigned long distance = (src > dst) ? src - dst : dst - src;
7134 	return distance < len;
7135 }
7136 
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)7137 static void copy_pages(struct page *dst_page, struct page *src_page,
7138 		       unsigned long dst_off, unsigned long src_off,
7139 		       unsigned long len)
7140 {
7141 	char *dst_kaddr = page_address(dst_page);
7142 	char *src_kaddr;
7143 	int must_memmove = 0;
7144 
7145 	if (dst_page != src_page) {
7146 		src_kaddr = page_address(src_page);
7147 	} else {
7148 		src_kaddr = dst_kaddr;
7149 		if (areas_overlap(src_off, dst_off, len))
7150 			must_memmove = 1;
7151 	}
7152 
7153 	if (must_memmove)
7154 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7155 	else
7156 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7157 }
7158 
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)7159 void memcpy_extent_buffer(const struct extent_buffer *dst,
7160 			  unsigned long dst_offset, unsigned long src_offset,
7161 			  unsigned long len)
7162 {
7163 	size_t cur;
7164 	size_t dst_off_in_page;
7165 	size_t src_off_in_page;
7166 	unsigned long dst_i;
7167 	unsigned long src_i;
7168 
7169 	if (check_eb_range(dst, dst_offset, len) ||
7170 	    check_eb_range(dst, src_offset, len))
7171 		return;
7172 
7173 	while (len > 0) {
7174 		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7175 		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7176 
7177 		dst_i = get_eb_page_index(dst_offset);
7178 		src_i = get_eb_page_index(src_offset);
7179 
7180 		cur = min(len, (unsigned long)(PAGE_SIZE -
7181 					       src_off_in_page));
7182 		cur = min_t(unsigned long, cur,
7183 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7184 
7185 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7186 			   dst_off_in_page, src_off_in_page, cur);
7187 
7188 		src_offset += cur;
7189 		dst_offset += cur;
7190 		len -= cur;
7191 	}
7192 }
7193 
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)7194 void memmove_extent_buffer(const struct extent_buffer *dst,
7195 			   unsigned long dst_offset, unsigned long src_offset,
7196 			   unsigned long len)
7197 {
7198 	size_t cur;
7199 	size_t dst_off_in_page;
7200 	size_t src_off_in_page;
7201 	unsigned long dst_end = dst_offset + len - 1;
7202 	unsigned long src_end = src_offset + len - 1;
7203 	unsigned long dst_i;
7204 	unsigned long src_i;
7205 
7206 	if (check_eb_range(dst, dst_offset, len) ||
7207 	    check_eb_range(dst, src_offset, len))
7208 		return;
7209 	if (dst_offset < src_offset) {
7210 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7211 		return;
7212 	}
7213 	while (len > 0) {
7214 		dst_i = get_eb_page_index(dst_end);
7215 		src_i = get_eb_page_index(src_end);
7216 
7217 		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7218 		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7219 
7220 		cur = min_t(unsigned long, len, src_off_in_page + 1);
7221 		cur = min(cur, dst_off_in_page + 1);
7222 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7223 			   dst_off_in_page - cur + 1,
7224 			   src_off_in_page - cur + 1, cur);
7225 
7226 		dst_end -= cur;
7227 		src_end -= cur;
7228 		len -= cur;
7229 	}
7230 }
7231 
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)7232 static struct extent_buffer *get_next_extent_buffer(
7233 		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7234 {
7235 	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7236 	struct extent_buffer *found = NULL;
7237 	u64 page_start = page_offset(page);
7238 	int ret;
7239 	int i;
7240 
7241 	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7242 	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7243 	lockdep_assert_held(&fs_info->buffer_lock);
7244 
7245 	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7246 			bytenr >> fs_info->sectorsize_bits,
7247 			PAGE_SIZE / fs_info->nodesize);
7248 	for (i = 0; i < ret; i++) {
7249 		/* Already beyond page end */
7250 		if (gang[i]->start >= page_start + PAGE_SIZE)
7251 			break;
7252 		/* Found one */
7253 		if (gang[i]->start >= bytenr) {
7254 			found = gang[i];
7255 			break;
7256 		}
7257 	}
7258 	return found;
7259 }
7260 
try_release_subpage_extent_buffer(struct page * page)7261 static int try_release_subpage_extent_buffer(struct page *page)
7262 {
7263 	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7264 	u64 cur = page_offset(page);
7265 	const u64 end = page_offset(page) + PAGE_SIZE;
7266 	int ret;
7267 
7268 	while (cur < end) {
7269 		struct extent_buffer *eb = NULL;
7270 
7271 		/*
7272 		 * Unlike try_release_extent_buffer() which uses page->private
7273 		 * to grab buffer, for subpage case we rely on radix tree, thus
7274 		 * we need to ensure radix tree consistency.
7275 		 *
7276 		 * We also want an atomic snapshot of the radix tree, thus go
7277 		 * with spinlock rather than RCU.
7278 		 */
7279 		spin_lock(&fs_info->buffer_lock);
7280 		eb = get_next_extent_buffer(fs_info, page, cur);
7281 		if (!eb) {
7282 			/* No more eb in the page range after or at cur */
7283 			spin_unlock(&fs_info->buffer_lock);
7284 			break;
7285 		}
7286 		cur = eb->start + eb->len;
7287 
7288 		/*
7289 		 * The same as try_release_extent_buffer(), to ensure the eb
7290 		 * won't disappear out from under us.
7291 		 */
7292 		spin_lock(&eb->refs_lock);
7293 		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7294 			spin_unlock(&eb->refs_lock);
7295 			spin_unlock(&fs_info->buffer_lock);
7296 			break;
7297 		}
7298 		spin_unlock(&fs_info->buffer_lock);
7299 
7300 		/*
7301 		 * If tree ref isn't set then we know the ref on this eb is a
7302 		 * real ref, so just return, this eb will likely be freed soon
7303 		 * anyway.
7304 		 */
7305 		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7306 			spin_unlock(&eb->refs_lock);
7307 			break;
7308 		}
7309 
7310 		/*
7311 		 * Here we don't care about the return value, we will always
7312 		 * check the page private at the end.  And
7313 		 * release_extent_buffer() will release the refs_lock.
7314 		 */
7315 		release_extent_buffer(eb);
7316 	}
7317 	/*
7318 	 * Finally to check if we have cleared page private, as if we have
7319 	 * released all ebs in the page, the page private should be cleared now.
7320 	 */
7321 	spin_lock(&page->mapping->private_lock);
7322 	if (!PagePrivate(page))
7323 		ret = 1;
7324 	else
7325 		ret = 0;
7326 	spin_unlock(&page->mapping->private_lock);
7327 	return ret;
7328 
7329 }
7330 
try_release_extent_buffer(struct page * page)7331 int try_release_extent_buffer(struct page *page)
7332 {
7333 	struct extent_buffer *eb;
7334 
7335 	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7336 		return try_release_subpage_extent_buffer(page);
7337 
7338 	/*
7339 	 * We need to make sure nobody is changing page->private, as we rely on
7340 	 * page->private as the pointer to extent buffer.
7341 	 */
7342 	spin_lock(&page->mapping->private_lock);
7343 	if (!PagePrivate(page)) {
7344 		spin_unlock(&page->mapping->private_lock);
7345 		return 1;
7346 	}
7347 
7348 	eb = (struct extent_buffer *)page->private;
7349 	BUG_ON(!eb);
7350 
7351 	/*
7352 	 * This is a little awful but should be ok, we need to make sure that
7353 	 * the eb doesn't disappear out from under us while we're looking at
7354 	 * this page.
7355 	 */
7356 	spin_lock(&eb->refs_lock);
7357 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7358 		spin_unlock(&eb->refs_lock);
7359 		spin_unlock(&page->mapping->private_lock);
7360 		return 0;
7361 	}
7362 	spin_unlock(&page->mapping->private_lock);
7363 
7364 	/*
7365 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
7366 	 * so just return, this page will likely be freed soon anyway.
7367 	 */
7368 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7369 		spin_unlock(&eb->refs_lock);
7370 		return 0;
7371 	}
7372 
7373 	return release_extent_buffer(eb);
7374 }
7375 
7376 /*
7377  * btrfs_readahead_tree_block - attempt to readahead a child block
7378  * @fs_info:	the fs_info
7379  * @bytenr:	bytenr to read
7380  * @owner_root: objectid of the root that owns this eb
7381  * @gen:	generation for the uptodate check, can be 0
7382  * @level:	level for the eb
7383  *
7384  * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7385  * normal uptodate check of the eb, without checking the generation.  If we have
7386  * to read the block we will not block on anything.
7387  */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)7388 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7389 				u64 bytenr, u64 owner_root, u64 gen, int level)
7390 {
7391 	struct extent_buffer *eb;
7392 	int ret;
7393 
7394 	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7395 	if (IS_ERR(eb))
7396 		return;
7397 
7398 	if (btrfs_buffer_uptodate(eb, gen, 1)) {
7399 		free_extent_buffer(eb);
7400 		return;
7401 	}
7402 
7403 	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7404 	if (ret < 0)
7405 		free_extent_buffer_stale(eb);
7406 	else
7407 		free_extent_buffer(eb);
7408 }
7409 
7410 /*
7411  * btrfs_readahead_node_child - readahead a node's child block
7412  * @node:	parent node we're reading from
7413  * @slot:	slot in the parent node for the child we want to read
7414  *
7415  * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7416  * the slot in the node provided.
7417  */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)7418 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7419 {
7420 	btrfs_readahead_tree_block(node->fs_info,
7421 				   btrfs_node_blockptr(node, slot),
7422 				   btrfs_header_owner(node),
7423 				   btrfs_node_ptr_generation(node, slot),
7424 				   btrfs_header_level(node) - 1);
7425 }
7426