• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 #include "dm-io-tracker.h"
12 
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/init.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/rwsem.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 
23 #define DM_MSG_PREFIX "cache"
24 
25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 	"A percentage of time allocated for copying to and/or from cache");
27 
28 /*----------------------------------------------------------------*/
29 
30 /*
31  * Glossary:
32  *
33  * oblock: index of an origin block
34  * cblock: index of a cache block
35  * promotion: movement of a block from origin to cache
36  * demotion: movement of a block from cache to origin
37  * migration: movement of a block between the origin and cache device,
38  *	      either direction
39  */
40 
41 /*----------------------------------------------------------------*/
42 
43 /*
44  * Represents a chunk of future work.  'input' allows continuations to pass
45  * values between themselves, typically error values.
46  */
47 struct continuation {
48 	struct work_struct ws;
49 	blk_status_t input;
50 };
51 
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))52 static inline void init_continuation(struct continuation *k,
53 				     void (*fn)(struct work_struct *))
54 {
55 	INIT_WORK(&k->ws, fn);
56 	k->input = 0;
57 }
58 
queue_continuation(struct workqueue_struct * wq,struct continuation * k)59 static inline void queue_continuation(struct workqueue_struct *wq,
60 				      struct continuation *k)
61 {
62 	queue_work(wq, &k->ws);
63 }
64 
65 /*----------------------------------------------------------------*/
66 
67 /*
68  * The batcher collects together pieces of work that need a particular
69  * operation to occur before they can proceed (typically a commit).
70  */
71 struct batcher {
72 	/*
73 	 * The operation that everyone is waiting for.
74 	 */
75 	blk_status_t (*commit_op)(void *context);
76 	void *commit_context;
77 
78 	/*
79 	 * This is how bios should be issued once the commit op is complete
80 	 * (accounted_request).
81 	 */
82 	void (*issue_op)(struct bio *bio, void *context);
83 	void *issue_context;
84 
85 	/*
86 	 * Queued work gets put on here after commit.
87 	 */
88 	struct workqueue_struct *wq;
89 
90 	spinlock_t lock;
91 	struct list_head work_items;
92 	struct bio_list bios;
93 	struct work_struct commit_work;
94 
95 	bool commit_scheduled;
96 };
97 
__commit(struct work_struct * _ws)98 static void __commit(struct work_struct *_ws)
99 {
100 	struct batcher *b = container_of(_ws, struct batcher, commit_work);
101 	blk_status_t r;
102 	struct list_head work_items;
103 	struct work_struct *ws, *tmp;
104 	struct continuation *k;
105 	struct bio *bio;
106 	struct bio_list bios;
107 
108 	INIT_LIST_HEAD(&work_items);
109 	bio_list_init(&bios);
110 
111 	/*
112 	 * We have to grab these before the commit_op to avoid a race
113 	 * condition.
114 	 */
115 	spin_lock_irq(&b->lock);
116 	list_splice_init(&b->work_items, &work_items);
117 	bio_list_merge(&bios, &b->bios);
118 	bio_list_init(&b->bios);
119 	b->commit_scheduled = false;
120 	spin_unlock_irq(&b->lock);
121 
122 	r = b->commit_op(b->commit_context);
123 
124 	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 		k = container_of(ws, struct continuation, ws);
126 		k->input = r;
127 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 		queue_work(b->wq, ws);
129 	}
130 
131 	while ((bio = bio_list_pop(&bios))) {
132 		if (r) {
133 			bio->bi_status = r;
134 			bio_endio(bio);
135 		} else
136 			b->issue_op(bio, b->issue_context);
137 	}
138 }
139 
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)140 static void batcher_init(struct batcher *b,
141 			 blk_status_t (*commit_op)(void *),
142 			 void *commit_context,
143 			 void (*issue_op)(struct bio *bio, void *),
144 			 void *issue_context,
145 			 struct workqueue_struct *wq)
146 {
147 	b->commit_op = commit_op;
148 	b->commit_context = commit_context;
149 	b->issue_op = issue_op;
150 	b->issue_context = issue_context;
151 	b->wq = wq;
152 
153 	spin_lock_init(&b->lock);
154 	INIT_LIST_HEAD(&b->work_items);
155 	bio_list_init(&b->bios);
156 	INIT_WORK(&b->commit_work, __commit);
157 	b->commit_scheduled = false;
158 }
159 
async_commit(struct batcher * b)160 static void async_commit(struct batcher *b)
161 {
162 	queue_work(b->wq, &b->commit_work);
163 }
164 
continue_after_commit(struct batcher * b,struct continuation * k)165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167 	bool commit_scheduled;
168 
169 	spin_lock_irq(&b->lock);
170 	commit_scheduled = b->commit_scheduled;
171 	list_add_tail(&k->ws.entry, &b->work_items);
172 	spin_unlock_irq(&b->lock);
173 
174 	if (commit_scheduled)
175 		async_commit(b);
176 }
177 
178 /*
179  * Bios are errored if commit failed.
180  */
issue_after_commit(struct batcher * b,struct bio * bio)181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183        bool commit_scheduled;
184 
185        spin_lock_irq(&b->lock);
186        commit_scheduled = b->commit_scheduled;
187        bio_list_add(&b->bios, bio);
188        spin_unlock_irq(&b->lock);
189 
190        if (commit_scheduled)
191 	       async_commit(b);
192 }
193 
194 /*
195  * Call this if some urgent work is waiting for the commit to complete.
196  */
schedule_commit(struct batcher * b)197 static void schedule_commit(struct batcher *b)
198 {
199 	bool immediate;
200 
201 	spin_lock_irq(&b->lock);
202 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 	b->commit_scheduled = true;
204 	spin_unlock_irq(&b->lock);
205 
206 	if (immediate)
207 		async_commit(b);
208 }
209 
210 /*
211  * There are a couple of places where we let a bio run, but want to do some
212  * work before calling its endio function.  We do this by temporarily
213  * changing the endio fn.
214  */
215 struct dm_hook_info {
216 	bio_end_io_t *bi_end_io;
217 };
218 
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 			bio_end_io_t *bi_end_io, void *bi_private)
221 {
222 	h->bi_end_io = bio->bi_end_io;
223 
224 	bio->bi_end_io = bi_end_io;
225 	bio->bi_private = bi_private;
226 }
227 
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230 	bio->bi_end_io = h->bi_end_io;
231 }
232 
233 /*----------------------------------------------------------------*/
234 
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238 
239 /*
240  * The block size of the device holding cache data must be
241  * between 32KB and 1GB.
242  */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245 
246 enum cache_metadata_mode {
247 	CM_WRITE,		/* metadata may be changed */
248 	CM_READ_ONLY,		/* metadata may not be changed */
249 	CM_FAIL
250 };
251 
252 enum cache_io_mode {
253 	/*
254 	 * Data is written to cached blocks only.  These blocks are marked
255 	 * dirty.  If you lose the cache device you will lose data.
256 	 * Potential performance increase for both reads and writes.
257 	 */
258 	CM_IO_WRITEBACK,
259 
260 	/*
261 	 * Data is written to both cache and origin.  Blocks are never
262 	 * dirty.  Potential performance benfit for reads only.
263 	 */
264 	CM_IO_WRITETHROUGH,
265 
266 	/*
267 	 * A degraded mode useful for various cache coherency situations
268 	 * (eg, rolling back snapshots).  Reads and writes always go to the
269 	 * origin.  If a write goes to a cached oblock, then the cache
270 	 * block is invalidated.
271 	 */
272 	CM_IO_PASSTHROUGH
273 };
274 
275 struct cache_features {
276 	enum cache_metadata_mode mode;
277 	enum cache_io_mode io_mode;
278 	unsigned metadata_version;
279 	bool discard_passdown:1;
280 };
281 
282 struct cache_stats {
283 	atomic_t read_hit;
284 	atomic_t read_miss;
285 	atomic_t write_hit;
286 	atomic_t write_miss;
287 	atomic_t demotion;
288 	atomic_t promotion;
289 	atomic_t writeback;
290 	atomic_t copies_avoided;
291 	atomic_t cache_cell_clash;
292 	atomic_t commit_count;
293 	atomic_t discard_count;
294 };
295 
296 struct cache {
297 	struct dm_target *ti;
298 	spinlock_t lock;
299 
300 	/*
301 	 * Fields for converting from sectors to blocks.
302 	 */
303 	int sectors_per_block_shift;
304 	sector_t sectors_per_block;
305 
306 	struct dm_cache_metadata *cmd;
307 
308 	/*
309 	 * Metadata is written to this device.
310 	 */
311 	struct dm_dev *metadata_dev;
312 
313 	/*
314 	 * The slower of the two data devices.  Typically a spindle.
315 	 */
316 	struct dm_dev *origin_dev;
317 
318 	/*
319 	 * The faster of the two data devices.  Typically an SSD.
320 	 */
321 	struct dm_dev *cache_dev;
322 
323 	/*
324 	 * Size of the origin device in _complete_ blocks and native sectors.
325 	 */
326 	dm_oblock_t origin_blocks;
327 	sector_t origin_sectors;
328 
329 	/*
330 	 * Size of the cache device in blocks.
331 	 */
332 	dm_cblock_t cache_size;
333 
334 	/*
335 	 * Invalidation fields.
336 	 */
337 	spinlock_t invalidation_lock;
338 	struct list_head invalidation_requests;
339 
340 	sector_t migration_threshold;
341 	wait_queue_head_t migration_wait;
342 	atomic_t nr_allocated_migrations;
343 
344 	/*
345 	 * The number of in flight migrations that are performing
346 	 * background io. eg, promotion, writeback.
347 	 */
348 	atomic_t nr_io_migrations;
349 
350 	struct bio_list deferred_bios;
351 
352 	struct rw_semaphore quiesce_lock;
353 
354 	/*
355 	 * origin_blocks entries, discarded if set.
356 	 */
357 	dm_dblock_t discard_nr_blocks;
358 	unsigned long *discard_bitset;
359 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
360 
361 	/*
362 	 * Rather than reconstructing the table line for the status we just
363 	 * save it and regurgitate.
364 	 */
365 	unsigned nr_ctr_args;
366 	const char **ctr_args;
367 
368 	struct dm_kcopyd_client *copier;
369 	struct work_struct deferred_bio_worker;
370 	struct work_struct migration_worker;
371 	struct workqueue_struct *wq;
372 	struct delayed_work waker;
373 	struct dm_bio_prison_v2 *prison;
374 
375 	/*
376 	 * cache_size entries, dirty if set
377 	 */
378 	unsigned long *dirty_bitset;
379 	atomic_t nr_dirty;
380 
381 	unsigned policy_nr_args;
382 	struct dm_cache_policy *policy;
383 
384 	/*
385 	 * Cache features such as write-through.
386 	 */
387 	struct cache_features features;
388 
389 	struct cache_stats stats;
390 
391 	bool need_tick_bio:1;
392 	bool sized:1;
393 	bool invalidate:1;
394 	bool commit_requested:1;
395 	bool loaded_mappings:1;
396 	bool loaded_discards:1;
397 
398 	struct rw_semaphore background_work_lock;
399 
400 	struct batcher committer;
401 	struct work_struct commit_ws;
402 
403 	struct dm_io_tracker tracker;
404 
405 	mempool_t migration_pool;
406 
407 	struct bio_set bs;
408 };
409 
410 struct per_bio_data {
411 	bool tick:1;
412 	unsigned req_nr:2;
413 	struct dm_bio_prison_cell_v2 *cell;
414 	struct dm_hook_info hook_info;
415 	sector_t len;
416 };
417 
418 struct dm_cache_migration {
419 	struct continuation k;
420 	struct cache *cache;
421 
422 	struct policy_work *op;
423 	struct bio *overwrite_bio;
424 	struct dm_bio_prison_cell_v2 *cell;
425 
426 	dm_cblock_t invalidate_cblock;
427 	dm_oblock_t invalidate_oblock;
428 };
429 
430 /*----------------------------------------------------------------*/
431 
writethrough_mode(struct cache * cache)432 static bool writethrough_mode(struct cache *cache)
433 {
434 	return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436 
writeback_mode(struct cache * cache)437 static bool writeback_mode(struct cache *cache)
438 {
439 	return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441 
passthrough_mode(struct cache * cache)442 static inline bool passthrough_mode(struct cache *cache)
443 {
444 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446 
447 /*----------------------------------------------------------------*/
448 
wake_deferred_bio_worker(struct cache * cache)449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451 	queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453 
wake_migration_worker(struct cache * cache)454 static void wake_migration_worker(struct cache *cache)
455 {
456 	if (passthrough_mode(cache))
457 		return;
458 
459 	queue_work(cache->wq, &cache->migration_worker);
460 }
461 
462 /*----------------------------------------------------------------*/
463 
alloc_prison_cell(struct cache * cache)464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468 
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471 	dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473 
alloc_migration(struct cache * cache)474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476 	struct dm_cache_migration *mg;
477 
478 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479 
480 	memset(mg, 0, sizeof(*mg));
481 
482 	mg->cache = cache;
483 	atomic_inc(&cache->nr_allocated_migrations);
484 
485 	return mg;
486 }
487 
free_migration(struct dm_cache_migration * mg)488 static void free_migration(struct dm_cache_migration *mg)
489 {
490 	struct cache *cache = mg->cache;
491 
492 	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 		wake_up(&cache->migration_wait);
494 
495 	mempool_free(mg, &cache->migration_pool);
496 }
497 
498 /*----------------------------------------------------------------*/
499 
oblock_succ(dm_oblock_t b)500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502 	return to_oblock(from_oblock(b) + 1ull);
503 }
504 
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507 	key->virtual = 0;
508 	key->dev = 0;
509 	key->block_begin = from_oblock(begin);
510 	key->block_end = from_oblock(end);
511 }
512 
513 /*
514  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
515  * level 1 which prevents *both* READs and WRITEs.
516  */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519 
lock_level(struct bio * bio)520 static unsigned lock_level(struct bio *bio)
521 {
522 	return bio_data_dir(bio) == WRITE ?
523 		WRITE_LOCK_LEVEL :
524 		READ_WRITE_LOCK_LEVEL;
525 }
526 
527 /*----------------------------------------------------------------
528  * Per bio data
529  *--------------------------------------------------------------*/
530 
get_per_bio_data(struct bio * bio)531 static struct per_bio_data *get_per_bio_data(struct bio *bio)
532 {
533 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534 	BUG_ON(!pb);
535 	return pb;
536 }
537 
init_per_bio_data(struct bio * bio)538 static struct per_bio_data *init_per_bio_data(struct bio *bio)
539 {
540 	struct per_bio_data *pb = get_per_bio_data(bio);
541 
542 	pb->tick = false;
543 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 	pb->cell = NULL;
545 	pb->len = 0;
546 
547 	return pb;
548 }
549 
550 /*----------------------------------------------------------------*/
551 
defer_bio(struct cache * cache,struct bio * bio)552 static void defer_bio(struct cache *cache, struct bio *bio)
553 {
554 	spin_lock_irq(&cache->lock);
555 	bio_list_add(&cache->deferred_bios, bio);
556 	spin_unlock_irq(&cache->lock);
557 
558 	wake_deferred_bio_worker(cache);
559 }
560 
defer_bios(struct cache * cache,struct bio_list * bios)561 static void defer_bios(struct cache *cache, struct bio_list *bios)
562 {
563 	spin_lock_irq(&cache->lock);
564 	bio_list_merge(&cache->deferred_bios, bios);
565 	bio_list_init(bios);
566 	spin_unlock_irq(&cache->lock);
567 
568 	wake_deferred_bio_worker(cache);
569 }
570 
571 /*----------------------------------------------------------------*/
572 
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574 {
575 	bool r;
576 	struct per_bio_data *pb;
577 	struct dm_cell_key_v2 key;
578 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580 
581 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582 
583 	build_key(oblock, end, &key);
584 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 	if (!r) {
586 		/*
587 		 * Failed to get the lock.
588 		 */
589 		free_prison_cell(cache, cell_prealloc);
590 		return r;
591 	}
592 
593 	if (cell != cell_prealloc)
594 		free_prison_cell(cache, cell_prealloc);
595 
596 	pb = get_per_bio_data(bio);
597 	pb->cell = cell;
598 
599 	return r;
600 }
601 
602 /*----------------------------------------------------------------*/
603 
is_dirty(struct cache * cache,dm_cblock_t b)604 static bool is_dirty(struct cache *cache, dm_cblock_t b)
605 {
606 	return test_bit(from_cblock(b), cache->dirty_bitset);
607 }
608 
set_dirty(struct cache * cache,dm_cblock_t cblock)609 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610 {
611 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612 		atomic_inc(&cache->nr_dirty);
613 		policy_set_dirty(cache->policy, cblock);
614 	}
615 }
616 
617 /*
618  * These two are called when setting after migrations to force the policy
619  * and dirty bitset to be in sync.
620  */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622 {
623 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 		atomic_inc(&cache->nr_dirty);
625 	policy_set_dirty(cache->policy, cblock);
626 }
627 
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629 {
630 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631 		if (atomic_dec_return(&cache->nr_dirty) == 0)
632 			dm_table_event(cache->ti->table);
633 	}
634 
635 	policy_clear_dirty(cache->policy, cblock);
636 }
637 
638 /*----------------------------------------------------------------*/
639 
block_size_is_power_of_two(struct cache * cache)640 static bool block_size_is_power_of_two(struct cache *cache)
641 {
642 	return cache->sectors_per_block_shift >= 0;
643 }
644 
block_div(dm_block_t b,uint32_t n)645 static dm_block_t block_div(dm_block_t b, uint32_t n)
646 {
647 	do_div(b, n);
648 
649 	return b;
650 }
651 
oblocks_per_dblock(struct cache * cache)652 static dm_block_t oblocks_per_dblock(struct cache *cache)
653 {
654 	dm_block_t oblocks = cache->discard_block_size;
655 
656 	if (block_size_is_power_of_two(cache))
657 		oblocks >>= cache->sectors_per_block_shift;
658 	else
659 		oblocks = block_div(oblocks, cache->sectors_per_block);
660 
661 	return oblocks;
662 }
663 
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665 {
666 	return to_dblock(block_div(from_oblock(oblock),
667 				   oblocks_per_dblock(cache)));
668 }
669 
set_discard(struct cache * cache,dm_dblock_t b)670 static void set_discard(struct cache *cache, dm_dblock_t b)
671 {
672 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673 	atomic_inc(&cache->stats.discard_count);
674 
675 	spin_lock_irq(&cache->lock);
676 	set_bit(from_dblock(b), cache->discard_bitset);
677 	spin_unlock_irq(&cache->lock);
678 }
679 
clear_discard(struct cache * cache,dm_dblock_t b)680 static void clear_discard(struct cache *cache, dm_dblock_t b)
681 {
682 	spin_lock_irq(&cache->lock);
683 	clear_bit(from_dblock(b), cache->discard_bitset);
684 	spin_unlock_irq(&cache->lock);
685 }
686 
is_discarded(struct cache * cache,dm_dblock_t b)687 static bool is_discarded(struct cache *cache, dm_dblock_t b)
688 {
689 	int r;
690 	spin_lock_irq(&cache->lock);
691 	r = test_bit(from_dblock(b), cache->discard_bitset);
692 	spin_unlock_irq(&cache->lock);
693 
694 	return r;
695 }
696 
is_discarded_oblock(struct cache * cache,dm_oblock_t b)697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698 {
699 	int r;
700 	spin_lock_irq(&cache->lock);
701 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 		     cache->discard_bitset);
703 	spin_unlock_irq(&cache->lock);
704 
705 	return r;
706 }
707 
708 /*----------------------------------------------------------------
709  * Remapping
710  *--------------------------------------------------------------*/
remap_to_origin(struct cache * cache,struct bio * bio)711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 	bio_set_dev(bio, cache->origin_dev->bdev);
714 }
715 
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 			   dm_cblock_t cblock)
718 {
719 	sector_t bi_sector = bio->bi_iter.bi_sector;
720 	sector_t block = from_cblock(cblock);
721 
722 	bio_set_dev(bio, cache->cache_dev->bdev);
723 	if (!block_size_is_power_of_two(cache))
724 		bio->bi_iter.bi_sector =
725 			(block * cache->sectors_per_block) +
726 			sector_div(bi_sector, cache->sectors_per_block);
727 	else
728 		bio->bi_iter.bi_sector =
729 			(block << cache->sectors_per_block_shift) |
730 			(bi_sector & (cache->sectors_per_block - 1));
731 }
732 
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 	struct per_bio_data *pb;
736 
737 	spin_lock_irq(&cache->lock);
738 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739 	    bio_op(bio) != REQ_OP_DISCARD) {
740 		pb = get_per_bio_data(bio);
741 		pb->tick = true;
742 		cache->need_tick_bio = false;
743 	}
744 	spin_unlock_irq(&cache->lock);
745 }
746 
__remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock,bool bio_has_pbd)747 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 					    dm_oblock_t oblock, bool bio_has_pbd)
749 {
750 	if (bio_has_pbd)
751 		check_if_tick_bio_needed(cache, bio);
752 	remap_to_origin(cache, bio);
753 	if (bio_data_dir(bio) == WRITE)
754 		clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756 
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)757 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
758 					  dm_oblock_t oblock)
759 {
760 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
761 	__remap_to_origin_clear_discard(cache, bio, oblock, true);
762 }
763 
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)764 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
765 				 dm_oblock_t oblock, dm_cblock_t cblock)
766 {
767 	check_if_tick_bio_needed(cache, bio);
768 	remap_to_cache(cache, bio, cblock);
769 	if (bio_data_dir(bio) == WRITE) {
770 		set_dirty(cache, cblock);
771 		clear_discard(cache, oblock_to_dblock(cache, oblock));
772 	}
773 }
774 
get_bio_block(struct cache * cache,struct bio * bio)775 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
776 {
777 	sector_t block_nr = bio->bi_iter.bi_sector;
778 
779 	if (!block_size_is_power_of_two(cache))
780 		(void) sector_div(block_nr, cache->sectors_per_block);
781 	else
782 		block_nr >>= cache->sectors_per_block_shift;
783 
784 	return to_oblock(block_nr);
785 }
786 
accountable_bio(struct cache * cache,struct bio * bio)787 static bool accountable_bio(struct cache *cache, struct bio *bio)
788 {
789 	return bio_op(bio) != REQ_OP_DISCARD;
790 }
791 
accounted_begin(struct cache * cache,struct bio * bio)792 static void accounted_begin(struct cache *cache, struct bio *bio)
793 {
794 	struct per_bio_data *pb;
795 
796 	if (accountable_bio(cache, bio)) {
797 		pb = get_per_bio_data(bio);
798 		pb->len = bio_sectors(bio);
799 		dm_iot_io_begin(&cache->tracker, pb->len);
800 	}
801 }
802 
accounted_complete(struct cache * cache,struct bio * bio)803 static void accounted_complete(struct cache *cache, struct bio *bio)
804 {
805 	struct per_bio_data *pb = get_per_bio_data(bio);
806 
807 	dm_iot_io_end(&cache->tracker, pb->len);
808 }
809 
accounted_request(struct cache * cache,struct bio * bio)810 static void accounted_request(struct cache *cache, struct bio *bio)
811 {
812 	accounted_begin(cache, bio);
813 	submit_bio_noacct(bio);
814 }
815 
issue_op(struct bio * bio,void * context)816 static void issue_op(struct bio *bio, void *context)
817 {
818 	struct cache *cache = context;
819 	accounted_request(cache, bio);
820 }
821 
822 /*
823  * When running in writethrough mode we need to send writes to clean blocks
824  * to both the cache and origin devices.  Clone the bio and send them in parallel.
825  */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)826 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
827 				      dm_oblock_t oblock, dm_cblock_t cblock)
828 {
829 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
830 
831 	BUG_ON(!origin_bio);
832 
833 	bio_chain(origin_bio, bio);
834 	/*
835 	 * Passing false to __remap_to_origin_clear_discard() skips
836 	 * all code that might use per_bio_data (since clone doesn't have it)
837 	 */
838 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
839 	submit_bio(origin_bio);
840 
841 	remap_to_cache(cache, bio, cblock);
842 }
843 
844 /*----------------------------------------------------------------
845  * Failure modes
846  *--------------------------------------------------------------*/
get_cache_mode(struct cache * cache)847 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
848 {
849 	return cache->features.mode;
850 }
851 
cache_device_name(struct cache * cache)852 static const char *cache_device_name(struct cache *cache)
853 {
854 	return dm_table_device_name(cache->ti->table);
855 }
856 
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)857 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
858 {
859 	const char *descs[] = {
860 		"write",
861 		"read-only",
862 		"fail"
863 	};
864 
865 	dm_table_event(cache->ti->table);
866 	DMINFO("%s: switching cache to %s mode",
867 	       cache_device_name(cache), descs[(int)mode]);
868 }
869 
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)870 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
871 {
872 	bool needs_check;
873 	enum cache_metadata_mode old_mode = get_cache_mode(cache);
874 
875 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
876 		DMERR("%s: unable to read needs_check flag, setting failure mode.",
877 		      cache_device_name(cache));
878 		new_mode = CM_FAIL;
879 	}
880 
881 	if (new_mode == CM_WRITE && needs_check) {
882 		DMERR("%s: unable to switch cache to write mode until repaired.",
883 		      cache_device_name(cache));
884 		if (old_mode != new_mode)
885 			new_mode = old_mode;
886 		else
887 			new_mode = CM_READ_ONLY;
888 	}
889 
890 	/* Never move out of fail mode */
891 	if (old_mode == CM_FAIL)
892 		new_mode = CM_FAIL;
893 
894 	switch (new_mode) {
895 	case CM_FAIL:
896 	case CM_READ_ONLY:
897 		dm_cache_metadata_set_read_only(cache->cmd);
898 		break;
899 
900 	case CM_WRITE:
901 		dm_cache_metadata_set_read_write(cache->cmd);
902 		break;
903 	}
904 
905 	cache->features.mode = new_mode;
906 
907 	if (new_mode != old_mode)
908 		notify_mode_switch(cache, new_mode);
909 }
910 
abort_transaction(struct cache * cache)911 static void abort_transaction(struct cache *cache)
912 {
913 	const char *dev_name = cache_device_name(cache);
914 
915 	if (get_cache_mode(cache) >= CM_READ_ONLY)
916 		return;
917 
918 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
919 	if (dm_cache_metadata_abort(cache->cmd)) {
920 		DMERR("%s: failed to abort metadata transaction", dev_name);
921 		set_cache_mode(cache, CM_FAIL);
922 	}
923 
924 	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
925 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
926 		set_cache_mode(cache, CM_FAIL);
927 	}
928 }
929 
metadata_operation_failed(struct cache * cache,const char * op,int r)930 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
931 {
932 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
933 		    cache_device_name(cache), op, r);
934 	abort_transaction(cache);
935 	set_cache_mode(cache, CM_READ_ONLY);
936 }
937 
938 /*----------------------------------------------------------------*/
939 
load_stats(struct cache * cache)940 static void load_stats(struct cache *cache)
941 {
942 	struct dm_cache_statistics stats;
943 
944 	dm_cache_metadata_get_stats(cache->cmd, &stats);
945 	atomic_set(&cache->stats.read_hit, stats.read_hits);
946 	atomic_set(&cache->stats.read_miss, stats.read_misses);
947 	atomic_set(&cache->stats.write_hit, stats.write_hits);
948 	atomic_set(&cache->stats.write_miss, stats.write_misses);
949 }
950 
save_stats(struct cache * cache)951 static void save_stats(struct cache *cache)
952 {
953 	struct dm_cache_statistics stats;
954 
955 	if (get_cache_mode(cache) >= CM_READ_ONLY)
956 		return;
957 
958 	stats.read_hits = atomic_read(&cache->stats.read_hit);
959 	stats.read_misses = atomic_read(&cache->stats.read_miss);
960 	stats.write_hits = atomic_read(&cache->stats.write_hit);
961 	stats.write_misses = atomic_read(&cache->stats.write_miss);
962 
963 	dm_cache_metadata_set_stats(cache->cmd, &stats);
964 }
965 
update_stats(struct cache_stats * stats,enum policy_operation op)966 static void update_stats(struct cache_stats *stats, enum policy_operation op)
967 {
968 	switch (op) {
969 	case POLICY_PROMOTE:
970 		atomic_inc(&stats->promotion);
971 		break;
972 
973 	case POLICY_DEMOTE:
974 		atomic_inc(&stats->demotion);
975 		break;
976 
977 	case POLICY_WRITEBACK:
978 		atomic_inc(&stats->writeback);
979 		break;
980 	}
981 }
982 
983 /*----------------------------------------------------------------
984  * Migration processing
985  *
986  * Migration covers moving data from the origin device to the cache, or
987  * vice versa.
988  *--------------------------------------------------------------*/
989 
inc_io_migrations(struct cache * cache)990 static void inc_io_migrations(struct cache *cache)
991 {
992 	atomic_inc(&cache->nr_io_migrations);
993 }
994 
dec_io_migrations(struct cache * cache)995 static void dec_io_migrations(struct cache *cache)
996 {
997 	atomic_dec(&cache->nr_io_migrations);
998 }
999 
discard_or_flush(struct bio * bio)1000 static bool discard_or_flush(struct bio *bio)
1001 {
1002 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1003 }
1004 
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)1005 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1006 				     dm_dblock_t *b, dm_dblock_t *e)
1007 {
1008 	sector_t sb = bio->bi_iter.bi_sector;
1009 	sector_t se = bio_end_sector(bio);
1010 
1011 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1012 
1013 	if (se - sb < cache->discard_block_size)
1014 		*e = *b;
1015 	else
1016 		*e = to_dblock(block_div(se, cache->discard_block_size));
1017 }
1018 
1019 /*----------------------------------------------------------------*/
1020 
prevent_background_work(struct cache * cache)1021 static void prevent_background_work(struct cache *cache)
1022 {
1023 	lockdep_off();
1024 	down_write(&cache->background_work_lock);
1025 	lockdep_on();
1026 }
1027 
allow_background_work(struct cache * cache)1028 static void allow_background_work(struct cache *cache)
1029 {
1030 	lockdep_off();
1031 	up_write(&cache->background_work_lock);
1032 	lockdep_on();
1033 }
1034 
background_work_begin(struct cache * cache)1035 static bool background_work_begin(struct cache *cache)
1036 {
1037 	bool r;
1038 
1039 	lockdep_off();
1040 	r = down_read_trylock(&cache->background_work_lock);
1041 	lockdep_on();
1042 
1043 	return r;
1044 }
1045 
background_work_end(struct cache * cache)1046 static void background_work_end(struct cache *cache)
1047 {
1048 	lockdep_off();
1049 	up_read(&cache->background_work_lock);
1050 	lockdep_on();
1051 }
1052 
1053 /*----------------------------------------------------------------*/
1054 
bio_writes_complete_block(struct cache * cache,struct bio * bio)1055 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1056 {
1057 	return (bio_data_dir(bio) == WRITE) &&
1058 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1059 }
1060 
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1061 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1062 {
1063 	return writeback_mode(cache) &&
1064 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1065 }
1066 
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1067 static void quiesce(struct dm_cache_migration *mg,
1068 		    void (*continuation)(struct work_struct *))
1069 {
1070 	init_continuation(&mg->k, continuation);
1071 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1072 }
1073 
ws_to_mg(struct work_struct * ws)1074 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1075 {
1076 	struct continuation *k = container_of(ws, struct continuation, ws);
1077 	return container_of(k, struct dm_cache_migration, k);
1078 }
1079 
copy_complete(int read_err,unsigned long write_err,void * context)1080 static void copy_complete(int read_err, unsigned long write_err, void *context)
1081 {
1082 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1083 
1084 	if (read_err || write_err)
1085 		mg->k.input = BLK_STS_IOERR;
1086 
1087 	queue_continuation(mg->cache->wq, &mg->k);
1088 }
1089 
copy(struct dm_cache_migration * mg,bool promote)1090 static void copy(struct dm_cache_migration *mg, bool promote)
1091 {
1092 	struct dm_io_region o_region, c_region;
1093 	struct cache *cache = mg->cache;
1094 
1095 	o_region.bdev = cache->origin_dev->bdev;
1096 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1097 	o_region.count = cache->sectors_per_block;
1098 
1099 	c_region.bdev = cache->cache_dev->bdev;
1100 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1101 	c_region.count = cache->sectors_per_block;
1102 
1103 	if (promote)
1104 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1105 	else
1106 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1107 }
1108 
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1109 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1110 {
1111 	struct per_bio_data *pb = get_per_bio_data(bio);
1112 
1113 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1114 		free_prison_cell(cache, pb->cell);
1115 	pb->cell = NULL;
1116 }
1117 
overwrite_endio(struct bio * bio)1118 static void overwrite_endio(struct bio *bio)
1119 {
1120 	struct dm_cache_migration *mg = bio->bi_private;
1121 	struct cache *cache = mg->cache;
1122 	struct per_bio_data *pb = get_per_bio_data(bio);
1123 
1124 	dm_unhook_bio(&pb->hook_info, bio);
1125 
1126 	if (bio->bi_status)
1127 		mg->k.input = bio->bi_status;
1128 
1129 	queue_continuation(cache->wq, &mg->k);
1130 }
1131 
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1132 static void overwrite(struct dm_cache_migration *mg,
1133 		      void (*continuation)(struct work_struct *))
1134 {
1135 	struct bio *bio = mg->overwrite_bio;
1136 	struct per_bio_data *pb = get_per_bio_data(bio);
1137 
1138 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1139 
1140 	/*
1141 	 * The overwrite bio is part of the copy operation, as such it does
1142 	 * not set/clear discard or dirty flags.
1143 	 */
1144 	if (mg->op->op == POLICY_PROMOTE)
1145 		remap_to_cache(mg->cache, bio, mg->op->cblock);
1146 	else
1147 		remap_to_origin(mg->cache, bio);
1148 
1149 	init_continuation(&mg->k, continuation);
1150 	accounted_request(mg->cache, bio);
1151 }
1152 
1153 /*
1154  * Migration steps:
1155  *
1156  * 1) exclusive lock preventing WRITEs
1157  * 2) quiesce
1158  * 3) copy or issue overwrite bio
1159  * 4) upgrade to exclusive lock preventing READs and WRITEs
1160  * 5) quiesce
1161  * 6) update metadata and commit
1162  * 7) unlock
1163  */
mg_complete(struct dm_cache_migration * mg,bool success)1164 static void mg_complete(struct dm_cache_migration *mg, bool success)
1165 {
1166 	struct bio_list bios;
1167 	struct cache *cache = mg->cache;
1168 	struct policy_work *op = mg->op;
1169 	dm_cblock_t cblock = op->cblock;
1170 
1171 	if (success)
1172 		update_stats(&cache->stats, op->op);
1173 
1174 	switch (op->op) {
1175 	case POLICY_PROMOTE:
1176 		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1177 		policy_complete_background_work(cache->policy, op, success);
1178 
1179 		if (mg->overwrite_bio) {
1180 			if (success)
1181 				force_set_dirty(cache, cblock);
1182 			else if (mg->k.input)
1183 				mg->overwrite_bio->bi_status = mg->k.input;
1184 			else
1185 				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1186 			bio_endio(mg->overwrite_bio);
1187 		} else {
1188 			if (success)
1189 				force_clear_dirty(cache, cblock);
1190 			dec_io_migrations(cache);
1191 		}
1192 		break;
1193 
1194 	case POLICY_DEMOTE:
1195 		/*
1196 		 * We clear dirty here to update the nr_dirty counter.
1197 		 */
1198 		if (success)
1199 			force_clear_dirty(cache, cblock);
1200 		policy_complete_background_work(cache->policy, op, success);
1201 		dec_io_migrations(cache);
1202 		break;
1203 
1204 	case POLICY_WRITEBACK:
1205 		if (success)
1206 			force_clear_dirty(cache, cblock);
1207 		policy_complete_background_work(cache->policy, op, success);
1208 		dec_io_migrations(cache);
1209 		break;
1210 	}
1211 
1212 	bio_list_init(&bios);
1213 	if (mg->cell) {
1214 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1215 			free_prison_cell(cache, mg->cell);
1216 	}
1217 
1218 	free_migration(mg);
1219 	defer_bios(cache, &bios);
1220 	wake_migration_worker(cache);
1221 
1222 	background_work_end(cache);
1223 }
1224 
mg_success(struct work_struct * ws)1225 static void mg_success(struct work_struct *ws)
1226 {
1227 	struct dm_cache_migration *mg = ws_to_mg(ws);
1228 	mg_complete(mg, mg->k.input == 0);
1229 }
1230 
mg_update_metadata(struct work_struct * ws)1231 static void mg_update_metadata(struct work_struct *ws)
1232 {
1233 	int r;
1234 	struct dm_cache_migration *mg = ws_to_mg(ws);
1235 	struct cache *cache = mg->cache;
1236 	struct policy_work *op = mg->op;
1237 
1238 	switch (op->op) {
1239 	case POLICY_PROMOTE:
1240 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1241 		if (r) {
1242 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1243 				    cache_device_name(cache));
1244 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1245 
1246 			mg_complete(mg, false);
1247 			return;
1248 		}
1249 		mg_complete(mg, true);
1250 		break;
1251 
1252 	case POLICY_DEMOTE:
1253 		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1254 		if (r) {
1255 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1256 				    cache_device_name(cache));
1257 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1258 
1259 			mg_complete(mg, false);
1260 			return;
1261 		}
1262 
1263 		/*
1264 		 * It would be nice if we only had to commit when a REQ_FLUSH
1265 		 * comes through.  But there's one scenario that we have to
1266 		 * look out for:
1267 		 *
1268 		 * - vblock x in a cache block
1269 		 * - domotion occurs
1270 		 * - cache block gets reallocated and over written
1271 		 * - crash
1272 		 *
1273 		 * When we recover, because there was no commit the cache will
1274 		 * rollback to having the data for vblock x in the cache block.
1275 		 * But the cache block has since been overwritten, so it'll end
1276 		 * up pointing to data that was never in 'x' during the history
1277 		 * of the device.
1278 		 *
1279 		 * To avoid this issue we require a commit as part of the
1280 		 * demotion operation.
1281 		 */
1282 		init_continuation(&mg->k, mg_success);
1283 		continue_after_commit(&cache->committer, &mg->k);
1284 		schedule_commit(&cache->committer);
1285 		break;
1286 
1287 	case POLICY_WRITEBACK:
1288 		mg_complete(mg, true);
1289 		break;
1290 	}
1291 }
1292 
mg_update_metadata_after_copy(struct work_struct * ws)1293 static void mg_update_metadata_after_copy(struct work_struct *ws)
1294 {
1295 	struct dm_cache_migration *mg = ws_to_mg(ws);
1296 
1297 	/*
1298 	 * Did the copy succeed?
1299 	 */
1300 	if (mg->k.input)
1301 		mg_complete(mg, false);
1302 	else
1303 		mg_update_metadata(ws);
1304 }
1305 
mg_upgrade_lock(struct work_struct * ws)1306 static void mg_upgrade_lock(struct work_struct *ws)
1307 {
1308 	int r;
1309 	struct dm_cache_migration *mg = ws_to_mg(ws);
1310 
1311 	/*
1312 	 * Did the copy succeed?
1313 	 */
1314 	if (mg->k.input)
1315 		mg_complete(mg, false);
1316 
1317 	else {
1318 		/*
1319 		 * Now we want the lock to prevent both reads and writes.
1320 		 */
1321 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1322 					    READ_WRITE_LOCK_LEVEL);
1323 		if (r < 0)
1324 			mg_complete(mg, false);
1325 
1326 		else if (r)
1327 			quiesce(mg, mg_update_metadata);
1328 
1329 		else
1330 			mg_update_metadata(ws);
1331 	}
1332 }
1333 
mg_full_copy(struct work_struct * ws)1334 static void mg_full_copy(struct work_struct *ws)
1335 {
1336 	struct dm_cache_migration *mg = ws_to_mg(ws);
1337 	struct cache *cache = mg->cache;
1338 	struct policy_work *op = mg->op;
1339 	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1340 
1341 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1342 	    is_discarded_oblock(cache, op->oblock)) {
1343 		mg_upgrade_lock(ws);
1344 		return;
1345 	}
1346 
1347 	init_continuation(&mg->k, mg_upgrade_lock);
1348 	copy(mg, is_policy_promote);
1349 }
1350 
mg_copy(struct work_struct * ws)1351 static void mg_copy(struct work_struct *ws)
1352 {
1353 	struct dm_cache_migration *mg = ws_to_mg(ws);
1354 
1355 	if (mg->overwrite_bio) {
1356 		/*
1357 		 * No exclusive lock was held when we last checked if the bio
1358 		 * was optimisable.  So we have to check again in case things
1359 		 * have changed (eg, the block may no longer be discarded).
1360 		 */
1361 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1362 			/*
1363 			 * Fallback to a real full copy after doing some tidying up.
1364 			 */
1365 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1366 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1367 			mg->overwrite_bio = NULL;
1368 			inc_io_migrations(mg->cache);
1369 			mg_full_copy(ws);
1370 			return;
1371 		}
1372 
1373 		/*
1374 		 * It's safe to do this here, even though it's new data
1375 		 * because all IO has been locked out of the block.
1376 		 *
1377 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1378 		 * so _not_ using mg_upgrade_lock() as continutation.
1379 		 */
1380 		overwrite(mg, mg_update_metadata_after_copy);
1381 
1382 	} else
1383 		mg_full_copy(ws);
1384 }
1385 
mg_lock_writes(struct dm_cache_migration * mg)1386 static int mg_lock_writes(struct dm_cache_migration *mg)
1387 {
1388 	int r;
1389 	struct dm_cell_key_v2 key;
1390 	struct cache *cache = mg->cache;
1391 	struct dm_bio_prison_cell_v2 *prealloc;
1392 
1393 	prealloc = alloc_prison_cell(cache);
1394 
1395 	/*
1396 	 * Prevent writes to the block, but allow reads to continue.
1397 	 * Unless we're using an overwrite bio, in which case we lock
1398 	 * everything.
1399 	 */
1400 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1401 	r = dm_cell_lock_v2(cache->prison, &key,
1402 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1403 			    prealloc, &mg->cell);
1404 	if (r < 0) {
1405 		free_prison_cell(cache, prealloc);
1406 		mg_complete(mg, false);
1407 		return r;
1408 	}
1409 
1410 	if (mg->cell != prealloc)
1411 		free_prison_cell(cache, prealloc);
1412 
1413 	if (r == 0)
1414 		mg_copy(&mg->k.ws);
1415 	else
1416 		quiesce(mg, mg_copy);
1417 
1418 	return 0;
1419 }
1420 
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1421 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1422 {
1423 	struct dm_cache_migration *mg;
1424 
1425 	if (!background_work_begin(cache)) {
1426 		policy_complete_background_work(cache->policy, op, false);
1427 		return -EPERM;
1428 	}
1429 
1430 	mg = alloc_migration(cache);
1431 
1432 	mg->op = op;
1433 	mg->overwrite_bio = bio;
1434 
1435 	if (!bio)
1436 		inc_io_migrations(cache);
1437 
1438 	return mg_lock_writes(mg);
1439 }
1440 
1441 /*----------------------------------------------------------------
1442  * invalidation processing
1443  *--------------------------------------------------------------*/
1444 
invalidate_complete(struct dm_cache_migration * mg,bool success)1445 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1446 {
1447 	struct bio_list bios;
1448 	struct cache *cache = mg->cache;
1449 
1450 	bio_list_init(&bios);
1451 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1452 		free_prison_cell(cache, mg->cell);
1453 
1454 	if (!success && mg->overwrite_bio)
1455 		bio_io_error(mg->overwrite_bio);
1456 
1457 	free_migration(mg);
1458 	defer_bios(cache, &bios);
1459 
1460 	background_work_end(cache);
1461 }
1462 
invalidate_completed(struct work_struct * ws)1463 static void invalidate_completed(struct work_struct *ws)
1464 {
1465 	struct dm_cache_migration *mg = ws_to_mg(ws);
1466 	invalidate_complete(mg, !mg->k.input);
1467 }
1468 
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1469 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1470 {
1471 	int r = policy_invalidate_mapping(cache->policy, cblock);
1472 	if (!r) {
1473 		r = dm_cache_remove_mapping(cache->cmd, cblock);
1474 		if (r) {
1475 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1476 				    cache_device_name(cache));
1477 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1478 		}
1479 
1480 	} else if (r == -ENODATA) {
1481 		/*
1482 		 * Harmless, already unmapped.
1483 		 */
1484 		r = 0;
1485 
1486 	} else
1487 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1488 
1489 	return r;
1490 }
1491 
invalidate_remove(struct work_struct * ws)1492 static void invalidate_remove(struct work_struct *ws)
1493 {
1494 	int r;
1495 	struct dm_cache_migration *mg = ws_to_mg(ws);
1496 	struct cache *cache = mg->cache;
1497 
1498 	r = invalidate_cblock(cache, mg->invalidate_cblock);
1499 	if (r) {
1500 		invalidate_complete(mg, false);
1501 		return;
1502 	}
1503 
1504 	init_continuation(&mg->k, invalidate_completed);
1505 	continue_after_commit(&cache->committer, &mg->k);
1506 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1507 	mg->overwrite_bio = NULL;
1508 	schedule_commit(&cache->committer);
1509 }
1510 
invalidate_lock(struct dm_cache_migration * mg)1511 static int invalidate_lock(struct dm_cache_migration *mg)
1512 {
1513 	int r;
1514 	struct dm_cell_key_v2 key;
1515 	struct cache *cache = mg->cache;
1516 	struct dm_bio_prison_cell_v2 *prealloc;
1517 
1518 	prealloc = alloc_prison_cell(cache);
1519 
1520 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1521 	r = dm_cell_lock_v2(cache->prison, &key,
1522 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1523 	if (r < 0) {
1524 		free_prison_cell(cache, prealloc);
1525 		invalidate_complete(mg, false);
1526 		return r;
1527 	}
1528 
1529 	if (mg->cell != prealloc)
1530 		free_prison_cell(cache, prealloc);
1531 
1532 	if (r)
1533 		quiesce(mg, invalidate_remove);
1534 
1535 	else {
1536 		/*
1537 		 * We can't call invalidate_remove() directly here because we
1538 		 * might still be in request context.
1539 		 */
1540 		init_continuation(&mg->k, invalidate_remove);
1541 		queue_work(cache->wq, &mg->k.ws);
1542 	}
1543 
1544 	return 0;
1545 }
1546 
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1547 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1548 			    dm_oblock_t oblock, struct bio *bio)
1549 {
1550 	struct dm_cache_migration *mg;
1551 
1552 	if (!background_work_begin(cache))
1553 		return -EPERM;
1554 
1555 	mg = alloc_migration(cache);
1556 
1557 	mg->overwrite_bio = bio;
1558 	mg->invalidate_cblock = cblock;
1559 	mg->invalidate_oblock = oblock;
1560 
1561 	return invalidate_lock(mg);
1562 }
1563 
1564 /*----------------------------------------------------------------
1565  * bio processing
1566  *--------------------------------------------------------------*/
1567 
1568 enum busy {
1569 	IDLE,
1570 	BUSY
1571 };
1572 
spare_migration_bandwidth(struct cache * cache)1573 static enum busy spare_migration_bandwidth(struct cache *cache)
1574 {
1575 	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1576 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1577 		cache->sectors_per_block;
1578 
1579 	if (idle && current_volume <= cache->migration_threshold)
1580 		return IDLE;
1581 	else
1582 		return BUSY;
1583 }
1584 
inc_hit_counter(struct cache * cache,struct bio * bio)1585 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1586 {
1587 	atomic_inc(bio_data_dir(bio) == READ ?
1588 		   &cache->stats.read_hit : &cache->stats.write_hit);
1589 }
1590 
inc_miss_counter(struct cache * cache,struct bio * bio)1591 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1592 {
1593 	atomic_inc(bio_data_dir(bio) == READ ?
1594 		   &cache->stats.read_miss : &cache->stats.write_miss);
1595 }
1596 
1597 /*----------------------------------------------------------------*/
1598 
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1599 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1600 		   bool *commit_needed)
1601 {
1602 	int r, data_dir;
1603 	bool rb, background_queued;
1604 	dm_cblock_t cblock;
1605 
1606 	*commit_needed = false;
1607 
1608 	rb = bio_detain_shared(cache, block, bio);
1609 	if (!rb) {
1610 		/*
1611 		 * An exclusive lock is held for this block, so we have to
1612 		 * wait.  We set the commit_needed flag so the current
1613 		 * transaction will be committed asap, allowing this lock
1614 		 * to be dropped.
1615 		 */
1616 		*commit_needed = true;
1617 		return DM_MAPIO_SUBMITTED;
1618 	}
1619 
1620 	data_dir = bio_data_dir(bio);
1621 
1622 	if (optimisable_bio(cache, bio, block)) {
1623 		struct policy_work *op = NULL;
1624 
1625 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1626 		if (unlikely(r && r != -ENOENT)) {
1627 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1628 				    cache_device_name(cache), r);
1629 			bio_io_error(bio);
1630 			return DM_MAPIO_SUBMITTED;
1631 		}
1632 
1633 		if (r == -ENOENT && op) {
1634 			bio_drop_shared_lock(cache, bio);
1635 			BUG_ON(op->op != POLICY_PROMOTE);
1636 			mg_start(cache, op, bio);
1637 			return DM_MAPIO_SUBMITTED;
1638 		}
1639 	} else {
1640 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1641 		if (unlikely(r && r != -ENOENT)) {
1642 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1643 				    cache_device_name(cache), r);
1644 			bio_io_error(bio);
1645 			return DM_MAPIO_SUBMITTED;
1646 		}
1647 
1648 		if (background_queued)
1649 			wake_migration_worker(cache);
1650 	}
1651 
1652 	if (r == -ENOENT) {
1653 		struct per_bio_data *pb = get_per_bio_data(bio);
1654 
1655 		/*
1656 		 * Miss.
1657 		 */
1658 		inc_miss_counter(cache, bio);
1659 		if (pb->req_nr == 0) {
1660 			accounted_begin(cache, bio);
1661 			remap_to_origin_clear_discard(cache, bio, block);
1662 		} else {
1663 			/*
1664 			 * This is a duplicate writethrough io that is no
1665 			 * longer needed because the block has been demoted.
1666 			 */
1667 			bio_endio(bio);
1668 			return DM_MAPIO_SUBMITTED;
1669 		}
1670 	} else {
1671 		/*
1672 		 * Hit.
1673 		 */
1674 		inc_hit_counter(cache, bio);
1675 
1676 		/*
1677 		 * Passthrough always maps to the origin, invalidating any
1678 		 * cache blocks that are written to.
1679 		 */
1680 		if (passthrough_mode(cache)) {
1681 			if (bio_data_dir(bio) == WRITE) {
1682 				bio_drop_shared_lock(cache, bio);
1683 				atomic_inc(&cache->stats.demotion);
1684 				invalidate_start(cache, cblock, block, bio);
1685 			} else
1686 				remap_to_origin_clear_discard(cache, bio, block);
1687 		} else {
1688 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1689 			    !is_dirty(cache, cblock)) {
1690 				remap_to_origin_and_cache(cache, bio, block, cblock);
1691 				accounted_begin(cache, bio);
1692 			} else
1693 				remap_to_cache_dirty(cache, bio, block, cblock);
1694 		}
1695 	}
1696 
1697 	/*
1698 	 * dm core turns FUA requests into a separate payload and FLUSH req.
1699 	 */
1700 	if (bio->bi_opf & REQ_FUA) {
1701 		/*
1702 		 * issue_after_commit will call accounted_begin a second time.  So
1703 		 * we call accounted_complete() to avoid double accounting.
1704 		 */
1705 		accounted_complete(cache, bio);
1706 		issue_after_commit(&cache->committer, bio);
1707 		*commit_needed = true;
1708 		return DM_MAPIO_SUBMITTED;
1709 	}
1710 
1711 	return DM_MAPIO_REMAPPED;
1712 }
1713 
process_bio(struct cache * cache,struct bio * bio)1714 static bool process_bio(struct cache *cache, struct bio *bio)
1715 {
1716 	bool commit_needed;
1717 
1718 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1719 		submit_bio_noacct(bio);
1720 
1721 	return commit_needed;
1722 }
1723 
1724 /*
1725  * A non-zero return indicates read_only or fail_io mode.
1726  */
commit(struct cache * cache,bool clean_shutdown)1727 static int commit(struct cache *cache, bool clean_shutdown)
1728 {
1729 	int r;
1730 
1731 	if (get_cache_mode(cache) >= CM_READ_ONLY)
1732 		return -EINVAL;
1733 
1734 	atomic_inc(&cache->stats.commit_count);
1735 	r = dm_cache_commit(cache->cmd, clean_shutdown);
1736 	if (r)
1737 		metadata_operation_failed(cache, "dm_cache_commit", r);
1738 
1739 	return r;
1740 }
1741 
1742 /*
1743  * Used by the batcher.
1744  */
commit_op(void * context)1745 static blk_status_t commit_op(void *context)
1746 {
1747 	struct cache *cache = context;
1748 
1749 	if (dm_cache_changed_this_transaction(cache->cmd))
1750 		return errno_to_blk_status(commit(cache, false));
1751 
1752 	return 0;
1753 }
1754 
1755 /*----------------------------------------------------------------*/
1756 
process_flush_bio(struct cache * cache,struct bio * bio)1757 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1758 {
1759 	struct per_bio_data *pb = get_per_bio_data(bio);
1760 
1761 	if (!pb->req_nr)
1762 		remap_to_origin(cache, bio);
1763 	else
1764 		remap_to_cache(cache, bio, 0);
1765 
1766 	issue_after_commit(&cache->committer, bio);
1767 	return true;
1768 }
1769 
process_discard_bio(struct cache * cache,struct bio * bio)1770 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1771 {
1772 	dm_dblock_t b, e;
1773 
1774 	// FIXME: do we need to lock the region?  Or can we just assume the
1775 	// user wont be so foolish as to issue discard concurrently with
1776 	// other IO?
1777 	calc_discard_block_range(cache, bio, &b, &e);
1778 	while (b != e) {
1779 		set_discard(cache, b);
1780 		b = to_dblock(from_dblock(b) + 1);
1781 	}
1782 
1783 	if (cache->features.discard_passdown) {
1784 		remap_to_origin(cache, bio);
1785 		submit_bio_noacct(bio);
1786 	} else
1787 		bio_endio(bio);
1788 
1789 	return false;
1790 }
1791 
process_deferred_bios(struct work_struct * ws)1792 static void process_deferred_bios(struct work_struct *ws)
1793 {
1794 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1795 
1796 	bool commit_needed = false;
1797 	struct bio_list bios;
1798 	struct bio *bio;
1799 
1800 	bio_list_init(&bios);
1801 
1802 	spin_lock_irq(&cache->lock);
1803 	bio_list_merge(&bios, &cache->deferred_bios);
1804 	bio_list_init(&cache->deferred_bios);
1805 	spin_unlock_irq(&cache->lock);
1806 
1807 	while ((bio = bio_list_pop(&bios))) {
1808 		if (bio->bi_opf & REQ_PREFLUSH)
1809 			commit_needed = process_flush_bio(cache, bio) || commit_needed;
1810 
1811 		else if (bio_op(bio) == REQ_OP_DISCARD)
1812 			commit_needed = process_discard_bio(cache, bio) || commit_needed;
1813 
1814 		else
1815 			commit_needed = process_bio(cache, bio) || commit_needed;
1816 		cond_resched();
1817 	}
1818 
1819 	if (commit_needed)
1820 		schedule_commit(&cache->committer);
1821 }
1822 
1823 /*----------------------------------------------------------------
1824  * Main worker loop
1825  *--------------------------------------------------------------*/
1826 
requeue_deferred_bios(struct cache * cache)1827 static void requeue_deferred_bios(struct cache *cache)
1828 {
1829 	struct bio *bio;
1830 	struct bio_list bios;
1831 
1832 	bio_list_init(&bios);
1833 	bio_list_merge(&bios, &cache->deferred_bios);
1834 	bio_list_init(&cache->deferred_bios);
1835 
1836 	while ((bio = bio_list_pop(&bios))) {
1837 		bio->bi_status = BLK_STS_DM_REQUEUE;
1838 		bio_endio(bio);
1839 		cond_resched();
1840 	}
1841 }
1842 
1843 /*
1844  * We want to commit periodically so that not too much
1845  * unwritten metadata builds up.
1846  */
do_waker(struct work_struct * ws)1847 static void do_waker(struct work_struct *ws)
1848 {
1849 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1850 
1851 	policy_tick(cache->policy, true);
1852 	wake_migration_worker(cache);
1853 	schedule_commit(&cache->committer);
1854 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1855 }
1856 
check_migrations(struct work_struct * ws)1857 static void check_migrations(struct work_struct *ws)
1858 {
1859 	int r;
1860 	struct policy_work *op;
1861 	struct cache *cache = container_of(ws, struct cache, migration_worker);
1862 	enum busy b;
1863 
1864 	for (;;) {
1865 		b = spare_migration_bandwidth(cache);
1866 
1867 		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1868 		if (r == -ENODATA)
1869 			break;
1870 
1871 		if (r) {
1872 			DMERR_LIMIT("%s: policy_background_work failed",
1873 				    cache_device_name(cache));
1874 			break;
1875 		}
1876 
1877 		r = mg_start(cache, op, NULL);
1878 		if (r)
1879 			break;
1880 
1881 		cond_resched();
1882 	}
1883 }
1884 
1885 /*----------------------------------------------------------------
1886  * Target methods
1887  *--------------------------------------------------------------*/
1888 
1889 /*
1890  * This function gets called on the error paths of the constructor, so we
1891  * have to cope with a partially initialised struct.
1892  */
destroy(struct cache * cache)1893 static void destroy(struct cache *cache)
1894 {
1895 	unsigned i;
1896 
1897 	mempool_exit(&cache->migration_pool);
1898 
1899 	if (cache->prison)
1900 		dm_bio_prison_destroy_v2(cache->prison);
1901 
1902 	cancel_delayed_work_sync(&cache->waker);
1903 	if (cache->wq)
1904 		destroy_workqueue(cache->wq);
1905 
1906 	if (cache->dirty_bitset)
1907 		free_bitset(cache->dirty_bitset);
1908 
1909 	if (cache->discard_bitset)
1910 		free_bitset(cache->discard_bitset);
1911 
1912 	if (cache->copier)
1913 		dm_kcopyd_client_destroy(cache->copier);
1914 
1915 	if (cache->cmd)
1916 		dm_cache_metadata_close(cache->cmd);
1917 
1918 	if (cache->metadata_dev)
1919 		dm_put_device(cache->ti, cache->metadata_dev);
1920 
1921 	if (cache->origin_dev)
1922 		dm_put_device(cache->ti, cache->origin_dev);
1923 
1924 	if (cache->cache_dev)
1925 		dm_put_device(cache->ti, cache->cache_dev);
1926 
1927 	if (cache->policy)
1928 		dm_cache_policy_destroy(cache->policy);
1929 
1930 	for (i = 0; i < cache->nr_ctr_args ; i++)
1931 		kfree(cache->ctr_args[i]);
1932 	kfree(cache->ctr_args);
1933 
1934 	bioset_exit(&cache->bs);
1935 
1936 	kfree(cache);
1937 }
1938 
cache_dtr(struct dm_target * ti)1939 static void cache_dtr(struct dm_target *ti)
1940 {
1941 	struct cache *cache = ti->private;
1942 
1943 	destroy(cache);
1944 }
1945 
get_dev_size(struct dm_dev * dev)1946 static sector_t get_dev_size(struct dm_dev *dev)
1947 {
1948 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1949 }
1950 
1951 /*----------------------------------------------------------------*/
1952 
1953 /*
1954  * Construct a cache device mapping.
1955  *
1956  * cache <metadata dev> <cache dev> <origin dev> <block size>
1957  *       <#feature args> [<feature arg>]*
1958  *       <policy> <#policy args> [<policy arg>]*
1959  *
1960  * metadata dev    : fast device holding the persistent metadata
1961  * cache dev	   : fast device holding cached data blocks
1962  * origin dev	   : slow device holding original data blocks
1963  * block size	   : cache unit size in sectors
1964  *
1965  * #feature args   : number of feature arguments passed
1966  * feature args    : writethrough.  (The default is writeback.)
1967  *
1968  * policy	   : the replacement policy to use
1969  * #policy args    : an even number of policy arguments corresponding
1970  *		     to key/value pairs passed to the policy
1971  * policy args	   : key/value pairs passed to the policy
1972  *		     E.g. 'sequential_threshold 1024'
1973  *		     See cache-policies.txt for details.
1974  *
1975  * Optional feature arguments are:
1976  *   writethrough  : write through caching that prohibits cache block
1977  *		     content from being different from origin block content.
1978  *		     Without this argument, the default behaviour is to write
1979  *		     back cache block contents later for performance reasons,
1980  *		     so they may differ from the corresponding origin blocks.
1981  */
1982 struct cache_args {
1983 	struct dm_target *ti;
1984 
1985 	struct dm_dev *metadata_dev;
1986 
1987 	struct dm_dev *cache_dev;
1988 	sector_t cache_sectors;
1989 
1990 	struct dm_dev *origin_dev;
1991 	sector_t origin_sectors;
1992 
1993 	uint32_t block_size;
1994 
1995 	const char *policy_name;
1996 	int policy_argc;
1997 	const char **policy_argv;
1998 
1999 	struct cache_features features;
2000 };
2001 
destroy_cache_args(struct cache_args * ca)2002 static void destroy_cache_args(struct cache_args *ca)
2003 {
2004 	if (ca->metadata_dev)
2005 		dm_put_device(ca->ti, ca->metadata_dev);
2006 
2007 	if (ca->cache_dev)
2008 		dm_put_device(ca->ti, ca->cache_dev);
2009 
2010 	if (ca->origin_dev)
2011 		dm_put_device(ca->ti, ca->origin_dev);
2012 
2013 	kfree(ca);
2014 }
2015 
at_least_one_arg(struct dm_arg_set * as,char ** error)2016 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2017 {
2018 	if (!as->argc) {
2019 		*error = "Insufficient args";
2020 		return false;
2021 	}
2022 
2023 	return true;
2024 }
2025 
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2026 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2027 			      char **error)
2028 {
2029 	int r;
2030 	sector_t metadata_dev_size;
2031 	char b[BDEVNAME_SIZE];
2032 
2033 	if (!at_least_one_arg(as, error))
2034 		return -EINVAL;
2035 
2036 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2037 			  &ca->metadata_dev);
2038 	if (r) {
2039 		*error = "Error opening metadata device";
2040 		return r;
2041 	}
2042 
2043 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2044 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2045 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2046 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2047 
2048 	return 0;
2049 }
2050 
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2051 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2052 			   char **error)
2053 {
2054 	int r;
2055 
2056 	if (!at_least_one_arg(as, error))
2057 		return -EINVAL;
2058 
2059 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2060 			  &ca->cache_dev);
2061 	if (r) {
2062 		*error = "Error opening cache device";
2063 		return r;
2064 	}
2065 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2066 
2067 	return 0;
2068 }
2069 
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2070 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2071 			    char **error)
2072 {
2073 	int r;
2074 
2075 	if (!at_least_one_arg(as, error))
2076 		return -EINVAL;
2077 
2078 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2079 			  &ca->origin_dev);
2080 	if (r) {
2081 		*error = "Error opening origin device";
2082 		return r;
2083 	}
2084 
2085 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2086 	if (ca->ti->len > ca->origin_sectors) {
2087 		*error = "Device size larger than cached device";
2088 		return -EINVAL;
2089 	}
2090 
2091 	return 0;
2092 }
2093 
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2094 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2095 			    char **error)
2096 {
2097 	unsigned long block_size;
2098 
2099 	if (!at_least_one_arg(as, error))
2100 		return -EINVAL;
2101 
2102 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2103 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2104 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2105 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2106 		*error = "Invalid data block size";
2107 		return -EINVAL;
2108 	}
2109 
2110 	if (block_size > ca->cache_sectors) {
2111 		*error = "Data block size is larger than the cache device";
2112 		return -EINVAL;
2113 	}
2114 
2115 	ca->block_size = block_size;
2116 
2117 	return 0;
2118 }
2119 
init_features(struct cache_features * cf)2120 static void init_features(struct cache_features *cf)
2121 {
2122 	cf->mode = CM_WRITE;
2123 	cf->io_mode = CM_IO_WRITEBACK;
2124 	cf->metadata_version = 1;
2125 	cf->discard_passdown = true;
2126 }
2127 
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2128 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2129 			  char **error)
2130 {
2131 	static const struct dm_arg _args[] = {
2132 		{0, 3, "Invalid number of cache feature arguments"},
2133 	};
2134 
2135 	int r, mode_ctr = 0;
2136 	unsigned argc;
2137 	const char *arg;
2138 	struct cache_features *cf = &ca->features;
2139 
2140 	init_features(cf);
2141 
2142 	r = dm_read_arg_group(_args, as, &argc, error);
2143 	if (r)
2144 		return -EINVAL;
2145 
2146 	while (argc--) {
2147 		arg = dm_shift_arg(as);
2148 
2149 		if (!strcasecmp(arg, "writeback")) {
2150 			cf->io_mode = CM_IO_WRITEBACK;
2151 			mode_ctr++;
2152 		}
2153 
2154 		else if (!strcasecmp(arg, "writethrough")) {
2155 			cf->io_mode = CM_IO_WRITETHROUGH;
2156 			mode_ctr++;
2157 		}
2158 
2159 		else if (!strcasecmp(arg, "passthrough")) {
2160 			cf->io_mode = CM_IO_PASSTHROUGH;
2161 			mode_ctr++;
2162 		}
2163 
2164 		else if (!strcasecmp(arg, "metadata2"))
2165 			cf->metadata_version = 2;
2166 
2167 		else if (!strcasecmp(arg, "no_discard_passdown"))
2168 			cf->discard_passdown = false;
2169 
2170 		else {
2171 			*error = "Unrecognised cache feature requested";
2172 			return -EINVAL;
2173 		}
2174 	}
2175 
2176 	if (mode_ctr > 1) {
2177 		*error = "Duplicate cache io_mode features requested";
2178 		return -EINVAL;
2179 	}
2180 
2181 	return 0;
2182 }
2183 
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2184 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2185 			char **error)
2186 {
2187 	static const struct dm_arg _args[] = {
2188 		{0, 1024, "Invalid number of policy arguments"},
2189 	};
2190 
2191 	int r;
2192 
2193 	if (!at_least_one_arg(as, error))
2194 		return -EINVAL;
2195 
2196 	ca->policy_name = dm_shift_arg(as);
2197 
2198 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2199 	if (r)
2200 		return -EINVAL;
2201 
2202 	ca->policy_argv = (const char **)as->argv;
2203 	dm_consume_args(as, ca->policy_argc);
2204 
2205 	return 0;
2206 }
2207 
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2208 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2209 			    char **error)
2210 {
2211 	int r;
2212 	struct dm_arg_set as;
2213 
2214 	as.argc = argc;
2215 	as.argv = argv;
2216 
2217 	r = parse_metadata_dev(ca, &as, error);
2218 	if (r)
2219 		return r;
2220 
2221 	r = parse_cache_dev(ca, &as, error);
2222 	if (r)
2223 		return r;
2224 
2225 	r = parse_origin_dev(ca, &as, error);
2226 	if (r)
2227 		return r;
2228 
2229 	r = parse_block_size(ca, &as, error);
2230 	if (r)
2231 		return r;
2232 
2233 	r = parse_features(ca, &as, error);
2234 	if (r)
2235 		return r;
2236 
2237 	r = parse_policy(ca, &as, error);
2238 	if (r)
2239 		return r;
2240 
2241 	return 0;
2242 }
2243 
2244 /*----------------------------------------------------------------*/
2245 
2246 static struct kmem_cache *migration_cache;
2247 
2248 #define NOT_CORE_OPTION 1
2249 
process_config_option(struct cache * cache,const char * key,const char * value)2250 static int process_config_option(struct cache *cache, const char *key, const char *value)
2251 {
2252 	unsigned long tmp;
2253 
2254 	if (!strcasecmp(key, "migration_threshold")) {
2255 		if (kstrtoul(value, 10, &tmp))
2256 			return -EINVAL;
2257 
2258 		cache->migration_threshold = tmp;
2259 		return 0;
2260 	}
2261 
2262 	return NOT_CORE_OPTION;
2263 }
2264 
set_config_value(struct cache * cache,const char * key,const char * value)2265 static int set_config_value(struct cache *cache, const char *key, const char *value)
2266 {
2267 	int r = process_config_option(cache, key, value);
2268 
2269 	if (r == NOT_CORE_OPTION)
2270 		r = policy_set_config_value(cache->policy, key, value);
2271 
2272 	if (r)
2273 		DMWARN("bad config value for %s: %s", key, value);
2274 
2275 	return r;
2276 }
2277 
set_config_values(struct cache * cache,int argc,const char ** argv)2278 static int set_config_values(struct cache *cache, int argc, const char **argv)
2279 {
2280 	int r = 0;
2281 
2282 	if (argc & 1) {
2283 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2284 		return -EINVAL;
2285 	}
2286 
2287 	while (argc) {
2288 		r = set_config_value(cache, argv[0], argv[1]);
2289 		if (r)
2290 			break;
2291 
2292 		argc -= 2;
2293 		argv += 2;
2294 	}
2295 
2296 	return r;
2297 }
2298 
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2299 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2300 			       char **error)
2301 {
2302 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2303 							   cache->cache_size,
2304 							   cache->origin_sectors,
2305 							   cache->sectors_per_block);
2306 	if (IS_ERR(p)) {
2307 		*error = "Error creating cache's policy";
2308 		return PTR_ERR(p);
2309 	}
2310 	cache->policy = p;
2311 	BUG_ON(!cache->policy);
2312 
2313 	return 0;
2314 }
2315 
2316 /*
2317  * We want the discard block size to be at least the size of the cache
2318  * block size and have no more than 2^14 discard blocks across the origin.
2319  */
2320 #define MAX_DISCARD_BLOCKS (1 << 14)
2321 
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2322 static bool too_many_discard_blocks(sector_t discard_block_size,
2323 				    sector_t origin_size)
2324 {
2325 	(void) sector_div(origin_size, discard_block_size);
2326 
2327 	return origin_size > MAX_DISCARD_BLOCKS;
2328 }
2329 
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2330 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2331 					     sector_t origin_size)
2332 {
2333 	sector_t discard_block_size = cache_block_size;
2334 
2335 	if (origin_size)
2336 		while (too_many_discard_blocks(discard_block_size, origin_size))
2337 			discard_block_size *= 2;
2338 
2339 	return discard_block_size;
2340 }
2341 
set_cache_size(struct cache * cache,dm_cblock_t size)2342 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2343 {
2344 	dm_block_t nr_blocks = from_cblock(size);
2345 
2346 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2347 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2348 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2349 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2350 			     (unsigned long long) nr_blocks);
2351 
2352 	cache->cache_size = size;
2353 }
2354 
2355 #define DEFAULT_MIGRATION_THRESHOLD 2048
2356 
cache_create(struct cache_args * ca,struct cache ** result)2357 static int cache_create(struct cache_args *ca, struct cache **result)
2358 {
2359 	int r = 0;
2360 	char **error = &ca->ti->error;
2361 	struct cache *cache;
2362 	struct dm_target *ti = ca->ti;
2363 	dm_block_t origin_blocks;
2364 	struct dm_cache_metadata *cmd;
2365 	bool may_format = ca->features.mode == CM_WRITE;
2366 
2367 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2368 	if (!cache)
2369 		return -ENOMEM;
2370 
2371 	cache->ti = ca->ti;
2372 	ti->private = cache;
2373 	ti->num_flush_bios = 2;
2374 	ti->flush_supported = true;
2375 
2376 	ti->num_discard_bios = 1;
2377 	ti->discards_supported = true;
2378 
2379 	ti->per_io_data_size = sizeof(struct per_bio_data);
2380 
2381 	cache->features = ca->features;
2382 	if (writethrough_mode(cache)) {
2383 		/* Create bioset for writethrough bios issued to origin */
2384 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2385 		if (r)
2386 			goto bad;
2387 	}
2388 
2389 	cache->metadata_dev = ca->metadata_dev;
2390 	cache->origin_dev = ca->origin_dev;
2391 	cache->cache_dev = ca->cache_dev;
2392 
2393 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2394 
2395 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2396 	origin_blocks = block_div(origin_blocks, ca->block_size);
2397 	cache->origin_blocks = to_oblock(origin_blocks);
2398 
2399 	cache->sectors_per_block = ca->block_size;
2400 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2401 		r = -EINVAL;
2402 		goto bad;
2403 	}
2404 
2405 	if (ca->block_size & (ca->block_size - 1)) {
2406 		dm_block_t cache_size = ca->cache_sectors;
2407 
2408 		cache->sectors_per_block_shift = -1;
2409 		cache_size = block_div(cache_size, ca->block_size);
2410 		set_cache_size(cache, to_cblock(cache_size));
2411 	} else {
2412 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2413 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2414 	}
2415 
2416 	r = create_cache_policy(cache, ca, error);
2417 	if (r)
2418 		goto bad;
2419 
2420 	cache->policy_nr_args = ca->policy_argc;
2421 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2422 
2423 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2424 	if (r) {
2425 		*error = "Error setting cache policy's config values";
2426 		goto bad;
2427 	}
2428 
2429 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2430 				     ca->block_size, may_format,
2431 				     dm_cache_policy_get_hint_size(cache->policy),
2432 				     ca->features.metadata_version);
2433 	if (IS_ERR(cmd)) {
2434 		*error = "Error creating metadata object";
2435 		r = PTR_ERR(cmd);
2436 		goto bad;
2437 	}
2438 	cache->cmd = cmd;
2439 	set_cache_mode(cache, CM_WRITE);
2440 	if (get_cache_mode(cache) != CM_WRITE) {
2441 		*error = "Unable to get write access to metadata, please check/repair metadata.";
2442 		r = -EINVAL;
2443 		goto bad;
2444 	}
2445 
2446 	if (passthrough_mode(cache)) {
2447 		bool all_clean;
2448 
2449 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2450 		if (r) {
2451 			*error = "dm_cache_metadata_all_clean() failed";
2452 			goto bad;
2453 		}
2454 
2455 		if (!all_clean) {
2456 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2457 			r = -EINVAL;
2458 			goto bad;
2459 		}
2460 
2461 		policy_allow_migrations(cache->policy, false);
2462 	}
2463 
2464 	spin_lock_init(&cache->lock);
2465 	bio_list_init(&cache->deferred_bios);
2466 	atomic_set(&cache->nr_allocated_migrations, 0);
2467 	atomic_set(&cache->nr_io_migrations, 0);
2468 	init_waitqueue_head(&cache->migration_wait);
2469 
2470 	r = -ENOMEM;
2471 	atomic_set(&cache->nr_dirty, 0);
2472 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2473 	if (!cache->dirty_bitset) {
2474 		*error = "could not allocate dirty bitset";
2475 		goto bad;
2476 	}
2477 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2478 
2479 	cache->discard_block_size =
2480 		calculate_discard_block_size(cache->sectors_per_block,
2481 					     cache->origin_sectors);
2482 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2483 							      cache->discard_block_size));
2484 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2485 	if (!cache->discard_bitset) {
2486 		*error = "could not allocate discard bitset";
2487 		goto bad;
2488 	}
2489 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2490 
2491 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2492 	if (IS_ERR(cache->copier)) {
2493 		*error = "could not create kcopyd client";
2494 		r = PTR_ERR(cache->copier);
2495 		goto bad;
2496 	}
2497 
2498 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2499 	if (!cache->wq) {
2500 		*error = "could not create workqueue for metadata object";
2501 		goto bad;
2502 	}
2503 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2504 	INIT_WORK(&cache->migration_worker, check_migrations);
2505 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2506 
2507 	cache->prison = dm_bio_prison_create_v2(cache->wq);
2508 	if (!cache->prison) {
2509 		*error = "could not create bio prison";
2510 		goto bad;
2511 	}
2512 
2513 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2514 				   migration_cache);
2515 	if (r) {
2516 		*error = "Error creating cache's migration mempool";
2517 		goto bad;
2518 	}
2519 
2520 	cache->need_tick_bio = true;
2521 	cache->sized = false;
2522 	cache->invalidate = false;
2523 	cache->commit_requested = false;
2524 	cache->loaded_mappings = false;
2525 	cache->loaded_discards = false;
2526 
2527 	load_stats(cache);
2528 
2529 	atomic_set(&cache->stats.demotion, 0);
2530 	atomic_set(&cache->stats.promotion, 0);
2531 	atomic_set(&cache->stats.copies_avoided, 0);
2532 	atomic_set(&cache->stats.cache_cell_clash, 0);
2533 	atomic_set(&cache->stats.commit_count, 0);
2534 	atomic_set(&cache->stats.discard_count, 0);
2535 
2536 	spin_lock_init(&cache->invalidation_lock);
2537 	INIT_LIST_HEAD(&cache->invalidation_requests);
2538 
2539 	batcher_init(&cache->committer, commit_op, cache,
2540 		     issue_op, cache, cache->wq);
2541 	dm_iot_init(&cache->tracker);
2542 
2543 	init_rwsem(&cache->background_work_lock);
2544 	prevent_background_work(cache);
2545 
2546 	*result = cache;
2547 	return 0;
2548 bad:
2549 	destroy(cache);
2550 	return r;
2551 }
2552 
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2553 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2554 {
2555 	unsigned i;
2556 	const char **copy;
2557 
2558 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2559 	if (!copy)
2560 		return -ENOMEM;
2561 	for (i = 0; i < argc; i++) {
2562 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2563 		if (!copy[i]) {
2564 			while (i--)
2565 				kfree(copy[i]);
2566 			kfree(copy);
2567 			return -ENOMEM;
2568 		}
2569 	}
2570 
2571 	cache->nr_ctr_args = argc;
2572 	cache->ctr_args = copy;
2573 
2574 	return 0;
2575 }
2576 
cache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2577 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2578 {
2579 	int r = -EINVAL;
2580 	struct cache_args *ca;
2581 	struct cache *cache = NULL;
2582 
2583 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2584 	if (!ca) {
2585 		ti->error = "Error allocating memory for cache";
2586 		return -ENOMEM;
2587 	}
2588 	ca->ti = ti;
2589 
2590 	r = parse_cache_args(ca, argc, argv, &ti->error);
2591 	if (r)
2592 		goto out;
2593 
2594 	r = cache_create(ca, &cache);
2595 	if (r)
2596 		goto out;
2597 
2598 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2599 	if (r) {
2600 		destroy(cache);
2601 		goto out;
2602 	}
2603 
2604 	ti->private = cache;
2605 out:
2606 	destroy_cache_args(ca);
2607 	return r;
2608 }
2609 
2610 /*----------------------------------------------------------------*/
2611 
cache_map(struct dm_target * ti,struct bio * bio)2612 static int cache_map(struct dm_target *ti, struct bio *bio)
2613 {
2614 	struct cache *cache = ti->private;
2615 
2616 	int r;
2617 	bool commit_needed;
2618 	dm_oblock_t block = get_bio_block(cache, bio);
2619 
2620 	init_per_bio_data(bio);
2621 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2622 		/*
2623 		 * This can only occur if the io goes to a partial block at
2624 		 * the end of the origin device.  We don't cache these.
2625 		 * Just remap to the origin and carry on.
2626 		 */
2627 		remap_to_origin(cache, bio);
2628 		accounted_begin(cache, bio);
2629 		return DM_MAPIO_REMAPPED;
2630 	}
2631 
2632 	if (discard_or_flush(bio)) {
2633 		defer_bio(cache, bio);
2634 		return DM_MAPIO_SUBMITTED;
2635 	}
2636 
2637 	r = map_bio(cache, bio, block, &commit_needed);
2638 	if (commit_needed)
2639 		schedule_commit(&cache->committer);
2640 
2641 	return r;
2642 }
2643 
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2644 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2645 {
2646 	struct cache *cache = ti->private;
2647 	unsigned long flags;
2648 	struct per_bio_data *pb = get_per_bio_data(bio);
2649 
2650 	if (pb->tick) {
2651 		policy_tick(cache->policy, false);
2652 
2653 		spin_lock_irqsave(&cache->lock, flags);
2654 		cache->need_tick_bio = true;
2655 		spin_unlock_irqrestore(&cache->lock, flags);
2656 	}
2657 
2658 	bio_drop_shared_lock(cache, bio);
2659 	accounted_complete(cache, bio);
2660 
2661 	return DM_ENDIO_DONE;
2662 }
2663 
write_dirty_bitset(struct cache * cache)2664 static int write_dirty_bitset(struct cache *cache)
2665 {
2666 	int r;
2667 
2668 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2669 		return -EINVAL;
2670 
2671 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2672 	if (r)
2673 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2674 
2675 	return r;
2676 }
2677 
write_discard_bitset(struct cache * cache)2678 static int write_discard_bitset(struct cache *cache)
2679 {
2680 	unsigned i, r;
2681 
2682 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2683 		return -EINVAL;
2684 
2685 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2686 					   cache->discard_nr_blocks);
2687 	if (r) {
2688 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2689 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2690 		return r;
2691 	}
2692 
2693 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2694 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2695 					 is_discarded(cache, to_dblock(i)));
2696 		if (r) {
2697 			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2698 			return r;
2699 		}
2700 	}
2701 
2702 	return 0;
2703 }
2704 
write_hints(struct cache * cache)2705 static int write_hints(struct cache *cache)
2706 {
2707 	int r;
2708 
2709 	if (get_cache_mode(cache) >= CM_READ_ONLY)
2710 		return -EINVAL;
2711 
2712 	r = dm_cache_write_hints(cache->cmd, cache->policy);
2713 	if (r) {
2714 		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2715 		return r;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 /*
2722  * returns true on success
2723  */
sync_metadata(struct cache * cache)2724 static bool sync_metadata(struct cache *cache)
2725 {
2726 	int r1, r2, r3, r4;
2727 
2728 	r1 = write_dirty_bitset(cache);
2729 	if (r1)
2730 		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2731 
2732 	r2 = write_discard_bitset(cache);
2733 	if (r2)
2734 		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2735 
2736 	save_stats(cache);
2737 
2738 	r3 = write_hints(cache);
2739 	if (r3)
2740 		DMERR("%s: could not write hints", cache_device_name(cache));
2741 
2742 	/*
2743 	 * If writing the above metadata failed, we still commit, but don't
2744 	 * set the clean shutdown flag.  This will effectively force every
2745 	 * dirty bit to be set on reload.
2746 	 */
2747 	r4 = commit(cache, !r1 && !r2 && !r3);
2748 	if (r4)
2749 		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2750 
2751 	return !r1 && !r2 && !r3 && !r4;
2752 }
2753 
cache_postsuspend(struct dm_target * ti)2754 static void cache_postsuspend(struct dm_target *ti)
2755 {
2756 	struct cache *cache = ti->private;
2757 
2758 	prevent_background_work(cache);
2759 	BUG_ON(atomic_read(&cache->nr_io_migrations));
2760 
2761 	cancel_delayed_work_sync(&cache->waker);
2762 	drain_workqueue(cache->wq);
2763 	WARN_ON(cache->tracker.in_flight);
2764 
2765 	/*
2766 	 * If it's a flush suspend there won't be any deferred bios, so this
2767 	 * call is harmless.
2768 	 */
2769 	requeue_deferred_bios(cache);
2770 
2771 	if (get_cache_mode(cache) == CM_WRITE)
2772 		(void) sync_metadata(cache);
2773 }
2774 
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2775 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2776 			bool dirty, uint32_t hint, bool hint_valid)
2777 {
2778 	struct cache *cache = context;
2779 
2780 	if (dirty) {
2781 		set_bit(from_cblock(cblock), cache->dirty_bitset);
2782 		atomic_inc(&cache->nr_dirty);
2783 	} else
2784 		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2785 
2786 	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2787 }
2788 
2789 /*
2790  * The discard block size in the on disk metadata is not
2791  * neccessarily the same as we're currently using.  So we have to
2792  * be careful to only set the discarded attribute if we know it
2793  * covers a complete block of the new size.
2794  */
2795 struct discard_load_info {
2796 	struct cache *cache;
2797 
2798 	/*
2799 	 * These blocks are sized using the on disk dblock size, rather
2800 	 * than the current one.
2801 	 */
2802 	dm_block_t block_size;
2803 	dm_block_t discard_begin, discard_end;
2804 };
2805 
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2806 static void discard_load_info_init(struct cache *cache,
2807 				   struct discard_load_info *li)
2808 {
2809 	li->cache = cache;
2810 	li->discard_begin = li->discard_end = 0;
2811 }
2812 
set_discard_range(struct discard_load_info * li)2813 static void set_discard_range(struct discard_load_info *li)
2814 {
2815 	sector_t b, e;
2816 
2817 	if (li->discard_begin == li->discard_end)
2818 		return;
2819 
2820 	/*
2821 	 * Convert to sectors.
2822 	 */
2823 	b = li->discard_begin * li->block_size;
2824 	e = li->discard_end * li->block_size;
2825 
2826 	/*
2827 	 * Then convert back to the current dblock size.
2828 	 */
2829 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2830 	sector_div(e, li->cache->discard_block_size);
2831 
2832 	/*
2833 	 * The origin may have shrunk, so we need to check we're still in
2834 	 * bounds.
2835 	 */
2836 	if (e > from_dblock(li->cache->discard_nr_blocks))
2837 		e = from_dblock(li->cache->discard_nr_blocks);
2838 
2839 	for (; b < e; b++)
2840 		set_discard(li->cache, to_dblock(b));
2841 }
2842 
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2843 static int load_discard(void *context, sector_t discard_block_size,
2844 			dm_dblock_t dblock, bool discard)
2845 {
2846 	struct discard_load_info *li = context;
2847 
2848 	li->block_size = discard_block_size;
2849 
2850 	if (discard) {
2851 		if (from_dblock(dblock) == li->discard_end)
2852 			/*
2853 			 * We're already in a discard range, just extend it.
2854 			 */
2855 			li->discard_end = li->discard_end + 1ULL;
2856 
2857 		else {
2858 			/*
2859 			 * Emit the old range and start a new one.
2860 			 */
2861 			set_discard_range(li);
2862 			li->discard_begin = from_dblock(dblock);
2863 			li->discard_end = li->discard_begin + 1ULL;
2864 		}
2865 	} else {
2866 		set_discard_range(li);
2867 		li->discard_begin = li->discard_end = 0;
2868 	}
2869 
2870 	return 0;
2871 }
2872 
get_cache_dev_size(struct cache * cache)2873 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2874 {
2875 	sector_t size = get_dev_size(cache->cache_dev);
2876 	(void) sector_div(size, cache->sectors_per_block);
2877 	return to_cblock(size);
2878 }
2879 
can_resize(struct cache * cache,dm_cblock_t new_size)2880 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2881 {
2882 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2883 		if (cache->sized) {
2884 			DMERR("%s: unable to extend cache due to missing cache table reload",
2885 			      cache_device_name(cache));
2886 			return false;
2887 		}
2888 	}
2889 
2890 	/*
2891 	 * We can't drop a dirty block when shrinking the cache.
2892 	 */
2893 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2894 		new_size = to_cblock(from_cblock(new_size) + 1);
2895 		if (is_dirty(cache, new_size)) {
2896 			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2897 			      cache_device_name(cache),
2898 			      (unsigned long long) from_cblock(new_size));
2899 			return false;
2900 		}
2901 	}
2902 
2903 	return true;
2904 }
2905 
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2906 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2907 {
2908 	int r;
2909 
2910 	r = dm_cache_resize(cache->cmd, new_size);
2911 	if (r) {
2912 		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2913 		metadata_operation_failed(cache, "dm_cache_resize", r);
2914 		return r;
2915 	}
2916 
2917 	set_cache_size(cache, new_size);
2918 
2919 	return 0;
2920 }
2921 
cache_preresume(struct dm_target * ti)2922 static int cache_preresume(struct dm_target *ti)
2923 {
2924 	int r = 0;
2925 	struct cache *cache = ti->private;
2926 	dm_cblock_t csize = get_cache_dev_size(cache);
2927 
2928 	/*
2929 	 * Check to see if the cache has resized.
2930 	 */
2931 	if (!cache->sized) {
2932 		r = resize_cache_dev(cache, csize);
2933 		if (r)
2934 			return r;
2935 
2936 		cache->sized = true;
2937 
2938 	} else if (csize != cache->cache_size) {
2939 		if (!can_resize(cache, csize))
2940 			return -EINVAL;
2941 
2942 		r = resize_cache_dev(cache, csize);
2943 		if (r)
2944 			return r;
2945 	}
2946 
2947 	if (!cache->loaded_mappings) {
2948 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2949 					   load_mapping, cache);
2950 		if (r) {
2951 			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2952 			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2953 			return r;
2954 		}
2955 
2956 		cache->loaded_mappings = true;
2957 	}
2958 
2959 	if (!cache->loaded_discards) {
2960 		struct discard_load_info li;
2961 
2962 		/*
2963 		 * The discard bitset could have been resized, or the
2964 		 * discard block size changed.  To be safe we start by
2965 		 * setting every dblock to not discarded.
2966 		 */
2967 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2968 
2969 		discard_load_info_init(cache, &li);
2970 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2971 		if (r) {
2972 			DMERR("%s: could not load origin discards", cache_device_name(cache));
2973 			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2974 			return r;
2975 		}
2976 		set_discard_range(&li);
2977 
2978 		cache->loaded_discards = true;
2979 	}
2980 
2981 	return r;
2982 }
2983 
cache_resume(struct dm_target * ti)2984 static void cache_resume(struct dm_target *ti)
2985 {
2986 	struct cache *cache = ti->private;
2987 
2988 	cache->need_tick_bio = true;
2989 	allow_background_work(cache);
2990 	do_waker(&cache->waker.work);
2991 }
2992 
emit_flags(struct cache * cache,char * result,unsigned maxlen,ssize_t * sz_ptr)2993 static void emit_flags(struct cache *cache, char *result,
2994 		       unsigned maxlen, ssize_t *sz_ptr)
2995 {
2996 	ssize_t sz = *sz_ptr;
2997 	struct cache_features *cf = &cache->features;
2998 	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2999 
3000 	DMEMIT("%u ", count);
3001 
3002 	if (cf->metadata_version == 2)
3003 		DMEMIT("metadata2 ");
3004 
3005 	if (writethrough_mode(cache))
3006 		DMEMIT("writethrough ");
3007 
3008 	else if (passthrough_mode(cache))
3009 		DMEMIT("passthrough ");
3010 
3011 	else if (writeback_mode(cache))
3012 		DMEMIT("writeback ");
3013 
3014 	else {
3015 		DMEMIT("unknown ");
3016 		DMERR("%s: internal error: unknown io mode: %d",
3017 		      cache_device_name(cache), (int) cf->io_mode);
3018 	}
3019 
3020 	if (!cf->discard_passdown)
3021 		DMEMIT("no_discard_passdown ");
3022 
3023 	*sz_ptr = sz;
3024 }
3025 
3026 /*
3027  * Status format:
3028  *
3029  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3030  * <cache block size> <#used cache blocks>/<#total cache blocks>
3031  * <#read hits> <#read misses> <#write hits> <#write misses>
3032  * <#demotions> <#promotions> <#dirty>
3033  * <#features> <features>*
3034  * <#core args> <core args>
3035  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3036  */
cache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3037 static void cache_status(struct dm_target *ti, status_type_t type,
3038 			 unsigned status_flags, char *result, unsigned maxlen)
3039 {
3040 	int r = 0;
3041 	unsigned i;
3042 	ssize_t sz = 0;
3043 	dm_block_t nr_free_blocks_metadata = 0;
3044 	dm_block_t nr_blocks_metadata = 0;
3045 	char buf[BDEVNAME_SIZE];
3046 	struct cache *cache = ti->private;
3047 	dm_cblock_t residency;
3048 	bool needs_check;
3049 
3050 	switch (type) {
3051 	case STATUSTYPE_INFO:
3052 		if (get_cache_mode(cache) == CM_FAIL) {
3053 			DMEMIT("Fail");
3054 			break;
3055 		}
3056 
3057 		/* Commit to ensure statistics aren't out-of-date */
3058 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3059 			(void) commit(cache, false);
3060 
3061 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3062 		if (r) {
3063 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3064 			      cache_device_name(cache), r);
3065 			goto err;
3066 		}
3067 
3068 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3069 		if (r) {
3070 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3071 			      cache_device_name(cache), r);
3072 			goto err;
3073 		}
3074 
3075 		residency = policy_residency(cache->policy);
3076 
3077 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3078 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3079 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3080 		       (unsigned long long)nr_blocks_metadata,
3081 		       (unsigned long long)cache->sectors_per_block,
3082 		       (unsigned long long) from_cblock(residency),
3083 		       (unsigned long long) from_cblock(cache->cache_size),
3084 		       (unsigned) atomic_read(&cache->stats.read_hit),
3085 		       (unsigned) atomic_read(&cache->stats.read_miss),
3086 		       (unsigned) atomic_read(&cache->stats.write_hit),
3087 		       (unsigned) atomic_read(&cache->stats.write_miss),
3088 		       (unsigned) atomic_read(&cache->stats.demotion),
3089 		       (unsigned) atomic_read(&cache->stats.promotion),
3090 		       (unsigned long) atomic_read(&cache->nr_dirty));
3091 
3092 		emit_flags(cache, result, maxlen, &sz);
3093 
3094 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3095 
3096 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3097 		if (sz < maxlen) {
3098 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3099 			if (r)
3100 				DMERR("%s: policy_emit_config_values returned %d",
3101 				      cache_device_name(cache), r);
3102 		}
3103 
3104 		if (get_cache_mode(cache) == CM_READ_ONLY)
3105 			DMEMIT("ro ");
3106 		else
3107 			DMEMIT("rw ");
3108 
3109 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3110 
3111 		if (r || needs_check)
3112 			DMEMIT("needs_check ");
3113 		else
3114 			DMEMIT("- ");
3115 
3116 		break;
3117 
3118 	case STATUSTYPE_TABLE:
3119 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3120 		DMEMIT("%s ", buf);
3121 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3122 		DMEMIT("%s ", buf);
3123 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3124 		DMEMIT("%s", buf);
3125 
3126 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3127 			DMEMIT(" %s", cache->ctr_args[i]);
3128 		if (cache->nr_ctr_args)
3129 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3130 		break;
3131 
3132 	case STATUSTYPE_IMA:
3133 		DMEMIT_TARGET_NAME_VERSION(ti->type);
3134 		if (get_cache_mode(cache) == CM_FAIL)
3135 			DMEMIT(",metadata_mode=fail");
3136 		else if (get_cache_mode(cache) == CM_READ_ONLY)
3137 			DMEMIT(",metadata_mode=ro");
3138 		else
3139 			DMEMIT(",metadata_mode=rw");
3140 
3141 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3142 		DMEMIT(",cache_metadata_device=%s", buf);
3143 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3144 		DMEMIT(",cache_device=%s", buf);
3145 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3146 		DMEMIT(",cache_origin_device=%s", buf);
3147 		DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3148 		DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3149 		DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3150 		DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3151 		DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3152 		DMEMIT(";");
3153 		break;
3154 	}
3155 
3156 	return;
3157 
3158 err:
3159 	DMEMIT("Error");
3160 }
3161 
3162 /*
3163  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3164  * the one-past-the-end value.
3165  */
3166 struct cblock_range {
3167 	dm_cblock_t begin;
3168 	dm_cblock_t end;
3169 };
3170 
3171 /*
3172  * A cache block range can take two forms:
3173  *
3174  * i) A single cblock, eg. '3456'
3175  * ii) A begin and end cblock with a dash between, eg. 123-234
3176  */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3177 static int parse_cblock_range(struct cache *cache, const char *str,
3178 			      struct cblock_range *result)
3179 {
3180 	char dummy;
3181 	uint64_t b, e;
3182 	int r;
3183 
3184 	/*
3185 	 * Try and parse form (ii) first.
3186 	 */
3187 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3188 	if (r < 0)
3189 		return r;
3190 
3191 	if (r == 2) {
3192 		result->begin = to_cblock(b);
3193 		result->end = to_cblock(e);
3194 		return 0;
3195 	}
3196 
3197 	/*
3198 	 * That didn't work, try form (i).
3199 	 */
3200 	r = sscanf(str, "%llu%c", &b, &dummy);
3201 	if (r < 0)
3202 		return r;
3203 
3204 	if (r == 1) {
3205 		result->begin = to_cblock(b);
3206 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3207 		return 0;
3208 	}
3209 
3210 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3211 	return -EINVAL;
3212 }
3213 
validate_cblock_range(struct cache * cache,struct cblock_range * range)3214 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3215 {
3216 	uint64_t b = from_cblock(range->begin);
3217 	uint64_t e = from_cblock(range->end);
3218 	uint64_t n = from_cblock(cache->cache_size);
3219 
3220 	if (b >= n) {
3221 		DMERR("%s: begin cblock out of range: %llu >= %llu",
3222 		      cache_device_name(cache), b, n);
3223 		return -EINVAL;
3224 	}
3225 
3226 	if (e > n) {
3227 		DMERR("%s: end cblock out of range: %llu > %llu",
3228 		      cache_device_name(cache), e, n);
3229 		return -EINVAL;
3230 	}
3231 
3232 	if (b >= e) {
3233 		DMERR("%s: invalid cblock range: %llu >= %llu",
3234 		      cache_device_name(cache), b, e);
3235 		return -EINVAL;
3236 	}
3237 
3238 	return 0;
3239 }
3240 
cblock_succ(dm_cblock_t b)3241 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3242 {
3243 	return to_cblock(from_cblock(b) + 1);
3244 }
3245 
request_invalidation(struct cache * cache,struct cblock_range * range)3246 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3247 {
3248 	int r = 0;
3249 
3250 	/*
3251 	 * We don't need to do any locking here because we know we're in
3252 	 * passthrough mode.  There's is potential for a race between an
3253 	 * invalidation triggered by an io and an invalidation message.  This
3254 	 * is harmless, we must not worry if the policy call fails.
3255 	 */
3256 	while (range->begin != range->end) {
3257 		r = invalidate_cblock(cache, range->begin);
3258 		if (r)
3259 			return r;
3260 
3261 		range->begin = cblock_succ(range->begin);
3262 	}
3263 
3264 	cache->commit_requested = true;
3265 	return r;
3266 }
3267 
process_invalidate_cblocks_message(struct cache * cache,unsigned count,const char ** cblock_ranges)3268 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3269 					      const char **cblock_ranges)
3270 {
3271 	int r = 0;
3272 	unsigned i;
3273 	struct cblock_range range;
3274 
3275 	if (!passthrough_mode(cache)) {
3276 		DMERR("%s: cache has to be in passthrough mode for invalidation",
3277 		      cache_device_name(cache));
3278 		return -EPERM;
3279 	}
3280 
3281 	for (i = 0; i < count; i++) {
3282 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3283 		if (r)
3284 			break;
3285 
3286 		r = validate_cblock_range(cache, &range);
3287 		if (r)
3288 			break;
3289 
3290 		/*
3291 		 * Pass begin and end origin blocks to the worker and wake it.
3292 		 */
3293 		r = request_invalidation(cache, &range);
3294 		if (r)
3295 			break;
3296 	}
3297 
3298 	return r;
3299 }
3300 
3301 /*
3302  * Supports
3303  *	"<key> <value>"
3304  * and
3305  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3306  *
3307  * The key migration_threshold is supported by the cache target core.
3308  */
cache_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3309 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3310 			 char *result, unsigned maxlen)
3311 {
3312 	struct cache *cache = ti->private;
3313 
3314 	if (!argc)
3315 		return -EINVAL;
3316 
3317 	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3318 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3319 		      cache_device_name(cache));
3320 		return -EOPNOTSUPP;
3321 	}
3322 
3323 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3324 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3325 
3326 	if (argc != 2)
3327 		return -EINVAL;
3328 
3329 	return set_config_value(cache, argv[0], argv[1]);
3330 }
3331 
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3332 static int cache_iterate_devices(struct dm_target *ti,
3333 				 iterate_devices_callout_fn fn, void *data)
3334 {
3335 	int r = 0;
3336 	struct cache *cache = ti->private;
3337 
3338 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3339 	if (!r)
3340 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3341 
3342 	return r;
3343 }
3344 
origin_dev_supports_discard(struct block_device * origin_bdev)3345 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3346 {
3347 	struct request_queue *q = bdev_get_queue(origin_bdev);
3348 
3349 	return blk_queue_discard(q);
3350 }
3351 
3352 /*
3353  * If discard_passdown was enabled verify that the origin device
3354  * supports discards.  Disable discard_passdown if not.
3355  */
disable_passdown_if_not_supported(struct cache * cache)3356 static void disable_passdown_if_not_supported(struct cache *cache)
3357 {
3358 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3359 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3360 	const char *reason = NULL;
3361 	char buf[BDEVNAME_SIZE];
3362 
3363 	if (!cache->features.discard_passdown)
3364 		return;
3365 
3366 	if (!origin_dev_supports_discard(origin_bdev))
3367 		reason = "discard unsupported";
3368 
3369 	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3370 		reason = "max discard sectors smaller than a block";
3371 
3372 	if (reason) {
3373 		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3374 		       bdevname(origin_bdev, buf), reason);
3375 		cache->features.discard_passdown = false;
3376 	}
3377 }
3378 
set_discard_limits(struct cache * cache,struct queue_limits * limits)3379 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3380 {
3381 	struct block_device *origin_bdev = cache->origin_dev->bdev;
3382 	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3383 
3384 	if (!cache->features.discard_passdown) {
3385 		/* No passdown is done so setting own virtual limits */
3386 		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3387 						    cache->origin_sectors);
3388 		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3389 		return;
3390 	}
3391 
3392 	/*
3393 	 * cache_iterate_devices() is stacking both origin and fast device limits
3394 	 * but discards aren't passed to fast device, so inherit origin's limits.
3395 	 */
3396 	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3397 	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3398 	limits->discard_granularity = origin_limits->discard_granularity;
3399 	limits->discard_alignment = origin_limits->discard_alignment;
3400 	limits->discard_misaligned = origin_limits->discard_misaligned;
3401 }
3402 
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3403 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3404 {
3405 	struct cache *cache = ti->private;
3406 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3407 
3408 	/*
3409 	 * If the system-determined stacked limits are compatible with the
3410 	 * cache's blocksize (io_opt is a factor) do not override them.
3411 	 */
3412 	if (io_opt_sectors < cache->sectors_per_block ||
3413 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3414 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3415 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3416 	}
3417 
3418 	disable_passdown_if_not_supported(cache);
3419 	set_discard_limits(cache, limits);
3420 }
3421 
3422 /*----------------------------------------------------------------*/
3423 
3424 static struct target_type cache_target = {
3425 	.name = "cache",
3426 	.version = {2, 2, 0},
3427 	.module = THIS_MODULE,
3428 	.ctr = cache_ctr,
3429 	.dtr = cache_dtr,
3430 	.map = cache_map,
3431 	.end_io = cache_end_io,
3432 	.postsuspend = cache_postsuspend,
3433 	.preresume = cache_preresume,
3434 	.resume = cache_resume,
3435 	.status = cache_status,
3436 	.message = cache_message,
3437 	.iterate_devices = cache_iterate_devices,
3438 	.io_hints = cache_io_hints,
3439 };
3440 
dm_cache_init(void)3441 static int __init dm_cache_init(void)
3442 {
3443 	int r;
3444 
3445 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3446 	if (!migration_cache)
3447 		return -ENOMEM;
3448 
3449 	r = dm_register_target(&cache_target);
3450 	if (r) {
3451 		DMERR("cache target registration failed: %d", r);
3452 		kmem_cache_destroy(migration_cache);
3453 		return r;
3454 	}
3455 
3456 	return 0;
3457 }
3458 
dm_cache_exit(void)3459 static void __exit dm_cache_exit(void)
3460 {
3461 	dm_unregister_target(&cache_target);
3462 	kmem_cache_destroy(migration_cache);
3463 }
3464 
3465 module_init(dm_cache_init);
3466 module_exit(dm_cache_exit);
3467 
3468 MODULE_DESCRIPTION(DM_NAME " cache target");
3469 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3470 MODULE_LICENSE("GPL");
3471