1 /*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include "dm.h"
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 #include "dm-io-tracker.h"
12
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/jiffies.h>
16 #include <linux/init.h>
17 #include <linux/mempool.h>
18 #include <linux/module.h>
19 #include <linux/rwsem.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22
23 #define DM_MSG_PREFIX "cache"
24
25 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
26 "A percentage of time allocated for copying to and/or from cache");
27
28 /*----------------------------------------------------------------*/
29
30 /*
31 * Glossary:
32 *
33 * oblock: index of an origin block
34 * cblock: index of a cache block
35 * promotion: movement of a block from origin to cache
36 * demotion: movement of a block from cache to origin
37 * migration: movement of a block between the origin and cache device,
38 * either direction
39 */
40
41 /*----------------------------------------------------------------*/
42
43 /*
44 * Represents a chunk of future work. 'input' allows continuations to pass
45 * values between themselves, typically error values.
46 */
47 struct continuation {
48 struct work_struct ws;
49 blk_status_t input;
50 };
51
init_continuation(struct continuation * k,void (* fn)(struct work_struct *))52 static inline void init_continuation(struct continuation *k,
53 void (*fn)(struct work_struct *))
54 {
55 INIT_WORK(&k->ws, fn);
56 k->input = 0;
57 }
58
queue_continuation(struct workqueue_struct * wq,struct continuation * k)59 static inline void queue_continuation(struct workqueue_struct *wq,
60 struct continuation *k)
61 {
62 queue_work(wq, &k->ws);
63 }
64
65 /*----------------------------------------------------------------*/
66
67 /*
68 * The batcher collects together pieces of work that need a particular
69 * operation to occur before they can proceed (typically a commit).
70 */
71 struct batcher {
72 /*
73 * The operation that everyone is waiting for.
74 */
75 blk_status_t (*commit_op)(void *context);
76 void *commit_context;
77
78 /*
79 * This is how bios should be issued once the commit op is complete
80 * (accounted_request).
81 */
82 void (*issue_op)(struct bio *bio, void *context);
83 void *issue_context;
84
85 /*
86 * Queued work gets put on here after commit.
87 */
88 struct workqueue_struct *wq;
89
90 spinlock_t lock;
91 struct list_head work_items;
92 struct bio_list bios;
93 struct work_struct commit_work;
94
95 bool commit_scheduled;
96 };
97
__commit(struct work_struct * _ws)98 static void __commit(struct work_struct *_ws)
99 {
100 struct batcher *b = container_of(_ws, struct batcher, commit_work);
101 blk_status_t r;
102 struct list_head work_items;
103 struct work_struct *ws, *tmp;
104 struct continuation *k;
105 struct bio *bio;
106 struct bio_list bios;
107
108 INIT_LIST_HEAD(&work_items);
109 bio_list_init(&bios);
110
111 /*
112 * We have to grab these before the commit_op to avoid a race
113 * condition.
114 */
115 spin_lock_irq(&b->lock);
116 list_splice_init(&b->work_items, &work_items);
117 bio_list_merge(&bios, &b->bios);
118 bio_list_init(&b->bios);
119 b->commit_scheduled = false;
120 spin_unlock_irq(&b->lock);
121
122 r = b->commit_op(b->commit_context);
123
124 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
125 k = container_of(ws, struct continuation, ws);
126 k->input = r;
127 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
128 queue_work(b->wq, ws);
129 }
130
131 while ((bio = bio_list_pop(&bios))) {
132 if (r) {
133 bio->bi_status = r;
134 bio_endio(bio);
135 } else
136 b->issue_op(bio, b->issue_context);
137 }
138 }
139
batcher_init(struct batcher * b,blk_status_t (* commit_op)(void *),void * commit_context,void (* issue_op)(struct bio * bio,void *),void * issue_context,struct workqueue_struct * wq)140 static void batcher_init(struct batcher *b,
141 blk_status_t (*commit_op)(void *),
142 void *commit_context,
143 void (*issue_op)(struct bio *bio, void *),
144 void *issue_context,
145 struct workqueue_struct *wq)
146 {
147 b->commit_op = commit_op;
148 b->commit_context = commit_context;
149 b->issue_op = issue_op;
150 b->issue_context = issue_context;
151 b->wq = wq;
152
153 spin_lock_init(&b->lock);
154 INIT_LIST_HEAD(&b->work_items);
155 bio_list_init(&b->bios);
156 INIT_WORK(&b->commit_work, __commit);
157 b->commit_scheduled = false;
158 }
159
async_commit(struct batcher * b)160 static void async_commit(struct batcher *b)
161 {
162 queue_work(b->wq, &b->commit_work);
163 }
164
continue_after_commit(struct batcher * b,struct continuation * k)165 static void continue_after_commit(struct batcher *b, struct continuation *k)
166 {
167 bool commit_scheduled;
168
169 spin_lock_irq(&b->lock);
170 commit_scheduled = b->commit_scheduled;
171 list_add_tail(&k->ws.entry, &b->work_items);
172 spin_unlock_irq(&b->lock);
173
174 if (commit_scheduled)
175 async_commit(b);
176 }
177
178 /*
179 * Bios are errored if commit failed.
180 */
issue_after_commit(struct batcher * b,struct bio * bio)181 static void issue_after_commit(struct batcher *b, struct bio *bio)
182 {
183 bool commit_scheduled;
184
185 spin_lock_irq(&b->lock);
186 commit_scheduled = b->commit_scheduled;
187 bio_list_add(&b->bios, bio);
188 spin_unlock_irq(&b->lock);
189
190 if (commit_scheduled)
191 async_commit(b);
192 }
193
194 /*
195 * Call this if some urgent work is waiting for the commit to complete.
196 */
schedule_commit(struct batcher * b)197 static void schedule_commit(struct batcher *b)
198 {
199 bool immediate;
200
201 spin_lock_irq(&b->lock);
202 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
203 b->commit_scheduled = true;
204 spin_unlock_irq(&b->lock);
205
206 if (immediate)
207 async_commit(b);
208 }
209
210 /*
211 * There are a couple of places where we let a bio run, but want to do some
212 * work before calling its endio function. We do this by temporarily
213 * changing the endio fn.
214 */
215 struct dm_hook_info {
216 bio_end_io_t *bi_end_io;
217 };
218
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)219 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
220 bio_end_io_t *bi_end_io, void *bi_private)
221 {
222 h->bi_end_io = bio->bi_end_io;
223
224 bio->bi_end_io = bi_end_io;
225 bio->bi_private = bi_private;
226 }
227
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)228 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
229 {
230 bio->bi_end_io = h->bi_end_io;
231 }
232
233 /*----------------------------------------------------------------*/
234
235 #define MIGRATION_POOL_SIZE 128
236 #define COMMIT_PERIOD HZ
237 #define MIGRATION_COUNT_WINDOW 10
238
239 /*
240 * The block size of the device holding cache data must be
241 * between 32KB and 1GB.
242 */
243 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
244 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
245
246 enum cache_metadata_mode {
247 CM_WRITE, /* metadata may be changed */
248 CM_READ_ONLY, /* metadata may not be changed */
249 CM_FAIL
250 };
251
252 enum cache_io_mode {
253 /*
254 * Data is written to cached blocks only. These blocks are marked
255 * dirty. If you lose the cache device you will lose data.
256 * Potential performance increase for both reads and writes.
257 */
258 CM_IO_WRITEBACK,
259
260 /*
261 * Data is written to both cache and origin. Blocks are never
262 * dirty. Potential performance benfit for reads only.
263 */
264 CM_IO_WRITETHROUGH,
265
266 /*
267 * A degraded mode useful for various cache coherency situations
268 * (eg, rolling back snapshots). Reads and writes always go to the
269 * origin. If a write goes to a cached oblock, then the cache
270 * block is invalidated.
271 */
272 CM_IO_PASSTHROUGH
273 };
274
275 struct cache_features {
276 enum cache_metadata_mode mode;
277 enum cache_io_mode io_mode;
278 unsigned metadata_version;
279 bool discard_passdown:1;
280 };
281
282 struct cache_stats {
283 atomic_t read_hit;
284 atomic_t read_miss;
285 atomic_t write_hit;
286 atomic_t write_miss;
287 atomic_t demotion;
288 atomic_t promotion;
289 atomic_t writeback;
290 atomic_t copies_avoided;
291 atomic_t cache_cell_clash;
292 atomic_t commit_count;
293 atomic_t discard_count;
294 };
295
296 struct cache {
297 struct dm_target *ti;
298 spinlock_t lock;
299
300 /*
301 * Fields for converting from sectors to blocks.
302 */
303 int sectors_per_block_shift;
304 sector_t sectors_per_block;
305
306 struct dm_cache_metadata *cmd;
307
308 /*
309 * Metadata is written to this device.
310 */
311 struct dm_dev *metadata_dev;
312
313 /*
314 * The slower of the two data devices. Typically a spindle.
315 */
316 struct dm_dev *origin_dev;
317
318 /*
319 * The faster of the two data devices. Typically an SSD.
320 */
321 struct dm_dev *cache_dev;
322
323 /*
324 * Size of the origin device in _complete_ blocks and native sectors.
325 */
326 dm_oblock_t origin_blocks;
327 sector_t origin_sectors;
328
329 /*
330 * Size of the cache device in blocks.
331 */
332 dm_cblock_t cache_size;
333
334 /*
335 * Invalidation fields.
336 */
337 spinlock_t invalidation_lock;
338 struct list_head invalidation_requests;
339
340 sector_t migration_threshold;
341 wait_queue_head_t migration_wait;
342 atomic_t nr_allocated_migrations;
343
344 /*
345 * The number of in flight migrations that are performing
346 * background io. eg, promotion, writeback.
347 */
348 atomic_t nr_io_migrations;
349
350 struct bio_list deferred_bios;
351
352 struct rw_semaphore quiesce_lock;
353
354 /*
355 * origin_blocks entries, discarded if set.
356 */
357 dm_dblock_t discard_nr_blocks;
358 unsigned long *discard_bitset;
359 uint32_t discard_block_size; /* a power of 2 times sectors per block */
360
361 /*
362 * Rather than reconstructing the table line for the status we just
363 * save it and regurgitate.
364 */
365 unsigned nr_ctr_args;
366 const char **ctr_args;
367
368 struct dm_kcopyd_client *copier;
369 struct work_struct deferred_bio_worker;
370 struct work_struct migration_worker;
371 struct workqueue_struct *wq;
372 struct delayed_work waker;
373 struct dm_bio_prison_v2 *prison;
374
375 /*
376 * cache_size entries, dirty if set
377 */
378 unsigned long *dirty_bitset;
379 atomic_t nr_dirty;
380
381 unsigned policy_nr_args;
382 struct dm_cache_policy *policy;
383
384 /*
385 * Cache features such as write-through.
386 */
387 struct cache_features features;
388
389 struct cache_stats stats;
390
391 bool need_tick_bio:1;
392 bool sized:1;
393 bool invalidate:1;
394 bool commit_requested:1;
395 bool loaded_mappings:1;
396 bool loaded_discards:1;
397
398 struct rw_semaphore background_work_lock;
399
400 struct batcher committer;
401 struct work_struct commit_ws;
402
403 struct dm_io_tracker tracker;
404
405 mempool_t migration_pool;
406
407 struct bio_set bs;
408 };
409
410 struct per_bio_data {
411 bool tick:1;
412 unsigned req_nr:2;
413 struct dm_bio_prison_cell_v2 *cell;
414 struct dm_hook_info hook_info;
415 sector_t len;
416 };
417
418 struct dm_cache_migration {
419 struct continuation k;
420 struct cache *cache;
421
422 struct policy_work *op;
423 struct bio *overwrite_bio;
424 struct dm_bio_prison_cell_v2 *cell;
425
426 dm_cblock_t invalidate_cblock;
427 dm_oblock_t invalidate_oblock;
428 };
429
430 /*----------------------------------------------------------------*/
431
writethrough_mode(struct cache * cache)432 static bool writethrough_mode(struct cache *cache)
433 {
434 return cache->features.io_mode == CM_IO_WRITETHROUGH;
435 }
436
writeback_mode(struct cache * cache)437 static bool writeback_mode(struct cache *cache)
438 {
439 return cache->features.io_mode == CM_IO_WRITEBACK;
440 }
441
passthrough_mode(struct cache * cache)442 static inline bool passthrough_mode(struct cache *cache)
443 {
444 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
445 }
446
447 /*----------------------------------------------------------------*/
448
wake_deferred_bio_worker(struct cache * cache)449 static void wake_deferred_bio_worker(struct cache *cache)
450 {
451 queue_work(cache->wq, &cache->deferred_bio_worker);
452 }
453
wake_migration_worker(struct cache * cache)454 static void wake_migration_worker(struct cache *cache)
455 {
456 if (passthrough_mode(cache))
457 return;
458
459 queue_work(cache->wq, &cache->migration_worker);
460 }
461
462 /*----------------------------------------------------------------*/
463
alloc_prison_cell(struct cache * cache)464 static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
465 {
466 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
467 }
468
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell_v2 * cell)469 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
470 {
471 dm_bio_prison_free_cell_v2(cache->prison, cell);
472 }
473
alloc_migration(struct cache * cache)474 static struct dm_cache_migration *alloc_migration(struct cache *cache)
475 {
476 struct dm_cache_migration *mg;
477
478 mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
479
480 memset(mg, 0, sizeof(*mg));
481
482 mg->cache = cache;
483 atomic_inc(&cache->nr_allocated_migrations);
484
485 return mg;
486 }
487
free_migration(struct dm_cache_migration * mg)488 static void free_migration(struct dm_cache_migration *mg)
489 {
490 struct cache *cache = mg->cache;
491
492 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
493 wake_up(&cache->migration_wait);
494
495 mempool_free(mg, &cache->migration_pool);
496 }
497
498 /*----------------------------------------------------------------*/
499
oblock_succ(dm_oblock_t b)500 static inline dm_oblock_t oblock_succ(dm_oblock_t b)
501 {
502 return to_oblock(from_oblock(b) + 1ull);
503 }
504
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key_v2 * key)505 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
506 {
507 key->virtual = 0;
508 key->dev = 0;
509 key->block_begin = from_oblock(begin);
510 key->block_end = from_oblock(end);
511 }
512
513 /*
514 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
515 * level 1 which prevents *both* READs and WRITEs.
516 */
517 #define WRITE_LOCK_LEVEL 0
518 #define READ_WRITE_LOCK_LEVEL 1
519
lock_level(struct bio * bio)520 static unsigned lock_level(struct bio *bio)
521 {
522 return bio_data_dir(bio) == WRITE ?
523 WRITE_LOCK_LEVEL :
524 READ_WRITE_LOCK_LEVEL;
525 }
526
527 /*----------------------------------------------------------------
528 * Per bio data
529 *--------------------------------------------------------------*/
530
get_per_bio_data(struct bio * bio)531 static struct per_bio_data *get_per_bio_data(struct bio *bio)
532 {
533 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
534 BUG_ON(!pb);
535 return pb;
536 }
537
init_per_bio_data(struct bio * bio)538 static struct per_bio_data *init_per_bio_data(struct bio *bio)
539 {
540 struct per_bio_data *pb = get_per_bio_data(bio);
541
542 pb->tick = false;
543 pb->req_nr = dm_bio_get_target_bio_nr(bio);
544 pb->cell = NULL;
545 pb->len = 0;
546
547 return pb;
548 }
549
550 /*----------------------------------------------------------------*/
551
defer_bio(struct cache * cache,struct bio * bio)552 static void defer_bio(struct cache *cache, struct bio *bio)
553 {
554 spin_lock_irq(&cache->lock);
555 bio_list_add(&cache->deferred_bios, bio);
556 spin_unlock_irq(&cache->lock);
557
558 wake_deferred_bio_worker(cache);
559 }
560
defer_bios(struct cache * cache,struct bio_list * bios)561 static void defer_bios(struct cache *cache, struct bio_list *bios)
562 {
563 spin_lock_irq(&cache->lock);
564 bio_list_merge(&cache->deferred_bios, bios);
565 bio_list_init(bios);
566 spin_unlock_irq(&cache->lock);
567
568 wake_deferred_bio_worker(cache);
569 }
570
571 /*----------------------------------------------------------------*/
572
bio_detain_shared(struct cache * cache,dm_oblock_t oblock,struct bio * bio)573 static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
574 {
575 bool r;
576 struct per_bio_data *pb;
577 struct dm_cell_key_v2 key;
578 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
579 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
580
581 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
582
583 build_key(oblock, end, &key);
584 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
585 if (!r) {
586 /*
587 * Failed to get the lock.
588 */
589 free_prison_cell(cache, cell_prealloc);
590 return r;
591 }
592
593 if (cell != cell_prealloc)
594 free_prison_cell(cache, cell_prealloc);
595
596 pb = get_per_bio_data(bio);
597 pb->cell = cell;
598
599 return r;
600 }
601
602 /*----------------------------------------------------------------*/
603
is_dirty(struct cache * cache,dm_cblock_t b)604 static bool is_dirty(struct cache *cache, dm_cblock_t b)
605 {
606 return test_bit(from_cblock(b), cache->dirty_bitset);
607 }
608
set_dirty(struct cache * cache,dm_cblock_t cblock)609 static void set_dirty(struct cache *cache, dm_cblock_t cblock)
610 {
611 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
612 atomic_inc(&cache->nr_dirty);
613 policy_set_dirty(cache->policy, cblock);
614 }
615 }
616
617 /*
618 * These two are called when setting after migrations to force the policy
619 * and dirty bitset to be in sync.
620 */
force_set_dirty(struct cache * cache,dm_cblock_t cblock)621 static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
622 {
623 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
624 atomic_inc(&cache->nr_dirty);
625 policy_set_dirty(cache->policy, cblock);
626 }
627
force_clear_dirty(struct cache * cache,dm_cblock_t cblock)628 static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
629 {
630 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
631 if (atomic_dec_return(&cache->nr_dirty) == 0)
632 dm_table_event(cache->ti->table);
633 }
634
635 policy_clear_dirty(cache->policy, cblock);
636 }
637
638 /*----------------------------------------------------------------*/
639
block_size_is_power_of_two(struct cache * cache)640 static bool block_size_is_power_of_two(struct cache *cache)
641 {
642 return cache->sectors_per_block_shift >= 0;
643 }
644
block_div(dm_block_t b,uint32_t n)645 static dm_block_t block_div(dm_block_t b, uint32_t n)
646 {
647 do_div(b, n);
648
649 return b;
650 }
651
oblocks_per_dblock(struct cache * cache)652 static dm_block_t oblocks_per_dblock(struct cache *cache)
653 {
654 dm_block_t oblocks = cache->discard_block_size;
655
656 if (block_size_is_power_of_two(cache))
657 oblocks >>= cache->sectors_per_block_shift;
658 else
659 oblocks = block_div(oblocks, cache->sectors_per_block);
660
661 return oblocks;
662 }
663
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)664 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
665 {
666 return to_dblock(block_div(from_oblock(oblock),
667 oblocks_per_dblock(cache)));
668 }
669
set_discard(struct cache * cache,dm_dblock_t b)670 static void set_discard(struct cache *cache, dm_dblock_t b)
671 {
672 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
673 atomic_inc(&cache->stats.discard_count);
674
675 spin_lock_irq(&cache->lock);
676 set_bit(from_dblock(b), cache->discard_bitset);
677 spin_unlock_irq(&cache->lock);
678 }
679
clear_discard(struct cache * cache,dm_dblock_t b)680 static void clear_discard(struct cache *cache, dm_dblock_t b)
681 {
682 spin_lock_irq(&cache->lock);
683 clear_bit(from_dblock(b), cache->discard_bitset);
684 spin_unlock_irq(&cache->lock);
685 }
686
is_discarded(struct cache * cache,dm_dblock_t b)687 static bool is_discarded(struct cache *cache, dm_dblock_t b)
688 {
689 int r;
690 spin_lock_irq(&cache->lock);
691 r = test_bit(from_dblock(b), cache->discard_bitset);
692 spin_unlock_irq(&cache->lock);
693
694 return r;
695 }
696
is_discarded_oblock(struct cache * cache,dm_oblock_t b)697 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
698 {
699 int r;
700 spin_lock_irq(&cache->lock);
701 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
702 cache->discard_bitset);
703 spin_unlock_irq(&cache->lock);
704
705 return r;
706 }
707
708 /*----------------------------------------------------------------
709 * Remapping
710 *--------------------------------------------------------------*/
remap_to_origin(struct cache * cache,struct bio * bio)711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 bio_set_dev(bio, cache->origin_dev->bdev);
714 }
715
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 dm_cblock_t cblock)
718 {
719 sector_t bi_sector = bio->bi_iter.bi_sector;
720 sector_t block = from_cblock(cblock);
721
722 bio_set_dev(bio, cache->cache_dev->bdev);
723 if (!block_size_is_power_of_two(cache))
724 bio->bi_iter.bi_sector =
725 (block * cache->sectors_per_block) +
726 sector_div(bi_sector, cache->sectors_per_block);
727 else
728 bio->bi_iter.bi_sector =
729 (block << cache->sectors_per_block_shift) |
730 (bi_sector & (cache->sectors_per_block - 1));
731 }
732
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 struct per_bio_data *pb;
736
737 spin_lock_irq(&cache->lock);
738 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
739 bio_op(bio) != REQ_OP_DISCARD) {
740 pb = get_per_bio_data(bio);
741 pb->tick = true;
742 cache->need_tick_bio = false;
743 }
744 spin_unlock_irq(&cache->lock);
745 }
746
__remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock,bool bio_has_pbd)747 static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
748 dm_oblock_t oblock, bool bio_has_pbd)
749 {
750 if (bio_has_pbd)
751 check_if_tick_bio_needed(cache, bio);
752 remap_to_origin(cache, bio);
753 if (bio_data_dir(bio) == WRITE)
754 clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)757 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
758 dm_oblock_t oblock)
759 {
760 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
761 __remap_to_origin_clear_discard(cache, bio, oblock, true);
762 }
763
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)764 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
765 dm_oblock_t oblock, dm_cblock_t cblock)
766 {
767 check_if_tick_bio_needed(cache, bio);
768 remap_to_cache(cache, bio, cblock);
769 if (bio_data_dir(bio) == WRITE) {
770 set_dirty(cache, cblock);
771 clear_discard(cache, oblock_to_dblock(cache, oblock));
772 }
773 }
774
get_bio_block(struct cache * cache,struct bio * bio)775 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
776 {
777 sector_t block_nr = bio->bi_iter.bi_sector;
778
779 if (!block_size_is_power_of_two(cache))
780 (void) sector_div(block_nr, cache->sectors_per_block);
781 else
782 block_nr >>= cache->sectors_per_block_shift;
783
784 return to_oblock(block_nr);
785 }
786
accountable_bio(struct cache * cache,struct bio * bio)787 static bool accountable_bio(struct cache *cache, struct bio *bio)
788 {
789 return bio_op(bio) != REQ_OP_DISCARD;
790 }
791
accounted_begin(struct cache * cache,struct bio * bio)792 static void accounted_begin(struct cache *cache, struct bio *bio)
793 {
794 struct per_bio_data *pb;
795
796 if (accountable_bio(cache, bio)) {
797 pb = get_per_bio_data(bio);
798 pb->len = bio_sectors(bio);
799 dm_iot_io_begin(&cache->tracker, pb->len);
800 }
801 }
802
accounted_complete(struct cache * cache,struct bio * bio)803 static void accounted_complete(struct cache *cache, struct bio *bio)
804 {
805 struct per_bio_data *pb = get_per_bio_data(bio);
806
807 dm_iot_io_end(&cache->tracker, pb->len);
808 }
809
accounted_request(struct cache * cache,struct bio * bio)810 static void accounted_request(struct cache *cache, struct bio *bio)
811 {
812 accounted_begin(cache, bio);
813 submit_bio_noacct(bio);
814 }
815
issue_op(struct bio * bio,void * context)816 static void issue_op(struct bio *bio, void *context)
817 {
818 struct cache *cache = context;
819 accounted_request(cache, bio);
820 }
821
822 /*
823 * When running in writethrough mode we need to send writes to clean blocks
824 * to both the cache and origin devices. Clone the bio and send them in parallel.
825 */
remap_to_origin_and_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)826 static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
827 dm_oblock_t oblock, dm_cblock_t cblock)
828 {
829 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
830
831 BUG_ON(!origin_bio);
832
833 bio_chain(origin_bio, bio);
834 /*
835 * Passing false to __remap_to_origin_clear_discard() skips
836 * all code that might use per_bio_data (since clone doesn't have it)
837 */
838 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
839 submit_bio(origin_bio);
840
841 remap_to_cache(cache, bio, cblock);
842 }
843
844 /*----------------------------------------------------------------
845 * Failure modes
846 *--------------------------------------------------------------*/
get_cache_mode(struct cache * cache)847 static enum cache_metadata_mode get_cache_mode(struct cache *cache)
848 {
849 return cache->features.mode;
850 }
851
cache_device_name(struct cache * cache)852 static const char *cache_device_name(struct cache *cache)
853 {
854 return dm_table_device_name(cache->ti->table);
855 }
856
notify_mode_switch(struct cache * cache,enum cache_metadata_mode mode)857 static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
858 {
859 const char *descs[] = {
860 "write",
861 "read-only",
862 "fail"
863 };
864
865 dm_table_event(cache->ti->table);
866 DMINFO("%s: switching cache to %s mode",
867 cache_device_name(cache), descs[(int)mode]);
868 }
869
set_cache_mode(struct cache * cache,enum cache_metadata_mode new_mode)870 static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
871 {
872 bool needs_check;
873 enum cache_metadata_mode old_mode = get_cache_mode(cache);
874
875 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
876 DMERR("%s: unable to read needs_check flag, setting failure mode.",
877 cache_device_name(cache));
878 new_mode = CM_FAIL;
879 }
880
881 if (new_mode == CM_WRITE && needs_check) {
882 DMERR("%s: unable to switch cache to write mode until repaired.",
883 cache_device_name(cache));
884 if (old_mode != new_mode)
885 new_mode = old_mode;
886 else
887 new_mode = CM_READ_ONLY;
888 }
889
890 /* Never move out of fail mode */
891 if (old_mode == CM_FAIL)
892 new_mode = CM_FAIL;
893
894 switch (new_mode) {
895 case CM_FAIL:
896 case CM_READ_ONLY:
897 dm_cache_metadata_set_read_only(cache->cmd);
898 break;
899
900 case CM_WRITE:
901 dm_cache_metadata_set_read_write(cache->cmd);
902 break;
903 }
904
905 cache->features.mode = new_mode;
906
907 if (new_mode != old_mode)
908 notify_mode_switch(cache, new_mode);
909 }
910
abort_transaction(struct cache * cache)911 static void abort_transaction(struct cache *cache)
912 {
913 const char *dev_name = cache_device_name(cache);
914
915 if (get_cache_mode(cache) >= CM_READ_ONLY)
916 return;
917
918 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
919 if (dm_cache_metadata_abort(cache->cmd)) {
920 DMERR("%s: failed to abort metadata transaction", dev_name);
921 set_cache_mode(cache, CM_FAIL);
922 }
923
924 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
925 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
926 set_cache_mode(cache, CM_FAIL);
927 }
928 }
929
metadata_operation_failed(struct cache * cache,const char * op,int r)930 static void metadata_operation_failed(struct cache *cache, const char *op, int r)
931 {
932 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
933 cache_device_name(cache), op, r);
934 abort_transaction(cache);
935 set_cache_mode(cache, CM_READ_ONLY);
936 }
937
938 /*----------------------------------------------------------------*/
939
load_stats(struct cache * cache)940 static void load_stats(struct cache *cache)
941 {
942 struct dm_cache_statistics stats;
943
944 dm_cache_metadata_get_stats(cache->cmd, &stats);
945 atomic_set(&cache->stats.read_hit, stats.read_hits);
946 atomic_set(&cache->stats.read_miss, stats.read_misses);
947 atomic_set(&cache->stats.write_hit, stats.write_hits);
948 atomic_set(&cache->stats.write_miss, stats.write_misses);
949 }
950
save_stats(struct cache * cache)951 static void save_stats(struct cache *cache)
952 {
953 struct dm_cache_statistics stats;
954
955 if (get_cache_mode(cache) >= CM_READ_ONLY)
956 return;
957
958 stats.read_hits = atomic_read(&cache->stats.read_hit);
959 stats.read_misses = atomic_read(&cache->stats.read_miss);
960 stats.write_hits = atomic_read(&cache->stats.write_hit);
961 stats.write_misses = atomic_read(&cache->stats.write_miss);
962
963 dm_cache_metadata_set_stats(cache->cmd, &stats);
964 }
965
update_stats(struct cache_stats * stats,enum policy_operation op)966 static void update_stats(struct cache_stats *stats, enum policy_operation op)
967 {
968 switch (op) {
969 case POLICY_PROMOTE:
970 atomic_inc(&stats->promotion);
971 break;
972
973 case POLICY_DEMOTE:
974 atomic_inc(&stats->demotion);
975 break;
976
977 case POLICY_WRITEBACK:
978 atomic_inc(&stats->writeback);
979 break;
980 }
981 }
982
983 /*----------------------------------------------------------------
984 * Migration processing
985 *
986 * Migration covers moving data from the origin device to the cache, or
987 * vice versa.
988 *--------------------------------------------------------------*/
989
inc_io_migrations(struct cache * cache)990 static void inc_io_migrations(struct cache *cache)
991 {
992 atomic_inc(&cache->nr_io_migrations);
993 }
994
dec_io_migrations(struct cache * cache)995 static void dec_io_migrations(struct cache *cache)
996 {
997 atomic_dec(&cache->nr_io_migrations);
998 }
999
discard_or_flush(struct bio * bio)1000 static bool discard_or_flush(struct bio *bio)
1001 {
1002 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1003 }
1004
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)1005 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1006 dm_dblock_t *b, dm_dblock_t *e)
1007 {
1008 sector_t sb = bio->bi_iter.bi_sector;
1009 sector_t se = bio_end_sector(bio);
1010
1011 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1012
1013 if (se - sb < cache->discard_block_size)
1014 *e = *b;
1015 else
1016 *e = to_dblock(block_div(se, cache->discard_block_size));
1017 }
1018
1019 /*----------------------------------------------------------------*/
1020
prevent_background_work(struct cache * cache)1021 static void prevent_background_work(struct cache *cache)
1022 {
1023 lockdep_off();
1024 down_write(&cache->background_work_lock);
1025 lockdep_on();
1026 }
1027
allow_background_work(struct cache * cache)1028 static void allow_background_work(struct cache *cache)
1029 {
1030 lockdep_off();
1031 up_write(&cache->background_work_lock);
1032 lockdep_on();
1033 }
1034
background_work_begin(struct cache * cache)1035 static bool background_work_begin(struct cache *cache)
1036 {
1037 bool r;
1038
1039 lockdep_off();
1040 r = down_read_trylock(&cache->background_work_lock);
1041 lockdep_on();
1042
1043 return r;
1044 }
1045
background_work_end(struct cache * cache)1046 static void background_work_end(struct cache *cache)
1047 {
1048 lockdep_off();
1049 up_read(&cache->background_work_lock);
1050 lockdep_on();
1051 }
1052
1053 /*----------------------------------------------------------------*/
1054
bio_writes_complete_block(struct cache * cache,struct bio * bio)1055 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1056 {
1057 return (bio_data_dir(bio) == WRITE) &&
1058 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1059 }
1060
optimisable_bio(struct cache * cache,struct bio * bio,dm_oblock_t block)1061 static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1062 {
1063 return writeback_mode(cache) &&
1064 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1065 }
1066
quiesce(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1067 static void quiesce(struct dm_cache_migration *mg,
1068 void (*continuation)(struct work_struct *))
1069 {
1070 init_continuation(&mg->k, continuation);
1071 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1072 }
1073
ws_to_mg(struct work_struct * ws)1074 static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1075 {
1076 struct continuation *k = container_of(ws, struct continuation, ws);
1077 return container_of(k, struct dm_cache_migration, k);
1078 }
1079
copy_complete(int read_err,unsigned long write_err,void * context)1080 static void copy_complete(int read_err, unsigned long write_err, void *context)
1081 {
1082 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1083
1084 if (read_err || write_err)
1085 mg->k.input = BLK_STS_IOERR;
1086
1087 queue_continuation(mg->cache->wq, &mg->k);
1088 }
1089
copy(struct dm_cache_migration * mg,bool promote)1090 static void copy(struct dm_cache_migration *mg, bool promote)
1091 {
1092 struct dm_io_region o_region, c_region;
1093 struct cache *cache = mg->cache;
1094
1095 o_region.bdev = cache->origin_dev->bdev;
1096 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1097 o_region.count = cache->sectors_per_block;
1098
1099 c_region.bdev = cache->cache_dev->bdev;
1100 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1101 c_region.count = cache->sectors_per_block;
1102
1103 if (promote)
1104 dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1105 else
1106 dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1107 }
1108
bio_drop_shared_lock(struct cache * cache,struct bio * bio)1109 static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1110 {
1111 struct per_bio_data *pb = get_per_bio_data(bio);
1112
1113 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1114 free_prison_cell(cache, pb->cell);
1115 pb->cell = NULL;
1116 }
1117
overwrite_endio(struct bio * bio)1118 static void overwrite_endio(struct bio *bio)
1119 {
1120 struct dm_cache_migration *mg = bio->bi_private;
1121 struct cache *cache = mg->cache;
1122 struct per_bio_data *pb = get_per_bio_data(bio);
1123
1124 dm_unhook_bio(&pb->hook_info, bio);
1125
1126 if (bio->bi_status)
1127 mg->k.input = bio->bi_status;
1128
1129 queue_continuation(cache->wq, &mg->k);
1130 }
1131
overwrite(struct dm_cache_migration * mg,void (* continuation)(struct work_struct *))1132 static void overwrite(struct dm_cache_migration *mg,
1133 void (*continuation)(struct work_struct *))
1134 {
1135 struct bio *bio = mg->overwrite_bio;
1136 struct per_bio_data *pb = get_per_bio_data(bio);
1137
1138 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1139
1140 /*
1141 * The overwrite bio is part of the copy operation, as such it does
1142 * not set/clear discard or dirty flags.
1143 */
1144 if (mg->op->op == POLICY_PROMOTE)
1145 remap_to_cache(mg->cache, bio, mg->op->cblock);
1146 else
1147 remap_to_origin(mg->cache, bio);
1148
1149 init_continuation(&mg->k, continuation);
1150 accounted_request(mg->cache, bio);
1151 }
1152
1153 /*
1154 * Migration steps:
1155 *
1156 * 1) exclusive lock preventing WRITEs
1157 * 2) quiesce
1158 * 3) copy or issue overwrite bio
1159 * 4) upgrade to exclusive lock preventing READs and WRITEs
1160 * 5) quiesce
1161 * 6) update metadata and commit
1162 * 7) unlock
1163 */
mg_complete(struct dm_cache_migration * mg,bool success)1164 static void mg_complete(struct dm_cache_migration *mg, bool success)
1165 {
1166 struct bio_list bios;
1167 struct cache *cache = mg->cache;
1168 struct policy_work *op = mg->op;
1169 dm_cblock_t cblock = op->cblock;
1170
1171 if (success)
1172 update_stats(&cache->stats, op->op);
1173
1174 switch (op->op) {
1175 case POLICY_PROMOTE:
1176 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1177 policy_complete_background_work(cache->policy, op, success);
1178
1179 if (mg->overwrite_bio) {
1180 if (success)
1181 force_set_dirty(cache, cblock);
1182 else if (mg->k.input)
1183 mg->overwrite_bio->bi_status = mg->k.input;
1184 else
1185 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1186 bio_endio(mg->overwrite_bio);
1187 } else {
1188 if (success)
1189 force_clear_dirty(cache, cblock);
1190 dec_io_migrations(cache);
1191 }
1192 break;
1193
1194 case POLICY_DEMOTE:
1195 /*
1196 * We clear dirty here to update the nr_dirty counter.
1197 */
1198 if (success)
1199 force_clear_dirty(cache, cblock);
1200 policy_complete_background_work(cache->policy, op, success);
1201 dec_io_migrations(cache);
1202 break;
1203
1204 case POLICY_WRITEBACK:
1205 if (success)
1206 force_clear_dirty(cache, cblock);
1207 policy_complete_background_work(cache->policy, op, success);
1208 dec_io_migrations(cache);
1209 break;
1210 }
1211
1212 bio_list_init(&bios);
1213 if (mg->cell) {
1214 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1215 free_prison_cell(cache, mg->cell);
1216 }
1217
1218 free_migration(mg);
1219 defer_bios(cache, &bios);
1220 wake_migration_worker(cache);
1221
1222 background_work_end(cache);
1223 }
1224
mg_success(struct work_struct * ws)1225 static void mg_success(struct work_struct *ws)
1226 {
1227 struct dm_cache_migration *mg = ws_to_mg(ws);
1228 mg_complete(mg, mg->k.input == 0);
1229 }
1230
mg_update_metadata(struct work_struct * ws)1231 static void mg_update_metadata(struct work_struct *ws)
1232 {
1233 int r;
1234 struct dm_cache_migration *mg = ws_to_mg(ws);
1235 struct cache *cache = mg->cache;
1236 struct policy_work *op = mg->op;
1237
1238 switch (op->op) {
1239 case POLICY_PROMOTE:
1240 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1241 if (r) {
1242 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1243 cache_device_name(cache));
1244 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1245
1246 mg_complete(mg, false);
1247 return;
1248 }
1249 mg_complete(mg, true);
1250 break;
1251
1252 case POLICY_DEMOTE:
1253 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1254 if (r) {
1255 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1256 cache_device_name(cache));
1257 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1258
1259 mg_complete(mg, false);
1260 return;
1261 }
1262
1263 /*
1264 * It would be nice if we only had to commit when a REQ_FLUSH
1265 * comes through. But there's one scenario that we have to
1266 * look out for:
1267 *
1268 * - vblock x in a cache block
1269 * - domotion occurs
1270 * - cache block gets reallocated and over written
1271 * - crash
1272 *
1273 * When we recover, because there was no commit the cache will
1274 * rollback to having the data for vblock x in the cache block.
1275 * But the cache block has since been overwritten, so it'll end
1276 * up pointing to data that was never in 'x' during the history
1277 * of the device.
1278 *
1279 * To avoid this issue we require a commit as part of the
1280 * demotion operation.
1281 */
1282 init_continuation(&mg->k, mg_success);
1283 continue_after_commit(&cache->committer, &mg->k);
1284 schedule_commit(&cache->committer);
1285 break;
1286
1287 case POLICY_WRITEBACK:
1288 mg_complete(mg, true);
1289 break;
1290 }
1291 }
1292
mg_update_metadata_after_copy(struct work_struct * ws)1293 static void mg_update_metadata_after_copy(struct work_struct *ws)
1294 {
1295 struct dm_cache_migration *mg = ws_to_mg(ws);
1296
1297 /*
1298 * Did the copy succeed?
1299 */
1300 if (mg->k.input)
1301 mg_complete(mg, false);
1302 else
1303 mg_update_metadata(ws);
1304 }
1305
mg_upgrade_lock(struct work_struct * ws)1306 static void mg_upgrade_lock(struct work_struct *ws)
1307 {
1308 int r;
1309 struct dm_cache_migration *mg = ws_to_mg(ws);
1310
1311 /*
1312 * Did the copy succeed?
1313 */
1314 if (mg->k.input)
1315 mg_complete(mg, false);
1316
1317 else {
1318 /*
1319 * Now we want the lock to prevent both reads and writes.
1320 */
1321 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1322 READ_WRITE_LOCK_LEVEL);
1323 if (r < 0)
1324 mg_complete(mg, false);
1325
1326 else if (r)
1327 quiesce(mg, mg_update_metadata);
1328
1329 else
1330 mg_update_metadata(ws);
1331 }
1332 }
1333
mg_full_copy(struct work_struct * ws)1334 static void mg_full_copy(struct work_struct *ws)
1335 {
1336 struct dm_cache_migration *mg = ws_to_mg(ws);
1337 struct cache *cache = mg->cache;
1338 struct policy_work *op = mg->op;
1339 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1340
1341 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1342 is_discarded_oblock(cache, op->oblock)) {
1343 mg_upgrade_lock(ws);
1344 return;
1345 }
1346
1347 init_continuation(&mg->k, mg_upgrade_lock);
1348 copy(mg, is_policy_promote);
1349 }
1350
mg_copy(struct work_struct * ws)1351 static void mg_copy(struct work_struct *ws)
1352 {
1353 struct dm_cache_migration *mg = ws_to_mg(ws);
1354
1355 if (mg->overwrite_bio) {
1356 /*
1357 * No exclusive lock was held when we last checked if the bio
1358 * was optimisable. So we have to check again in case things
1359 * have changed (eg, the block may no longer be discarded).
1360 */
1361 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1362 /*
1363 * Fallback to a real full copy after doing some tidying up.
1364 */
1365 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1366 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1367 mg->overwrite_bio = NULL;
1368 inc_io_migrations(mg->cache);
1369 mg_full_copy(ws);
1370 return;
1371 }
1372
1373 /*
1374 * It's safe to do this here, even though it's new data
1375 * because all IO has been locked out of the block.
1376 *
1377 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1378 * so _not_ using mg_upgrade_lock() as continutation.
1379 */
1380 overwrite(mg, mg_update_metadata_after_copy);
1381
1382 } else
1383 mg_full_copy(ws);
1384 }
1385
mg_lock_writes(struct dm_cache_migration * mg)1386 static int mg_lock_writes(struct dm_cache_migration *mg)
1387 {
1388 int r;
1389 struct dm_cell_key_v2 key;
1390 struct cache *cache = mg->cache;
1391 struct dm_bio_prison_cell_v2 *prealloc;
1392
1393 prealloc = alloc_prison_cell(cache);
1394
1395 /*
1396 * Prevent writes to the block, but allow reads to continue.
1397 * Unless we're using an overwrite bio, in which case we lock
1398 * everything.
1399 */
1400 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1401 r = dm_cell_lock_v2(cache->prison, &key,
1402 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1403 prealloc, &mg->cell);
1404 if (r < 0) {
1405 free_prison_cell(cache, prealloc);
1406 mg_complete(mg, false);
1407 return r;
1408 }
1409
1410 if (mg->cell != prealloc)
1411 free_prison_cell(cache, prealloc);
1412
1413 if (r == 0)
1414 mg_copy(&mg->k.ws);
1415 else
1416 quiesce(mg, mg_copy);
1417
1418 return 0;
1419 }
1420
mg_start(struct cache * cache,struct policy_work * op,struct bio * bio)1421 static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1422 {
1423 struct dm_cache_migration *mg;
1424
1425 if (!background_work_begin(cache)) {
1426 policy_complete_background_work(cache->policy, op, false);
1427 return -EPERM;
1428 }
1429
1430 mg = alloc_migration(cache);
1431
1432 mg->op = op;
1433 mg->overwrite_bio = bio;
1434
1435 if (!bio)
1436 inc_io_migrations(cache);
1437
1438 return mg_lock_writes(mg);
1439 }
1440
1441 /*----------------------------------------------------------------
1442 * invalidation processing
1443 *--------------------------------------------------------------*/
1444
invalidate_complete(struct dm_cache_migration * mg,bool success)1445 static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1446 {
1447 struct bio_list bios;
1448 struct cache *cache = mg->cache;
1449
1450 bio_list_init(&bios);
1451 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1452 free_prison_cell(cache, mg->cell);
1453
1454 if (!success && mg->overwrite_bio)
1455 bio_io_error(mg->overwrite_bio);
1456
1457 free_migration(mg);
1458 defer_bios(cache, &bios);
1459
1460 background_work_end(cache);
1461 }
1462
invalidate_completed(struct work_struct * ws)1463 static void invalidate_completed(struct work_struct *ws)
1464 {
1465 struct dm_cache_migration *mg = ws_to_mg(ws);
1466 invalidate_complete(mg, !mg->k.input);
1467 }
1468
invalidate_cblock(struct cache * cache,dm_cblock_t cblock)1469 static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1470 {
1471 int r = policy_invalidate_mapping(cache->policy, cblock);
1472 if (!r) {
1473 r = dm_cache_remove_mapping(cache->cmd, cblock);
1474 if (r) {
1475 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1476 cache_device_name(cache));
1477 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1478 }
1479
1480 } else if (r == -ENODATA) {
1481 /*
1482 * Harmless, already unmapped.
1483 */
1484 r = 0;
1485
1486 } else
1487 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1488
1489 return r;
1490 }
1491
invalidate_remove(struct work_struct * ws)1492 static void invalidate_remove(struct work_struct *ws)
1493 {
1494 int r;
1495 struct dm_cache_migration *mg = ws_to_mg(ws);
1496 struct cache *cache = mg->cache;
1497
1498 r = invalidate_cblock(cache, mg->invalidate_cblock);
1499 if (r) {
1500 invalidate_complete(mg, false);
1501 return;
1502 }
1503
1504 init_continuation(&mg->k, invalidate_completed);
1505 continue_after_commit(&cache->committer, &mg->k);
1506 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1507 mg->overwrite_bio = NULL;
1508 schedule_commit(&cache->committer);
1509 }
1510
invalidate_lock(struct dm_cache_migration * mg)1511 static int invalidate_lock(struct dm_cache_migration *mg)
1512 {
1513 int r;
1514 struct dm_cell_key_v2 key;
1515 struct cache *cache = mg->cache;
1516 struct dm_bio_prison_cell_v2 *prealloc;
1517
1518 prealloc = alloc_prison_cell(cache);
1519
1520 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1521 r = dm_cell_lock_v2(cache->prison, &key,
1522 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1523 if (r < 0) {
1524 free_prison_cell(cache, prealloc);
1525 invalidate_complete(mg, false);
1526 return r;
1527 }
1528
1529 if (mg->cell != prealloc)
1530 free_prison_cell(cache, prealloc);
1531
1532 if (r)
1533 quiesce(mg, invalidate_remove);
1534
1535 else {
1536 /*
1537 * We can't call invalidate_remove() directly here because we
1538 * might still be in request context.
1539 */
1540 init_continuation(&mg->k, invalidate_remove);
1541 queue_work(cache->wq, &mg->k.ws);
1542 }
1543
1544 return 0;
1545 }
1546
invalidate_start(struct cache * cache,dm_cblock_t cblock,dm_oblock_t oblock,struct bio * bio)1547 static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1548 dm_oblock_t oblock, struct bio *bio)
1549 {
1550 struct dm_cache_migration *mg;
1551
1552 if (!background_work_begin(cache))
1553 return -EPERM;
1554
1555 mg = alloc_migration(cache);
1556
1557 mg->overwrite_bio = bio;
1558 mg->invalidate_cblock = cblock;
1559 mg->invalidate_oblock = oblock;
1560
1561 return invalidate_lock(mg);
1562 }
1563
1564 /*----------------------------------------------------------------
1565 * bio processing
1566 *--------------------------------------------------------------*/
1567
1568 enum busy {
1569 IDLE,
1570 BUSY
1571 };
1572
spare_migration_bandwidth(struct cache * cache)1573 static enum busy spare_migration_bandwidth(struct cache *cache)
1574 {
1575 bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1576 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1577 cache->sectors_per_block;
1578
1579 if (idle && current_volume <= cache->migration_threshold)
1580 return IDLE;
1581 else
1582 return BUSY;
1583 }
1584
inc_hit_counter(struct cache * cache,struct bio * bio)1585 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1586 {
1587 atomic_inc(bio_data_dir(bio) == READ ?
1588 &cache->stats.read_hit : &cache->stats.write_hit);
1589 }
1590
inc_miss_counter(struct cache * cache,struct bio * bio)1591 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1592 {
1593 atomic_inc(bio_data_dir(bio) == READ ?
1594 &cache->stats.read_miss : &cache->stats.write_miss);
1595 }
1596
1597 /*----------------------------------------------------------------*/
1598
map_bio(struct cache * cache,struct bio * bio,dm_oblock_t block,bool * commit_needed)1599 static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1600 bool *commit_needed)
1601 {
1602 int r, data_dir;
1603 bool rb, background_queued;
1604 dm_cblock_t cblock;
1605
1606 *commit_needed = false;
1607
1608 rb = bio_detain_shared(cache, block, bio);
1609 if (!rb) {
1610 /*
1611 * An exclusive lock is held for this block, so we have to
1612 * wait. We set the commit_needed flag so the current
1613 * transaction will be committed asap, allowing this lock
1614 * to be dropped.
1615 */
1616 *commit_needed = true;
1617 return DM_MAPIO_SUBMITTED;
1618 }
1619
1620 data_dir = bio_data_dir(bio);
1621
1622 if (optimisable_bio(cache, bio, block)) {
1623 struct policy_work *op = NULL;
1624
1625 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1626 if (unlikely(r && r != -ENOENT)) {
1627 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1628 cache_device_name(cache), r);
1629 bio_io_error(bio);
1630 return DM_MAPIO_SUBMITTED;
1631 }
1632
1633 if (r == -ENOENT && op) {
1634 bio_drop_shared_lock(cache, bio);
1635 BUG_ON(op->op != POLICY_PROMOTE);
1636 mg_start(cache, op, bio);
1637 return DM_MAPIO_SUBMITTED;
1638 }
1639 } else {
1640 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1641 if (unlikely(r && r != -ENOENT)) {
1642 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1643 cache_device_name(cache), r);
1644 bio_io_error(bio);
1645 return DM_MAPIO_SUBMITTED;
1646 }
1647
1648 if (background_queued)
1649 wake_migration_worker(cache);
1650 }
1651
1652 if (r == -ENOENT) {
1653 struct per_bio_data *pb = get_per_bio_data(bio);
1654
1655 /*
1656 * Miss.
1657 */
1658 inc_miss_counter(cache, bio);
1659 if (pb->req_nr == 0) {
1660 accounted_begin(cache, bio);
1661 remap_to_origin_clear_discard(cache, bio, block);
1662 } else {
1663 /*
1664 * This is a duplicate writethrough io that is no
1665 * longer needed because the block has been demoted.
1666 */
1667 bio_endio(bio);
1668 return DM_MAPIO_SUBMITTED;
1669 }
1670 } else {
1671 /*
1672 * Hit.
1673 */
1674 inc_hit_counter(cache, bio);
1675
1676 /*
1677 * Passthrough always maps to the origin, invalidating any
1678 * cache blocks that are written to.
1679 */
1680 if (passthrough_mode(cache)) {
1681 if (bio_data_dir(bio) == WRITE) {
1682 bio_drop_shared_lock(cache, bio);
1683 atomic_inc(&cache->stats.demotion);
1684 invalidate_start(cache, cblock, block, bio);
1685 } else
1686 remap_to_origin_clear_discard(cache, bio, block);
1687 } else {
1688 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1689 !is_dirty(cache, cblock)) {
1690 remap_to_origin_and_cache(cache, bio, block, cblock);
1691 accounted_begin(cache, bio);
1692 } else
1693 remap_to_cache_dirty(cache, bio, block, cblock);
1694 }
1695 }
1696
1697 /*
1698 * dm core turns FUA requests into a separate payload and FLUSH req.
1699 */
1700 if (bio->bi_opf & REQ_FUA) {
1701 /*
1702 * issue_after_commit will call accounted_begin a second time. So
1703 * we call accounted_complete() to avoid double accounting.
1704 */
1705 accounted_complete(cache, bio);
1706 issue_after_commit(&cache->committer, bio);
1707 *commit_needed = true;
1708 return DM_MAPIO_SUBMITTED;
1709 }
1710
1711 return DM_MAPIO_REMAPPED;
1712 }
1713
process_bio(struct cache * cache,struct bio * bio)1714 static bool process_bio(struct cache *cache, struct bio *bio)
1715 {
1716 bool commit_needed;
1717
1718 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1719 submit_bio_noacct(bio);
1720
1721 return commit_needed;
1722 }
1723
1724 /*
1725 * A non-zero return indicates read_only or fail_io mode.
1726 */
commit(struct cache * cache,bool clean_shutdown)1727 static int commit(struct cache *cache, bool clean_shutdown)
1728 {
1729 int r;
1730
1731 if (get_cache_mode(cache) >= CM_READ_ONLY)
1732 return -EINVAL;
1733
1734 atomic_inc(&cache->stats.commit_count);
1735 r = dm_cache_commit(cache->cmd, clean_shutdown);
1736 if (r)
1737 metadata_operation_failed(cache, "dm_cache_commit", r);
1738
1739 return r;
1740 }
1741
1742 /*
1743 * Used by the batcher.
1744 */
commit_op(void * context)1745 static blk_status_t commit_op(void *context)
1746 {
1747 struct cache *cache = context;
1748
1749 if (dm_cache_changed_this_transaction(cache->cmd))
1750 return errno_to_blk_status(commit(cache, false));
1751
1752 return 0;
1753 }
1754
1755 /*----------------------------------------------------------------*/
1756
process_flush_bio(struct cache * cache,struct bio * bio)1757 static bool process_flush_bio(struct cache *cache, struct bio *bio)
1758 {
1759 struct per_bio_data *pb = get_per_bio_data(bio);
1760
1761 if (!pb->req_nr)
1762 remap_to_origin(cache, bio);
1763 else
1764 remap_to_cache(cache, bio, 0);
1765
1766 issue_after_commit(&cache->committer, bio);
1767 return true;
1768 }
1769
process_discard_bio(struct cache * cache,struct bio * bio)1770 static bool process_discard_bio(struct cache *cache, struct bio *bio)
1771 {
1772 dm_dblock_t b, e;
1773
1774 // FIXME: do we need to lock the region? Or can we just assume the
1775 // user wont be so foolish as to issue discard concurrently with
1776 // other IO?
1777 calc_discard_block_range(cache, bio, &b, &e);
1778 while (b != e) {
1779 set_discard(cache, b);
1780 b = to_dblock(from_dblock(b) + 1);
1781 }
1782
1783 if (cache->features.discard_passdown) {
1784 remap_to_origin(cache, bio);
1785 submit_bio_noacct(bio);
1786 } else
1787 bio_endio(bio);
1788
1789 return false;
1790 }
1791
process_deferred_bios(struct work_struct * ws)1792 static void process_deferred_bios(struct work_struct *ws)
1793 {
1794 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1795
1796 bool commit_needed = false;
1797 struct bio_list bios;
1798 struct bio *bio;
1799
1800 bio_list_init(&bios);
1801
1802 spin_lock_irq(&cache->lock);
1803 bio_list_merge(&bios, &cache->deferred_bios);
1804 bio_list_init(&cache->deferred_bios);
1805 spin_unlock_irq(&cache->lock);
1806
1807 while ((bio = bio_list_pop(&bios))) {
1808 if (bio->bi_opf & REQ_PREFLUSH)
1809 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1810
1811 else if (bio_op(bio) == REQ_OP_DISCARD)
1812 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1813
1814 else
1815 commit_needed = process_bio(cache, bio) || commit_needed;
1816 cond_resched();
1817 }
1818
1819 if (commit_needed)
1820 schedule_commit(&cache->committer);
1821 }
1822
1823 /*----------------------------------------------------------------
1824 * Main worker loop
1825 *--------------------------------------------------------------*/
1826
requeue_deferred_bios(struct cache * cache)1827 static void requeue_deferred_bios(struct cache *cache)
1828 {
1829 struct bio *bio;
1830 struct bio_list bios;
1831
1832 bio_list_init(&bios);
1833 bio_list_merge(&bios, &cache->deferred_bios);
1834 bio_list_init(&cache->deferred_bios);
1835
1836 while ((bio = bio_list_pop(&bios))) {
1837 bio->bi_status = BLK_STS_DM_REQUEUE;
1838 bio_endio(bio);
1839 cond_resched();
1840 }
1841 }
1842
1843 /*
1844 * We want to commit periodically so that not too much
1845 * unwritten metadata builds up.
1846 */
do_waker(struct work_struct * ws)1847 static void do_waker(struct work_struct *ws)
1848 {
1849 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1850
1851 policy_tick(cache->policy, true);
1852 wake_migration_worker(cache);
1853 schedule_commit(&cache->committer);
1854 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1855 }
1856
check_migrations(struct work_struct * ws)1857 static void check_migrations(struct work_struct *ws)
1858 {
1859 int r;
1860 struct policy_work *op;
1861 struct cache *cache = container_of(ws, struct cache, migration_worker);
1862 enum busy b;
1863
1864 for (;;) {
1865 b = spare_migration_bandwidth(cache);
1866
1867 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1868 if (r == -ENODATA)
1869 break;
1870
1871 if (r) {
1872 DMERR_LIMIT("%s: policy_background_work failed",
1873 cache_device_name(cache));
1874 break;
1875 }
1876
1877 r = mg_start(cache, op, NULL);
1878 if (r)
1879 break;
1880
1881 cond_resched();
1882 }
1883 }
1884
1885 /*----------------------------------------------------------------
1886 * Target methods
1887 *--------------------------------------------------------------*/
1888
1889 /*
1890 * This function gets called on the error paths of the constructor, so we
1891 * have to cope with a partially initialised struct.
1892 */
destroy(struct cache * cache)1893 static void destroy(struct cache *cache)
1894 {
1895 unsigned i;
1896
1897 mempool_exit(&cache->migration_pool);
1898
1899 if (cache->prison)
1900 dm_bio_prison_destroy_v2(cache->prison);
1901
1902 cancel_delayed_work_sync(&cache->waker);
1903 if (cache->wq)
1904 destroy_workqueue(cache->wq);
1905
1906 if (cache->dirty_bitset)
1907 free_bitset(cache->dirty_bitset);
1908
1909 if (cache->discard_bitset)
1910 free_bitset(cache->discard_bitset);
1911
1912 if (cache->copier)
1913 dm_kcopyd_client_destroy(cache->copier);
1914
1915 if (cache->cmd)
1916 dm_cache_metadata_close(cache->cmd);
1917
1918 if (cache->metadata_dev)
1919 dm_put_device(cache->ti, cache->metadata_dev);
1920
1921 if (cache->origin_dev)
1922 dm_put_device(cache->ti, cache->origin_dev);
1923
1924 if (cache->cache_dev)
1925 dm_put_device(cache->ti, cache->cache_dev);
1926
1927 if (cache->policy)
1928 dm_cache_policy_destroy(cache->policy);
1929
1930 for (i = 0; i < cache->nr_ctr_args ; i++)
1931 kfree(cache->ctr_args[i]);
1932 kfree(cache->ctr_args);
1933
1934 bioset_exit(&cache->bs);
1935
1936 kfree(cache);
1937 }
1938
cache_dtr(struct dm_target * ti)1939 static void cache_dtr(struct dm_target *ti)
1940 {
1941 struct cache *cache = ti->private;
1942
1943 destroy(cache);
1944 }
1945
get_dev_size(struct dm_dev * dev)1946 static sector_t get_dev_size(struct dm_dev *dev)
1947 {
1948 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1949 }
1950
1951 /*----------------------------------------------------------------*/
1952
1953 /*
1954 * Construct a cache device mapping.
1955 *
1956 * cache <metadata dev> <cache dev> <origin dev> <block size>
1957 * <#feature args> [<feature arg>]*
1958 * <policy> <#policy args> [<policy arg>]*
1959 *
1960 * metadata dev : fast device holding the persistent metadata
1961 * cache dev : fast device holding cached data blocks
1962 * origin dev : slow device holding original data blocks
1963 * block size : cache unit size in sectors
1964 *
1965 * #feature args : number of feature arguments passed
1966 * feature args : writethrough. (The default is writeback.)
1967 *
1968 * policy : the replacement policy to use
1969 * #policy args : an even number of policy arguments corresponding
1970 * to key/value pairs passed to the policy
1971 * policy args : key/value pairs passed to the policy
1972 * E.g. 'sequential_threshold 1024'
1973 * See cache-policies.txt for details.
1974 *
1975 * Optional feature arguments are:
1976 * writethrough : write through caching that prohibits cache block
1977 * content from being different from origin block content.
1978 * Without this argument, the default behaviour is to write
1979 * back cache block contents later for performance reasons,
1980 * so they may differ from the corresponding origin blocks.
1981 */
1982 struct cache_args {
1983 struct dm_target *ti;
1984
1985 struct dm_dev *metadata_dev;
1986
1987 struct dm_dev *cache_dev;
1988 sector_t cache_sectors;
1989
1990 struct dm_dev *origin_dev;
1991 sector_t origin_sectors;
1992
1993 uint32_t block_size;
1994
1995 const char *policy_name;
1996 int policy_argc;
1997 const char **policy_argv;
1998
1999 struct cache_features features;
2000 };
2001
destroy_cache_args(struct cache_args * ca)2002 static void destroy_cache_args(struct cache_args *ca)
2003 {
2004 if (ca->metadata_dev)
2005 dm_put_device(ca->ti, ca->metadata_dev);
2006
2007 if (ca->cache_dev)
2008 dm_put_device(ca->ti, ca->cache_dev);
2009
2010 if (ca->origin_dev)
2011 dm_put_device(ca->ti, ca->origin_dev);
2012
2013 kfree(ca);
2014 }
2015
at_least_one_arg(struct dm_arg_set * as,char ** error)2016 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2017 {
2018 if (!as->argc) {
2019 *error = "Insufficient args";
2020 return false;
2021 }
2022
2023 return true;
2024 }
2025
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2026 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2027 char **error)
2028 {
2029 int r;
2030 sector_t metadata_dev_size;
2031 char b[BDEVNAME_SIZE];
2032
2033 if (!at_least_one_arg(as, error))
2034 return -EINVAL;
2035
2036 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2037 &ca->metadata_dev);
2038 if (r) {
2039 *error = "Error opening metadata device";
2040 return r;
2041 }
2042
2043 metadata_dev_size = get_dev_size(ca->metadata_dev);
2044 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2045 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2046 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2047
2048 return 0;
2049 }
2050
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2051 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2052 char **error)
2053 {
2054 int r;
2055
2056 if (!at_least_one_arg(as, error))
2057 return -EINVAL;
2058
2059 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2060 &ca->cache_dev);
2061 if (r) {
2062 *error = "Error opening cache device";
2063 return r;
2064 }
2065 ca->cache_sectors = get_dev_size(ca->cache_dev);
2066
2067 return 0;
2068 }
2069
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2070 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2071 char **error)
2072 {
2073 int r;
2074
2075 if (!at_least_one_arg(as, error))
2076 return -EINVAL;
2077
2078 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2079 &ca->origin_dev);
2080 if (r) {
2081 *error = "Error opening origin device";
2082 return r;
2083 }
2084
2085 ca->origin_sectors = get_dev_size(ca->origin_dev);
2086 if (ca->ti->len > ca->origin_sectors) {
2087 *error = "Device size larger than cached device";
2088 return -EINVAL;
2089 }
2090
2091 return 0;
2092 }
2093
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2094 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2095 char **error)
2096 {
2097 unsigned long block_size;
2098
2099 if (!at_least_one_arg(as, error))
2100 return -EINVAL;
2101
2102 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2103 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2104 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2105 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2106 *error = "Invalid data block size";
2107 return -EINVAL;
2108 }
2109
2110 if (block_size > ca->cache_sectors) {
2111 *error = "Data block size is larger than the cache device";
2112 return -EINVAL;
2113 }
2114
2115 ca->block_size = block_size;
2116
2117 return 0;
2118 }
2119
init_features(struct cache_features * cf)2120 static void init_features(struct cache_features *cf)
2121 {
2122 cf->mode = CM_WRITE;
2123 cf->io_mode = CM_IO_WRITEBACK;
2124 cf->metadata_version = 1;
2125 cf->discard_passdown = true;
2126 }
2127
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2128 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2129 char **error)
2130 {
2131 static const struct dm_arg _args[] = {
2132 {0, 3, "Invalid number of cache feature arguments"},
2133 };
2134
2135 int r, mode_ctr = 0;
2136 unsigned argc;
2137 const char *arg;
2138 struct cache_features *cf = &ca->features;
2139
2140 init_features(cf);
2141
2142 r = dm_read_arg_group(_args, as, &argc, error);
2143 if (r)
2144 return -EINVAL;
2145
2146 while (argc--) {
2147 arg = dm_shift_arg(as);
2148
2149 if (!strcasecmp(arg, "writeback")) {
2150 cf->io_mode = CM_IO_WRITEBACK;
2151 mode_ctr++;
2152 }
2153
2154 else if (!strcasecmp(arg, "writethrough")) {
2155 cf->io_mode = CM_IO_WRITETHROUGH;
2156 mode_ctr++;
2157 }
2158
2159 else if (!strcasecmp(arg, "passthrough")) {
2160 cf->io_mode = CM_IO_PASSTHROUGH;
2161 mode_ctr++;
2162 }
2163
2164 else if (!strcasecmp(arg, "metadata2"))
2165 cf->metadata_version = 2;
2166
2167 else if (!strcasecmp(arg, "no_discard_passdown"))
2168 cf->discard_passdown = false;
2169
2170 else {
2171 *error = "Unrecognised cache feature requested";
2172 return -EINVAL;
2173 }
2174 }
2175
2176 if (mode_ctr > 1) {
2177 *error = "Duplicate cache io_mode features requested";
2178 return -EINVAL;
2179 }
2180
2181 return 0;
2182 }
2183
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2184 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2185 char **error)
2186 {
2187 static const struct dm_arg _args[] = {
2188 {0, 1024, "Invalid number of policy arguments"},
2189 };
2190
2191 int r;
2192
2193 if (!at_least_one_arg(as, error))
2194 return -EINVAL;
2195
2196 ca->policy_name = dm_shift_arg(as);
2197
2198 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2199 if (r)
2200 return -EINVAL;
2201
2202 ca->policy_argv = (const char **)as->argv;
2203 dm_consume_args(as, ca->policy_argc);
2204
2205 return 0;
2206 }
2207
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2208 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2209 char **error)
2210 {
2211 int r;
2212 struct dm_arg_set as;
2213
2214 as.argc = argc;
2215 as.argv = argv;
2216
2217 r = parse_metadata_dev(ca, &as, error);
2218 if (r)
2219 return r;
2220
2221 r = parse_cache_dev(ca, &as, error);
2222 if (r)
2223 return r;
2224
2225 r = parse_origin_dev(ca, &as, error);
2226 if (r)
2227 return r;
2228
2229 r = parse_block_size(ca, &as, error);
2230 if (r)
2231 return r;
2232
2233 r = parse_features(ca, &as, error);
2234 if (r)
2235 return r;
2236
2237 r = parse_policy(ca, &as, error);
2238 if (r)
2239 return r;
2240
2241 return 0;
2242 }
2243
2244 /*----------------------------------------------------------------*/
2245
2246 static struct kmem_cache *migration_cache;
2247
2248 #define NOT_CORE_OPTION 1
2249
process_config_option(struct cache * cache,const char * key,const char * value)2250 static int process_config_option(struct cache *cache, const char *key, const char *value)
2251 {
2252 unsigned long tmp;
2253
2254 if (!strcasecmp(key, "migration_threshold")) {
2255 if (kstrtoul(value, 10, &tmp))
2256 return -EINVAL;
2257
2258 cache->migration_threshold = tmp;
2259 return 0;
2260 }
2261
2262 return NOT_CORE_OPTION;
2263 }
2264
set_config_value(struct cache * cache,const char * key,const char * value)2265 static int set_config_value(struct cache *cache, const char *key, const char *value)
2266 {
2267 int r = process_config_option(cache, key, value);
2268
2269 if (r == NOT_CORE_OPTION)
2270 r = policy_set_config_value(cache->policy, key, value);
2271
2272 if (r)
2273 DMWARN("bad config value for %s: %s", key, value);
2274
2275 return r;
2276 }
2277
set_config_values(struct cache * cache,int argc,const char ** argv)2278 static int set_config_values(struct cache *cache, int argc, const char **argv)
2279 {
2280 int r = 0;
2281
2282 if (argc & 1) {
2283 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2284 return -EINVAL;
2285 }
2286
2287 while (argc) {
2288 r = set_config_value(cache, argv[0], argv[1]);
2289 if (r)
2290 break;
2291
2292 argc -= 2;
2293 argv += 2;
2294 }
2295
2296 return r;
2297 }
2298
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2299 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2300 char **error)
2301 {
2302 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2303 cache->cache_size,
2304 cache->origin_sectors,
2305 cache->sectors_per_block);
2306 if (IS_ERR(p)) {
2307 *error = "Error creating cache's policy";
2308 return PTR_ERR(p);
2309 }
2310 cache->policy = p;
2311 BUG_ON(!cache->policy);
2312
2313 return 0;
2314 }
2315
2316 /*
2317 * We want the discard block size to be at least the size of the cache
2318 * block size and have no more than 2^14 discard blocks across the origin.
2319 */
2320 #define MAX_DISCARD_BLOCKS (1 << 14)
2321
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2322 static bool too_many_discard_blocks(sector_t discard_block_size,
2323 sector_t origin_size)
2324 {
2325 (void) sector_div(origin_size, discard_block_size);
2326
2327 return origin_size > MAX_DISCARD_BLOCKS;
2328 }
2329
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2330 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2331 sector_t origin_size)
2332 {
2333 sector_t discard_block_size = cache_block_size;
2334
2335 if (origin_size)
2336 while (too_many_discard_blocks(discard_block_size, origin_size))
2337 discard_block_size *= 2;
2338
2339 return discard_block_size;
2340 }
2341
set_cache_size(struct cache * cache,dm_cblock_t size)2342 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2343 {
2344 dm_block_t nr_blocks = from_cblock(size);
2345
2346 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2347 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2348 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2349 "Please consider increasing the cache block size to reduce the overall cache block count.",
2350 (unsigned long long) nr_blocks);
2351
2352 cache->cache_size = size;
2353 }
2354
2355 #define DEFAULT_MIGRATION_THRESHOLD 2048
2356
cache_create(struct cache_args * ca,struct cache ** result)2357 static int cache_create(struct cache_args *ca, struct cache **result)
2358 {
2359 int r = 0;
2360 char **error = &ca->ti->error;
2361 struct cache *cache;
2362 struct dm_target *ti = ca->ti;
2363 dm_block_t origin_blocks;
2364 struct dm_cache_metadata *cmd;
2365 bool may_format = ca->features.mode == CM_WRITE;
2366
2367 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2368 if (!cache)
2369 return -ENOMEM;
2370
2371 cache->ti = ca->ti;
2372 ti->private = cache;
2373 ti->num_flush_bios = 2;
2374 ti->flush_supported = true;
2375
2376 ti->num_discard_bios = 1;
2377 ti->discards_supported = true;
2378
2379 ti->per_io_data_size = sizeof(struct per_bio_data);
2380
2381 cache->features = ca->features;
2382 if (writethrough_mode(cache)) {
2383 /* Create bioset for writethrough bios issued to origin */
2384 r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2385 if (r)
2386 goto bad;
2387 }
2388
2389 cache->metadata_dev = ca->metadata_dev;
2390 cache->origin_dev = ca->origin_dev;
2391 cache->cache_dev = ca->cache_dev;
2392
2393 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2394
2395 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2396 origin_blocks = block_div(origin_blocks, ca->block_size);
2397 cache->origin_blocks = to_oblock(origin_blocks);
2398
2399 cache->sectors_per_block = ca->block_size;
2400 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2401 r = -EINVAL;
2402 goto bad;
2403 }
2404
2405 if (ca->block_size & (ca->block_size - 1)) {
2406 dm_block_t cache_size = ca->cache_sectors;
2407
2408 cache->sectors_per_block_shift = -1;
2409 cache_size = block_div(cache_size, ca->block_size);
2410 set_cache_size(cache, to_cblock(cache_size));
2411 } else {
2412 cache->sectors_per_block_shift = __ffs(ca->block_size);
2413 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2414 }
2415
2416 r = create_cache_policy(cache, ca, error);
2417 if (r)
2418 goto bad;
2419
2420 cache->policy_nr_args = ca->policy_argc;
2421 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2422
2423 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2424 if (r) {
2425 *error = "Error setting cache policy's config values";
2426 goto bad;
2427 }
2428
2429 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2430 ca->block_size, may_format,
2431 dm_cache_policy_get_hint_size(cache->policy),
2432 ca->features.metadata_version);
2433 if (IS_ERR(cmd)) {
2434 *error = "Error creating metadata object";
2435 r = PTR_ERR(cmd);
2436 goto bad;
2437 }
2438 cache->cmd = cmd;
2439 set_cache_mode(cache, CM_WRITE);
2440 if (get_cache_mode(cache) != CM_WRITE) {
2441 *error = "Unable to get write access to metadata, please check/repair metadata.";
2442 r = -EINVAL;
2443 goto bad;
2444 }
2445
2446 if (passthrough_mode(cache)) {
2447 bool all_clean;
2448
2449 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2450 if (r) {
2451 *error = "dm_cache_metadata_all_clean() failed";
2452 goto bad;
2453 }
2454
2455 if (!all_clean) {
2456 *error = "Cannot enter passthrough mode unless all blocks are clean";
2457 r = -EINVAL;
2458 goto bad;
2459 }
2460
2461 policy_allow_migrations(cache->policy, false);
2462 }
2463
2464 spin_lock_init(&cache->lock);
2465 bio_list_init(&cache->deferred_bios);
2466 atomic_set(&cache->nr_allocated_migrations, 0);
2467 atomic_set(&cache->nr_io_migrations, 0);
2468 init_waitqueue_head(&cache->migration_wait);
2469
2470 r = -ENOMEM;
2471 atomic_set(&cache->nr_dirty, 0);
2472 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2473 if (!cache->dirty_bitset) {
2474 *error = "could not allocate dirty bitset";
2475 goto bad;
2476 }
2477 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2478
2479 cache->discard_block_size =
2480 calculate_discard_block_size(cache->sectors_per_block,
2481 cache->origin_sectors);
2482 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2483 cache->discard_block_size));
2484 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2485 if (!cache->discard_bitset) {
2486 *error = "could not allocate discard bitset";
2487 goto bad;
2488 }
2489 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2490
2491 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2492 if (IS_ERR(cache->copier)) {
2493 *error = "could not create kcopyd client";
2494 r = PTR_ERR(cache->copier);
2495 goto bad;
2496 }
2497
2498 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2499 if (!cache->wq) {
2500 *error = "could not create workqueue for metadata object";
2501 goto bad;
2502 }
2503 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2504 INIT_WORK(&cache->migration_worker, check_migrations);
2505 INIT_DELAYED_WORK(&cache->waker, do_waker);
2506
2507 cache->prison = dm_bio_prison_create_v2(cache->wq);
2508 if (!cache->prison) {
2509 *error = "could not create bio prison";
2510 goto bad;
2511 }
2512
2513 r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2514 migration_cache);
2515 if (r) {
2516 *error = "Error creating cache's migration mempool";
2517 goto bad;
2518 }
2519
2520 cache->need_tick_bio = true;
2521 cache->sized = false;
2522 cache->invalidate = false;
2523 cache->commit_requested = false;
2524 cache->loaded_mappings = false;
2525 cache->loaded_discards = false;
2526
2527 load_stats(cache);
2528
2529 atomic_set(&cache->stats.demotion, 0);
2530 atomic_set(&cache->stats.promotion, 0);
2531 atomic_set(&cache->stats.copies_avoided, 0);
2532 atomic_set(&cache->stats.cache_cell_clash, 0);
2533 atomic_set(&cache->stats.commit_count, 0);
2534 atomic_set(&cache->stats.discard_count, 0);
2535
2536 spin_lock_init(&cache->invalidation_lock);
2537 INIT_LIST_HEAD(&cache->invalidation_requests);
2538
2539 batcher_init(&cache->committer, commit_op, cache,
2540 issue_op, cache, cache->wq);
2541 dm_iot_init(&cache->tracker);
2542
2543 init_rwsem(&cache->background_work_lock);
2544 prevent_background_work(cache);
2545
2546 *result = cache;
2547 return 0;
2548 bad:
2549 destroy(cache);
2550 return r;
2551 }
2552
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2553 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2554 {
2555 unsigned i;
2556 const char **copy;
2557
2558 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2559 if (!copy)
2560 return -ENOMEM;
2561 for (i = 0; i < argc; i++) {
2562 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2563 if (!copy[i]) {
2564 while (i--)
2565 kfree(copy[i]);
2566 kfree(copy);
2567 return -ENOMEM;
2568 }
2569 }
2570
2571 cache->nr_ctr_args = argc;
2572 cache->ctr_args = copy;
2573
2574 return 0;
2575 }
2576
cache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2577 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2578 {
2579 int r = -EINVAL;
2580 struct cache_args *ca;
2581 struct cache *cache = NULL;
2582
2583 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2584 if (!ca) {
2585 ti->error = "Error allocating memory for cache";
2586 return -ENOMEM;
2587 }
2588 ca->ti = ti;
2589
2590 r = parse_cache_args(ca, argc, argv, &ti->error);
2591 if (r)
2592 goto out;
2593
2594 r = cache_create(ca, &cache);
2595 if (r)
2596 goto out;
2597
2598 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2599 if (r) {
2600 destroy(cache);
2601 goto out;
2602 }
2603
2604 ti->private = cache;
2605 out:
2606 destroy_cache_args(ca);
2607 return r;
2608 }
2609
2610 /*----------------------------------------------------------------*/
2611
cache_map(struct dm_target * ti,struct bio * bio)2612 static int cache_map(struct dm_target *ti, struct bio *bio)
2613 {
2614 struct cache *cache = ti->private;
2615
2616 int r;
2617 bool commit_needed;
2618 dm_oblock_t block = get_bio_block(cache, bio);
2619
2620 init_per_bio_data(bio);
2621 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2622 /*
2623 * This can only occur if the io goes to a partial block at
2624 * the end of the origin device. We don't cache these.
2625 * Just remap to the origin and carry on.
2626 */
2627 remap_to_origin(cache, bio);
2628 accounted_begin(cache, bio);
2629 return DM_MAPIO_REMAPPED;
2630 }
2631
2632 if (discard_or_flush(bio)) {
2633 defer_bio(cache, bio);
2634 return DM_MAPIO_SUBMITTED;
2635 }
2636
2637 r = map_bio(cache, bio, block, &commit_needed);
2638 if (commit_needed)
2639 schedule_commit(&cache->committer);
2640
2641 return r;
2642 }
2643
cache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)2644 static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2645 {
2646 struct cache *cache = ti->private;
2647 unsigned long flags;
2648 struct per_bio_data *pb = get_per_bio_data(bio);
2649
2650 if (pb->tick) {
2651 policy_tick(cache->policy, false);
2652
2653 spin_lock_irqsave(&cache->lock, flags);
2654 cache->need_tick_bio = true;
2655 spin_unlock_irqrestore(&cache->lock, flags);
2656 }
2657
2658 bio_drop_shared_lock(cache, bio);
2659 accounted_complete(cache, bio);
2660
2661 return DM_ENDIO_DONE;
2662 }
2663
write_dirty_bitset(struct cache * cache)2664 static int write_dirty_bitset(struct cache *cache)
2665 {
2666 int r;
2667
2668 if (get_cache_mode(cache) >= CM_READ_ONLY)
2669 return -EINVAL;
2670
2671 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2672 if (r)
2673 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2674
2675 return r;
2676 }
2677
write_discard_bitset(struct cache * cache)2678 static int write_discard_bitset(struct cache *cache)
2679 {
2680 unsigned i, r;
2681
2682 if (get_cache_mode(cache) >= CM_READ_ONLY)
2683 return -EINVAL;
2684
2685 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2686 cache->discard_nr_blocks);
2687 if (r) {
2688 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2689 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2690 return r;
2691 }
2692
2693 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2694 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2695 is_discarded(cache, to_dblock(i)));
2696 if (r) {
2697 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2698 return r;
2699 }
2700 }
2701
2702 return 0;
2703 }
2704
write_hints(struct cache * cache)2705 static int write_hints(struct cache *cache)
2706 {
2707 int r;
2708
2709 if (get_cache_mode(cache) >= CM_READ_ONLY)
2710 return -EINVAL;
2711
2712 r = dm_cache_write_hints(cache->cmd, cache->policy);
2713 if (r) {
2714 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2715 return r;
2716 }
2717
2718 return 0;
2719 }
2720
2721 /*
2722 * returns true on success
2723 */
sync_metadata(struct cache * cache)2724 static bool sync_metadata(struct cache *cache)
2725 {
2726 int r1, r2, r3, r4;
2727
2728 r1 = write_dirty_bitset(cache);
2729 if (r1)
2730 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2731
2732 r2 = write_discard_bitset(cache);
2733 if (r2)
2734 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2735
2736 save_stats(cache);
2737
2738 r3 = write_hints(cache);
2739 if (r3)
2740 DMERR("%s: could not write hints", cache_device_name(cache));
2741
2742 /*
2743 * If writing the above metadata failed, we still commit, but don't
2744 * set the clean shutdown flag. This will effectively force every
2745 * dirty bit to be set on reload.
2746 */
2747 r4 = commit(cache, !r1 && !r2 && !r3);
2748 if (r4)
2749 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2750
2751 return !r1 && !r2 && !r3 && !r4;
2752 }
2753
cache_postsuspend(struct dm_target * ti)2754 static void cache_postsuspend(struct dm_target *ti)
2755 {
2756 struct cache *cache = ti->private;
2757
2758 prevent_background_work(cache);
2759 BUG_ON(atomic_read(&cache->nr_io_migrations));
2760
2761 cancel_delayed_work_sync(&cache->waker);
2762 drain_workqueue(cache->wq);
2763 WARN_ON(cache->tracker.in_flight);
2764
2765 /*
2766 * If it's a flush suspend there won't be any deferred bios, so this
2767 * call is harmless.
2768 */
2769 requeue_deferred_bios(cache);
2770
2771 if (get_cache_mode(cache) == CM_WRITE)
2772 (void) sync_metadata(cache);
2773 }
2774
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2775 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2776 bool dirty, uint32_t hint, bool hint_valid)
2777 {
2778 struct cache *cache = context;
2779
2780 if (dirty) {
2781 set_bit(from_cblock(cblock), cache->dirty_bitset);
2782 atomic_inc(&cache->nr_dirty);
2783 } else
2784 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2785
2786 return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2787 }
2788
2789 /*
2790 * The discard block size in the on disk metadata is not
2791 * neccessarily the same as we're currently using. So we have to
2792 * be careful to only set the discarded attribute if we know it
2793 * covers a complete block of the new size.
2794 */
2795 struct discard_load_info {
2796 struct cache *cache;
2797
2798 /*
2799 * These blocks are sized using the on disk dblock size, rather
2800 * than the current one.
2801 */
2802 dm_block_t block_size;
2803 dm_block_t discard_begin, discard_end;
2804 };
2805
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2806 static void discard_load_info_init(struct cache *cache,
2807 struct discard_load_info *li)
2808 {
2809 li->cache = cache;
2810 li->discard_begin = li->discard_end = 0;
2811 }
2812
set_discard_range(struct discard_load_info * li)2813 static void set_discard_range(struct discard_load_info *li)
2814 {
2815 sector_t b, e;
2816
2817 if (li->discard_begin == li->discard_end)
2818 return;
2819
2820 /*
2821 * Convert to sectors.
2822 */
2823 b = li->discard_begin * li->block_size;
2824 e = li->discard_end * li->block_size;
2825
2826 /*
2827 * Then convert back to the current dblock size.
2828 */
2829 b = dm_sector_div_up(b, li->cache->discard_block_size);
2830 sector_div(e, li->cache->discard_block_size);
2831
2832 /*
2833 * The origin may have shrunk, so we need to check we're still in
2834 * bounds.
2835 */
2836 if (e > from_dblock(li->cache->discard_nr_blocks))
2837 e = from_dblock(li->cache->discard_nr_blocks);
2838
2839 for (; b < e; b++)
2840 set_discard(li->cache, to_dblock(b));
2841 }
2842
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2843 static int load_discard(void *context, sector_t discard_block_size,
2844 dm_dblock_t dblock, bool discard)
2845 {
2846 struct discard_load_info *li = context;
2847
2848 li->block_size = discard_block_size;
2849
2850 if (discard) {
2851 if (from_dblock(dblock) == li->discard_end)
2852 /*
2853 * We're already in a discard range, just extend it.
2854 */
2855 li->discard_end = li->discard_end + 1ULL;
2856
2857 else {
2858 /*
2859 * Emit the old range and start a new one.
2860 */
2861 set_discard_range(li);
2862 li->discard_begin = from_dblock(dblock);
2863 li->discard_end = li->discard_begin + 1ULL;
2864 }
2865 } else {
2866 set_discard_range(li);
2867 li->discard_begin = li->discard_end = 0;
2868 }
2869
2870 return 0;
2871 }
2872
get_cache_dev_size(struct cache * cache)2873 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2874 {
2875 sector_t size = get_dev_size(cache->cache_dev);
2876 (void) sector_div(size, cache->sectors_per_block);
2877 return to_cblock(size);
2878 }
2879
can_resize(struct cache * cache,dm_cblock_t new_size)2880 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2881 {
2882 if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2883 if (cache->sized) {
2884 DMERR("%s: unable to extend cache due to missing cache table reload",
2885 cache_device_name(cache));
2886 return false;
2887 }
2888 }
2889
2890 /*
2891 * We can't drop a dirty block when shrinking the cache.
2892 */
2893 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2894 new_size = to_cblock(from_cblock(new_size) + 1);
2895 if (is_dirty(cache, new_size)) {
2896 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2897 cache_device_name(cache),
2898 (unsigned long long) from_cblock(new_size));
2899 return false;
2900 }
2901 }
2902
2903 return true;
2904 }
2905
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2906 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2907 {
2908 int r;
2909
2910 r = dm_cache_resize(cache->cmd, new_size);
2911 if (r) {
2912 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2913 metadata_operation_failed(cache, "dm_cache_resize", r);
2914 return r;
2915 }
2916
2917 set_cache_size(cache, new_size);
2918
2919 return 0;
2920 }
2921
cache_preresume(struct dm_target * ti)2922 static int cache_preresume(struct dm_target *ti)
2923 {
2924 int r = 0;
2925 struct cache *cache = ti->private;
2926 dm_cblock_t csize = get_cache_dev_size(cache);
2927
2928 /*
2929 * Check to see if the cache has resized.
2930 */
2931 if (!cache->sized) {
2932 r = resize_cache_dev(cache, csize);
2933 if (r)
2934 return r;
2935
2936 cache->sized = true;
2937
2938 } else if (csize != cache->cache_size) {
2939 if (!can_resize(cache, csize))
2940 return -EINVAL;
2941
2942 r = resize_cache_dev(cache, csize);
2943 if (r)
2944 return r;
2945 }
2946
2947 if (!cache->loaded_mappings) {
2948 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2949 load_mapping, cache);
2950 if (r) {
2951 DMERR("%s: could not load cache mappings", cache_device_name(cache));
2952 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2953 return r;
2954 }
2955
2956 cache->loaded_mappings = true;
2957 }
2958
2959 if (!cache->loaded_discards) {
2960 struct discard_load_info li;
2961
2962 /*
2963 * The discard bitset could have been resized, or the
2964 * discard block size changed. To be safe we start by
2965 * setting every dblock to not discarded.
2966 */
2967 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2968
2969 discard_load_info_init(cache, &li);
2970 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2971 if (r) {
2972 DMERR("%s: could not load origin discards", cache_device_name(cache));
2973 metadata_operation_failed(cache, "dm_cache_load_discards", r);
2974 return r;
2975 }
2976 set_discard_range(&li);
2977
2978 cache->loaded_discards = true;
2979 }
2980
2981 return r;
2982 }
2983
cache_resume(struct dm_target * ti)2984 static void cache_resume(struct dm_target *ti)
2985 {
2986 struct cache *cache = ti->private;
2987
2988 cache->need_tick_bio = true;
2989 allow_background_work(cache);
2990 do_waker(&cache->waker.work);
2991 }
2992
emit_flags(struct cache * cache,char * result,unsigned maxlen,ssize_t * sz_ptr)2993 static void emit_flags(struct cache *cache, char *result,
2994 unsigned maxlen, ssize_t *sz_ptr)
2995 {
2996 ssize_t sz = *sz_ptr;
2997 struct cache_features *cf = &cache->features;
2998 unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2999
3000 DMEMIT("%u ", count);
3001
3002 if (cf->metadata_version == 2)
3003 DMEMIT("metadata2 ");
3004
3005 if (writethrough_mode(cache))
3006 DMEMIT("writethrough ");
3007
3008 else if (passthrough_mode(cache))
3009 DMEMIT("passthrough ");
3010
3011 else if (writeback_mode(cache))
3012 DMEMIT("writeback ");
3013
3014 else {
3015 DMEMIT("unknown ");
3016 DMERR("%s: internal error: unknown io mode: %d",
3017 cache_device_name(cache), (int) cf->io_mode);
3018 }
3019
3020 if (!cf->discard_passdown)
3021 DMEMIT("no_discard_passdown ");
3022
3023 *sz_ptr = sz;
3024 }
3025
3026 /*
3027 * Status format:
3028 *
3029 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3030 * <cache block size> <#used cache blocks>/<#total cache blocks>
3031 * <#read hits> <#read misses> <#write hits> <#write misses>
3032 * <#demotions> <#promotions> <#dirty>
3033 * <#features> <features>*
3034 * <#core args> <core args>
3035 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3036 */
cache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3037 static void cache_status(struct dm_target *ti, status_type_t type,
3038 unsigned status_flags, char *result, unsigned maxlen)
3039 {
3040 int r = 0;
3041 unsigned i;
3042 ssize_t sz = 0;
3043 dm_block_t nr_free_blocks_metadata = 0;
3044 dm_block_t nr_blocks_metadata = 0;
3045 char buf[BDEVNAME_SIZE];
3046 struct cache *cache = ti->private;
3047 dm_cblock_t residency;
3048 bool needs_check;
3049
3050 switch (type) {
3051 case STATUSTYPE_INFO:
3052 if (get_cache_mode(cache) == CM_FAIL) {
3053 DMEMIT("Fail");
3054 break;
3055 }
3056
3057 /* Commit to ensure statistics aren't out-of-date */
3058 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3059 (void) commit(cache, false);
3060
3061 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3062 if (r) {
3063 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3064 cache_device_name(cache), r);
3065 goto err;
3066 }
3067
3068 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3069 if (r) {
3070 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3071 cache_device_name(cache), r);
3072 goto err;
3073 }
3074
3075 residency = policy_residency(cache->policy);
3076
3077 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3078 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3079 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3080 (unsigned long long)nr_blocks_metadata,
3081 (unsigned long long)cache->sectors_per_block,
3082 (unsigned long long) from_cblock(residency),
3083 (unsigned long long) from_cblock(cache->cache_size),
3084 (unsigned) atomic_read(&cache->stats.read_hit),
3085 (unsigned) atomic_read(&cache->stats.read_miss),
3086 (unsigned) atomic_read(&cache->stats.write_hit),
3087 (unsigned) atomic_read(&cache->stats.write_miss),
3088 (unsigned) atomic_read(&cache->stats.demotion),
3089 (unsigned) atomic_read(&cache->stats.promotion),
3090 (unsigned long) atomic_read(&cache->nr_dirty));
3091
3092 emit_flags(cache, result, maxlen, &sz);
3093
3094 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3095
3096 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3097 if (sz < maxlen) {
3098 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3099 if (r)
3100 DMERR("%s: policy_emit_config_values returned %d",
3101 cache_device_name(cache), r);
3102 }
3103
3104 if (get_cache_mode(cache) == CM_READ_ONLY)
3105 DMEMIT("ro ");
3106 else
3107 DMEMIT("rw ");
3108
3109 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3110
3111 if (r || needs_check)
3112 DMEMIT("needs_check ");
3113 else
3114 DMEMIT("- ");
3115
3116 break;
3117
3118 case STATUSTYPE_TABLE:
3119 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3120 DMEMIT("%s ", buf);
3121 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3122 DMEMIT("%s ", buf);
3123 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3124 DMEMIT("%s", buf);
3125
3126 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3127 DMEMIT(" %s", cache->ctr_args[i]);
3128 if (cache->nr_ctr_args)
3129 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3130 break;
3131
3132 case STATUSTYPE_IMA:
3133 DMEMIT_TARGET_NAME_VERSION(ti->type);
3134 if (get_cache_mode(cache) == CM_FAIL)
3135 DMEMIT(",metadata_mode=fail");
3136 else if (get_cache_mode(cache) == CM_READ_ONLY)
3137 DMEMIT(",metadata_mode=ro");
3138 else
3139 DMEMIT(",metadata_mode=rw");
3140
3141 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3142 DMEMIT(",cache_metadata_device=%s", buf);
3143 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3144 DMEMIT(",cache_device=%s", buf);
3145 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3146 DMEMIT(",cache_origin_device=%s", buf);
3147 DMEMIT(",writethrough=%c", writethrough_mode(cache) ? 'y' : 'n');
3148 DMEMIT(",writeback=%c", writeback_mode(cache) ? 'y' : 'n');
3149 DMEMIT(",passthrough=%c", passthrough_mode(cache) ? 'y' : 'n');
3150 DMEMIT(",metadata2=%c", cache->features.metadata_version == 2 ? 'y' : 'n');
3151 DMEMIT(",no_discard_passdown=%c", cache->features.discard_passdown ? 'n' : 'y');
3152 DMEMIT(";");
3153 break;
3154 }
3155
3156 return;
3157
3158 err:
3159 DMEMIT("Error");
3160 }
3161
3162 /*
3163 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3164 * the one-past-the-end value.
3165 */
3166 struct cblock_range {
3167 dm_cblock_t begin;
3168 dm_cblock_t end;
3169 };
3170
3171 /*
3172 * A cache block range can take two forms:
3173 *
3174 * i) A single cblock, eg. '3456'
3175 * ii) A begin and end cblock with a dash between, eg. 123-234
3176 */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3177 static int parse_cblock_range(struct cache *cache, const char *str,
3178 struct cblock_range *result)
3179 {
3180 char dummy;
3181 uint64_t b, e;
3182 int r;
3183
3184 /*
3185 * Try and parse form (ii) first.
3186 */
3187 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3188 if (r < 0)
3189 return r;
3190
3191 if (r == 2) {
3192 result->begin = to_cblock(b);
3193 result->end = to_cblock(e);
3194 return 0;
3195 }
3196
3197 /*
3198 * That didn't work, try form (i).
3199 */
3200 r = sscanf(str, "%llu%c", &b, &dummy);
3201 if (r < 0)
3202 return r;
3203
3204 if (r == 1) {
3205 result->begin = to_cblock(b);
3206 result->end = to_cblock(from_cblock(result->begin) + 1u);
3207 return 0;
3208 }
3209
3210 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3211 return -EINVAL;
3212 }
3213
validate_cblock_range(struct cache * cache,struct cblock_range * range)3214 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3215 {
3216 uint64_t b = from_cblock(range->begin);
3217 uint64_t e = from_cblock(range->end);
3218 uint64_t n = from_cblock(cache->cache_size);
3219
3220 if (b >= n) {
3221 DMERR("%s: begin cblock out of range: %llu >= %llu",
3222 cache_device_name(cache), b, n);
3223 return -EINVAL;
3224 }
3225
3226 if (e > n) {
3227 DMERR("%s: end cblock out of range: %llu > %llu",
3228 cache_device_name(cache), e, n);
3229 return -EINVAL;
3230 }
3231
3232 if (b >= e) {
3233 DMERR("%s: invalid cblock range: %llu >= %llu",
3234 cache_device_name(cache), b, e);
3235 return -EINVAL;
3236 }
3237
3238 return 0;
3239 }
3240
cblock_succ(dm_cblock_t b)3241 static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3242 {
3243 return to_cblock(from_cblock(b) + 1);
3244 }
3245
request_invalidation(struct cache * cache,struct cblock_range * range)3246 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3247 {
3248 int r = 0;
3249
3250 /*
3251 * We don't need to do any locking here because we know we're in
3252 * passthrough mode. There's is potential for a race between an
3253 * invalidation triggered by an io and an invalidation message. This
3254 * is harmless, we must not worry if the policy call fails.
3255 */
3256 while (range->begin != range->end) {
3257 r = invalidate_cblock(cache, range->begin);
3258 if (r)
3259 return r;
3260
3261 range->begin = cblock_succ(range->begin);
3262 }
3263
3264 cache->commit_requested = true;
3265 return r;
3266 }
3267
process_invalidate_cblocks_message(struct cache * cache,unsigned count,const char ** cblock_ranges)3268 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3269 const char **cblock_ranges)
3270 {
3271 int r = 0;
3272 unsigned i;
3273 struct cblock_range range;
3274
3275 if (!passthrough_mode(cache)) {
3276 DMERR("%s: cache has to be in passthrough mode for invalidation",
3277 cache_device_name(cache));
3278 return -EPERM;
3279 }
3280
3281 for (i = 0; i < count; i++) {
3282 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3283 if (r)
3284 break;
3285
3286 r = validate_cblock_range(cache, &range);
3287 if (r)
3288 break;
3289
3290 /*
3291 * Pass begin and end origin blocks to the worker and wake it.
3292 */
3293 r = request_invalidation(cache, &range);
3294 if (r)
3295 break;
3296 }
3297
3298 return r;
3299 }
3300
3301 /*
3302 * Supports
3303 * "<key> <value>"
3304 * and
3305 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3306 *
3307 * The key migration_threshold is supported by the cache target core.
3308 */
cache_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3309 static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3310 char *result, unsigned maxlen)
3311 {
3312 struct cache *cache = ti->private;
3313
3314 if (!argc)
3315 return -EINVAL;
3316
3317 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3318 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3319 cache_device_name(cache));
3320 return -EOPNOTSUPP;
3321 }
3322
3323 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3324 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3325
3326 if (argc != 2)
3327 return -EINVAL;
3328
3329 return set_config_value(cache, argv[0], argv[1]);
3330 }
3331
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3332 static int cache_iterate_devices(struct dm_target *ti,
3333 iterate_devices_callout_fn fn, void *data)
3334 {
3335 int r = 0;
3336 struct cache *cache = ti->private;
3337
3338 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3339 if (!r)
3340 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3341
3342 return r;
3343 }
3344
origin_dev_supports_discard(struct block_device * origin_bdev)3345 static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3346 {
3347 struct request_queue *q = bdev_get_queue(origin_bdev);
3348
3349 return blk_queue_discard(q);
3350 }
3351
3352 /*
3353 * If discard_passdown was enabled verify that the origin device
3354 * supports discards. Disable discard_passdown if not.
3355 */
disable_passdown_if_not_supported(struct cache * cache)3356 static void disable_passdown_if_not_supported(struct cache *cache)
3357 {
3358 struct block_device *origin_bdev = cache->origin_dev->bdev;
3359 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3360 const char *reason = NULL;
3361 char buf[BDEVNAME_SIZE];
3362
3363 if (!cache->features.discard_passdown)
3364 return;
3365
3366 if (!origin_dev_supports_discard(origin_bdev))
3367 reason = "discard unsupported";
3368
3369 else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3370 reason = "max discard sectors smaller than a block";
3371
3372 if (reason) {
3373 DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3374 bdevname(origin_bdev, buf), reason);
3375 cache->features.discard_passdown = false;
3376 }
3377 }
3378
set_discard_limits(struct cache * cache,struct queue_limits * limits)3379 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3380 {
3381 struct block_device *origin_bdev = cache->origin_dev->bdev;
3382 struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3383
3384 if (!cache->features.discard_passdown) {
3385 /* No passdown is done so setting own virtual limits */
3386 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3387 cache->origin_sectors);
3388 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3389 return;
3390 }
3391
3392 /*
3393 * cache_iterate_devices() is stacking both origin and fast device limits
3394 * but discards aren't passed to fast device, so inherit origin's limits.
3395 */
3396 limits->max_discard_sectors = origin_limits->max_discard_sectors;
3397 limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3398 limits->discard_granularity = origin_limits->discard_granularity;
3399 limits->discard_alignment = origin_limits->discard_alignment;
3400 limits->discard_misaligned = origin_limits->discard_misaligned;
3401 }
3402
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3403 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3404 {
3405 struct cache *cache = ti->private;
3406 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3407
3408 /*
3409 * If the system-determined stacked limits are compatible with the
3410 * cache's blocksize (io_opt is a factor) do not override them.
3411 */
3412 if (io_opt_sectors < cache->sectors_per_block ||
3413 do_div(io_opt_sectors, cache->sectors_per_block)) {
3414 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3415 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3416 }
3417
3418 disable_passdown_if_not_supported(cache);
3419 set_discard_limits(cache, limits);
3420 }
3421
3422 /*----------------------------------------------------------------*/
3423
3424 static struct target_type cache_target = {
3425 .name = "cache",
3426 .version = {2, 2, 0},
3427 .module = THIS_MODULE,
3428 .ctr = cache_ctr,
3429 .dtr = cache_dtr,
3430 .map = cache_map,
3431 .end_io = cache_end_io,
3432 .postsuspend = cache_postsuspend,
3433 .preresume = cache_preresume,
3434 .resume = cache_resume,
3435 .status = cache_status,
3436 .message = cache_message,
3437 .iterate_devices = cache_iterate_devices,
3438 .io_hints = cache_io_hints,
3439 };
3440
dm_cache_init(void)3441 static int __init dm_cache_init(void)
3442 {
3443 int r;
3444
3445 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3446 if (!migration_cache)
3447 return -ENOMEM;
3448
3449 r = dm_register_target(&cache_target);
3450 if (r) {
3451 DMERR("cache target registration failed: %d", r);
3452 kmem_cache_destroy(migration_cache);
3453 return r;
3454 }
3455
3456 return 0;
3457 }
3458
dm_cache_exit(void)3459 static void __exit dm_cache_exit(void)
3460 {
3461 dm_unregister_target(&cache_target);
3462 kmem_cache_destroy(migration_cache);
3463 }
3464
3465 module_init(dm_cache_init);
3466 module_exit(dm_cache_exit);
3467
3468 MODULE_DESCRIPTION(DM_NAME " cache target");
3469 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3470 MODULE_LICENSE("GPL");
3471