• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4  *                            FireStream  50 (MB86695) device driver
5  */
6 
7 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd
10  */
11 
12 /*
13 */
14 
15 
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/pci.h>
21 #include <linux/poison.h>
22 #include <linux/errno.h>
23 #include <linux/atm.h>
24 #include <linux/atmdev.h>
25 #include <linux/sonet.h>
26 #include <linux/skbuff.h>
27 #include <linux/netdevice.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h> /* for request_region */
30 #include <linux/uio.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/capability.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <asm/byteorder.h>
37 #include <asm/string.h>
38 #include <asm/io.h>
39 #include <linux/atomic.h>
40 #include <linux/uaccess.h>
41 #include <linux/wait.h>
42 
43 #include "firestream.h"
44 
45 static int loopback = 0;
46 static int num=0x5a;
47 
48 /* According to measurements (but they look suspicious to me!) done in
49  * '97, 37% of the packets are one cell in size. So it pays to have
50  * buffers allocated at that size. A large jump in percentage of
51  * packets occurs at packets around 536 bytes in length. So it also
52  * pays to have those pre-allocated. Unfortunately, we can't fully
53  * take advantage of this as the majority of the packets is likely to
54  * be TCP/IP (As where obviously the measurement comes from) There the
55  * link would be opened with say a 1500 byte MTU, and we can't handle
56  * smaller buffers more efficiently than the larger ones. -- REW
57  */
58 
59 /* Due to the way Linux memory management works, specifying "576" as
60  * an allocation size here isn't going to help. They are allocated
61  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62  * large), it doesn't pay to allocate the smallest size (64) -- REW */
63 
64 /* This is all guesswork. Hard numbers to back this up or disprove this,
65  * are appreciated. -- REW */
66 
67 /* The last entry should be about 64k. However, the "buffer size" is
68  * passed to the chip in a 16 bit field. I don't know how "65536"
69  * would be interpreted. -- REW */
70 
71 #define NP FS_NR_FREE_POOLS
72 static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
73 /* log2:                 7     8     9    10    11    12    14     16 */
74 
75 #if 0
76 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
77 #else
78 /* debug */
79 static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
80 #endif
81 /* log2:                 10    10    9    8     7     6     5      5  */
82 /* sumlog2:              17    18    18   18    18    18    19     21 */
83 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
84 /* tot mem: almost 4M */
85 
86 /* NP is shorter, so that it fits on a single line. */
87 #undef NP
88 
89 
90 /* Small hardware gotcha:
91 
92    The FS50 CAM (VP/VC match registers) always take the lowest channel
93    number that matches. This is not a problem.
94 
95    However, they also ignore whether the channel is enabled or
96    not. This means that if you allocate channel 0 to 1.2 and then
97    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98    match channel for channel 0 will "steal" the traffic from channel
99    1, even if you correctly disable channel 0.
100 
101    Workaround:
102 
103    - When disabling channels, write an invalid VP/VC value to the
104    match register. (We use 0xffffffff, which in the worst case
105    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106    anything as some "when not in use, program to 0" bits are now
107    programmed to 1...)
108 
109    - Don't initialize the match registers to 0, as 0.0 is a valid
110    channel.
111 */
112 
113 
114 /* Optimization hints and tips.
115 
116    The FireStream chips are very capable of reducing the amount of
117    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118    action. You could try to minimize this a bit.
119 
120    Besides that, the userspace->kernel copy and the PCI bus are the
121    performance limiting issues for this driver.
122 
123    You could queue up a bunch of outgoing packets without telling the
124    FireStream. I'm not sure that's going to win you much though. The
125    Linux layer won't tell us in advance when it's not going to give us
126    any more packets in a while. So this is tricky to implement right without
127    introducing extra delays.
128 
129    -- REW
130  */
131 
132 
133 
134 
135 /* The strings that define what the RX queue entry is all about. */
136 /* Fujitsu: Please tell me which ones can have a pointer to a
137    freepool descriptor! */
138 static char *res_strings[] = {
139 	"RX OK: streaming not EOP",
140 	"RX OK: streaming EOP",
141 	"RX OK: Single buffer packet",
142 	"RX OK: packet mode",
143 	"RX OK: F4 OAM (end to end)",
144 	"RX OK: F4 OAM (Segment)",
145 	"RX OK: F5 OAM (end to end)",
146 	"RX OK: F5 OAM (Segment)",
147 	"RX OK: RM cell",
148 	"RX OK: TRANSP cell",
149 	"RX OK: TRANSPC cell",
150 	"Unmatched cell",
151 	"reserved 12",
152 	"reserved 13",
153 	"reserved 14",
154 	"Unrecognized cell",
155 	"reserved 16",
156 	"reassembly abort: AAL5 abort",
157 	"packet purged",
158 	"packet ageing timeout",
159 	"channel ageing timeout",
160 	"calculated length error",
161 	"programmed length limit error",
162 	"aal5 crc32 error",
163 	"oam transp or transpc crc10 error",
164 	"reserved 25",
165 	"reserved 26",
166 	"reserved 27",
167 	"reserved 28",
168 	"reserved 29",
169 	"reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 	"reassembly abort: no buffers",
171 	"receive buffer overflow",
172 	"change in GFC",
173 	"receive buffer full",
174 	"low priority discard - no receive descriptor",
175 	"low priority discard - missing end of packet",
176 	"reserved 37",
177 	"reserved 38",
178 	"reserved 39",
179 	"reserved 40",
180 	"reserved 41",
181 	"reserved 42",
182 	"reserved 43",
183 	"reserved 44",
184 	"reserved 45",
185 	"reserved 46",
186 	"reserved 47",
187 	"reserved 48",
188 	"reserved 49",
189 	"reserved 50",
190 	"reserved 51",
191 	"reserved 52",
192 	"reserved 53",
193 	"reserved 54",
194 	"reserved 55",
195 	"reserved 56",
196 	"reserved 57",
197 	"reserved 58",
198 	"reserved 59",
199 	"reserved 60",
200 	"reserved 61",
201 	"reserved 62",
202 	"reserved 63",
203 };
204 
205 static char *irq_bitname[] = {
206 	"LPCO",
207 	"DPCO",
208 	"RBRQ0_W",
209 	"RBRQ1_W",
210 	"RBRQ2_W",
211 	"RBRQ3_W",
212 	"RBRQ0_NF",
213 	"RBRQ1_NF",
214 	"RBRQ2_NF",
215 	"RBRQ3_NF",
216 	"BFP_SC",
217 	"INIT",
218 	"INIT_ERR",
219 	"USCEO",
220 	"UPEC0",
221 	"VPFCO",
222 	"CRCCO",
223 	"HECO",
224 	"TBRQ_W",
225 	"TBRQ_NF",
226 	"CTPQ_E",
227 	"GFC_C0",
228 	"PCI_FTL",
229 	"CSQ_W",
230 	"CSQ_NF",
231 	"EXT_INT",
232 	"RXDMA_S"
233 };
234 
235 
236 #define PHY_EOF -1
237 #define PHY_CLEARALL -2
238 
239 struct reginit_item {
240 	int reg, val;
241 };
242 
243 
244 static struct reginit_item PHY_NTC_INIT[] = {
245 	{ PHY_CLEARALL, 0x40 },
246 	{ 0x12,  0x0001 },
247 	{ 0x13,  0x7605 },
248 	{ 0x1A,  0x0001 },
249 	{ 0x1B,  0x0005 },
250 	{ 0x38,  0x0003 },
251 	{ 0x39,  0x0006 },   /* changed here to make loopback */
252 	{ 0x01,  0x5262 },
253 	{ 0x15,  0x0213 },
254 	{ 0x00,  0x0003 },
255 	{ PHY_EOF, 0},    /* -1 signals end of list */
256 };
257 
258 
259 /* Safetyfeature: If the card interrupts more than this number of times
260    in a jiffy (1/100th of a second) then we just disable the interrupt and
261    print a message. This prevents the system from hanging.
262 
263    150000 packets per second is close to the limit a PC is going to have
264    anyway. We therefore have to disable this for production. -- REW */
265 #undef IRQ_RATE_LIMIT // 100
266 
267 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
268    that great without interrupts. -- REW */
269 #undef FS_POLL_FREQ // 100
270 
271 /*
272    This driver can spew a whole lot of debugging output at you. If you
273    need maximum performance, you should disable the DEBUG define. To
274    aid in debugging in the field, I'm leaving the compile-time debug
275    features enabled, and disable them "runtime". That allows me to
276    instruct people with problems to enable debugging without requiring
277    them to recompile... -- REW
278 */
279 #define DEBUG
280 
281 #ifdef DEBUG
282 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283 #else
284 #define fs_dprintk(f, str...) /* nothing */
285 #endif
286 
287 
288 static int fs_keystream = 0;
289 
290 #ifdef DEBUG
291 /* I didn't forget to set this to zero before shipping. Hit me with a stick
292    if you get this with the debug default not set to zero again. -- REW */
293 static int fs_debug = 0;
294 #else
295 #define fs_debug 0
296 #endif
297 
298 #ifdef MODULE
299 #ifdef DEBUG
300 module_param(fs_debug, int, 0644);
301 #endif
302 module_param(loopback, int, 0);
303 module_param(num, int, 0);
304 module_param(fs_keystream, int, 0);
305 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306 #endif
307 
308 
309 #define FS_DEBUG_FLOW    0x00000001
310 #define FS_DEBUG_OPEN    0x00000002
311 #define FS_DEBUG_QUEUE   0x00000004
312 #define FS_DEBUG_IRQ     0x00000008
313 #define FS_DEBUG_INIT    0x00000010
314 #define FS_DEBUG_SEND    0x00000020
315 #define FS_DEBUG_PHY     0x00000040
316 #define FS_DEBUG_CLEANUP 0x00000080
317 #define FS_DEBUG_QOS     0x00000100
318 #define FS_DEBUG_TXQ     0x00000200
319 #define FS_DEBUG_ALLOC   0x00000400
320 #define FS_DEBUG_TXMEM   0x00000800
321 #define FS_DEBUG_QSIZE   0x00001000
322 
323 
324 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325 #define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
326 
327 
328 static struct fs_dev *fs_boards = NULL;
329 
330 #ifdef DEBUG
331 
my_hd(void * addr,int len)332 static void my_hd (void *addr, int len)
333 {
334 	int j, ch;
335 	unsigned char *ptr = addr;
336 
337 	while (len > 0) {
338 		printk ("%p ", ptr);
339 		for (j=0;j < ((len < 16)?len:16);j++) {
340 			printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 		}
342 		for (  ;j < 16;j++) {
343 			printk ("   %s", (j==7)?" ":"");
344 		}
345 		for (j=0;j < ((len < 16)?len:16);j++) {
346 			ch = ptr[j];
347 			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 		}
349 		printk ("\n");
350 		ptr += 16;
351 		len -= 16;
352 	}
353 }
354 #else /* DEBUG */
my_hd(void * addr,int len)355 static void my_hd (void *addr, int len){}
356 #endif /* DEBUG */
357 
358 /********** free an skb (as per ATM device driver documentation) **********/
359 
360 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361  * I copied it over from the ambassador driver. -- REW */
362 
fs_kfree_skb(struct sk_buff * skb)363 static inline void fs_kfree_skb (struct sk_buff * skb)
364 {
365 	if (ATM_SKB(skb)->vcc->pop)
366 		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 	else
368 		dev_kfree_skb_any (skb);
369 }
370 
371 
372 
373 
374 /* It seems the ATM forum recommends this horribly complicated 16bit
375  * floating point format. Turns out the Ambassador uses the exact same
376  * encoding. I just copied it over. If Mitch agrees, I'll move it over
377  * to the atm_misc file or something like that. (and remove it from
378  * here and the ambassador driver) -- REW
379  */
380 
381 /* The good thing about this format is that it is monotonic. So,
382    a conversion routine need not be very complicated. To be able to
383    round "nearest" we need to take along a few extra bits. Lets
384    put these after 16 bits, so that we can just return the top 16
385    bits of the 32bit number as the result:
386 
387    int mr (unsigned int rate, int r)
388      {
389      int e = 16+9;
390      static int round[4]={0, 0, 0xffff, 0x8000};
391      if (!rate) return 0;
392      while (rate & 0xfc000000) {
393        rate >>= 1;
394        e++;
395      }
396      while (! (rate & 0xfe000000)) {
397        rate <<= 1;
398        e--;
399      }
400 
401 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402      rate &= ~0x02000000;
403 // Next add in the exponent
404      rate |= e << (16+9);
405 // And perform the rounding:
406      return (rate + round[r]) >> 16;
407    }
408 
409    14 lines-of-code. Compare that with the 120 that the Ambassador
410    guys needed. (would be 8 lines shorter if I'd try to really reduce
411    the number of lines:
412 
413    int mr (unsigned int rate, int r)
414    {
415      int e = 16+9;
416      static int round[4]={0, 0, 0xffff, 0x8000};
417      if (!rate) return 0;
418      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
419      for (;!(rate & 0xfe000000);rate <<= 1, e--);
420      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421    }
422 
423    Exercise for the reader: Remove one more line-of-code, without
424    cheating. (Just joining two lines is cheating). (I know it's
425    possible, don't think you've beat me if you found it... If you
426    manage to lose two lines or more, keep me updated! ;-)
427 
428    -- REW */
429 
430 
431 #define ROUND_UP      1
432 #define ROUND_DOWN    2
433 #define ROUND_NEAREST 3
434 /********** make rate (not quite as much fun as Horizon) **********/
435 
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)436 static int make_rate(unsigned int rate, int r,
437 		      u16 *bits, unsigned int *actual)
438 {
439 	unsigned char exp = -1; /* hush gcc */
440 	unsigned int man = -1;  /* hush gcc */
441 
442 	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443 
444 	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 	   given 5-bit e and 9-bit m:
446 	   rate = EITHER (1+m/2^9)*2^e    OR 0
447 	   bits = EITHER 1<<14 | e<<9 | m OR 0
448 	   (bit 15 is "reserved", bit 14 "non-zero")
449 	   smallest rate is 0 (special representation)
450 	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 	   simple algorithm:
453 	   find position of top bit, this gives e
454 	   remove top bit and shift (rounding if feeling clever) by 9-e
455 	*/
456 	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 	   representable. // This should move into the ambassador driver
458 	   when properly merged. -- REW */
459 
460 	if (rate > 0xffc00000U) {
461 		/* larger than largest representable rate */
462 
463 		if (r == ROUND_UP) {
464 			return -EINVAL;
465 		} else {
466 			exp = 31;
467 			man = 511;
468 		}
469 
470 	} else if (rate) {
471 		/* representable rate */
472 
473 		exp = 31;
474 		man = rate;
475 
476 		/* invariant: rate = man*2^(exp-31) */
477 		while (!(man & (1<<31))) {
478 			exp = exp - 1;
479 			man = man<<1;
480 		}
481 
482 		/* man has top bit set
483 		   rate = (2^31+(man-2^31))*2^(exp-31)
484 		   rate = (1+(man-2^31)/2^31)*2^exp
485 		*/
486 		man = man<<1;
487 		man &= 0xffffffffU; /* a nop on 32-bit systems */
488 		/* rate = (1+man/2^32)*2^exp
489 
490 		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 		   time to lose significance... we want m in the range 0 to 2^9-1
492 		   rounding presents a minor problem... we first decide which way
493 		   we are rounding (based on given rounding direction and possibly
494 		   the bits of the mantissa that are to be discarded).
495 		*/
496 
497 		switch (r) {
498 		case ROUND_DOWN: {
499 			/* just truncate */
500 			man = man>>(32-9);
501 			break;
502 		}
503 		case ROUND_UP: {
504 			/* check all bits that we are discarding */
505 			if (man & (~0U>>9)) {
506 				man = (man>>(32-9)) + 1;
507 				if (man == (1<<9)) {
508 					/* no need to check for round up outside of range */
509 					man = 0;
510 					exp += 1;
511 				}
512 			} else {
513 				man = (man>>(32-9));
514 			}
515 			break;
516 		}
517 		case ROUND_NEAREST: {
518 			/* check msb that we are discarding */
519 			if (man & (1<<(32-9-1))) {
520 				man = (man>>(32-9)) + 1;
521 				if (man == (1<<9)) {
522 					/* no need to check for round up outside of range */
523 					man = 0;
524 					exp += 1;
525 				}
526 			} else {
527 				man = (man>>(32-9));
528 			}
529 			break;
530 		}
531 		}
532 
533 	} else {
534 		/* zero rate - not representable */
535 
536 		if (r == ROUND_DOWN) {
537 			return -EINVAL;
538 		} else {
539 			exp = 0;
540 			man = 0;
541 		}
542 	}
543 
544 	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545 
546 	if (bits)
547 		*bits = /* (1<<14) | */ (exp<<9) | man;
548 
549 	if (actual)
550 		*actual = (exp >= 9)
551 			? (1 << exp) + (man << (exp-9))
552 			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553 
554 	return 0;
555 }
556 
557 
558 
559 
560 /* FireStream access routines */
561 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562    certain registers or to just log all accesses. */
563 
write_fs(struct fs_dev * dev,int offset,u32 val)564 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565 {
566 	writel (val, dev->base + offset);
567 }
568 
569 
read_fs(struct fs_dev * dev,int offset)570 static inline u32  read_fs (struct fs_dev *dev, int offset)
571 {
572 	return readl (dev->base + offset);
573 }
574 
575 
576 
get_qentry(struct fs_dev * dev,struct queue * q)577 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578 {
579 	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580 }
581 
582 
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)583 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584 {
585 	u32 wp;
586 	struct FS_QENTRY *cqe;
587 
588 	/* XXX Sanity check: the write pointer can be checked to be
589 	   still the same as the value passed as qe... -- REW */
590 	/*  udelay (5); */
591 	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 			    q->offset);
594 		schedule ();
595 	}
596 
597 	wp &= ~0xf;
598 	cqe = bus_to_virt (wp);
599 	if (qe != cqe) {
600 		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 	}
602 
603 	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604 
605 	{
606 		static int c;
607 		if (!(c++ % 100))
608 			{
609 				int rp, wp;
610 				rp =  read_fs (dev, Q_RP(q->offset));
611 				wp =  read_fs (dev, Q_WP(q->offset));
612 				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 					    q->offset, rp, wp, wp-rp);
614 			}
615 	}
616 }
617 
618 #ifdef DEBUG_EXTRA
619 static struct FS_QENTRY pq[60];
620 static int qp;
621 
622 static struct FS_BPENTRY dq[60];
623 static int qd;
624 static void *da[60];
625 #endif
626 
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)627 static void submit_queue (struct fs_dev *dev, struct queue *q,
628 			  u32 cmd, u32 p1, u32 p2, u32 p3)
629 {
630 	struct FS_QENTRY *qe;
631 
632 	qe = get_qentry (dev, q);
633 	qe->cmd = cmd;
634 	qe->p0 = p1;
635 	qe->p1 = p2;
636 	qe->p2 = p3;
637 	submit_qentry (dev,  q, qe);
638 
639 #ifdef DEBUG_EXTRA
640 	pq[qp].cmd = cmd;
641 	pq[qp].p0 = p1;
642 	pq[qp].p1 = p2;
643 	pq[qp].p2 = p3;
644 	qp++;
645 	if (qp >= 60) qp = 0;
646 #endif
647 }
648 
649 /* Test the "other" way one day... -- REW */
650 #if 1
651 #define submit_command submit_queue
652 #else
653 
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)654 static void submit_command (struct fs_dev *dev, struct queue *q,
655 			    u32 cmd, u32 p1, u32 p2, u32 p3)
656 {
657 	write_fs (dev, CMDR0, cmd);
658 	write_fs (dev, CMDR1, p1);
659 	write_fs (dev, CMDR2, p2);
660 	write_fs (dev, CMDR3, p3);
661 }
662 #endif
663 
664 
665 
process_return_queue(struct fs_dev * dev,struct queue * q)666 static void process_return_queue (struct fs_dev *dev, struct queue *q)
667 {
668 	long rq;
669 	struct FS_QENTRY *qe;
670 	void *tc;
671 
672 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 		qe = bus_to_virt (rq);
675 
676 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678 
679 		switch (STATUS_CODE (qe)) {
680 		case 5:
681 			tc = bus_to_virt (qe->p0);
682 			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 			kfree (tc);
684 			break;
685 		}
686 
687 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 	}
689 }
690 
691 
process_txdone_queue(struct fs_dev * dev,struct queue * q)692 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693 {
694 	long rq;
695 	long tmp;
696 	struct FS_QENTRY *qe;
697 	struct sk_buff *skb;
698 	struct FS_BPENTRY *td;
699 
700 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 		qe = bus_to_virt (rq);
703 
704 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706 
707 		if (STATUS_CODE (qe) != 2)
708 			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710 
711 
712 		switch (STATUS_CODE (qe)) {
713 		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 			fallthrough;
715 		case 0x02:
716 			/* Process a real txdone entry. */
717 			tmp = qe->p0;
718 			if (tmp & 0x0f)
719 				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 			tmp &= ~0x0f;
721 			td = bus_to_virt (tmp);
722 
723 			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725 
726 			skb = td->skb;
727 			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 			}
731 			td->dev->ntxpckts--;
732 
733 			{
734 				static int c=0;
735 
736 				if (!(c++ % 100)) {
737 					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 				}
739 			}
740 
741 			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742 
743 			fs_dprintk (FS_DEBUG_TXMEM, "i");
744 			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 			fs_kfree_skb (skb);
746 
747 			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 			kfree (td);
750 			break;
751 		default:
752 			/* Here we get the tx purge inhibit command ... */
753 			/* Action, I believe, is "don't do anything". -- REW */
754 			;
755 		}
756 
757 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 	}
759 }
760 
761 
process_incoming(struct fs_dev * dev,struct queue * q)762 static void process_incoming (struct fs_dev *dev, struct queue *q)
763 {
764 	long rq;
765 	struct FS_QENTRY *qe;
766 	struct FS_BPENTRY *pe;
767 	struct sk_buff *skb;
768 	unsigned int channo;
769 	struct atm_vcc *atm_vcc;
770 
771 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 		qe = bus_to_virt (rq);
774 
775 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ",
776 			    qe->cmd, qe->p0, qe->p1, qe->p2);
777 
778 		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 			    STATUS_CODE (qe),
780 			    res_strings[STATUS_CODE(qe)]);
781 
782 		pe = bus_to_virt (qe->p0);
783 		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 			    pe->skb, pe->fp);
786 
787 		channo = qe->cmd & 0xffff;
788 
789 		if (channo < dev->nchannels)
790 			atm_vcc = dev->atm_vccs[channo];
791 		else
792 			atm_vcc = NULL;
793 
794 		/* Single buffer packet */
795 		switch (STATUS_CODE (qe)) {
796 		case 0x1:
797 			/* Fall through for streaming mode */
798 			fallthrough;
799 		case 0x2:/* Packet received OK.... */
800 			if (atm_vcc) {
801 				skb = pe->skb;
802 				pe->fp->n--;
803 #if 0
804 				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
805 				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
806 #endif
807 				skb_put (skb, qe->p1 & 0xffff);
808 				ATM_SKB(skb)->vcc = atm_vcc;
809 				atomic_inc(&atm_vcc->stats->rx);
810 				__net_timestamp(skb);
811 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
812 				atm_vcc->push (atm_vcc, skb);
813 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
814 				kfree (pe);
815 			} else {
816 				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
817 			}
818 			break;
819 		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
820 			     has been consumed and needs to be processed. -- REW */
821 			if (qe->p1 & 0xffff) {
822 				pe = bus_to_virt (qe->p0);
823 				pe->fp->n--;
824 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
825 				dev_kfree_skb_any (pe->skb);
826 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
827 				kfree (pe);
828 			}
829 			if (atm_vcc)
830 				atomic_inc(&atm_vcc->stats->rx_drop);
831 			break;
832 		case 0x1f: /*  Reassembly abort: no buffers. */
833 			/* Silently increment error counter. */
834 			if (atm_vcc)
835 				atomic_inc(&atm_vcc->stats->rx_drop);
836 			break;
837 		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
838 			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
839 				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
840 		}
841 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
842 	}
843 }
844 
845 
846 
847 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
848 
fs_open(struct atm_vcc * atm_vcc)849 static int fs_open(struct atm_vcc *atm_vcc)
850 {
851 	struct fs_dev *dev;
852 	struct fs_vcc *vcc;
853 	struct fs_transmit_config *tc;
854 	struct atm_trafprm * txtp;
855 	struct atm_trafprm * rxtp;
856 	/*  struct fs_receive_config *rc;*/
857 	/*  struct FS_QENTRY *qe; */
858 	int error;
859 	int bfp;
860 	int to;
861 	unsigned short tmc0;
862 	short vpi = atm_vcc->vpi;
863 	int vci = atm_vcc->vci;
864 
865 	func_enter ();
866 
867 	dev = FS_DEV(atm_vcc->dev);
868 	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
869 		    dev, atm_vcc);
870 
871 	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
872 		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
873 
874 	if ((atm_vcc->qos.aal != ATM_AAL5) &&
875 	    (atm_vcc->qos.aal != ATM_AAL2))
876 	  return -EINVAL; /* XXX AAL0 */
877 
878 	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
879 		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
880 
881 	/* XXX handle qos parameters (rate limiting) ? */
882 
883 	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
884 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
885 	if (!vcc) {
886 		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
887 		return -ENOMEM;
888 	}
889 
890 	atm_vcc->dev_data = vcc;
891 	vcc->last_skb = NULL;
892 
893 	init_waitqueue_head (&vcc->close_wait);
894 
895 	txtp = &atm_vcc->qos.txtp;
896 	rxtp = &atm_vcc->qos.rxtp;
897 
898 	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
899 		if (IS_FS50(dev)) {
900 			/* Increment the channel numer: take a free one next time.  */
901 			for (to=33;to;to--, dev->channo++) {
902 				/* We only have 32 channels */
903 				if (dev->channo >= 32)
904 					dev->channo = 0;
905 				/* If we need to do RX, AND the RX is inuse, try the next */
906 				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
907 					continue;
908 				/* If we need to do TX, AND the TX is inuse, try the next */
909 				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
910 					continue;
911 				/* Ok, both are free! (or not needed) */
912 				break;
913 			}
914 			if (!to) {
915 				printk ("No more free channels for FS50..\n");
916 				kfree(vcc);
917 				return -EBUSY;
918 			}
919 			vcc->channo = dev->channo;
920 			dev->channo &= dev->channel_mask;
921 
922 		} else {
923 			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
924 			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
925 			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
926 				printk ("Channel is in use for FS155.\n");
927 				kfree(vcc);
928 				return -EBUSY;
929 			}
930 		}
931 		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
932 			    vcc->channo, vcc->channo);
933 	}
934 
935 	if (DO_DIRECTION (txtp)) {
936 		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
937 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
938 			    tc, sizeof (struct fs_transmit_config));
939 		if (!tc) {
940 			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
941 			kfree(vcc);
942 			return -ENOMEM;
943 		}
944 
945 		/* Allocate the "open" entry from the high priority txq. This makes
946 		   it most likely that the chip will notice it. It also prevents us
947 		   from having to wait for completion. On the other hand, we may
948 		   need to wait for completion anyway, to see if it completed
949 		   successfully. */
950 
951 		switch (atm_vcc->qos.aal) {
952 		case ATM_AAL2:
953 		case ATM_AAL0:
954 		  tc->flags = 0
955 		    | TC_FLAGS_TRANSPARENT_PAYLOAD
956 		    | TC_FLAGS_PACKET
957 		    | (1 << 28)
958 		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
959 		    | TC_FLAGS_CAL0;
960 		  break;
961 		case ATM_AAL5:
962 		  tc->flags = 0
963 			| TC_FLAGS_AAL5
964 			| TC_FLAGS_PACKET  /* ??? */
965 			| TC_FLAGS_TYPE_CBR
966 			| TC_FLAGS_CAL0;
967 		  break;
968 		default:
969 			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
970 			tc->flags = 0;
971 		}
972 		/* Docs are vague about this atm_hdr field. By the way, the FS
973 		 * chip makes odd errors if lower bits are set.... -- REW */
974 		tc->atm_hdr =  (vpi << 20) | (vci << 4);
975 		tmc0 = 0;
976 		{
977 			int pcr = atm_pcr_goal (txtp);
978 
979 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
980 
981 			/* XXX Hmm. officially we're only allowed to do this if rounding
982 			   is round_down -- REW */
983 			if (IS_FS50(dev)) {
984 				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
985 			} else {
986 				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
987 			}
988 			if (!pcr) {
989 				/* no rate cap */
990 				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
991 			} else {
992 				int r;
993 				if (pcr < 0) {
994 					r = ROUND_DOWN;
995 					pcr = -pcr;
996 				} else {
997 					r = ROUND_UP;
998 				}
999 				error = make_rate (pcr, r, &tmc0, NULL);
1000 				if (error) {
1001 					kfree(tc);
1002 					kfree(vcc);
1003 					return error;
1004 				}
1005 			}
1006 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1007 		}
1008 
1009 		tc->TMC[0] = tmc0 | 0x4000;
1010 		tc->TMC[1] = 0; /* Unused */
1011 		tc->TMC[2] = 0; /* Unused */
1012 		tc->TMC[3] = 0; /* Unused */
1013 
1014 		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1015 		tc->rtag[0] = 0; /* What should I do with routing tags???
1016 				    -- Not used -- AS -- Thanks -- REW*/
1017 		tc->rtag[1] = 0;
1018 		tc->rtag[2] = 0;
1019 
1020 		if (fs_debug & FS_DEBUG_OPEN) {
1021 			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1022 			my_hd (tc, sizeof (*tc));
1023 		}
1024 
1025 		/* We now use the "submit_command" function to submit commands to
1026 		   the firestream. There is a define up near the definition of
1027 		   that routine that switches this routine between immediate write
1028 		   to the immediate command registers and queuing the commands in
1029 		   the HPTXQ for execution. This last technique might be more
1030 		   efficient if we know we're going to submit a whole lot of
1031 		   commands in one go, but this driver is not setup to be able to
1032 		   use such a construct. So it probably doen't matter much right
1033 		   now. -- REW */
1034 
1035 		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1036 		submit_command (dev, &dev->hp_txq,
1037 				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1038 				virt_to_bus (tc), 0, 0);
1039 
1040 		submit_command (dev, &dev->hp_txq,
1041 				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1042 				0, 0, 0);
1043 		set_bit (vcc->channo, dev->tx_inuse);
1044 	}
1045 
1046 	if (DO_DIRECTION (rxtp)) {
1047 		dev->atm_vccs[vcc->channo] = atm_vcc;
1048 
1049 		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1050 			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1051 		if (bfp >= FS_NR_FREE_POOLS) {
1052 			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1053 				    atm_vcc->qos.rxtp.max_sdu);
1054 			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1055 
1056 			/* XXX clear tx inuse. Close TX part? */
1057 			dev->atm_vccs[vcc->channo] = NULL;
1058 			kfree (vcc);
1059 			return -EINVAL;
1060 		}
1061 
1062 		switch (atm_vcc->qos.aal) {
1063 		case ATM_AAL0:
1064 		case ATM_AAL2:
1065 			submit_command (dev, &dev->hp_txq,
1066 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1067 					RC_FLAGS_TRANSP |
1068 					RC_FLAGS_BFPS_BFP * bfp |
1069 					RC_FLAGS_RXBM_PSB, 0, 0);
1070 			break;
1071 		case ATM_AAL5:
1072 			submit_command (dev, &dev->hp_txq,
1073 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1074 					RC_FLAGS_AAL5 |
1075 					RC_FLAGS_BFPS_BFP * bfp |
1076 					RC_FLAGS_RXBM_PSB, 0, 0);
1077 			break;
1078 		}
1079 		if (IS_FS50 (dev)) {
1080 			submit_command (dev, &dev->hp_txq,
1081 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1082 					0x80 + vcc->channo,
1083 					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1084 		}
1085 		submit_command (dev, &dev->hp_txq,
1086 				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1087 				0, 0, 0);
1088 	}
1089 
1090 	/* Indicate we're done! */
1091 	set_bit(ATM_VF_READY, &atm_vcc->flags);
1092 
1093 	func_exit ();
1094 	return 0;
1095 }
1096 
1097 
fs_close(struct atm_vcc * atm_vcc)1098 static void fs_close(struct atm_vcc *atm_vcc)
1099 {
1100 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1101 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1102 	struct atm_trafprm * txtp;
1103 	struct atm_trafprm * rxtp;
1104 
1105 	func_enter ();
1106 
1107 	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1108 
1109 	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1110 	if (vcc->last_skb) {
1111 		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1112 			    vcc->last_skb);
1113 		/* We're going to wait for the last packet to get sent on this VC. It would
1114 		   be impolite not to send them don't you think?
1115 		   XXX
1116 		   We don't know which packets didn't get sent. So if we get interrupted in
1117 		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1118 		   On the other hand, it's awfully convenient that we can abort a "close" that
1119 		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1120 		wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1121 	}
1122 
1123 	txtp = &atm_vcc->qos.txtp;
1124 	rxtp = &atm_vcc->qos.rxtp;
1125 
1126 
1127 	/* See App note XXX (Unpublished as of now) for the reason for the
1128 	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1129 
1130 	if (DO_DIRECTION (txtp)) {
1131 		submit_command (dev,  &dev->hp_txq,
1132 				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1133 		clear_bit (vcc->channo, dev->tx_inuse);
1134 	}
1135 
1136 	if (DO_DIRECTION (rxtp)) {
1137 		submit_command (dev,  &dev->hp_txq,
1138 				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1139 		dev->atm_vccs [vcc->channo] = NULL;
1140 
1141 		/* This means that this is configured as a receive channel */
1142 		if (IS_FS50 (dev)) {
1143 			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1144 			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1145 			   (0xfff...) -- REW */
1146 			submit_command (dev, &dev->hp_txq,
1147 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1148 					0x80 + vcc->channo, -1, 0 );
1149 		}
1150 	}
1151 
1152 	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1153 	kfree (vcc);
1154 
1155 	func_exit ();
1156 }
1157 
1158 
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1159 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1160 {
1161 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1162 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1163 	struct FS_BPENTRY *td;
1164 
1165 	func_enter ();
1166 
1167 	fs_dprintk (FS_DEBUG_TXMEM, "I");
1168 	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1169 		    atm_vcc, skb, vcc, dev);
1170 
1171 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1172 
1173 	ATM_SKB(skb)->vcc = atm_vcc;
1174 
1175 	vcc->last_skb = skb;
1176 
1177 	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1178 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1179 	if (!td) {
1180 		/* Oops out of mem */
1181 		return -ENOMEM;
1182 	}
1183 
1184 	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1185 		    *(int *) skb->data);
1186 
1187 	td->flags =  TD_EPI | TD_DATA | skb->len;
1188 	td->next = 0;
1189 	td->bsa  = virt_to_bus (skb->data);
1190 	td->skb = skb;
1191 	td->dev = dev;
1192 	dev->ntxpckts++;
1193 
1194 #ifdef DEBUG_EXTRA
1195 	da[qd] = td;
1196 	dq[qd].flags = td->flags;
1197 	dq[qd].next  = td->next;
1198 	dq[qd].bsa   = td->bsa;
1199 	dq[qd].skb   = td->skb;
1200 	dq[qd].dev   = td->dev;
1201 	qd++;
1202 	if (qd >= 60) qd = 0;
1203 #endif
1204 
1205 	submit_queue (dev, &dev->hp_txq,
1206 		      QE_TRANSMIT_DE | vcc->channo,
1207 		      virt_to_bus (td), 0,
1208 		      virt_to_bus (td));
1209 
1210 	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1211 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1212 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1213 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1214 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1215 
1216 	func_exit ();
1217 	return 0;
1218 }
1219 
1220 
1221 /* Some function placeholders for functions we don't yet support. */
1222 
1223 #if 0
1224 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1225 {
1226 	func_enter ();
1227 	func_exit ();
1228 	return -ENOIOCTLCMD;
1229 }
1230 
1231 
1232 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1233 			 void __user *optval,int optlen)
1234 {
1235 	func_enter ();
1236 	func_exit ();
1237 	return 0;
1238 }
1239 
1240 
1241 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1242 			 void __user *optval,unsigned int optlen)
1243 {
1244 	func_enter ();
1245 	func_exit ();
1246 	return 0;
1247 }
1248 
1249 
1250 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1251 		       unsigned long addr)
1252 {
1253 	func_enter ();
1254 	func_exit ();
1255 }
1256 
1257 
1258 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1259 {
1260 	func_enter ();
1261 	func_exit ();
1262 	return 0;
1263 }
1264 
1265 
1266 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1267 {
1268 	func_enter ();
1269 	func_exit ();
1270 	return 0;
1271 };
1272 
1273 #endif
1274 
1275 
1276 static const struct atmdev_ops ops = {
1277 	.open =         fs_open,
1278 	.close =        fs_close,
1279 	.send =         fs_send,
1280 	.owner =        THIS_MODULE,
1281 	/* ioctl:          fs_ioctl, */
1282 	/* change_qos:     fs_change_qos, */
1283 
1284 	/* For now implement these internally here... */
1285 	/* phy_put:        fs_phy_put, */
1286 	/* phy_get:        fs_phy_get, */
1287 };
1288 
1289 
undocumented_pci_fix(struct pci_dev * pdev)1290 static void undocumented_pci_fix(struct pci_dev *pdev)
1291 {
1292 	u32 tint;
1293 
1294 	/* The Windows driver says: */
1295 	/* Switch off FireStream Retry Limit Threshold
1296 	 */
1297 
1298 	/* The register at 0x28 is documented as "reserved", no further
1299 	   comments. */
1300 
1301 	pci_read_config_dword (pdev, 0x28, &tint);
1302 	if (tint != 0x80) {
1303 		tint = 0x80;
1304 		pci_write_config_dword (pdev, 0x28, tint);
1305 	}
1306 }
1307 
1308 
1309 
1310 /**************************************************************************
1311  *                              PHY routines                              *
1312  **************************************************************************/
1313 
write_phy(struct fs_dev * dev,int regnum,int val)1314 static void write_phy(struct fs_dev *dev, int regnum, int val)
1315 {
1316 	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1317 			regnum, val, 0);
1318 }
1319 
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1320 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1321 {
1322 	int i;
1323 
1324 	func_enter ();
1325 	while (reginit->reg != PHY_EOF) {
1326 		if (reginit->reg == PHY_CLEARALL) {
1327 			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1328 			for (i=0;i<reginit->val;i++) {
1329 				write_phy (dev, i, 0);
1330 			}
1331 		} else {
1332 			write_phy (dev, reginit->reg, reginit->val);
1333 		}
1334 		reginit++;
1335 	}
1336 	func_exit ();
1337 	return 0;
1338 }
1339 
reset_chip(struct fs_dev * dev)1340 static void reset_chip (struct fs_dev *dev)
1341 {
1342 	int i;
1343 
1344 	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1345 
1346 	/* Undocumented delay */
1347 	udelay (128);
1348 
1349 	/* The "internal registers are documented to all reset to zero, but
1350 	   comments & code in the Windows driver indicates that the pools are
1351 	   NOT reset. */
1352 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1353 		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1354 		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1355 		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1356 		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1357 		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1358 	}
1359 
1360 	/* The same goes for the match channel registers, although those are
1361 	   NOT documented that way in the Windows driver. -- REW */
1362 	/* The Windows driver DOES write 0 to these registers somewhere in
1363 	   the init sequence. However, a small hardware-feature, will
1364 	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1365 	   allocated happens to have no disabled channels that have a lower
1366 	   number. -- REW */
1367 
1368 	/* Clear the match channel registers. */
1369 	if (IS_FS50 (dev)) {
1370 		for (i=0;i<FS50_NR_CHANNELS;i++) {
1371 			write_fs (dev, 0x200 + i * 4, -1);
1372 		}
1373 	}
1374 }
1375 
aligned_kmalloc(int size,gfp_t flags,int alignment)1376 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1377 {
1378 	void  *t;
1379 
1380 	if (alignment <= 0x10) {
1381 		t = kmalloc (size, flags);
1382 		if ((unsigned long)t & (alignment-1)) {
1383 			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1384 			kfree (t);
1385 			return aligned_kmalloc (size, flags, alignment * 4);
1386 		}
1387 		return t;
1388 	}
1389 	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1390 	return NULL;
1391 }
1392 
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1393 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1394 		  int nentries, int is_rq)
1395 {
1396 	int sz = nentries * sizeof (struct FS_QENTRY);
1397 	struct FS_QENTRY *p;
1398 
1399 	func_enter ();
1400 
1401 	fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1402 		    queue, nentries);
1403 
1404 	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1405 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1406 
1407 	if (!p) return 0;
1408 
1409 	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1410 	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1411 	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1412 	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1413 	if (is_rq) {
1414 		/* Configuration for the receive queue: 0: interrupt immediately,
1415 		   no pre-warning to empty queues: We do our best to keep the
1416 		   queue filled anyway. */
1417 		write_fs (dev, Q_CNF(queue), 0 );
1418 	}
1419 
1420 	txq->sa = p;
1421 	txq->ea = p;
1422 	txq->offset = queue;
1423 
1424 	func_exit ();
1425 	return 1;
1426 }
1427 
1428 
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1429 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1430 		   int bufsize, int nr_buffers)
1431 {
1432 	func_enter ();
1433 
1434 	fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1435 
1436 	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1437 	write_fs (dev, FP_SA(queue),  0);
1438 	write_fs (dev, FP_EA(queue),  0);
1439 	write_fs (dev, FP_CTU(queue), 0);
1440 	write_fs (dev, FP_CNT(queue), 0);
1441 
1442 	fp->offset = queue;
1443 	fp->bufsize = bufsize;
1444 	fp->nr_buffers = nr_buffers;
1445 
1446 	func_exit ();
1447 	return 1;
1448 }
1449 
1450 
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1451 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1452 {
1453 #if 0
1454 	/* This seems to be unreliable.... */
1455 	return read_fs (dev, FP_CNT (fp->offset));
1456 #else
1457 	return fp->n;
1458 #endif
1459 }
1460 
1461 
1462 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1463    does. I've seen "receive abort: no buffers" and things started
1464    working again after that...  -- REW */
1465 
top_off_fp(struct fs_dev * dev,struct freepool * fp,gfp_t gfp_flags)1466 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1467 			gfp_t gfp_flags)
1468 {
1469 	struct FS_BPENTRY *qe, *ne;
1470 	struct sk_buff *skb;
1471 	int n = 0;
1472 	u32 qe_tmp;
1473 
1474 	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1475 		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1476 		    fp->nr_buffers);
1477 	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1478 
1479 		skb = alloc_skb (fp->bufsize, gfp_flags);
1480 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1481 		if (!skb) break;
1482 		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1483 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1484 		if (!ne) {
1485 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1486 			dev_kfree_skb_any (skb);
1487 			break;
1488 		}
1489 
1490 		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1491 			    skb, ne, skb->data, skb->head);
1492 		n++;
1493 		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1494 		ne->next  = virt_to_bus (NULL);
1495 		ne->bsa   = virt_to_bus (skb->data);
1496 		ne->aal_bufsize = fp->bufsize;
1497 		ne->skb = skb;
1498 		ne->fp = fp;
1499 
1500 		/*
1501 		 * FIXME: following code encodes and decodes
1502 		 * machine pointers (could be 64-bit) into a
1503 		 * 32-bit register.
1504 		 */
1505 
1506 		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1507 		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1508 		if (qe_tmp) {
1509 			qe = bus_to_virt ((long) qe_tmp);
1510 			qe->next = virt_to_bus(ne);
1511 			qe->flags &= ~FP_FLAGS_EPI;
1512 		} else
1513 			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1514 
1515 		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1516 		fp->n++;   /* XXX Atomic_inc? */
1517 		write_fs (dev, FP_CTU(fp->offset), 1);
1518 	}
1519 
1520 	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1521 }
1522 
free_queue(struct fs_dev * dev,struct queue * txq)1523 static void free_queue(struct fs_dev *dev, struct queue *txq)
1524 {
1525 	func_enter ();
1526 
1527 	write_fs (dev, Q_SA(txq->offset), 0);
1528 	write_fs (dev, Q_EA(txq->offset), 0);
1529 	write_fs (dev, Q_RP(txq->offset), 0);
1530 	write_fs (dev, Q_WP(txq->offset), 0);
1531 	/* Configuration ? */
1532 
1533 	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1534 	kfree (txq->sa);
1535 
1536 	func_exit ();
1537 }
1538 
free_freepool(struct fs_dev * dev,struct freepool * fp)1539 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1540 {
1541 	func_enter ();
1542 
1543 	write_fs (dev, FP_CNF(fp->offset), 0);
1544 	write_fs (dev, FP_SA (fp->offset), 0);
1545 	write_fs (dev, FP_EA (fp->offset), 0);
1546 	write_fs (dev, FP_CNT(fp->offset), 0);
1547 	write_fs (dev, FP_CTU(fp->offset), 0);
1548 
1549 	func_exit ();
1550 }
1551 
1552 
1553 
fs_irq(int irq,void * dev_id)1554 static irqreturn_t fs_irq (int irq, void *dev_id)
1555 {
1556 	int i;
1557 	u32 status;
1558 	struct fs_dev *dev = dev_id;
1559 
1560 	status = read_fs (dev, ISR);
1561 	if (!status)
1562 		return IRQ_NONE;
1563 
1564 	func_enter ();
1565 
1566 #ifdef IRQ_RATE_LIMIT
1567 	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1568 	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1569 	{
1570 		static int lastjif;
1571 		static int nintr=0;
1572 
1573 		if (lastjif == jiffies) {
1574 			if (++nintr > IRQ_RATE_LIMIT) {
1575 				free_irq (dev->irq, dev_id);
1576 				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1577 					dev->irq);
1578 			}
1579 		} else {
1580 			lastjif = jiffies;
1581 			nintr = 0;
1582 		}
1583 	}
1584 #endif
1585 	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1586 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1587 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1588 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1589 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1590 
1591 	/* print the bits in the ISR register. */
1592 	if (fs_debug & FS_DEBUG_IRQ) {
1593 		/* The FS_DEBUG things are unnecessary here. But this way it is
1594 		   clear for grep that these are debug prints. */
1595 		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1596 		for (i=0;i<27;i++)
1597 			if (status & (1 << i))
1598 				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1599 		fs_dprintk (FS_DEBUG_IRQ, "\n");
1600 	}
1601 
1602 	if (status & ISR_RBRQ0_W) {
1603 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1604 		process_incoming (dev, &dev->rx_rq[0]);
1605 		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1606 		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1607 		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1608 	}
1609 
1610 	if (status & ISR_RBRQ1_W) {
1611 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1612 		process_incoming (dev, &dev->rx_rq[1]);
1613 		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1614 		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1615 	}
1616 
1617 	if (status & ISR_RBRQ2_W) {
1618 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1619 		process_incoming (dev, &dev->rx_rq[2]);
1620 		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1621 		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1622 	}
1623 
1624 	if (status & ISR_RBRQ3_W) {
1625 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1626 		process_incoming (dev, &dev->rx_rq[3]);
1627 		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1628 		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1629 	}
1630 
1631 	if (status & ISR_CSQ_W) {
1632 		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1633 		process_return_queue (dev, &dev->st_q);
1634 	}
1635 
1636 	if (status & ISR_TBRQ_W) {
1637 		fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1638 		process_txdone_queue (dev, &dev->tx_relq);
1639 	}
1640 
1641 	func_exit ();
1642 	return IRQ_HANDLED;
1643 }
1644 
1645 
1646 #ifdef FS_POLL_FREQ
fs_poll(struct timer_list * t)1647 static void fs_poll (struct timer_list *t)
1648 {
1649 	struct fs_dev *dev = from_timer(dev, t, timer);
1650 
1651 	fs_irq (0, dev);
1652 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1653 	add_timer (&dev->timer);
1654 }
1655 #endif
1656 
fs_init(struct fs_dev * dev)1657 static int fs_init(struct fs_dev *dev)
1658 {
1659 	struct pci_dev  *pci_dev;
1660 	int isr, to;
1661 	int i;
1662 
1663 	func_enter ();
1664 	pci_dev = dev->pci_dev;
1665 
1666 	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1667 		IS_FS50(dev)?50:155,
1668 		(unsigned long long)pci_resource_start(pci_dev, 0),
1669 		dev->pci_dev->irq);
1670 
1671 	if (fs_debug & FS_DEBUG_INIT)
1672 		my_hd ((unsigned char *) dev, sizeof (*dev));
1673 
1674 	undocumented_pci_fix (pci_dev);
1675 
1676 	dev->hw_base = pci_resource_start(pci_dev, 0);
1677 
1678 	dev->base = ioremap(dev->hw_base, 0x1000);
1679 	if (!dev->base)
1680 		return 1;
1681 
1682 	reset_chip (dev);
1683 
1684 	write_fs (dev, SARMODE0, 0
1685 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1686 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1687 		  | (1 * SARMODE0_CWRE)
1688 		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1689 			  SARMODE0_PRPWT_FS155_3)
1690 		  | (1 * SARMODE0_CALSUP_1)
1691 		  | (IS_FS50(dev) ? (0
1692 				   | SARMODE0_RXVCS_32
1693 				   | SARMODE0_ABRVCS_32
1694 				   | SARMODE0_TXVCS_32):
1695 		                  (0
1696 				   | SARMODE0_RXVCS_1k
1697 				   | SARMODE0_ABRVCS_1k
1698 				   | SARMODE0_TXVCS_1k)));
1699 
1700 	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1701 	   1ms. */
1702 	to = 100;
1703 	while (--to) {
1704 		isr = read_fs (dev, ISR);
1705 
1706 		/* This bit is documented as "RESERVED" */
1707 		if (isr & ISR_INIT_ERR) {
1708 			printk (KERN_ERR "Error initializing the FS... \n");
1709 			goto unmap;
1710 		}
1711 		if (isr & ISR_INIT) {
1712 			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1713 			break;
1714 		}
1715 
1716 		/* Try again after 10ms. */
1717 		msleep(10);
1718 	}
1719 
1720 	if (!to) {
1721 		printk (KERN_ERR "timeout initializing the FS... \n");
1722 		goto unmap;
1723 	}
1724 
1725 	/* XXX fix for fs155 */
1726 	dev->channel_mask = 0x1f;
1727 	dev->channo = 0;
1728 
1729 	/* AN3: 10 */
1730 	write_fs (dev, SARMODE1, 0
1731 		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1732 		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1733 		  | (1 * SARMODE1_DCRM)
1734 		  | (1 * SARMODE1_DCOAM)
1735 		  | (0 * SARMODE1_OAMCRC)
1736 		  | (0 * SARMODE1_DUMPE)
1737 		  | (0 * SARMODE1_GPLEN)
1738 		  | (0 * SARMODE1_GNAM)
1739 		  | (0 * SARMODE1_GVAS)
1740 		  | (0 * SARMODE1_GPAS)
1741 		  | (1 * SARMODE1_GPRI)
1742 		  | (0 * SARMODE1_PMS)
1743 		  | (0 * SARMODE1_GFCR)
1744 		  | (1 * SARMODE1_HECM2)
1745 		  | (1 * SARMODE1_HECM1)
1746 		  | (1 * SARMODE1_HECM0)
1747 		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1748 		  | (0 * 0xff) /* XXX FS155 */);
1749 
1750 
1751 	/* Cal prescale etc */
1752 
1753 	/* AN3: 11 */
1754 	write_fs (dev, TMCONF, 0x0000000f);
1755 	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1756 	write_fs (dev, 0x80, 0x000F00E4);
1757 
1758 	/* AN3: 12 */
1759 	write_fs (dev, CELLOSCONF, 0
1760 		  | (   0 * CELLOSCONF_CEN)
1761 		  | (       CELLOSCONF_SC1)
1762 		  | (0x80 * CELLOSCONF_COBS)
1763 		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1764 		  | (num  * CELLOSCONF_COST));/* after a hint from Hang.
1765 					       * performance jumped 50->70... */
1766 
1767 	/* Magic value by Hang */
1768 	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1769 
1770 	if (IS_FS50 (dev)) {
1771 		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1772 		dev->atm_dev->ci_range.vpi_bits = 12;
1773 		dev->atm_dev->ci_range.vci_bits = 16;
1774 		dev->nchannels = FS50_NR_CHANNELS;
1775 	} else {
1776 		write_fs (dev, RAS0, RAS0_DCD_XHLT
1777 			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1778 			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1779 		/* We can chose the split arbitrarily. We might be able to
1780 		   support more. Whatever. This should do for now. */
1781 		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1782 		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1783 
1784 		/* Address bits we can't use should be compared to 0. */
1785 		write_fs (dev, RAC, 0);
1786 
1787 		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1788 		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1789 		 * other bits, then compare with 0, which is exactly what we
1790 		 * want. */
1791 		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1792 		dev->nchannels = FS155_NR_CHANNELS;
1793 	}
1794 	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1795 				 GFP_KERNEL);
1796 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1797 		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1798 
1799 	if (!dev->atm_vccs) {
1800 		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1801 		/* XXX Clean up..... */
1802 		goto unmap;
1803 	}
1804 
1805 	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1806 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1807 		    dev->atm_vccs, dev->nchannels / 8);
1808 
1809 	if (!dev->tx_inuse) {
1810 		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1811 		/* XXX Clean up..... */
1812 		goto unmap;
1813 	}
1814 	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1815 	/* -- RAS2 : FS50 only: Default is OK. */
1816 
1817 	/* DMAMODE, default should be OK. -- REW */
1818 	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1819 
1820 	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1821 	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1822 	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1823 	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1824 
1825 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1826 		init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1827 			 rx_buf_sizes[i], rx_pool_sizes[i]);
1828 		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1829 	}
1830 
1831 
1832 	for (i=0;i < FS_NR_RX_QUEUES;i++)
1833 		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1834 
1835 	dev->irq = pci_dev->irq;
1836 	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1837 		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1838 		/* XXX undo all previous stuff... */
1839 		goto unmap;
1840 	}
1841 	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1842 
1843 	/* We want to be notified of most things. Just the statistics count
1844 	   overflows are not interesting */
1845 	write_fs (dev, IMR, 0
1846 		  | ISR_RBRQ0_W
1847 		  | ISR_RBRQ1_W
1848 		  | ISR_RBRQ2_W
1849 		  | ISR_RBRQ3_W
1850 		  | ISR_TBRQ_W
1851 		  | ISR_CSQ_W);
1852 
1853 	write_fs (dev, SARMODE0, 0
1854 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1855 		  | (1 * SARMODE0_GINT)
1856 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1857 		  | (0 * SARMODE0_CWRE)
1858 		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1859 		                  SARMODE0_PRPWT_FS155_3)
1860 		  | (1 * SARMODE0_CALSUP_1)
1861 		  | (IS_FS50 (dev)?(0
1862 				    | SARMODE0_RXVCS_32
1863 				    | SARMODE0_ABRVCS_32
1864 				    | SARMODE0_TXVCS_32):
1865 		                   (0
1866 				    | SARMODE0_RXVCS_1k
1867 				    | SARMODE0_ABRVCS_1k
1868 				    | SARMODE0_TXVCS_1k))
1869 		  | (1 * SARMODE0_RUN));
1870 
1871 	init_phy (dev, PHY_NTC_INIT);
1872 
1873 	if (loopback == 2) {
1874 		write_phy (dev, 0x39, 0x000e);
1875 	}
1876 
1877 #ifdef FS_POLL_FREQ
1878 	timer_setup(&dev->timer, fs_poll, 0);
1879 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1880 	add_timer (&dev->timer);
1881 #endif
1882 
1883 	dev->atm_dev->dev_data = dev;
1884 
1885 	func_exit ();
1886 	return 0;
1887 unmap:
1888 	iounmap(dev->base);
1889 	return 1;
1890 }
1891 
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1892 static int firestream_init_one(struct pci_dev *pci_dev,
1893 			       const struct pci_device_id *ent)
1894 {
1895 	struct atm_dev *atm_dev;
1896 	struct fs_dev *fs_dev;
1897 
1898 	if (pci_enable_device(pci_dev))
1899 		goto err_out;
1900 
1901 	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1902 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1903 		    fs_dev, sizeof (struct fs_dev));
1904 	if (!fs_dev)
1905 		goto err_out;
1906 	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1907 	if (!atm_dev)
1908 		goto err_out_free_fs_dev;
1909 
1910 	fs_dev->pci_dev = pci_dev;
1911 	fs_dev->atm_dev = atm_dev;
1912 	fs_dev->flags = ent->driver_data;
1913 
1914 	if (fs_init(fs_dev))
1915 		goto err_out_free_atm_dev;
1916 
1917 	fs_dev->next = fs_boards;
1918 	fs_boards = fs_dev;
1919 	return 0;
1920 
1921  err_out_free_atm_dev:
1922 	atm_dev_deregister(atm_dev);
1923  err_out_free_fs_dev:
1924  	kfree(fs_dev);
1925  err_out:
1926 	return -ENODEV;
1927 }
1928 
firestream_remove_one(struct pci_dev * pdev)1929 static void firestream_remove_one(struct pci_dev *pdev)
1930 {
1931 	int i;
1932 	struct fs_dev *dev, *nxtdev;
1933 	struct fs_vcc *vcc;
1934 	struct FS_BPENTRY *fp, *nxt;
1935 
1936 	func_enter ();
1937 
1938 #if 0
1939 	printk ("hptxq:\n");
1940 	for (i=0;i<60;i++) {
1941 		printk ("%d: %08x %08x %08x %08x \n",
1942 			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1943 		qp++;
1944 		if (qp >= 60) qp = 0;
1945 	}
1946 
1947 	printk ("descriptors:\n");
1948 	for (i=0;i<60;i++) {
1949 		printk ("%d: %p: %08x %08x %p %p\n",
1950 			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1951 		qd++;
1952 		if (qd >= 60) qd = 0;
1953 	}
1954 #endif
1955 
1956 	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1957 		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1958 
1959 		/* XXX Hit all the tx channels too! */
1960 
1961 		for (i=0;i < dev->nchannels;i++) {
1962 			if (dev->atm_vccs[i]) {
1963 				vcc = FS_VCC (dev->atm_vccs[i]);
1964 				submit_command (dev,  &dev->hp_txq,
1965 						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1966 				submit_command (dev,  &dev->hp_txq,
1967 						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1968 
1969 			}
1970 		}
1971 
1972 		/* XXX Wait a while for the chip to release all buffers. */
1973 
1974 		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1975 			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1976 			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1977 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1978 				dev_kfree_skb_any (fp->skb);
1979 				nxt = bus_to_virt (fp->next);
1980 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1981 				kfree (fp);
1982 			}
1983 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1984 			dev_kfree_skb_any (fp->skb);
1985 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1986 			kfree (fp);
1987 		}
1988 
1989 		/* Hang the chip in "reset", prevent it clobbering memory that is
1990 		   no longer ours. */
1991 		reset_chip (dev);
1992 
1993 		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1994 		free_irq (dev->irq, dev);
1995 		del_timer_sync (&dev->timer);
1996 
1997 		atm_dev_deregister(dev->atm_dev);
1998 		free_queue (dev, &dev->hp_txq);
1999 		free_queue (dev, &dev->lp_txq);
2000 		free_queue (dev, &dev->tx_relq);
2001 		free_queue (dev, &dev->st_q);
2002 
2003 		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2004 		kfree (dev->atm_vccs);
2005 
2006 		for (i=0;i< FS_NR_FREE_POOLS;i++)
2007 			free_freepool (dev, &dev->rx_fp[i]);
2008 
2009 		for (i=0;i < FS_NR_RX_QUEUES;i++)
2010 			free_queue (dev, &dev->rx_rq[i]);
2011 
2012 		iounmap(dev->base);
2013 		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2014 		nxtdev = dev->next;
2015 		kfree (dev);
2016 	}
2017 
2018 	func_exit ();
2019 }
2020 
2021 static const struct pci_device_id firestream_pci_tbl[] = {
2022 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2023 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2024 	{ 0, }
2025 };
2026 
2027 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2028 
2029 static struct pci_driver firestream_driver = {
2030 	.name		= "firestream",
2031 	.id_table	= firestream_pci_tbl,
2032 	.probe		= firestream_init_one,
2033 	.remove		= firestream_remove_one,
2034 };
2035 
firestream_init_module(void)2036 static int __init firestream_init_module (void)
2037 {
2038 	int error;
2039 
2040 	func_enter ();
2041 	error = pci_register_driver(&firestream_driver);
2042 	func_exit ();
2043 	return error;
2044 }
2045 
firestream_cleanup_module(void)2046 static void __exit firestream_cleanup_module(void)
2047 {
2048 	pci_unregister_driver(&firestream_driver);
2049 }
2050 
2051 module_init(firestream_init_module);
2052 module_exit(firestream_cleanup_module);
2053 
2054 MODULE_LICENSE("GPL");
2055 
2056 
2057 
2058