1 // SPDX-License-Identifier: GPL-2.0-or-later
2
3 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
4 * FireStream 50 (MB86695) device driver
5 */
6
7 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
8 * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
9 * and ambassador.c Copyright (C) 1995-1999 Madge Networks Ltd
10 */
11
12 /*
13 */
14
15
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/pci.h>
21 #include <linux/poison.h>
22 #include <linux/errno.h>
23 #include <linux/atm.h>
24 #include <linux/atmdev.h>
25 #include <linux/sonet.h>
26 #include <linux/skbuff.h>
27 #include <linux/netdevice.h>
28 #include <linux/delay.h>
29 #include <linux/ioport.h> /* for request_region */
30 #include <linux/uio.h>
31 #include <linux/init.h>
32 #include <linux/interrupt.h>
33 #include <linux/capability.h>
34 #include <linux/bitops.h>
35 #include <linux/slab.h>
36 #include <asm/byteorder.h>
37 #include <asm/string.h>
38 #include <asm/io.h>
39 #include <linux/atomic.h>
40 #include <linux/uaccess.h>
41 #include <linux/wait.h>
42
43 #include "firestream.h"
44
45 static int loopback = 0;
46 static int num=0x5a;
47
48 /* According to measurements (but they look suspicious to me!) done in
49 * '97, 37% of the packets are one cell in size. So it pays to have
50 * buffers allocated at that size. A large jump in percentage of
51 * packets occurs at packets around 536 bytes in length. So it also
52 * pays to have those pre-allocated. Unfortunately, we can't fully
53 * take advantage of this as the majority of the packets is likely to
54 * be TCP/IP (As where obviously the measurement comes from) There the
55 * link would be opened with say a 1500 byte MTU, and we can't handle
56 * smaller buffers more efficiently than the larger ones. -- REW
57 */
58
59 /* Due to the way Linux memory management works, specifying "576" as
60 * an allocation size here isn't going to help. They are allocated
61 * from 1024-byte regions anyway. With the size of the sk_buffs (quite
62 * large), it doesn't pay to allocate the smallest size (64) -- REW */
63
64 /* This is all guesswork. Hard numbers to back this up or disprove this,
65 * are appreciated. -- REW */
66
67 /* The last entry should be about 64k. However, the "buffer size" is
68 * passed to the chip in a 16 bit field. I don't know how "65536"
69 * would be interpreted. -- REW */
70
71 #define NP FS_NR_FREE_POOLS
72 static int rx_buf_sizes[NP] = {128, 256, 512, 1024, 2048, 4096, 16384, 65520};
73 /* log2: 7 8 9 10 11 12 14 16 */
74
75 #if 0
76 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256, 128, 64, 32, 32};
77 #else
78 /* debug */
79 static int rx_pool_sizes[NP] = {128, 128, 128, 64, 64, 64, 32, 32};
80 #endif
81 /* log2: 10 10 9 8 7 6 5 5 */
82 /* sumlog2: 17 18 18 18 18 18 19 21 */
83 /* mem allocated: 128k 256k 256k 256k 256k 256k 512k 2M */
84 /* tot mem: almost 4M */
85
86 /* NP is shorter, so that it fits on a single line. */
87 #undef NP
88
89
90 /* Small hardware gotcha:
91
92 The FS50 CAM (VP/VC match registers) always take the lowest channel
93 number that matches. This is not a problem.
94
95 However, they also ignore whether the channel is enabled or
96 not. This means that if you allocate channel 0 to 1.2 and then
97 channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
98 match channel for channel 0 will "steal" the traffic from channel
99 1, even if you correctly disable channel 0.
100
101 Workaround:
102
103 - When disabling channels, write an invalid VP/VC value to the
104 match register. (We use 0xffffffff, which in the worst case
105 matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
106 anything as some "when not in use, program to 0" bits are now
107 programmed to 1...)
108
109 - Don't initialize the match registers to 0, as 0.0 is a valid
110 channel.
111 */
112
113
114 /* Optimization hints and tips.
115
116 The FireStream chips are very capable of reducing the amount of
117 "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
118 action. You could try to minimize this a bit.
119
120 Besides that, the userspace->kernel copy and the PCI bus are the
121 performance limiting issues for this driver.
122
123 You could queue up a bunch of outgoing packets without telling the
124 FireStream. I'm not sure that's going to win you much though. The
125 Linux layer won't tell us in advance when it's not going to give us
126 any more packets in a while. So this is tricky to implement right without
127 introducing extra delays.
128
129 -- REW
130 */
131
132
133
134
135 /* The strings that define what the RX queue entry is all about. */
136 /* Fujitsu: Please tell me which ones can have a pointer to a
137 freepool descriptor! */
138 static char *res_strings[] = {
139 "RX OK: streaming not EOP",
140 "RX OK: streaming EOP",
141 "RX OK: Single buffer packet",
142 "RX OK: packet mode",
143 "RX OK: F4 OAM (end to end)",
144 "RX OK: F4 OAM (Segment)",
145 "RX OK: F5 OAM (end to end)",
146 "RX OK: F5 OAM (Segment)",
147 "RX OK: RM cell",
148 "RX OK: TRANSP cell",
149 "RX OK: TRANSPC cell",
150 "Unmatched cell",
151 "reserved 12",
152 "reserved 13",
153 "reserved 14",
154 "Unrecognized cell",
155 "reserved 16",
156 "reassembly abort: AAL5 abort",
157 "packet purged",
158 "packet ageing timeout",
159 "channel ageing timeout",
160 "calculated length error",
161 "programmed length limit error",
162 "aal5 crc32 error",
163 "oam transp or transpc crc10 error",
164 "reserved 25",
165 "reserved 26",
166 "reserved 27",
167 "reserved 28",
168 "reserved 29",
169 "reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
170 "reassembly abort: no buffers",
171 "receive buffer overflow",
172 "change in GFC",
173 "receive buffer full",
174 "low priority discard - no receive descriptor",
175 "low priority discard - missing end of packet",
176 "reserved 37",
177 "reserved 38",
178 "reserved 39",
179 "reserved 40",
180 "reserved 41",
181 "reserved 42",
182 "reserved 43",
183 "reserved 44",
184 "reserved 45",
185 "reserved 46",
186 "reserved 47",
187 "reserved 48",
188 "reserved 49",
189 "reserved 50",
190 "reserved 51",
191 "reserved 52",
192 "reserved 53",
193 "reserved 54",
194 "reserved 55",
195 "reserved 56",
196 "reserved 57",
197 "reserved 58",
198 "reserved 59",
199 "reserved 60",
200 "reserved 61",
201 "reserved 62",
202 "reserved 63",
203 };
204
205 static char *irq_bitname[] = {
206 "LPCO",
207 "DPCO",
208 "RBRQ0_W",
209 "RBRQ1_W",
210 "RBRQ2_W",
211 "RBRQ3_W",
212 "RBRQ0_NF",
213 "RBRQ1_NF",
214 "RBRQ2_NF",
215 "RBRQ3_NF",
216 "BFP_SC",
217 "INIT",
218 "INIT_ERR",
219 "USCEO",
220 "UPEC0",
221 "VPFCO",
222 "CRCCO",
223 "HECO",
224 "TBRQ_W",
225 "TBRQ_NF",
226 "CTPQ_E",
227 "GFC_C0",
228 "PCI_FTL",
229 "CSQ_W",
230 "CSQ_NF",
231 "EXT_INT",
232 "RXDMA_S"
233 };
234
235
236 #define PHY_EOF -1
237 #define PHY_CLEARALL -2
238
239 struct reginit_item {
240 int reg, val;
241 };
242
243
244 static struct reginit_item PHY_NTC_INIT[] = {
245 { PHY_CLEARALL, 0x40 },
246 { 0x12, 0x0001 },
247 { 0x13, 0x7605 },
248 { 0x1A, 0x0001 },
249 { 0x1B, 0x0005 },
250 { 0x38, 0x0003 },
251 { 0x39, 0x0006 }, /* changed here to make loopback */
252 { 0x01, 0x5262 },
253 { 0x15, 0x0213 },
254 { 0x00, 0x0003 },
255 { PHY_EOF, 0}, /* -1 signals end of list */
256 };
257
258
259 /* Safetyfeature: If the card interrupts more than this number of times
260 in a jiffy (1/100th of a second) then we just disable the interrupt and
261 print a message. This prevents the system from hanging.
262
263 150000 packets per second is close to the limit a PC is going to have
264 anyway. We therefore have to disable this for production. -- REW */
265 #undef IRQ_RATE_LIMIT // 100
266
267 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
268 that great without interrupts. -- REW */
269 #undef FS_POLL_FREQ // 100
270
271 /*
272 This driver can spew a whole lot of debugging output at you. If you
273 need maximum performance, you should disable the DEBUG define. To
274 aid in debugging in the field, I'm leaving the compile-time debug
275 features enabled, and disable them "runtime". That allows me to
276 instruct people with problems to enable debugging without requiring
277 them to recompile... -- REW
278 */
279 #define DEBUG
280
281 #ifdef DEBUG
282 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
283 #else
284 #define fs_dprintk(f, str...) /* nothing */
285 #endif
286
287
288 static int fs_keystream = 0;
289
290 #ifdef DEBUG
291 /* I didn't forget to set this to zero before shipping. Hit me with a stick
292 if you get this with the debug default not set to zero again. -- REW */
293 static int fs_debug = 0;
294 #else
295 #define fs_debug 0
296 #endif
297
298 #ifdef MODULE
299 #ifdef DEBUG
300 module_param(fs_debug, int, 0644);
301 #endif
302 module_param(loopback, int, 0);
303 module_param(num, int, 0);
304 module_param(fs_keystream, int, 0);
305 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
306 #endif
307
308
309 #define FS_DEBUG_FLOW 0x00000001
310 #define FS_DEBUG_OPEN 0x00000002
311 #define FS_DEBUG_QUEUE 0x00000004
312 #define FS_DEBUG_IRQ 0x00000008
313 #define FS_DEBUG_INIT 0x00000010
314 #define FS_DEBUG_SEND 0x00000020
315 #define FS_DEBUG_PHY 0x00000040
316 #define FS_DEBUG_CLEANUP 0x00000080
317 #define FS_DEBUG_QOS 0x00000100
318 #define FS_DEBUG_TXQ 0x00000200
319 #define FS_DEBUG_ALLOC 0x00000400
320 #define FS_DEBUG_TXMEM 0x00000800
321 #define FS_DEBUG_QSIZE 0x00001000
322
323
324 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
325 #define func_exit() fs_dprintk(FS_DEBUG_FLOW, "fs: exit %s\n", __func__)
326
327
328 static struct fs_dev *fs_boards = NULL;
329
330 #ifdef DEBUG
331
my_hd(void * addr,int len)332 static void my_hd (void *addr, int len)
333 {
334 int j, ch;
335 unsigned char *ptr = addr;
336
337 while (len > 0) {
338 printk ("%p ", ptr);
339 for (j=0;j < ((len < 16)?len:16);j++) {
340 printk ("%02x %s", ptr[j], (j==7)?" ":"");
341 }
342 for ( ;j < 16;j++) {
343 printk (" %s", (j==7)?" ":"");
344 }
345 for (j=0;j < ((len < 16)?len:16);j++) {
346 ch = ptr[j];
347 printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
348 }
349 printk ("\n");
350 ptr += 16;
351 len -= 16;
352 }
353 }
354 #else /* DEBUG */
my_hd(void * addr,int len)355 static void my_hd (void *addr, int len){}
356 #endif /* DEBUG */
357
358 /********** free an skb (as per ATM device driver documentation) **********/
359
360 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
361 * I copied it over from the ambassador driver. -- REW */
362
fs_kfree_skb(struct sk_buff * skb)363 static inline void fs_kfree_skb (struct sk_buff * skb)
364 {
365 if (ATM_SKB(skb)->vcc->pop)
366 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
367 else
368 dev_kfree_skb_any (skb);
369 }
370
371
372
373
374 /* It seems the ATM forum recommends this horribly complicated 16bit
375 * floating point format. Turns out the Ambassador uses the exact same
376 * encoding. I just copied it over. If Mitch agrees, I'll move it over
377 * to the atm_misc file or something like that. (and remove it from
378 * here and the ambassador driver) -- REW
379 */
380
381 /* The good thing about this format is that it is monotonic. So,
382 a conversion routine need not be very complicated. To be able to
383 round "nearest" we need to take along a few extra bits. Lets
384 put these after 16 bits, so that we can just return the top 16
385 bits of the 32bit number as the result:
386
387 int mr (unsigned int rate, int r)
388 {
389 int e = 16+9;
390 static int round[4]={0, 0, 0xffff, 0x8000};
391 if (!rate) return 0;
392 while (rate & 0xfc000000) {
393 rate >>= 1;
394 e++;
395 }
396 while (! (rate & 0xfe000000)) {
397 rate <<= 1;
398 e--;
399 }
400
401 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
402 rate &= ~0x02000000;
403 // Next add in the exponent
404 rate |= e << (16+9);
405 // And perform the rounding:
406 return (rate + round[r]) >> 16;
407 }
408
409 14 lines-of-code. Compare that with the 120 that the Ambassador
410 guys needed. (would be 8 lines shorter if I'd try to really reduce
411 the number of lines:
412
413 int mr (unsigned int rate, int r)
414 {
415 int e = 16+9;
416 static int round[4]={0, 0, 0xffff, 0x8000};
417 if (!rate) return 0;
418 for (; rate & 0xfc000000 ;rate >>= 1, e++);
419 for (;!(rate & 0xfe000000);rate <<= 1, e--);
420 return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
421 }
422
423 Exercise for the reader: Remove one more line-of-code, without
424 cheating. (Just joining two lines is cheating). (I know it's
425 possible, don't think you've beat me if you found it... If you
426 manage to lose two lines or more, keep me updated! ;-)
427
428 -- REW */
429
430
431 #define ROUND_UP 1
432 #define ROUND_DOWN 2
433 #define ROUND_NEAREST 3
434 /********** make rate (not quite as much fun as Horizon) **********/
435
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)436 static int make_rate(unsigned int rate, int r,
437 u16 *bits, unsigned int *actual)
438 {
439 unsigned char exp = -1; /* hush gcc */
440 unsigned int man = -1; /* hush gcc */
441
442 fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
443
444 /* rates in cells per second, ITU format (nasty 16-bit floating-point)
445 given 5-bit e and 9-bit m:
446 rate = EITHER (1+m/2^9)*2^e OR 0
447 bits = EITHER 1<<14 | e<<9 | m OR 0
448 (bit 15 is "reserved", bit 14 "non-zero")
449 smallest rate is 0 (special representation)
450 largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
451 smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
452 simple algorithm:
453 find position of top bit, this gives e
454 remove top bit and shift (rounding if feeling clever) by 9-e
455 */
456 /* Ambassador ucode bug: please don't set bit 14! so 0 rate not
457 representable. // This should move into the ambassador driver
458 when properly merged. -- REW */
459
460 if (rate > 0xffc00000U) {
461 /* larger than largest representable rate */
462
463 if (r == ROUND_UP) {
464 return -EINVAL;
465 } else {
466 exp = 31;
467 man = 511;
468 }
469
470 } else if (rate) {
471 /* representable rate */
472
473 exp = 31;
474 man = rate;
475
476 /* invariant: rate = man*2^(exp-31) */
477 while (!(man & (1<<31))) {
478 exp = exp - 1;
479 man = man<<1;
480 }
481
482 /* man has top bit set
483 rate = (2^31+(man-2^31))*2^(exp-31)
484 rate = (1+(man-2^31)/2^31)*2^exp
485 */
486 man = man<<1;
487 man &= 0xffffffffU; /* a nop on 32-bit systems */
488 /* rate = (1+man/2^32)*2^exp
489
490 exp is in the range 0 to 31, man is in the range 0 to 2^32-1
491 time to lose significance... we want m in the range 0 to 2^9-1
492 rounding presents a minor problem... we first decide which way
493 we are rounding (based on given rounding direction and possibly
494 the bits of the mantissa that are to be discarded).
495 */
496
497 switch (r) {
498 case ROUND_DOWN: {
499 /* just truncate */
500 man = man>>(32-9);
501 break;
502 }
503 case ROUND_UP: {
504 /* check all bits that we are discarding */
505 if (man & (~0U>>9)) {
506 man = (man>>(32-9)) + 1;
507 if (man == (1<<9)) {
508 /* no need to check for round up outside of range */
509 man = 0;
510 exp += 1;
511 }
512 } else {
513 man = (man>>(32-9));
514 }
515 break;
516 }
517 case ROUND_NEAREST: {
518 /* check msb that we are discarding */
519 if (man & (1<<(32-9-1))) {
520 man = (man>>(32-9)) + 1;
521 if (man == (1<<9)) {
522 /* no need to check for round up outside of range */
523 man = 0;
524 exp += 1;
525 }
526 } else {
527 man = (man>>(32-9));
528 }
529 break;
530 }
531 }
532
533 } else {
534 /* zero rate - not representable */
535
536 if (r == ROUND_DOWN) {
537 return -EINVAL;
538 } else {
539 exp = 0;
540 man = 0;
541 }
542 }
543
544 fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
545
546 if (bits)
547 *bits = /* (1<<14) | */ (exp<<9) | man;
548
549 if (actual)
550 *actual = (exp >= 9)
551 ? (1 << exp) + (man << (exp-9))
552 : (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
553
554 return 0;
555 }
556
557
558
559
560 /* FireStream access routines */
561 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
562 certain registers or to just log all accesses. */
563
write_fs(struct fs_dev * dev,int offset,u32 val)564 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
565 {
566 writel (val, dev->base + offset);
567 }
568
569
read_fs(struct fs_dev * dev,int offset)570 static inline u32 read_fs (struct fs_dev *dev, int offset)
571 {
572 return readl (dev->base + offset);
573 }
574
575
576
get_qentry(struct fs_dev * dev,struct queue * q)577 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
578 {
579 return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
580 }
581
582
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)583 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
584 {
585 u32 wp;
586 struct FS_QENTRY *cqe;
587
588 /* XXX Sanity check: the write pointer can be checked to be
589 still the same as the value passed as qe... -- REW */
590 /* udelay (5); */
591 while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
592 fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
593 q->offset);
594 schedule ();
595 }
596
597 wp &= ~0xf;
598 cqe = bus_to_virt (wp);
599 if (qe != cqe) {
600 fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
601 }
602
603 write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
604
605 {
606 static int c;
607 if (!(c++ % 100))
608 {
609 int rp, wp;
610 rp = read_fs (dev, Q_RP(q->offset));
611 wp = read_fs (dev, Q_WP(q->offset));
612 fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
613 q->offset, rp, wp, wp-rp);
614 }
615 }
616 }
617
618 #ifdef DEBUG_EXTRA
619 static struct FS_QENTRY pq[60];
620 static int qp;
621
622 static struct FS_BPENTRY dq[60];
623 static int qd;
624 static void *da[60];
625 #endif
626
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)627 static void submit_queue (struct fs_dev *dev, struct queue *q,
628 u32 cmd, u32 p1, u32 p2, u32 p3)
629 {
630 struct FS_QENTRY *qe;
631
632 qe = get_qentry (dev, q);
633 qe->cmd = cmd;
634 qe->p0 = p1;
635 qe->p1 = p2;
636 qe->p2 = p3;
637 submit_qentry (dev, q, qe);
638
639 #ifdef DEBUG_EXTRA
640 pq[qp].cmd = cmd;
641 pq[qp].p0 = p1;
642 pq[qp].p1 = p2;
643 pq[qp].p2 = p3;
644 qp++;
645 if (qp >= 60) qp = 0;
646 #endif
647 }
648
649 /* Test the "other" way one day... -- REW */
650 #if 1
651 #define submit_command submit_queue
652 #else
653
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)654 static void submit_command (struct fs_dev *dev, struct queue *q,
655 u32 cmd, u32 p1, u32 p2, u32 p3)
656 {
657 write_fs (dev, CMDR0, cmd);
658 write_fs (dev, CMDR1, p1);
659 write_fs (dev, CMDR2, p2);
660 write_fs (dev, CMDR3, p3);
661 }
662 #endif
663
664
665
process_return_queue(struct fs_dev * dev,struct queue * q)666 static void process_return_queue (struct fs_dev *dev, struct queue *q)
667 {
668 long rq;
669 struct FS_QENTRY *qe;
670 void *tc;
671
672 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
673 fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
674 qe = bus_to_virt (rq);
675
676 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
677 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
678
679 switch (STATUS_CODE (qe)) {
680 case 5:
681 tc = bus_to_virt (qe->p0);
682 fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
683 kfree (tc);
684 break;
685 }
686
687 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
688 }
689 }
690
691
process_txdone_queue(struct fs_dev * dev,struct queue * q)692 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
693 {
694 long rq;
695 long tmp;
696 struct FS_QENTRY *qe;
697 struct sk_buff *skb;
698 struct FS_BPENTRY *td;
699
700 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
701 fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
702 qe = bus_to_virt (rq);
703
704 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
705 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
706
707 if (STATUS_CODE (qe) != 2)
708 fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
709 qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
710
711
712 switch (STATUS_CODE (qe)) {
713 case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
714 fallthrough;
715 case 0x02:
716 /* Process a real txdone entry. */
717 tmp = qe->p0;
718 if (tmp & 0x0f)
719 printk (KERN_WARNING "td not aligned: %ld\n", tmp);
720 tmp &= ~0x0f;
721 td = bus_to_virt (tmp);
722
723 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
724 td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
725
726 skb = td->skb;
727 if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
728 FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
729 wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
730 }
731 td->dev->ntxpckts--;
732
733 {
734 static int c=0;
735
736 if (!(c++ % 100)) {
737 fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
738 }
739 }
740
741 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
742
743 fs_dprintk (FS_DEBUG_TXMEM, "i");
744 fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
745 fs_kfree_skb (skb);
746
747 fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
748 memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
749 kfree (td);
750 break;
751 default:
752 /* Here we get the tx purge inhibit command ... */
753 /* Action, I believe, is "don't do anything". -- REW */
754 ;
755 }
756
757 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
758 }
759 }
760
761
process_incoming(struct fs_dev * dev,struct queue * q)762 static void process_incoming (struct fs_dev *dev, struct queue *q)
763 {
764 long rq;
765 struct FS_QENTRY *qe;
766 struct FS_BPENTRY *pe;
767 struct sk_buff *skb;
768 unsigned int channo;
769 struct atm_vcc *atm_vcc;
770
771 while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
772 fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
773 qe = bus_to_virt (rq);
774
775 fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. ",
776 qe->cmd, qe->p0, qe->p1, qe->p2);
777
778 fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
779 STATUS_CODE (qe),
780 res_strings[STATUS_CODE(qe)]);
781
782 pe = bus_to_virt (qe->p0);
783 fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
784 pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
785 pe->skb, pe->fp);
786
787 channo = qe->cmd & 0xffff;
788
789 if (channo < dev->nchannels)
790 atm_vcc = dev->atm_vccs[channo];
791 else
792 atm_vcc = NULL;
793
794 /* Single buffer packet */
795 switch (STATUS_CODE (qe)) {
796 case 0x1:
797 /* Fall through for streaming mode */
798 fallthrough;
799 case 0x2:/* Packet received OK.... */
800 if (atm_vcc) {
801 skb = pe->skb;
802 pe->fp->n--;
803 #if 0
804 fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
805 if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
806 #endif
807 skb_put (skb, qe->p1 & 0xffff);
808 ATM_SKB(skb)->vcc = atm_vcc;
809 atomic_inc(&atm_vcc->stats->rx);
810 __net_timestamp(skb);
811 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
812 atm_vcc->push (atm_vcc, skb);
813 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
814 kfree (pe);
815 } else {
816 printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
817 }
818 break;
819 case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
820 has been consumed and needs to be processed. -- REW */
821 if (qe->p1 & 0xffff) {
822 pe = bus_to_virt (qe->p0);
823 pe->fp->n--;
824 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
825 dev_kfree_skb_any (pe->skb);
826 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
827 kfree (pe);
828 }
829 if (atm_vcc)
830 atomic_inc(&atm_vcc->stats->rx_drop);
831 break;
832 case 0x1f: /* Reassembly abort: no buffers. */
833 /* Silently increment error counter. */
834 if (atm_vcc)
835 atomic_inc(&atm_vcc->stats->rx_drop);
836 break;
837 default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
838 printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
839 STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
840 }
841 write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
842 }
843 }
844
845
846
847 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
848
fs_open(struct atm_vcc * atm_vcc)849 static int fs_open(struct atm_vcc *atm_vcc)
850 {
851 struct fs_dev *dev;
852 struct fs_vcc *vcc;
853 struct fs_transmit_config *tc;
854 struct atm_trafprm * txtp;
855 struct atm_trafprm * rxtp;
856 /* struct fs_receive_config *rc;*/
857 /* struct FS_QENTRY *qe; */
858 int error;
859 int bfp;
860 int to;
861 unsigned short tmc0;
862 short vpi = atm_vcc->vpi;
863 int vci = atm_vcc->vci;
864
865 func_enter ();
866
867 dev = FS_DEV(atm_vcc->dev);
868 fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
869 dev, atm_vcc);
870
871 if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
872 set_bit(ATM_VF_ADDR, &atm_vcc->flags);
873
874 if ((atm_vcc->qos.aal != ATM_AAL5) &&
875 (atm_vcc->qos.aal != ATM_AAL2))
876 return -EINVAL; /* XXX AAL0 */
877
878 fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
879 atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
880
881 /* XXX handle qos parameters (rate limiting) ? */
882
883 vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
884 fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
885 if (!vcc) {
886 clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
887 return -ENOMEM;
888 }
889
890 atm_vcc->dev_data = vcc;
891 vcc->last_skb = NULL;
892
893 init_waitqueue_head (&vcc->close_wait);
894
895 txtp = &atm_vcc->qos.txtp;
896 rxtp = &atm_vcc->qos.rxtp;
897
898 if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
899 if (IS_FS50(dev)) {
900 /* Increment the channel numer: take a free one next time. */
901 for (to=33;to;to--, dev->channo++) {
902 /* We only have 32 channels */
903 if (dev->channo >= 32)
904 dev->channo = 0;
905 /* If we need to do RX, AND the RX is inuse, try the next */
906 if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
907 continue;
908 /* If we need to do TX, AND the TX is inuse, try the next */
909 if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
910 continue;
911 /* Ok, both are free! (or not needed) */
912 break;
913 }
914 if (!to) {
915 printk ("No more free channels for FS50..\n");
916 kfree(vcc);
917 return -EBUSY;
918 }
919 vcc->channo = dev->channo;
920 dev->channo &= dev->channel_mask;
921
922 } else {
923 vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
924 if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
925 ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
926 printk ("Channel is in use for FS155.\n");
927 kfree(vcc);
928 return -EBUSY;
929 }
930 }
931 fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
932 vcc->channo, vcc->channo);
933 }
934
935 if (DO_DIRECTION (txtp)) {
936 tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
937 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
938 tc, sizeof (struct fs_transmit_config));
939 if (!tc) {
940 fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
941 kfree(vcc);
942 return -ENOMEM;
943 }
944
945 /* Allocate the "open" entry from the high priority txq. This makes
946 it most likely that the chip will notice it. It also prevents us
947 from having to wait for completion. On the other hand, we may
948 need to wait for completion anyway, to see if it completed
949 successfully. */
950
951 switch (atm_vcc->qos.aal) {
952 case ATM_AAL2:
953 case ATM_AAL0:
954 tc->flags = 0
955 | TC_FLAGS_TRANSPARENT_PAYLOAD
956 | TC_FLAGS_PACKET
957 | (1 << 28)
958 | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
959 | TC_FLAGS_CAL0;
960 break;
961 case ATM_AAL5:
962 tc->flags = 0
963 | TC_FLAGS_AAL5
964 | TC_FLAGS_PACKET /* ??? */
965 | TC_FLAGS_TYPE_CBR
966 | TC_FLAGS_CAL0;
967 break;
968 default:
969 printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
970 tc->flags = 0;
971 }
972 /* Docs are vague about this atm_hdr field. By the way, the FS
973 * chip makes odd errors if lower bits are set.... -- REW */
974 tc->atm_hdr = (vpi << 20) | (vci << 4);
975 tmc0 = 0;
976 {
977 int pcr = atm_pcr_goal (txtp);
978
979 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
980
981 /* XXX Hmm. officially we're only allowed to do this if rounding
982 is round_down -- REW */
983 if (IS_FS50(dev)) {
984 if (pcr > 51840000/53/8) pcr = 51840000/53/8;
985 } else {
986 if (pcr > 155520000/53/8) pcr = 155520000/53/8;
987 }
988 if (!pcr) {
989 /* no rate cap */
990 tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
991 } else {
992 int r;
993 if (pcr < 0) {
994 r = ROUND_DOWN;
995 pcr = -pcr;
996 } else {
997 r = ROUND_UP;
998 }
999 error = make_rate (pcr, r, &tmc0, NULL);
1000 if (error) {
1001 kfree(tc);
1002 kfree(vcc);
1003 return error;
1004 }
1005 }
1006 fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1007 }
1008
1009 tc->TMC[0] = tmc0 | 0x4000;
1010 tc->TMC[1] = 0; /* Unused */
1011 tc->TMC[2] = 0; /* Unused */
1012 tc->TMC[3] = 0; /* Unused */
1013
1014 tc->spec = 0; /* UTOPIA address, UDF, HEC: Unused -> 0 */
1015 tc->rtag[0] = 0; /* What should I do with routing tags???
1016 -- Not used -- AS -- Thanks -- REW*/
1017 tc->rtag[1] = 0;
1018 tc->rtag[2] = 0;
1019
1020 if (fs_debug & FS_DEBUG_OPEN) {
1021 fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1022 my_hd (tc, sizeof (*tc));
1023 }
1024
1025 /* We now use the "submit_command" function to submit commands to
1026 the firestream. There is a define up near the definition of
1027 that routine that switches this routine between immediate write
1028 to the immediate command registers and queuing the commands in
1029 the HPTXQ for execution. This last technique might be more
1030 efficient if we know we're going to submit a whole lot of
1031 commands in one go, but this driver is not setup to be able to
1032 use such a construct. So it probably doen't matter much right
1033 now. -- REW */
1034
1035 /* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1036 submit_command (dev, &dev->hp_txq,
1037 QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1038 virt_to_bus (tc), 0, 0);
1039
1040 submit_command (dev, &dev->hp_txq,
1041 QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1042 0, 0, 0);
1043 set_bit (vcc->channo, dev->tx_inuse);
1044 }
1045
1046 if (DO_DIRECTION (rxtp)) {
1047 dev->atm_vccs[vcc->channo] = atm_vcc;
1048
1049 for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1050 if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1051 if (bfp >= FS_NR_FREE_POOLS) {
1052 fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1053 atm_vcc->qos.rxtp.max_sdu);
1054 /* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1055
1056 /* XXX clear tx inuse. Close TX part? */
1057 dev->atm_vccs[vcc->channo] = NULL;
1058 kfree (vcc);
1059 return -EINVAL;
1060 }
1061
1062 switch (atm_vcc->qos.aal) {
1063 case ATM_AAL0:
1064 case ATM_AAL2:
1065 submit_command (dev, &dev->hp_txq,
1066 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1067 RC_FLAGS_TRANSP |
1068 RC_FLAGS_BFPS_BFP * bfp |
1069 RC_FLAGS_RXBM_PSB, 0, 0);
1070 break;
1071 case ATM_AAL5:
1072 submit_command (dev, &dev->hp_txq,
1073 QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1074 RC_FLAGS_AAL5 |
1075 RC_FLAGS_BFPS_BFP * bfp |
1076 RC_FLAGS_RXBM_PSB, 0, 0);
1077 break;
1078 }
1079 if (IS_FS50 (dev)) {
1080 submit_command (dev, &dev->hp_txq,
1081 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1082 0x80 + vcc->channo,
1083 (vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1084 }
1085 submit_command (dev, &dev->hp_txq,
1086 QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1087 0, 0, 0);
1088 }
1089
1090 /* Indicate we're done! */
1091 set_bit(ATM_VF_READY, &atm_vcc->flags);
1092
1093 func_exit ();
1094 return 0;
1095 }
1096
1097
fs_close(struct atm_vcc * atm_vcc)1098 static void fs_close(struct atm_vcc *atm_vcc)
1099 {
1100 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1101 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1102 struct atm_trafprm * txtp;
1103 struct atm_trafprm * rxtp;
1104
1105 func_enter ();
1106
1107 clear_bit(ATM_VF_READY, &atm_vcc->flags);
1108
1109 fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1110 if (vcc->last_skb) {
1111 fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1112 vcc->last_skb);
1113 /* We're going to wait for the last packet to get sent on this VC. It would
1114 be impolite not to send them don't you think?
1115 XXX
1116 We don't know which packets didn't get sent. So if we get interrupted in
1117 this sleep_on, we'll lose any reference to these packets. Memory leak!
1118 On the other hand, it's awfully convenient that we can abort a "close" that
1119 is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1120 wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1121 }
1122
1123 txtp = &atm_vcc->qos.txtp;
1124 rxtp = &atm_vcc->qos.rxtp;
1125
1126
1127 /* See App note XXX (Unpublished as of now) for the reason for the
1128 removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1129
1130 if (DO_DIRECTION (txtp)) {
1131 submit_command (dev, &dev->hp_txq,
1132 QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1133 clear_bit (vcc->channo, dev->tx_inuse);
1134 }
1135
1136 if (DO_DIRECTION (rxtp)) {
1137 submit_command (dev, &dev->hp_txq,
1138 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1139 dev->atm_vccs [vcc->channo] = NULL;
1140
1141 /* This means that this is configured as a receive channel */
1142 if (IS_FS50 (dev)) {
1143 /* Disable the receive filter. Is 0/0 indeed an invalid receive
1144 channel? -- REW. Yes it is. -- Hang. Ok. I'll use -1
1145 (0xfff...) -- REW */
1146 submit_command (dev, &dev->hp_txq,
1147 QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1148 0x80 + vcc->channo, -1, 0 );
1149 }
1150 }
1151
1152 fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1153 kfree (vcc);
1154
1155 func_exit ();
1156 }
1157
1158
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1159 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1160 {
1161 struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1162 struct fs_vcc *vcc = FS_VCC (atm_vcc);
1163 struct FS_BPENTRY *td;
1164
1165 func_enter ();
1166
1167 fs_dprintk (FS_DEBUG_TXMEM, "I");
1168 fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1169 atm_vcc, skb, vcc, dev);
1170
1171 fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1172
1173 ATM_SKB(skb)->vcc = atm_vcc;
1174
1175 vcc->last_skb = skb;
1176
1177 td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1178 fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1179 if (!td) {
1180 /* Oops out of mem */
1181 return -ENOMEM;
1182 }
1183
1184 fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1185 *(int *) skb->data);
1186
1187 td->flags = TD_EPI | TD_DATA | skb->len;
1188 td->next = 0;
1189 td->bsa = virt_to_bus (skb->data);
1190 td->skb = skb;
1191 td->dev = dev;
1192 dev->ntxpckts++;
1193
1194 #ifdef DEBUG_EXTRA
1195 da[qd] = td;
1196 dq[qd].flags = td->flags;
1197 dq[qd].next = td->next;
1198 dq[qd].bsa = td->bsa;
1199 dq[qd].skb = td->skb;
1200 dq[qd].dev = td->dev;
1201 qd++;
1202 if (qd >= 60) qd = 0;
1203 #endif
1204
1205 submit_queue (dev, &dev->hp_txq,
1206 QE_TRANSMIT_DE | vcc->channo,
1207 virt_to_bus (td), 0,
1208 virt_to_bus (td));
1209
1210 fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1211 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1212 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1213 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1214 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1215
1216 func_exit ();
1217 return 0;
1218 }
1219
1220
1221 /* Some function placeholders for functions we don't yet support. */
1222
1223 #if 0
1224 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1225 {
1226 func_enter ();
1227 func_exit ();
1228 return -ENOIOCTLCMD;
1229 }
1230
1231
1232 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1233 void __user *optval,int optlen)
1234 {
1235 func_enter ();
1236 func_exit ();
1237 return 0;
1238 }
1239
1240
1241 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1242 void __user *optval,unsigned int optlen)
1243 {
1244 func_enter ();
1245 func_exit ();
1246 return 0;
1247 }
1248
1249
1250 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1251 unsigned long addr)
1252 {
1253 func_enter ();
1254 func_exit ();
1255 }
1256
1257
1258 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1259 {
1260 func_enter ();
1261 func_exit ();
1262 return 0;
1263 }
1264
1265
1266 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1267 {
1268 func_enter ();
1269 func_exit ();
1270 return 0;
1271 };
1272
1273 #endif
1274
1275
1276 static const struct atmdev_ops ops = {
1277 .open = fs_open,
1278 .close = fs_close,
1279 .send = fs_send,
1280 .owner = THIS_MODULE,
1281 /* ioctl: fs_ioctl, */
1282 /* change_qos: fs_change_qos, */
1283
1284 /* For now implement these internally here... */
1285 /* phy_put: fs_phy_put, */
1286 /* phy_get: fs_phy_get, */
1287 };
1288
1289
undocumented_pci_fix(struct pci_dev * pdev)1290 static void undocumented_pci_fix(struct pci_dev *pdev)
1291 {
1292 u32 tint;
1293
1294 /* The Windows driver says: */
1295 /* Switch off FireStream Retry Limit Threshold
1296 */
1297
1298 /* The register at 0x28 is documented as "reserved", no further
1299 comments. */
1300
1301 pci_read_config_dword (pdev, 0x28, &tint);
1302 if (tint != 0x80) {
1303 tint = 0x80;
1304 pci_write_config_dword (pdev, 0x28, tint);
1305 }
1306 }
1307
1308
1309
1310 /**************************************************************************
1311 * PHY routines *
1312 **************************************************************************/
1313
write_phy(struct fs_dev * dev,int regnum,int val)1314 static void write_phy(struct fs_dev *dev, int regnum, int val)
1315 {
1316 submit_command (dev, &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1317 regnum, val, 0);
1318 }
1319
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1320 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1321 {
1322 int i;
1323
1324 func_enter ();
1325 while (reginit->reg != PHY_EOF) {
1326 if (reginit->reg == PHY_CLEARALL) {
1327 /* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1328 for (i=0;i<reginit->val;i++) {
1329 write_phy (dev, i, 0);
1330 }
1331 } else {
1332 write_phy (dev, reginit->reg, reginit->val);
1333 }
1334 reginit++;
1335 }
1336 func_exit ();
1337 return 0;
1338 }
1339
reset_chip(struct fs_dev * dev)1340 static void reset_chip (struct fs_dev *dev)
1341 {
1342 int i;
1343
1344 write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1345
1346 /* Undocumented delay */
1347 udelay (128);
1348
1349 /* The "internal registers are documented to all reset to zero, but
1350 comments & code in the Windows driver indicates that the pools are
1351 NOT reset. */
1352 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1353 write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1354 write_fs (dev, FP_SA (RXB_FP(i)), 0);
1355 write_fs (dev, FP_EA (RXB_FP(i)), 0);
1356 write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1357 write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1358 }
1359
1360 /* The same goes for the match channel registers, although those are
1361 NOT documented that way in the Windows driver. -- REW */
1362 /* The Windows driver DOES write 0 to these registers somewhere in
1363 the init sequence. However, a small hardware-feature, will
1364 prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1365 allocated happens to have no disabled channels that have a lower
1366 number. -- REW */
1367
1368 /* Clear the match channel registers. */
1369 if (IS_FS50 (dev)) {
1370 for (i=0;i<FS50_NR_CHANNELS;i++) {
1371 write_fs (dev, 0x200 + i * 4, -1);
1372 }
1373 }
1374 }
1375
aligned_kmalloc(int size,gfp_t flags,int alignment)1376 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1377 {
1378 void *t;
1379
1380 if (alignment <= 0x10) {
1381 t = kmalloc (size, flags);
1382 if ((unsigned long)t & (alignment-1)) {
1383 printk ("Kmalloc doesn't align things correctly! %p\n", t);
1384 kfree (t);
1385 return aligned_kmalloc (size, flags, alignment * 4);
1386 }
1387 return t;
1388 }
1389 printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1390 return NULL;
1391 }
1392
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1393 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1394 int nentries, int is_rq)
1395 {
1396 int sz = nentries * sizeof (struct FS_QENTRY);
1397 struct FS_QENTRY *p;
1398
1399 func_enter ();
1400
1401 fs_dprintk (FS_DEBUG_INIT, "Initializing queue at %x: %d entries:\n",
1402 queue, nentries);
1403
1404 p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1405 fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1406
1407 if (!p) return 0;
1408
1409 write_fs (dev, Q_SA(queue), virt_to_bus(p));
1410 write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1411 write_fs (dev, Q_WP(queue), virt_to_bus(p));
1412 write_fs (dev, Q_RP(queue), virt_to_bus(p));
1413 if (is_rq) {
1414 /* Configuration for the receive queue: 0: interrupt immediately,
1415 no pre-warning to empty queues: We do our best to keep the
1416 queue filled anyway. */
1417 write_fs (dev, Q_CNF(queue), 0 );
1418 }
1419
1420 txq->sa = p;
1421 txq->ea = p;
1422 txq->offset = queue;
1423
1424 func_exit ();
1425 return 1;
1426 }
1427
1428
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1429 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1430 int bufsize, int nr_buffers)
1431 {
1432 func_enter ();
1433
1434 fs_dprintk (FS_DEBUG_INIT, "Initializing free pool at %x:\n", queue);
1435
1436 write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1437 write_fs (dev, FP_SA(queue), 0);
1438 write_fs (dev, FP_EA(queue), 0);
1439 write_fs (dev, FP_CTU(queue), 0);
1440 write_fs (dev, FP_CNT(queue), 0);
1441
1442 fp->offset = queue;
1443 fp->bufsize = bufsize;
1444 fp->nr_buffers = nr_buffers;
1445
1446 func_exit ();
1447 return 1;
1448 }
1449
1450
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1451 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1452 {
1453 #if 0
1454 /* This seems to be unreliable.... */
1455 return read_fs (dev, FP_CNT (fp->offset));
1456 #else
1457 return fp->n;
1458 #endif
1459 }
1460
1461
1462 /* Check if this gets going again if a pool ever runs out. -- Yes, it
1463 does. I've seen "receive abort: no buffers" and things started
1464 working again after that... -- REW */
1465
top_off_fp(struct fs_dev * dev,struct freepool * fp,gfp_t gfp_flags)1466 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1467 gfp_t gfp_flags)
1468 {
1469 struct FS_BPENTRY *qe, *ne;
1470 struct sk_buff *skb;
1471 int n = 0;
1472 u32 qe_tmp;
1473
1474 fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1475 fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1476 fp->nr_buffers);
1477 while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1478
1479 skb = alloc_skb (fp->bufsize, gfp_flags);
1480 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1481 if (!skb) break;
1482 ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1483 fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1484 if (!ne) {
1485 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1486 dev_kfree_skb_any (skb);
1487 break;
1488 }
1489
1490 fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1491 skb, ne, skb->data, skb->head);
1492 n++;
1493 ne->flags = FP_FLAGS_EPI | fp->bufsize;
1494 ne->next = virt_to_bus (NULL);
1495 ne->bsa = virt_to_bus (skb->data);
1496 ne->aal_bufsize = fp->bufsize;
1497 ne->skb = skb;
1498 ne->fp = fp;
1499
1500 /*
1501 * FIXME: following code encodes and decodes
1502 * machine pointers (could be 64-bit) into a
1503 * 32-bit register.
1504 */
1505
1506 qe_tmp = read_fs (dev, FP_EA(fp->offset));
1507 fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1508 if (qe_tmp) {
1509 qe = bus_to_virt ((long) qe_tmp);
1510 qe->next = virt_to_bus(ne);
1511 qe->flags &= ~FP_FLAGS_EPI;
1512 } else
1513 write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1514
1515 write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1516 fp->n++; /* XXX Atomic_inc? */
1517 write_fs (dev, FP_CTU(fp->offset), 1);
1518 }
1519
1520 fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1521 }
1522
free_queue(struct fs_dev * dev,struct queue * txq)1523 static void free_queue(struct fs_dev *dev, struct queue *txq)
1524 {
1525 func_enter ();
1526
1527 write_fs (dev, Q_SA(txq->offset), 0);
1528 write_fs (dev, Q_EA(txq->offset), 0);
1529 write_fs (dev, Q_RP(txq->offset), 0);
1530 write_fs (dev, Q_WP(txq->offset), 0);
1531 /* Configuration ? */
1532
1533 fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1534 kfree (txq->sa);
1535
1536 func_exit ();
1537 }
1538
free_freepool(struct fs_dev * dev,struct freepool * fp)1539 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1540 {
1541 func_enter ();
1542
1543 write_fs (dev, FP_CNF(fp->offset), 0);
1544 write_fs (dev, FP_SA (fp->offset), 0);
1545 write_fs (dev, FP_EA (fp->offset), 0);
1546 write_fs (dev, FP_CNT(fp->offset), 0);
1547 write_fs (dev, FP_CTU(fp->offset), 0);
1548
1549 func_exit ();
1550 }
1551
1552
1553
fs_irq(int irq,void * dev_id)1554 static irqreturn_t fs_irq (int irq, void *dev_id)
1555 {
1556 int i;
1557 u32 status;
1558 struct fs_dev *dev = dev_id;
1559
1560 status = read_fs (dev, ISR);
1561 if (!status)
1562 return IRQ_NONE;
1563
1564 func_enter ();
1565
1566 #ifdef IRQ_RATE_LIMIT
1567 /* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1568 interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1569 {
1570 static int lastjif;
1571 static int nintr=0;
1572
1573 if (lastjif == jiffies) {
1574 if (++nintr > IRQ_RATE_LIMIT) {
1575 free_irq (dev->irq, dev_id);
1576 printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1577 dev->irq);
1578 }
1579 } else {
1580 lastjif = jiffies;
1581 nintr = 0;
1582 }
1583 }
1584 #endif
1585 fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1586 read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1587 read_fs (dev, Q_SA (dev->hp_txq.offset)),
1588 read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1589 read_fs (dev, Q_SA (dev->tx_relq.offset)));
1590
1591 /* print the bits in the ISR register. */
1592 if (fs_debug & FS_DEBUG_IRQ) {
1593 /* The FS_DEBUG things are unnecessary here. But this way it is
1594 clear for grep that these are debug prints. */
1595 fs_dprintk (FS_DEBUG_IRQ, "IRQ status:");
1596 for (i=0;i<27;i++)
1597 if (status & (1 << i))
1598 fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1599 fs_dprintk (FS_DEBUG_IRQ, "\n");
1600 }
1601
1602 if (status & ISR_RBRQ0_W) {
1603 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1604 process_incoming (dev, &dev->rx_rq[0]);
1605 /* items mentioned on RBRQ0 are from FP 0 or 1. */
1606 top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1607 top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1608 }
1609
1610 if (status & ISR_RBRQ1_W) {
1611 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1612 process_incoming (dev, &dev->rx_rq[1]);
1613 top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1614 top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1615 }
1616
1617 if (status & ISR_RBRQ2_W) {
1618 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1619 process_incoming (dev, &dev->rx_rq[2]);
1620 top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1621 top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1622 }
1623
1624 if (status & ISR_RBRQ3_W) {
1625 fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1626 process_incoming (dev, &dev->rx_rq[3]);
1627 top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1628 top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1629 }
1630
1631 if (status & ISR_CSQ_W) {
1632 fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1633 process_return_queue (dev, &dev->st_q);
1634 }
1635
1636 if (status & ISR_TBRQ_W) {
1637 fs_dprintk (FS_DEBUG_IRQ, "Data transmitted!\n");
1638 process_txdone_queue (dev, &dev->tx_relq);
1639 }
1640
1641 func_exit ();
1642 return IRQ_HANDLED;
1643 }
1644
1645
1646 #ifdef FS_POLL_FREQ
fs_poll(struct timer_list * t)1647 static void fs_poll (struct timer_list *t)
1648 {
1649 struct fs_dev *dev = from_timer(dev, t, timer);
1650
1651 fs_irq (0, dev);
1652 dev->timer.expires = jiffies + FS_POLL_FREQ;
1653 add_timer (&dev->timer);
1654 }
1655 #endif
1656
fs_init(struct fs_dev * dev)1657 static int fs_init(struct fs_dev *dev)
1658 {
1659 struct pci_dev *pci_dev;
1660 int isr, to;
1661 int i;
1662
1663 func_enter ();
1664 pci_dev = dev->pci_dev;
1665
1666 printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1667 IS_FS50(dev)?50:155,
1668 (unsigned long long)pci_resource_start(pci_dev, 0),
1669 dev->pci_dev->irq);
1670
1671 if (fs_debug & FS_DEBUG_INIT)
1672 my_hd ((unsigned char *) dev, sizeof (*dev));
1673
1674 undocumented_pci_fix (pci_dev);
1675
1676 dev->hw_base = pci_resource_start(pci_dev, 0);
1677
1678 dev->base = ioremap(dev->hw_base, 0x1000);
1679 if (!dev->base)
1680 return 1;
1681
1682 reset_chip (dev);
1683
1684 write_fs (dev, SARMODE0, 0
1685 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1686 | (1 * SARMODE0_INTMODE_READCLEAR)
1687 | (1 * SARMODE0_CWRE)
1688 | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1689 SARMODE0_PRPWT_FS155_3)
1690 | (1 * SARMODE0_CALSUP_1)
1691 | (IS_FS50(dev) ? (0
1692 | SARMODE0_RXVCS_32
1693 | SARMODE0_ABRVCS_32
1694 | SARMODE0_TXVCS_32):
1695 (0
1696 | SARMODE0_RXVCS_1k
1697 | SARMODE0_ABRVCS_1k
1698 | SARMODE0_TXVCS_1k)));
1699
1700 /* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1701 1ms. */
1702 to = 100;
1703 while (--to) {
1704 isr = read_fs (dev, ISR);
1705
1706 /* This bit is documented as "RESERVED" */
1707 if (isr & ISR_INIT_ERR) {
1708 printk (KERN_ERR "Error initializing the FS... \n");
1709 goto unmap;
1710 }
1711 if (isr & ISR_INIT) {
1712 fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1713 break;
1714 }
1715
1716 /* Try again after 10ms. */
1717 msleep(10);
1718 }
1719
1720 if (!to) {
1721 printk (KERN_ERR "timeout initializing the FS... \n");
1722 goto unmap;
1723 }
1724
1725 /* XXX fix for fs155 */
1726 dev->channel_mask = 0x1f;
1727 dev->channo = 0;
1728
1729 /* AN3: 10 */
1730 write_fs (dev, SARMODE1, 0
1731 | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1732 | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1733 | (1 * SARMODE1_DCRM)
1734 | (1 * SARMODE1_DCOAM)
1735 | (0 * SARMODE1_OAMCRC)
1736 | (0 * SARMODE1_DUMPE)
1737 | (0 * SARMODE1_GPLEN)
1738 | (0 * SARMODE1_GNAM)
1739 | (0 * SARMODE1_GVAS)
1740 | (0 * SARMODE1_GPAS)
1741 | (1 * SARMODE1_GPRI)
1742 | (0 * SARMODE1_PMS)
1743 | (0 * SARMODE1_GFCR)
1744 | (1 * SARMODE1_HECM2)
1745 | (1 * SARMODE1_HECM1)
1746 | (1 * SARMODE1_HECM0)
1747 | (1 << 12) /* That's what hang's driver does. Program to 0 */
1748 | (0 * 0xff) /* XXX FS155 */);
1749
1750
1751 /* Cal prescale etc */
1752
1753 /* AN3: 11 */
1754 write_fs (dev, TMCONF, 0x0000000f);
1755 write_fs (dev, CALPRESCALE, 0x01010101 * num);
1756 write_fs (dev, 0x80, 0x000F00E4);
1757
1758 /* AN3: 12 */
1759 write_fs (dev, CELLOSCONF, 0
1760 | ( 0 * CELLOSCONF_CEN)
1761 | ( CELLOSCONF_SC1)
1762 | (0x80 * CELLOSCONF_COBS)
1763 | (num * CELLOSCONF_COPK) /* Changed from 0xff to 0x5a */
1764 | (num * CELLOSCONF_COST));/* after a hint from Hang.
1765 * performance jumped 50->70... */
1766
1767 /* Magic value by Hang */
1768 write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1769
1770 if (IS_FS50 (dev)) {
1771 write_fs (dev, RAS0, RAS0_DCD_XHLT);
1772 dev->atm_dev->ci_range.vpi_bits = 12;
1773 dev->atm_dev->ci_range.vci_bits = 16;
1774 dev->nchannels = FS50_NR_CHANNELS;
1775 } else {
1776 write_fs (dev, RAS0, RAS0_DCD_XHLT
1777 | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1778 | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1779 /* We can chose the split arbitrarily. We might be able to
1780 support more. Whatever. This should do for now. */
1781 dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1782 dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1783
1784 /* Address bits we can't use should be compared to 0. */
1785 write_fs (dev, RAC, 0);
1786
1787 /* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1788 * too. I can't find ASF1 anywhere. Anyway, we AND with just the
1789 * other bits, then compare with 0, which is exactly what we
1790 * want. */
1791 write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1792 dev->nchannels = FS155_NR_CHANNELS;
1793 }
1794 dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1795 GFP_KERNEL);
1796 fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1797 dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1798
1799 if (!dev->atm_vccs) {
1800 printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1801 /* XXX Clean up..... */
1802 goto unmap;
1803 }
1804
1805 dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1806 fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1807 dev->atm_vccs, dev->nchannels / 8);
1808
1809 if (!dev->tx_inuse) {
1810 printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1811 /* XXX Clean up..... */
1812 goto unmap;
1813 }
1814 /* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1815 /* -- RAS2 : FS50 only: Default is OK. */
1816
1817 /* DMAMODE, default should be OK. -- REW */
1818 write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1819
1820 init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1821 init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1822 init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1823 init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1824
1825 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1826 init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1827 rx_buf_sizes[i], rx_pool_sizes[i]);
1828 top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1829 }
1830
1831
1832 for (i=0;i < FS_NR_RX_QUEUES;i++)
1833 init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1834
1835 dev->irq = pci_dev->irq;
1836 if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1837 printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1838 /* XXX undo all previous stuff... */
1839 goto unmap;
1840 }
1841 fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1842
1843 /* We want to be notified of most things. Just the statistics count
1844 overflows are not interesting */
1845 write_fs (dev, IMR, 0
1846 | ISR_RBRQ0_W
1847 | ISR_RBRQ1_W
1848 | ISR_RBRQ2_W
1849 | ISR_RBRQ3_W
1850 | ISR_TBRQ_W
1851 | ISR_CSQ_W);
1852
1853 write_fs (dev, SARMODE0, 0
1854 | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1855 | (1 * SARMODE0_GINT)
1856 | (1 * SARMODE0_INTMODE_READCLEAR)
1857 | (0 * SARMODE0_CWRE)
1858 | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1859 SARMODE0_PRPWT_FS155_3)
1860 | (1 * SARMODE0_CALSUP_1)
1861 | (IS_FS50 (dev)?(0
1862 | SARMODE0_RXVCS_32
1863 | SARMODE0_ABRVCS_32
1864 | SARMODE0_TXVCS_32):
1865 (0
1866 | SARMODE0_RXVCS_1k
1867 | SARMODE0_ABRVCS_1k
1868 | SARMODE0_TXVCS_1k))
1869 | (1 * SARMODE0_RUN));
1870
1871 init_phy (dev, PHY_NTC_INIT);
1872
1873 if (loopback == 2) {
1874 write_phy (dev, 0x39, 0x000e);
1875 }
1876
1877 #ifdef FS_POLL_FREQ
1878 timer_setup(&dev->timer, fs_poll, 0);
1879 dev->timer.expires = jiffies + FS_POLL_FREQ;
1880 add_timer (&dev->timer);
1881 #endif
1882
1883 dev->atm_dev->dev_data = dev;
1884
1885 func_exit ();
1886 return 0;
1887 unmap:
1888 iounmap(dev->base);
1889 return 1;
1890 }
1891
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1892 static int firestream_init_one(struct pci_dev *pci_dev,
1893 const struct pci_device_id *ent)
1894 {
1895 struct atm_dev *atm_dev;
1896 struct fs_dev *fs_dev;
1897
1898 if (pci_enable_device(pci_dev))
1899 goto err_out;
1900
1901 fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1902 fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1903 fs_dev, sizeof (struct fs_dev));
1904 if (!fs_dev)
1905 goto err_out;
1906 atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1907 if (!atm_dev)
1908 goto err_out_free_fs_dev;
1909
1910 fs_dev->pci_dev = pci_dev;
1911 fs_dev->atm_dev = atm_dev;
1912 fs_dev->flags = ent->driver_data;
1913
1914 if (fs_init(fs_dev))
1915 goto err_out_free_atm_dev;
1916
1917 fs_dev->next = fs_boards;
1918 fs_boards = fs_dev;
1919 return 0;
1920
1921 err_out_free_atm_dev:
1922 atm_dev_deregister(atm_dev);
1923 err_out_free_fs_dev:
1924 kfree(fs_dev);
1925 err_out:
1926 return -ENODEV;
1927 }
1928
firestream_remove_one(struct pci_dev * pdev)1929 static void firestream_remove_one(struct pci_dev *pdev)
1930 {
1931 int i;
1932 struct fs_dev *dev, *nxtdev;
1933 struct fs_vcc *vcc;
1934 struct FS_BPENTRY *fp, *nxt;
1935
1936 func_enter ();
1937
1938 #if 0
1939 printk ("hptxq:\n");
1940 for (i=0;i<60;i++) {
1941 printk ("%d: %08x %08x %08x %08x \n",
1942 i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1943 qp++;
1944 if (qp >= 60) qp = 0;
1945 }
1946
1947 printk ("descriptors:\n");
1948 for (i=0;i<60;i++) {
1949 printk ("%d: %p: %08x %08x %p %p\n",
1950 i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1951 qd++;
1952 if (qd >= 60) qd = 0;
1953 }
1954 #endif
1955
1956 for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1957 fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1958
1959 /* XXX Hit all the tx channels too! */
1960
1961 for (i=0;i < dev->nchannels;i++) {
1962 if (dev->atm_vccs[i]) {
1963 vcc = FS_VCC (dev->atm_vccs[i]);
1964 submit_command (dev, &dev->hp_txq,
1965 QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1966 submit_command (dev, &dev->hp_txq,
1967 QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1968
1969 }
1970 }
1971
1972 /* XXX Wait a while for the chip to release all buffers. */
1973
1974 for (i=0;i < FS_NR_FREE_POOLS;i++) {
1975 for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1976 !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1977 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1978 dev_kfree_skb_any (fp->skb);
1979 nxt = bus_to_virt (fp->next);
1980 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1981 kfree (fp);
1982 }
1983 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1984 dev_kfree_skb_any (fp->skb);
1985 fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1986 kfree (fp);
1987 }
1988
1989 /* Hang the chip in "reset", prevent it clobbering memory that is
1990 no longer ours. */
1991 reset_chip (dev);
1992
1993 fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
1994 free_irq (dev->irq, dev);
1995 del_timer_sync (&dev->timer);
1996
1997 atm_dev_deregister(dev->atm_dev);
1998 free_queue (dev, &dev->hp_txq);
1999 free_queue (dev, &dev->lp_txq);
2000 free_queue (dev, &dev->tx_relq);
2001 free_queue (dev, &dev->st_q);
2002
2003 fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2004 kfree (dev->atm_vccs);
2005
2006 for (i=0;i< FS_NR_FREE_POOLS;i++)
2007 free_freepool (dev, &dev->rx_fp[i]);
2008
2009 for (i=0;i < FS_NR_RX_QUEUES;i++)
2010 free_queue (dev, &dev->rx_rq[i]);
2011
2012 iounmap(dev->base);
2013 fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2014 nxtdev = dev->next;
2015 kfree (dev);
2016 }
2017
2018 func_exit ();
2019 }
2020
2021 static const struct pci_device_id firestream_pci_tbl[] = {
2022 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2023 { PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2024 { 0, }
2025 };
2026
2027 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2028
2029 static struct pci_driver firestream_driver = {
2030 .name = "firestream",
2031 .id_table = firestream_pci_tbl,
2032 .probe = firestream_init_one,
2033 .remove = firestream_remove_one,
2034 };
2035
firestream_init_module(void)2036 static int __init firestream_init_module (void)
2037 {
2038 int error;
2039
2040 func_enter ();
2041 error = pci_register_driver(&firestream_driver);
2042 func_exit ();
2043 return error;
2044 }
2045
firestream_cleanup_module(void)2046 static void __exit firestream_cleanup_module(void)
2047 {
2048 pci_unregister_driver(&firestream_driver);
2049 }
2050
2051 module_init(firestream_init_module);
2052 module_exit(firestream_cleanup_module);
2053
2054 MODULE_LICENSE("GPL");
2055
2056
2057
2058