1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Core of Xen paravirt_ops implementation.
4 *
5 * This file contains the xen_paravirt_ops structure itself, and the
6 * implementations for:
7 * - privileged instructions
8 * - interrupt flags
9 * - segment operations
10 * - booting and setup
11 *
12 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
13 */
14
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/smp.h>
19 #include <linux/preempt.h>
20 #include <linux/hardirq.h>
21 #include <linux/percpu.h>
22 #include <linux/delay.h>
23 #include <linux/start_kernel.h>
24 #include <linux/sched.h>
25 #include <linux/kprobes.h>
26 #include <linux/memblock.h>
27 #include <linux/export.h>
28 #include <linux/mm.h>
29 #include <linux/page-flags.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/edd.h>
34 #include <linux/objtool.h>
35
36 #include <xen/xen.h>
37 #include <xen/events.h>
38 #include <xen/interface/xen.h>
39 #include <xen/interface/version.h>
40 #include <xen/interface/physdev.h>
41 #include <xen/interface/vcpu.h>
42 #include <xen/interface/memory.h>
43 #include <xen/interface/nmi.h>
44 #include <xen/interface/xen-mca.h>
45 #include <xen/features.h>
46 #include <xen/page.h>
47 #include <xen/hvc-console.h>
48 #include <xen/acpi.h>
49
50 #include <asm/paravirt.h>
51 #include <asm/apic.h>
52 #include <asm/page.h>
53 #include <asm/xen/pci.h>
54 #include <asm/xen/hypercall.h>
55 #include <asm/xen/hypervisor.h>
56 #include <asm/xen/cpuid.h>
57 #include <asm/fixmap.h>
58 #include <asm/processor.h>
59 #include <asm/proto.h>
60 #include <asm/msr-index.h>
61 #include <asm/traps.h>
62 #include <asm/setup.h>
63 #include <asm/desc.h>
64 #include <asm/pgalloc.h>
65 #include <asm/tlbflush.h>
66 #include <asm/reboot.h>
67 #include <asm/stackprotector.h>
68 #include <asm/hypervisor.h>
69 #include <asm/mach_traps.h>
70 #include <asm/mwait.h>
71 #include <asm/pci_x86.h>
72 #include <asm/cpu.h>
73 #ifdef CONFIG_X86_IOPL_IOPERM
74 #include <asm/io_bitmap.h>
75 #endif
76
77 #ifdef CONFIG_ACPI
78 #include <linux/acpi.h>
79 #include <asm/acpi.h>
80 #include <acpi/pdc_intel.h>
81 #include <acpi/processor.h>
82 #include <xen/interface/platform.h>
83 #endif
84
85 #include "xen-ops.h"
86 #include "mmu.h"
87 #include "smp.h"
88 #include "multicalls.h"
89 #include "pmu.h"
90
91 #include "../kernel/cpu/cpu.h" /* get_cpu_cap() */
92
93 void *xen_initial_gdt;
94
95 static int xen_cpu_up_prepare_pv(unsigned int cpu);
96 static int xen_cpu_dead_pv(unsigned int cpu);
97
98 struct tls_descs {
99 struct desc_struct desc[3];
100 };
101
102 /*
103 * Updating the 3 TLS descriptors in the GDT on every task switch is
104 * surprisingly expensive so we avoid updating them if they haven't
105 * changed. Since Xen writes different descriptors than the one
106 * passed in the update_descriptor hypercall we keep shadow copies to
107 * compare against.
108 */
109 static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
110
xen_pv_init_platform(void)111 static void __init xen_pv_init_platform(void)
112 {
113 populate_extra_pte(fix_to_virt(FIX_PARAVIRT_BOOTMAP));
114
115 set_fixmap(FIX_PARAVIRT_BOOTMAP, xen_start_info->shared_info);
116 HYPERVISOR_shared_info = (void *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
117
118 /* xen clock uses per-cpu vcpu_info, need to init it for boot cpu */
119 xen_vcpu_info_reset(0);
120
121 /* pvclock is in shared info area */
122 xen_init_time_ops();
123 }
124
xen_pv_guest_late_init(void)125 static void __init xen_pv_guest_late_init(void)
126 {
127 #ifndef CONFIG_SMP
128 /* Setup shared vcpu info for non-smp configurations */
129 xen_setup_vcpu_info_placement();
130 #endif
131 }
132
133 static __read_mostly unsigned int cpuid_leaf5_ecx_val;
134 static __read_mostly unsigned int cpuid_leaf5_edx_val;
135
xen_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)136 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
137 unsigned int *cx, unsigned int *dx)
138 {
139 unsigned maskebx = ~0;
140
141 /*
142 * Mask out inconvenient features, to try and disable as many
143 * unsupported kernel subsystems as possible.
144 */
145 switch (*ax) {
146 case CPUID_MWAIT_LEAF:
147 /* Synthesize the values.. */
148 *ax = 0;
149 *bx = 0;
150 *cx = cpuid_leaf5_ecx_val;
151 *dx = cpuid_leaf5_edx_val;
152 return;
153
154 case 0xb:
155 /* Suppress extended topology stuff */
156 maskebx = 0;
157 break;
158 }
159
160 asm(XEN_EMULATE_PREFIX "cpuid"
161 : "=a" (*ax),
162 "=b" (*bx),
163 "=c" (*cx),
164 "=d" (*dx)
165 : "0" (*ax), "2" (*cx));
166
167 *bx &= maskebx;
168 }
169 STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
170
xen_check_mwait(void)171 static bool __init xen_check_mwait(void)
172 {
173 #ifdef CONFIG_ACPI
174 struct xen_platform_op op = {
175 .cmd = XENPF_set_processor_pminfo,
176 .u.set_pminfo.id = -1,
177 .u.set_pminfo.type = XEN_PM_PDC,
178 };
179 uint32_t buf[3];
180 unsigned int ax, bx, cx, dx;
181 unsigned int mwait_mask;
182
183 /* We need to determine whether it is OK to expose the MWAIT
184 * capability to the kernel to harvest deeper than C3 states from ACPI
185 * _CST using the processor_harvest_xen.c module. For this to work, we
186 * need to gather the MWAIT_LEAF values (which the cstate.c code
187 * checks against). The hypervisor won't expose the MWAIT flag because
188 * it would break backwards compatibility; so we will find out directly
189 * from the hardware and hypercall.
190 */
191 if (!xen_initial_domain())
192 return false;
193
194 /*
195 * When running under platform earlier than Xen4.2, do not expose
196 * mwait, to avoid the risk of loading native acpi pad driver
197 */
198 if (!xen_running_on_version_or_later(4, 2))
199 return false;
200
201 ax = 1;
202 cx = 0;
203
204 native_cpuid(&ax, &bx, &cx, &dx);
205
206 mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
207 (1 << (X86_FEATURE_MWAIT % 32));
208
209 if ((cx & mwait_mask) != mwait_mask)
210 return false;
211
212 /* We need to emulate the MWAIT_LEAF and for that we need both
213 * ecx and edx. The hypercall provides only partial information.
214 */
215
216 ax = CPUID_MWAIT_LEAF;
217 bx = 0;
218 cx = 0;
219 dx = 0;
220
221 native_cpuid(&ax, &bx, &cx, &dx);
222
223 /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
224 * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
225 */
226 buf[0] = ACPI_PDC_REVISION_ID;
227 buf[1] = 1;
228 buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
229
230 set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
231
232 if ((HYPERVISOR_platform_op(&op) == 0) &&
233 (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
234 cpuid_leaf5_ecx_val = cx;
235 cpuid_leaf5_edx_val = dx;
236 }
237 return true;
238 #else
239 return false;
240 #endif
241 }
242
xen_check_xsave(void)243 static bool __init xen_check_xsave(void)
244 {
245 unsigned int cx, xsave_mask;
246
247 cx = cpuid_ecx(1);
248
249 xsave_mask = (1 << (X86_FEATURE_XSAVE % 32)) |
250 (1 << (X86_FEATURE_OSXSAVE % 32));
251
252 /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
253 return (cx & xsave_mask) == xsave_mask;
254 }
255
xen_init_capabilities(void)256 static void __init xen_init_capabilities(void)
257 {
258 setup_force_cpu_cap(X86_FEATURE_XENPV);
259 setup_clear_cpu_cap(X86_FEATURE_DCA);
260 setup_clear_cpu_cap(X86_FEATURE_APERFMPERF);
261 setup_clear_cpu_cap(X86_FEATURE_MTRR);
262 setup_clear_cpu_cap(X86_FEATURE_ACC);
263 setup_clear_cpu_cap(X86_FEATURE_X2APIC);
264 setup_clear_cpu_cap(X86_FEATURE_SME);
265
266 /*
267 * Xen PV would need some work to support PCID: CR3 handling as well
268 * as xen_flush_tlb_others() would need updating.
269 */
270 setup_clear_cpu_cap(X86_FEATURE_PCID);
271
272 if (!xen_initial_domain())
273 setup_clear_cpu_cap(X86_FEATURE_ACPI);
274
275 if (xen_check_mwait())
276 setup_force_cpu_cap(X86_FEATURE_MWAIT);
277 else
278 setup_clear_cpu_cap(X86_FEATURE_MWAIT);
279
280 if (!xen_check_xsave()) {
281 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
282 setup_clear_cpu_cap(X86_FEATURE_OSXSAVE);
283 }
284 }
285
xen_set_debugreg(int reg,unsigned long val)286 static void xen_set_debugreg(int reg, unsigned long val)
287 {
288 HYPERVISOR_set_debugreg(reg, val);
289 }
290
xen_get_debugreg(int reg)291 static unsigned long xen_get_debugreg(int reg)
292 {
293 return HYPERVISOR_get_debugreg(reg);
294 }
295
xen_end_context_switch(struct task_struct * next)296 static void xen_end_context_switch(struct task_struct *next)
297 {
298 xen_mc_flush();
299 paravirt_end_context_switch(next);
300 }
301
xen_store_tr(void)302 static unsigned long xen_store_tr(void)
303 {
304 return 0;
305 }
306
307 /*
308 * Set the page permissions for a particular virtual address. If the
309 * address is a vmalloc mapping (or other non-linear mapping), then
310 * find the linear mapping of the page and also set its protections to
311 * match.
312 */
set_aliased_prot(void * v,pgprot_t prot)313 static void set_aliased_prot(void *v, pgprot_t prot)
314 {
315 int level;
316 pte_t *ptep;
317 pte_t pte;
318 unsigned long pfn;
319 unsigned char dummy;
320 void *va;
321
322 ptep = lookup_address((unsigned long)v, &level);
323 BUG_ON(ptep == NULL);
324
325 pfn = pte_pfn(*ptep);
326 pte = pfn_pte(pfn, prot);
327
328 /*
329 * Careful: update_va_mapping() will fail if the virtual address
330 * we're poking isn't populated in the page tables. We don't
331 * need to worry about the direct map (that's always in the page
332 * tables), but we need to be careful about vmap space. In
333 * particular, the top level page table can lazily propagate
334 * entries between processes, so if we've switched mms since we
335 * vmapped the target in the first place, we might not have the
336 * top-level page table entry populated.
337 *
338 * We disable preemption because we want the same mm active when
339 * we probe the target and when we issue the hypercall. We'll
340 * have the same nominal mm, but if we're a kernel thread, lazy
341 * mm dropping could change our pgd.
342 *
343 * Out of an abundance of caution, this uses __get_user() to fault
344 * in the target address just in case there's some obscure case
345 * in which the target address isn't readable.
346 */
347
348 preempt_disable();
349
350 copy_from_kernel_nofault(&dummy, v, 1);
351
352 if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
353 BUG();
354
355 va = __va(PFN_PHYS(pfn));
356
357 if (va != v && HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
358 BUG();
359
360 preempt_enable();
361 }
362
xen_alloc_ldt(struct desc_struct * ldt,unsigned entries)363 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
364 {
365 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
366 int i;
367
368 /*
369 * We need to mark the all aliases of the LDT pages RO. We
370 * don't need to call vm_flush_aliases(), though, since that's
371 * only responsible for flushing aliases out the TLBs, not the
372 * page tables, and Xen will flush the TLB for us if needed.
373 *
374 * To avoid confusing future readers: none of this is necessary
375 * to load the LDT. The hypervisor only checks this when the
376 * LDT is faulted in due to subsequent descriptor access.
377 */
378
379 for (i = 0; i < entries; i += entries_per_page)
380 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
381 }
382
xen_free_ldt(struct desc_struct * ldt,unsigned entries)383 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
384 {
385 const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
386 int i;
387
388 for (i = 0; i < entries; i += entries_per_page)
389 set_aliased_prot(ldt + i, PAGE_KERNEL);
390 }
391
xen_set_ldt(const void * addr,unsigned entries)392 static void xen_set_ldt(const void *addr, unsigned entries)
393 {
394 struct mmuext_op *op;
395 struct multicall_space mcs = xen_mc_entry(sizeof(*op));
396
397 trace_xen_cpu_set_ldt(addr, entries);
398
399 op = mcs.args;
400 op->cmd = MMUEXT_SET_LDT;
401 op->arg1.linear_addr = (unsigned long)addr;
402 op->arg2.nr_ents = entries;
403
404 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
405
406 xen_mc_issue(PARAVIRT_LAZY_CPU);
407 }
408
xen_load_gdt(const struct desc_ptr * dtr)409 static void xen_load_gdt(const struct desc_ptr *dtr)
410 {
411 unsigned long va = dtr->address;
412 unsigned int size = dtr->size + 1;
413 unsigned long pfn, mfn;
414 int level;
415 pte_t *ptep;
416 void *virt;
417
418 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
419 BUG_ON(size > PAGE_SIZE);
420 BUG_ON(va & ~PAGE_MASK);
421
422 /*
423 * The GDT is per-cpu and is in the percpu data area.
424 * That can be virtually mapped, so we need to do a
425 * page-walk to get the underlying MFN for the
426 * hypercall. The page can also be in the kernel's
427 * linear range, so we need to RO that mapping too.
428 */
429 ptep = lookup_address(va, &level);
430 BUG_ON(ptep == NULL);
431
432 pfn = pte_pfn(*ptep);
433 mfn = pfn_to_mfn(pfn);
434 virt = __va(PFN_PHYS(pfn));
435
436 make_lowmem_page_readonly((void *)va);
437 make_lowmem_page_readonly(virt);
438
439 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
440 BUG();
441 }
442
443 /*
444 * load_gdt for early boot, when the gdt is only mapped once
445 */
xen_load_gdt_boot(const struct desc_ptr * dtr)446 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
447 {
448 unsigned long va = dtr->address;
449 unsigned int size = dtr->size + 1;
450 unsigned long pfn, mfn;
451 pte_t pte;
452
453 /* @size should be at most GDT_SIZE which is smaller than PAGE_SIZE. */
454 BUG_ON(size > PAGE_SIZE);
455 BUG_ON(va & ~PAGE_MASK);
456
457 pfn = virt_to_pfn(va);
458 mfn = pfn_to_mfn(pfn);
459
460 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
461
462 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
463 BUG();
464
465 if (HYPERVISOR_set_gdt(&mfn, size / sizeof(struct desc_struct)))
466 BUG();
467 }
468
desc_equal(const struct desc_struct * d1,const struct desc_struct * d2)469 static inline bool desc_equal(const struct desc_struct *d1,
470 const struct desc_struct *d2)
471 {
472 return !memcmp(d1, d2, sizeof(*d1));
473 }
474
load_TLS_descriptor(struct thread_struct * t,unsigned int cpu,unsigned int i)475 static void load_TLS_descriptor(struct thread_struct *t,
476 unsigned int cpu, unsigned int i)
477 {
478 struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
479 struct desc_struct *gdt;
480 xmaddr_t maddr;
481 struct multicall_space mc;
482
483 if (desc_equal(shadow, &t->tls_array[i]))
484 return;
485
486 *shadow = t->tls_array[i];
487
488 gdt = get_cpu_gdt_rw(cpu);
489 maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
490 mc = __xen_mc_entry(0);
491
492 MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
493 }
494
xen_load_tls(struct thread_struct * t,unsigned int cpu)495 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
496 {
497 /*
498 * In lazy mode we need to zero %fs, otherwise we may get an
499 * exception between the new %fs descriptor being loaded and
500 * %fs being effectively cleared at __switch_to().
501 */
502 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU)
503 loadsegment(fs, 0);
504
505 xen_mc_batch();
506
507 load_TLS_descriptor(t, cpu, 0);
508 load_TLS_descriptor(t, cpu, 1);
509 load_TLS_descriptor(t, cpu, 2);
510
511 xen_mc_issue(PARAVIRT_LAZY_CPU);
512 }
513
xen_load_gs_index(unsigned int idx)514 static void xen_load_gs_index(unsigned int idx)
515 {
516 if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
517 BUG();
518 }
519
xen_write_ldt_entry(struct desc_struct * dt,int entrynum,const void * ptr)520 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
521 const void *ptr)
522 {
523 xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
524 u64 entry = *(u64 *)ptr;
525
526 trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
527
528 preempt_disable();
529
530 xen_mc_flush();
531 if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
532 BUG();
533
534 preempt_enable();
535 }
536
537 void noist_exc_debug(struct pt_regs *regs);
538
DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)539 DEFINE_IDTENTRY_RAW(xenpv_exc_nmi)
540 {
541 /* On Xen PV, NMI doesn't use IST. The C part is the same as native. */
542 exc_nmi(regs);
543 }
544
DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)545 DEFINE_IDTENTRY_RAW_ERRORCODE(xenpv_exc_double_fault)
546 {
547 /* On Xen PV, DF doesn't use IST. The C part is the same as native. */
548 exc_double_fault(regs, error_code);
549 }
550
DEFINE_IDTENTRY_RAW(xenpv_exc_debug)551 DEFINE_IDTENTRY_RAW(xenpv_exc_debug)
552 {
553 /*
554 * There's no IST on Xen PV, but we still need to dispatch
555 * to the correct handler.
556 */
557 if (user_mode(regs))
558 noist_exc_debug(regs);
559 else
560 exc_debug(regs);
561 }
562
DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)563 DEFINE_IDTENTRY_RAW(exc_xen_unknown_trap)
564 {
565 /* This should never happen and there is no way to handle it. */
566 instrumentation_begin();
567 pr_err("Unknown trap in Xen PV mode.");
568 BUG();
569 instrumentation_end();
570 }
571
572 #ifdef CONFIG_X86_MCE
DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)573 DEFINE_IDTENTRY_RAW(xenpv_exc_machine_check)
574 {
575 /*
576 * There's no IST on Xen PV, but we still need to dispatch
577 * to the correct handler.
578 */
579 if (user_mode(regs))
580 noist_exc_machine_check(regs);
581 else
582 exc_machine_check(regs);
583 }
584 #endif
585
586 struct trap_array_entry {
587 void (*orig)(void);
588 void (*xen)(void);
589 bool ist_okay;
590 };
591
592 #define TRAP_ENTRY(func, ist_ok) { \
593 .orig = asm_##func, \
594 .xen = xen_asm_##func, \
595 .ist_okay = ist_ok }
596
597 #define TRAP_ENTRY_REDIR(func, ist_ok) { \
598 .orig = asm_##func, \
599 .xen = xen_asm_xenpv_##func, \
600 .ist_okay = ist_ok }
601
602 static struct trap_array_entry trap_array[] = {
603 TRAP_ENTRY_REDIR(exc_debug, true ),
604 TRAP_ENTRY_REDIR(exc_double_fault, true ),
605 #ifdef CONFIG_X86_MCE
606 TRAP_ENTRY_REDIR(exc_machine_check, true ),
607 #endif
608 TRAP_ENTRY_REDIR(exc_nmi, true ),
609 TRAP_ENTRY(exc_int3, false ),
610 TRAP_ENTRY(exc_overflow, false ),
611 #ifdef CONFIG_IA32_EMULATION
612 { entry_INT80_compat, xen_entry_INT80_compat, false },
613 #endif
614 TRAP_ENTRY(exc_page_fault, false ),
615 TRAP_ENTRY(exc_divide_error, false ),
616 TRAP_ENTRY(exc_bounds, false ),
617 TRAP_ENTRY(exc_invalid_op, false ),
618 TRAP_ENTRY(exc_device_not_available, false ),
619 TRAP_ENTRY(exc_coproc_segment_overrun, false ),
620 TRAP_ENTRY(exc_invalid_tss, false ),
621 TRAP_ENTRY(exc_segment_not_present, false ),
622 TRAP_ENTRY(exc_stack_segment, false ),
623 TRAP_ENTRY(exc_general_protection, false ),
624 TRAP_ENTRY(exc_spurious_interrupt_bug, false ),
625 TRAP_ENTRY(exc_coprocessor_error, false ),
626 TRAP_ENTRY(exc_alignment_check, false ),
627 TRAP_ENTRY(exc_simd_coprocessor_error, false ),
628 };
629
get_trap_addr(void ** addr,unsigned int ist)630 static bool __ref get_trap_addr(void **addr, unsigned int ist)
631 {
632 unsigned int nr;
633 bool ist_okay = false;
634 bool found = false;
635
636 /*
637 * Replace trap handler addresses by Xen specific ones.
638 * Check for known traps using IST and whitelist them.
639 * The debugger ones are the only ones we care about.
640 * Xen will handle faults like double_fault, so we should never see
641 * them. Warn if there's an unexpected IST-using fault handler.
642 */
643 for (nr = 0; nr < ARRAY_SIZE(trap_array); nr++) {
644 struct trap_array_entry *entry = trap_array + nr;
645
646 if (*addr == entry->orig) {
647 *addr = entry->xen;
648 ist_okay = entry->ist_okay;
649 found = true;
650 break;
651 }
652 }
653
654 if (nr == ARRAY_SIZE(trap_array) &&
655 *addr >= (void *)early_idt_handler_array[0] &&
656 *addr < (void *)early_idt_handler_array[NUM_EXCEPTION_VECTORS]) {
657 nr = (*addr - (void *)early_idt_handler_array[0]) /
658 EARLY_IDT_HANDLER_SIZE;
659 *addr = (void *)xen_early_idt_handler_array[nr];
660 found = true;
661 }
662
663 if (!found)
664 *addr = (void *)xen_asm_exc_xen_unknown_trap;
665
666 if (WARN_ON(found && ist != 0 && !ist_okay))
667 return false;
668
669 return true;
670 }
671
cvt_gate_to_trap(int vector,const gate_desc * val,struct trap_info * info)672 static int cvt_gate_to_trap(int vector, const gate_desc *val,
673 struct trap_info *info)
674 {
675 unsigned long addr;
676
677 if (val->bits.type != GATE_TRAP && val->bits.type != GATE_INTERRUPT)
678 return 0;
679
680 info->vector = vector;
681
682 addr = gate_offset(val);
683 if (!get_trap_addr((void **)&addr, val->bits.ist))
684 return 0;
685 info->address = addr;
686
687 info->cs = gate_segment(val);
688 info->flags = val->bits.dpl;
689 /* interrupt gates clear IF */
690 if (val->bits.type == GATE_INTERRUPT)
691 info->flags |= 1 << 2;
692
693 return 1;
694 }
695
696 /* Locations of each CPU's IDT */
697 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
698
699 /* Set an IDT entry. If the entry is part of the current IDT, then
700 also update Xen. */
xen_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)701 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
702 {
703 unsigned long p = (unsigned long)&dt[entrynum];
704 unsigned long start, end;
705
706 trace_xen_cpu_write_idt_entry(dt, entrynum, g);
707
708 preempt_disable();
709
710 start = __this_cpu_read(idt_desc.address);
711 end = start + __this_cpu_read(idt_desc.size) + 1;
712
713 xen_mc_flush();
714
715 native_write_idt_entry(dt, entrynum, g);
716
717 if (p >= start && (p + 8) <= end) {
718 struct trap_info info[2];
719
720 info[1].address = 0;
721
722 if (cvt_gate_to_trap(entrynum, g, &info[0]))
723 if (HYPERVISOR_set_trap_table(info))
724 BUG();
725 }
726
727 preempt_enable();
728 }
729
xen_convert_trap_info(const struct desc_ptr * desc,struct trap_info * traps,bool full)730 static unsigned xen_convert_trap_info(const struct desc_ptr *desc,
731 struct trap_info *traps, bool full)
732 {
733 unsigned in, out, count;
734
735 count = (desc->size+1) / sizeof(gate_desc);
736 BUG_ON(count > 256);
737
738 for (in = out = 0; in < count; in++) {
739 gate_desc *entry = (gate_desc *)(desc->address) + in;
740
741 if (cvt_gate_to_trap(in, entry, &traps[out]) || full)
742 out++;
743 }
744
745 return out;
746 }
747
xen_copy_trap_info(struct trap_info * traps)748 void xen_copy_trap_info(struct trap_info *traps)
749 {
750 const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
751
752 xen_convert_trap_info(desc, traps, true);
753 }
754
755 /* Load a new IDT into Xen. In principle this can be per-CPU, so we
756 hold a spinlock to protect the static traps[] array (static because
757 it avoids allocation, and saves stack space). */
xen_load_idt(const struct desc_ptr * desc)758 static void xen_load_idt(const struct desc_ptr *desc)
759 {
760 static DEFINE_SPINLOCK(lock);
761 static struct trap_info traps[257];
762 static const struct trap_info zero = { };
763 unsigned out;
764
765 trace_xen_cpu_load_idt(desc);
766
767 spin_lock(&lock);
768
769 memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
770
771 out = xen_convert_trap_info(desc, traps, false);
772 traps[out] = zero;
773
774 xen_mc_flush();
775 if (HYPERVISOR_set_trap_table(traps))
776 BUG();
777
778 spin_unlock(&lock);
779 }
780
781 /* Write a GDT descriptor entry. Ignore LDT descriptors, since
782 they're handled differently. */
xen_write_gdt_entry(struct desc_struct * dt,int entry,const void * desc,int type)783 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
784 const void *desc, int type)
785 {
786 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
787
788 preempt_disable();
789
790 switch (type) {
791 case DESC_LDT:
792 case DESC_TSS:
793 /* ignore */
794 break;
795
796 default: {
797 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
798
799 xen_mc_flush();
800 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
801 BUG();
802 }
803
804 }
805
806 preempt_enable();
807 }
808
809 /*
810 * Version of write_gdt_entry for use at early boot-time needed to
811 * update an entry as simply as possible.
812 */
xen_write_gdt_entry_boot(struct desc_struct * dt,int entry,const void * desc,int type)813 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
814 const void *desc, int type)
815 {
816 trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
817
818 switch (type) {
819 case DESC_LDT:
820 case DESC_TSS:
821 /* ignore */
822 break;
823
824 default: {
825 xmaddr_t maddr = virt_to_machine(&dt[entry]);
826
827 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
828 dt[entry] = *(struct desc_struct *)desc;
829 }
830
831 }
832 }
833
xen_load_sp0(unsigned long sp0)834 static void xen_load_sp0(unsigned long sp0)
835 {
836 struct multicall_space mcs;
837
838 mcs = xen_mc_entry(0);
839 MULTI_stack_switch(mcs.mc, __KERNEL_DS, sp0);
840 xen_mc_issue(PARAVIRT_LAZY_CPU);
841 this_cpu_write(cpu_tss_rw.x86_tss.sp0, sp0);
842 }
843
844 #ifdef CONFIG_X86_IOPL_IOPERM
xen_invalidate_io_bitmap(void)845 static void xen_invalidate_io_bitmap(void)
846 {
847 struct physdev_set_iobitmap iobitmap = {
848 .bitmap = NULL,
849 .nr_ports = 0,
850 };
851
852 native_tss_invalidate_io_bitmap();
853 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
854 }
855
xen_update_io_bitmap(void)856 static void xen_update_io_bitmap(void)
857 {
858 struct physdev_set_iobitmap iobitmap;
859 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
860
861 native_tss_update_io_bitmap();
862
863 iobitmap.bitmap = (uint8_t *)(&tss->x86_tss) +
864 tss->x86_tss.io_bitmap_base;
865 if (tss->x86_tss.io_bitmap_base == IO_BITMAP_OFFSET_INVALID)
866 iobitmap.nr_ports = 0;
867 else
868 iobitmap.nr_ports = IO_BITMAP_BITS;
869
870 HYPERVISOR_physdev_op(PHYSDEVOP_set_iobitmap, &iobitmap);
871 }
872 #endif
873
xen_io_delay(void)874 static void xen_io_delay(void)
875 {
876 }
877
878 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
879
xen_read_cr0(void)880 static unsigned long xen_read_cr0(void)
881 {
882 unsigned long cr0 = this_cpu_read(xen_cr0_value);
883
884 if (unlikely(cr0 == 0)) {
885 cr0 = native_read_cr0();
886 this_cpu_write(xen_cr0_value, cr0);
887 }
888
889 return cr0;
890 }
891
xen_write_cr0(unsigned long cr0)892 static void xen_write_cr0(unsigned long cr0)
893 {
894 struct multicall_space mcs;
895
896 this_cpu_write(xen_cr0_value, cr0);
897
898 /* Only pay attention to cr0.TS; everything else is
899 ignored. */
900 mcs = xen_mc_entry(0);
901
902 MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
903
904 xen_mc_issue(PARAVIRT_LAZY_CPU);
905 }
906
xen_write_cr4(unsigned long cr4)907 static void xen_write_cr4(unsigned long cr4)
908 {
909 cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
910
911 native_write_cr4(cr4);
912 }
913
xen_read_msr_safe(unsigned int msr,int * err)914 static u64 xen_read_msr_safe(unsigned int msr, int *err)
915 {
916 u64 val;
917
918 if (pmu_msr_read(msr, &val, err))
919 return val;
920
921 val = native_read_msr_safe(msr, err);
922 switch (msr) {
923 case MSR_IA32_APICBASE:
924 val &= ~X2APIC_ENABLE;
925 break;
926 }
927 return val;
928 }
929
xen_write_msr_safe(unsigned int msr,unsigned low,unsigned high)930 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
931 {
932 int ret;
933 unsigned int which;
934 u64 base;
935
936 ret = 0;
937
938 switch (msr) {
939 case MSR_FS_BASE: which = SEGBASE_FS; goto set;
940 case MSR_KERNEL_GS_BASE: which = SEGBASE_GS_USER; goto set;
941 case MSR_GS_BASE: which = SEGBASE_GS_KERNEL; goto set;
942
943 set:
944 base = ((u64)high << 32) | low;
945 if (HYPERVISOR_set_segment_base(which, base) != 0)
946 ret = -EIO;
947 break;
948
949 case MSR_STAR:
950 case MSR_CSTAR:
951 case MSR_LSTAR:
952 case MSR_SYSCALL_MASK:
953 case MSR_IA32_SYSENTER_CS:
954 case MSR_IA32_SYSENTER_ESP:
955 case MSR_IA32_SYSENTER_EIP:
956 /* Fast syscall setup is all done in hypercalls, so
957 these are all ignored. Stub them out here to stop
958 Xen console noise. */
959 break;
960
961 default:
962 if (!pmu_msr_write(msr, low, high, &ret))
963 ret = native_write_msr_safe(msr, low, high);
964 }
965
966 return ret;
967 }
968
xen_read_msr(unsigned int msr)969 static u64 xen_read_msr(unsigned int msr)
970 {
971 /*
972 * This will silently swallow a #GP from RDMSR. It may be worth
973 * changing that.
974 */
975 int err;
976
977 return xen_read_msr_safe(msr, &err);
978 }
979
xen_write_msr(unsigned int msr,unsigned low,unsigned high)980 static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
981 {
982 /*
983 * This will silently swallow a #GP from WRMSR. It may be worth
984 * changing that.
985 */
986 xen_write_msr_safe(msr, low, high);
987 }
988
989 /* This is called once we have the cpu_possible_mask */
xen_setup_vcpu_info_placement(void)990 void __init xen_setup_vcpu_info_placement(void)
991 {
992 int cpu;
993
994 for_each_possible_cpu(cpu) {
995 /* Set up direct vCPU id mapping for PV guests. */
996 per_cpu(xen_vcpu_id, cpu) = cpu;
997
998 /*
999 * xen_vcpu_setup(cpu) can fail -- in which case it
1000 * falls back to the shared_info version for cpus
1001 * where xen_vcpu_nr(cpu) < MAX_VIRT_CPUS.
1002 *
1003 * xen_cpu_up_prepare_pv() handles the rest by failing
1004 * them in hotplug.
1005 */
1006 (void) xen_vcpu_setup(cpu);
1007 }
1008
1009 /*
1010 * xen_vcpu_setup managed to place the vcpu_info within the
1011 * percpu area for all cpus, so make use of it.
1012 */
1013 if (xen_have_vcpu_info_placement) {
1014 pv_ops.irq.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1015 pv_ops.irq.irq_disable =
1016 __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1017 pv_ops.irq.irq_enable =
1018 __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1019 pv_ops.mmu.read_cr2 =
1020 __PV_IS_CALLEE_SAVE(xen_read_cr2_direct);
1021 }
1022 }
1023
1024 static const struct pv_info xen_info __initconst = {
1025 .extra_user_64bit_cs = FLAT_USER_CS64,
1026 .name = "Xen",
1027 };
1028
1029 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1030 .cpuid = xen_cpuid,
1031
1032 .set_debugreg = xen_set_debugreg,
1033 .get_debugreg = xen_get_debugreg,
1034
1035 .read_cr0 = xen_read_cr0,
1036 .write_cr0 = xen_write_cr0,
1037
1038 .write_cr4 = xen_write_cr4,
1039
1040 .wbinvd = native_wbinvd,
1041
1042 .read_msr = xen_read_msr,
1043 .write_msr = xen_write_msr,
1044
1045 .read_msr_safe = xen_read_msr_safe,
1046 .write_msr_safe = xen_write_msr_safe,
1047
1048 .read_pmc = xen_read_pmc,
1049
1050 .load_tr_desc = paravirt_nop,
1051 .set_ldt = xen_set_ldt,
1052 .load_gdt = xen_load_gdt,
1053 .load_idt = xen_load_idt,
1054 .load_tls = xen_load_tls,
1055 .load_gs_index = xen_load_gs_index,
1056
1057 .alloc_ldt = xen_alloc_ldt,
1058 .free_ldt = xen_free_ldt,
1059
1060 .store_tr = xen_store_tr,
1061
1062 .write_ldt_entry = xen_write_ldt_entry,
1063 .write_gdt_entry = xen_write_gdt_entry,
1064 .write_idt_entry = xen_write_idt_entry,
1065 .load_sp0 = xen_load_sp0,
1066
1067 #ifdef CONFIG_X86_IOPL_IOPERM
1068 .invalidate_io_bitmap = xen_invalidate_io_bitmap,
1069 .update_io_bitmap = xen_update_io_bitmap,
1070 #endif
1071 .io_delay = xen_io_delay,
1072
1073 .start_context_switch = paravirt_start_context_switch,
1074 .end_context_switch = xen_end_context_switch,
1075 };
1076
xen_restart(char * msg)1077 static void xen_restart(char *msg)
1078 {
1079 xen_reboot(SHUTDOWN_reboot);
1080 }
1081
xen_machine_halt(void)1082 static void xen_machine_halt(void)
1083 {
1084 xen_reboot(SHUTDOWN_poweroff);
1085 }
1086
xen_machine_power_off(void)1087 static void xen_machine_power_off(void)
1088 {
1089 if (pm_power_off)
1090 pm_power_off();
1091 xen_reboot(SHUTDOWN_poweroff);
1092 }
1093
xen_crash_shutdown(struct pt_regs * regs)1094 static void xen_crash_shutdown(struct pt_regs *regs)
1095 {
1096 xen_reboot(SHUTDOWN_crash);
1097 }
1098
1099 static const struct machine_ops xen_machine_ops __initconst = {
1100 .restart = xen_restart,
1101 .halt = xen_machine_halt,
1102 .power_off = xen_machine_power_off,
1103 .shutdown = xen_machine_halt,
1104 .crash_shutdown = xen_crash_shutdown,
1105 .emergency_restart = xen_emergency_restart,
1106 };
1107
xen_get_nmi_reason(void)1108 static unsigned char xen_get_nmi_reason(void)
1109 {
1110 unsigned char reason = 0;
1111
1112 /* Construct a value which looks like it came from port 0x61. */
1113 if (test_bit(_XEN_NMIREASON_io_error,
1114 &HYPERVISOR_shared_info->arch.nmi_reason))
1115 reason |= NMI_REASON_IOCHK;
1116 if (test_bit(_XEN_NMIREASON_pci_serr,
1117 &HYPERVISOR_shared_info->arch.nmi_reason))
1118 reason |= NMI_REASON_SERR;
1119
1120 return reason;
1121 }
1122
xen_boot_params_init_edd(void)1123 static void __init xen_boot_params_init_edd(void)
1124 {
1125 #if IS_ENABLED(CONFIG_EDD)
1126 struct xen_platform_op op;
1127 struct edd_info *edd_info;
1128 u32 *mbr_signature;
1129 unsigned nr;
1130 int ret;
1131
1132 edd_info = boot_params.eddbuf;
1133 mbr_signature = boot_params.edd_mbr_sig_buffer;
1134
1135 op.cmd = XENPF_firmware_info;
1136
1137 op.u.firmware_info.type = XEN_FW_DISK_INFO;
1138 for (nr = 0; nr < EDDMAXNR; nr++) {
1139 struct edd_info *info = edd_info + nr;
1140
1141 op.u.firmware_info.index = nr;
1142 info->params.length = sizeof(info->params);
1143 set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1144 &info->params);
1145 ret = HYPERVISOR_platform_op(&op);
1146 if (ret)
1147 break;
1148
1149 #define C(x) info->x = op.u.firmware_info.u.disk_info.x
1150 C(device);
1151 C(version);
1152 C(interface_support);
1153 C(legacy_max_cylinder);
1154 C(legacy_max_head);
1155 C(legacy_sectors_per_track);
1156 #undef C
1157 }
1158 boot_params.eddbuf_entries = nr;
1159
1160 op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1161 for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1162 op.u.firmware_info.index = nr;
1163 ret = HYPERVISOR_platform_op(&op);
1164 if (ret)
1165 break;
1166 mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1167 }
1168 boot_params.edd_mbr_sig_buf_entries = nr;
1169 #endif
1170 }
1171
1172 /*
1173 * Set up the GDT and segment registers for -fstack-protector. Until
1174 * we do this, we have to be careful not to call any stack-protected
1175 * function, which is most of the kernel.
1176 */
xen_setup_gdt(int cpu)1177 static void __init xen_setup_gdt(int cpu)
1178 {
1179 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry_boot;
1180 pv_ops.cpu.load_gdt = xen_load_gdt_boot;
1181
1182 switch_to_new_gdt(cpu);
1183
1184 pv_ops.cpu.write_gdt_entry = xen_write_gdt_entry;
1185 pv_ops.cpu.load_gdt = xen_load_gdt;
1186 }
1187
xen_dom0_set_legacy_features(void)1188 static void __init xen_dom0_set_legacy_features(void)
1189 {
1190 x86_platform.legacy.rtc = 1;
1191 }
1192
xen_domu_set_legacy_features(void)1193 static void __init xen_domu_set_legacy_features(void)
1194 {
1195 x86_platform.legacy.rtc = 0;
1196 }
1197
1198 /* First C function to be called on Xen boot */
xen_start_kernel(void)1199 asmlinkage __visible void __init xen_start_kernel(void)
1200 {
1201 struct physdev_set_iopl set_iopl;
1202 unsigned long initrd_start = 0;
1203 int rc;
1204
1205 if (!xen_start_info)
1206 return;
1207
1208 xen_domain_type = XEN_PV_DOMAIN;
1209 xen_start_flags = xen_start_info->flags;
1210
1211 xen_setup_features();
1212
1213 /* Install Xen paravirt ops */
1214 pv_info = xen_info;
1215 pv_ops.cpu = xen_cpu_ops;
1216 paravirt_iret = xen_iret;
1217 xen_init_irq_ops();
1218
1219 /*
1220 * Setup xen_vcpu early because it is needed for
1221 * local_irq_disable(), irqs_disabled(), e.g. in printk().
1222 *
1223 * Don't do the full vcpu_info placement stuff until we have
1224 * the cpu_possible_mask and a non-dummy shared_info.
1225 */
1226 xen_vcpu_info_reset(0);
1227
1228 x86_platform.get_nmi_reason = xen_get_nmi_reason;
1229
1230 x86_init.resources.memory_setup = xen_memory_setup;
1231 x86_init.irqs.intr_mode_select = x86_init_noop;
1232 x86_init.irqs.intr_mode_init = x86_init_noop;
1233 x86_init.oem.arch_setup = xen_arch_setup;
1234 x86_init.oem.banner = xen_banner;
1235 x86_init.hyper.init_platform = xen_pv_init_platform;
1236 x86_init.hyper.guest_late_init = xen_pv_guest_late_init;
1237
1238 /*
1239 * Set up some pagetable state before starting to set any ptes.
1240 */
1241
1242 xen_setup_machphys_mapping();
1243 xen_init_mmu_ops();
1244
1245 /* Prevent unwanted bits from being set in PTEs. */
1246 __supported_pte_mask &= ~_PAGE_GLOBAL;
1247 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
1248
1249 /*
1250 * Prevent page tables from being allocated in highmem, even
1251 * if CONFIG_HIGHPTE is enabled.
1252 */
1253 __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1254
1255 /* Get mfn list */
1256 xen_build_dynamic_phys_to_machine();
1257
1258 /* Work out if we support NX */
1259 get_cpu_cap(&boot_cpu_data);
1260 x86_configure_nx();
1261
1262 /*
1263 * Set up kernel GDT and segment registers, mainly so that
1264 * -fstack-protector code can be executed.
1265 */
1266 xen_setup_gdt(0);
1267
1268 /* Determine virtual and physical address sizes */
1269 get_cpu_address_sizes(&boot_cpu_data);
1270
1271 /* Let's presume PV guests always boot on vCPU with id 0. */
1272 per_cpu(xen_vcpu_id, 0) = 0;
1273
1274 idt_setup_early_handler();
1275
1276 xen_init_capabilities();
1277
1278 #ifdef CONFIG_X86_LOCAL_APIC
1279 /*
1280 * set up the basic apic ops.
1281 */
1282 xen_init_apic();
1283 #endif
1284
1285 machine_ops = xen_machine_ops;
1286
1287 /*
1288 * The only reliable way to retain the initial address of the
1289 * percpu gdt_page is to remember it here, so we can go and
1290 * mark it RW later, when the initial percpu area is freed.
1291 */
1292 xen_initial_gdt = &per_cpu(gdt_page, 0);
1293
1294 xen_smp_init();
1295
1296 #ifdef CONFIG_ACPI_NUMA
1297 /*
1298 * The pages we from Xen are not related to machine pages, so
1299 * any NUMA information the kernel tries to get from ACPI will
1300 * be meaningless. Prevent it from trying.
1301 */
1302 disable_srat();
1303 #endif
1304 WARN_ON(xen_cpuhp_setup(xen_cpu_up_prepare_pv, xen_cpu_dead_pv));
1305
1306 local_irq_disable();
1307 early_boot_irqs_disabled = true;
1308
1309 xen_raw_console_write("mapping kernel into physical memory\n");
1310 xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1311 xen_start_info->nr_pages);
1312 xen_reserve_special_pages();
1313
1314 /*
1315 * We used to do this in xen_arch_setup, but that is too late
1316 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1317 * early_amd_init which pokes 0xcf8 port.
1318 */
1319 set_iopl.iopl = 1;
1320 rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1321 if (rc != 0)
1322 xen_raw_printk("physdev_op failed %d\n", rc);
1323
1324
1325 if (xen_start_info->mod_start) {
1326 if (xen_start_info->flags & SIF_MOD_START_PFN)
1327 initrd_start = PFN_PHYS(xen_start_info->mod_start);
1328 else
1329 initrd_start = __pa(xen_start_info->mod_start);
1330 }
1331
1332 /* Poke various useful things into boot_params */
1333 boot_params.hdr.type_of_loader = (9 << 4) | 0;
1334 boot_params.hdr.ramdisk_image = initrd_start;
1335 boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1336 boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1337 boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1338
1339 if (!xen_initial_domain()) {
1340 if (pci_xen)
1341 x86_init.pci.arch_init = pci_xen_init;
1342 x86_platform.set_legacy_features =
1343 xen_domu_set_legacy_features;
1344 } else {
1345 const struct dom0_vga_console_info *info =
1346 (void *)((char *)xen_start_info +
1347 xen_start_info->console.dom0.info_off);
1348 struct xen_platform_op op = {
1349 .cmd = XENPF_firmware_info,
1350 .interface_version = XENPF_INTERFACE_VERSION,
1351 .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1352 };
1353
1354 x86_platform.set_legacy_features =
1355 xen_dom0_set_legacy_features;
1356 xen_init_vga(info, xen_start_info->console.dom0.info_size,
1357 &boot_params.screen_info);
1358 xen_start_info->console.domU.mfn = 0;
1359 xen_start_info->console.domU.evtchn = 0;
1360
1361 if (HYPERVISOR_platform_op(&op) == 0)
1362 boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1363
1364 /* Make sure ACS will be enabled */
1365 pci_request_acs();
1366
1367 xen_acpi_sleep_register();
1368
1369 xen_boot_params_init_edd();
1370
1371 #ifdef CONFIG_ACPI
1372 /*
1373 * Disable selecting "Firmware First mode" for correctable
1374 * memory errors, as this is the duty of the hypervisor to
1375 * decide.
1376 */
1377 acpi_disable_cmcff = 1;
1378 #endif
1379 }
1380
1381 xen_add_preferred_consoles();
1382
1383 #ifdef CONFIG_PCI
1384 /* PCI BIOS service won't work from a PV guest. */
1385 pci_probe &= ~PCI_PROBE_BIOS;
1386 #endif
1387 xen_raw_console_write("about to get started...\n");
1388
1389 /* We need this for printk timestamps */
1390 xen_setup_runstate_info(0);
1391
1392 xen_efi_init(&boot_params);
1393
1394 /* Start the world */
1395 cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1396 x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1397 }
1398
xen_cpu_up_prepare_pv(unsigned int cpu)1399 static int xen_cpu_up_prepare_pv(unsigned int cpu)
1400 {
1401 int rc;
1402
1403 if (per_cpu(xen_vcpu, cpu) == NULL)
1404 return -ENODEV;
1405
1406 xen_setup_timer(cpu);
1407
1408 rc = xen_smp_intr_init(cpu);
1409 if (rc) {
1410 WARN(1, "xen_smp_intr_init() for CPU %d failed: %d\n",
1411 cpu, rc);
1412 return rc;
1413 }
1414
1415 rc = xen_smp_intr_init_pv(cpu);
1416 if (rc) {
1417 WARN(1, "xen_smp_intr_init_pv() for CPU %d failed: %d\n",
1418 cpu, rc);
1419 return rc;
1420 }
1421
1422 return 0;
1423 }
1424
xen_cpu_dead_pv(unsigned int cpu)1425 static int xen_cpu_dead_pv(unsigned int cpu)
1426 {
1427 xen_smp_intr_free(cpu);
1428 xen_smp_intr_free_pv(cpu);
1429
1430 xen_teardown_timer(cpu);
1431
1432 return 0;
1433 }
1434
xen_platform_pv(void)1435 static uint32_t __init xen_platform_pv(void)
1436 {
1437 if (xen_pv_domain())
1438 return xen_cpuid_base();
1439
1440 return 0;
1441 }
1442
1443 const __initconst struct hypervisor_x86 x86_hyper_xen_pv = {
1444 .name = "Xen PV",
1445 .detect = xen_platform_pv,
1446 .type = X86_HYPER_XEN_PV,
1447 .runtime.pin_vcpu = xen_pin_vcpu,
1448 .ignore_nopv = true,
1449 };
1450