• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_mount.h"
14 #include "xfs_inode.h"
15 #include "xfs_trans.h"
16 #include "xfs_buf_item.h"
17 #include "xfs_btree.h"
18 #include "xfs_errortag.h"
19 #include "xfs_error.h"
20 #include "xfs_trace.h"
21 #include "xfs_alloc.h"
22 #include "xfs_log.h"
23 #include "xfs_btree_staging.h"
24 #include "xfs_ag.h"
25 
26 /*
27  * Cursor allocation zone.
28  */
29 kmem_zone_t	*xfs_btree_cur_zone;
30 
31 /*
32  * Btree magic numbers.
33  */
34 static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
35 	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
36 	  XFS_FIBT_MAGIC, 0 },
37 	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
38 	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
39 	  XFS_REFC_CRC_MAGIC }
40 };
41 
42 uint32_t
xfs_btree_magic(int crc,xfs_btnum_t btnum)43 xfs_btree_magic(
44 	int			crc,
45 	xfs_btnum_t		btnum)
46 {
47 	uint32_t		magic = xfs_magics[crc][btnum];
48 
49 	/* Ensure we asked for crc for crc-only magics. */
50 	ASSERT(magic != 0);
51 	return magic;
52 }
53 
54 /*
55  * These sibling pointer checks are optimised for null sibling pointers. This
56  * happens a lot, and we don't need to byte swap at runtime if the sibling
57  * pointer is NULL.
58  *
59  * These are explicitly marked at inline because the cost of calling them as
60  * functions instead of inlining them is about 36 bytes extra code per call site
61  * on x86-64. Yes, gcc-11 fails to inline them, and explicit inlining of these
62  * two sibling check functions reduces the compiled code size by over 300
63  * bytes.
64  */
65 static inline xfs_failaddr_t
xfs_btree_check_lblock_siblings(struct xfs_mount * mp,struct xfs_btree_cur * cur,int level,xfs_fsblock_t fsb,__be64 dsibling)66 xfs_btree_check_lblock_siblings(
67 	struct xfs_mount	*mp,
68 	struct xfs_btree_cur	*cur,
69 	int			level,
70 	xfs_fsblock_t		fsb,
71 	__be64			dsibling)
72 {
73 	xfs_fsblock_t		sibling;
74 
75 	if (dsibling == cpu_to_be64(NULLFSBLOCK))
76 		return NULL;
77 
78 	sibling = be64_to_cpu(dsibling);
79 	if (sibling == fsb)
80 		return __this_address;
81 	if (level >= 0) {
82 		if (!xfs_btree_check_lptr(cur, sibling, level + 1))
83 			return __this_address;
84 	} else {
85 		if (!xfs_verify_fsbno(mp, sibling))
86 			return __this_address;
87 	}
88 
89 	return NULL;
90 }
91 
92 static inline xfs_failaddr_t
xfs_btree_check_sblock_siblings(struct xfs_mount * mp,struct xfs_btree_cur * cur,int level,xfs_agnumber_t agno,xfs_agblock_t agbno,__be32 dsibling)93 xfs_btree_check_sblock_siblings(
94 	struct xfs_mount	*mp,
95 	struct xfs_btree_cur	*cur,
96 	int			level,
97 	xfs_agnumber_t		agno,
98 	xfs_agblock_t		agbno,
99 	__be32			dsibling)
100 {
101 	xfs_agblock_t		sibling;
102 
103 	if (dsibling == cpu_to_be32(NULLAGBLOCK))
104 		return NULL;
105 
106 	sibling = be32_to_cpu(dsibling);
107 	if (sibling == agbno)
108 		return __this_address;
109 	if (level >= 0) {
110 		if (!xfs_btree_check_sptr(cur, sibling, level + 1))
111 			return __this_address;
112 	} else {
113 		if (!xfs_verify_agbno(mp, agno, sibling))
114 			return __this_address;
115 	}
116 	return NULL;
117 }
118 
119 /*
120  * Check a long btree block header.  Return the address of the failing check,
121  * or NULL if everything is ok.
122  */
123 xfs_failaddr_t
__xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)124 __xfs_btree_check_lblock(
125 	struct xfs_btree_cur	*cur,
126 	struct xfs_btree_block	*block,
127 	int			level,
128 	struct xfs_buf		*bp)
129 {
130 	struct xfs_mount	*mp = cur->bc_mp;
131 	xfs_btnum_t		btnum = cur->bc_btnum;
132 	int			crc = xfs_has_crc(mp);
133 	xfs_failaddr_t		fa;
134 	xfs_fsblock_t		fsb = NULLFSBLOCK;
135 
136 	if (crc) {
137 		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
138 			return __this_address;
139 		if (block->bb_u.l.bb_blkno !=
140 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
141 			return __this_address;
142 		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
143 			return __this_address;
144 	}
145 
146 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
147 		return __this_address;
148 	if (be16_to_cpu(block->bb_level) != level)
149 		return __this_address;
150 	if (be16_to_cpu(block->bb_numrecs) >
151 	    cur->bc_ops->get_maxrecs(cur, level))
152 		return __this_address;
153 
154 	if (bp)
155 		fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
156 
157 	fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
158 			block->bb_u.l.bb_leftsib);
159 	if (!fa)
160 		fa = xfs_btree_check_lblock_siblings(mp, cur, level, fsb,
161 				block->bb_u.l.bb_rightsib);
162 	return fa;
163 }
164 
165 /* Check a long btree block header. */
166 static int
xfs_btree_check_lblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)167 xfs_btree_check_lblock(
168 	struct xfs_btree_cur	*cur,
169 	struct xfs_btree_block	*block,
170 	int			level,
171 	struct xfs_buf		*bp)
172 {
173 	struct xfs_mount	*mp = cur->bc_mp;
174 	xfs_failaddr_t		fa;
175 
176 	fa = __xfs_btree_check_lblock(cur, block, level, bp);
177 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
178 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
179 		if (bp)
180 			trace_xfs_btree_corrupt(bp, _RET_IP_);
181 		return -EFSCORRUPTED;
182 	}
183 	return 0;
184 }
185 
186 /*
187  * Check a short btree block header.  Return the address of the failing check,
188  * or NULL if everything is ok.
189  */
190 xfs_failaddr_t
__xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)191 __xfs_btree_check_sblock(
192 	struct xfs_btree_cur	*cur,
193 	struct xfs_btree_block	*block,
194 	int			level,
195 	struct xfs_buf		*bp)
196 {
197 	struct xfs_mount	*mp = cur->bc_mp;
198 	xfs_btnum_t		btnum = cur->bc_btnum;
199 	int			crc = xfs_has_crc(mp);
200 	xfs_failaddr_t		fa;
201 	xfs_agblock_t		agbno = NULLAGBLOCK;
202 	xfs_agnumber_t		agno = NULLAGNUMBER;
203 
204 	if (crc) {
205 		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
206 			return __this_address;
207 		if (block->bb_u.s.bb_blkno !=
208 		    cpu_to_be64(bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL))
209 			return __this_address;
210 	}
211 
212 	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
213 		return __this_address;
214 	if (be16_to_cpu(block->bb_level) != level)
215 		return __this_address;
216 	if (be16_to_cpu(block->bb_numrecs) >
217 	    cur->bc_ops->get_maxrecs(cur, level))
218 		return __this_address;
219 
220 	if (bp) {
221 		agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
222 		agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
223 	}
224 
225 	fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno, agbno,
226 			block->bb_u.s.bb_leftsib);
227 	if (!fa)
228 		fa = xfs_btree_check_sblock_siblings(mp, cur, level, agno,
229 				 agbno, block->bb_u.s.bb_rightsib);
230 	return fa;
231 }
232 
233 /* Check a short btree block header. */
234 STATIC int
xfs_btree_check_sblock(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)235 xfs_btree_check_sblock(
236 	struct xfs_btree_cur	*cur,
237 	struct xfs_btree_block	*block,
238 	int			level,
239 	struct xfs_buf		*bp)
240 {
241 	struct xfs_mount	*mp = cur->bc_mp;
242 	xfs_failaddr_t		fa;
243 
244 	fa = __xfs_btree_check_sblock(cur, block, level, bp);
245 	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
246 	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
247 		if (bp)
248 			trace_xfs_btree_corrupt(bp, _RET_IP_);
249 		return -EFSCORRUPTED;
250 	}
251 	return 0;
252 }
253 
254 /*
255  * Debug routine: check that block header is ok.
256  */
257 int
xfs_btree_check_block(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level,struct xfs_buf * bp)258 xfs_btree_check_block(
259 	struct xfs_btree_cur	*cur,	/* btree cursor */
260 	struct xfs_btree_block	*block,	/* generic btree block pointer */
261 	int			level,	/* level of the btree block */
262 	struct xfs_buf		*bp)	/* buffer containing block, if any */
263 {
264 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
265 		return xfs_btree_check_lblock(cur, block, level, bp);
266 	else
267 		return xfs_btree_check_sblock(cur, block, level, bp);
268 }
269 
270 /* Check that this long pointer is valid and points within the fs. */
271 bool
xfs_btree_check_lptr(struct xfs_btree_cur * cur,xfs_fsblock_t fsbno,int level)272 xfs_btree_check_lptr(
273 	struct xfs_btree_cur	*cur,
274 	xfs_fsblock_t		fsbno,
275 	int			level)
276 {
277 	if (level <= 0)
278 		return false;
279 	return xfs_verify_fsbno(cur->bc_mp, fsbno);
280 }
281 
282 /* Check that this short pointer is valid and points within the AG. */
283 bool
xfs_btree_check_sptr(struct xfs_btree_cur * cur,xfs_agblock_t agbno,int level)284 xfs_btree_check_sptr(
285 	struct xfs_btree_cur	*cur,
286 	xfs_agblock_t		agbno,
287 	int			level)
288 {
289 	if (level <= 0)
290 		return false;
291 	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.pag->pag_agno, agbno);
292 }
293 
294 /*
295  * Check that a given (indexed) btree pointer at a certain level of a
296  * btree is valid and doesn't point past where it should.
297  */
298 static int
xfs_btree_check_ptr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int index,int level)299 xfs_btree_check_ptr(
300 	struct xfs_btree_cur		*cur,
301 	const union xfs_btree_ptr	*ptr,
302 	int				index,
303 	int				level)
304 {
305 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
306 		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
307 				level))
308 			return 0;
309 		xfs_err(cur->bc_mp,
310 "Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
311 				cur->bc_ino.ip->i_ino,
312 				cur->bc_ino.whichfork, cur->bc_btnum,
313 				level, index);
314 	} else {
315 		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
316 				level))
317 			return 0;
318 		xfs_err(cur->bc_mp,
319 "AG %u: Corrupt btree %d pointer at level %d index %d.",
320 				cur->bc_ag.pag->pag_agno, cur->bc_btnum,
321 				level, index);
322 	}
323 
324 	return -EFSCORRUPTED;
325 }
326 
327 #ifdef DEBUG
328 # define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
329 #else
330 # define xfs_btree_debug_check_ptr(...)	(0)
331 #endif
332 
333 /*
334  * Calculate CRC on the whole btree block and stuff it into the
335  * long-form btree header.
336  *
337  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
338  * it into the buffer so recovery knows what the last modification was that made
339  * it to disk.
340  */
341 void
xfs_btree_lblock_calc_crc(struct xfs_buf * bp)342 xfs_btree_lblock_calc_crc(
343 	struct xfs_buf		*bp)
344 {
345 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
346 	struct xfs_buf_log_item	*bip = bp->b_log_item;
347 
348 	if (!xfs_has_crc(bp->b_mount))
349 		return;
350 	if (bip)
351 		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
352 	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
353 }
354 
355 bool
xfs_btree_lblock_verify_crc(struct xfs_buf * bp)356 xfs_btree_lblock_verify_crc(
357 	struct xfs_buf		*bp)
358 {
359 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
360 	struct xfs_mount	*mp = bp->b_mount;
361 
362 	if (xfs_has_crc(mp)) {
363 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
364 			return false;
365 		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
366 	}
367 
368 	return true;
369 }
370 
371 /*
372  * Calculate CRC on the whole btree block and stuff it into the
373  * short-form btree header.
374  *
375  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
376  * it into the buffer so recovery knows what the last modification was that made
377  * it to disk.
378  */
379 void
xfs_btree_sblock_calc_crc(struct xfs_buf * bp)380 xfs_btree_sblock_calc_crc(
381 	struct xfs_buf		*bp)
382 {
383 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
384 	struct xfs_buf_log_item	*bip = bp->b_log_item;
385 
386 	if (!xfs_has_crc(bp->b_mount))
387 		return;
388 	if (bip)
389 		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
390 	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
391 }
392 
393 bool
xfs_btree_sblock_verify_crc(struct xfs_buf * bp)394 xfs_btree_sblock_verify_crc(
395 	struct xfs_buf		*bp)
396 {
397 	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
398 	struct xfs_mount	*mp = bp->b_mount;
399 
400 	if (xfs_has_crc(mp)) {
401 		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
402 			return false;
403 		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
404 	}
405 
406 	return true;
407 }
408 
409 static int
xfs_btree_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)410 xfs_btree_free_block(
411 	struct xfs_btree_cur	*cur,
412 	struct xfs_buf		*bp)
413 {
414 	int			error;
415 
416 	error = cur->bc_ops->free_block(cur, bp);
417 	if (!error) {
418 		xfs_trans_binval(cur->bc_tp, bp);
419 		XFS_BTREE_STATS_INC(cur, free);
420 	}
421 	return error;
422 }
423 
424 /*
425  * Delete the btree cursor.
426  */
427 void
xfs_btree_del_cursor(struct xfs_btree_cur * cur,int error)428 xfs_btree_del_cursor(
429 	struct xfs_btree_cur	*cur,		/* btree cursor */
430 	int			error)		/* del because of error */
431 {
432 	int			i;		/* btree level */
433 
434 	/*
435 	 * Clear the buffer pointers and release the buffers. If we're doing
436 	 * this because of an error, inspect all of the entries in the bc_bufs
437 	 * array for buffers to be unlocked. This is because some of the btree
438 	 * code works from level n down to 0, and if we get an error along the
439 	 * way we won't have initialized all the entries down to 0.
440 	 */
441 	for (i = 0; i < cur->bc_nlevels; i++) {
442 		if (cur->bc_bufs[i])
443 			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
444 		else if (!error)
445 			break;
446 	}
447 
448 	/*
449 	 * If we are doing a BMBT update, the number of unaccounted blocks
450 	 * allocated during this cursor life time should be zero. If it's not
451 	 * zero, then we should be shut down or on our way to shutdown due to
452 	 * cancelling a dirty transaction on error.
453 	 */
454 	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
455 	       xfs_is_shutdown(cur->bc_mp) || error != 0);
456 	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
457 		kmem_free(cur->bc_ops);
458 	if (!(cur->bc_flags & XFS_BTREE_LONG_PTRS) && cur->bc_ag.pag)
459 		xfs_perag_put(cur->bc_ag.pag);
460 	kmem_cache_free(xfs_btree_cur_zone, cur);
461 }
462 
463 /*
464  * Duplicate the btree cursor.
465  * Allocate a new one, copy the record, re-get the buffers.
466  */
467 int					/* error */
xfs_btree_dup_cursor(xfs_btree_cur_t * cur,xfs_btree_cur_t ** ncur)468 xfs_btree_dup_cursor(
469 	xfs_btree_cur_t	*cur,		/* input cursor */
470 	xfs_btree_cur_t	**ncur)		/* output cursor */
471 {
472 	struct xfs_buf	*bp;		/* btree block's buffer pointer */
473 	int		error;		/* error return value */
474 	int		i;		/* level number of btree block */
475 	xfs_mount_t	*mp;		/* mount structure for filesystem */
476 	xfs_btree_cur_t	*new;		/* new cursor value */
477 	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
478 
479 	tp = cur->bc_tp;
480 	mp = cur->bc_mp;
481 
482 	/*
483 	 * Allocate a new cursor like the old one.
484 	 */
485 	new = cur->bc_ops->dup_cursor(cur);
486 
487 	/*
488 	 * Copy the record currently in the cursor.
489 	 */
490 	new->bc_rec = cur->bc_rec;
491 
492 	/*
493 	 * For each level current, re-get the buffer and copy the ptr value.
494 	 */
495 	for (i = 0; i < new->bc_nlevels; i++) {
496 		new->bc_ptrs[i] = cur->bc_ptrs[i];
497 		new->bc_ra[i] = cur->bc_ra[i];
498 		bp = cur->bc_bufs[i];
499 		if (bp) {
500 			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
501 						   xfs_buf_daddr(bp), mp->m_bsize,
502 						   0, &bp,
503 						   cur->bc_ops->buf_ops);
504 			if (error) {
505 				xfs_btree_del_cursor(new, error);
506 				*ncur = NULL;
507 				return error;
508 			}
509 		}
510 		new->bc_bufs[i] = bp;
511 	}
512 	*ncur = new;
513 	return 0;
514 }
515 
516 /*
517  * XFS btree block layout and addressing:
518  *
519  * There are two types of blocks in the btree: leaf and non-leaf blocks.
520  *
521  * The leaf record start with a header then followed by records containing
522  * the values.  A non-leaf block also starts with the same header, and
523  * then first contains lookup keys followed by an equal number of pointers
524  * to the btree blocks at the previous level.
525  *
526  *		+--------+-------+-------+-------+-------+-------+-------+
527  * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
528  *		+--------+-------+-------+-------+-------+-------+-------+
529  *
530  *		+--------+-------+-------+-------+-------+-------+-------+
531  * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
532  *		+--------+-------+-------+-------+-------+-------+-------+
533  *
534  * The header is called struct xfs_btree_block for reasons better left unknown
535  * and comes in different versions for short (32bit) and long (64bit) block
536  * pointers.  The record and key structures are defined by the btree instances
537  * and opaque to the btree core.  The block pointers are simple disk endian
538  * integers, available in a short (32bit) and long (64bit) variant.
539  *
540  * The helpers below calculate the offset of a given record, key or pointer
541  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
542  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
543  * inside the btree block is done using indices starting at one, not zero!
544  *
545  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
546  * overlapping intervals.  In such a tree, records are still sorted lowest to
547  * highest and indexed by the smallest key value that refers to the record.
548  * However, nodes are different: each pointer has two associated keys -- one
549  * indexing the lowest key available in the block(s) below (the same behavior
550  * as the key in a regular btree) and another indexing the highest key
551  * available in the block(s) below.  Because records are /not/ sorted by the
552  * highest key, all leaf block updates require us to compute the highest key
553  * that matches any record in the leaf and to recursively update the high keys
554  * in the nodes going further up in the tree, if necessary.  Nodes look like
555  * this:
556  *
557  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
558  * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
559  *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
560  *
561  * To perform an interval query on an overlapped tree, perform the usual
562  * depth-first search and use the low and high keys to decide if we can skip
563  * that particular node.  If a leaf node is reached, return the records that
564  * intersect the interval.  Note that an interval query may return numerous
565  * entries.  For a non-overlapped tree, simply search for the record associated
566  * with the lowest key and iterate forward until a non-matching record is
567  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
568  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
569  * more detail.
570  *
571  * Why do we care about overlapping intervals?  Let's say you have a bunch of
572  * reverse mapping records on a reflink filesystem:
573  *
574  * 1: +- file A startblock B offset C length D -----------+
575  * 2:      +- file E startblock F offset G length H --------------+
576  * 3:      +- file I startblock F offset J length K --+
577  * 4:                                                        +- file L... --+
578  *
579  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
580  * we'd simply increment the length of record 1.  But how do we find the record
581  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
582  * record 3 because the keys are ordered first by startblock.  An interval
583  * query would return records 1 and 2 because they both overlap (B+D-1), and
584  * from that we can pick out record 1 as the appropriate left neighbor.
585  *
586  * In the non-overlapped case you can do a LE lookup and decrement the cursor
587  * because a record's interval must end before the next record.
588  */
589 
590 /*
591  * Return size of the btree block header for this btree instance.
592  */
xfs_btree_block_len(struct xfs_btree_cur * cur)593 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
594 {
595 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
596 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
597 			return XFS_BTREE_LBLOCK_CRC_LEN;
598 		return XFS_BTREE_LBLOCK_LEN;
599 	}
600 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
601 		return XFS_BTREE_SBLOCK_CRC_LEN;
602 	return XFS_BTREE_SBLOCK_LEN;
603 }
604 
605 /*
606  * Return size of btree block pointers for this btree instance.
607  */
xfs_btree_ptr_len(struct xfs_btree_cur * cur)608 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
609 {
610 	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
611 		sizeof(__be64) : sizeof(__be32);
612 }
613 
614 /*
615  * Calculate offset of the n-th record in a btree block.
616  */
617 STATIC size_t
xfs_btree_rec_offset(struct xfs_btree_cur * cur,int n)618 xfs_btree_rec_offset(
619 	struct xfs_btree_cur	*cur,
620 	int			n)
621 {
622 	return xfs_btree_block_len(cur) +
623 		(n - 1) * cur->bc_ops->rec_len;
624 }
625 
626 /*
627  * Calculate offset of the n-th key in a btree block.
628  */
629 STATIC size_t
xfs_btree_key_offset(struct xfs_btree_cur * cur,int n)630 xfs_btree_key_offset(
631 	struct xfs_btree_cur	*cur,
632 	int			n)
633 {
634 	return xfs_btree_block_len(cur) +
635 		(n - 1) * cur->bc_ops->key_len;
636 }
637 
638 /*
639  * Calculate offset of the n-th high key in a btree block.
640  */
641 STATIC size_t
xfs_btree_high_key_offset(struct xfs_btree_cur * cur,int n)642 xfs_btree_high_key_offset(
643 	struct xfs_btree_cur	*cur,
644 	int			n)
645 {
646 	return xfs_btree_block_len(cur) +
647 		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
648 }
649 
650 /*
651  * Calculate offset of the n-th block pointer in a btree block.
652  */
653 STATIC size_t
xfs_btree_ptr_offset(struct xfs_btree_cur * cur,int n,int level)654 xfs_btree_ptr_offset(
655 	struct xfs_btree_cur	*cur,
656 	int			n,
657 	int			level)
658 {
659 	return xfs_btree_block_len(cur) +
660 		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
661 		(n - 1) * xfs_btree_ptr_len(cur);
662 }
663 
664 /*
665  * Return a pointer to the n-th record in the btree block.
666  */
667 union xfs_btree_rec *
xfs_btree_rec_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)668 xfs_btree_rec_addr(
669 	struct xfs_btree_cur	*cur,
670 	int			n,
671 	struct xfs_btree_block	*block)
672 {
673 	return (union xfs_btree_rec *)
674 		((char *)block + xfs_btree_rec_offset(cur, n));
675 }
676 
677 /*
678  * Return a pointer to the n-th key in the btree block.
679  */
680 union xfs_btree_key *
xfs_btree_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)681 xfs_btree_key_addr(
682 	struct xfs_btree_cur	*cur,
683 	int			n,
684 	struct xfs_btree_block	*block)
685 {
686 	return (union xfs_btree_key *)
687 		((char *)block + xfs_btree_key_offset(cur, n));
688 }
689 
690 /*
691  * Return a pointer to the n-th high key in the btree block.
692  */
693 union xfs_btree_key *
xfs_btree_high_key_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)694 xfs_btree_high_key_addr(
695 	struct xfs_btree_cur	*cur,
696 	int			n,
697 	struct xfs_btree_block	*block)
698 {
699 	return (union xfs_btree_key *)
700 		((char *)block + xfs_btree_high_key_offset(cur, n));
701 }
702 
703 /*
704  * Return a pointer to the n-th block pointer in the btree block.
705  */
706 union xfs_btree_ptr *
xfs_btree_ptr_addr(struct xfs_btree_cur * cur,int n,struct xfs_btree_block * block)707 xfs_btree_ptr_addr(
708 	struct xfs_btree_cur	*cur,
709 	int			n,
710 	struct xfs_btree_block	*block)
711 {
712 	int			level = xfs_btree_get_level(block);
713 
714 	ASSERT(block->bb_level != 0);
715 
716 	return (union xfs_btree_ptr *)
717 		((char *)block + xfs_btree_ptr_offset(cur, n, level));
718 }
719 
720 struct xfs_ifork *
xfs_btree_ifork_ptr(struct xfs_btree_cur * cur)721 xfs_btree_ifork_ptr(
722 	struct xfs_btree_cur	*cur)
723 {
724 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
725 
726 	if (cur->bc_flags & XFS_BTREE_STAGING)
727 		return cur->bc_ino.ifake->if_fork;
728 	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
729 }
730 
731 /*
732  * Get the root block which is stored in the inode.
733  *
734  * For now this btree implementation assumes the btree root is always
735  * stored in the if_broot field of an inode fork.
736  */
737 STATIC struct xfs_btree_block *
xfs_btree_get_iroot(struct xfs_btree_cur * cur)738 xfs_btree_get_iroot(
739 	struct xfs_btree_cur	*cur)
740 {
741 	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
742 
743 	return (struct xfs_btree_block *)ifp->if_broot;
744 }
745 
746 /*
747  * Retrieve the block pointer from the cursor at the given level.
748  * This may be an inode btree root or from a buffer.
749  */
750 struct xfs_btree_block *		/* generic btree block pointer */
xfs_btree_get_block(struct xfs_btree_cur * cur,int level,struct xfs_buf ** bpp)751 xfs_btree_get_block(
752 	struct xfs_btree_cur	*cur,	/* btree cursor */
753 	int			level,	/* level in btree */
754 	struct xfs_buf		**bpp)	/* buffer containing the block */
755 {
756 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
757 	    (level == cur->bc_nlevels - 1)) {
758 		*bpp = NULL;
759 		return xfs_btree_get_iroot(cur);
760 	}
761 
762 	*bpp = cur->bc_bufs[level];
763 	return XFS_BUF_TO_BLOCK(*bpp);
764 }
765 
766 /*
767  * Change the cursor to point to the first record at the given level.
768  * Other levels are unaffected.
769  */
770 STATIC int				/* success=1, failure=0 */
xfs_btree_firstrec(xfs_btree_cur_t * cur,int level)771 xfs_btree_firstrec(
772 	xfs_btree_cur_t		*cur,	/* btree cursor */
773 	int			level)	/* level to change */
774 {
775 	struct xfs_btree_block	*block;	/* generic btree block pointer */
776 	struct xfs_buf		*bp;	/* buffer containing block */
777 
778 	/*
779 	 * Get the block pointer for this level.
780 	 */
781 	block = xfs_btree_get_block(cur, level, &bp);
782 	if (xfs_btree_check_block(cur, block, level, bp))
783 		return 0;
784 	/*
785 	 * It's empty, there is no such record.
786 	 */
787 	if (!block->bb_numrecs)
788 		return 0;
789 	/*
790 	 * Set the ptr value to 1, that's the first record/key.
791 	 */
792 	cur->bc_ptrs[level] = 1;
793 	return 1;
794 }
795 
796 /*
797  * Change the cursor to point to the last record in the current block
798  * at the given level.  Other levels are unaffected.
799  */
800 STATIC int				/* success=1, failure=0 */
xfs_btree_lastrec(xfs_btree_cur_t * cur,int level)801 xfs_btree_lastrec(
802 	xfs_btree_cur_t		*cur,	/* btree cursor */
803 	int			level)	/* level to change */
804 {
805 	struct xfs_btree_block	*block;	/* generic btree block pointer */
806 	struct xfs_buf		*bp;	/* buffer containing block */
807 
808 	/*
809 	 * Get the block pointer for this level.
810 	 */
811 	block = xfs_btree_get_block(cur, level, &bp);
812 	if (xfs_btree_check_block(cur, block, level, bp))
813 		return 0;
814 	/*
815 	 * It's empty, there is no such record.
816 	 */
817 	if (!block->bb_numrecs)
818 		return 0;
819 	/*
820 	 * Set the ptr value to numrecs, that's the last record/key.
821 	 */
822 	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
823 	return 1;
824 }
825 
826 /*
827  * Compute first and last byte offsets for the fields given.
828  * Interprets the offsets table, which contains struct field offsets.
829  */
830 void
xfs_btree_offsets(int64_t fields,const short * offsets,int nbits,int * first,int * last)831 xfs_btree_offsets(
832 	int64_t		fields,		/* bitmask of fields */
833 	const short	*offsets,	/* table of field offsets */
834 	int		nbits,		/* number of bits to inspect */
835 	int		*first,		/* output: first byte offset */
836 	int		*last)		/* output: last byte offset */
837 {
838 	int		i;		/* current bit number */
839 	int64_t		imask;		/* mask for current bit number */
840 
841 	ASSERT(fields != 0);
842 	/*
843 	 * Find the lowest bit, so the first byte offset.
844 	 */
845 	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
846 		if (imask & fields) {
847 			*first = offsets[i];
848 			break;
849 		}
850 	}
851 	/*
852 	 * Find the highest bit, so the last byte offset.
853 	 */
854 	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
855 		if (imask & fields) {
856 			*last = offsets[i + 1] - 1;
857 			break;
858 		}
859 	}
860 }
861 
862 /*
863  * Get a buffer for the block, return it read in.
864  * Long-form addressing.
865  */
866 int
xfs_btree_read_bufl(struct xfs_mount * mp,struct xfs_trans * tp,xfs_fsblock_t fsbno,struct xfs_buf ** bpp,int refval,const struct xfs_buf_ops * ops)867 xfs_btree_read_bufl(
868 	struct xfs_mount	*mp,		/* file system mount point */
869 	struct xfs_trans	*tp,		/* transaction pointer */
870 	xfs_fsblock_t		fsbno,		/* file system block number */
871 	struct xfs_buf		**bpp,		/* buffer for fsbno */
872 	int			refval,		/* ref count value for buffer */
873 	const struct xfs_buf_ops *ops)
874 {
875 	struct xfs_buf		*bp;		/* return value */
876 	xfs_daddr_t		d;		/* real disk block address */
877 	int			error;
878 
879 	if (!xfs_verify_fsbno(mp, fsbno))
880 		return -EFSCORRUPTED;
881 	d = XFS_FSB_TO_DADDR(mp, fsbno);
882 	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
883 				   mp->m_bsize, 0, &bp, ops);
884 	if (error)
885 		return error;
886 	if (bp)
887 		xfs_buf_set_ref(bp, refval);
888 	*bpp = bp;
889 	return 0;
890 }
891 
892 /*
893  * Read-ahead the block, don't wait for it, don't return a buffer.
894  * Long-form addressing.
895  */
896 /* ARGSUSED */
897 void
xfs_btree_reada_bufl(struct xfs_mount * mp,xfs_fsblock_t fsbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)898 xfs_btree_reada_bufl(
899 	struct xfs_mount	*mp,		/* file system mount point */
900 	xfs_fsblock_t		fsbno,		/* file system block number */
901 	xfs_extlen_t		count,		/* count of filesystem blocks */
902 	const struct xfs_buf_ops *ops)
903 {
904 	xfs_daddr_t		d;
905 
906 	ASSERT(fsbno != NULLFSBLOCK);
907 	d = XFS_FSB_TO_DADDR(mp, fsbno);
908 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
909 }
910 
911 /*
912  * Read-ahead the block, don't wait for it, don't return a buffer.
913  * Short-form addressing.
914  */
915 /* ARGSUSED */
916 void
xfs_btree_reada_bufs(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agblock_t agbno,xfs_extlen_t count,const struct xfs_buf_ops * ops)917 xfs_btree_reada_bufs(
918 	struct xfs_mount	*mp,		/* file system mount point */
919 	xfs_agnumber_t		agno,		/* allocation group number */
920 	xfs_agblock_t		agbno,		/* allocation group block number */
921 	xfs_extlen_t		count,		/* count of filesystem blocks */
922 	const struct xfs_buf_ops *ops)
923 {
924 	xfs_daddr_t		d;
925 
926 	ASSERT(agno != NULLAGNUMBER);
927 	ASSERT(agbno != NULLAGBLOCK);
928 	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
929 	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
930 }
931 
932 STATIC int
xfs_btree_readahead_lblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)933 xfs_btree_readahead_lblock(
934 	struct xfs_btree_cur	*cur,
935 	int			lr,
936 	struct xfs_btree_block	*block)
937 {
938 	int			rval = 0;
939 	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
940 	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
941 
942 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
943 		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
944 				     cur->bc_ops->buf_ops);
945 		rval++;
946 	}
947 
948 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
949 		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
950 				     cur->bc_ops->buf_ops);
951 		rval++;
952 	}
953 
954 	return rval;
955 }
956 
957 STATIC int
xfs_btree_readahead_sblock(struct xfs_btree_cur * cur,int lr,struct xfs_btree_block * block)958 xfs_btree_readahead_sblock(
959 	struct xfs_btree_cur	*cur,
960 	int			lr,
961 	struct xfs_btree_block *block)
962 {
963 	int			rval = 0;
964 	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
965 	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
966 
967 
968 	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
969 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
970 				     left, 1, cur->bc_ops->buf_ops);
971 		rval++;
972 	}
973 
974 	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
975 		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.pag->pag_agno,
976 				     right, 1, cur->bc_ops->buf_ops);
977 		rval++;
978 	}
979 
980 	return rval;
981 }
982 
983 /*
984  * Read-ahead btree blocks, at the given level.
985  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
986  */
987 STATIC int
xfs_btree_readahead(struct xfs_btree_cur * cur,int lev,int lr)988 xfs_btree_readahead(
989 	struct xfs_btree_cur	*cur,		/* btree cursor */
990 	int			lev,		/* level in btree */
991 	int			lr)		/* left/right bits */
992 {
993 	struct xfs_btree_block	*block;
994 
995 	/*
996 	 * No readahead needed if we are at the root level and the
997 	 * btree root is stored in the inode.
998 	 */
999 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1000 	    (lev == cur->bc_nlevels - 1))
1001 		return 0;
1002 
1003 	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
1004 		return 0;
1005 
1006 	cur->bc_ra[lev] |= lr;
1007 	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
1008 
1009 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1010 		return xfs_btree_readahead_lblock(cur, lr, block);
1011 	return xfs_btree_readahead_sblock(cur, lr, block);
1012 }
1013 
1014 STATIC int
xfs_btree_ptr_to_daddr(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,xfs_daddr_t * daddr)1015 xfs_btree_ptr_to_daddr(
1016 	struct xfs_btree_cur		*cur,
1017 	const union xfs_btree_ptr	*ptr,
1018 	xfs_daddr_t			*daddr)
1019 {
1020 	xfs_fsblock_t		fsbno;
1021 	xfs_agblock_t		agbno;
1022 	int			error;
1023 
1024 	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
1025 	if (error)
1026 		return error;
1027 
1028 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1029 		fsbno = be64_to_cpu(ptr->l);
1030 		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
1031 	} else {
1032 		agbno = be32_to_cpu(ptr->s);
1033 		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.pag->pag_agno,
1034 				agbno);
1035 	}
1036 
1037 	return 0;
1038 }
1039 
1040 /*
1041  * Readahead @count btree blocks at the given @ptr location.
1042  *
1043  * We don't need to care about long or short form btrees here as we have a
1044  * method of converting the ptr directly to a daddr available to us.
1045  */
1046 STATIC void
xfs_btree_readahead_ptr(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,xfs_extlen_t count)1047 xfs_btree_readahead_ptr(
1048 	struct xfs_btree_cur	*cur,
1049 	union xfs_btree_ptr	*ptr,
1050 	xfs_extlen_t		count)
1051 {
1052 	xfs_daddr_t		daddr;
1053 
1054 	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
1055 		return;
1056 	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
1057 			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
1058 }
1059 
1060 /*
1061  * Set the buffer for level "lev" in the cursor to bp, releasing
1062  * any previous buffer.
1063  */
1064 STATIC void
xfs_btree_setbuf(xfs_btree_cur_t * cur,int lev,struct xfs_buf * bp)1065 xfs_btree_setbuf(
1066 	xfs_btree_cur_t		*cur,	/* btree cursor */
1067 	int			lev,	/* level in btree */
1068 	struct xfs_buf		*bp)	/* new buffer to set */
1069 {
1070 	struct xfs_btree_block	*b;	/* btree block */
1071 
1072 	if (cur->bc_bufs[lev])
1073 		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
1074 	cur->bc_bufs[lev] = bp;
1075 	cur->bc_ra[lev] = 0;
1076 
1077 	b = XFS_BUF_TO_BLOCK(bp);
1078 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1079 		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1080 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1081 		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1082 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1083 	} else {
1084 		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1085 			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1086 		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1087 			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1088 	}
1089 }
1090 
1091 bool
xfs_btree_ptr_is_null(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr)1092 xfs_btree_ptr_is_null(
1093 	struct xfs_btree_cur		*cur,
1094 	const union xfs_btree_ptr	*ptr)
1095 {
1096 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1097 		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1098 	else
1099 		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1100 }
1101 
1102 void
xfs_btree_set_ptr_null(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)1103 xfs_btree_set_ptr_null(
1104 	struct xfs_btree_cur	*cur,
1105 	union xfs_btree_ptr	*ptr)
1106 {
1107 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1108 		ptr->l = cpu_to_be64(NULLFSBLOCK);
1109 	else
1110 		ptr->s = cpu_to_be32(NULLAGBLOCK);
1111 }
1112 
1113 /*
1114  * Get/set/init sibling pointers
1115  */
1116 void
xfs_btree_get_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_ptr * ptr,int lr)1117 xfs_btree_get_sibling(
1118 	struct xfs_btree_cur	*cur,
1119 	struct xfs_btree_block	*block,
1120 	union xfs_btree_ptr	*ptr,
1121 	int			lr)
1122 {
1123 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1124 
1125 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1126 		if (lr == XFS_BB_RIGHTSIB)
1127 			ptr->l = block->bb_u.l.bb_rightsib;
1128 		else
1129 			ptr->l = block->bb_u.l.bb_leftsib;
1130 	} else {
1131 		if (lr == XFS_BB_RIGHTSIB)
1132 			ptr->s = block->bb_u.s.bb_rightsib;
1133 		else
1134 			ptr->s = block->bb_u.s.bb_leftsib;
1135 	}
1136 }
1137 
1138 void
xfs_btree_set_sibling(struct xfs_btree_cur * cur,struct xfs_btree_block * block,const union xfs_btree_ptr * ptr,int lr)1139 xfs_btree_set_sibling(
1140 	struct xfs_btree_cur		*cur,
1141 	struct xfs_btree_block		*block,
1142 	const union xfs_btree_ptr	*ptr,
1143 	int				lr)
1144 {
1145 	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1146 
1147 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1148 		if (lr == XFS_BB_RIGHTSIB)
1149 			block->bb_u.l.bb_rightsib = ptr->l;
1150 		else
1151 			block->bb_u.l.bb_leftsib = ptr->l;
1152 	} else {
1153 		if (lr == XFS_BB_RIGHTSIB)
1154 			block->bb_u.s.bb_rightsib = ptr->s;
1155 		else
1156 			block->bb_u.s.bb_leftsib = ptr->s;
1157 	}
1158 }
1159 
1160 void
xfs_btree_init_block_int(struct xfs_mount * mp,struct xfs_btree_block * buf,xfs_daddr_t blkno,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner,unsigned int flags)1161 xfs_btree_init_block_int(
1162 	struct xfs_mount	*mp,
1163 	struct xfs_btree_block	*buf,
1164 	xfs_daddr_t		blkno,
1165 	xfs_btnum_t		btnum,
1166 	__u16			level,
1167 	__u16			numrecs,
1168 	__u64			owner,
1169 	unsigned int		flags)
1170 {
1171 	int			crc = xfs_has_crc(mp);
1172 	__u32			magic = xfs_btree_magic(crc, btnum);
1173 
1174 	buf->bb_magic = cpu_to_be32(magic);
1175 	buf->bb_level = cpu_to_be16(level);
1176 	buf->bb_numrecs = cpu_to_be16(numrecs);
1177 
1178 	if (flags & XFS_BTREE_LONG_PTRS) {
1179 		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1180 		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1181 		if (crc) {
1182 			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1183 			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1184 			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1185 			buf->bb_u.l.bb_pad = 0;
1186 			buf->bb_u.l.bb_lsn = 0;
1187 		}
1188 	} else {
1189 		/* owner is a 32 bit value on short blocks */
1190 		__u32 __owner = (__u32)owner;
1191 
1192 		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1193 		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1194 		if (crc) {
1195 			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1196 			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1197 			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1198 			buf->bb_u.s.bb_lsn = 0;
1199 		}
1200 	}
1201 }
1202 
1203 void
xfs_btree_init_block(struct xfs_mount * mp,struct xfs_buf * bp,xfs_btnum_t btnum,__u16 level,__u16 numrecs,__u64 owner)1204 xfs_btree_init_block(
1205 	struct xfs_mount *mp,
1206 	struct xfs_buf	*bp,
1207 	xfs_btnum_t	btnum,
1208 	__u16		level,
1209 	__u16		numrecs,
1210 	__u64		owner)
1211 {
1212 	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), xfs_buf_daddr(bp),
1213 				 btnum, level, numrecs, owner, 0);
1214 }
1215 
1216 void
xfs_btree_init_block_cur(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,int numrecs)1217 xfs_btree_init_block_cur(
1218 	struct xfs_btree_cur	*cur,
1219 	struct xfs_buf		*bp,
1220 	int			level,
1221 	int			numrecs)
1222 {
1223 	__u64			owner;
1224 
1225 	/*
1226 	 * we can pull the owner from the cursor right now as the different
1227 	 * owners align directly with the pointer size of the btree. This may
1228 	 * change in future, but is safe for current users of the generic btree
1229 	 * code.
1230 	 */
1231 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1232 		owner = cur->bc_ino.ip->i_ino;
1233 	else
1234 		owner = cur->bc_ag.pag->pag_agno;
1235 
1236 	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp),
1237 				xfs_buf_daddr(bp), cur->bc_btnum, level,
1238 				numrecs, owner, cur->bc_flags);
1239 }
1240 
1241 /*
1242  * Return true if ptr is the last record in the btree and
1243  * we need to track updates to this record.  The decision
1244  * will be further refined in the update_lastrec method.
1245  */
1246 STATIC int
xfs_btree_is_lastrec(struct xfs_btree_cur * cur,struct xfs_btree_block * block,int level)1247 xfs_btree_is_lastrec(
1248 	struct xfs_btree_cur	*cur,
1249 	struct xfs_btree_block	*block,
1250 	int			level)
1251 {
1252 	union xfs_btree_ptr	ptr;
1253 
1254 	if (level > 0)
1255 		return 0;
1256 	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1257 		return 0;
1258 
1259 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1260 	if (!xfs_btree_ptr_is_null(cur, &ptr))
1261 		return 0;
1262 	return 1;
1263 }
1264 
1265 STATIC void
xfs_btree_buf_to_ptr(struct xfs_btree_cur * cur,struct xfs_buf * bp,union xfs_btree_ptr * ptr)1266 xfs_btree_buf_to_ptr(
1267 	struct xfs_btree_cur	*cur,
1268 	struct xfs_buf		*bp,
1269 	union xfs_btree_ptr	*ptr)
1270 {
1271 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1272 		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1273 					xfs_buf_daddr(bp)));
1274 	else {
1275 		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1276 					xfs_buf_daddr(bp)));
1277 	}
1278 }
1279 
1280 STATIC void
xfs_btree_set_refs(struct xfs_btree_cur * cur,struct xfs_buf * bp)1281 xfs_btree_set_refs(
1282 	struct xfs_btree_cur	*cur,
1283 	struct xfs_buf		*bp)
1284 {
1285 	switch (cur->bc_btnum) {
1286 	case XFS_BTNUM_BNO:
1287 	case XFS_BTNUM_CNT:
1288 		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1289 		break;
1290 	case XFS_BTNUM_INO:
1291 	case XFS_BTNUM_FINO:
1292 		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1293 		break;
1294 	case XFS_BTNUM_BMAP:
1295 		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1296 		break;
1297 	case XFS_BTNUM_RMAP:
1298 		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1299 		break;
1300 	case XFS_BTNUM_REFC:
1301 		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1302 		break;
1303 	default:
1304 		ASSERT(0);
1305 	}
1306 }
1307 
1308 int
xfs_btree_get_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1309 xfs_btree_get_buf_block(
1310 	struct xfs_btree_cur		*cur,
1311 	const union xfs_btree_ptr	*ptr,
1312 	struct xfs_btree_block		**block,
1313 	struct xfs_buf			**bpp)
1314 {
1315 	struct xfs_mount	*mp = cur->bc_mp;
1316 	xfs_daddr_t		d;
1317 	int			error;
1318 
1319 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1320 	if (error)
1321 		return error;
1322 	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1323 			0, bpp);
1324 	if (error)
1325 		return error;
1326 
1327 	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1328 	*block = XFS_BUF_TO_BLOCK(*bpp);
1329 	return 0;
1330 }
1331 
1332 /*
1333  * Read in the buffer at the given ptr and return the buffer and
1334  * the block pointer within the buffer.
1335  */
1336 STATIC int
xfs_btree_read_buf_block(struct xfs_btree_cur * cur,const union xfs_btree_ptr * ptr,int flags,struct xfs_btree_block ** block,struct xfs_buf ** bpp)1337 xfs_btree_read_buf_block(
1338 	struct xfs_btree_cur		*cur,
1339 	const union xfs_btree_ptr	*ptr,
1340 	int				flags,
1341 	struct xfs_btree_block		**block,
1342 	struct xfs_buf			**bpp)
1343 {
1344 	struct xfs_mount	*mp = cur->bc_mp;
1345 	xfs_daddr_t		d;
1346 	int			error;
1347 
1348 	/* need to sort out how callers deal with failures first */
1349 	ASSERT(!(flags & XBF_TRYLOCK));
1350 
1351 	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1352 	if (error)
1353 		return error;
1354 	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1355 				   mp->m_bsize, flags, bpp,
1356 				   cur->bc_ops->buf_ops);
1357 	if (error)
1358 		return error;
1359 
1360 	xfs_btree_set_refs(cur, *bpp);
1361 	*block = XFS_BUF_TO_BLOCK(*bpp);
1362 	return 0;
1363 }
1364 
1365 /*
1366  * Copy keys from one btree block to another.
1367  */
1368 void
xfs_btree_copy_keys(struct xfs_btree_cur * cur,union xfs_btree_key * dst_key,const union xfs_btree_key * src_key,int numkeys)1369 xfs_btree_copy_keys(
1370 	struct xfs_btree_cur		*cur,
1371 	union xfs_btree_key		*dst_key,
1372 	const union xfs_btree_key	*src_key,
1373 	int				numkeys)
1374 {
1375 	ASSERT(numkeys >= 0);
1376 	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1377 }
1378 
1379 /*
1380  * Copy records from one btree block to another.
1381  */
1382 STATIC void
xfs_btree_copy_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * dst_rec,union xfs_btree_rec * src_rec,int numrecs)1383 xfs_btree_copy_recs(
1384 	struct xfs_btree_cur	*cur,
1385 	union xfs_btree_rec	*dst_rec,
1386 	union xfs_btree_rec	*src_rec,
1387 	int			numrecs)
1388 {
1389 	ASSERT(numrecs >= 0);
1390 	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1391 }
1392 
1393 /*
1394  * Copy block pointers from one btree block to another.
1395  */
1396 void
xfs_btree_copy_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * dst_ptr,const union xfs_btree_ptr * src_ptr,int numptrs)1397 xfs_btree_copy_ptrs(
1398 	struct xfs_btree_cur	*cur,
1399 	union xfs_btree_ptr	*dst_ptr,
1400 	const union xfs_btree_ptr *src_ptr,
1401 	int			numptrs)
1402 {
1403 	ASSERT(numptrs >= 0);
1404 	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1405 }
1406 
1407 /*
1408  * Shift keys one index left/right inside a single btree block.
1409  */
1410 STATIC void
xfs_btree_shift_keys(struct xfs_btree_cur * cur,union xfs_btree_key * key,int dir,int numkeys)1411 xfs_btree_shift_keys(
1412 	struct xfs_btree_cur	*cur,
1413 	union xfs_btree_key	*key,
1414 	int			dir,
1415 	int			numkeys)
1416 {
1417 	char			*dst_key;
1418 
1419 	ASSERT(numkeys >= 0);
1420 	ASSERT(dir == 1 || dir == -1);
1421 
1422 	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1423 	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1424 }
1425 
1426 /*
1427  * Shift records one index left/right inside a single btree block.
1428  */
1429 STATIC void
xfs_btree_shift_recs(struct xfs_btree_cur * cur,union xfs_btree_rec * rec,int dir,int numrecs)1430 xfs_btree_shift_recs(
1431 	struct xfs_btree_cur	*cur,
1432 	union xfs_btree_rec	*rec,
1433 	int			dir,
1434 	int			numrecs)
1435 {
1436 	char			*dst_rec;
1437 
1438 	ASSERT(numrecs >= 0);
1439 	ASSERT(dir == 1 || dir == -1);
1440 
1441 	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1442 	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1443 }
1444 
1445 /*
1446  * Shift block pointers one index left/right inside a single btree block.
1447  */
1448 STATIC void
xfs_btree_shift_ptrs(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int dir,int numptrs)1449 xfs_btree_shift_ptrs(
1450 	struct xfs_btree_cur	*cur,
1451 	union xfs_btree_ptr	*ptr,
1452 	int			dir,
1453 	int			numptrs)
1454 {
1455 	char			*dst_ptr;
1456 
1457 	ASSERT(numptrs >= 0);
1458 	ASSERT(dir == 1 || dir == -1);
1459 
1460 	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1461 	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1462 }
1463 
1464 /*
1465  * Log key values from the btree block.
1466  */
1467 STATIC void
xfs_btree_log_keys(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1468 xfs_btree_log_keys(
1469 	struct xfs_btree_cur	*cur,
1470 	struct xfs_buf		*bp,
1471 	int			first,
1472 	int			last)
1473 {
1474 
1475 	if (bp) {
1476 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1477 		xfs_trans_log_buf(cur->bc_tp, bp,
1478 				  xfs_btree_key_offset(cur, first),
1479 				  xfs_btree_key_offset(cur, last + 1) - 1);
1480 	} else {
1481 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1482 				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1483 	}
1484 }
1485 
1486 /*
1487  * Log record values from the btree block.
1488  */
1489 void
xfs_btree_log_recs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1490 xfs_btree_log_recs(
1491 	struct xfs_btree_cur	*cur,
1492 	struct xfs_buf		*bp,
1493 	int			first,
1494 	int			last)
1495 {
1496 
1497 	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1498 	xfs_trans_log_buf(cur->bc_tp, bp,
1499 			  xfs_btree_rec_offset(cur, first),
1500 			  xfs_btree_rec_offset(cur, last + 1) - 1);
1501 
1502 }
1503 
1504 /*
1505  * Log block pointer fields from a btree block (nonleaf).
1506  */
1507 STATIC void
xfs_btree_log_ptrs(struct xfs_btree_cur * cur,struct xfs_buf * bp,int first,int last)1508 xfs_btree_log_ptrs(
1509 	struct xfs_btree_cur	*cur,	/* btree cursor */
1510 	struct xfs_buf		*bp,	/* buffer containing btree block */
1511 	int			first,	/* index of first pointer to log */
1512 	int			last)	/* index of last pointer to log */
1513 {
1514 
1515 	if (bp) {
1516 		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1517 		int			level = xfs_btree_get_level(block);
1518 
1519 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1520 		xfs_trans_log_buf(cur->bc_tp, bp,
1521 				xfs_btree_ptr_offset(cur, first, level),
1522 				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1523 	} else {
1524 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1525 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1526 	}
1527 
1528 }
1529 
1530 /*
1531  * Log fields from a btree block header.
1532  */
1533 void
xfs_btree_log_block(struct xfs_btree_cur * cur,struct xfs_buf * bp,int fields)1534 xfs_btree_log_block(
1535 	struct xfs_btree_cur	*cur,	/* btree cursor */
1536 	struct xfs_buf		*bp,	/* buffer containing btree block */
1537 	int			fields)	/* mask of fields: XFS_BB_... */
1538 {
1539 	int			first;	/* first byte offset logged */
1540 	int			last;	/* last byte offset logged */
1541 	static const short	soffsets[] = {	/* table of offsets (short) */
1542 		offsetof(struct xfs_btree_block, bb_magic),
1543 		offsetof(struct xfs_btree_block, bb_level),
1544 		offsetof(struct xfs_btree_block, bb_numrecs),
1545 		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1546 		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1547 		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1548 		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1549 		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1550 		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1551 		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1552 		XFS_BTREE_SBLOCK_CRC_LEN
1553 	};
1554 	static const short	loffsets[] = {	/* table of offsets (long) */
1555 		offsetof(struct xfs_btree_block, bb_magic),
1556 		offsetof(struct xfs_btree_block, bb_level),
1557 		offsetof(struct xfs_btree_block, bb_numrecs),
1558 		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1559 		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1560 		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1561 		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1562 		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1563 		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1564 		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1565 		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1566 		XFS_BTREE_LBLOCK_CRC_LEN
1567 	};
1568 
1569 	if (bp) {
1570 		int nbits;
1571 
1572 		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1573 			/*
1574 			 * We don't log the CRC when updating a btree
1575 			 * block but instead recreate it during log
1576 			 * recovery.  As the log buffers have checksums
1577 			 * of their own this is safe and avoids logging a crc
1578 			 * update in a lot of places.
1579 			 */
1580 			if (fields == XFS_BB_ALL_BITS)
1581 				fields = XFS_BB_ALL_BITS_CRC;
1582 			nbits = XFS_BB_NUM_BITS_CRC;
1583 		} else {
1584 			nbits = XFS_BB_NUM_BITS;
1585 		}
1586 		xfs_btree_offsets(fields,
1587 				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1588 					loffsets : soffsets,
1589 				  nbits, &first, &last);
1590 		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1591 		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1592 	} else {
1593 		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1594 			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1595 	}
1596 }
1597 
1598 /*
1599  * Increment cursor by one record at the level.
1600  * For nonzero levels the leaf-ward information is untouched.
1601  */
1602 int						/* error */
xfs_btree_increment(struct xfs_btree_cur * cur,int level,int * stat)1603 xfs_btree_increment(
1604 	struct xfs_btree_cur	*cur,
1605 	int			level,
1606 	int			*stat)		/* success/failure */
1607 {
1608 	struct xfs_btree_block	*block;
1609 	union xfs_btree_ptr	ptr;
1610 	struct xfs_buf		*bp;
1611 	int			error;		/* error return value */
1612 	int			lev;
1613 
1614 	ASSERT(level < cur->bc_nlevels);
1615 
1616 	/* Read-ahead to the right at this level. */
1617 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1618 
1619 	/* Get a pointer to the btree block. */
1620 	block = xfs_btree_get_block(cur, level, &bp);
1621 
1622 #ifdef DEBUG
1623 	error = xfs_btree_check_block(cur, block, level, bp);
1624 	if (error)
1625 		goto error0;
1626 #endif
1627 
1628 	/* We're done if we remain in the block after the increment. */
1629 	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1630 		goto out1;
1631 
1632 	/* Fail if we just went off the right edge of the tree. */
1633 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1634 	if (xfs_btree_ptr_is_null(cur, &ptr))
1635 		goto out0;
1636 
1637 	XFS_BTREE_STATS_INC(cur, increment);
1638 
1639 	/*
1640 	 * March up the tree incrementing pointers.
1641 	 * Stop when we don't go off the right edge of a block.
1642 	 */
1643 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1644 		block = xfs_btree_get_block(cur, lev, &bp);
1645 
1646 #ifdef DEBUG
1647 		error = xfs_btree_check_block(cur, block, lev, bp);
1648 		if (error)
1649 			goto error0;
1650 #endif
1651 
1652 		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1653 			break;
1654 
1655 		/* Read-ahead the right block for the next loop. */
1656 		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1657 	}
1658 
1659 	/*
1660 	 * If we went off the root then we are either seriously
1661 	 * confused or have the tree root in an inode.
1662 	 */
1663 	if (lev == cur->bc_nlevels) {
1664 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1665 			goto out0;
1666 		ASSERT(0);
1667 		error = -EFSCORRUPTED;
1668 		goto error0;
1669 	}
1670 	ASSERT(lev < cur->bc_nlevels);
1671 
1672 	/*
1673 	 * Now walk back down the tree, fixing up the cursor's buffer
1674 	 * pointers and key numbers.
1675 	 */
1676 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1677 		union xfs_btree_ptr	*ptrp;
1678 
1679 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1680 		--lev;
1681 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1682 		if (error)
1683 			goto error0;
1684 
1685 		xfs_btree_setbuf(cur, lev, bp);
1686 		cur->bc_ptrs[lev] = 1;
1687 	}
1688 out1:
1689 	*stat = 1;
1690 	return 0;
1691 
1692 out0:
1693 	*stat = 0;
1694 	return 0;
1695 
1696 error0:
1697 	return error;
1698 }
1699 
1700 /*
1701  * Decrement cursor by one record at the level.
1702  * For nonzero levels the leaf-ward information is untouched.
1703  */
1704 int						/* error */
xfs_btree_decrement(struct xfs_btree_cur * cur,int level,int * stat)1705 xfs_btree_decrement(
1706 	struct xfs_btree_cur	*cur,
1707 	int			level,
1708 	int			*stat)		/* success/failure */
1709 {
1710 	struct xfs_btree_block	*block;
1711 	struct xfs_buf		*bp;
1712 	int			error;		/* error return value */
1713 	int			lev;
1714 	union xfs_btree_ptr	ptr;
1715 
1716 	ASSERT(level < cur->bc_nlevels);
1717 
1718 	/* Read-ahead to the left at this level. */
1719 	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1720 
1721 	/* We're done if we remain in the block after the decrement. */
1722 	if (--cur->bc_ptrs[level] > 0)
1723 		goto out1;
1724 
1725 	/* Get a pointer to the btree block. */
1726 	block = xfs_btree_get_block(cur, level, &bp);
1727 
1728 #ifdef DEBUG
1729 	error = xfs_btree_check_block(cur, block, level, bp);
1730 	if (error)
1731 		goto error0;
1732 #endif
1733 
1734 	/* Fail if we just went off the left edge of the tree. */
1735 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1736 	if (xfs_btree_ptr_is_null(cur, &ptr))
1737 		goto out0;
1738 
1739 	XFS_BTREE_STATS_INC(cur, decrement);
1740 
1741 	/*
1742 	 * March up the tree decrementing pointers.
1743 	 * Stop when we don't go off the left edge of a block.
1744 	 */
1745 	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1746 		if (--cur->bc_ptrs[lev] > 0)
1747 			break;
1748 		/* Read-ahead the left block for the next loop. */
1749 		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1750 	}
1751 
1752 	/*
1753 	 * If we went off the root then we are seriously confused.
1754 	 * or the root of the tree is in an inode.
1755 	 */
1756 	if (lev == cur->bc_nlevels) {
1757 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1758 			goto out0;
1759 		ASSERT(0);
1760 		error = -EFSCORRUPTED;
1761 		goto error0;
1762 	}
1763 	ASSERT(lev < cur->bc_nlevels);
1764 
1765 	/*
1766 	 * Now walk back down the tree, fixing up the cursor's buffer
1767 	 * pointers and key numbers.
1768 	 */
1769 	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1770 		union xfs_btree_ptr	*ptrp;
1771 
1772 		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1773 		--lev;
1774 		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1775 		if (error)
1776 			goto error0;
1777 		xfs_btree_setbuf(cur, lev, bp);
1778 		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1779 	}
1780 out1:
1781 	*stat = 1;
1782 	return 0;
1783 
1784 out0:
1785 	*stat = 0;
1786 	return 0;
1787 
1788 error0:
1789 	return error;
1790 }
1791 
1792 int
xfs_btree_lookup_get_block(struct xfs_btree_cur * cur,int level,const union xfs_btree_ptr * pp,struct xfs_btree_block ** blkp)1793 xfs_btree_lookup_get_block(
1794 	struct xfs_btree_cur		*cur,	/* btree cursor */
1795 	int				level,	/* level in the btree */
1796 	const union xfs_btree_ptr	*pp,	/* ptr to btree block */
1797 	struct xfs_btree_block		**blkp) /* return btree block */
1798 {
1799 	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1800 	xfs_daddr_t		daddr;
1801 	int			error = 0;
1802 
1803 	/* special case the root block if in an inode */
1804 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1805 	    (level == cur->bc_nlevels - 1)) {
1806 		*blkp = xfs_btree_get_iroot(cur);
1807 		return 0;
1808 	}
1809 
1810 	/*
1811 	 * If the old buffer at this level for the disk address we are
1812 	 * looking for re-use it.
1813 	 *
1814 	 * Otherwise throw it away and get a new one.
1815 	 */
1816 	bp = cur->bc_bufs[level];
1817 	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1818 	if (error)
1819 		return error;
1820 	if (bp && xfs_buf_daddr(bp) == daddr) {
1821 		*blkp = XFS_BUF_TO_BLOCK(bp);
1822 		return 0;
1823 	}
1824 
1825 	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1826 	if (error)
1827 		return error;
1828 
1829 	/* Check the inode owner since the verifiers don't. */
1830 	if (xfs_has_crc(cur->bc_mp) &&
1831 	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1832 	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1833 	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1834 			cur->bc_ino.ip->i_ino)
1835 		goto out_bad;
1836 
1837 	/* Did we get the level we were looking for? */
1838 	if (be16_to_cpu((*blkp)->bb_level) != level)
1839 		goto out_bad;
1840 
1841 	/* Check that internal nodes have at least one record. */
1842 	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1843 		goto out_bad;
1844 
1845 	xfs_btree_setbuf(cur, level, bp);
1846 	return 0;
1847 
1848 out_bad:
1849 	*blkp = NULL;
1850 	xfs_buf_mark_corrupt(bp);
1851 	xfs_trans_brelse(cur->bc_tp, bp);
1852 	return -EFSCORRUPTED;
1853 }
1854 
1855 /*
1856  * Get current search key.  For level 0 we don't actually have a key
1857  * structure so we make one up from the record.  For all other levels
1858  * we just return the right key.
1859  */
1860 STATIC union xfs_btree_key *
xfs_lookup_get_search_key(struct xfs_btree_cur * cur,int level,int keyno,struct xfs_btree_block * block,union xfs_btree_key * kp)1861 xfs_lookup_get_search_key(
1862 	struct xfs_btree_cur	*cur,
1863 	int			level,
1864 	int			keyno,
1865 	struct xfs_btree_block	*block,
1866 	union xfs_btree_key	*kp)
1867 {
1868 	if (level == 0) {
1869 		cur->bc_ops->init_key_from_rec(kp,
1870 				xfs_btree_rec_addr(cur, keyno, block));
1871 		return kp;
1872 	}
1873 
1874 	return xfs_btree_key_addr(cur, keyno, block);
1875 }
1876 
1877 /*
1878  * Lookup the record.  The cursor is made to point to it, based on dir.
1879  * stat is set to 0 if can't find any such record, 1 for success.
1880  */
1881 int					/* error */
xfs_btree_lookup(struct xfs_btree_cur * cur,xfs_lookup_t dir,int * stat)1882 xfs_btree_lookup(
1883 	struct xfs_btree_cur	*cur,	/* btree cursor */
1884 	xfs_lookup_t		dir,	/* <=, ==, or >= */
1885 	int			*stat)	/* success/failure */
1886 {
1887 	struct xfs_btree_block	*block;	/* current btree block */
1888 	int64_t			diff;	/* difference for the current key */
1889 	int			error;	/* error return value */
1890 	int			keyno;	/* current key number */
1891 	int			level;	/* level in the btree */
1892 	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1893 	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1894 
1895 	XFS_BTREE_STATS_INC(cur, lookup);
1896 
1897 	/* No such thing as a zero-level tree. */
1898 	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1899 		return -EFSCORRUPTED;
1900 
1901 	block = NULL;
1902 	keyno = 0;
1903 
1904 	/* initialise start pointer from cursor */
1905 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1906 	pp = &ptr;
1907 
1908 	/*
1909 	 * Iterate over each level in the btree, starting at the root.
1910 	 * For each level above the leaves, find the key we need, based
1911 	 * on the lookup record, then follow the corresponding block
1912 	 * pointer down to the next level.
1913 	 */
1914 	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1915 		/* Get the block we need to do the lookup on. */
1916 		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1917 		if (error)
1918 			goto error0;
1919 
1920 		if (diff == 0) {
1921 			/*
1922 			 * If we already had a key match at a higher level, we
1923 			 * know we need to use the first entry in this block.
1924 			 */
1925 			keyno = 1;
1926 		} else {
1927 			/* Otherwise search this block. Do a binary search. */
1928 
1929 			int	high;	/* high entry number */
1930 			int	low;	/* low entry number */
1931 
1932 			/* Set low and high entry numbers, 1-based. */
1933 			low = 1;
1934 			high = xfs_btree_get_numrecs(block);
1935 			if (!high) {
1936 				/* Block is empty, must be an empty leaf. */
1937 				if (level != 0 || cur->bc_nlevels != 1) {
1938 					XFS_CORRUPTION_ERROR(__func__,
1939 							XFS_ERRLEVEL_LOW,
1940 							cur->bc_mp, block,
1941 							sizeof(*block));
1942 					return -EFSCORRUPTED;
1943 				}
1944 
1945 				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1946 				*stat = 0;
1947 				return 0;
1948 			}
1949 
1950 			/* Binary search the block. */
1951 			while (low <= high) {
1952 				union xfs_btree_key	key;
1953 				union xfs_btree_key	*kp;
1954 
1955 				XFS_BTREE_STATS_INC(cur, compare);
1956 
1957 				/* keyno is average of low and high. */
1958 				keyno = (low + high) >> 1;
1959 
1960 				/* Get current search key */
1961 				kp = xfs_lookup_get_search_key(cur, level,
1962 						keyno, block, &key);
1963 
1964 				/*
1965 				 * Compute difference to get next direction:
1966 				 *  - less than, move right
1967 				 *  - greater than, move left
1968 				 *  - equal, we're done
1969 				 */
1970 				diff = cur->bc_ops->key_diff(cur, kp);
1971 				if (diff < 0)
1972 					low = keyno + 1;
1973 				else if (diff > 0)
1974 					high = keyno - 1;
1975 				else
1976 					break;
1977 			}
1978 		}
1979 
1980 		/*
1981 		 * If there are more levels, set up for the next level
1982 		 * by getting the block number and filling in the cursor.
1983 		 */
1984 		if (level > 0) {
1985 			/*
1986 			 * If we moved left, need the previous key number,
1987 			 * unless there isn't one.
1988 			 */
1989 			if (diff > 0 && --keyno < 1)
1990 				keyno = 1;
1991 			pp = xfs_btree_ptr_addr(cur, keyno, block);
1992 
1993 			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1994 			if (error)
1995 				goto error0;
1996 
1997 			cur->bc_ptrs[level] = keyno;
1998 		}
1999 	}
2000 
2001 	/* Done with the search. See if we need to adjust the results. */
2002 	if (dir != XFS_LOOKUP_LE && diff < 0) {
2003 		keyno++;
2004 		/*
2005 		 * If ge search and we went off the end of the block, but it's
2006 		 * not the last block, we're in the wrong block.
2007 		 */
2008 		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
2009 		if (dir == XFS_LOOKUP_GE &&
2010 		    keyno > xfs_btree_get_numrecs(block) &&
2011 		    !xfs_btree_ptr_is_null(cur, &ptr)) {
2012 			int	i;
2013 
2014 			cur->bc_ptrs[0] = keyno;
2015 			error = xfs_btree_increment(cur, 0, &i);
2016 			if (error)
2017 				goto error0;
2018 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
2019 				return -EFSCORRUPTED;
2020 			*stat = 1;
2021 			return 0;
2022 		}
2023 	} else if (dir == XFS_LOOKUP_LE && diff > 0)
2024 		keyno--;
2025 	cur->bc_ptrs[0] = keyno;
2026 
2027 	/* Return if we succeeded or not. */
2028 	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
2029 		*stat = 0;
2030 	else if (dir != XFS_LOOKUP_EQ || diff == 0)
2031 		*stat = 1;
2032 	else
2033 		*stat = 0;
2034 	return 0;
2035 
2036 error0:
2037 	return error;
2038 }
2039 
2040 /* Find the high key storage area from a regular key. */
2041 union xfs_btree_key *
xfs_btree_high_key_from_key(struct xfs_btree_cur * cur,union xfs_btree_key * key)2042 xfs_btree_high_key_from_key(
2043 	struct xfs_btree_cur	*cur,
2044 	union xfs_btree_key	*key)
2045 {
2046 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2047 	return (union xfs_btree_key *)((char *)key +
2048 			(cur->bc_ops->key_len / 2));
2049 }
2050 
2051 /* Determine the low (and high if overlapped) keys of a leaf block */
2052 STATIC void
xfs_btree_get_leaf_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2053 xfs_btree_get_leaf_keys(
2054 	struct xfs_btree_cur	*cur,
2055 	struct xfs_btree_block	*block,
2056 	union xfs_btree_key	*key)
2057 {
2058 	union xfs_btree_key	max_hkey;
2059 	union xfs_btree_key	hkey;
2060 	union xfs_btree_rec	*rec;
2061 	union xfs_btree_key	*high;
2062 	int			n;
2063 
2064 	rec = xfs_btree_rec_addr(cur, 1, block);
2065 	cur->bc_ops->init_key_from_rec(key, rec);
2066 
2067 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2068 
2069 		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2070 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2071 			rec = xfs_btree_rec_addr(cur, n, block);
2072 			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2073 			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2074 					> 0)
2075 				max_hkey = hkey;
2076 		}
2077 
2078 		high = xfs_btree_high_key_from_key(cur, key);
2079 		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2080 	}
2081 }
2082 
2083 /* Determine the low (and high if overlapped) keys of a node block */
2084 STATIC void
xfs_btree_get_node_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2085 xfs_btree_get_node_keys(
2086 	struct xfs_btree_cur	*cur,
2087 	struct xfs_btree_block	*block,
2088 	union xfs_btree_key	*key)
2089 {
2090 	union xfs_btree_key	*hkey;
2091 	union xfs_btree_key	*max_hkey;
2092 	union xfs_btree_key	*high;
2093 	int			n;
2094 
2095 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2096 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2097 				cur->bc_ops->key_len / 2);
2098 
2099 		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2100 		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2101 			hkey = xfs_btree_high_key_addr(cur, n, block);
2102 			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2103 				max_hkey = hkey;
2104 		}
2105 
2106 		high = xfs_btree_high_key_from_key(cur, key);
2107 		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2108 	} else {
2109 		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2110 				cur->bc_ops->key_len);
2111 	}
2112 }
2113 
2114 /* Derive the keys for any btree block. */
2115 void
xfs_btree_get_keys(struct xfs_btree_cur * cur,struct xfs_btree_block * block,union xfs_btree_key * key)2116 xfs_btree_get_keys(
2117 	struct xfs_btree_cur	*cur,
2118 	struct xfs_btree_block	*block,
2119 	union xfs_btree_key	*key)
2120 {
2121 	if (be16_to_cpu(block->bb_level) == 0)
2122 		xfs_btree_get_leaf_keys(cur, block, key);
2123 	else
2124 		xfs_btree_get_node_keys(cur, block, key);
2125 }
2126 
2127 /*
2128  * Decide if we need to update the parent keys of a btree block.  For
2129  * a standard btree this is only necessary if we're updating the first
2130  * record/key.  For an overlapping btree, we must always update the
2131  * keys because the highest key can be in any of the records or keys
2132  * in the block.
2133  */
2134 static inline bool
xfs_btree_needs_key_update(struct xfs_btree_cur * cur,int ptr)2135 xfs_btree_needs_key_update(
2136 	struct xfs_btree_cur	*cur,
2137 	int			ptr)
2138 {
2139 	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2140 }
2141 
2142 /*
2143  * Update the low and high parent keys of the given level, progressing
2144  * towards the root.  If force_all is false, stop if the keys for a given
2145  * level do not need updating.
2146  */
2147 STATIC int
__xfs_btree_updkeys(struct xfs_btree_cur * cur,int level,struct xfs_btree_block * block,struct xfs_buf * bp0,bool force_all)2148 __xfs_btree_updkeys(
2149 	struct xfs_btree_cur	*cur,
2150 	int			level,
2151 	struct xfs_btree_block	*block,
2152 	struct xfs_buf		*bp0,
2153 	bool			force_all)
2154 {
2155 	union xfs_btree_key	key;	/* keys from current level */
2156 	union xfs_btree_key	*lkey;	/* keys from the next level up */
2157 	union xfs_btree_key	*hkey;
2158 	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2159 	union xfs_btree_key	*nhkey;
2160 	struct xfs_buf		*bp;
2161 	int			ptr;
2162 
2163 	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2164 
2165 	/* Exit if there aren't any parent levels to update. */
2166 	if (level + 1 >= cur->bc_nlevels)
2167 		return 0;
2168 
2169 	trace_xfs_btree_updkeys(cur, level, bp0);
2170 
2171 	lkey = &key;
2172 	hkey = xfs_btree_high_key_from_key(cur, lkey);
2173 	xfs_btree_get_keys(cur, block, lkey);
2174 	for (level++; level < cur->bc_nlevels; level++) {
2175 #ifdef DEBUG
2176 		int		error;
2177 #endif
2178 		block = xfs_btree_get_block(cur, level, &bp);
2179 		trace_xfs_btree_updkeys(cur, level, bp);
2180 #ifdef DEBUG
2181 		error = xfs_btree_check_block(cur, block, level, bp);
2182 		if (error)
2183 			return error;
2184 #endif
2185 		ptr = cur->bc_ptrs[level];
2186 		nlkey = xfs_btree_key_addr(cur, ptr, block);
2187 		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2188 		if (!force_all &&
2189 		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2190 		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2191 			break;
2192 		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2193 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2194 		if (level + 1 >= cur->bc_nlevels)
2195 			break;
2196 		xfs_btree_get_node_keys(cur, block, lkey);
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 /* Update all the keys from some level in cursor back to the root. */
2203 STATIC int
xfs_btree_updkeys_force(struct xfs_btree_cur * cur,int level)2204 xfs_btree_updkeys_force(
2205 	struct xfs_btree_cur	*cur,
2206 	int			level)
2207 {
2208 	struct xfs_buf		*bp;
2209 	struct xfs_btree_block	*block;
2210 
2211 	block = xfs_btree_get_block(cur, level, &bp);
2212 	return __xfs_btree_updkeys(cur, level, block, bp, true);
2213 }
2214 
2215 /*
2216  * Update the parent keys of the given level, progressing towards the root.
2217  */
2218 STATIC int
xfs_btree_update_keys(struct xfs_btree_cur * cur,int level)2219 xfs_btree_update_keys(
2220 	struct xfs_btree_cur	*cur,
2221 	int			level)
2222 {
2223 	struct xfs_btree_block	*block;
2224 	struct xfs_buf		*bp;
2225 	union xfs_btree_key	*kp;
2226 	union xfs_btree_key	key;
2227 	int			ptr;
2228 
2229 	ASSERT(level >= 0);
2230 
2231 	block = xfs_btree_get_block(cur, level, &bp);
2232 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2233 		return __xfs_btree_updkeys(cur, level, block, bp, false);
2234 
2235 	/*
2236 	 * Go up the tree from this level toward the root.
2237 	 * At each level, update the key value to the value input.
2238 	 * Stop when we reach a level where the cursor isn't pointing
2239 	 * at the first entry in the block.
2240 	 */
2241 	xfs_btree_get_keys(cur, block, &key);
2242 	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2243 #ifdef DEBUG
2244 		int		error;
2245 #endif
2246 		block = xfs_btree_get_block(cur, level, &bp);
2247 #ifdef DEBUG
2248 		error = xfs_btree_check_block(cur, block, level, bp);
2249 		if (error)
2250 			return error;
2251 #endif
2252 		ptr = cur->bc_ptrs[level];
2253 		kp = xfs_btree_key_addr(cur, ptr, block);
2254 		xfs_btree_copy_keys(cur, kp, &key, 1);
2255 		xfs_btree_log_keys(cur, bp, ptr, ptr);
2256 	}
2257 
2258 	return 0;
2259 }
2260 
2261 /*
2262  * Update the record referred to by cur to the value in the
2263  * given record. This either works (return 0) or gets an
2264  * EFSCORRUPTED error.
2265  */
2266 int
xfs_btree_update(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)2267 xfs_btree_update(
2268 	struct xfs_btree_cur	*cur,
2269 	union xfs_btree_rec	*rec)
2270 {
2271 	struct xfs_btree_block	*block;
2272 	struct xfs_buf		*bp;
2273 	int			error;
2274 	int			ptr;
2275 	union xfs_btree_rec	*rp;
2276 
2277 	/* Pick up the current block. */
2278 	block = xfs_btree_get_block(cur, 0, &bp);
2279 
2280 #ifdef DEBUG
2281 	error = xfs_btree_check_block(cur, block, 0, bp);
2282 	if (error)
2283 		goto error0;
2284 #endif
2285 	/* Get the address of the rec to be updated. */
2286 	ptr = cur->bc_ptrs[0];
2287 	rp = xfs_btree_rec_addr(cur, ptr, block);
2288 
2289 	/* Fill in the new contents and log them. */
2290 	xfs_btree_copy_recs(cur, rp, rec, 1);
2291 	xfs_btree_log_recs(cur, bp, ptr, ptr);
2292 
2293 	/*
2294 	 * If we are tracking the last record in the tree and
2295 	 * we are at the far right edge of the tree, update it.
2296 	 */
2297 	if (xfs_btree_is_lastrec(cur, block, 0)) {
2298 		cur->bc_ops->update_lastrec(cur, block, rec,
2299 					    ptr, LASTREC_UPDATE);
2300 	}
2301 
2302 	/* Pass new key value up to our parent. */
2303 	if (xfs_btree_needs_key_update(cur, ptr)) {
2304 		error = xfs_btree_update_keys(cur, 0);
2305 		if (error)
2306 			goto error0;
2307 	}
2308 
2309 	return 0;
2310 
2311 error0:
2312 	return error;
2313 }
2314 
2315 /*
2316  * Move 1 record left from cur/level if possible.
2317  * Update cur to reflect the new path.
2318  */
2319 STATIC int					/* error */
xfs_btree_lshift(struct xfs_btree_cur * cur,int level,int * stat)2320 xfs_btree_lshift(
2321 	struct xfs_btree_cur	*cur,
2322 	int			level,
2323 	int			*stat)		/* success/failure */
2324 {
2325 	struct xfs_buf		*lbp;		/* left buffer pointer */
2326 	struct xfs_btree_block	*left;		/* left btree block */
2327 	int			lrecs;		/* left record count */
2328 	struct xfs_buf		*rbp;		/* right buffer pointer */
2329 	struct xfs_btree_block	*right;		/* right btree block */
2330 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2331 	int			rrecs;		/* right record count */
2332 	union xfs_btree_ptr	lptr;		/* left btree pointer */
2333 	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2334 	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2335 	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2336 	int			error;		/* error return value */
2337 	int			i;
2338 
2339 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2340 	    level == cur->bc_nlevels - 1)
2341 		goto out0;
2342 
2343 	/* Set up variables for this block as "right". */
2344 	right = xfs_btree_get_block(cur, level, &rbp);
2345 
2346 #ifdef DEBUG
2347 	error = xfs_btree_check_block(cur, right, level, rbp);
2348 	if (error)
2349 		goto error0;
2350 #endif
2351 
2352 	/* If we've got no left sibling then we can't shift an entry left. */
2353 	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2354 	if (xfs_btree_ptr_is_null(cur, &lptr))
2355 		goto out0;
2356 
2357 	/*
2358 	 * If the cursor entry is the one that would be moved, don't
2359 	 * do it... it's too complicated.
2360 	 */
2361 	if (cur->bc_ptrs[level] <= 1)
2362 		goto out0;
2363 
2364 	/* Set up the left neighbor as "left". */
2365 	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2366 	if (error)
2367 		goto error0;
2368 
2369 	/* If it's full, it can't take another entry. */
2370 	lrecs = xfs_btree_get_numrecs(left);
2371 	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2372 		goto out0;
2373 
2374 	rrecs = xfs_btree_get_numrecs(right);
2375 
2376 	/*
2377 	 * We add one entry to the left side and remove one for the right side.
2378 	 * Account for it here, the changes will be updated on disk and logged
2379 	 * later.
2380 	 */
2381 	lrecs++;
2382 	rrecs--;
2383 
2384 	XFS_BTREE_STATS_INC(cur, lshift);
2385 	XFS_BTREE_STATS_ADD(cur, moves, 1);
2386 
2387 	/*
2388 	 * If non-leaf, copy a key and a ptr to the left block.
2389 	 * Log the changes to the left block.
2390 	 */
2391 	if (level > 0) {
2392 		/* It's a non-leaf.  Move keys and pointers. */
2393 		union xfs_btree_key	*lkp;	/* left btree key */
2394 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2395 
2396 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2397 		rkp = xfs_btree_key_addr(cur, 1, right);
2398 
2399 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2400 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2401 
2402 		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2403 		if (error)
2404 			goto error0;
2405 
2406 		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2407 		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2408 
2409 		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2410 		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2411 
2412 		ASSERT(cur->bc_ops->keys_inorder(cur,
2413 			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2414 	} else {
2415 		/* It's a leaf.  Move records.  */
2416 		union xfs_btree_rec	*lrp;	/* left record pointer */
2417 
2418 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2419 		rrp = xfs_btree_rec_addr(cur, 1, right);
2420 
2421 		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2422 		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2423 
2424 		ASSERT(cur->bc_ops->recs_inorder(cur,
2425 			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2426 	}
2427 
2428 	xfs_btree_set_numrecs(left, lrecs);
2429 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2430 
2431 	xfs_btree_set_numrecs(right, rrecs);
2432 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2433 
2434 	/*
2435 	 * Slide the contents of right down one entry.
2436 	 */
2437 	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2438 	if (level > 0) {
2439 		/* It's a nonleaf. operate on keys and ptrs */
2440 		for (i = 0; i < rrecs; i++) {
2441 			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2442 			if (error)
2443 				goto error0;
2444 		}
2445 
2446 		xfs_btree_shift_keys(cur,
2447 				xfs_btree_key_addr(cur, 2, right),
2448 				-1, rrecs);
2449 		xfs_btree_shift_ptrs(cur,
2450 				xfs_btree_ptr_addr(cur, 2, right),
2451 				-1, rrecs);
2452 
2453 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2454 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2455 	} else {
2456 		/* It's a leaf. operate on records */
2457 		xfs_btree_shift_recs(cur,
2458 			xfs_btree_rec_addr(cur, 2, right),
2459 			-1, rrecs);
2460 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2461 	}
2462 
2463 	/*
2464 	 * Using a temporary cursor, update the parent key values of the
2465 	 * block on the left.
2466 	 */
2467 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2468 		error = xfs_btree_dup_cursor(cur, &tcur);
2469 		if (error)
2470 			goto error0;
2471 		i = xfs_btree_firstrec(tcur, level);
2472 		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2473 			error = -EFSCORRUPTED;
2474 			goto error0;
2475 		}
2476 
2477 		error = xfs_btree_decrement(tcur, level, &i);
2478 		if (error)
2479 			goto error1;
2480 
2481 		/* Update the parent high keys of the left block, if needed. */
2482 		error = xfs_btree_update_keys(tcur, level);
2483 		if (error)
2484 			goto error1;
2485 
2486 		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2487 	}
2488 
2489 	/* Update the parent keys of the right block. */
2490 	error = xfs_btree_update_keys(cur, level);
2491 	if (error)
2492 		goto error0;
2493 
2494 	/* Slide the cursor value left one. */
2495 	cur->bc_ptrs[level]--;
2496 
2497 	*stat = 1;
2498 	return 0;
2499 
2500 out0:
2501 	*stat = 0;
2502 	return 0;
2503 
2504 error0:
2505 	return error;
2506 
2507 error1:
2508 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2509 	return error;
2510 }
2511 
2512 /*
2513  * Move 1 record right from cur/level if possible.
2514  * Update cur to reflect the new path.
2515  */
2516 STATIC int					/* error */
xfs_btree_rshift(struct xfs_btree_cur * cur,int level,int * stat)2517 xfs_btree_rshift(
2518 	struct xfs_btree_cur	*cur,
2519 	int			level,
2520 	int			*stat)		/* success/failure */
2521 {
2522 	struct xfs_buf		*lbp;		/* left buffer pointer */
2523 	struct xfs_btree_block	*left;		/* left btree block */
2524 	struct xfs_buf		*rbp;		/* right buffer pointer */
2525 	struct xfs_btree_block	*right;		/* right btree block */
2526 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2527 	union xfs_btree_ptr	rptr;		/* right block pointer */
2528 	union xfs_btree_key	*rkp;		/* right btree key */
2529 	int			rrecs;		/* right record count */
2530 	int			lrecs;		/* left record count */
2531 	int			error;		/* error return value */
2532 	int			i;		/* loop counter */
2533 
2534 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2535 	    (level == cur->bc_nlevels - 1))
2536 		goto out0;
2537 
2538 	/* Set up variables for this block as "left". */
2539 	left = xfs_btree_get_block(cur, level, &lbp);
2540 
2541 #ifdef DEBUG
2542 	error = xfs_btree_check_block(cur, left, level, lbp);
2543 	if (error)
2544 		goto error0;
2545 #endif
2546 
2547 	/* If we've got no right sibling then we can't shift an entry right. */
2548 	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2549 	if (xfs_btree_ptr_is_null(cur, &rptr))
2550 		goto out0;
2551 
2552 	/*
2553 	 * If the cursor entry is the one that would be moved, don't
2554 	 * do it... it's too complicated.
2555 	 */
2556 	lrecs = xfs_btree_get_numrecs(left);
2557 	if (cur->bc_ptrs[level] >= lrecs)
2558 		goto out0;
2559 
2560 	/* Set up the right neighbor as "right". */
2561 	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2562 	if (error)
2563 		goto error0;
2564 
2565 	/* If it's full, it can't take another entry. */
2566 	rrecs = xfs_btree_get_numrecs(right);
2567 	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2568 		goto out0;
2569 
2570 	XFS_BTREE_STATS_INC(cur, rshift);
2571 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2572 
2573 	/*
2574 	 * Make a hole at the start of the right neighbor block, then
2575 	 * copy the last left block entry to the hole.
2576 	 */
2577 	if (level > 0) {
2578 		/* It's a nonleaf. make a hole in the keys and ptrs */
2579 		union xfs_btree_key	*lkp;
2580 		union xfs_btree_ptr	*lpp;
2581 		union xfs_btree_ptr	*rpp;
2582 
2583 		lkp = xfs_btree_key_addr(cur, lrecs, left);
2584 		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2585 		rkp = xfs_btree_key_addr(cur, 1, right);
2586 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2587 
2588 		for (i = rrecs - 1; i >= 0; i--) {
2589 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2590 			if (error)
2591 				goto error0;
2592 		}
2593 
2594 		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2595 		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2596 
2597 		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2598 		if (error)
2599 			goto error0;
2600 
2601 		/* Now put the new data in, and log it. */
2602 		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2603 		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2604 
2605 		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2606 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2607 
2608 		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2609 			xfs_btree_key_addr(cur, 2, right)));
2610 	} else {
2611 		/* It's a leaf. make a hole in the records */
2612 		union xfs_btree_rec	*lrp;
2613 		union xfs_btree_rec	*rrp;
2614 
2615 		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2616 		rrp = xfs_btree_rec_addr(cur, 1, right);
2617 
2618 		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2619 
2620 		/* Now put the new data in, and log it. */
2621 		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2622 		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2623 	}
2624 
2625 	/*
2626 	 * Decrement and log left's numrecs, bump and log right's numrecs.
2627 	 */
2628 	xfs_btree_set_numrecs(left, --lrecs);
2629 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2630 
2631 	xfs_btree_set_numrecs(right, ++rrecs);
2632 	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2633 
2634 	/*
2635 	 * Using a temporary cursor, update the parent key values of the
2636 	 * block on the right.
2637 	 */
2638 	error = xfs_btree_dup_cursor(cur, &tcur);
2639 	if (error)
2640 		goto error0;
2641 	i = xfs_btree_lastrec(tcur, level);
2642 	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2643 		error = -EFSCORRUPTED;
2644 		goto error0;
2645 	}
2646 
2647 	error = xfs_btree_increment(tcur, level, &i);
2648 	if (error)
2649 		goto error1;
2650 
2651 	/* Update the parent high keys of the left block, if needed. */
2652 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2653 		error = xfs_btree_update_keys(cur, level);
2654 		if (error)
2655 			goto error1;
2656 	}
2657 
2658 	/* Update the parent keys of the right block. */
2659 	error = xfs_btree_update_keys(tcur, level);
2660 	if (error)
2661 		goto error1;
2662 
2663 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2664 
2665 	*stat = 1;
2666 	return 0;
2667 
2668 out0:
2669 	*stat = 0;
2670 	return 0;
2671 
2672 error0:
2673 	return error;
2674 
2675 error1:
2676 	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2677 	return error;
2678 }
2679 
2680 /*
2681  * Split cur/level block in half.
2682  * Return new block number and the key to its first
2683  * record (to be inserted into parent).
2684  */
2685 STATIC int					/* error */
__xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2686 __xfs_btree_split(
2687 	struct xfs_btree_cur	*cur,
2688 	int			level,
2689 	union xfs_btree_ptr	*ptrp,
2690 	union xfs_btree_key	*key,
2691 	struct xfs_btree_cur	**curp,
2692 	int			*stat)		/* success/failure */
2693 {
2694 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2695 	struct xfs_buf		*lbp;		/* left buffer pointer */
2696 	struct xfs_btree_block	*left;		/* left btree block */
2697 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2698 	struct xfs_buf		*rbp;		/* right buffer pointer */
2699 	struct xfs_btree_block	*right;		/* right btree block */
2700 	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2701 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2702 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2703 	int			lrecs;
2704 	int			rrecs;
2705 	int			src_index;
2706 	int			error;		/* error return value */
2707 	int			i;
2708 
2709 	XFS_BTREE_STATS_INC(cur, split);
2710 
2711 	/* Set up left block (current one). */
2712 	left = xfs_btree_get_block(cur, level, &lbp);
2713 
2714 #ifdef DEBUG
2715 	error = xfs_btree_check_block(cur, left, level, lbp);
2716 	if (error)
2717 		goto error0;
2718 #endif
2719 
2720 	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2721 
2722 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2723 	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2724 	if (error)
2725 		goto error0;
2726 	if (*stat == 0)
2727 		goto out0;
2728 	XFS_BTREE_STATS_INC(cur, alloc);
2729 
2730 	/* Set up the new block as "right". */
2731 	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2732 	if (error)
2733 		goto error0;
2734 
2735 	/* Fill in the btree header for the new right block. */
2736 	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2737 
2738 	/*
2739 	 * Split the entries between the old and the new block evenly.
2740 	 * Make sure that if there's an odd number of entries now, that
2741 	 * each new block will have the same number of entries.
2742 	 */
2743 	lrecs = xfs_btree_get_numrecs(left);
2744 	rrecs = lrecs / 2;
2745 	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2746 		rrecs++;
2747 	src_index = (lrecs - rrecs + 1);
2748 
2749 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2750 
2751 	/* Adjust numrecs for the later get_*_keys() calls. */
2752 	lrecs -= rrecs;
2753 	xfs_btree_set_numrecs(left, lrecs);
2754 	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2755 
2756 	/*
2757 	 * Copy btree block entries from the left block over to the
2758 	 * new block, the right. Update the right block and log the
2759 	 * changes.
2760 	 */
2761 	if (level > 0) {
2762 		/* It's a non-leaf.  Move keys and pointers. */
2763 		union xfs_btree_key	*lkp;	/* left btree key */
2764 		union xfs_btree_ptr	*lpp;	/* left address pointer */
2765 		union xfs_btree_key	*rkp;	/* right btree key */
2766 		union xfs_btree_ptr	*rpp;	/* right address pointer */
2767 
2768 		lkp = xfs_btree_key_addr(cur, src_index, left);
2769 		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2770 		rkp = xfs_btree_key_addr(cur, 1, right);
2771 		rpp = xfs_btree_ptr_addr(cur, 1, right);
2772 
2773 		for (i = src_index; i < rrecs; i++) {
2774 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2775 			if (error)
2776 				goto error0;
2777 		}
2778 
2779 		/* Copy the keys & pointers to the new block. */
2780 		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2781 		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2782 
2783 		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2784 		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2785 
2786 		/* Stash the keys of the new block for later insertion. */
2787 		xfs_btree_get_node_keys(cur, right, key);
2788 	} else {
2789 		/* It's a leaf.  Move records.  */
2790 		union xfs_btree_rec	*lrp;	/* left record pointer */
2791 		union xfs_btree_rec	*rrp;	/* right record pointer */
2792 
2793 		lrp = xfs_btree_rec_addr(cur, src_index, left);
2794 		rrp = xfs_btree_rec_addr(cur, 1, right);
2795 
2796 		/* Copy records to the new block. */
2797 		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2798 		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2799 
2800 		/* Stash the keys of the new block for later insertion. */
2801 		xfs_btree_get_leaf_keys(cur, right, key);
2802 	}
2803 
2804 	/*
2805 	 * Find the left block number by looking in the buffer.
2806 	 * Adjust sibling pointers.
2807 	 */
2808 	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2809 	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2810 	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2811 	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2812 
2813 	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2814 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2815 
2816 	/*
2817 	 * If there's a block to the new block's right, make that block
2818 	 * point back to right instead of to left.
2819 	 */
2820 	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2821 		error = xfs_btree_read_buf_block(cur, &rrptr,
2822 							0, &rrblock, &rrbp);
2823 		if (error)
2824 			goto error0;
2825 		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2826 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2827 	}
2828 
2829 	/* Update the parent high keys of the left block, if needed. */
2830 	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2831 		error = xfs_btree_update_keys(cur, level);
2832 		if (error)
2833 			goto error0;
2834 	}
2835 
2836 	/*
2837 	 * If the cursor is really in the right block, move it there.
2838 	 * If it's just pointing past the last entry in left, then we'll
2839 	 * insert there, so don't change anything in that case.
2840 	 */
2841 	if (cur->bc_ptrs[level] > lrecs + 1) {
2842 		xfs_btree_setbuf(cur, level, rbp);
2843 		cur->bc_ptrs[level] -= lrecs;
2844 	}
2845 	/*
2846 	 * If there are more levels, we'll need another cursor which refers
2847 	 * the right block, no matter where this cursor was.
2848 	 */
2849 	if (level + 1 < cur->bc_nlevels) {
2850 		error = xfs_btree_dup_cursor(cur, curp);
2851 		if (error)
2852 			goto error0;
2853 		(*curp)->bc_ptrs[level + 1]++;
2854 	}
2855 	*ptrp = rptr;
2856 	*stat = 1;
2857 	return 0;
2858 out0:
2859 	*stat = 0;
2860 	return 0;
2861 
2862 error0:
2863 	return error;
2864 }
2865 
2866 struct xfs_btree_split_args {
2867 	struct xfs_btree_cur	*cur;
2868 	int			level;
2869 	union xfs_btree_ptr	*ptrp;
2870 	union xfs_btree_key	*key;
2871 	struct xfs_btree_cur	**curp;
2872 	int			*stat;		/* success/failure */
2873 	int			result;
2874 	bool			kswapd;	/* allocation in kswapd context */
2875 	struct completion	*done;
2876 	struct work_struct	work;
2877 };
2878 
2879 /*
2880  * Stack switching interfaces for allocation
2881  */
2882 static void
xfs_btree_split_worker(struct work_struct * work)2883 xfs_btree_split_worker(
2884 	struct work_struct	*work)
2885 {
2886 	struct xfs_btree_split_args	*args = container_of(work,
2887 						struct xfs_btree_split_args, work);
2888 	unsigned long		pflags;
2889 	unsigned long		new_pflags = 0;
2890 
2891 	/*
2892 	 * we are in a transaction context here, but may also be doing work
2893 	 * in kswapd context, and hence we may need to inherit that state
2894 	 * temporarily to ensure that we don't block waiting for memory reclaim
2895 	 * in any way.
2896 	 */
2897 	if (args->kswapd)
2898 		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2899 
2900 	current_set_flags_nested(&pflags, new_pflags);
2901 	xfs_trans_set_context(args->cur->bc_tp);
2902 
2903 	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2904 					 args->key, args->curp, args->stat);
2905 
2906 	xfs_trans_clear_context(args->cur->bc_tp);
2907 	current_restore_flags_nested(&pflags, new_pflags);
2908 
2909 	/*
2910 	 * Do not access args after complete() has run here. We don't own args
2911 	 * and the owner may run and free args before we return here.
2912 	 */
2913 	complete(args->done);
2914 
2915 }
2916 
2917 /*
2918  * BMBT split requests often come in with little stack to work on. Push
2919  * them off to a worker thread so there is lots of stack to use. For the other
2920  * btree types, just call directly to avoid the context switch overhead here.
2921  */
2922 STATIC int					/* error */
xfs_btree_split(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)2923 xfs_btree_split(
2924 	struct xfs_btree_cur	*cur,
2925 	int			level,
2926 	union xfs_btree_ptr	*ptrp,
2927 	union xfs_btree_key	*key,
2928 	struct xfs_btree_cur	**curp,
2929 	int			*stat)		/* success/failure */
2930 {
2931 	struct xfs_btree_split_args	args;
2932 	DECLARE_COMPLETION_ONSTACK(done);
2933 
2934 	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2935 		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2936 
2937 	args.cur = cur;
2938 	args.level = level;
2939 	args.ptrp = ptrp;
2940 	args.key = key;
2941 	args.curp = curp;
2942 	args.stat = stat;
2943 	args.done = &done;
2944 	args.kswapd = current_is_kswapd();
2945 	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2946 	queue_work(xfs_alloc_wq, &args.work);
2947 	wait_for_completion(&done);
2948 	destroy_work_on_stack(&args.work);
2949 	return args.result;
2950 }
2951 
2952 
2953 /*
2954  * Copy the old inode root contents into a real block and make the
2955  * broot point to it.
2956  */
2957 int						/* error */
xfs_btree_new_iroot(struct xfs_btree_cur * cur,int * logflags,int * stat)2958 xfs_btree_new_iroot(
2959 	struct xfs_btree_cur	*cur,		/* btree cursor */
2960 	int			*logflags,	/* logging flags for inode */
2961 	int			*stat)		/* return status - 0 fail */
2962 {
2963 	struct xfs_buf		*cbp;		/* buffer for cblock */
2964 	struct xfs_btree_block	*block;		/* btree block */
2965 	struct xfs_btree_block	*cblock;	/* child btree block */
2966 	union xfs_btree_key	*ckp;		/* child key pointer */
2967 	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2968 	union xfs_btree_key	*kp;		/* pointer to btree key */
2969 	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2970 	union xfs_btree_ptr	nptr;		/* new block addr */
2971 	int			level;		/* btree level */
2972 	int			error;		/* error return code */
2973 	int			i;		/* loop counter */
2974 
2975 	XFS_BTREE_STATS_INC(cur, newroot);
2976 
2977 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2978 
2979 	level = cur->bc_nlevels - 1;
2980 
2981 	block = xfs_btree_get_iroot(cur);
2982 	pp = xfs_btree_ptr_addr(cur, 1, block);
2983 
2984 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2985 	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2986 	if (error)
2987 		goto error0;
2988 	if (*stat == 0)
2989 		return 0;
2990 
2991 	XFS_BTREE_STATS_INC(cur, alloc);
2992 
2993 	/* Copy the root into a real block. */
2994 	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2995 	if (error)
2996 		goto error0;
2997 
2998 	/*
2999 	 * we can't just memcpy() the root in for CRC enabled btree blocks.
3000 	 * In that case have to also ensure the blkno remains correct
3001 	 */
3002 	memcpy(cblock, block, xfs_btree_block_len(cur));
3003 	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
3004 		__be64 bno = cpu_to_be64(xfs_buf_daddr(cbp));
3005 		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
3006 			cblock->bb_u.l.bb_blkno = bno;
3007 		else
3008 			cblock->bb_u.s.bb_blkno = bno;
3009 	}
3010 
3011 	be16_add_cpu(&block->bb_level, 1);
3012 	xfs_btree_set_numrecs(block, 1);
3013 	cur->bc_nlevels++;
3014 	cur->bc_ptrs[level + 1] = 1;
3015 
3016 	kp = xfs_btree_key_addr(cur, 1, block);
3017 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3018 	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
3019 
3020 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3021 	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3022 		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3023 		if (error)
3024 			goto error0;
3025 	}
3026 
3027 	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3028 
3029 	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
3030 	if (error)
3031 		goto error0;
3032 
3033 	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3034 
3035 	xfs_iroot_realloc(cur->bc_ino.ip,
3036 			  1 - xfs_btree_get_numrecs(cblock),
3037 			  cur->bc_ino.whichfork);
3038 
3039 	xfs_btree_setbuf(cur, level, cbp);
3040 
3041 	/*
3042 	 * Do all this logging at the end so that
3043 	 * the root is at the right level.
3044 	 */
3045 	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3046 	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3047 	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3048 
3049 	*logflags |=
3050 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
3051 	*stat = 1;
3052 	return 0;
3053 error0:
3054 	return error;
3055 }
3056 
3057 /*
3058  * Allocate a new root block, fill it in.
3059  */
3060 STATIC int				/* error */
xfs_btree_new_root(struct xfs_btree_cur * cur,int * stat)3061 xfs_btree_new_root(
3062 	struct xfs_btree_cur	*cur,	/* btree cursor */
3063 	int			*stat)	/* success/failure */
3064 {
3065 	struct xfs_btree_block	*block;	/* one half of the old root block */
3066 	struct xfs_buf		*bp;	/* buffer containing block */
3067 	int			error;	/* error return value */
3068 	struct xfs_buf		*lbp;	/* left buffer pointer */
3069 	struct xfs_btree_block	*left;	/* left btree block */
3070 	struct xfs_buf		*nbp;	/* new (root) buffer */
3071 	struct xfs_btree_block	*new;	/* new (root) btree block */
3072 	int			nptr;	/* new value for key index, 1 or 2 */
3073 	struct xfs_buf		*rbp;	/* right buffer pointer */
3074 	struct xfs_btree_block	*right;	/* right btree block */
3075 	union xfs_btree_ptr	rptr;
3076 	union xfs_btree_ptr	lptr;
3077 
3078 	XFS_BTREE_STATS_INC(cur, newroot);
3079 
3080 	/* initialise our start point from the cursor */
3081 	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3082 
3083 	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3084 	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3085 	if (error)
3086 		goto error0;
3087 	if (*stat == 0)
3088 		goto out0;
3089 	XFS_BTREE_STATS_INC(cur, alloc);
3090 
3091 	/* Set up the new block. */
3092 	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3093 	if (error)
3094 		goto error0;
3095 
3096 	/* Set the root in the holding structure  increasing the level by 1. */
3097 	cur->bc_ops->set_root(cur, &lptr, 1);
3098 
3099 	/*
3100 	 * At the previous root level there are now two blocks: the old root,
3101 	 * and the new block generated when it was split.  We don't know which
3102 	 * one the cursor is pointing at, so we set up variables "left" and
3103 	 * "right" for each case.
3104 	 */
3105 	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3106 
3107 #ifdef DEBUG
3108 	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3109 	if (error)
3110 		goto error0;
3111 #endif
3112 
3113 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3114 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3115 		/* Our block is left, pick up the right block. */
3116 		lbp = bp;
3117 		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3118 		left = block;
3119 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3120 		if (error)
3121 			goto error0;
3122 		bp = rbp;
3123 		nptr = 1;
3124 	} else {
3125 		/* Our block is right, pick up the left block. */
3126 		rbp = bp;
3127 		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3128 		right = block;
3129 		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3130 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3131 		if (error)
3132 			goto error0;
3133 		bp = lbp;
3134 		nptr = 2;
3135 	}
3136 
3137 	/* Fill in the new block's btree header and log it. */
3138 	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3139 	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3140 	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3141 			!xfs_btree_ptr_is_null(cur, &rptr));
3142 
3143 	/* Fill in the key data in the new root. */
3144 	if (xfs_btree_get_level(left) > 0) {
3145 		/*
3146 		 * Get the keys for the left block's keys and put them directly
3147 		 * in the parent block.  Do the same for the right block.
3148 		 */
3149 		xfs_btree_get_node_keys(cur, left,
3150 				xfs_btree_key_addr(cur, 1, new));
3151 		xfs_btree_get_node_keys(cur, right,
3152 				xfs_btree_key_addr(cur, 2, new));
3153 	} else {
3154 		/*
3155 		 * Get the keys for the left block's records and put them
3156 		 * directly in the parent block.  Do the same for the right
3157 		 * block.
3158 		 */
3159 		xfs_btree_get_leaf_keys(cur, left,
3160 			xfs_btree_key_addr(cur, 1, new));
3161 		xfs_btree_get_leaf_keys(cur, right,
3162 			xfs_btree_key_addr(cur, 2, new));
3163 	}
3164 	xfs_btree_log_keys(cur, nbp, 1, 2);
3165 
3166 	/* Fill in the pointer data in the new root. */
3167 	xfs_btree_copy_ptrs(cur,
3168 		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3169 	xfs_btree_copy_ptrs(cur,
3170 		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3171 	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3172 
3173 	/* Fix up the cursor. */
3174 	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3175 	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3176 	cur->bc_nlevels++;
3177 	*stat = 1;
3178 	return 0;
3179 error0:
3180 	return error;
3181 out0:
3182 	*stat = 0;
3183 	return 0;
3184 }
3185 
3186 STATIC int
xfs_btree_make_block_unfull(struct xfs_btree_cur * cur,int level,int numrecs,int * oindex,int * index,union xfs_btree_ptr * nptr,struct xfs_btree_cur ** ncur,union xfs_btree_key * key,int * stat)3187 xfs_btree_make_block_unfull(
3188 	struct xfs_btree_cur	*cur,	/* btree cursor */
3189 	int			level,	/* btree level */
3190 	int			numrecs,/* # of recs in block */
3191 	int			*oindex,/* old tree index */
3192 	int			*index,	/* new tree index */
3193 	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3194 	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3195 	union xfs_btree_key	*key,	/* key of new block */
3196 	int			*stat)
3197 {
3198 	int			error = 0;
3199 
3200 	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3201 	    level == cur->bc_nlevels - 1) {
3202 		struct xfs_inode *ip = cur->bc_ino.ip;
3203 
3204 		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3205 			/* A root block that can be made bigger. */
3206 			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3207 			*stat = 1;
3208 		} else {
3209 			/* A root block that needs replacing */
3210 			int	logflags = 0;
3211 
3212 			error = xfs_btree_new_iroot(cur, &logflags, stat);
3213 			if (error || *stat == 0)
3214 				return error;
3215 
3216 			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3217 		}
3218 
3219 		return 0;
3220 	}
3221 
3222 	/* First, try shifting an entry to the right neighbor. */
3223 	error = xfs_btree_rshift(cur, level, stat);
3224 	if (error || *stat)
3225 		return error;
3226 
3227 	/* Next, try shifting an entry to the left neighbor. */
3228 	error = xfs_btree_lshift(cur, level, stat);
3229 	if (error)
3230 		return error;
3231 
3232 	if (*stat) {
3233 		*oindex = *index = cur->bc_ptrs[level];
3234 		return 0;
3235 	}
3236 
3237 	/*
3238 	 * Next, try splitting the current block in half.
3239 	 *
3240 	 * If this works we have to re-set our variables because we
3241 	 * could be in a different block now.
3242 	 */
3243 	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3244 	if (error || *stat == 0)
3245 		return error;
3246 
3247 
3248 	*index = cur->bc_ptrs[level];
3249 	return 0;
3250 }
3251 
3252 /*
3253  * Insert one record/level.  Return information to the caller
3254  * allowing the next level up to proceed if necessary.
3255  */
3256 STATIC int
xfs_btree_insrec(struct xfs_btree_cur * cur,int level,union xfs_btree_ptr * ptrp,union xfs_btree_rec * rec,union xfs_btree_key * key,struct xfs_btree_cur ** curp,int * stat)3257 xfs_btree_insrec(
3258 	struct xfs_btree_cur	*cur,	/* btree cursor */
3259 	int			level,	/* level to insert record at */
3260 	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3261 	union xfs_btree_rec	*rec,	/* record to insert */
3262 	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3263 	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3264 	int			*stat)	/* success/failure */
3265 {
3266 	struct xfs_btree_block	*block;	/* btree block */
3267 	struct xfs_buf		*bp;	/* buffer for block */
3268 	union xfs_btree_ptr	nptr;	/* new block ptr */
3269 	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3270 	union xfs_btree_key	nkey;	/* new block key */
3271 	union xfs_btree_key	*lkey;
3272 	int			optr;	/* old key/record index */
3273 	int			ptr;	/* key/record index */
3274 	int			numrecs;/* number of records */
3275 	int			error;	/* error return value */
3276 	int			i;
3277 	xfs_daddr_t		old_bn;
3278 
3279 	ncur = NULL;
3280 	lkey = &nkey;
3281 
3282 	/*
3283 	 * If we have an external root pointer, and we've made it to the
3284 	 * root level, allocate a new root block and we're done.
3285 	 */
3286 	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3287 	    (level >= cur->bc_nlevels)) {
3288 		error = xfs_btree_new_root(cur, stat);
3289 		xfs_btree_set_ptr_null(cur, ptrp);
3290 
3291 		return error;
3292 	}
3293 
3294 	/* If we're off the left edge, return failure. */
3295 	ptr = cur->bc_ptrs[level];
3296 	if (ptr == 0) {
3297 		*stat = 0;
3298 		return 0;
3299 	}
3300 
3301 	optr = ptr;
3302 
3303 	XFS_BTREE_STATS_INC(cur, insrec);
3304 
3305 	/* Get pointers to the btree buffer and block. */
3306 	block = xfs_btree_get_block(cur, level, &bp);
3307 	old_bn = bp ? xfs_buf_daddr(bp) : XFS_BUF_DADDR_NULL;
3308 	numrecs = xfs_btree_get_numrecs(block);
3309 
3310 #ifdef DEBUG
3311 	error = xfs_btree_check_block(cur, block, level, bp);
3312 	if (error)
3313 		goto error0;
3314 
3315 	/* Check that the new entry is being inserted in the right place. */
3316 	if (ptr <= numrecs) {
3317 		if (level == 0) {
3318 			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3319 				xfs_btree_rec_addr(cur, ptr, block)));
3320 		} else {
3321 			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3322 				xfs_btree_key_addr(cur, ptr, block)));
3323 		}
3324 	}
3325 #endif
3326 
3327 	/*
3328 	 * If the block is full, we can't insert the new entry until we
3329 	 * make the block un-full.
3330 	 */
3331 	xfs_btree_set_ptr_null(cur, &nptr);
3332 	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3333 		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3334 					&optr, &ptr, &nptr, &ncur, lkey, stat);
3335 		if (error || *stat == 0)
3336 			goto error0;
3337 	}
3338 
3339 	/*
3340 	 * The current block may have changed if the block was
3341 	 * previously full and we have just made space in it.
3342 	 */
3343 	block = xfs_btree_get_block(cur, level, &bp);
3344 	numrecs = xfs_btree_get_numrecs(block);
3345 
3346 #ifdef DEBUG
3347 	error = xfs_btree_check_block(cur, block, level, bp);
3348 	if (error)
3349 		goto error0;
3350 #endif
3351 
3352 	/*
3353 	 * At this point we know there's room for our new entry in the block
3354 	 * we're pointing at.
3355 	 */
3356 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3357 
3358 	if (level > 0) {
3359 		/* It's a nonleaf. make a hole in the keys and ptrs */
3360 		union xfs_btree_key	*kp;
3361 		union xfs_btree_ptr	*pp;
3362 
3363 		kp = xfs_btree_key_addr(cur, ptr, block);
3364 		pp = xfs_btree_ptr_addr(cur, ptr, block);
3365 
3366 		for (i = numrecs - ptr; i >= 0; i--) {
3367 			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3368 			if (error)
3369 				goto error0;
3370 		}
3371 
3372 		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3373 		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3374 
3375 		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3376 		if (error)
3377 			goto error0;
3378 
3379 		/* Now put the new data in, bump numrecs and log it. */
3380 		xfs_btree_copy_keys(cur, kp, key, 1);
3381 		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3382 		numrecs++;
3383 		xfs_btree_set_numrecs(block, numrecs);
3384 		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3385 		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3386 #ifdef DEBUG
3387 		if (ptr < numrecs) {
3388 			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3389 				xfs_btree_key_addr(cur, ptr + 1, block)));
3390 		}
3391 #endif
3392 	} else {
3393 		/* It's a leaf. make a hole in the records */
3394 		union xfs_btree_rec             *rp;
3395 
3396 		rp = xfs_btree_rec_addr(cur, ptr, block);
3397 
3398 		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3399 
3400 		/* Now put the new data in, bump numrecs and log it. */
3401 		xfs_btree_copy_recs(cur, rp, rec, 1);
3402 		xfs_btree_set_numrecs(block, ++numrecs);
3403 		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3404 #ifdef DEBUG
3405 		if (ptr < numrecs) {
3406 			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3407 				xfs_btree_rec_addr(cur, ptr + 1, block)));
3408 		}
3409 #endif
3410 	}
3411 
3412 	/* Log the new number of records in the btree header. */
3413 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3414 
3415 	/*
3416 	 * If we just inserted into a new tree block, we have to
3417 	 * recalculate nkey here because nkey is out of date.
3418 	 *
3419 	 * Otherwise we're just updating an existing block (having shoved
3420 	 * some records into the new tree block), so use the regular key
3421 	 * update mechanism.
3422 	 */
3423 	if (bp && xfs_buf_daddr(bp) != old_bn) {
3424 		xfs_btree_get_keys(cur, block, lkey);
3425 	} else if (xfs_btree_needs_key_update(cur, optr)) {
3426 		error = xfs_btree_update_keys(cur, level);
3427 		if (error)
3428 			goto error0;
3429 	}
3430 
3431 	/*
3432 	 * If we are tracking the last record in the tree and
3433 	 * we are at the far right edge of the tree, update it.
3434 	 */
3435 	if (xfs_btree_is_lastrec(cur, block, level)) {
3436 		cur->bc_ops->update_lastrec(cur, block, rec,
3437 					    ptr, LASTREC_INSREC);
3438 	}
3439 
3440 	/*
3441 	 * Return the new block number, if any.
3442 	 * If there is one, give back a record value and a cursor too.
3443 	 */
3444 	*ptrp = nptr;
3445 	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3446 		xfs_btree_copy_keys(cur, key, lkey, 1);
3447 		*curp = ncur;
3448 	}
3449 
3450 	*stat = 1;
3451 	return 0;
3452 
3453 error0:
3454 	if (ncur)
3455 		xfs_btree_del_cursor(ncur, error);
3456 	return error;
3457 }
3458 
3459 /*
3460  * Insert the record at the point referenced by cur.
3461  *
3462  * A multi-level split of the tree on insert will invalidate the original
3463  * cursor.  All callers of this function should assume that the cursor is
3464  * no longer valid and revalidate it.
3465  */
3466 int
xfs_btree_insert(struct xfs_btree_cur * cur,int * stat)3467 xfs_btree_insert(
3468 	struct xfs_btree_cur	*cur,
3469 	int			*stat)
3470 {
3471 	int			error;	/* error return value */
3472 	int			i;	/* result value, 0 for failure */
3473 	int			level;	/* current level number in btree */
3474 	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3475 	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3476 	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3477 	union xfs_btree_key	bkey;	/* key of block to insert */
3478 	union xfs_btree_key	*key;
3479 	union xfs_btree_rec	rec;	/* record to insert */
3480 
3481 	level = 0;
3482 	ncur = NULL;
3483 	pcur = cur;
3484 	key = &bkey;
3485 
3486 	xfs_btree_set_ptr_null(cur, &nptr);
3487 
3488 	/* Make a key out of the record data to be inserted, and save it. */
3489 	cur->bc_ops->init_rec_from_cur(cur, &rec);
3490 	cur->bc_ops->init_key_from_rec(key, &rec);
3491 
3492 	/*
3493 	 * Loop going up the tree, starting at the leaf level.
3494 	 * Stop when we don't get a split block, that must mean that
3495 	 * the insert is finished with this level.
3496 	 */
3497 	do {
3498 		/*
3499 		 * Insert nrec/nptr into this level of the tree.
3500 		 * Note if we fail, nptr will be null.
3501 		 */
3502 		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3503 				&ncur, &i);
3504 		if (error) {
3505 			if (pcur != cur)
3506 				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3507 			goto error0;
3508 		}
3509 
3510 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3511 			error = -EFSCORRUPTED;
3512 			goto error0;
3513 		}
3514 		level++;
3515 
3516 		/*
3517 		 * See if the cursor we just used is trash.
3518 		 * Can't trash the caller's cursor, but otherwise we should
3519 		 * if ncur is a new cursor or we're about to be done.
3520 		 */
3521 		if (pcur != cur &&
3522 		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3523 			/* Save the state from the cursor before we trash it */
3524 			if (cur->bc_ops->update_cursor)
3525 				cur->bc_ops->update_cursor(pcur, cur);
3526 			cur->bc_nlevels = pcur->bc_nlevels;
3527 			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3528 		}
3529 		/* If we got a new cursor, switch to it. */
3530 		if (ncur) {
3531 			pcur = ncur;
3532 			ncur = NULL;
3533 		}
3534 	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3535 
3536 	*stat = i;
3537 	return 0;
3538 error0:
3539 	return error;
3540 }
3541 
3542 /*
3543  * Try to merge a non-leaf block back into the inode root.
3544  *
3545  * Note: the killroot names comes from the fact that we're effectively
3546  * killing the old root block.  But because we can't just delete the
3547  * inode we have to copy the single block it was pointing to into the
3548  * inode.
3549  */
3550 STATIC int
xfs_btree_kill_iroot(struct xfs_btree_cur * cur)3551 xfs_btree_kill_iroot(
3552 	struct xfs_btree_cur	*cur)
3553 {
3554 	int			whichfork = cur->bc_ino.whichfork;
3555 	struct xfs_inode	*ip = cur->bc_ino.ip;
3556 	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3557 	struct xfs_btree_block	*block;
3558 	struct xfs_btree_block	*cblock;
3559 	union xfs_btree_key	*kp;
3560 	union xfs_btree_key	*ckp;
3561 	union xfs_btree_ptr	*pp;
3562 	union xfs_btree_ptr	*cpp;
3563 	struct xfs_buf		*cbp;
3564 	int			level;
3565 	int			index;
3566 	int			numrecs;
3567 	int			error;
3568 #ifdef DEBUG
3569 	union xfs_btree_ptr	ptr;
3570 #endif
3571 	int			i;
3572 
3573 	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3574 	ASSERT(cur->bc_nlevels > 1);
3575 
3576 	/*
3577 	 * Don't deal with the root block needs to be a leaf case.
3578 	 * We're just going to turn the thing back into extents anyway.
3579 	 */
3580 	level = cur->bc_nlevels - 1;
3581 	if (level == 1)
3582 		goto out0;
3583 
3584 	/*
3585 	 * Give up if the root has multiple children.
3586 	 */
3587 	block = xfs_btree_get_iroot(cur);
3588 	if (xfs_btree_get_numrecs(block) != 1)
3589 		goto out0;
3590 
3591 	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3592 	numrecs = xfs_btree_get_numrecs(cblock);
3593 
3594 	/*
3595 	 * Only do this if the next level will fit.
3596 	 * Then the data must be copied up to the inode,
3597 	 * instead of freeing the root you free the next level.
3598 	 */
3599 	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3600 		goto out0;
3601 
3602 	XFS_BTREE_STATS_INC(cur, killroot);
3603 
3604 #ifdef DEBUG
3605 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3606 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3607 	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3608 	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3609 #endif
3610 
3611 	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3612 	if (index) {
3613 		xfs_iroot_realloc(cur->bc_ino.ip, index,
3614 				  cur->bc_ino.whichfork);
3615 		block = ifp->if_broot;
3616 	}
3617 
3618 	be16_add_cpu(&block->bb_numrecs, index);
3619 	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3620 
3621 	kp = xfs_btree_key_addr(cur, 1, block);
3622 	ckp = xfs_btree_key_addr(cur, 1, cblock);
3623 	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3624 
3625 	pp = xfs_btree_ptr_addr(cur, 1, block);
3626 	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3627 
3628 	for (i = 0; i < numrecs; i++) {
3629 		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3630 		if (error)
3631 			return error;
3632 	}
3633 
3634 	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3635 
3636 	error = xfs_btree_free_block(cur, cbp);
3637 	if (error)
3638 		return error;
3639 
3640 	cur->bc_bufs[level - 1] = NULL;
3641 	be16_add_cpu(&block->bb_level, -1);
3642 	xfs_trans_log_inode(cur->bc_tp, ip,
3643 		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3644 	cur->bc_nlevels--;
3645 out0:
3646 	return 0;
3647 }
3648 
3649 /*
3650  * Kill the current root node, and replace it with it's only child node.
3651  */
3652 STATIC int
xfs_btree_kill_root(struct xfs_btree_cur * cur,struct xfs_buf * bp,int level,union xfs_btree_ptr * newroot)3653 xfs_btree_kill_root(
3654 	struct xfs_btree_cur	*cur,
3655 	struct xfs_buf		*bp,
3656 	int			level,
3657 	union xfs_btree_ptr	*newroot)
3658 {
3659 	int			error;
3660 
3661 	XFS_BTREE_STATS_INC(cur, killroot);
3662 
3663 	/*
3664 	 * Update the root pointer, decreasing the level by 1 and then
3665 	 * free the old root.
3666 	 */
3667 	cur->bc_ops->set_root(cur, newroot, -1);
3668 
3669 	error = xfs_btree_free_block(cur, bp);
3670 	if (error)
3671 		return error;
3672 
3673 	cur->bc_bufs[level] = NULL;
3674 	cur->bc_ra[level] = 0;
3675 	cur->bc_nlevels--;
3676 
3677 	return 0;
3678 }
3679 
3680 STATIC int
xfs_btree_dec_cursor(struct xfs_btree_cur * cur,int level,int * stat)3681 xfs_btree_dec_cursor(
3682 	struct xfs_btree_cur	*cur,
3683 	int			level,
3684 	int			*stat)
3685 {
3686 	int			error;
3687 	int			i;
3688 
3689 	if (level > 0) {
3690 		error = xfs_btree_decrement(cur, level, &i);
3691 		if (error)
3692 			return error;
3693 	}
3694 
3695 	*stat = 1;
3696 	return 0;
3697 }
3698 
3699 /*
3700  * Single level of the btree record deletion routine.
3701  * Delete record pointed to by cur/level.
3702  * Remove the record from its block then rebalance the tree.
3703  * Return 0 for error, 1 for done, 2 to go on to the next level.
3704  */
3705 STATIC int					/* error */
xfs_btree_delrec(struct xfs_btree_cur * cur,int level,int * stat)3706 xfs_btree_delrec(
3707 	struct xfs_btree_cur	*cur,		/* btree cursor */
3708 	int			level,		/* level removing record from */
3709 	int			*stat)		/* fail/done/go-on */
3710 {
3711 	struct xfs_btree_block	*block;		/* btree block */
3712 	union xfs_btree_ptr	cptr;		/* current block ptr */
3713 	struct xfs_buf		*bp;		/* buffer for block */
3714 	int			error;		/* error return value */
3715 	int			i;		/* loop counter */
3716 	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3717 	struct xfs_buf		*lbp;		/* left buffer pointer */
3718 	struct xfs_btree_block	*left;		/* left btree block */
3719 	int			lrecs = 0;	/* left record count */
3720 	int			ptr;		/* key/record index */
3721 	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3722 	struct xfs_buf		*rbp;		/* right buffer pointer */
3723 	struct xfs_btree_block	*right;		/* right btree block */
3724 	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3725 	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3726 	int			rrecs = 0;	/* right record count */
3727 	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3728 	int			numrecs;	/* temporary numrec count */
3729 
3730 	tcur = NULL;
3731 
3732 	/* Get the index of the entry being deleted, check for nothing there. */
3733 	ptr = cur->bc_ptrs[level];
3734 	if (ptr == 0) {
3735 		*stat = 0;
3736 		return 0;
3737 	}
3738 
3739 	/* Get the buffer & block containing the record or key/ptr. */
3740 	block = xfs_btree_get_block(cur, level, &bp);
3741 	numrecs = xfs_btree_get_numrecs(block);
3742 
3743 #ifdef DEBUG
3744 	error = xfs_btree_check_block(cur, block, level, bp);
3745 	if (error)
3746 		goto error0;
3747 #endif
3748 
3749 	/* Fail if we're off the end of the block. */
3750 	if (ptr > numrecs) {
3751 		*stat = 0;
3752 		return 0;
3753 	}
3754 
3755 	XFS_BTREE_STATS_INC(cur, delrec);
3756 	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3757 
3758 	/* Excise the entries being deleted. */
3759 	if (level > 0) {
3760 		/* It's a nonleaf. operate on keys and ptrs */
3761 		union xfs_btree_key	*lkp;
3762 		union xfs_btree_ptr	*lpp;
3763 
3764 		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3765 		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3766 
3767 		for (i = 0; i < numrecs - ptr; i++) {
3768 			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3769 			if (error)
3770 				goto error0;
3771 		}
3772 
3773 		if (ptr < numrecs) {
3774 			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3775 			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3776 			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3777 			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3778 		}
3779 	} else {
3780 		/* It's a leaf. operate on records */
3781 		if (ptr < numrecs) {
3782 			xfs_btree_shift_recs(cur,
3783 				xfs_btree_rec_addr(cur, ptr + 1, block),
3784 				-1, numrecs - ptr);
3785 			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3786 		}
3787 	}
3788 
3789 	/*
3790 	 * Decrement and log the number of entries in the block.
3791 	 */
3792 	xfs_btree_set_numrecs(block, --numrecs);
3793 	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3794 
3795 	/*
3796 	 * If we are tracking the last record in the tree and
3797 	 * we are at the far right edge of the tree, update it.
3798 	 */
3799 	if (xfs_btree_is_lastrec(cur, block, level)) {
3800 		cur->bc_ops->update_lastrec(cur, block, NULL,
3801 					    ptr, LASTREC_DELREC);
3802 	}
3803 
3804 	/*
3805 	 * We're at the root level.  First, shrink the root block in-memory.
3806 	 * Try to get rid of the next level down.  If we can't then there's
3807 	 * nothing left to do.
3808 	 */
3809 	if (level == cur->bc_nlevels - 1) {
3810 		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3811 			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3812 					  cur->bc_ino.whichfork);
3813 
3814 			error = xfs_btree_kill_iroot(cur);
3815 			if (error)
3816 				goto error0;
3817 
3818 			error = xfs_btree_dec_cursor(cur, level, stat);
3819 			if (error)
3820 				goto error0;
3821 			*stat = 1;
3822 			return 0;
3823 		}
3824 
3825 		/*
3826 		 * If this is the root level, and there's only one entry left,
3827 		 * and it's NOT the leaf level, then we can get rid of this
3828 		 * level.
3829 		 */
3830 		if (numrecs == 1 && level > 0) {
3831 			union xfs_btree_ptr	*pp;
3832 			/*
3833 			 * pp is still set to the first pointer in the block.
3834 			 * Make it the new root of the btree.
3835 			 */
3836 			pp = xfs_btree_ptr_addr(cur, 1, block);
3837 			error = xfs_btree_kill_root(cur, bp, level, pp);
3838 			if (error)
3839 				goto error0;
3840 		} else if (level > 0) {
3841 			error = xfs_btree_dec_cursor(cur, level, stat);
3842 			if (error)
3843 				goto error0;
3844 		}
3845 		*stat = 1;
3846 		return 0;
3847 	}
3848 
3849 	/*
3850 	 * If we deleted the leftmost entry in the block, update the
3851 	 * key values above us in the tree.
3852 	 */
3853 	if (xfs_btree_needs_key_update(cur, ptr)) {
3854 		error = xfs_btree_update_keys(cur, level);
3855 		if (error)
3856 			goto error0;
3857 	}
3858 
3859 	/*
3860 	 * If the number of records remaining in the block is at least
3861 	 * the minimum, we're done.
3862 	 */
3863 	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3864 		error = xfs_btree_dec_cursor(cur, level, stat);
3865 		if (error)
3866 			goto error0;
3867 		return 0;
3868 	}
3869 
3870 	/*
3871 	 * Otherwise, we have to move some records around to keep the
3872 	 * tree balanced.  Look at the left and right sibling blocks to
3873 	 * see if we can re-balance by moving only one record.
3874 	 */
3875 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3876 	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3877 
3878 	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3879 		/*
3880 		 * One child of root, need to get a chance to copy its contents
3881 		 * into the root and delete it. Can't go up to next level,
3882 		 * there's nothing to delete there.
3883 		 */
3884 		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3885 		    xfs_btree_ptr_is_null(cur, &lptr) &&
3886 		    level == cur->bc_nlevels - 2) {
3887 			error = xfs_btree_kill_iroot(cur);
3888 			if (!error)
3889 				error = xfs_btree_dec_cursor(cur, level, stat);
3890 			if (error)
3891 				goto error0;
3892 			return 0;
3893 		}
3894 	}
3895 
3896 	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3897 	       !xfs_btree_ptr_is_null(cur, &lptr));
3898 
3899 	/*
3900 	 * Duplicate the cursor so our btree manipulations here won't
3901 	 * disrupt the next level up.
3902 	 */
3903 	error = xfs_btree_dup_cursor(cur, &tcur);
3904 	if (error)
3905 		goto error0;
3906 
3907 	/*
3908 	 * If there's a right sibling, see if it's ok to shift an entry
3909 	 * out of it.
3910 	 */
3911 	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3912 		/*
3913 		 * Move the temp cursor to the last entry in the next block.
3914 		 * Actually any entry but the first would suffice.
3915 		 */
3916 		i = xfs_btree_lastrec(tcur, level);
3917 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3918 			error = -EFSCORRUPTED;
3919 			goto error0;
3920 		}
3921 
3922 		error = xfs_btree_increment(tcur, level, &i);
3923 		if (error)
3924 			goto error0;
3925 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3926 			error = -EFSCORRUPTED;
3927 			goto error0;
3928 		}
3929 
3930 		i = xfs_btree_lastrec(tcur, level);
3931 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3932 			error = -EFSCORRUPTED;
3933 			goto error0;
3934 		}
3935 
3936 		/* Grab a pointer to the block. */
3937 		right = xfs_btree_get_block(tcur, level, &rbp);
3938 #ifdef DEBUG
3939 		error = xfs_btree_check_block(tcur, right, level, rbp);
3940 		if (error)
3941 			goto error0;
3942 #endif
3943 		/* Grab the current block number, for future use. */
3944 		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3945 
3946 		/*
3947 		 * If right block is full enough so that removing one entry
3948 		 * won't make it too empty, and left-shifting an entry out
3949 		 * of right to us works, we're done.
3950 		 */
3951 		if (xfs_btree_get_numrecs(right) - 1 >=
3952 		    cur->bc_ops->get_minrecs(tcur, level)) {
3953 			error = xfs_btree_lshift(tcur, level, &i);
3954 			if (error)
3955 				goto error0;
3956 			if (i) {
3957 				ASSERT(xfs_btree_get_numrecs(block) >=
3958 				       cur->bc_ops->get_minrecs(tcur, level));
3959 
3960 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3961 				tcur = NULL;
3962 
3963 				error = xfs_btree_dec_cursor(cur, level, stat);
3964 				if (error)
3965 					goto error0;
3966 				return 0;
3967 			}
3968 		}
3969 
3970 		/*
3971 		 * Otherwise, grab the number of records in right for
3972 		 * future reference, and fix up the temp cursor to point
3973 		 * to our block again (last record).
3974 		 */
3975 		rrecs = xfs_btree_get_numrecs(right);
3976 		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3977 			i = xfs_btree_firstrec(tcur, level);
3978 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3979 				error = -EFSCORRUPTED;
3980 				goto error0;
3981 			}
3982 
3983 			error = xfs_btree_decrement(tcur, level, &i);
3984 			if (error)
3985 				goto error0;
3986 			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3987 				error = -EFSCORRUPTED;
3988 				goto error0;
3989 			}
3990 		}
3991 	}
3992 
3993 	/*
3994 	 * If there's a left sibling, see if it's ok to shift an entry
3995 	 * out of it.
3996 	 */
3997 	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3998 		/*
3999 		 * Move the temp cursor to the first entry in the
4000 		 * previous block.
4001 		 */
4002 		i = xfs_btree_firstrec(tcur, level);
4003 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4004 			error = -EFSCORRUPTED;
4005 			goto error0;
4006 		}
4007 
4008 		error = xfs_btree_decrement(tcur, level, &i);
4009 		if (error)
4010 			goto error0;
4011 		i = xfs_btree_firstrec(tcur, level);
4012 		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
4013 			error = -EFSCORRUPTED;
4014 			goto error0;
4015 		}
4016 
4017 		/* Grab a pointer to the block. */
4018 		left = xfs_btree_get_block(tcur, level, &lbp);
4019 #ifdef DEBUG
4020 		error = xfs_btree_check_block(cur, left, level, lbp);
4021 		if (error)
4022 			goto error0;
4023 #endif
4024 		/* Grab the current block number, for future use. */
4025 		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4026 
4027 		/*
4028 		 * If left block is full enough so that removing one entry
4029 		 * won't make it too empty, and right-shifting an entry out
4030 		 * of left to us works, we're done.
4031 		 */
4032 		if (xfs_btree_get_numrecs(left) - 1 >=
4033 		    cur->bc_ops->get_minrecs(tcur, level)) {
4034 			error = xfs_btree_rshift(tcur, level, &i);
4035 			if (error)
4036 				goto error0;
4037 			if (i) {
4038 				ASSERT(xfs_btree_get_numrecs(block) >=
4039 				       cur->bc_ops->get_minrecs(tcur, level));
4040 				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4041 				tcur = NULL;
4042 				if (level == 0)
4043 					cur->bc_ptrs[0]++;
4044 
4045 				*stat = 1;
4046 				return 0;
4047 			}
4048 		}
4049 
4050 		/*
4051 		 * Otherwise, grab the number of records in right for
4052 		 * future reference.
4053 		 */
4054 		lrecs = xfs_btree_get_numrecs(left);
4055 	}
4056 
4057 	/* Delete the temp cursor, we're done with it. */
4058 	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4059 	tcur = NULL;
4060 
4061 	/* If here, we need to do a join to keep the tree balanced. */
4062 	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4063 
4064 	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4065 	    lrecs + xfs_btree_get_numrecs(block) <=
4066 			cur->bc_ops->get_maxrecs(cur, level)) {
4067 		/*
4068 		 * Set "right" to be the starting block,
4069 		 * "left" to be the left neighbor.
4070 		 */
4071 		rptr = cptr;
4072 		right = block;
4073 		rbp = bp;
4074 		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4075 		if (error)
4076 			goto error0;
4077 
4078 	/*
4079 	 * If that won't work, see if we can join with the right neighbor block.
4080 	 */
4081 	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4082 		   rrecs + xfs_btree_get_numrecs(block) <=
4083 			cur->bc_ops->get_maxrecs(cur, level)) {
4084 		/*
4085 		 * Set "left" to be the starting block,
4086 		 * "right" to be the right neighbor.
4087 		 */
4088 		lptr = cptr;
4089 		left = block;
4090 		lbp = bp;
4091 		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4092 		if (error)
4093 			goto error0;
4094 
4095 	/*
4096 	 * Otherwise, we can't fix the imbalance.
4097 	 * Just return.  This is probably a logic error, but it's not fatal.
4098 	 */
4099 	} else {
4100 		error = xfs_btree_dec_cursor(cur, level, stat);
4101 		if (error)
4102 			goto error0;
4103 		return 0;
4104 	}
4105 
4106 	rrecs = xfs_btree_get_numrecs(right);
4107 	lrecs = xfs_btree_get_numrecs(left);
4108 
4109 	/*
4110 	 * We're now going to join "left" and "right" by moving all the stuff
4111 	 * in "right" to "left" and deleting "right".
4112 	 */
4113 	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4114 	if (level > 0) {
4115 		/* It's a non-leaf.  Move keys and pointers. */
4116 		union xfs_btree_key	*lkp;	/* left btree key */
4117 		union xfs_btree_ptr	*lpp;	/* left address pointer */
4118 		union xfs_btree_key	*rkp;	/* right btree key */
4119 		union xfs_btree_ptr	*rpp;	/* right address pointer */
4120 
4121 		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4122 		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4123 		rkp = xfs_btree_key_addr(cur, 1, right);
4124 		rpp = xfs_btree_ptr_addr(cur, 1, right);
4125 
4126 		for (i = 1; i < rrecs; i++) {
4127 			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4128 			if (error)
4129 				goto error0;
4130 		}
4131 
4132 		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4133 		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4134 
4135 		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4136 		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4137 	} else {
4138 		/* It's a leaf.  Move records.  */
4139 		union xfs_btree_rec	*lrp;	/* left record pointer */
4140 		union xfs_btree_rec	*rrp;	/* right record pointer */
4141 
4142 		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4143 		rrp = xfs_btree_rec_addr(cur, 1, right);
4144 
4145 		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4146 		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4147 	}
4148 
4149 	XFS_BTREE_STATS_INC(cur, join);
4150 
4151 	/*
4152 	 * Fix up the number of records and right block pointer in the
4153 	 * surviving block, and log it.
4154 	 */
4155 	xfs_btree_set_numrecs(left, lrecs + rrecs);
4156 	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB);
4157 	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4158 	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4159 
4160 	/* If there is a right sibling, point it to the remaining block. */
4161 	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4162 	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4163 		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4164 		if (error)
4165 			goto error0;
4166 		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4167 		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4168 	}
4169 
4170 	/* Free the deleted block. */
4171 	error = xfs_btree_free_block(cur, rbp);
4172 	if (error)
4173 		goto error0;
4174 
4175 	/*
4176 	 * If we joined with the left neighbor, set the buffer in the
4177 	 * cursor to the left block, and fix up the index.
4178 	 */
4179 	if (bp != lbp) {
4180 		cur->bc_bufs[level] = lbp;
4181 		cur->bc_ptrs[level] += lrecs;
4182 		cur->bc_ra[level] = 0;
4183 	}
4184 	/*
4185 	 * If we joined with the right neighbor and there's a level above
4186 	 * us, increment the cursor at that level.
4187 	 */
4188 	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4189 		   (level + 1 < cur->bc_nlevels)) {
4190 		error = xfs_btree_increment(cur, level + 1, &i);
4191 		if (error)
4192 			goto error0;
4193 	}
4194 
4195 	/*
4196 	 * Readjust the ptr at this level if it's not a leaf, since it's
4197 	 * still pointing at the deletion point, which makes the cursor
4198 	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4199 	 * We can't use decrement because it would change the next level up.
4200 	 */
4201 	if (level > 0)
4202 		cur->bc_ptrs[level]--;
4203 
4204 	/*
4205 	 * We combined blocks, so we have to update the parent keys if the
4206 	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4207 	 * points to the old block so that the caller knows which record to
4208 	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4209 	 * for us if we return stat == 2.  The other exit points from this
4210 	 * function don't require deletions further up the tree, so they can
4211 	 * call updkeys directly.
4212 	 */
4213 
4214 	/* Return value means the next level up has something to do. */
4215 	*stat = 2;
4216 	return 0;
4217 
4218 error0:
4219 	if (tcur)
4220 		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4221 	return error;
4222 }
4223 
4224 /*
4225  * Delete the record pointed to by cur.
4226  * The cursor refers to the place where the record was (could be inserted)
4227  * when the operation returns.
4228  */
4229 int					/* error */
xfs_btree_delete(struct xfs_btree_cur * cur,int * stat)4230 xfs_btree_delete(
4231 	struct xfs_btree_cur	*cur,
4232 	int			*stat)	/* success/failure */
4233 {
4234 	int			error;	/* error return value */
4235 	int			level;
4236 	int			i;
4237 	bool			joined = false;
4238 
4239 	/*
4240 	 * Go up the tree, starting at leaf level.
4241 	 *
4242 	 * If 2 is returned then a join was done; go to the next level.
4243 	 * Otherwise we are done.
4244 	 */
4245 	for (level = 0, i = 2; i == 2; level++) {
4246 		error = xfs_btree_delrec(cur, level, &i);
4247 		if (error)
4248 			goto error0;
4249 		if (i == 2)
4250 			joined = true;
4251 	}
4252 
4253 	/*
4254 	 * If we combined blocks as part of deleting the record, delrec won't
4255 	 * have updated the parent high keys so we have to do that here.
4256 	 */
4257 	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4258 		error = xfs_btree_updkeys_force(cur, 0);
4259 		if (error)
4260 			goto error0;
4261 	}
4262 
4263 	if (i == 0) {
4264 		for (level = 1; level < cur->bc_nlevels; level++) {
4265 			if (cur->bc_ptrs[level] == 0) {
4266 				error = xfs_btree_decrement(cur, level, &i);
4267 				if (error)
4268 					goto error0;
4269 				break;
4270 			}
4271 		}
4272 	}
4273 
4274 	*stat = i;
4275 	return 0;
4276 error0:
4277 	return error;
4278 }
4279 
4280 /*
4281  * Get the data from the pointed-to record.
4282  */
4283 int					/* error */
xfs_btree_get_rec(struct xfs_btree_cur * cur,union xfs_btree_rec ** recp,int * stat)4284 xfs_btree_get_rec(
4285 	struct xfs_btree_cur	*cur,	/* btree cursor */
4286 	union xfs_btree_rec	**recp,	/* output: btree record */
4287 	int			*stat)	/* output: success/failure */
4288 {
4289 	struct xfs_btree_block	*block;	/* btree block */
4290 	struct xfs_buf		*bp;	/* buffer pointer */
4291 	int			ptr;	/* record number */
4292 #ifdef DEBUG
4293 	int			error;	/* error return value */
4294 #endif
4295 
4296 	ptr = cur->bc_ptrs[0];
4297 	block = xfs_btree_get_block(cur, 0, &bp);
4298 
4299 #ifdef DEBUG
4300 	error = xfs_btree_check_block(cur, block, 0, bp);
4301 	if (error)
4302 		return error;
4303 #endif
4304 
4305 	/*
4306 	 * Off the right end or left end, return failure.
4307 	 */
4308 	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4309 		*stat = 0;
4310 		return 0;
4311 	}
4312 
4313 	/*
4314 	 * Point to the record and extract its data.
4315 	 */
4316 	*recp = xfs_btree_rec_addr(cur, ptr, block);
4317 	*stat = 1;
4318 	return 0;
4319 }
4320 
4321 /* Visit a block in a btree. */
4322 STATIC int
xfs_btree_visit_block(struct xfs_btree_cur * cur,int level,xfs_btree_visit_blocks_fn fn,void * data)4323 xfs_btree_visit_block(
4324 	struct xfs_btree_cur		*cur,
4325 	int				level,
4326 	xfs_btree_visit_blocks_fn	fn,
4327 	void				*data)
4328 {
4329 	struct xfs_btree_block		*block;
4330 	struct xfs_buf			*bp;
4331 	union xfs_btree_ptr		rptr;
4332 	int				error;
4333 
4334 	/* do right sibling readahead */
4335 	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4336 	block = xfs_btree_get_block(cur, level, &bp);
4337 
4338 	/* process the block */
4339 	error = fn(cur, level, data);
4340 	if (error)
4341 		return error;
4342 
4343 	/* now read rh sibling block for next iteration */
4344 	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4345 	if (xfs_btree_ptr_is_null(cur, &rptr))
4346 		return -ENOENT;
4347 
4348 	/*
4349 	 * We only visit blocks once in this walk, so we have to avoid the
4350 	 * internal xfs_btree_lookup_get_block() optimisation where it will
4351 	 * return the same block without checking if the right sibling points
4352 	 * back to us and creates a cyclic reference in the btree.
4353 	 */
4354 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4355 		if (be64_to_cpu(rptr.l) == XFS_DADDR_TO_FSB(cur->bc_mp,
4356 							xfs_buf_daddr(bp)))
4357 			return -EFSCORRUPTED;
4358 	} else {
4359 		if (be32_to_cpu(rptr.s) == xfs_daddr_to_agbno(cur->bc_mp,
4360 							xfs_buf_daddr(bp)))
4361 			return -EFSCORRUPTED;
4362 	}
4363 	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4364 }
4365 
4366 
4367 /* Visit every block in a btree. */
4368 int
xfs_btree_visit_blocks(struct xfs_btree_cur * cur,xfs_btree_visit_blocks_fn fn,unsigned int flags,void * data)4369 xfs_btree_visit_blocks(
4370 	struct xfs_btree_cur		*cur,
4371 	xfs_btree_visit_blocks_fn	fn,
4372 	unsigned int			flags,
4373 	void				*data)
4374 {
4375 	union xfs_btree_ptr		lptr;
4376 	int				level;
4377 	struct xfs_btree_block		*block = NULL;
4378 	int				error = 0;
4379 
4380 	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4381 
4382 	/* for each level */
4383 	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4384 		/* grab the left hand block */
4385 		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4386 		if (error)
4387 			return error;
4388 
4389 		/* readahead the left most block for the next level down */
4390 		if (level > 0) {
4391 			union xfs_btree_ptr     *ptr;
4392 
4393 			ptr = xfs_btree_ptr_addr(cur, 1, block);
4394 			xfs_btree_readahead_ptr(cur, ptr, 1);
4395 
4396 			/* save for the next iteration of the loop */
4397 			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4398 
4399 			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4400 				continue;
4401 		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4402 			continue;
4403 		}
4404 
4405 		/* for each buffer in the level */
4406 		do {
4407 			error = xfs_btree_visit_block(cur, level, fn, data);
4408 		} while (!error);
4409 
4410 		if (error != -ENOENT)
4411 			return error;
4412 	}
4413 
4414 	return 0;
4415 }
4416 
4417 /*
4418  * Change the owner of a btree.
4419  *
4420  * The mechanism we use here is ordered buffer logging. Because we don't know
4421  * how many buffers were are going to need to modify, we don't really want to
4422  * have to make transaction reservations for the worst case of every buffer in a
4423  * full size btree as that may be more space that we can fit in the log....
4424  *
4425  * We do the btree walk in the most optimal manner possible - we have sibling
4426  * pointers so we can just walk all the blocks on each level from left to right
4427  * in a single pass, and then move to the next level and do the same. We can
4428  * also do readahead on the sibling pointers to get IO moving more quickly,
4429  * though for slow disks this is unlikely to make much difference to performance
4430  * as the amount of CPU work we have to do before moving to the next block is
4431  * relatively small.
4432  *
4433  * For each btree block that we load, modify the owner appropriately, set the
4434  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4435  * we mark the region we change dirty so that if the buffer is relogged in
4436  * a subsequent transaction the changes we make here as an ordered buffer are
4437  * correctly relogged in that transaction.  If we are in recovery context, then
4438  * just queue the modified buffer as delayed write buffer so the transaction
4439  * recovery completion writes the changes to disk.
4440  */
4441 struct xfs_btree_block_change_owner_info {
4442 	uint64_t		new_owner;
4443 	struct list_head	*buffer_list;
4444 };
4445 
4446 static int
xfs_btree_block_change_owner(struct xfs_btree_cur * cur,int level,void * data)4447 xfs_btree_block_change_owner(
4448 	struct xfs_btree_cur	*cur,
4449 	int			level,
4450 	void			*data)
4451 {
4452 	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4453 	struct xfs_btree_block	*block;
4454 	struct xfs_buf		*bp;
4455 
4456 	/* modify the owner */
4457 	block = xfs_btree_get_block(cur, level, &bp);
4458 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4459 		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4460 			return 0;
4461 		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4462 	} else {
4463 		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4464 			return 0;
4465 		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4466 	}
4467 
4468 	/*
4469 	 * If the block is a root block hosted in an inode, we might not have a
4470 	 * buffer pointer here and we shouldn't attempt to log the change as the
4471 	 * information is already held in the inode and discarded when the root
4472 	 * block is formatted into the on-disk inode fork. We still change it,
4473 	 * though, so everything is consistent in memory.
4474 	 */
4475 	if (!bp) {
4476 		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4477 		ASSERT(level == cur->bc_nlevels - 1);
4478 		return 0;
4479 	}
4480 
4481 	if (cur->bc_tp) {
4482 		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4483 			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4484 			return -EAGAIN;
4485 		}
4486 	} else {
4487 		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4488 	}
4489 
4490 	return 0;
4491 }
4492 
4493 int
xfs_btree_change_owner(struct xfs_btree_cur * cur,uint64_t new_owner,struct list_head * buffer_list)4494 xfs_btree_change_owner(
4495 	struct xfs_btree_cur	*cur,
4496 	uint64_t		new_owner,
4497 	struct list_head	*buffer_list)
4498 {
4499 	struct xfs_btree_block_change_owner_info	bbcoi;
4500 
4501 	bbcoi.new_owner = new_owner;
4502 	bbcoi.buffer_list = buffer_list;
4503 
4504 	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4505 			XFS_BTREE_VISIT_ALL, &bbcoi);
4506 }
4507 
4508 /* Verify the v5 fields of a long-format btree block. */
4509 xfs_failaddr_t
xfs_btree_lblock_v5hdr_verify(struct xfs_buf * bp,uint64_t owner)4510 xfs_btree_lblock_v5hdr_verify(
4511 	struct xfs_buf		*bp,
4512 	uint64_t		owner)
4513 {
4514 	struct xfs_mount	*mp = bp->b_mount;
4515 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4516 
4517 	if (!xfs_has_crc(mp))
4518 		return __this_address;
4519 	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4520 		return __this_address;
4521 	if (block->bb_u.l.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4522 		return __this_address;
4523 	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4524 	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4525 		return __this_address;
4526 	return NULL;
4527 }
4528 
4529 /* Verify a long-format btree block. */
4530 xfs_failaddr_t
xfs_btree_lblock_verify(struct xfs_buf * bp,unsigned int max_recs)4531 xfs_btree_lblock_verify(
4532 	struct xfs_buf		*bp,
4533 	unsigned int		max_recs)
4534 {
4535 	struct xfs_mount	*mp = bp->b_mount;
4536 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4537 	xfs_fsblock_t		fsb;
4538 	xfs_failaddr_t		fa;
4539 
4540 	/* numrecs verification */
4541 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4542 		return __this_address;
4543 
4544 	/* sibling pointer verification */
4545 	fsb = XFS_DADDR_TO_FSB(mp, xfs_buf_daddr(bp));
4546 	fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4547 			block->bb_u.l.bb_leftsib);
4548 	if (!fa)
4549 		fa = xfs_btree_check_lblock_siblings(mp, NULL, -1, fsb,
4550 				block->bb_u.l.bb_rightsib);
4551 	return fa;
4552 }
4553 
4554 /**
4555  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4556  *				      btree block
4557  *
4558  * @bp: buffer containing the btree block
4559  */
4560 xfs_failaddr_t
xfs_btree_sblock_v5hdr_verify(struct xfs_buf * bp)4561 xfs_btree_sblock_v5hdr_verify(
4562 	struct xfs_buf		*bp)
4563 {
4564 	struct xfs_mount	*mp = bp->b_mount;
4565 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4566 	struct xfs_perag	*pag = bp->b_pag;
4567 
4568 	if (!xfs_has_crc(mp))
4569 		return __this_address;
4570 	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4571 		return __this_address;
4572 	if (block->bb_u.s.bb_blkno != cpu_to_be64(xfs_buf_daddr(bp)))
4573 		return __this_address;
4574 	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4575 		return __this_address;
4576 	return NULL;
4577 }
4578 
4579 /**
4580  * xfs_btree_sblock_verify() -- verify a short-format btree block
4581  *
4582  * @bp: buffer containing the btree block
4583  * @max_recs: maximum records allowed in this btree node
4584  */
4585 xfs_failaddr_t
xfs_btree_sblock_verify(struct xfs_buf * bp,unsigned int max_recs)4586 xfs_btree_sblock_verify(
4587 	struct xfs_buf		*bp,
4588 	unsigned int		max_recs)
4589 {
4590 	struct xfs_mount	*mp = bp->b_mount;
4591 	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4592 	xfs_agnumber_t		agno;
4593 	xfs_agblock_t		agbno;
4594 	xfs_failaddr_t		fa;
4595 
4596 	/* numrecs verification */
4597 	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4598 		return __this_address;
4599 
4600 	/* sibling pointer verification */
4601 	agno = xfs_daddr_to_agno(mp, xfs_buf_daddr(bp));
4602 	agbno = xfs_daddr_to_agbno(mp, xfs_buf_daddr(bp));
4603 	fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
4604 			block->bb_u.s.bb_leftsib);
4605 	if (!fa)
4606 		fa = xfs_btree_check_sblock_siblings(mp, NULL, -1, agno, agbno,
4607 				block->bb_u.s.bb_rightsib);
4608 	return fa;
4609 }
4610 
4611 /*
4612  * Calculate the number of btree levels needed to store a given number of
4613  * records in a short-format btree.
4614  */
4615 uint
xfs_btree_compute_maxlevels(uint * limits,unsigned long len)4616 xfs_btree_compute_maxlevels(
4617 	uint			*limits,
4618 	unsigned long		len)
4619 {
4620 	uint			level;
4621 	unsigned long		maxblocks;
4622 
4623 	maxblocks = (len + limits[0] - 1) / limits[0];
4624 	for (level = 1; maxblocks > 1; level++)
4625 		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4626 	return level;
4627 }
4628 
4629 /*
4630  * Query a regular btree for all records overlapping a given interval.
4631  * Start with a LE lookup of the key of low_rec and return all records
4632  * until we find a record with a key greater than the key of high_rec.
4633  */
4634 STATIC int
xfs_btree_simple_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4635 xfs_btree_simple_query_range(
4636 	struct xfs_btree_cur		*cur,
4637 	const union xfs_btree_key	*low_key,
4638 	const union xfs_btree_key	*high_key,
4639 	xfs_btree_query_range_fn	fn,
4640 	void				*priv)
4641 {
4642 	union xfs_btree_rec		*recp;
4643 	union xfs_btree_key		rec_key;
4644 	int64_t				diff;
4645 	int				stat;
4646 	bool				firstrec = true;
4647 	int				error;
4648 
4649 	ASSERT(cur->bc_ops->init_high_key_from_rec);
4650 	ASSERT(cur->bc_ops->diff_two_keys);
4651 
4652 	/*
4653 	 * Find the leftmost record.  The btree cursor must be set
4654 	 * to the low record used to generate low_key.
4655 	 */
4656 	stat = 0;
4657 	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4658 	if (error)
4659 		goto out;
4660 
4661 	/* Nothing?  See if there's anything to the right. */
4662 	if (!stat) {
4663 		error = xfs_btree_increment(cur, 0, &stat);
4664 		if (error)
4665 			goto out;
4666 	}
4667 
4668 	while (stat) {
4669 		/* Find the record. */
4670 		error = xfs_btree_get_rec(cur, &recp, &stat);
4671 		if (error || !stat)
4672 			break;
4673 
4674 		/* Skip if high_key(rec) < low_key. */
4675 		if (firstrec) {
4676 			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4677 			firstrec = false;
4678 			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4679 					&rec_key);
4680 			if (diff > 0)
4681 				goto advloop;
4682 		}
4683 
4684 		/* Stop if high_key < low_key(rec). */
4685 		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4686 		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4687 		if (diff > 0)
4688 			break;
4689 
4690 		/* Callback */
4691 		error = fn(cur, recp, priv);
4692 		if (error)
4693 			break;
4694 
4695 advloop:
4696 		/* Move on to the next record. */
4697 		error = xfs_btree_increment(cur, 0, &stat);
4698 		if (error)
4699 			break;
4700 	}
4701 
4702 out:
4703 	return error;
4704 }
4705 
4706 /*
4707  * Query an overlapped interval btree for all records overlapping a given
4708  * interval.  This function roughly follows the algorithm given in
4709  * "Interval Trees" of _Introduction to Algorithms_, which is section
4710  * 14.3 in the 2nd and 3rd editions.
4711  *
4712  * First, generate keys for the low and high records passed in.
4713  *
4714  * For any leaf node, generate the high and low keys for the record.
4715  * If the record keys overlap with the query low/high keys, pass the
4716  * record to the function iterator.
4717  *
4718  * For any internal node, compare the low and high keys of each
4719  * pointer against the query low/high keys.  If there's an overlap,
4720  * follow the pointer.
4721  *
4722  * As an optimization, we stop scanning a block when we find a low key
4723  * that is greater than the query's high key.
4724  */
4725 STATIC int
xfs_btree_overlapped_query_range(struct xfs_btree_cur * cur,const union xfs_btree_key * low_key,const union xfs_btree_key * high_key,xfs_btree_query_range_fn fn,void * priv)4726 xfs_btree_overlapped_query_range(
4727 	struct xfs_btree_cur		*cur,
4728 	const union xfs_btree_key	*low_key,
4729 	const union xfs_btree_key	*high_key,
4730 	xfs_btree_query_range_fn	fn,
4731 	void				*priv)
4732 {
4733 	union xfs_btree_ptr		ptr;
4734 	union xfs_btree_ptr		*pp;
4735 	union xfs_btree_key		rec_key;
4736 	union xfs_btree_key		rec_hkey;
4737 	union xfs_btree_key		*lkp;
4738 	union xfs_btree_key		*hkp;
4739 	union xfs_btree_rec		*recp;
4740 	struct xfs_btree_block		*block;
4741 	int64_t				ldiff;
4742 	int64_t				hdiff;
4743 	int				level;
4744 	struct xfs_buf			*bp;
4745 	int				i;
4746 	int				error;
4747 
4748 	/* Load the root of the btree. */
4749 	level = cur->bc_nlevels - 1;
4750 	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4751 	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4752 	if (error)
4753 		return error;
4754 	xfs_btree_get_block(cur, level, &bp);
4755 	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4756 #ifdef DEBUG
4757 	error = xfs_btree_check_block(cur, block, level, bp);
4758 	if (error)
4759 		goto out;
4760 #endif
4761 	cur->bc_ptrs[level] = 1;
4762 
4763 	while (level < cur->bc_nlevels) {
4764 		block = xfs_btree_get_block(cur, level, &bp);
4765 
4766 		/* End of node, pop back towards the root. */
4767 		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4768 pop_up:
4769 			if (level < cur->bc_nlevels - 1)
4770 				cur->bc_ptrs[level + 1]++;
4771 			level++;
4772 			continue;
4773 		}
4774 
4775 		if (level == 0) {
4776 			/* Handle a leaf node. */
4777 			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4778 
4779 			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4780 			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4781 					low_key);
4782 
4783 			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4784 			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4785 					&rec_key);
4786 
4787 			/*
4788 			 * If (record's high key >= query's low key) and
4789 			 *    (query's high key >= record's low key), then
4790 			 * this record overlaps the query range; callback.
4791 			 */
4792 			if (ldiff >= 0 && hdiff >= 0) {
4793 				error = fn(cur, recp, priv);
4794 				if (error)
4795 					break;
4796 			} else if (hdiff < 0) {
4797 				/* Record is larger than high key; pop. */
4798 				goto pop_up;
4799 			}
4800 			cur->bc_ptrs[level]++;
4801 			continue;
4802 		}
4803 
4804 		/* Handle an internal node. */
4805 		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4806 		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4807 		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4808 
4809 		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4810 		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4811 
4812 		/*
4813 		 * If (pointer's high key >= query's low key) and
4814 		 *    (query's high key >= pointer's low key), then
4815 		 * this record overlaps the query range; follow pointer.
4816 		 */
4817 		if (ldiff >= 0 && hdiff >= 0) {
4818 			level--;
4819 			error = xfs_btree_lookup_get_block(cur, level, pp,
4820 					&block);
4821 			if (error)
4822 				goto out;
4823 			xfs_btree_get_block(cur, level, &bp);
4824 			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4825 #ifdef DEBUG
4826 			error = xfs_btree_check_block(cur, block, level, bp);
4827 			if (error)
4828 				goto out;
4829 #endif
4830 			cur->bc_ptrs[level] = 1;
4831 			continue;
4832 		} else if (hdiff < 0) {
4833 			/* The low key is larger than the upper range; pop. */
4834 			goto pop_up;
4835 		}
4836 		cur->bc_ptrs[level]++;
4837 	}
4838 
4839 out:
4840 	/*
4841 	 * If we don't end this function with the cursor pointing at a record
4842 	 * block, a subsequent non-error cursor deletion will not release
4843 	 * node-level buffers, causing a buffer leak.  This is quite possible
4844 	 * with a zero-results range query, so release the buffers if we
4845 	 * failed to return any results.
4846 	 */
4847 	if (cur->bc_bufs[0] == NULL) {
4848 		for (i = 0; i < cur->bc_nlevels; i++) {
4849 			if (cur->bc_bufs[i]) {
4850 				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4851 				cur->bc_bufs[i] = NULL;
4852 				cur->bc_ptrs[i] = 0;
4853 				cur->bc_ra[i] = 0;
4854 			}
4855 		}
4856 	}
4857 
4858 	return error;
4859 }
4860 
4861 /*
4862  * Query a btree for all records overlapping a given interval of keys.  The
4863  * supplied function will be called with each record found; return one of the
4864  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4865  * code.  This function returns -ECANCELED, zero, or a negative error code.
4866  */
4867 int
xfs_btree_query_range(struct xfs_btree_cur * cur,const union xfs_btree_irec * low_rec,const union xfs_btree_irec * high_rec,xfs_btree_query_range_fn fn,void * priv)4868 xfs_btree_query_range(
4869 	struct xfs_btree_cur		*cur,
4870 	const union xfs_btree_irec	*low_rec,
4871 	const union xfs_btree_irec	*high_rec,
4872 	xfs_btree_query_range_fn	fn,
4873 	void				*priv)
4874 {
4875 	union xfs_btree_rec		rec;
4876 	union xfs_btree_key		low_key;
4877 	union xfs_btree_key		high_key;
4878 
4879 	/* Find the keys of both ends of the interval. */
4880 	cur->bc_rec = *high_rec;
4881 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4882 	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4883 
4884 	cur->bc_rec = *low_rec;
4885 	cur->bc_ops->init_rec_from_cur(cur, &rec);
4886 	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4887 
4888 	/* Enforce low key < high key. */
4889 	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4890 		return -EINVAL;
4891 
4892 	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4893 		return xfs_btree_simple_query_range(cur, &low_key,
4894 				&high_key, fn, priv);
4895 	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4896 			fn, priv);
4897 }
4898 
4899 /* Query a btree for all records. */
4900 int
xfs_btree_query_all(struct xfs_btree_cur * cur,xfs_btree_query_range_fn fn,void * priv)4901 xfs_btree_query_all(
4902 	struct xfs_btree_cur		*cur,
4903 	xfs_btree_query_range_fn	fn,
4904 	void				*priv)
4905 {
4906 	union xfs_btree_key		low_key;
4907 	union xfs_btree_key		high_key;
4908 
4909 	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4910 	memset(&low_key, 0, sizeof(low_key));
4911 	memset(&high_key, 0xFF, sizeof(high_key));
4912 
4913 	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4914 }
4915 
4916 /*
4917  * Calculate the number of blocks needed to store a given number of records
4918  * in a short-format (per-AG metadata) btree.
4919  */
4920 unsigned long long
xfs_btree_calc_size(uint * limits,unsigned long long len)4921 xfs_btree_calc_size(
4922 	uint			*limits,
4923 	unsigned long long	len)
4924 {
4925 	int			level;
4926 	int			maxrecs;
4927 	unsigned long long	rval;
4928 
4929 	maxrecs = limits[0];
4930 	for (level = 0, rval = 0; len > 1; level++) {
4931 		len += maxrecs - 1;
4932 		do_div(len, maxrecs);
4933 		maxrecs = limits[1];
4934 		rval += len;
4935 	}
4936 	return rval;
4937 }
4938 
4939 static int
xfs_btree_count_blocks_helper(struct xfs_btree_cur * cur,int level,void * data)4940 xfs_btree_count_blocks_helper(
4941 	struct xfs_btree_cur	*cur,
4942 	int			level,
4943 	void			*data)
4944 {
4945 	xfs_extlen_t		*blocks = data;
4946 	(*blocks)++;
4947 
4948 	return 0;
4949 }
4950 
4951 /* Count the blocks in a btree and return the result in *blocks. */
4952 int
xfs_btree_count_blocks(struct xfs_btree_cur * cur,xfs_extlen_t * blocks)4953 xfs_btree_count_blocks(
4954 	struct xfs_btree_cur	*cur,
4955 	xfs_extlen_t		*blocks)
4956 {
4957 	*blocks = 0;
4958 	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4959 			XFS_BTREE_VISIT_ALL, blocks);
4960 }
4961 
4962 /* Compare two btree pointers. */
4963 int64_t
xfs_btree_diff_two_ptrs(struct xfs_btree_cur * cur,const union xfs_btree_ptr * a,const union xfs_btree_ptr * b)4964 xfs_btree_diff_two_ptrs(
4965 	struct xfs_btree_cur		*cur,
4966 	const union xfs_btree_ptr	*a,
4967 	const union xfs_btree_ptr	*b)
4968 {
4969 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4970 		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4971 	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4972 }
4973 
4974 /* If there's an extent, we're done. */
4975 STATIC int
xfs_btree_has_record_helper(struct xfs_btree_cur * cur,const union xfs_btree_rec * rec,void * priv)4976 xfs_btree_has_record_helper(
4977 	struct xfs_btree_cur		*cur,
4978 	const union xfs_btree_rec	*rec,
4979 	void				*priv)
4980 {
4981 	return -ECANCELED;
4982 }
4983 
4984 /* Is there a record covering a given range of keys? */
4985 int
xfs_btree_has_record(struct xfs_btree_cur * cur,const union xfs_btree_irec * low,const union xfs_btree_irec * high,bool * exists)4986 xfs_btree_has_record(
4987 	struct xfs_btree_cur		*cur,
4988 	const union xfs_btree_irec	*low,
4989 	const union xfs_btree_irec	*high,
4990 	bool				*exists)
4991 {
4992 	int				error;
4993 
4994 	error = xfs_btree_query_range(cur, low, high,
4995 			&xfs_btree_has_record_helper, NULL);
4996 	if (error == -ECANCELED) {
4997 		*exists = true;
4998 		return 0;
4999 	}
5000 	*exists = false;
5001 	return error;
5002 }
5003 
5004 /* Are there more records in this btree? */
5005 bool
xfs_btree_has_more_records(struct xfs_btree_cur * cur)5006 xfs_btree_has_more_records(
5007 	struct xfs_btree_cur	*cur)
5008 {
5009 	struct xfs_btree_block	*block;
5010 	struct xfs_buf		*bp;
5011 
5012 	block = xfs_btree_get_block(cur, 0, &bp);
5013 
5014 	/* There are still records in this block. */
5015 	if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
5016 		return true;
5017 
5018 	/* There are more record blocks. */
5019 	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
5020 		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
5021 	else
5022 		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
5023 }
5024