• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
15 #include "xfs_log.h"
16 #include "xfs_log_recover.h"
17 #include "xfs_trans.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_ag.h"
22 
23 static kmem_zone_t *xfs_buf_zone;
24 
25 /*
26  * Locking orders
27  *
28  * xfs_buf_ioacct_inc:
29  * xfs_buf_ioacct_dec:
30  *	b_sema (caller holds)
31  *	  b_lock
32  *
33  * xfs_buf_stale:
34  *	b_sema (caller holds)
35  *	  b_lock
36  *	    lru_lock
37  *
38  * xfs_buf_rele:
39  *	b_lock
40  *	  pag_buf_lock
41  *	    lru_lock
42  *
43  * xfs_buftarg_drain_rele
44  *	lru_lock
45  *	  b_lock (trylock due to inversion)
46  *
47  * xfs_buftarg_isolate
48  *	lru_lock
49  *	  b_lock (trylock due to inversion)
50  */
51 
52 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
53 
54 static inline int
xfs_buf_submit(struct xfs_buf * bp)55 xfs_buf_submit(
56 	struct xfs_buf		*bp)
57 {
58 	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
59 }
60 
61 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)62 xfs_buf_is_vmapped(
63 	struct xfs_buf	*bp)
64 {
65 	/*
66 	 * Return true if the buffer is vmapped.
67 	 *
68 	 * b_addr is null if the buffer is not mapped, but the code is clever
69 	 * enough to know it doesn't have to map a single page, so the check has
70 	 * to be both for b_addr and bp->b_page_count > 1.
71 	 */
72 	return bp->b_addr && bp->b_page_count > 1;
73 }
74 
75 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)76 xfs_buf_vmap_len(
77 	struct xfs_buf	*bp)
78 {
79 	return (bp->b_page_count * PAGE_SIZE);
80 }
81 
82 /*
83  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84  * this buffer. The count is incremented once per buffer (per hold cycle)
85  * because the corresponding decrement is deferred to buffer release. Buffers
86  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87  * tracking adds unnecessary overhead. This is used for sychronization purposes
88  * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
89  * in-flight buffers.
90  *
91  * Buffers that are never released (e.g., superblock, iclog buffers) must set
92  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93  * never reaches zero and unmount hangs indefinitely.
94  */
95 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)96 xfs_buf_ioacct_inc(
97 	struct xfs_buf	*bp)
98 {
99 	if (bp->b_flags & XBF_NO_IOACCT)
100 		return;
101 
102 	ASSERT(bp->b_flags & XBF_ASYNC);
103 	spin_lock(&bp->b_lock);
104 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 		percpu_counter_inc(&bp->b_target->bt_io_count);
107 	}
108 	spin_unlock(&bp->b_lock);
109 }
110 
111 /*
112  * Clear the in-flight state on a buffer about to be released to the LRU or
113  * freed and unaccount from the buftarg.
114  */
115 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)116 __xfs_buf_ioacct_dec(
117 	struct xfs_buf	*bp)
118 {
119 	lockdep_assert_held(&bp->b_lock);
120 
121 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 		percpu_counter_dec(&bp->b_target->bt_io_count);
124 	}
125 }
126 
127 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)128 xfs_buf_ioacct_dec(
129 	struct xfs_buf	*bp)
130 {
131 	spin_lock(&bp->b_lock);
132 	__xfs_buf_ioacct_dec(bp);
133 	spin_unlock(&bp->b_lock);
134 }
135 
136 /*
137  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138  * b_lru_ref count so that the buffer is freed immediately when the buffer
139  * reference count falls to zero. If the buffer is already on the LRU, we need
140  * to remove the reference that LRU holds on the buffer.
141  *
142  * This prevents build-up of stale buffers on the LRU.
143  */
144 void
xfs_buf_stale(struct xfs_buf * bp)145 xfs_buf_stale(
146 	struct xfs_buf	*bp)
147 {
148 	ASSERT(xfs_buf_islocked(bp));
149 
150 	bp->b_flags |= XBF_STALE;
151 
152 	/*
153 	 * Clear the delwri status so that a delwri queue walker will not
154 	 * flush this buffer to disk now that it is stale. The delwri queue has
155 	 * a reference to the buffer, so this is safe to do.
156 	 */
157 	bp->b_flags &= ~_XBF_DELWRI_Q;
158 
159 	/*
160 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 	 * could reset b_flags. There is no guarantee that the buffer is
162 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 	 * status now to preserve accounting consistency.
164 	 */
165 	spin_lock(&bp->b_lock);
166 	__xfs_buf_ioacct_dec(bp);
167 
168 	atomic_set(&bp->b_lru_ref, 0);
169 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 		atomic_dec(&bp->b_hold);
172 
173 	ASSERT(atomic_read(&bp->b_hold) >= 1);
174 	spin_unlock(&bp->b_lock);
175 }
176 
177 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)178 xfs_buf_get_maps(
179 	struct xfs_buf		*bp,
180 	int			map_count)
181 {
182 	ASSERT(bp->b_maps == NULL);
183 	bp->b_map_count = map_count;
184 
185 	if (map_count == 1) {
186 		bp->b_maps = &bp->__b_map;
187 		return 0;
188 	}
189 
190 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 				KM_NOFS);
192 	if (!bp->b_maps)
193 		return -ENOMEM;
194 	return 0;
195 }
196 
197 /*
198  *	Frees b_pages if it was allocated.
199  */
200 static void
xfs_buf_free_maps(struct xfs_buf * bp)201 xfs_buf_free_maps(
202 	struct xfs_buf	*bp)
203 {
204 	if (bp->b_maps != &bp->__b_map) {
205 		kmem_free(bp->b_maps);
206 		bp->b_maps = NULL;
207 	}
208 }
209 
210 static int
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)211 _xfs_buf_alloc(
212 	struct xfs_buftarg	*target,
213 	struct xfs_buf_map	*map,
214 	int			nmaps,
215 	xfs_buf_flags_t		flags,
216 	struct xfs_buf		**bpp)
217 {
218 	struct xfs_buf		*bp;
219 	int			error;
220 	int			i;
221 
222 	*bpp = NULL;
223 	bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
224 
225 	/*
226 	 * We don't want certain flags to appear in b_flags unless they are
227 	 * specifically set by later operations on the buffer.
228 	 */
229 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
230 
231 	atomic_set(&bp->b_hold, 1);
232 	atomic_set(&bp->b_lru_ref, 1);
233 	init_completion(&bp->b_iowait);
234 	INIT_LIST_HEAD(&bp->b_lru);
235 	INIT_LIST_HEAD(&bp->b_list);
236 	INIT_LIST_HEAD(&bp->b_li_list);
237 	sema_init(&bp->b_sema, 0); /* held, no waiters */
238 	spin_lock_init(&bp->b_lock);
239 	bp->b_target = target;
240 	bp->b_mount = target->bt_mount;
241 	bp->b_flags = flags;
242 
243 	/*
244 	 * Set length and io_length to the same value initially.
245 	 * I/O routines should use io_length, which will be the same in
246 	 * most cases but may be reset (e.g. XFS recovery).
247 	 */
248 	error = xfs_buf_get_maps(bp, nmaps);
249 	if (error)  {
250 		kmem_cache_free(xfs_buf_zone, bp);
251 		return error;
252 	}
253 
254 	bp->b_rhash_key = map[0].bm_bn;
255 	bp->b_length = 0;
256 	for (i = 0; i < nmaps; i++) {
257 		bp->b_maps[i].bm_bn = map[i].bm_bn;
258 		bp->b_maps[i].bm_len = map[i].bm_len;
259 		bp->b_length += map[i].bm_len;
260 	}
261 
262 	atomic_set(&bp->b_pin_count, 0);
263 	init_waitqueue_head(&bp->b_waiters);
264 
265 	XFS_STATS_INC(bp->b_mount, xb_create);
266 	trace_xfs_buf_init(bp, _RET_IP_);
267 
268 	*bpp = bp;
269 	return 0;
270 }
271 
272 static void
xfs_buf_free_pages(struct xfs_buf * bp)273 xfs_buf_free_pages(
274 	struct xfs_buf	*bp)
275 {
276 	uint		i;
277 
278 	ASSERT(bp->b_flags & _XBF_PAGES);
279 
280 	if (xfs_buf_is_vmapped(bp))
281 		vm_unmap_ram(bp->b_addr, bp->b_page_count);
282 
283 	for (i = 0; i < bp->b_page_count; i++) {
284 		if (bp->b_pages[i])
285 			__free_page(bp->b_pages[i]);
286 	}
287 	if (current->reclaim_state)
288 		current->reclaim_state->reclaimed_slab += bp->b_page_count;
289 
290 	if (bp->b_pages != bp->b_page_array)
291 		kmem_free(bp->b_pages);
292 	bp->b_pages = NULL;
293 	bp->b_flags &= ~_XBF_PAGES;
294 }
295 
296 static void
xfs_buf_free(struct xfs_buf * bp)297 xfs_buf_free(
298 	struct xfs_buf		*bp)
299 {
300 	trace_xfs_buf_free(bp, _RET_IP_);
301 
302 	ASSERT(list_empty(&bp->b_lru));
303 
304 	if (bp->b_flags & _XBF_PAGES)
305 		xfs_buf_free_pages(bp);
306 	else if (bp->b_flags & _XBF_KMEM)
307 		kmem_free(bp->b_addr);
308 
309 	xfs_buf_free_maps(bp);
310 	kmem_cache_free(xfs_buf_zone, bp);
311 }
312 
313 static int
xfs_buf_alloc_kmem(struct xfs_buf * bp,xfs_buf_flags_t flags)314 xfs_buf_alloc_kmem(
315 	struct xfs_buf	*bp,
316 	xfs_buf_flags_t	flags)
317 {
318 	xfs_km_flags_t	kmflag_mask = KM_NOFS;
319 	size_t		size = BBTOB(bp->b_length);
320 
321 	/* Assure zeroed buffer for non-read cases. */
322 	if (!(flags & XBF_READ))
323 		kmflag_mask |= KM_ZERO;
324 
325 	bp->b_addr = kmem_alloc(size, kmflag_mask);
326 	if (!bp->b_addr)
327 		return -ENOMEM;
328 
329 	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
330 	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
331 		/* b_addr spans two pages - use alloc_page instead */
332 		kmem_free(bp->b_addr);
333 		bp->b_addr = NULL;
334 		return -ENOMEM;
335 	}
336 	bp->b_offset = offset_in_page(bp->b_addr);
337 	bp->b_pages = bp->b_page_array;
338 	bp->b_pages[0] = kmem_to_page(bp->b_addr);
339 	bp->b_page_count = 1;
340 	bp->b_flags |= _XBF_KMEM;
341 	return 0;
342 }
343 
344 static int
xfs_buf_alloc_pages(struct xfs_buf * bp,xfs_buf_flags_t flags)345 xfs_buf_alloc_pages(
346 	struct xfs_buf	*bp,
347 	xfs_buf_flags_t	flags)
348 {
349 	gfp_t		gfp_mask = __GFP_NOWARN;
350 	long		filled = 0;
351 
352 	if (flags & XBF_READ_AHEAD)
353 		gfp_mask |= __GFP_NORETRY;
354 	else
355 		gfp_mask |= GFP_NOFS;
356 
357 	/* Make sure that we have a page list */
358 	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
359 	if (bp->b_page_count <= XB_PAGES) {
360 		bp->b_pages = bp->b_page_array;
361 	} else {
362 		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
363 					gfp_mask);
364 		if (!bp->b_pages)
365 			return -ENOMEM;
366 	}
367 	bp->b_flags |= _XBF_PAGES;
368 
369 	/* Assure zeroed buffer for non-read cases. */
370 	if (!(flags & XBF_READ))
371 		gfp_mask |= __GFP_ZERO;
372 
373 	/*
374 	 * Bulk filling of pages can take multiple calls. Not filling the entire
375 	 * array is not an allocation failure, so don't back off if we get at
376 	 * least one extra page.
377 	 */
378 	for (;;) {
379 		long	last = filled;
380 
381 		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
382 						bp->b_pages);
383 		if (filled == bp->b_page_count) {
384 			XFS_STATS_INC(bp->b_mount, xb_page_found);
385 			break;
386 		}
387 
388 		if (filled != last)
389 			continue;
390 
391 		if (flags & XBF_READ_AHEAD) {
392 			xfs_buf_free_pages(bp);
393 			return -ENOMEM;
394 		}
395 
396 		XFS_STATS_INC(bp->b_mount, xb_page_retries);
397 		congestion_wait(BLK_RW_ASYNC, HZ / 50);
398 	}
399 	return 0;
400 }
401 
402 /*
403  *	Map buffer into kernel address-space if necessary.
404  */
405 STATIC int
_xfs_buf_map_pages(struct xfs_buf * bp,uint flags)406 _xfs_buf_map_pages(
407 	struct xfs_buf		*bp,
408 	uint			flags)
409 {
410 	ASSERT(bp->b_flags & _XBF_PAGES);
411 	if (bp->b_page_count == 1) {
412 		/* A single page buffer is always mappable */
413 		bp->b_addr = page_address(bp->b_pages[0]);
414 	} else if (flags & XBF_UNMAPPED) {
415 		bp->b_addr = NULL;
416 	} else {
417 		int retried = 0;
418 		unsigned nofs_flag;
419 
420 		/*
421 		 * vm_map_ram() will allocate auxiliary structures (e.g.
422 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
423 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
424 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
425 		 * memory reclaim re-entering the filesystem here and
426 		 * potentially deadlocking.
427 		 */
428 		nofs_flag = memalloc_nofs_save();
429 		do {
430 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
431 						-1);
432 			if (bp->b_addr)
433 				break;
434 			vm_unmap_aliases();
435 		} while (retried++ <= 1);
436 		memalloc_nofs_restore(nofs_flag);
437 
438 		if (!bp->b_addr)
439 			return -ENOMEM;
440 	}
441 
442 	return 0;
443 }
444 
445 /*
446  *	Finding and Reading Buffers
447  */
448 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)449 _xfs_buf_obj_cmp(
450 	struct rhashtable_compare_arg	*arg,
451 	const void			*obj)
452 {
453 	const struct xfs_buf_map	*map = arg->key;
454 	const struct xfs_buf		*bp = obj;
455 
456 	/*
457 	 * The key hashing in the lookup path depends on the key being the
458 	 * first element of the compare_arg, make sure to assert this.
459 	 */
460 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
461 
462 	if (bp->b_rhash_key != map->bm_bn)
463 		return 1;
464 
465 	if (unlikely(bp->b_length != map->bm_len)) {
466 		/*
467 		 * found a block number match. If the range doesn't
468 		 * match, the only way this is allowed is if the buffer
469 		 * in the cache is stale and the transaction that made
470 		 * it stale has not yet committed. i.e. we are
471 		 * reallocating a busy extent. Skip this buffer and
472 		 * continue searching for an exact match.
473 		 */
474 		ASSERT(bp->b_flags & XBF_STALE);
475 		return 1;
476 	}
477 	return 0;
478 }
479 
480 static const struct rhashtable_params xfs_buf_hash_params = {
481 	.min_size		= 32,	/* empty AGs have minimal footprint */
482 	.nelem_hint		= 16,
483 	.key_len		= sizeof(xfs_daddr_t),
484 	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
485 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
486 	.automatic_shrinking	= true,
487 	.obj_cmpfn		= _xfs_buf_obj_cmp,
488 };
489 
490 int
xfs_buf_hash_init(struct xfs_perag * pag)491 xfs_buf_hash_init(
492 	struct xfs_perag	*pag)
493 {
494 	spin_lock_init(&pag->pag_buf_lock);
495 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
496 }
497 
498 void
xfs_buf_hash_destroy(struct xfs_perag * pag)499 xfs_buf_hash_destroy(
500 	struct xfs_perag	*pag)
501 {
502 	rhashtable_destroy(&pag->pag_buf_hash);
503 }
504 
505 /*
506  * Look up a buffer in the buffer cache and return it referenced and locked
507  * in @found_bp.
508  *
509  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
510  * cache.
511  *
512  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
513  * -EAGAIN if we fail to lock it.
514  *
515  * Return values are:
516  *	-EFSCORRUPTED if have been supplied with an invalid address
517  *	-EAGAIN on trylock failure
518  *	-ENOENT if we fail to find a match and @new_bp was NULL
519  *	0, with @found_bp:
520  *		- @new_bp if we inserted it into the cache
521  *		- the buffer we found and locked.
522  */
523 static int
xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf * new_bp,struct xfs_buf ** found_bp)524 xfs_buf_find(
525 	struct xfs_buftarg	*btp,
526 	struct xfs_buf_map	*map,
527 	int			nmaps,
528 	xfs_buf_flags_t		flags,
529 	struct xfs_buf		*new_bp,
530 	struct xfs_buf		**found_bp)
531 {
532 	struct xfs_perag	*pag;
533 	struct xfs_buf		*bp;
534 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
535 	xfs_daddr_t		eofs;
536 	int			i;
537 
538 	*found_bp = NULL;
539 
540 	for (i = 0; i < nmaps; i++)
541 		cmap.bm_len += map[i].bm_len;
542 
543 	/* Check for IOs smaller than the sector size / not sector aligned */
544 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
545 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
546 
547 	/*
548 	 * Corrupted block numbers can get through to here, unfortunately, so we
549 	 * have to check that the buffer falls within the filesystem bounds.
550 	 */
551 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
552 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
553 		xfs_alert(btp->bt_mount,
554 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
555 			  __func__, cmap.bm_bn, eofs);
556 		WARN_ON(1);
557 		return -EFSCORRUPTED;
558 	}
559 
560 	pag = xfs_perag_get(btp->bt_mount,
561 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
562 
563 	spin_lock(&pag->pag_buf_lock);
564 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
565 				    xfs_buf_hash_params);
566 	if (bp) {
567 		atomic_inc(&bp->b_hold);
568 		goto found;
569 	}
570 
571 	/* No match found */
572 	if (!new_bp) {
573 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
574 		spin_unlock(&pag->pag_buf_lock);
575 		xfs_perag_put(pag);
576 		return -ENOENT;
577 	}
578 
579 	/* the buffer keeps the perag reference until it is freed */
580 	new_bp->b_pag = pag;
581 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
582 			       xfs_buf_hash_params);
583 	spin_unlock(&pag->pag_buf_lock);
584 	*found_bp = new_bp;
585 	return 0;
586 
587 found:
588 	spin_unlock(&pag->pag_buf_lock);
589 	xfs_perag_put(pag);
590 
591 	if (!xfs_buf_trylock(bp)) {
592 		if (flags & XBF_TRYLOCK) {
593 			xfs_buf_rele(bp);
594 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
595 			return -EAGAIN;
596 		}
597 		xfs_buf_lock(bp);
598 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
599 	}
600 
601 	/*
602 	 * if the buffer is stale, clear all the external state associated with
603 	 * it. We need to keep flags such as how we allocated the buffer memory
604 	 * intact here.
605 	 */
606 	if (bp->b_flags & XBF_STALE) {
607 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
608 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
609 		bp->b_ops = NULL;
610 	}
611 
612 	trace_xfs_buf_find(bp, flags, _RET_IP_);
613 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
614 	*found_bp = bp;
615 	return 0;
616 }
617 
618 struct xfs_buf *
xfs_buf_incore(struct xfs_buftarg * target,xfs_daddr_t blkno,size_t numblks,xfs_buf_flags_t flags)619 xfs_buf_incore(
620 	struct xfs_buftarg	*target,
621 	xfs_daddr_t		blkno,
622 	size_t			numblks,
623 	xfs_buf_flags_t		flags)
624 {
625 	struct xfs_buf		*bp;
626 	int			error;
627 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
628 
629 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
630 	if (error)
631 		return NULL;
632 	return bp;
633 }
634 
635 /*
636  * Assembles a buffer covering the specified range. The code is optimised for
637  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638  * more hits than misses.
639  */
640 int
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)641 xfs_buf_get_map(
642 	struct xfs_buftarg	*target,
643 	struct xfs_buf_map	*map,
644 	int			nmaps,
645 	xfs_buf_flags_t		flags,
646 	struct xfs_buf		**bpp)
647 {
648 	struct xfs_buf		*bp;
649 	struct xfs_buf		*new_bp;
650 	int			error;
651 
652 	*bpp = NULL;
653 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
654 	if (!error)
655 		goto found;
656 	if (error != -ENOENT)
657 		return error;
658 
659 	error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
660 	if (error)
661 		return error;
662 
663 	/*
664 	 * For buffers that fit entirely within a single page, first attempt to
665 	 * allocate the memory from the heap to minimise memory usage. If we
666 	 * can't get heap memory for these small buffers, we fall back to using
667 	 * the page allocator.
668 	 */
669 	if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
670 	    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
671 		error = xfs_buf_alloc_pages(new_bp, flags);
672 		if (error)
673 			goto out_free_buf;
674 	}
675 
676 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
677 	if (error)
678 		goto out_free_buf;
679 
680 	if (bp != new_bp)
681 		xfs_buf_free(new_bp);
682 
683 found:
684 	if (!bp->b_addr) {
685 		error = _xfs_buf_map_pages(bp, flags);
686 		if (unlikely(error)) {
687 			xfs_warn_ratelimited(target->bt_mount,
688 				"%s: failed to map %u pages", __func__,
689 				bp->b_page_count);
690 			xfs_buf_relse(bp);
691 			return error;
692 		}
693 	}
694 
695 	/*
696 	 * Clear b_error if this is a lookup from a caller that doesn't expect
697 	 * valid data to be found in the buffer.
698 	 */
699 	if (!(flags & XBF_READ))
700 		xfs_buf_ioerror(bp, 0);
701 
702 	XFS_STATS_INC(target->bt_mount, xb_get);
703 	trace_xfs_buf_get(bp, flags, _RET_IP_);
704 	*bpp = bp;
705 	return 0;
706 out_free_buf:
707 	xfs_buf_free(new_bp);
708 	return error;
709 }
710 
711 int
_xfs_buf_read(struct xfs_buf * bp,xfs_buf_flags_t flags)712 _xfs_buf_read(
713 	struct xfs_buf		*bp,
714 	xfs_buf_flags_t		flags)
715 {
716 	ASSERT(!(flags & XBF_WRITE));
717 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
718 
719 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
720 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
721 
722 	return xfs_buf_submit(bp);
723 }
724 
725 /*
726  * Reverify a buffer found in cache without an attached ->b_ops.
727  *
728  * If the caller passed an ops structure and the buffer doesn't have ops
729  * assigned, set the ops and use it to verify the contents. If verification
730  * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
731  * already in XBF_DONE state on entry.
732  *
733  * Under normal operations, every in-core buffer is verified on read I/O
734  * completion. There are two scenarios that can lead to in-core buffers without
735  * an assigned ->b_ops. The first is during log recovery of buffers on a V4
736  * filesystem, though these buffers are purged at the end of recovery. The
737  * other is online repair, which intentionally reads with a NULL buffer ops to
738  * run several verifiers across an in-core buffer in order to establish buffer
739  * type.  If repair can't establish that, the buffer will be left in memory
740  * with NULL buffer ops.
741  */
742 int
xfs_buf_reverify(struct xfs_buf * bp,const struct xfs_buf_ops * ops)743 xfs_buf_reverify(
744 	struct xfs_buf		*bp,
745 	const struct xfs_buf_ops *ops)
746 {
747 	ASSERT(bp->b_flags & XBF_DONE);
748 	ASSERT(bp->b_error == 0);
749 
750 	if (!ops || bp->b_ops)
751 		return 0;
752 
753 	bp->b_ops = ops;
754 	bp->b_ops->verify_read(bp);
755 	if (bp->b_error)
756 		bp->b_flags &= ~XBF_DONE;
757 	return bp->b_error;
758 }
759 
760 int
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops,xfs_failaddr_t fa)761 xfs_buf_read_map(
762 	struct xfs_buftarg	*target,
763 	struct xfs_buf_map	*map,
764 	int			nmaps,
765 	xfs_buf_flags_t		flags,
766 	struct xfs_buf		**bpp,
767 	const struct xfs_buf_ops *ops,
768 	xfs_failaddr_t		fa)
769 {
770 	struct xfs_buf		*bp;
771 	int			error;
772 
773 	flags |= XBF_READ;
774 	*bpp = NULL;
775 
776 	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
777 	if (error)
778 		return error;
779 
780 	trace_xfs_buf_read(bp, flags, _RET_IP_);
781 
782 	if (!(bp->b_flags & XBF_DONE)) {
783 		/* Initiate the buffer read and wait. */
784 		XFS_STATS_INC(target->bt_mount, xb_get_read);
785 		bp->b_ops = ops;
786 		error = _xfs_buf_read(bp, flags);
787 
788 		/* Readahead iodone already dropped the buffer, so exit. */
789 		if (flags & XBF_ASYNC)
790 			return 0;
791 	} else {
792 		/* Buffer already read; all we need to do is check it. */
793 		error = xfs_buf_reverify(bp, ops);
794 
795 		/* Readahead already finished; drop the buffer and exit. */
796 		if (flags & XBF_ASYNC) {
797 			xfs_buf_relse(bp);
798 			return 0;
799 		}
800 
801 		/* We do not want read in the flags */
802 		bp->b_flags &= ~XBF_READ;
803 		ASSERT(bp->b_ops != NULL || ops == NULL);
804 	}
805 
806 	/*
807 	 * If we've had a read error, then the contents of the buffer are
808 	 * invalid and should not be used. To ensure that a followup read tries
809 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
810 	 * mark the buffer stale. This ensures that anyone who has a current
811 	 * reference to the buffer will interpret it's contents correctly and
812 	 * future cache lookups will also treat it as an empty, uninitialised
813 	 * buffer.
814 	 */
815 	if (error) {
816 		if (!xfs_is_shutdown(target->bt_mount))
817 			xfs_buf_ioerror_alert(bp, fa);
818 
819 		bp->b_flags &= ~XBF_DONE;
820 		xfs_buf_stale(bp);
821 		xfs_buf_relse(bp);
822 
823 		/* bad CRC means corrupted metadata */
824 		if (error == -EFSBADCRC)
825 			error = -EFSCORRUPTED;
826 		return error;
827 	}
828 
829 	*bpp = bp;
830 	return 0;
831 }
832 
833 /*
834  *	If we are not low on memory then do the readahead in a deadlock
835  *	safe manner.
836  */
837 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)838 xfs_buf_readahead_map(
839 	struct xfs_buftarg	*target,
840 	struct xfs_buf_map	*map,
841 	int			nmaps,
842 	const struct xfs_buf_ops *ops)
843 {
844 	struct xfs_buf		*bp;
845 
846 	if (bdi_read_congested(target->bt_bdev->bd_disk->bdi))
847 		return;
848 
849 	xfs_buf_read_map(target, map, nmaps,
850 		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
851 		     __this_address);
852 }
853 
854 /*
855  * Read an uncached buffer from disk. Allocates and returns a locked
856  * buffer containing the disk contents or nothing. Uncached buffers always have
857  * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
858  * is cached or uncached during fault diagnosis.
859  */
860 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)861 xfs_buf_read_uncached(
862 	struct xfs_buftarg	*target,
863 	xfs_daddr_t		daddr,
864 	size_t			numblks,
865 	int			flags,
866 	struct xfs_buf		**bpp,
867 	const struct xfs_buf_ops *ops)
868 {
869 	struct xfs_buf		*bp;
870 	int			error;
871 
872 	*bpp = NULL;
873 
874 	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
875 	if (error)
876 		return error;
877 
878 	/* set up the buffer for a read IO */
879 	ASSERT(bp->b_map_count == 1);
880 	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
881 	bp->b_maps[0].bm_bn = daddr;
882 	bp->b_flags |= XBF_READ;
883 	bp->b_ops = ops;
884 
885 	xfs_buf_submit(bp);
886 	if (bp->b_error) {
887 		error = bp->b_error;
888 		xfs_buf_relse(bp);
889 		return error;
890 	}
891 
892 	*bpp = bp;
893 	return 0;
894 }
895 
896 int
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags,struct xfs_buf ** bpp)897 xfs_buf_get_uncached(
898 	struct xfs_buftarg	*target,
899 	size_t			numblks,
900 	int			flags,
901 	struct xfs_buf		**bpp)
902 {
903 	int			error;
904 	struct xfs_buf		*bp;
905 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
906 
907 	*bpp = NULL;
908 
909 	/* flags might contain irrelevant bits, pass only what we care about */
910 	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
911 	if (error)
912 		return error;
913 
914 	error = xfs_buf_alloc_pages(bp, flags);
915 	if (error)
916 		goto fail_free_buf;
917 
918 	error = _xfs_buf_map_pages(bp, 0);
919 	if (unlikely(error)) {
920 		xfs_warn(target->bt_mount,
921 			"%s: failed to map pages", __func__);
922 		goto fail_free_buf;
923 	}
924 
925 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
926 	*bpp = bp;
927 	return 0;
928 
929 fail_free_buf:
930 	xfs_buf_free(bp);
931 	return error;
932 }
933 
934 /*
935  *	Increment reference count on buffer, to hold the buffer concurrently
936  *	with another thread which may release (free) the buffer asynchronously.
937  *	Must hold the buffer already to call this function.
938  */
939 void
xfs_buf_hold(struct xfs_buf * bp)940 xfs_buf_hold(
941 	struct xfs_buf		*bp)
942 {
943 	trace_xfs_buf_hold(bp, _RET_IP_);
944 	atomic_inc(&bp->b_hold);
945 }
946 
947 /*
948  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949  * placed on LRU or freed (depending on b_lru_ref).
950  */
951 void
xfs_buf_rele(struct xfs_buf * bp)952 xfs_buf_rele(
953 	struct xfs_buf		*bp)
954 {
955 	struct xfs_perag	*pag = bp->b_pag;
956 	bool			release;
957 	bool			freebuf = false;
958 
959 	trace_xfs_buf_rele(bp, _RET_IP_);
960 
961 	if (!pag) {
962 		ASSERT(list_empty(&bp->b_lru));
963 		if (atomic_dec_and_test(&bp->b_hold)) {
964 			xfs_buf_ioacct_dec(bp);
965 			xfs_buf_free(bp);
966 		}
967 		return;
968 	}
969 
970 	ASSERT(atomic_read(&bp->b_hold) > 0);
971 
972 	/*
973 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
974 	 * calls. The pag_buf_lock being taken on the last reference only
975 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
976 	 * to last reference we drop here is not serialised against the last
977 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
978 	 * first, the last "release" reference can win the race to the lock and
979 	 * free the buffer before the second-to-last reference is processed,
980 	 * leading to a use-after-free scenario.
981 	 */
982 	spin_lock(&bp->b_lock);
983 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
984 	if (!release) {
985 		/*
986 		 * Drop the in-flight state if the buffer is already on the LRU
987 		 * and it holds the only reference. This is racy because we
988 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
989 		 * ensures the decrement occurs only once per-buf.
990 		 */
991 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
992 			__xfs_buf_ioacct_dec(bp);
993 		goto out_unlock;
994 	}
995 
996 	/* the last reference has been dropped ... */
997 	__xfs_buf_ioacct_dec(bp);
998 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
999 		/*
1000 		 * If the buffer is added to the LRU take a new reference to the
1001 		 * buffer for the LRU and clear the (now stale) dispose list
1002 		 * state flag
1003 		 */
1004 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1005 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1006 			atomic_inc(&bp->b_hold);
1007 		}
1008 		spin_unlock(&pag->pag_buf_lock);
1009 	} else {
1010 		/*
1011 		 * most of the time buffers will already be removed from the
1012 		 * LRU, so optimise that case by checking for the
1013 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1014 		 * was on was the disposal list
1015 		 */
1016 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1017 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1018 		} else {
1019 			ASSERT(list_empty(&bp->b_lru));
1020 		}
1021 
1022 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1023 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1024 				       xfs_buf_hash_params);
1025 		spin_unlock(&pag->pag_buf_lock);
1026 		xfs_perag_put(pag);
1027 		freebuf = true;
1028 	}
1029 
1030 out_unlock:
1031 	spin_unlock(&bp->b_lock);
1032 
1033 	if (freebuf)
1034 		xfs_buf_free(bp);
1035 }
1036 
1037 
1038 /*
1039  *	Lock a buffer object, if it is not already locked.
1040  *
1041  *	If we come across a stale, pinned, locked buffer, we know that we are
1042  *	being asked to lock a buffer that has been reallocated. Because it is
1043  *	pinned, we know that the log has not been pushed to disk and hence it
1044  *	will still be locked.  Rather than continuing to have trylock attempts
1045  *	fail until someone else pushes the log, push it ourselves before
1046  *	returning.  This means that the xfsaild will not get stuck trying
1047  *	to push on stale inode buffers.
1048  */
1049 int
xfs_buf_trylock(struct xfs_buf * bp)1050 xfs_buf_trylock(
1051 	struct xfs_buf		*bp)
1052 {
1053 	int			locked;
1054 
1055 	locked = down_trylock(&bp->b_sema) == 0;
1056 	if (locked)
1057 		trace_xfs_buf_trylock(bp, _RET_IP_);
1058 	else
1059 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1060 	return locked;
1061 }
1062 
1063 /*
1064  *	Lock a buffer object.
1065  *
1066  *	If we come across a stale, pinned, locked buffer, we know that we
1067  *	are being asked to lock a buffer that has been reallocated. Because
1068  *	it is pinned, we know that the log has not been pushed to disk and
1069  *	hence it will still be locked. Rather than sleeping until someone
1070  *	else pushes the log, push it ourselves before trying to get the lock.
1071  */
1072 void
xfs_buf_lock(struct xfs_buf * bp)1073 xfs_buf_lock(
1074 	struct xfs_buf		*bp)
1075 {
1076 	trace_xfs_buf_lock(bp, _RET_IP_);
1077 
1078 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1079 		xfs_log_force(bp->b_mount, 0);
1080 	down(&bp->b_sema);
1081 
1082 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1083 }
1084 
1085 void
xfs_buf_unlock(struct xfs_buf * bp)1086 xfs_buf_unlock(
1087 	struct xfs_buf		*bp)
1088 {
1089 	ASSERT(xfs_buf_islocked(bp));
1090 
1091 	up(&bp->b_sema);
1092 	trace_xfs_buf_unlock(bp, _RET_IP_);
1093 }
1094 
1095 STATIC void
xfs_buf_wait_unpin(struct xfs_buf * bp)1096 xfs_buf_wait_unpin(
1097 	struct xfs_buf		*bp)
1098 {
1099 	DECLARE_WAITQUEUE	(wait, current);
1100 
1101 	if (atomic_read(&bp->b_pin_count) == 0)
1102 		return;
1103 
1104 	add_wait_queue(&bp->b_waiters, &wait);
1105 	for (;;) {
1106 		set_current_state(TASK_UNINTERRUPTIBLE);
1107 		if (atomic_read(&bp->b_pin_count) == 0)
1108 			break;
1109 		io_schedule();
1110 	}
1111 	remove_wait_queue(&bp->b_waiters, &wait);
1112 	set_current_state(TASK_RUNNING);
1113 }
1114 
1115 static void
xfs_buf_ioerror_alert_ratelimited(struct xfs_buf * bp)1116 xfs_buf_ioerror_alert_ratelimited(
1117 	struct xfs_buf		*bp)
1118 {
1119 	static unsigned long	lasttime;
1120 	static struct xfs_buftarg *lasttarg;
1121 
1122 	if (bp->b_target != lasttarg ||
1123 	    time_after(jiffies, (lasttime + 5*HZ))) {
1124 		lasttime = jiffies;
1125 		xfs_buf_ioerror_alert(bp, __this_address);
1126 	}
1127 	lasttarg = bp->b_target;
1128 }
1129 
1130 /*
1131  * Account for this latest trip around the retry handler, and decide if
1132  * we've failed enough times to constitute a permanent failure.
1133  */
1134 static bool
xfs_buf_ioerror_permanent(struct xfs_buf * bp,struct xfs_error_cfg * cfg)1135 xfs_buf_ioerror_permanent(
1136 	struct xfs_buf		*bp,
1137 	struct xfs_error_cfg	*cfg)
1138 {
1139 	struct xfs_mount	*mp = bp->b_mount;
1140 
1141 	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1142 	    ++bp->b_retries > cfg->max_retries)
1143 		return true;
1144 	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1145 	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1146 		return true;
1147 
1148 	/* At unmount we may treat errors differently */
1149 	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1150 		return true;
1151 
1152 	return false;
1153 }
1154 
1155 /*
1156  * On a sync write or shutdown we just want to stale the buffer and let the
1157  * caller handle the error in bp->b_error appropriately.
1158  *
1159  * If the write was asynchronous then no one will be looking for the error.  If
1160  * this is the first failure of this type, clear the error state and write the
1161  * buffer out again. This means we always retry an async write failure at least
1162  * once, but we also need to set the buffer up to behave correctly now for
1163  * repeated failures.
1164  *
1165  * If we get repeated async write failures, then we take action according to the
1166  * error configuration we have been set up to use.
1167  *
1168  * Returns true if this function took care of error handling and the caller must
1169  * not touch the buffer again.  Return false if the caller should proceed with
1170  * normal I/O completion handling.
1171  */
1172 static bool
xfs_buf_ioend_handle_error(struct xfs_buf * bp)1173 xfs_buf_ioend_handle_error(
1174 	struct xfs_buf		*bp)
1175 {
1176 	struct xfs_mount	*mp = bp->b_mount;
1177 	struct xfs_error_cfg	*cfg;
1178 
1179 	/*
1180 	 * If we've already decided to shutdown the filesystem because of I/O
1181 	 * errors, there's no point in giving this a retry.
1182 	 */
1183 	if (xfs_is_shutdown(mp))
1184 		goto out_stale;
1185 
1186 	xfs_buf_ioerror_alert_ratelimited(bp);
1187 
1188 	/*
1189 	 * We're not going to bother about retrying this during recovery.
1190 	 * One strike!
1191 	 */
1192 	if (bp->b_flags & _XBF_LOGRECOVERY) {
1193 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1194 		return false;
1195 	}
1196 
1197 	/*
1198 	 * Synchronous writes will have callers process the error.
1199 	 */
1200 	if (!(bp->b_flags & XBF_ASYNC))
1201 		goto out_stale;
1202 
1203 	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1204 
1205 	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1206 	if (bp->b_last_error != bp->b_error ||
1207 	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1208 		bp->b_last_error = bp->b_error;
1209 		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1210 		    !bp->b_first_retry_time)
1211 			bp->b_first_retry_time = jiffies;
1212 		goto resubmit;
1213 	}
1214 
1215 	/*
1216 	 * Permanent error - we need to trigger a shutdown if we haven't already
1217 	 * to indicate that inconsistency will result from this action.
1218 	 */
1219 	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1220 		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1221 		goto out_stale;
1222 	}
1223 
1224 	/* Still considered a transient error. Caller will schedule retries. */
1225 	if (bp->b_flags & _XBF_INODES)
1226 		xfs_buf_inode_io_fail(bp);
1227 	else if (bp->b_flags & _XBF_DQUOTS)
1228 		xfs_buf_dquot_io_fail(bp);
1229 	else
1230 		ASSERT(list_empty(&bp->b_li_list));
1231 	xfs_buf_ioerror(bp, 0);
1232 	xfs_buf_relse(bp);
1233 	return true;
1234 
1235 resubmit:
1236 	xfs_buf_ioerror(bp, 0);
1237 	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1238 	xfs_buf_submit(bp);
1239 	return true;
1240 out_stale:
1241 	xfs_buf_stale(bp);
1242 	bp->b_flags |= XBF_DONE;
1243 	bp->b_flags &= ~XBF_WRITE;
1244 	trace_xfs_buf_error_relse(bp, _RET_IP_);
1245 	return false;
1246 }
1247 
1248 static void
xfs_buf_ioend(struct xfs_buf * bp)1249 xfs_buf_ioend(
1250 	struct xfs_buf	*bp)
1251 {
1252 	trace_xfs_buf_iodone(bp, _RET_IP_);
1253 
1254 	/*
1255 	 * Pull in IO completion errors now. We are guaranteed to be running
1256 	 * single threaded, so we don't need the lock to read b_io_error.
1257 	 */
1258 	if (!bp->b_error && bp->b_io_error)
1259 		xfs_buf_ioerror(bp, bp->b_io_error);
1260 
1261 	if (bp->b_flags & XBF_READ) {
1262 		if (!bp->b_error && bp->b_ops)
1263 			bp->b_ops->verify_read(bp);
1264 		if (!bp->b_error)
1265 			bp->b_flags |= XBF_DONE;
1266 	} else {
1267 		if (!bp->b_error) {
1268 			bp->b_flags &= ~XBF_WRITE_FAIL;
1269 			bp->b_flags |= XBF_DONE;
1270 		}
1271 
1272 		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1273 			return;
1274 
1275 		/* clear the retry state */
1276 		bp->b_last_error = 0;
1277 		bp->b_retries = 0;
1278 		bp->b_first_retry_time = 0;
1279 
1280 		/*
1281 		 * Note that for things like remote attribute buffers, there may
1282 		 * not be a buffer log item here, so processing the buffer log
1283 		 * item must remain optional.
1284 		 */
1285 		if (bp->b_log_item)
1286 			xfs_buf_item_done(bp);
1287 
1288 		if (bp->b_flags & _XBF_INODES)
1289 			xfs_buf_inode_iodone(bp);
1290 		else if (bp->b_flags & _XBF_DQUOTS)
1291 			xfs_buf_dquot_iodone(bp);
1292 
1293 	}
1294 
1295 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1296 			 _XBF_LOGRECOVERY);
1297 
1298 	if (bp->b_flags & XBF_ASYNC)
1299 		xfs_buf_relse(bp);
1300 	else
1301 		complete(&bp->b_iowait);
1302 }
1303 
1304 static void
xfs_buf_ioend_work(struct work_struct * work)1305 xfs_buf_ioend_work(
1306 	struct work_struct	*work)
1307 {
1308 	struct xfs_buf		*bp =
1309 		container_of(work, struct xfs_buf, b_ioend_work);
1310 
1311 	xfs_buf_ioend(bp);
1312 }
1313 
1314 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1315 xfs_buf_ioend_async(
1316 	struct xfs_buf	*bp)
1317 {
1318 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1319 	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1320 }
1321 
1322 void
__xfs_buf_ioerror(struct xfs_buf * bp,int error,xfs_failaddr_t failaddr)1323 __xfs_buf_ioerror(
1324 	struct xfs_buf		*bp,
1325 	int			error,
1326 	xfs_failaddr_t		failaddr)
1327 {
1328 	ASSERT(error <= 0 && error >= -1000);
1329 	bp->b_error = error;
1330 	trace_xfs_buf_ioerror(bp, error, failaddr);
1331 }
1332 
1333 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,xfs_failaddr_t func)1334 xfs_buf_ioerror_alert(
1335 	struct xfs_buf		*bp,
1336 	xfs_failaddr_t		func)
1337 {
1338 	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1339 		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1340 				  func, (uint64_t)xfs_buf_daddr(bp),
1341 				  bp->b_length, -bp->b_error);
1342 }
1343 
1344 /*
1345  * To simulate an I/O failure, the buffer must be locked and held with at least
1346  * three references. The LRU reference is dropped by the stale call. The buf
1347  * item reference is dropped via ioend processing. The third reference is owned
1348  * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1349  */
1350 void
xfs_buf_ioend_fail(struct xfs_buf * bp)1351 xfs_buf_ioend_fail(
1352 	struct xfs_buf	*bp)
1353 {
1354 	bp->b_flags &= ~XBF_DONE;
1355 	xfs_buf_stale(bp);
1356 	xfs_buf_ioerror(bp, -EIO);
1357 	xfs_buf_ioend(bp);
1358 }
1359 
1360 int
xfs_bwrite(struct xfs_buf * bp)1361 xfs_bwrite(
1362 	struct xfs_buf		*bp)
1363 {
1364 	int			error;
1365 
1366 	ASSERT(xfs_buf_islocked(bp));
1367 
1368 	bp->b_flags |= XBF_WRITE;
1369 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1370 			 XBF_DONE);
1371 
1372 	error = xfs_buf_submit(bp);
1373 	if (error)
1374 		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1375 	return error;
1376 }
1377 
1378 static void
xfs_buf_bio_end_io(struct bio * bio)1379 xfs_buf_bio_end_io(
1380 	struct bio		*bio)
1381 {
1382 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1383 
1384 	if (!bio->bi_status &&
1385 	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1386 	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1387 		bio->bi_status = BLK_STS_IOERR;
1388 
1389 	/*
1390 	 * don't overwrite existing errors - otherwise we can lose errors on
1391 	 * buffers that require multiple bios to complete.
1392 	 */
1393 	if (bio->bi_status) {
1394 		int error = blk_status_to_errno(bio->bi_status);
1395 
1396 		cmpxchg(&bp->b_io_error, 0, error);
1397 	}
1398 
1399 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1400 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1401 
1402 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1403 		xfs_buf_ioend_async(bp);
1404 	bio_put(bio);
1405 }
1406 
1407 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op)1408 xfs_buf_ioapply_map(
1409 	struct xfs_buf	*bp,
1410 	int		map,
1411 	int		*buf_offset,
1412 	int		*count,
1413 	int		op)
1414 {
1415 	int		page_index;
1416 	unsigned int	total_nr_pages = bp->b_page_count;
1417 	int		nr_pages;
1418 	struct bio	*bio;
1419 	sector_t	sector =  bp->b_maps[map].bm_bn;
1420 	int		size;
1421 	int		offset;
1422 
1423 	/* skip the pages in the buffer before the start offset */
1424 	page_index = 0;
1425 	offset = *buf_offset;
1426 	while (offset >= PAGE_SIZE) {
1427 		page_index++;
1428 		offset -= PAGE_SIZE;
1429 	}
1430 
1431 	/*
1432 	 * Limit the IO size to the length of the current vector, and update the
1433 	 * remaining IO count for the next time around.
1434 	 */
1435 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1436 	*count -= size;
1437 	*buf_offset += size;
1438 
1439 next_chunk:
1440 	atomic_inc(&bp->b_io_remaining);
1441 	nr_pages = bio_max_segs(total_nr_pages);
1442 
1443 	bio = bio_alloc(GFP_NOIO, nr_pages);
1444 	bio_set_dev(bio, bp->b_target->bt_bdev);
1445 	bio->bi_iter.bi_sector = sector;
1446 	bio->bi_end_io = xfs_buf_bio_end_io;
1447 	bio->bi_private = bp;
1448 	bio->bi_opf = op;
1449 
1450 	for (; size && nr_pages; nr_pages--, page_index++) {
1451 		int	rbytes, nbytes = PAGE_SIZE - offset;
1452 
1453 		if (nbytes > size)
1454 			nbytes = size;
1455 
1456 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1457 				      offset);
1458 		if (rbytes < nbytes)
1459 			break;
1460 
1461 		offset = 0;
1462 		sector += BTOBB(nbytes);
1463 		size -= nbytes;
1464 		total_nr_pages--;
1465 	}
1466 
1467 	if (likely(bio->bi_iter.bi_size)) {
1468 		if (xfs_buf_is_vmapped(bp)) {
1469 			flush_kernel_vmap_range(bp->b_addr,
1470 						xfs_buf_vmap_len(bp));
1471 		}
1472 		submit_bio(bio);
1473 		if (size)
1474 			goto next_chunk;
1475 	} else {
1476 		/*
1477 		 * This is guaranteed not to be the last io reference count
1478 		 * because the caller (xfs_buf_submit) holds a count itself.
1479 		 */
1480 		atomic_dec(&bp->b_io_remaining);
1481 		xfs_buf_ioerror(bp, -EIO);
1482 		bio_put(bio);
1483 	}
1484 
1485 }
1486 
1487 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1488 _xfs_buf_ioapply(
1489 	struct xfs_buf	*bp)
1490 {
1491 	struct blk_plug	plug;
1492 	int		op;
1493 	int		offset;
1494 	int		size;
1495 	int		i;
1496 
1497 	/*
1498 	 * Make sure we capture only current IO errors rather than stale errors
1499 	 * left over from previous use of the buffer (e.g. failed readahead).
1500 	 */
1501 	bp->b_error = 0;
1502 
1503 	if (bp->b_flags & XBF_WRITE) {
1504 		op = REQ_OP_WRITE;
1505 
1506 		/*
1507 		 * Run the write verifier callback function if it exists. If
1508 		 * this function fails it will mark the buffer with an error and
1509 		 * the IO should not be dispatched.
1510 		 */
1511 		if (bp->b_ops) {
1512 			bp->b_ops->verify_write(bp);
1513 			if (bp->b_error) {
1514 				xfs_force_shutdown(bp->b_mount,
1515 						   SHUTDOWN_CORRUPT_INCORE);
1516 				return;
1517 			}
1518 		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1519 			struct xfs_mount *mp = bp->b_mount;
1520 
1521 			/*
1522 			 * non-crc filesystems don't attach verifiers during
1523 			 * log recovery, so don't warn for such filesystems.
1524 			 */
1525 			if (xfs_has_crc(mp)) {
1526 				xfs_warn(mp,
1527 					"%s: no buf ops on daddr 0x%llx len %d",
1528 					__func__, xfs_buf_daddr(bp),
1529 					bp->b_length);
1530 				xfs_hex_dump(bp->b_addr,
1531 						XFS_CORRUPTION_DUMP_LEN);
1532 				dump_stack();
1533 			}
1534 		}
1535 	} else {
1536 		op = REQ_OP_READ;
1537 		if (bp->b_flags & XBF_READ_AHEAD)
1538 			op |= REQ_RAHEAD;
1539 	}
1540 
1541 	/* we only use the buffer cache for meta-data */
1542 	op |= REQ_META;
1543 
1544 	/*
1545 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1546 	 * into the buffer and the desired IO size before we start -
1547 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1548 	 * subsequent call.
1549 	 */
1550 	offset = bp->b_offset;
1551 	size = BBTOB(bp->b_length);
1552 	blk_start_plug(&plug);
1553 	for (i = 0; i < bp->b_map_count; i++) {
1554 		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1555 		if (bp->b_error)
1556 			break;
1557 		if (size <= 0)
1558 			break;	/* all done */
1559 	}
1560 	blk_finish_plug(&plug);
1561 }
1562 
1563 /*
1564  * Wait for I/O completion of a sync buffer and return the I/O error code.
1565  */
1566 static int
xfs_buf_iowait(struct xfs_buf * bp)1567 xfs_buf_iowait(
1568 	struct xfs_buf	*bp)
1569 {
1570 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1571 
1572 	trace_xfs_buf_iowait(bp, _RET_IP_);
1573 	wait_for_completion(&bp->b_iowait);
1574 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1575 
1576 	return bp->b_error;
1577 }
1578 
1579 /*
1580  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1581  * the buffer lock ownership and the current reference to the IO. It is not
1582  * safe to reference the buffer after a call to this function unless the caller
1583  * holds an additional reference itself.
1584  */
1585 static int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1586 __xfs_buf_submit(
1587 	struct xfs_buf	*bp,
1588 	bool		wait)
1589 {
1590 	int		error = 0;
1591 
1592 	trace_xfs_buf_submit(bp, _RET_IP_);
1593 
1594 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1595 
1596 	/* on shutdown we stale and complete the buffer immediately */
1597 	if (xfs_is_shutdown(bp->b_mount)) {
1598 		xfs_buf_ioend_fail(bp);
1599 		return -EIO;
1600 	}
1601 
1602 	/*
1603 	 * Grab a reference so the buffer does not go away underneath us. For
1604 	 * async buffers, I/O completion drops the callers reference, which
1605 	 * could occur before submission returns.
1606 	 */
1607 	xfs_buf_hold(bp);
1608 
1609 	if (bp->b_flags & XBF_WRITE)
1610 		xfs_buf_wait_unpin(bp);
1611 
1612 	/* clear the internal error state to avoid spurious errors */
1613 	bp->b_io_error = 0;
1614 
1615 	/*
1616 	 * Set the count to 1 initially, this will stop an I/O completion
1617 	 * callout which happens before we have started all the I/O from calling
1618 	 * xfs_buf_ioend too early.
1619 	 */
1620 	atomic_set(&bp->b_io_remaining, 1);
1621 	if (bp->b_flags & XBF_ASYNC)
1622 		xfs_buf_ioacct_inc(bp);
1623 	_xfs_buf_ioapply(bp);
1624 
1625 	/*
1626 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1627 	 * reference we took above. If we drop it to zero, run completion so
1628 	 * that we don't return to the caller with completion still pending.
1629 	 */
1630 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1631 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1632 			xfs_buf_ioend(bp);
1633 		else
1634 			xfs_buf_ioend_async(bp);
1635 	}
1636 
1637 	if (wait)
1638 		error = xfs_buf_iowait(bp);
1639 
1640 	/*
1641 	 * Release the hold that keeps the buffer referenced for the entire
1642 	 * I/O. Note that if the buffer is async, it is not safe to reference
1643 	 * after this release.
1644 	 */
1645 	xfs_buf_rele(bp);
1646 	return error;
1647 }
1648 
1649 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1650 xfs_buf_offset(
1651 	struct xfs_buf		*bp,
1652 	size_t			offset)
1653 {
1654 	struct page		*page;
1655 
1656 	if (bp->b_addr)
1657 		return bp->b_addr + offset;
1658 
1659 	page = bp->b_pages[offset >> PAGE_SHIFT];
1660 	return page_address(page) + (offset & (PAGE_SIZE-1));
1661 }
1662 
1663 void
xfs_buf_zero(struct xfs_buf * bp,size_t boff,size_t bsize)1664 xfs_buf_zero(
1665 	struct xfs_buf		*bp,
1666 	size_t			boff,
1667 	size_t			bsize)
1668 {
1669 	size_t			bend;
1670 
1671 	bend = boff + bsize;
1672 	while (boff < bend) {
1673 		struct page	*page;
1674 		int		page_index, page_offset, csize;
1675 
1676 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1677 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1678 		page = bp->b_pages[page_index];
1679 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1680 				      BBTOB(bp->b_length) - boff);
1681 
1682 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1683 
1684 		memset(page_address(page) + page_offset, 0, csize);
1685 
1686 		boff += csize;
1687 	}
1688 }
1689 
1690 /*
1691  * Log a message about and stale a buffer that a caller has decided is corrupt.
1692  *
1693  * This function should be called for the kinds of metadata corruption that
1694  * cannot be detect from a verifier, such as incorrect inter-block relationship
1695  * data.  Do /not/ call this function from a verifier function.
1696  *
1697  * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1698  * be marked stale, but b_error will not be set.  The caller is responsible for
1699  * releasing the buffer or fixing it.
1700  */
1701 void
__xfs_buf_mark_corrupt(struct xfs_buf * bp,xfs_failaddr_t fa)1702 __xfs_buf_mark_corrupt(
1703 	struct xfs_buf		*bp,
1704 	xfs_failaddr_t		fa)
1705 {
1706 	ASSERT(bp->b_flags & XBF_DONE);
1707 
1708 	xfs_buf_corruption_error(bp, fa);
1709 	xfs_buf_stale(bp);
1710 }
1711 
1712 /*
1713  *	Handling of buffer targets (buftargs).
1714  */
1715 
1716 /*
1717  * Wait for any bufs with callbacks that have been submitted but have not yet
1718  * returned. These buffers will have an elevated hold count, so wait on those
1719  * while freeing all the buffers only held by the LRU.
1720  */
1721 static enum lru_status
xfs_buftarg_drain_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1722 xfs_buftarg_drain_rele(
1723 	struct list_head	*item,
1724 	struct list_lru_one	*lru,
1725 	spinlock_t		*lru_lock,
1726 	void			*arg)
1727 
1728 {
1729 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1730 	struct list_head	*dispose = arg;
1731 
1732 	if (atomic_read(&bp->b_hold) > 1) {
1733 		/* need to wait, so skip it this pass */
1734 		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1735 		return LRU_SKIP;
1736 	}
1737 	if (!spin_trylock(&bp->b_lock))
1738 		return LRU_SKIP;
1739 
1740 	/*
1741 	 * clear the LRU reference count so the buffer doesn't get
1742 	 * ignored in xfs_buf_rele().
1743 	 */
1744 	atomic_set(&bp->b_lru_ref, 0);
1745 	bp->b_state |= XFS_BSTATE_DISPOSE;
1746 	list_lru_isolate_move(lru, item, dispose);
1747 	spin_unlock(&bp->b_lock);
1748 	return LRU_REMOVED;
1749 }
1750 
1751 /*
1752  * Wait for outstanding I/O on the buftarg to complete.
1753  */
1754 void
xfs_buftarg_wait(struct xfs_buftarg * btp)1755 xfs_buftarg_wait(
1756 	struct xfs_buftarg	*btp)
1757 {
1758 	/*
1759 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1760 	 * released. This is critical as new buffers do not make the LRU until
1761 	 * they are released.
1762 	 *
1763 	 * Next, flush the buffer workqueue to ensure all completion processing
1764 	 * has finished. Just waiting on buffer locks is not sufficient for
1765 	 * async IO as the reference count held over IO is not released until
1766 	 * after the buffer lock is dropped. Hence we need to ensure here that
1767 	 * all reference counts have been dropped before we start walking the
1768 	 * LRU list.
1769 	 */
1770 	while (percpu_counter_sum(&btp->bt_io_count))
1771 		delay(100);
1772 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1773 }
1774 
1775 void
xfs_buftarg_drain(struct xfs_buftarg * btp)1776 xfs_buftarg_drain(
1777 	struct xfs_buftarg	*btp)
1778 {
1779 	LIST_HEAD(dispose);
1780 	int			loop = 0;
1781 	bool			write_fail = false;
1782 
1783 	xfs_buftarg_wait(btp);
1784 
1785 	/* loop until there is nothing left on the lru list. */
1786 	while (list_lru_count(&btp->bt_lru)) {
1787 		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1788 			      &dispose, LONG_MAX);
1789 
1790 		while (!list_empty(&dispose)) {
1791 			struct xfs_buf *bp;
1792 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1793 			list_del_init(&bp->b_lru);
1794 			if (bp->b_flags & XBF_WRITE_FAIL) {
1795 				write_fail = true;
1796 				xfs_buf_alert_ratelimited(bp,
1797 					"XFS: Corruption Alert",
1798 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1799 					(long long)xfs_buf_daddr(bp));
1800 			}
1801 			xfs_buf_rele(bp);
1802 		}
1803 		if (loop++ != 0)
1804 			delay(100);
1805 	}
1806 
1807 	/*
1808 	 * If one or more failed buffers were freed, that means dirty metadata
1809 	 * was thrown away. This should only ever happen after I/O completion
1810 	 * handling has elevated I/O error(s) to permanent failures and shuts
1811 	 * down the fs.
1812 	 */
1813 	if (write_fail) {
1814 		ASSERT(xfs_is_shutdown(btp->bt_mount));
1815 		xfs_alert(btp->bt_mount,
1816 	      "Please run xfs_repair to determine the extent of the problem.");
1817 	}
1818 }
1819 
1820 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1821 xfs_buftarg_isolate(
1822 	struct list_head	*item,
1823 	struct list_lru_one	*lru,
1824 	spinlock_t		*lru_lock,
1825 	void			*arg)
1826 {
1827 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1828 	struct list_head	*dispose = arg;
1829 
1830 	/*
1831 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1832 	 * If we fail to get the lock, just skip it.
1833 	 */
1834 	if (!spin_trylock(&bp->b_lock))
1835 		return LRU_SKIP;
1836 	/*
1837 	 * Decrement the b_lru_ref count unless the value is already
1838 	 * zero. If the value is already zero, we need to reclaim the
1839 	 * buffer, otherwise it gets another trip through the LRU.
1840 	 */
1841 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1842 		spin_unlock(&bp->b_lock);
1843 		return LRU_ROTATE;
1844 	}
1845 
1846 	bp->b_state |= XFS_BSTATE_DISPOSE;
1847 	list_lru_isolate_move(lru, item, dispose);
1848 	spin_unlock(&bp->b_lock);
1849 	return LRU_REMOVED;
1850 }
1851 
1852 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1853 xfs_buftarg_shrink_scan(
1854 	struct shrinker		*shrink,
1855 	struct shrink_control	*sc)
1856 {
1857 	struct xfs_buftarg	*btp = container_of(shrink,
1858 					struct xfs_buftarg, bt_shrinker);
1859 	LIST_HEAD(dispose);
1860 	unsigned long		freed;
1861 
1862 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1863 				     xfs_buftarg_isolate, &dispose);
1864 
1865 	while (!list_empty(&dispose)) {
1866 		struct xfs_buf *bp;
1867 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1868 		list_del_init(&bp->b_lru);
1869 		xfs_buf_rele(bp);
1870 	}
1871 
1872 	return freed;
1873 }
1874 
1875 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1876 xfs_buftarg_shrink_count(
1877 	struct shrinker		*shrink,
1878 	struct shrink_control	*sc)
1879 {
1880 	struct xfs_buftarg	*btp = container_of(shrink,
1881 					struct xfs_buftarg, bt_shrinker);
1882 	return list_lru_shrink_count(&btp->bt_lru, sc);
1883 }
1884 
1885 void
xfs_free_buftarg(struct xfs_buftarg * btp)1886 xfs_free_buftarg(
1887 	struct xfs_buftarg	*btp)
1888 {
1889 	unregister_shrinker(&btp->bt_shrinker);
1890 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1891 	percpu_counter_destroy(&btp->bt_io_count);
1892 	list_lru_destroy(&btp->bt_lru);
1893 
1894 	blkdev_issue_flush(btp->bt_bdev);
1895 
1896 	kmem_free(btp);
1897 }
1898 
1899 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1900 xfs_setsize_buftarg(
1901 	xfs_buftarg_t		*btp,
1902 	unsigned int		sectorsize)
1903 {
1904 	/* Set up metadata sector size info */
1905 	btp->bt_meta_sectorsize = sectorsize;
1906 	btp->bt_meta_sectormask = sectorsize - 1;
1907 
1908 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1909 		xfs_warn(btp->bt_mount,
1910 			"Cannot set_blocksize to %u on device %pg",
1911 			sectorsize, btp->bt_bdev);
1912 		return -EINVAL;
1913 	}
1914 
1915 	/* Set up device logical sector size mask */
1916 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1917 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1918 
1919 	return 0;
1920 }
1921 
1922 /*
1923  * When allocating the initial buffer target we have not yet
1924  * read in the superblock, so don't know what sized sectors
1925  * are being used at this early stage.  Play safe.
1926  */
1927 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1928 xfs_setsize_buftarg_early(
1929 	xfs_buftarg_t		*btp,
1930 	struct block_device	*bdev)
1931 {
1932 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1933 }
1934 
1935 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,struct dax_device * dax_dev)1936 xfs_alloc_buftarg(
1937 	struct xfs_mount	*mp,
1938 	struct block_device	*bdev,
1939 	struct dax_device	*dax_dev)
1940 {
1941 	xfs_buftarg_t		*btp;
1942 
1943 	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1944 
1945 	btp->bt_mount = mp;
1946 	btp->bt_dev =  bdev->bd_dev;
1947 	btp->bt_bdev = bdev;
1948 	btp->bt_daxdev = dax_dev;
1949 
1950 	/*
1951 	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1952 	 * per 30 seconds so as to not spam logs too much on repeated errors.
1953 	 */
1954 	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1955 			     DEFAULT_RATELIMIT_BURST);
1956 
1957 	if (xfs_setsize_buftarg_early(btp, bdev))
1958 		goto error_free;
1959 
1960 	if (list_lru_init(&btp->bt_lru))
1961 		goto error_free;
1962 
1963 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1964 		goto error_lru;
1965 
1966 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1967 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1968 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1969 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1970 	if (register_shrinker(&btp->bt_shrinker))
1971 		goto error_pcpu;
1972 	return btp;
1973 
1974 error_pcpu:
1975 	percpu_counter_destroy(&btp->bt_io_count);
1976 error_lru:
1977 	list_lru_destroy(&btp->bt_lru);
1978 error_free:
1979 	kmem_free(btp);
1980 	return NULL;
1981 }
1982 
1983 /*
1984  * Cancel a delayed write list.
1985  *
1986  * Remove each buffer from the list, clear the delwri queue flag and drop the
1987  * associated buffer reference.
1988  */
1989 void
xfs_buf_delwri_cancel(struct list_head * list)1990 xfs_buf_delwri_cancel(
1991 	struct list_head	*list)
1992 {
1993 	struct xfs_buf		*bp;
1994 
1995 	while (!list_empty(list)) {
1996 		bp = list_first_entry(list, struct xfs_buf, b_list);
1997 
1998 		xfs_buf_lock(bp);
1999 		bp->b_flags &= ~_XBF_DELWRI_Q;
2000 		list_del_init(&bp->b_list);
2001 		xfs_buf_relse(bp);
2002 	}
2003 }
2004 
2005 /*
2006  * Add a buffer to the delayed write list.
2007  *
2008  * This queues a buffer for writeout if it hasn't already been.  Note that
2009  * neither this routine nor the buffer list submission functions perform
2010  * any internal synchronization.  It is expected that the lists are thread-local
2011  * to the callers.
2012  *
2013  * Returns true if we queued up the buffer, or false if it already had
2014  * been on the buffer list.
2015  */
2016 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)2017 xfs_buf_delwri_queue(
2018 	struct xfs_buf		*bp,
2019 	struct list_head	*list)
2020 {
2021 	ASSERT(xfs_buf_islocked(bp));
2022 	ASSERT(!(bp->b_flags & XBF_READ));
2023 
2024 	/*
2025 	 * If the buffer is already marked delwri it already is queued up
2026 	 * by someone else for imediate writeout.  Just ignore it in that
2027 	 * case.
2028 	 */
2029 	if (bp->b_flags & _XBF_DELWRI_Q) {
2030 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2031 		return false;
2032 	}
2033 
2034 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2035 
2036 	/*
2037 	 * If a buffer gets written out synchronously or marked stale while it
2038 	 * is on a delwri list we lazily remove it. To do this, the other party
2039 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2040 	 * It remains referenced and on the list.  In a rare corner case it
2041 	 * might get readded to a delwri list after the synchronous writeout, in
2042 	 * which case we need just need to re-add the flag here.
2043 	 */
2044 	bp->b_flags |= _XBF_DELWRI_Q;
2045 	if (list_empty(&bp->b_list)) {
2046 		atomic_inc(&bp->b_hold);
2047 		list_add_tail(&bp->b_list, list);
2048 	}
2049 
2050 	return true;
2051 }
2052 
2053 /*
2054  * Compare function is more complex than it needs to be because
2055  * the return value is only 32 bits and we are doing comparisons
2056  * on 64 bit values
2057  */
2058 static int
xfs_buf_cmp(void * priv,const struct list_head * a,const struct list_head * b)2059 xfs_buf_cmp(
2060 	void			*priv,
2061 	const struct list_head	*a,
2062 	const struct list_head	*b)
2063 {
2064 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2065 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2066 	xfs_daddr_t		diff;
2067 
2068 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2069 	if (diff < 0)
2070 		return -1;
2071 	if (diff > 0)
2072 		return 1;
2073 	return 0;
2074 }
2075 
2076 /*
2077  * Submit buffers for write. If wait_list is specified, the buffers are
2078  * submitted using sync I/O and placed on the wait list such that the caller can
2079  * iowait each buffer. Otherwise async I/O is used and the buffers are released
2080  * at I/O completion time. In either case, buffers remain locked until I/O
2081  * completes and the buffer is released from the queue.
2082  */
2083 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)2084 xfs_buf_delwri_submit_buffers(
2085 	struct list_head	*buffer_list,
2086 	struct list_head	*wait_list)
2087 {
2088 	struct xfs_buf		*bp, *n;
2089 	int			pinned = 0;
2090 	struct blk_plug		plug;
2091 
2092 	list_sort(NULL, buffer_list, xfs_buf_cmp);
2093 
2094 	blk_start_plug(&plug);
2095 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2096 		if (!wait_list) {
2097 			if (xfs_buf_ispinned(bp)) {
2098 				pinned++;
2099 				continue;
2100 			}
2101 			if (!xfs_buf_trylock(bp))
2102 				continue;
2103 		} else {
2104 			xfs_buf_lock(bp);
2105 		}
2106 
2107 		/*
2108 		 * Someone else might have written the buffer synchronously or
2109 		 * marked it stale in the meantime.  In that case only the
2110 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2111 		 * reference and remove it from the list here.
2112 		 */
2113 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2114 			list_del_init(&bp->b_list);
2115 			xfs_buf_relse(bp);
2116 			continue;
2117 		}
2118 
2119 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2120 
2121 		/*
2122 		 * If we have a wait list, each buffer (and associated delwri
2123 		 * queue reference) transfers to it and is submitted
2124 		 * synchronously. Otherwise, drop the buffer from the delwri
2125 		 * queue and submit async.
2126 		 */
2127 		bp->b_flags &= ~_XBF_DELWRI_Q;
2128 		bp->b_flags |= XBF_WRITE;
2129 		if (wait_list) {
2130 			bp->b_flags &= ~XBF_ASYNC;
2131 			list_move_tail(&bp->b_list, wait_list);
2132 		} else {
2133 			bp->b_flags |= XBF_ASYNC;
2134 			list_del_init(&bp->b_list);
2135 		}
2136 		__xfs_buf_submit(bp, false);
2137 	}
2138 	blk_finish_plug(&plug);
2139 
2140 	return pinned;
2141 }
2142 
2143 /*
2144  * Write out a buffer list asynchronously.
2145  *
2146  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2147  * out and not wait for I/O completion on any of the buffers.  This interface
2148  * is only safely useable for callers that can track I/O completion by higher
2149  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2150  * function.
2151  *
2152  * Note: this function will skip buffers it would block on, and in doing so
2153  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2154  * it is up to the caller to ensure that the buffer list is fully submitted or
2155  * cancelled appropriately when they are finished with the list. Failure to
2156  * cancel or resubmit the list until it is empty will result in leaked buffers
2157  * at unmount time.
2158  */
2159 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2160 xfs_buf_delwri_submit_nowait(
2161 	struct list_head	*buffer_list)
2162 {
2163 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2164 }
2165 
2166 /*
2167  * Write out a buffer list synchronously.
2168  *
2169  * This will take the @buffer_list, write all buffers out and wait for I/O
2170  * completion on all of the buffers. @buffer_list is consumed by the function,
2171  * so callers must have some other way of tracking buffers if they require such
2172  * functionality.
2173  */
2174 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2175 xfs_buf_delwri_submit(
2176 	struct list_head	*buffer_list)
2177 {
2178 	LIST_HEAD		(wait_list);
2179 	int			error = 0, error2;
2180 	struct xfs_buf		*bp;
2181 
2182 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2183 
2184 	/* Wait for IO to complete. */
2185 	while (!list_empty(&wait_list)) {
2186 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2187 
2188 		list_del_init(&bp->b_list);
2189 
2190 		/*
2191 		 * Wait on the locked buffer, check for errors and unlock and
2192 		 * release the delwri queue reference.
2193 		 */
2194 		error2 = xfs_buf_iowait(bp);
2195 		xfs_buf_relse(bp);
2196 		if (!error)
2197 			error = error2;
2198 	}
2199 
2200 	return error;
2201 }
2202 
2203 /*
2204  * Push a single buffer on a delwri queue.
2205  *
2206  * The purpose of this function is to submit a single buffer of a delwri queue
2207  * and return with the buffer still on the original queue. The waiting delwri
2208  * buffer submission infrastructure guarantees transfer of the delwri queue
2209  * buffer reference to a temporary wait list. We reuse this infrastructure to
2210  * transfer the buffer back to the original queue.
2211  *
2212  * Note the buffer transitions from the queued state, to the submitted and wait
2213  * listed state and back to the queued state during this call. The buffer
2214  * locking and queue management logic between _delwri_pushbuf() and
2215  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2216  * before returning.
2217  */
2218 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2219 xfs_buf_delwri_pushbuf(
2220 	struct xfs_buf		*bp,
2221 	struct list_head	*buffer_list)
2222 {
2223 	LIST_HEAD		(submit_list);
2224 	int			error;
2225 
2226 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2227 
2228 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2229 
2230 	/*
2231 	 * Isolate the buffer to a new local list so we can submit it for I/O
2232 	 * independently from the rest of the original list.
2233 	 */
2234 	xfs_buf_lock(bp);
2235 	list_move(&bp->b_list, &submit_list);
2236 	xfs_buf_unlock(bp);
2237 
2238 	/*
2239 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2240 	 * the buffer on the wait list with the original reference. Rather than
2241 	 * bounce the buffer from a local wait list back to the original list
2242 	 * after I/O completion, reuse the original list as the wait list.
2243 	 */
2244 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2245 
2246 	/*
2247 	 * The buffer is now locked, under I/O and wait listed on the original
2248 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2249 	 * return with the buffer unlocked and on the original queue.
2250 	 */
2251 	error = xfs_buf_iowait(bp);
2252 	bp->b_flags |= _XBF_DELWRI_Q;
2253 	xfs_buf_unlock(bp);
2254 
2255 	return error;
2256 }
2257 
2258 int __init
xfs_buf_init(void)2259 xfs_buf_init(void)
2260 {
2261 	xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2262 					 SLAB_HWCACHE_ALIGN |
2263 					 SLAB_RECLAIM_ACCOUNT |
2264 					 SLAB_MEM_SPREAD,
2265 					 NULL);
2266 	if (!xfs_buf_zone)
2267 		goto out;
2268 
2269 	return 0;
2270 
2271  out:
2272 	return -ENOMEM;
2273 }
2274 
2275 void
xfs_buf_terminate(void)2276 xfs_buf_terminate(void)
2277 {
2278 	kmem_cache_destroy(xfs_buf_zone);
2279 }
2280 
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2281 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2282 {
2283 	/*
2284 	 * Set the lru reference count to 0 based on the error injection tag.
2285 	 * This allows userspace to disrupt buffer caching for debug/testing
2286 	 * purposes.
2287 	 */
2288 	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2289 		lru_ref = 0;
2290 
2291 	atomic_set(&bp->b_lru_ref, lru_ref);
2292 }
2293 
2294 /*
2295  * Verify an on-disk magic value against the magic value specified in the
2296  * verifier structure. The verifier magic is in disk byte order so the caller is
2297  * expected to pass the value directly from disk.
2298  */
2299 bool
xfs_verify_magic(struct xfs_buf * bp,__be32 dmagic)2300 xfs_verify_magic(
2301 	struct xfs_buf		*bp,
2302 	__be32			dmagic)
2303 {
2304 	struct xfs_mount	*mp = bp->b_mount;
2305 	int			idx;
2306 
2307 	idx = xfs_has_crc(mp);
2308 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2309 		return false;
2310 	return dmagic == bp->b_ops->magic[idx];
2311 }
2312 /*
2313  * Verify an on-disk magic value against the magic value specified in the
2314  * verifier structure. The verifier magic is in disk byte order so the caller is
2315  * expected to pass the value directly from disk.
2316  */
2317 bool
xfs_verify_magic16(struct xfs_buf * bp,__be16 dmagic)2318 xfs_verify_magic16(
2319 	struct xfs_buf		*bp,
2320 	__be16			dmagic)
2321 {
2322 	struct xfs_mount	*mp = bp->b_mount;
2323 	int			idx;
2324 
2325 	idx = xfs_has_crc(mp);
2326 	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2327 		return false;
2328 	return dmagic == bp->b_ops->magic16[idx];
2329 }
2330