1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_mount.h"
14 #include "xfs_trace.h"
15 #include "xfs_log.h"
16 #include "xfs_log_recover.h"
17 #include "xfs_trans.h"
18 #include "xfs_buf_item.h"
19 #include "xfs_errortag.h"
20 #include "xfs_error.h"
21 #include "xfs_ag.h"
22
23 static kmem_zone_t *xfs_buf_zone;
24
25 /*
26 * Locking orders
27 *
28 * xfs_buf_ioacct_inc:
29 * xfs_buf_ioacct_dec:
30 * b_sema (caller holds)
31 * b_lock
32 *
33 * xfs_buf_stale:
34 * b_sema (caller holds)
35 * b_lock
36 * lru_lock
37 *
38 * xfs_buf_rele:
39 * b_lock
40 * pag_buf_lock
41 * lru_lock
42 *
43 * xfs_buftarg_drain_rele
44 * lru_lock
45 * b_lock (trylock due to inversion)
46 *
47 * xfs_buftarg_isolate
48 * lru_lock
49 * b_lock (trylock due to inversion)
50 */
51
52 static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
53
54 static inline int
xfs_buf_submit(struct xfs_buf * bp)55 xfs_buf_submit(
56 struct xfs_buf *bp)
57 {
58 return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
59 }
60
61 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
64 {
65 /*
66 * Return true if the buffer is vmapped.
67 *
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
71 */
72 return bp->b_addr && bp->b_page_count > 1;
73 }
74
75 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
78 {
79 return (bp->b_page_count * PAGE_SIZE);
80 }
81
82 /*
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
89 * in-flight buffers.
90 *
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
94 */
95 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)96 xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
98 {
99 if (bp->b_flags & XBF_NO_IOACCT)
100 return;
101
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
107 }
108 spin_unlock(&bp->b_lock);
109 }
110
111 /*
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
114 */
115 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)116 __xfs_buf_ioacct_dec(
117 struct xfs_buf *bp)
118 {
119 lockdep_assert_held(&bp->b_lock);
120
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
124 }
125 }
126
127 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)128 xfs_buf_ioacct_dec(
129 struct xfs_buf *bp)
130 {
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
134 }
135
136 /*
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
141 *
142 * This prevents build-up of stale buffers on the LRU.
143 */
144 void
xfs_buf_stale(struct xfs_buf * bp)145 xfs_buf_stale(
146 struct xfs_buf *bp)
147 {
148 ASSERT(xfs_buf_islocked(bp));
149
150 bp->b_flags |= XBF_STALE;
151
152 /*
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
156 */
157 bp->b_flags &= ~_XBF_DELWRI_Q;
158
159 /*
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
164 */
165 spin_lock(&bp->b_lock);
166 __xfs_buf_ioacct_dec(bp);
167
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
172
173 ASSERT(atomic_read(&bp->b_hold) >= 1);
174 spin_unlock(&bp->b_lock);
175 }
176
177 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)178 xfs_buf_get_maps(
179 struct xfs_buf *bp,
180 int map_count)
181 {
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
184
185 if (map_count == 1) {
186 bp->b_maps = &bp->__b_map;
187 return 0;
188 }
189
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 KM_NOFS);
192 if (!bp->b_maps)
193 return -ENOMEM;
194 return 0;
195 }
196
197 /*
198 * Frees b_pages if it was allocated.
199 */
200 static void
xfs_buf_free_maps(struct xfs_buf * bp)201 xfs_buf_free_maps(
202 struct xfs_buf *bp)
203 {
204 if (bp->b_maps != &bp->__b_map) {
205 kmem_free(bp->b_maps);
206 bp->b_maps = NULL;
207 }
208 }
209
210 static int
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)211 _xfs_buf_alloc(
212 struct xfs_buftarg *target,
213 struct xfs_buf_map *map,
214 int nmaps,
215 xfs_buf_flags_t flags,
216 struct xfs_buf **bpp)
217 {
218 struct xfs_buf *bp;
219 int error;
220 int i;
221
222 *bpp = NULL;
223 bp = kmem_cache_zalloc(xfs_buf_zone, GFP_NOFS | __GFP_NOFAIL);
224
225 /*
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
228 */
229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
230
231 atomic_set(&bp->b_hold, 1);
232 atomic_set(&bp->b_lru_ref, 1);
233 init_completion(&bp->b_iowait);
234 INIT_LIST_HEAD(&bp->b_lru);
235 INIT_LIST_HEAD(&bp->b_list);
236 INIT_LIST_HEAD(&bp->b_li_list);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
239 bp->b_target = target;
240 bp->b_mount = target->bt_mount;
241 bp->b_flags = flags;
242
243 /*
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
247 */
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
250 kmem_cache_free(xfs_buf_zone, bp);
251 return error;
252 }
253
254 bp->b_rhash_key = map[0].bm_bn;
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
260 }
261
262 atomic_set(&bp->b_pin_count, 0);
263 init_waitqueue_head(&bp->b_waiters);
264
265 XFS_STATS_INC(bp->b_mount, xb_create);
266 trace_xfs_buf_init(bp, _RET_IP_);
267
268 *bpp = bp;
269 return 0;
270 }
271
272 static void
xfs_buf_free_pages(struct xfs_buf * bp)273 xfs_buf_free_pages(
274 struct xfs_buf *bp)
275 {
276 uint i;
277
278 ASSERT(bp->b_flags & _XBF_PAGES);
279
280 if (xfs_buf_is_vmapped(bp))
281 vm_unmap_ram(bp->b_addr, bp->b_page_count);
282
283 for (i = 0; i < bp->b_page_count; i++) {
284 if (bp->b_pages[i])
285 __free_page(bp->b_pages[i]);
286 }
287 if (current->reclaim_state)
288 current->reclaim_state->reclaimed_slab += bp->b_page_count;
289
290 if (bp->b_pages != bp->b_page_array)
291 kmem_free(bp->b_pages);
292 bp->b_pages = NULL;
293 bp->b_flags &= ~_XBF_PAGES;
294 }
295
296 static void
xfs_buf_free(struct xfs_buf * bp)297 xfs_buf_free(
298 struct xfs_buf *bp)
299 {
300 trace_xfs_buf_free(bp, _RET_IP_);
301
302 ASSERT(list_empty(&bp->b_lru));
303
304 if (bp->b_flags & _XBF_PAGES)
305 xfs_buf_free_pages(bp);
306 else if (bp->b_flags & _XBF_KMEM)
307 kmem_free(bp->b_addr);
308
309 xfs_buf_free_maps(bp);
310 kmem_cache_free(xfs_buf_zone, bp);
311 }
312
313 static int
xfs_buf_alloc_kmem(struct xfs_buf * bp,xfs_buf_flags_t flags)314 xfs_buf_alloc_kmem(
315 struct xfs_buf *bp,
316 xfs_buf_flags_t flags)
317 {
318 xfs_km_flags_t kmflag_mask = KM_NOFS;
319 size_t size = BBTOB(bp->b_length);
320
321 /* Assure zeroed buffer for non-read cases. */
322 if (!(flags & XBF_READ))
323 kmflag_mask |= KM_ZERO;
324
325 bp->b_addr = kmem_alloc(size, kmflag_mask);
326 if (!bp->b_addr)
327 return -ENOMEM;
328
329 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
330 ((unsigned long)bp->b_addr & PAGE_MASK)) {
331 /* b_addr spans two pages - use alloc_page instead */
332 kmem_free(bp->b_addr);
333 bp->b_addr = NULL;
334 return -ENOMEM;
335 }
336 bp->b_offset = offset_in_page(bp->b_addr);
337 bp->b_pages = bp->b_page_array;
338 bp->b_pages[0] = kmem_to_page(bp->b_addr);
339 bp->b_page_count = 1;
340 bp->b_flags |= _XBF_KMEM;
341 return 0;
342 }
343
344 static int
xfs_buf_alloc_pages(struct xfs_buf * bp,xfs_buf_flags_t flags)345 xfs_buf_alloc_pages(
346 struct xfs_buf *bp,
347 xfs_buf_flags_t flags)
348 {
349 gfp_t gfp_mask = __GFP_NOWARN;
350 long filled = 0;
351
352 if (flags & XBF_READ_AHEAD)
353 gfp_mask |= __GFP_NORETRY;
354 else
355 gfp_mask |= GFP_NOFS;
356
357 /* Make sure that we have a page list */
358 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
359 if (bp->b_page_count <= XB_PAGES) {
360 bp->b_pages = bp->b_page_array;
361 } else {
362 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
363 gfp_mask);
364 if (!bp->b_pages)
365 return -ENOMEM;
366 }
367 bp->b_flags |= _XBF_PAGES;
368
369 /* Assure zeroed buffer for non-read cases. */
370 if (!(flags & XBF_READ))
371 gfp_mask |= __GFP_ZERO;
372
373 /*
374 * Bulk filling of pages can take multiple calls. Not filling the entire
375 * array is not an allocation failure, so don't back off if we get at
376 * least one extra page.
377 */
378 for (;;) {
379 long last = filled;
380
381 filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
382 bp->b_pages);
383 if (filled == bp->b_page_count) {
384 XFS_STATS_INC(bp->b_mount, xb_page_found);
385 break;
386 }
387
388 if (filled != last)
389 continue;
390
391 if (flags & XBF_READ_AHEAD) {
392 xfs_buf_free_pages(bp);
393 return -ENOMEM;
394 }
395
396 XFS_STATS_INC(bp->b_mount, xb_page_retries);
397 congestion_wait(BLK_RW_ASYNC, HZ / 50);
398 }
399 return 0;
400 }
401
402 /*
403 * Map buffer into kernel address-space if necessary.
404 */
405 STATIC int
_xfs_buf_map_pages(struct xfs_buf * bp,uint flags)406 _xfs_buf_map_pages(
407 struct xfs_buf *bp,
408 uint flags)
409 {
410 ASSERT(bp->b_flags & _XBF_PAGES);
411 if (bp->b_page_count == 1) {
412 /* A single page buffer is always mappable */
413 bp->b_addr = page_address(bp->b_pages[0]);
414 } else if (flags & XBF_UNMAPPED) {
415 bp->b_addr = NULL;
416 } else {
417 int retried = 0;
418 unsigned nofs_flag;
419
420 /*
421 * vm_map_ram() will allocate auxiliary structures (e.g.
422 * pagetables) with GFP_KERNEL, yet we are likely to be under
423 * GFP_NOFS context here. Hence we need to tell memory reclaim
424 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
425 * memory reclaim re-entering the filesystem here and
426 * potentially deadlocking.
427 */
428 nofs_flag = memalloc_nofs_save();
429 do {
430 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
431 -1);
432 if (bp->b_addr)
433 break;
434 vm_unmap_aliases();
435 } while (retried++ <= 1);
436 memalloc_nofs_restore(nofs_flag);
437
438 if (!bp->b_addr)
439 return -ENOMEM;
440 }
441
442 return 0;
443 }
444
445 /*
446 * Finding and Reading Buffers
447 */
448 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)449 _xfs_buf_obj_cmp(
450 struct rhashtable_compare_arg *arg,
451 const void *obj)
452 {
453 const struct xfs_buf_map *map = arg->key;
454 const struct xfs_buf *bp = obj;
455
456 /*
457 * The key hashing in the lookup path depends on the key being the
458 * first element of the compare_arg, make sure to assert this.
459 */
460 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
461
462 if (bp->b_rhash_key != map->bm_bn)
463 return 1;
464
465 if (unlikely(bp->b_length != map->bm_len)) {
466 /*
467 * found a block number match. If the range doesn't
468 * match, the only way this is allowed is if the buffer
469 * in the cache is stale and the transaction that made
470 * it stale has not yet committed. i.e. we are
471 * reallocating a busy extent. Skip this buffer and
472 * continue searching for an exact match.
473 */
474 ASSERT(bp->b_flags & XBF_STALE);
475 return 1;
476 }
477 return 0;
478 }
479
480 static const struct rhashtable_params xfs_buf_hash_params = {
481 .min_size = 32, /* empty AGs have minimal footprint */
482 .nelem_hint = 16,
483 .key_len = sizeof(xfs_daddr_t),
484 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
485 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
486 .automatic_shrinking = true,
487 .obj_cmpfn = _xfs_buf_obj_cmp,
488 };
489
490 int
xfs_buf_hash_init(struct xfs_perag * pag)491 xfs_buf_hash_init(
492 struct xfs_perag *pag)
493 {
494 spin_lock_init(&pag->pag_buf_lock);
495 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
496 }
497
498 void
xfs_buf_hash_destroy(struct xfs_perag * pag)499 xfs_buf_hash_destroy(
500 struct xfs_perag *pag)
501 {
502 rhashtable_destroy(&pag->pag_buf_hash);
503 }
504
505 /*
506 * Look up a buffer in the buffer cache and return it referenced and locked
507 * in @found_bp.
508 *
509 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
510 * cache.
511 *
512 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
513 * -EAGAIN if we fail to lock it.
514 *
515 * Return values are:
516 * -EFSCORRUPTED if have been supplied with an invalid address
517 * -EAGAIN on trylock failure
518 * -ENOENT if we fail to find a match and @new_bp was NULL
519 * 0, with @found_bp:
520 * - @new_bp if we inserted it into the cache
521 * - the buffer we found and locked.
522 */
523 static int
xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf * new_bp,struct xfs_buf ** found_bp)524 xfs_buf_find(
525 struct xfs_buftarg *btp,
526 struct xfs_buf_map *map,
527 int nmaps,
528 xfs_buf_flags_t flags,
529 struct xfs_buf *new_bp,
530 struct xfs_buf **found_bp)
531 {
532 struct xfs_perag *pag;
533 struct xfs_buf *bp;
534 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
535 xfs_daddr_t eofs;
536 int i;
537
538 *found_bp = NULL;
539
540 for (i = 0; i < nmaps; i++)
541 cmap.bm_len += map[i].bm_len;
542
543 /* Check for IOs smaller than the sector size / not sector aligned */
544 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
545 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
546
547 /*
548 * Corrupted block numbers can get through to here, unfortunately, so we
549 * have to check that the buffer falls within the filesystem bounds.
550 */
551 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
552 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
553 xfs_alert(btp->bt_mount,
554 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
555 __func__, cmap.bm_bn, eofs);
556 WARN_ON(1);
557 return -EFSCORRUPTED;
558 }
559
560 pag = xfs_perag_get(btp->bt_mount,
561 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
562
563 spin_lock(&pag->pag_buf_lock);
564 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
565 xfs_buf_hash_params);
566 if (bp) {
567 atomic_inc(&bp->b_hold);
568 goto found;
569 }
570
571 /* No match found */
572 if (!new_bp) {
573 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
574 spin_unlock(&pag->pag_buf_lock);
575 xfs_perag_put(pag);
576 return -ENOENT;
577 }
578
579 /* the buffer keeps the perag reference until it is freed */
580 new_bp->b_pag = pag;
581 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
582 xfs_buf_hash_params);
583 spin_unlock(&pag->pag_buf_lock);
584 *found_bp = new_bp;
585 return 0;
586
587 found:
588 spin_unlock(&pag->pag_buf_lock);
589 xfs_perag_put(pag);
590
591 if (!xfs_buf_trylock(bp)) {
592 if (flags & XBF_TRYLOCK) {
593 xfs_buf_rele(bp);
594 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
595 return -EAGAIN;
596 }
597 xfs_buf_lock(bp);
598 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
599 }
600
601 /*
602 * if the buffer is stale, clear all the external state associated with
603 * it. We need to keep flags such as how we allocated the buffer memory
604 * intact here.
605 */
606 if (bp->b_flags & XBF_STALE) {
607 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
608 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
609 bp->b_ops = NULL;
610 }
611
612 trace_xfs_buf_find(bp, flags, _RET_IP_);
613 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
614 *found_bp = bp;
615 return 0;
616 }
617
618 struct xfs_buf *
xfs_buf_incore(struct xfs_buftarg * target,xfs_daddr_t blkno,size_t numblks,xfs_buf_flags_t flags)619 xfs_buf_incore(
620 struct xfs_buftarg *target,
621 xfs_daddr_t blkno,
622 size_t numblks,
623 xfs_buf_flags_t flags)
624 {
625 struct xfs_buf *bp;
626 int error;
627 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
628
629 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
630 if (error)
631 return NULL;
632 return bp;
633 }
634
635 /*
636 * Assembles a buffer covering the specified range. The code is optimised for
637 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
638 * more hits than misses.
639 */
640 int
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp)641 xfs_buf_get_map(
642 struct xfs_buftarg *target,
643 struct xfs_buf_map *map,
644 int nmaps,
645 xfs_buf_flags_t flags,
646 struct xfs_buf **bpp)
647 {
648 struct xfs_buf *bp;
649 struct xfs_buf *new_bp;
650 int error;
651
652 *bpp = NULL;
653 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
654 if (!error)
655 goto found;
656 if (error != -ENOENT)
657 return error;
658
659 error = _xfs_buf_alloc(target, map, nmaps, flags, &new_bp);
660 if (error)
661 return error;
662
663 /*
664 * For buffers that fit entirely within a single page, first attempt to
665 * allocate the memory from the heap to minimise memory usage. If we
666 * can't get heap memory for these small buffers, we fall back to using
667 * the page allocator.
668 */
669 if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
670 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
671 error = xfs_buf_alloc_pages(new_bp, flags);
672 if (error)
673 goto out_free_buf;
674 }
675
676 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
677 if (error)
678 goto out_free_buf;
679
680 if (bp != new_bp)
681 xfs_buf_free(new_bp);
682
683 found:
684 if (!bp->b_addr) {
685 error = _xfs_buf_map_pages(bp, flags);
686 if (unlikely(error)) {
687 xfs_warn_ratelimited(target->bt_mount,
688 "%s: failed to map %u pages", __func__,
689 bp->b_page_count);
690 xfs_buf_relse(bp);
691 return error;
692 }
693 }
694
695 /*
696 * Clear b_error if this is a lookup from a caller that doesn't expect
697 * valid data to be found in the buffer.
698 */
699 if (!(flags & XBF_READ))
700 xfs_buf_ioerror(bp, 0);
701
702 XFS_STATS_INC(target->bt_mount, xb_get);
703 trace_xfs_buf_get(bp, flags, _RET_IP_);
704 *bpp = bp;
705 return 0;
706 out_free_buf:
707 xfs_buf_free(new_bp);
708 return error;
709 }
710
711 int
_xfs_buf_read(struct xfs_buf * bp,xfs_buf_flags_t flags)712 _xfs_buf_read(
713 struct xfs_buf *bp,
714 xfs_buf_flags_t flags)
715 {
716 ASSERT(!(flags & XBF_WRITE));
717 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
718
719 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
720 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
721
722 return xfs_buf_submit(bp);
723 }
724
725 /*
726 * Reverify a buffer found in cache without an attached ->b_ops.
727 *
728 * If the caller passed an ops structure and the buffer doesn't have ops
729 * assigned, set the ops and use it to verify the contents. If verification
730 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
731 * already in XBF_DONE state on entry.
732 *
733 * Under normal operations, every in-core buffer is verified on read I/O
734 * completion. There are two scenarios that can lead to in-core buffers without
735 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
736 * filesystem, though these buffers are purged at the end of recovery. The
737 * other is online repair, which intentionally reads with a NULL buffer ops to
738 * run several verifiers across an in-core buffer in order to establish buffer
739 * type. If repair can't establish that, the buffer will be left in memory
740 * with NULL buffer ops.
741 */
742 int
xfs_buf_reverify(struct xfs_buf * bp,const struct xfs_buf_ops * ops)743 xfs_buf_reverify(
744 struct xfs_buf *bp,
745 const struct xfs_buf_ops *ops)
746 {
747 ASSERT(bp->b_flags & XBF_DONE);
748 ASSERT(bp->b_error == 0);
749
750 if (!ops || bp->b_ops)
751 return 0;
752
753 bp->b_ops = ops;
754 bp->b_ops->verify_read(bp);
755 if (bp->b_error)
756 bp->b_flags &= ~XBF_DONE;
757 return bp->b_error;
758 }
759
760 int
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops,xfs_failaddr_t fa)761 xfs_buf_read_map(
762 struct xfs_buftarg *target,
763 struct xfs_buf_map *map,
764 int nmaps,
765 xfs_buf_flags_t flags,
766 struct xfs_buf **bpp,
767 const struct xfs_buf_ops *ops,
768 xfs_failaddr_t fa)
769 {
770 struct xfs_buf *bp;
771 int error;
772
773 flags |= XBF_READ;
774 *bpp = NULL;
775
776 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
777 if (error)
778 return error;
779
780 trace_xfs_buf_read(bp, flags, _RET_IP_);
781
782 if (!(bp->b_flags & XBF_DONE)) {
783 /* Initiate the buffer read and wait. */
784 XFS_STATS_INC(target->bt_mount, xb_get_read);
785 bp->b_ops = ops;
786 error = _xfs_buf_read(bp, flags);
787
788 /* Readahead iodone already dropped the buffer, so exit. */
789 if (flags & XBF_ASYNC)
790 return 0;
791 } else {
792 /* Buffer already read; all we need to do is check it. */
793 error = xfs_buf_reverify(bp, ops);
794
795 /* Readahead already finished; drop the buffer and exit. */
796 if (flags & XBF_ASYNC) {
797 xfs_buf_relse(bp);
798 return 0;
799 }
800
801 /* We do not want read in the flags */
802 bp->b_flags &= ~XBF_READ;
803 ASSERT(bp->b_ops != NULL || ops == NULL);
804 }
805
806 /*
807 * If we've had a read error, then the contents of the buffer are
808 * invalid and should not be used. To ensure that a followup read tries
809 * to pull the buffer from disk again, we clear the XBF_DONE flag and
810 * mark the buffer stale. This ensures that anyone who has a current
811 * reference to the buffer will interpret it's contents correctly and
812 * future cache lookups will also treat it as an empty, uninitialised
813 * buffer.
814 */
815 if (error) {
816 if (!xfs_is_shutdown(target->bt_mount))
817 xfs_buf_ioerror_alert(bp, fa);
818
819 bp->b_flags &= ~XBF_DONE;
820 xfs_buf_stale(bp);
821 xfs_buf_relse(bp);
822
823 /* bad CRC means corrupted metadata */
824 if (error == -EFSBADCRC)
825 error = -EFSCORRUPTED;
826 return error;
827 }
828
829 *bpp = bp;
830 return 0;
831 }
832
833 /*
834 * If we are not low on memory then do the readahead in a deadlock
835 * safe manner.
836 */
837 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)838 xfs_buf_readahead_map(
839 struct xfs_buftarg *target,
840 struct xfs_buf_map *map,
841 int nmaps,
842 const struct xfs_buf_ops *ops)
843 {
844 struct xfs_buf *bp;
845
846 if (bdi_read_congested(target->bt_bdev->bd_disk->bdi))
847 return;
848
849 xfs_buf_read_map(target, map, nmaps,
850 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
851 __this_address);
852 }
853
854 /*
855 * Read an uncached buffer from disk. Allocates and returns a locked
856 * buffer containing the disk contents or nothing. Uncached buffers always have
857 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
858 * is cached or uncached during fault diagnosis.
859 */
860 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)861 xfs_buf_read_uncached(
862 struct xfs_buftarg *target,
863 xfs_daddr_t daddr,
864 size_t numblks,
865 int flags,
866 struct xfs_buf **bpp,
867 const struct xfs_buf_ops *ops)
868 {
869 struct xfs_buf *bp;
870 int error;
871
872 *bpp = NULL;
873
874 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
875 if (error)
876 return error;
877
878 /* set up the buffer for a read IO */
879 ASSERT(bp->b_map_count == 1);
880 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
881 bp->b_maps[0].bm_bn = daddr;
882 bp->b_flags |= XBF_READ;
883 bp->b_ops = ops;
884
885 xfs_buf_submit(bp);
886 if (bp->b_error) {
887 error = bp->b_error;
888 xfs_buf_relse(bp);
889 return error;
890 }
891
892 *bpp = bp;
893 return 0;
894 }
895
896 int
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags,struct xfs_buf ** bpp)897 xfs_buf_get_uncached(
898 struct xfs_buftarg *target,
899 size_t numblks,
900 int flags,
901 struct xfs_buf **bpp)
902 {
903 int error;
904 struct xfs_buf *bp;
905 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
906
907 *bpp = NULL;
908
909 /* flags might contain irrelevant bits, pass only what we care about */
910 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
911 if (error)
912 return error;
913
914 error = xfs_buf_alloc_pages(bp, flags);
915 if (error)
916 goto fail_free_buf;
917
918 error = _xfs_buf_map_pages(bp, 0);
919 if (unlikely(error)) {
920 xfs_warn(target->bt_mount,
921 "%s: failed to map pages", __func__);
922 goto fail_free_buf;
923 }
924
925 trace_xfs_buf_get_uncached(bp, _RET_IP_);
926 *bpp = bp;
927 return 0;
928
929 fail_free_buf:
930 xfs_buf_free(bp);
931 return error;
932 }
933
934 /*
935 * Increment reference count on buffer, to hold the buffer concurrently
936 * with another thread which may release (free) the buffer asynchronously.
937 * Must hold the buffer already to call this function.
938 */
939 void
xfs_buf_hold(struct xfs_buf * bp)940 xfs_buf_hold(
941 struct xfs_buf *bp)
942 {
943 trace_xfs_buf_hold(bp, _RET_IP_);
944 atomic_inc(&bp->b_hold);
945 }
946
947 /*
948 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
949 * placed on LRU or freed (depending on b_lru_ref).
950 */
951 void
xfs_buf_rele(struct xfs_buf * bp)952 xfs_buf_rele(
953 struct xfs_buf *bp)
954 {
955 struct xfs_perag *pag = bp->b_pag;
956 bool release;
957 bool freebuf = false;
958
959 trace_xfs_buf_rele(bp, _RET_IP_);
960
961 if (!pag) {
962 ASSERT(list_empty(&bp->b_lru));
963 if (atomic_dec_and_test(&bp->b_hold)) {
964 xfs_buf_ioacct_dec(bp);
965 xfs_buf_free(bp);
966 }
967 return;
968 }
969
970 ASSERT(atomic_read(&bp->b_hold) > 0);
971
972 /*
973 * We grab the b_lock here first to serialise racing xfs_buf_rele()
974 * calls. The pag_buf_lock being taken on the last reference only
975 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
976 * to last reference we drop here is not serialised against the last
977 * reference until we take bp->b_lock. Hence if we don't grab b_lock
978 * first, the last "release" reference can win the race to the lock and
979 * free the buffer before the second-to-last reference is processed,
980 * leading to a use-after-free scenario.
981 */
982 spin_lock(&bp->b_lock);
983 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
984 if (!release) {
985 /*
986 * Drop the in-flight state if the buffer is already on the LRU
987 * and it holds the only reference. This is racy because we
988 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
989 * ensures the decrement occurs only once per-buf.
990 */
991 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
992 __xfs_buf_ioacct_dec(bp);
993 goto out_unlock;
994 }
995
996 /* the last reference has been dropped ... */
997 __xfs_buf_ioacct_dec(bp);
998 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
999 /*
1000 * If the buffer is added to the LRU take a new reference to the
1001 * buffer for the LRU and clear the (now stale) dispose list
1002 * state flag
1003 */
1004 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1005 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1006 atomic_inc(&bp->b_hold);
1007 }
1008 spin_unlock(&pag->pag_buf_lock);
1009 } else {
1010 /*
1011 * most of the time buffers will already be removed from the
1012 * LRU, so optimise that case by checking for the
1013 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1014 * was on was the disposal list
1015 */
1016 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1017 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1018 } else {
1019 ASSERT(list_empty(&bp->b_lru));
1020 }
1021
1022 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1023 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1024 xfs_buf_hash_params);
1025 spin_unlock(&pag->pag_buf_lock);
1026 xfs_perag_put(pag);
1027 freebuf = true;
1028 }
1029
1030 out_unlock:
1031 spin_unlock(&bp->b_lock);
1032
1033 if (freebuf)
1034 xfs_buf_free(bp);
1035 }
1036
1037
1038 /*
1039 * Lock a buffer object, if it is not already locked.
1040 *
1041 * If we come across a stale, pinned, locked buffer, we know that we are
1042 * being asked to lock a buffer that has been reallocated. Because it is
1043 * pinned, we know that the log has not been pushed to disk and hence it
1044 * will still be locked. Rather than continuing to have trylock attempts
1045 * fail until someone else pushes the log, push it ourselves before
1046 * returning. This means that the xfsaild will not get stuck trying
1047 * to push on stale inode buffers.
1048 */
1049 int
xfs_buf_trylock(struct xfs_buf * bp)1050 xfs_buf_trylock(
1051 struct xfs_buf *bp)
1052 {
1053 int locked;
1054
1055 locked = down_trylock(&bp->b_sema) == 0;
1056 if (locked)
1057 trace_xfs_buf_trylock(bp, _RET_IP_);
1058 else
1059 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1060 return locked;
1061 }
1062
1063 /*
1064 * Lock a buffer object.
1065 *
1066 * If we come across a stale, pinned, locked buffer, we know that we
1067 * are being asked to lock a buffer that has been reallocated. Because
1068 * it is pinned, we know that the log has not been pushed to disk and
1069 * hence it will still be locked. Rather than sleeping until someone
1070 * else pushes the log, push it ourselves before trying to get the lock.
1071 */
1072 void
xfs_buf_lock(struct xfs_buf * bp)1073 xfs_buf_lock(
1074 struct xfs_buf *bp)
1075 {
1076 trace_xfs_buf_lock(bp, _RET_IP_);
1077
1078 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1079 xfs_log_force(bp->b_mount, 0);
1080 down(&bp->b_sema);
1081
1082 trace_xfs_buf_lock_done(bp, _RET_IP_);
1083 }
1084
1085 void
xfs_buf_unlock(struct xfs_buf * bp)1086 xfs_buf_unlock(
1087 struct xfs_buf *bp)
1088 {
1089 ASSERT(xfs_buf_islocked(bp));
1090
1091 up(&bp->b_sema);
1092 trace_xfs_buf_unlock(bp, _RET_IP_);
1093 }
1094
1095 STATIC void
xfs_buf_wait_unpin(struct xfs_buf * bp)1096 xfs_buf_wait_unpin(
1097 struct xfs_buf *bp)
1098 {
1099 DECLARE_WAITQUEUE (wait, current);
1100
1101 if (atomic_read(&bp->b_pin_count) == 0)
1102 return;
1103
1104 add_wait_queue(&bp->b_waiters, &wait);
1105 for (;;) {
1106 set_current_state(TASK_UNINTERRUPTIBLE);
1107 if (atomic_read(&bp->b_pin_count) == 0)
1108 break;
1109 io_schedule();
1110 }
1111 remove_wait_queue(&bp->b_waiters, &wait);
1112 set_current_state(TASK_RUNNING);
1113 }
1114
1115 static void
xfs_buf_ioerror_alert_ratelimited(struct xfs_buf * bp)1116 xfs_buf_ioerror_alert_ratelimited(
1117 struct xfs_buf *bp)
1118 {
1119 static unsigned long lasttime;
1120 static struct xfs_buftarg *lasttarg;
1121
1122 if (bp->b_target != lasttarg ||
1123 time_after(jiffies, (lasttime + 5*HZ))) {
1124 lasttime = jiffies;
1125 xfs_buf_ioerror_alert(bp, __this_address);
1126 }
1127 lasttarg = bp->b_target;
1128 }
1129
1130 /*
1131 * Account for this latest trip around the retry handler, and decide if
1132 * we've failed enough times to constitute a permanent failure.
1133 */
1134 static bool
xfs_buf_ioerror_permanent(struct xfs_buf * bp,struct xfs_error_cfg * cfg)1135 xfs_buf_ioerror_permanent(
1136 struct xfs_buf *bp,
1137 struct xfs_error_cfg *cfg)
1138 {
1139 struct xfs_mount *mp = bp->b_mount;
1140
1141 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1142 ++bp->b_retries > cfg->max_retries)
1143 return true;
1144 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1145 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1146 return true;
1147
1148 /* At unmount we may treat errors differently */
1149 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1150 return true;
1151
1152 return false;
1153 }
1154
1155 /*
1156 * On a sync write or shutdown we just want to stale the buffer and let the
1157 * caller handle the error in bp->b_error appropriately.
1158 *
1159 * If the write was asynchronous then no one will be looking for the error. If
1160 * this is the first failure of this type, clear the error state and write the
1161 * buffer out again. This means we always retry an async write failure at least
1162 * once, but we also need to set the buffer up to behave correctly now for
1163 * repeated failures.
1164 *
1165 * If we get repeated async write failures, then we take action according to the
1166 * error configuration we have been set up to use.
1167 *
1168 * Returns true if this function took care of error handling and the caller must
1169 * not touch the buffer again. Return false if the caller should proceed with
1170 * normal I/O completion handling.
1171 */
1172 static bool
xfs_buf_ioend_handle_error(struct xfs_buf * bp)1173 xfs_buf_ioend_handle_error(
1174 struct xfs_buf *bp)
1175 {
1176 struct xfs_mount *mp = bp->b_mount;
1177 struct xfs_error_cfg *cfg;
1178
1179 /*
1180 * If we've already decided to shutdown the filesystem because of I/O
1181 * errors, there's no point in giving this a retry.
1182 */
1183 if (xfs_is_shutdown(mp))
1184 goto out_stale;
1185
1186 xfs_buf_ioerror_alert_ratelimited(bp);
1187
1188 /*
1189 * We're not going to bother about retrying this during recovery.
1190 * One strike!
1191 */
1192 if (bp->b_flags & _XBF_LOGRECOVERY) {
1193 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1194 return false;
1195 }
1196
1197 /*
1198 * Synchronous writes will have callers process the error.
1199 */
1200 if (!(bp->b_flags & XBF_ASYNC))
1201 goto out_stale;
1202
1203 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1204
1205 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1206 if (bp->b_last_error != bp->b_error ||
1207 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1208 bp->b_last_error = bp->b_error;
1209 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1210 !bp->b_first_retry_time)
1211 bp->b_first_retry_time = jiffies;
1212 goto resubmit;
1213 }
1214
1215 /*
1216 * Permanent error - we need to trigger a shutdown if we haven't already
1217 * to indicate that inconsistency will result from this action.
1218 */
1219 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1220 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1221 goto out_stale;
1222 }
1223
1224 /* Still considered a transient error. Caller will schedule retries. */
1225 if (bp->b_flags & _XBF_INODES)
1226 xfs_buf_inode_io_fail(bp);
1227 else if (bp->b_flags & _XBF_DQUOTS)
1228 xfs_buf_dquot_io_fail(bp);
1229 else
1230 ASSERT(list_empty(&bp->b_li_list));
1231 xfs_buf_ioerror(bp, 0);
1232 xfs_buf_relse(bp);
1233 return true;
1234
1235 resubmit:
1236 xfs_buf_ioerror(bp, 0);
1237 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1238 xfs_buf_submit(bp);
1239 return true;
1240 out_stale:
1241 xfs_buf_stale(bp);
1242 bp->b_flags |= XBF_DONE;
1243 bp->b_flags &= ~XBF_WRITE;
1244 trace_xfs_buf_error_relse(bp, _RET_IP_);
1245 return false;
1246 }
1247
1248 static void
xfs_buf_ioend(struct xfs_buf * bp)1249 xfs_buf_ioend(
1250 struct xfs_buf *bp)
1251 {
1252 trace_xfs_buf_iodone(bp, _RET_IP_);
1253
1254 /*
1255 * Pull in IO completion errors now. We are guaranteed to be running
1256 * single threaded, so we don't need the lock to read b_io_error.
1257 */
1258 if (!bp->b_error && bp->b_io_error)
1259 xfs_buf_ioerror(bp, bp->b_io_error);
1260
1261 if (bp->b_flags & XBF_READ) {
1262 if (!bp->b_error && bp->b_ops)
1263 bp->b_ops->verify_read(bp);
1264 if (!bp->b_error)
1265 bp->b_flags |= XBF_DONE;
1266 } else {
1267 if (!bp->b_error) {
1268 bp->b_flags &= ~XBF_WRITE_FAIL;
1269 bp->b_flags |= XBF_DONE;
1270 }
1271
1272 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1273 return;
1274
1275 /* clear the retry state */
1276 bp->b_last_error = 0;
1277 bp->b_retries = 0;
1278 bp->b_first_retry_time = 0;
1279
1280 /*
1281 * Note that for things like remote attribute buffers, there may
1282 * not be a buffer log item here, so processing the buffer log
1283 * item must remain optional.
1284 */
1285 if (bp->b_log_item)
1286 xfs_buf_item_done(bp);
1287
1288 if (bp->b_flags & _XBF_INODES)
1289 xfs_buf_inode_iodone(bp);
1290 else if (bp->b_flags & _XBF_DQUOTS)
1291 xfs_buf_dquot_iodone(bp);
1292
1293 }
1294
1295 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1296 _XBF_LOGRECOVERY);
1297
1298 if (bp->b_flags & XBF_ASYNC)
1299 xfs_buf_relse(bp);
1300 else
1301 complete(&bp->b_iowait);
1302 }
1303
1304 static void
xfs_buf_ioend_work(struct work_struct * work)1305 xfs_buf_ioend_work(
1306 struct work_struct *work)
1307 {
1308 struct xfs_buf *bp =
1309 container_of(work, struct xfs_buf, b_ioend_work);
1310
1311 xfs_buf_ioend(bp);
1312 }
1313
1314 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1315 xfs_buf_ioend_async(
1316 struct xfs_buf *bp)
1317 {
1318 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1319 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1320 }
1321
1322 void
__xfs_buf_ioerror(struct xfs_buf * bp,int error,xfs_failaddr_t failaddr)1323 __xfs_buf_ioerror(
1324 struct xfs_buf *bp,
1325 int error,
1326 xfs_failaddr_t failaddr)
1327 {
1328 ASSERT(error <= 0 && error >= -1000);
1329 bp->b_error = error;
1330 trace_xfs_buf_ioerror(bp, error, failaddr);
1331 }
1332
1333 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,xfs_failaddr_t func)1334 xfs_buf_ioerror_alert(
1335 struct xfs_buf *bp,
1336 xfs_failaddr_t func)
1337 {
1338 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1339 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1340 func, (uint64_t)xfs_buf_daddr(bp),
1341 bp->b_length, -bp->b_error);
1342 }
1343
1344 /*
1345 * To simulate an I/O failure, the buffer must be locked and held with at least
1346 * three references. The LRU reference is dropped by the stale call. The buf
1347 * item reference is dropped via ioend processing. The third reference is owned
1348 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1349 */
1350 void
xfs_buf_ioend_fail(struct xfs_buf * bp)1351 xfs_buf_ioend_fail(
1352 struct xfs_buf *bp)
1353 {
1354 bp->b_flags &= ~XBF_DONE;
1355 xfs_buf_stale(bp);
1356 xfs_buf_ioerror(bp, -EIO);
1357 xfs_buf_ioend(bp);
1358 }
1359
1360 int
xfs_bwrite(struct xfs_buf * bp)1361 xfs_bwrite(
1362 struct xfs_buf *bp)
1363 {
1364 int error;
1365
1366 ASSERT(xfs_buf_islocked(bp));
1367
1368 bp->b_flags |= XBF_WRITE;
1369 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1370 XBF_DONE);
1371
1372 error = xfs_buf_submit(bp);
1373 if (error)
1374 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1375 return error;
1376 }
1377
1378 static void
xfs_buf_bio_end_io(struct bio * bio)1379 xfs_buf_bio_end_io(
1380 struct bio *bio)
1381 {
1382 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1383
1384 if (!bio->bi_status &&
1385 (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1386 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1387 bio->bi_status = BLK_STS_IOERR;
1388
1389 /*
1390 * don't overwrite existing errors - otherwise we can lose errors on
1391 * buffers that require multiple bios to complete.
1392 */
1393 if (bio->bi_status) {
1394 int error = blk_status_to_errno(bio->bi_status);
1395
1396 cmpxchg(&bp->b_io_error, 0, error);
1397 }
1398
1399 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1400 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1401
1402 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1403 xfs_buf_ioend_async(bp);
1404 bio_put(bio);
1405 }
1406
1407 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op)1408 xfs_buf_ioapply_map(
1409 struct xfs_buf *bp,
1410 int map,
1411 int *buf_offset,
1412 int *count,
1413 int op)
1414 {
1415 int page_index;
1416 unsigned int total_nr_pages = bp->b_page_count;
1417 int nr_pages;
1418 struct bio *bio;
1419 sector_t sector = bp->b_maps[map].bm_bn;
1420 int size;
1421 int offset;
1422
1423 /* skip the pages in the buffer before the start offset */
1424 page_index = 0;
1425 offset = *buf_offset;
1426 while (offset >= PAGE_SIZE) {
1427 page_index++;
1428 offset -= PAGE_SIZE;
1429 }
1430
1431 /*
1432 * Limit the IO size to the length of the current vector, and update the
1433 * remaining IO count for the next time around.
1434 */
1435 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1436 *count -= size;
1437 *buf_offset += size;
1438
1439 next_chunk:
1440 atomic_inc(&bp->b_io_remaining);
1441 nr_pages = bio_max_segs(total_nr_pages);
1442
1443 bio = bio_alloc(GFP_NOIO, nr_pages);
1444 bio_set_dev(bio, bp->b_target->bt_bdev);
1445 bio->bi_iter.bi_sector = sector;
1446 bio->bi_end_io = xfs_buf_bio_end_io;
1447 bio->bi_private = bp;
1448 bio->bi_opf = op;
1449
1450 for (; size && nr_pages; nr_pages--, page_index++) {
1451 int rbytes, nbytes = PAGE_SIZE - offset;
1452
1453 if (nbytes > size)
1454 nbytes = size;
1455
1456 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1457 offset);
1458 if (rbytes < nbytes)
1459 break;
1460
1461 offset = 0;
1462 sector += BTOBB(nbytes);
1463 size -= nbytes;
1464 total_nr_pages--;
1465 }
1466
1467 if (likely(bio->bi_iter.bi_size)) {
1468 if (xfs_buf_is_vmapped(bp)) {
1469 flush_kernel_vmap_range(bp->b_addr,
1470 xfs_buf_vmap_len(bp));
1471 }
1472 submit_bio(bio);
1473 if (size)
1474 goto next_chunk;
1475 } else {
1476 /*
1477 * This is guaranteed not to be the last io reference count
1478 * because the caller (xfs_buf_submit) holds a count itself.
1479 */
1480 atomic_dec(&bp->b_io_remaining);
1481 xfs_buf_ioerror(bp, -EIO);
1482 bio_put(bio);
1483 }
1484
1485 }
1486
1487 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1488 _xfs_buf_ioapply(
1489 struct xfs_buf *bp)
1490 {
1491 struct blk_plug plug;
1492 int op;
1493 int offset;
1494 int size;
1495 int i;
1496
1497 /*
1498 * Make sure we capture only current IO errors rather than stale errors
1499 * left over from previous use of the buffer (e.g. failed readahead).
1500 */
1501 bp->b_error = 0;
1502
1503 if (bp->b_flags & XBF_WRITE) {
1504 op = REQ_OP_WRITE;
1505
1506 /*
1507 * Run the write verifier callback function if it exists. If
1508 * this function fails it will mark the buffer with an error and
1509 * the IO should not be dispatched.
1510 */
1511 if (bp->b_ops) {
1512 bp->b_ops->verify_write(bp);
1513 if (bp->b_error) {
1514 xfs_force_shutdown(bp->b_mount,
1515 SHUTDOWN_CORRUPT_INCORE);
1516 return;
1517 }
1518 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1519 struct xfs_mount *mp = bp->b_mount;
1520
1521 /*
1522 * non-crc filesystems don't attach verifiers during
1523 * log recovery, so don't warn for such filesystems.
1524 */
1525 if (xfs_has_crc(mp)) {
1526 xfs_warn(mp,
1527 "%s: no buf ops on daddr 0x%llx len %d",
1528 __func__, xfs_buf_daddr(bp),
1529 bp->b_length);
1530 xfs_hex_dump(bp->b_addr,
1531 XFS_CORRUPTION_DUMP_LEN);
1532 dump_stack();
1533 }
1534 }
1535 } else {
1536 op = REQ_OP_READ;
1537 if (bp->b_flags & XBF_READ_AHEAD)
1538 op |= REQ_RAHEAD;
1539 }
1540
1541 /* we only use the buffer cache for meta-data */
1542 op |= REQ_META;
1543
1544 /*
1545 * Walk all the vectors issuing IO on them. Set up the initial offset
1546 * into the buffer and the desired IO size before we start -
1547 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1548 * subsequent call.
1549 */
1550 offset = bp->b_offset;
1551 size = BBTOB(bp->b_length);
1552 blk_start_plug(&plug);
1553 for (i = 0; i < bp->b_map_count; i++) {
1554 xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1555 if (bp->b_error)
1556 break;
1557 if (size <= 0)
1558 break; /* all done */
1559 }
1560 blk_finish_plug(&plug);
1561 }
1562
1563 /*
1564 * Wait for I/O completion of a sync buffer and return the I/O error code.
1565 */
1566 static int
xfs_buf_iowait(struct xfs_buf * bp)1567 xfs_buf_iowait(
1568 struct xfs_buf *bp)
1569 {
1570 ASSERT(!(bp->b_flags & XBF_ASYNC));
1571
1572 trace_xfs_buf_iowait(bp, _RET_IP_);
1573 wait_for_completion(&bp->b_iowait);
1574 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1575
1576 return bp->b_error;
1577 }
1578
1579 /*
1580 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1581 * the buffer lock ownership and the current reference to the IO. It is not
1582 * safe to reference the buffer after a call to this function unless the caller
1583 * holds an additional reference itself.
1584 */
1585 static int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1586 __xfs_buf_submit(
1587 struct xfs_buf *bp,
1588 bool wait)
1589 {
1590 int error = 0;
1591
1592 trace_xfs_buf_submit(bp, _RET_IP_);
1593
1594 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1595
1596 /* on shutdown we stale and complete the buffer immediately */
1597 if (xfs_is_shutdown(bp->b_mount)) {
1598 xfs_buf_ioend_fail(bp);
1599 return -EIO;
1600 }
1601
1602 /*
1603 * Grab a reference so the buffer does not go away underneath us. For
1604 * async buffers, I/O completion drops the callers reference, which
1605 * could occur before submission returns.
1606 */
1607 xfs_buf_hold(bp);
1608
1609 if (bp->b_flags & XBF_WRITE)
1610 xfs_buf_wait_unpin(bp);
1611
1612 /* clear the internal error state to avoid spurious errors */
1613 bp->b_io_error = 0;
1614
1615 /*
1616 * Set the count to 1 initially, this will stop an I/O completion
1617 * callout which happens before we have started all the I/O from calling
1618 * xfs_buf_ioend too early.
1619 */
1620 atomic_set(&bp->b_io_remaining, 1);
1621 if (bp->b_flags & XBF_ASYNC)
1622 xfs_buf_ioacct_inc(bp);
1623 _xfs_buf_ioapply(bp);
1624
1625 /*
1626 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1627 * reference we took above. If we drop it to zero, run completion so
1628 * that we don't return to the caller with completion still pending.
1629 */
1630 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1631 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1632 xfs_buf_ioend(bp);
1633 else
1634 xfs_buf_ioend_async(bp);
1635 }
1636
1637 if (wait)
1638 error = xfs_buf_iowait(bp);
1639
1640 /*
1641 * Release the hold that keeps the buffer referenced for the entire
1642 * I/O. Note that if the buffer is async, it is not safe to reference
1643 * after this release.
1644 */
1645 xfs_buf_rele(bp);
1646 return error;
1647 }
1648
1649 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1650 xfs_buf_offset(
1651 struct xfs_buf *bp,
1652 size_t offset)
1653 {
1654 struct page *page;
1655
1656 if (bp->b_addr)
1657 return bp->b_addr + offset;
1658
1659 page = bp->b_pages[offset >> PAGE_SHIFT];
1660 return page_address(page) + (offset & (PAGE_SIZE-1));
1661 }
1662
1663 void
xfs_buf_zero(struct xfs_buf * bp,size_t boff,size_t bsize)1664 xfs_buf_zero(
1665 struct xfs_buf *bp,
1666 size_t boff,
1667 size_t bsize)
1668 {
1669 size_t bend;
1670
1671 bend = boff + bsize;
1672 while (boff < bend) {
1673 struct page *page;
1674 int page_index, page_offset, csize;
1675
1676 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1677 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1678 page = bp->b_pages[page_index];
1679 csize = min_t(size_t, PAGE_SIZE - page_offset,
1680 BBTOB(bp->b_length) - boff);
1681
1682 ASSERT((csize + page_offset) <= PAGE_SIZE);
1683
1684 memset(page_address(page) + page_offset, 0, csize);
1685
1686 boff += csize;
1687 }
1688 }
1689
1690 /*
1691 * Log a message about and stale a buffer that a caller has decided is corrupt.
1692 *
1693 * This function should be called for the kinds of metadata corruption that
1694 * cannot be detect from a verifier, such as incorrect inter-block relationship
1695 * data. Do /not/ call this function from a verifier function.
1696 *
1697 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1698 * be marked stale, but b_error will not be set. The caller is responsible for
1699 * releasing the buffer or fixing it.
1700 */
1701 void
__xfs_buf_mark_corrupt(struct xfs_buf * bp,xfs_failaddr_t fa)1702 __xfs_buf_mark_corrupt(
1703 struct xfs_buf *bp,
1704 xfs_failaddr_t fa)
1705 {
1706 ASSERT(bp->b_flags & XBF_DONE);
1707
1708 xfs_buf_corruption_error(bp, fa);
1709 xfs_buf_stale(bp);
1710 }
1711
1712 /*
1713 * Handling of buffer targets (buftargs).
1714 */
1715
1716 /*
1717 * Wait for any bufs with callbacks that have been submitted but have not yet
1718 * returned. These buffers will have an elevated hold count, so wait on those
1719 * while freeing all the buffers only held by the LRU.
1720 */
1721 static enum lru_status
xfs_buftarg_drain_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1722 xfs_buftarg_drain_rele(
1723 struct list_head *item,
1724 struct list_lru_one *lru,
1725 spinlock_t *lru_lock,
1726 void *arg)
1727
1728 {
1729 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1730 struct list_head *dispose = arg;
1731
1732 if (atomic_read(&bp->b_hold) > 1) {
1733 /* need to wait, so skip it this pass */
1734 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1735 return LRU_SKIP;
1736 }
1737 if (!spin_trylock(&bp->b_lock))
1738 return LRU_SKIP;
1739
1740 /*
1741 * clear the LRU reference count so the buffer doesn't get
1742 * ignored in xfs_buf_rele().
1743 */
1744 atomic_set(&bp->b_lru_ref, 0);
1745 bp->b_state |= XFS_BSTATE_DISPOSE;
1746 list_lru_isolate_move(lru, item, dispose);
1747 spin_unlock(&bp->b_lock);
1748 return LRU_REMOVED;
1749 }
1750
1751 /*
1752 * Wait for outstanding I/O on the buftarg to complete.
1753 */
1754 void
xfs_buftarg_wait(struct xfs_buftarg * btp)1755 xfs_buftarg_wait(
1756 struct xfs_buftarg *btp)
1757 {
1758 /*
1759 * First wait on the buftarg I/O count for all in-flight buffers to be
1760 * released. This is critical as new buffers do not make the LRU until
1761 * they are released.
1762 *
1763 * Next, flush the buffer workqueue to ensure all completion processing
1764 * has finished. Just waiting on buffer locks is not sufficient for
1765 * async IO as the reference count held over IO is not released until
1766 * after the buffer lock is dropped. Hence we need to ensure here that
1767 * all reference counts have been dropped before we start walking the
1768 * LRU list.
1769 */
1770 while (percpu_counter_sum(&btp->bt_io_count))
1771 delay(100);
1772 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1773 }
1774
1775 void
xfs_buftarg_drain(struct xfs_buftarg * btp)1776 xfs_buftarg_drain(
1777 struct xfs_buftarg *btp)
1778 {
1779 LIST_HEAD(dispose);
1780 int loop = 0;
1781 bool write_fail = false;
1782
1783 xfs_buftarg_wait(btp);
1784
1785 /* loop until there is nothing left on the lru list. */
1786 while (list_lru_count(&btp->bt_lru)) {
1787 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1788 &dispose, LONG_MAX);
1789
1790 while (!list_empty(&dispose)) {
1791 struct xfs_buf *bp;
1792 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1793 list_del_init(&bp->b_lru);
1794 if (bp->b_flags & XBF_WRITE_FAIL) {
1795 write_fail = true;
1796 xfs_buf_alert_ratelimited(bp,
1797 "XFS: Corruption Alert",
1798 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1799 (long long)xfs_buf_daddr(bp));
1800 }
1801 xfs_buf_rele(bp);
1802 }
1803 if (loop++ != 0)
1804 delay(100);
1805 }
1806
1807 /*
1808 * If one or more failed buffers were freed, that means dirty metadata
1809 * was thrown away. This should only ever happen after I/O completion
1810 * handling has elevated I/O error(s) to permanent failures and shuts
1811 * down the fs.
1812 */
1813 if (write_fail) {
1814 ASSERT(xfs_is_shutdown(btp->bt_mount));
1815 xfs_alert(btp->bt_mount,
1816 "Please run xfs_repair to determine the extent of the problem.");
1817 }
1818 }
1819
1820 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1821 xfs_buftarg_isolate(
1822 struct list_head *item,
1823 struct list_lru_one *lru,
1824 spinlock_t *lru_lock,
1825 void *arg)
1826 {
1827 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1828 struct list_head *dispose = arg;
1829
1830 /*
1831 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1832 * If we fail to get the lock, just skip it.
1833 */
1834 if (!spin_trylock(&bp->b_lock))
1835 return LRU_SKIP;
1836 /*
1837 * Decrement the b_lru_ref count unless the value is already
1838 * zero. If the value is already zero, we need to reclaim the
1839 * buffer, otherwise it gets another trip through the LRU.
1840 */
1841 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1842 spin_unlock(&bp->b_lock);
1843 return LRU_ROTATE;
1844 }
1845
1846 bp->b_state |= XFS_BSTATE_DISPOSE;
1847 list_lru_isolate_move(lru, item, dispose);
1848 spin_unlock(&bp->b_lock);
1849 return LRU_REMOVED;
1850 }
1851
1852 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1853 xfs_buftarg_shrink_scan(
1854 struct shrinker *shrink,
1855 struct shrink_control *sc)
1856 {
1857 struct xfs_buftarg *btp = container_of(shrink,
1858 struct xfs_buftarg, bt_shrinker);
1859 LIST_HEAD(dispose);
1860 unsigned long freed;
1861
1862 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1863 xfs_buftarg_isolate, &dispose);
1864
1865 while (!list_empty(&dispose)) {
1866 struct xfs_buf *bp;
1867 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1868 list_del_init(&bp->b_lru);
1869 xfs_buf_rele(bp);
1870 }
1871
1872 return freed;
1873 }
1874
1875 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1876 xfs_buftarg_shrink_count(
1877 struct shrinker *shrink,
1878 struct shrink_control *sc)
1879 {
1880 struct xfs_buftarg *btp = container_of(shrink,
1881 struct xfs_buftarg, bt_shrinker);
1882 return list_lru_shrink_count(&btp->bt_lru, sc);
1883 }
1884
1885 void
xfs_free_buftarg(struct xfs_buftarg * btp)1886 xfs_free_buftarg(
1887 struct xfs_buftarg *btp)
1888 {
1889 unregister_shrinker(&btp->bt_shrinker);
1890 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1891 percpu_counter_destroy(&btp->bt_io_count);
1892 list_lru_destroy(&btp->bt_lru);
1893
1894 blkdev_issue_flush(btp->bt_bdev);
1895
1896 kmem_free(btp);
1897 }
1898
1899 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1900 xfs_setsize_buftarg(
1901 xfs_buftarg_t *btp,
1902 unsigned int sectorsize)
1903 {
1904 /* Set up metadata sector size info */
1905 btp->bt_meta_sectorsize = sectorsize;
1906 btp->bt_meta_sectormask = sectorsize - 1;
1907
1908 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1909 xfs_warn(btp->bt_mount,
1910 "Cannot set_blocksize to %u on device %pg",
1911 sectorsize, btp->bt_bdev);
1912 return -EINVAL;
1913 }
1914
1915 /* Set up device logical sector size mask */
1916 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1917 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1918
1919 return 0;
1920 }
1921
1922 /*
1923 * When allocating the initial buffer target we have not yet
1924 * read in the superblock, so don't know what sized sectors
1925 * are being used at this early stage. Play safe.
1926 */
1927 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1928 xfs_setsize_buftarg_early(
1929 xfs_buftarg_t *btp,
1930 struct block_device *bdev)
1931 {
1932 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1933 }
1934
1935 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,struct dax_device * dax_dev)1936 xfs_alloc_buftarg(
1937 struct xfs_mount *mp,
1938 struct block_device *bdev,
1939 struct dax_device *dax_dev)
1940 {
1941 xfs_buftarg_t *btp;
1942
1943 btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
1944
1945 btp->bt_mount = mp;
1946 btp->bt_dev = bdev->bd_dev;
1947 btp->bt_bdev = bdev;
1948 btp->bt_daxdev = dax_dev;
1949
1950 /*
1951 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1952 * per 30 seconds so as to not spam logs too much on repeated errors.
1953 */
1954 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1955 DEFAULT_RATELIMIT_BURST);
1956
1957 if (xfs_setsize_buftarg_early(btp, bdev))
1958 goto error_free;
1959
1960 if (list_lru_init(&btp->bt_lru))
1961 goto error_free;
1962
1963 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1964 goto error_lru;
1965
1966 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1967 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1968 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1969 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1970 if (register_shrinker(&btp->bt_shrinker))
1971 goto error_pcpu;
1972 return btp;
1973
1974 error_pcpu:
1975 percpu_counter_destroy(&btp->bt_io_count);
1976 error_lru:
1977 list_lru_destroy(&btp->bt_lru);
1978 error_free:
1979 kmem_free(btp);
1980 return NULL;
1981 }
1982
1983 /*
1984 * Cancel a delayed write list.
1985 *
1986 * Remove each buffer from the list, clear the delwri queue flag and drop the
1987 * associated buffer reference.
1988 */
1989 void
xfs_buf_delwri_cancel(struct list_head * list)1990 xfs_buf_delwri_cancel(
1991 struct list_head *list)
1992 {
1993 struct xfs_buf *bp;
1994
1995 while (!list_empty(list)) {
1996 bp = list_first_entry(list, struct xfs_buf, b_list);
1997
1998 xfs_buf_lock(bp);
1999 bp->b_flags &= ~_XBF_DELWRI_Q;
2000 list_del_init(&bp->b_list);
2001 xfs_buf_relse(bp);
2002 }
2003 }
2004
2005 /*
2006 * Add a buffer to the delayed write list.
2007 *
2008 * This queues a buffer for writeout if it hasn't already been. Note that
2009 * neither this routine nor the buffer list submission functions perform
2010 * any internal synchronization. It is expected that the lists are thread-local
2011 * to the callers.
2012 *
2013 * Returns true if we queued up the buffer, or false if it already had
2014 * been on the buffer list.
2015 */
2016 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)2017 xfs_buf_delwri_queue(
2018 struct xfs_buf *bp,
2019 struct list_head *list)
2020 {
2021 ASSERT(xfs_buf_islocked(bp));
2022 ASSERT(!(bp->b_flags & XBF_READ));
2023
2024 /*
2025 * If the buffer is already marked delwri it already is queued up
2026 * by someone else for imediate writeout. Just ignore it in that
2027 * case.
2028 */
2029 if (bp->b_flags & _XBF_DELWRI_Q) {
2030 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2031 return false;
2032 }
2033
2034 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2035
2036 /*
2037 * If a buffer gets written out synchronously or marked stale while it
2038 * is on a delwri list we lazily remove it. To do this, the other party
2039 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2040 * It remains referenced and on the list. In a rare corner case it
2041 * might get readded to a delwri list after the synchronous writeout, in
2042 * which case we need just need to re-add the flag here.
2043 */
2044 bp->b_flags |= _XBF_DELWRI_Q;
2045 if (list_empty(&bp->b_list)) {
2046 atomic_inc(&bp->b_hold);
2047 list_add_tail(&bp->b_list, list);
2048 }
2049
2050 return true;
2051 }
2052
2053 /*
2054 * Compare function is more complex than it needs to be because
2055 * the return value is only 32 bits and we are doing comparisons
2056 * on 64 bit values
2057 */
2058 static int
xfs_buf_cmp(void * priv,const struct list_head * a,const struct list_head * b)2059 xfs_buf_cmp(
2060 void *priv,
2061 const struct list_head *a,
2062 const struct list_head *b)
2063 {
2064 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2065 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2066 xfs_daddr_t diff;
2067
2068 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2069 if (diff < 0)
2070 return -1;
2071 if (diff > 0)
2072 return 1;
2073 return 0;
2074 }
2075
2076 /*
2077 * Submit buffers for write. If wait_list is specified, the buffers are
2078 * submitted using sync I/O and placed on the wait list such that the caller can
2079 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2080 * at I/O completion time. In either case, buffers remain locked until I/O
2081 * completes and the buffer is released from the queue.
2082 */
2083 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)2084 xfs_buf_delwri_submit_buffers(
2085 struct list_head *buffer_list,
2086 struct list_head *wait_list)
2087 {
2088 struct xfs_buf *bp, *n;
2089 int pinned = 0;
2090 struct blk_plug plug;
2091
2092 list_sort(NULL, buffer_list, xfs_buf_cmp);
2093
2094 blk_start_plug(&plug);
2095 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2096 if (!wait_list) {
2097 if (xfs_buf_ispinned(bp)) {
2098 pinned++;
2099 continue;
2100 }
2101 if (!xfs_buf_trylock(bp))
2102 continue;
2103 } else {
2104 xfs_buf_lock(bp);
2105 }
2106
2107 /*
2108 * Someone else might have written the buffer synchronously or
2109 * marked it stale in the meantime. In that case only the
2110 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2111 * reference and remove it from the list here.
2112 */
2113 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2114 list_del_init(&bp->b_list);
2115 xfs_buf_relse(bp);
2116 continue;
2117 }
2118
2119 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2120
2121 /*
2122 * If we have a wait list, each buffer (and associated delwri
2123 * queue reference) transfers to it and is submitted
2124 * synchronously. Otherwise, drop the buffer from the delwri
2125 * queue and submit async.
2126 */
2127 bp->b_flags &= ~_XBF_DELWRI_Q;
2128 bp->b_flags |= XBF_WRITE;
2129 if (wait_list) {
2130 bp->b_flags &= ~XBF_ASYNC;
2131 list_move_tail(&bp->b_list, wait_list);
2132 } else {
2133 bp->b_flags |= XBF_ASYNC;
2134 list_del_init(&bp->b_list);
2135 }
2136 __xfs_buf_submit(bp, false);
2137 }
2138 blk_finish_plug(&plug);
2139
2140 return pinned;
2141 }
2142
2143 /*
2144 * Write out a buffer list asynchronously.
2145 *
2146 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2147 * out and not wait for I/O completion on any of the buffers. This interface
2148 * is only safely useable for callers that can track I/O completion by higher
2149 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2150 * function.
2151 *
2152 * Note: this function will skip buffers it would block on, and in doing so
2153 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2154 * it is up to the caller to ensure that the buffer list is fully submitted or
2155 * cancelled appropriately when they are finished with the list. Failure to
2156 * cancel or resubmit the list until it is empty will result in leaked buffers
2157 * at unmount time.
2158 */
2159 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2160 xfs_buf_delwri_submit_nowait(
2161 struct list_head *buffer_list)
2162 {
2163 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2164 }
2165
2166 /*
2167 * Write out a buffer list synchronously.
2168 *
2169 * This will take the @buffer_list, write all buffers out and wait for I/O
2170 * completion on all of the buffers. @buffer_list is consumed by the function,
2171 * so callers must have some other way of tracking buffers if they require such
2172 * functionality.
2173 */
2174 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2175 xfs_buf_delwri_submit(
2176 struct list_head *buffer_list)
2177 {
2178 LIST_HEAD (wait_list);
2179 int error = 0, error2;
2180 struct xfs_buf *bp;
2181
2182 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2183
2184 /* Wait for IO to complete. */
2185 while (!list_empty(&wait_list)) {
2186 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2187
2188 list_del_init(&bp->b_list);
2189
2190 /*
2191 * Wait on the locked buffer, check for errors and unlock and
2192 * release the delwri queue reference.
2193 */
2194 error2 = xfs_buf_iowait(bp);
2195 xfs_buf_relse(bp);
2196 if (!error)
2197 error = error2;
2198 }
2199
2200 return error;
2201 }
2202
2203 /*
2204 * Push a single buffer on a delwri queue.
2205 *
2206 * The purpose of this function is to submit a single buffer of a delwri queue
2207 * and return with the buffer still on the original queue. The waiting delwri
2208 * buffer submission infrastructure guarantees transfer of the delwri queue
2209 * buffer reference to a temporary wait list. We reuse this infrastructure to
2210 * transfer the buffer back to the original queue.
2211 *
2212 * Note the buffer transitions from the queued state, to the submitted and wait
2213 * listed state and back to the queued state during this call. The buffer
2214 * locking and queue management logic between _delwri_pushbuf() and
2215 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2216 * before returning.
2217 */
2218 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2219 xfs_buf_delwri_pushbuf(
2220 struct xfs_buf *bp,
2221 struct list_head *buffer_list)
2222 {
2223 LIST_HEAD (submit_list);
2224 int error;
2225
2226 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2227
2228 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2229
2230 /*
2231 * Isolate the buffer to a new local list so we can submit it for I/O
2232 * independently from the rest of the original list.
2233 */
2234 xfs_buf_lock(bp);
2235 list_move(&bp->b_list, &submit_list);
2236 xfs_buf_unlock(bp);
2237
2238 /*
2239 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2240 * the buffer on the wait list with the original reference. Rather than
2241 * bounce the buffer from a local wait list back to the original list
2242 * after I/O completion, reuse the original list as the wait list.
2243 */
2244 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2245
2246 /*
2247 * The buffer is now locked, under I/O and wait listed on the original
2248 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2249 * return with the buffer unlocked and on the original queue.
2250 */
2251 error = xfs_buf_iowait(bp);
2252 bp->b_flags |= _XBF_DELWRI_Q;
2253 xfs_buf_unlock(bp);
2254
2255 return error;
2256 }
2257
2258 int __init
xfs_buf_init(void)2259 xfs_buf_init(void)
2260 {
2261 xfs_buf_zone = kmem_cache_create("xfs_buf", sizeof(struct xfs_buf), 0,
2262 SLAB_HWCACHE_ALIGN |
2263 SLAB_RECLAIM_ACCOUNT |
2264 SLAB_MEM_SPREAD,
2265 NULL);
2266 if (!xfs_buf_zone)
2267 goto out;
2268
2269 return 0;
2270
2271 out:
2272 return -ENOMEM;
2273 }
2274
2275 void
xfs_buf_terminate(void)2276 xfs_buf_terminate(void)
2277 {
2278 kmem_cache_destroy(xfs_buf_zone);
2279 }
2280
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2281 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2282 {
2283 /*
2284 * Set the lru reference count to 0 based on the error injection tag.
2285 * This allows userspace to disrupt buffer caching for debug/testing
2286 * purposes.
2287 */
2288 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2289 lru_ref = 0;
2290
2291 atomic_set(&bp->b_lru_ref, lru_ref);
2292 }
2293
2294 /*
2295 * Verify an on-disk magic value against the magic value specified in the
2296 * verifier structure. The verifier magic is in disk byte order so the caller is
2297 * expected to pass the value directly from disk.
2298 */
2299 bool
xfs_verify_magic(struct xfs_buf * bp,__be32 dmagic)2300 xfs_verify_magic(
2301 struct xfs_buf *bp,
2302 __be32 dmagic)
2303 {
2304 struct xfs_mount *mp = bp->b_mount;
2305 int idx;
2306
2307 idx = xfs_has_crc(mp);
2308 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2309 return false;
2310 return dmagic == bp->b_ops->magic[idx];
2311 }
2312 /*
2313 * Verify an on-disk magic value against the magic value specified in the
2314 * verifier structure. The verifier magic is in disk byte order so the caller is
2315 * expected to pass the value directly from disk.
2316 */
2317 bool
xfs_verify_magic16(struct xfs_buf * bp,__be16 dmagic)2318 xfs_verify_magic16(
2319 struct xfs_buf *bp,
2320 __be16 dmagic)
2321 {
2322 struct xfs_mount *mp = bp->b_mount;
2323 int idx;
2324
2325 idx = xfs_has_crc(mp);
2326 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2327 return false;
2328 return dmagic == bp->b_ops->magic16[idx];
2329 }
2330