1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_bmap.h"
17 #include "xfs_bmap_util.h"
18 #include "xfs_dir2.h"
19 #include "xfs_dir2_priv.h"
20 #include "xfs_ioctl.h"
21 #include "xfs_trace.h"
22 #include "xfs_log.h"
23 #include "xfs_icache.h"
24 #include "xfs_pnfs.h"
25 #include "xfs_iomap.h"
26 #include "xfs_reflink.h"
27
28 #include <linux/falloc.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mman.h>
31 #include <linux/fadvise.h>
32 #include <linux/mount.h>
33
34 static const struct vm_operations_struct xfs_file_vm_ops;
35
36 /*
37 * Decide if the given file range is aligned to the size of the fundamental
38 * allocation unit for the file.
39 */
40 static bool
xfs_is_falloc_aligned(struct xfs_inode * ip,loff_t pos,long long int len)41 xfs_is_falloc_aligned(
42 struct xfs_inode *ip,
43 loff_t pos,
44 long long int len)
45 {
46 struct xfs_mount *mp = ip->i_mount;
47 uint64_t mask;
48
49 if (XFS_IS_REALTIME_INODE(ip)) {
50 if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
51 u64 rextbytes;
52 u32 mod;
53
54 rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
55 div_u64_rem(pos, rextbytes, &mod);
56 if (mod)
57 return false;
58 div_u64_rem(len, rextbytes, &mod);
59 return mod == 0;
60 }
61 mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
62 } else {
63 mask = mp->m_sb.sb_blocksize - 1;
64 }
65
66 return !((pos | len) & mask);
67 }
68
69 int
xfs_update_prealloc_flags(struct xfs_inode * ip,enum xfs_prealloc_flags flags)70 xfs_update_prealloc_flags(
71 struct xfs_inode *ip,
72 enum xfs_prealloc_flags flags)
73 {
74 struct xfs_trans *tp;
75 int error;
76
77 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
78 0, 0, 0, &tp);
79 if (error)
80 return error;
81
82 xfs_ilock(ip, XFS_ILOCK_EXCL);
83 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
84
85 if (!(flags & XFS_PREALLOC_INVISIBLE)) {
86 VFS_I(ip)->i_mode &= ~S_ISUID;
87 if (VFS_I(ip)->i_mode & S_IXGRP)
88 VFS_I(ip)->i_mode &= ~S_ISGID;
89 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
90 }
91
92 if (flags & XFS_PREALLOC_SET)
93 ip->i_diflags |= XFS_DIFLAG_PREALLOC;
94 if (flags & XFS_PREALLOC_CLEAR)
95 ip->i_diflags &= ~XFS_DIFLAG_PREALLOC;
96
97 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
98 return xfs_trans_commit(tp);
99 }
100
101 /*
102 * Fsync operations on directories are much simpler than on regular files,
103 * as there is no file data to flush, and thus also no need for explicit
104 * cache flush operations, and there are no non-transaction metadata updates
105 * on directories either.
106 */
107 STATIC int
xfs_dir_fsync(struct file * file,loff_t start,loff_t end,int datasync)108 xfs_dir_fsync(
109 struct file *file,
110 loff_t start,
111 loff_t end,
112 int datasync)
113 {
114 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
115
116 trace_xfs_dir_fsync(ip);
117 return xfs_log_force_inode(ip);
118 }
119
120 static xfs_csn_t
xfs_fsync_seq(struct xfs_inode * ip,bool datasync)121 xfs_fsync_seq(
122 struct xfs_inode *ip,
123 bool datasync)
124 {
125 if (!xfs_ipincount(ip))
126 return 0;
127 if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
128 return 0;
129 return ip->i_itemp->ili_commit_seq;
130 }
131
132 /*
133 * All metadata updates are logged, which means that we just have to flush the
134 * log up to the latest LSN that touched the inode.
135 *
136 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
137 * the log force before we clear the ili_fsync_fields field. This ensures that
138 * we don't get a racing sync operation that does not wait for the metadata to
139 * hit the journal before returning. If we race with clearing ili_fsync_fields,
140 * then all that will happen is the log force will do nothing as the lsn will
141 * already be on disk. We can't race with setting ili_fsync_fields because that
142 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
143 * shared until after the ili_fsync_fields is cleared.
144 */
145 static int
xfs_fsync_flush_log(struct xfs_inode * ip,bool datasync,int * log_flushed)146 xfs_fsync_flush_log(
147 struct xfs_inode *ip,
148 bool datasync,
149 int *log_flushed)
150 {
151 int error = 0;
152 xfs_csn_t seq;
153
154 xfs_ilock(ip, XFS_ILOCK_SHARED);
155 seq = xfs_fsync_seq(ip, datasync);
156 if (seq) {
157 error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
158 log_flushed);
159
160 spin_lock(&ip->i_itemp->ili_lock);
161 ip->i_itemp->ili_fsync_fields = 0;
162 spin_unlock(&ip->i_itemp->ili_lock);
163 }
164 xfs_iunlock(ip, XFS_ILOCK_SHARED);
165 return error;
166 }
167
168 STATIC int
xfs_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)169 xfs_file_fsync(
170 struct file *file,
171 loff_t start,
172 loff_t end,
173 int datasync)
174 {
175 struct xfs_inode *ip = XFS_I(file->f_mapping->host);
176 struct xfs_mount *mp = ip->i_mount;
177 int error = 0;
178 int log_flushed = 0;
179
180 trace_xfs_file_fsync(ip);
181
182 error = file_write_and_wait_range(file, start, end);
183 if (error)
184 return error;
185
186 if (xfs_is_shutdown(mp))
187 return -EIO;
188
189 xfs_iflags_clear(ip, XFS_ITRUNCATED);
190
191 /*
192 * If we have an RT and/or log subvolume we need to make sure to flush
193 * the write cache the device used for file data first. This is to
194 * ensure newly written file data make it to disk before logging the new
195 * inode size in case of an extending write.
196 */
197 if (XFS_IS_REALTIME_INODE(ip))
198 blkdev_issue_flush(mp->m_rtdev_targp->bt_bdev);
199 else if (mp->m_logdev_targp != mp->m_ddev_targp)
200 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
201
202 /*
203 * Any inode that has dirty modifications in the log is pinned. The
204 * racy check here for a pinned inode while not catch modifications
205 * that happen concurrently to the fsync call, but fsync semantics
206 * only require to sync previously completed I/O.
207 */
208 if (xfs_ipincount(ip))
209 error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
210
211 /*
212 * If we only have a single device, and the log force about was
213 * a no-op we might have to flush the data device cache here.
214 * This can only happen for fdatasync/O_DSYNC if we were overwriting
215 * an already allocated file and thus do not have any metadata to
216 * commit.
217 */
218 if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
219 mp->m_logdev_targp == mp->m_ddev_targp)
220 blkdev_issue_flush(mp->m_ddev_targp->bt_bdev);
221
222 return error;
223 }
224
225 static int
xfs_ilock_iocb(struct kiocb * iocb,unsigned int lock_mode)226 xfs_ilock_iocb(
227 struct kiocb *iocb,
228 unsigned int lock_mode)
229 {
230 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
231
232 if (iocb->ki_flags & IOCB_NOWAIT) {
233 if (!xfs_ilock_nowait(ip, lock_mode))
234 return -EAGAIN;
235 } else {
236 xfs_ilock(ip, lock_mode);
237 }
238
239 return 0;
240 }
241
242 STATIC ssize_t
xfs_file_dio_read(struct kiocb * iocb,struct iov_iter * to)243 xfs_file_dio_read(
244 struct kiocb *iocb,
245 struct iov_iter *to)
246 {
247 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
248 ssize_t ret;
249
250 trace_xfs_file_direct_read(iocb, to);
251
252 if (!iov_iter_count(to))
253 return 0; /* skip atime */
254
255 file_accessed(iocb->ki_filp);
256
257 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
258 if (ret)
259 return ret;
260 ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL, 0, 0);
261 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
262
263 return ret;
264 }
265
266 static noinline ssize_t
xfs_file_dax_read(struct kiocb * iocb,struct iov_iter * to)267 xfs_file_dax_read(
268 struct kiocb *iocb,
269 struct iov_iter *to)
270 {
271 struct xfs_inode *ip = XFS_I(iocb->ki_filp->f_mapping->host);
272 ssize_t ret = 0;
273
274 trace_xfs_file_dax_read(iocb, to);
275
276 if (!iov_iter_count(to))
277 return 0; /* skip atime */
278
279 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
280 if (ret)
281 return ret;
282 ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
283 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
284
285 file_accessed(iocb->ki_filp);
286 return ret;
287 }
288
289 STATIC ssize_t
xfs_file_buffered_read(struct kiocb * iocb,struct iov_iter * to)290 xfs_file_buffered_read(
291 struct kiocb *iocb,
292 struct iov_iter *to)
293 {
294 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
295 ssize_t ret;
296
297 trace_xfs_file_buffered_read(iocb, to);
298
299 ret = xfs_ilock_iocb(iocb, XFS_IOLOCK_SHARED);
300 if (ret)
301 return ret;
302 ret = generic_file_read_iter(iocb, to);
303 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
304
305 return ret;
306 }
307
308 STATIC ssize_t
xfs_file_read_iter(struct kiocb * iocb,struct iov_iter * to)309 xfs_file_read_iter(
310 struct kiocb *iocb,
311 struct iov_iter *to)
312 {
313 struct inode *inode = file_inode(iocb->ki_filp);
314 struct xfs_mount *mp = XFS_I(inode)->i_mount;
315 ssize_t ret = 0;
316
317 XFS_STATS_INC(mp, xs_read_calls);
318
319 if (xfs_is_shutdown(mp))
320 return -EIO;
321
322 if (IS_DAX(inode))
323 ret = xfs_file_dax_read(iocb, to);
324 else if (iocb->ki_flags & IOCB_DIRECT)
325 ret = xfs_file_dio_read(iocb, to);
326 else
327 ret = xfs_file_buffered_read(iocb, to);
328
329 if (ret > 0)
330 XFS_STATS_ADD(mp, xs_read_bytes, ret);
331 return ret;
332 }
333
334 /*
335 * Common pre-write limit and setup checks.
336 *
337 * Called with the iolocked held either shared and exclusive according to
338 * @iolock, and returns with it held. Might upgrade the iolock to exclusive
339 * if called for a direct write beyond i_size.
340 */
341 STATIC ssize_t
xfs_file_write_checks(struct kiocb * iocb,struct iov_iter * from,int * iolock)342 xfs_file_write_checks(
343 struct kiocb *iocb,
344 struct iov_iter *from,
345 int *iolock)
346 {
347 struct file *file = iocb->ki_filp;
348 struct inode *inode = file->f_mapping->host;
349 struct xfs_inode *ip = XFS_I(inode);
350 ssize_t error = 0;
351 size_t count = iov_iter_count(from);
352 bool drained_dio = false;
353 loff_t isize;
354
355 restart:
356 error = generic_write_checks(iocb, from);
357 if (error <= 0)
358 return error;
359
360 if (iocb->ki_flags & IOCB_NOWAIT) {
361 error = break_layout(inode, false);
362 if (error == -EWOULDBLOCK)
363 error = -EAGAIN;
364 } else {
365 error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
366 }
367
368 if (error)
369 return error;
370
371 /*
372 * For changing security info in file_remove_privs() we need i_rwsem
373 * exclusively.
374 */
375 if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
376 xfs_iunlock(ip, *iolock);
377 *iolock = XFS_IOLOCK_EXCL;
378 error = xfs_ilock_iocb(iocb, *iolock);
379 if (error) {
380 *iolock = 0;
381 return error;
382 }
383 goto restart;
384 }
385
386 /*
387 * If the offset is beyond the size of the file, we need to zero any
388 * blocks that fall between the existing EOF and the start of this
389 * write. If zeroing is needed and we are currently holding the iolock
390 * shared, we need to update it to exclusive which implies having to
391 * redo all checks before.
392 *
393 * We need to serialise against EOF updates that occur in IO completions
394 * here. We want to make sure that nobody is changing the size while we
395 * do this check until we have placed an IO barrier (i.e. hold the
396 * XFS_IOLOCK_EXCL) that prevents new IO from being dispatched. The
397 * spinlock effectively forms a memory barrier once we have the
398 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value and
399 * hence be able to correctly determine if we need to run zeroing.
400 *
401 * We can do an unlocked check here safely as IO completion can only
402 * extend EOF. Truncate is locked out at this point, so the EOF can
403 * not move backwards, only forwards. Hence we only need to take the
404 * slow path and spin locks when we are at or beyond the current EOF.
405 */
406 if (iocb->ki_pos <= i_size_read(inode))
407 goto out;
408
409 spin_lock(&ip->i_flags_lock);
410 isize = i_size_read(inode);
411 if (iocb->ki_pos > isize) {
412 spin_unlock(&ip->i_flags_lock);
413
414 if (iocb->ki_flags & IOCB_NOWAIT)
415 return -EAGAIN;
416
417 if (!drained_dio) {
418 if (*iolock == XFS_IOLOCK_SHARED) {
419 xfs_iunlock(ip, *iolock);
420 *iolock = XFS_IOLOCK_EXCL;
421 xfs_ilock(ip, *iolock);
422 iov_iter_reexpand(from, count);
423 }
424 /*
425 * We now have an IO submission barrier in place, but
426 * AIO can do EOF updates during IO completion and hence
427 * we now need to wait for all of them to drain. Non-AIO
428 * DIO will have drained before we are given the
429 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
430 * no-op.
431 */
432 inode_dio_wait(inode);
433 drained_dio = true;
434 goto restart;
435 }
436
437 trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
438 error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
439 NULL, &xfs_buffered_write_iomap_ops);
440 if (error)
441 return error;
442 } else
443 spin_unlock(&ip->i_flags_lock);
444
445 out:
446 return file_modified(file);
447 }
448
449 static int
xfs_dio_write_end_io(struct kiocb * iocb,ssize_t size,int error,unsigned flags)450 xfs_dio_write_end_io(
451 struct kiocb *iocb,
452 ssize_t size,
453 int error,
454 unsigned flags)
455 {
456 struct inode *inode = file_inode(iocb->ki_filp);
457 struct xfs_inode *ip = XFS_I(inode);
458 loff_t offset = iocb->ki_pos;
459 unsigned int nofs_flag;
460
461 trace_xfs_end_io_direct_write(ip, offset, size);
462
463 if (xfs_is_shutdown(ip->i_mount))
464 return -EIO;
465
466 if (error)
467 return error;
468 if (!size)
469 return 0;
470
471 /*
472 * Capture amount written on completion as we can't reliably account
473 * for it on submission.
474 */
475 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
476
477 /*
478 * We can allocate memory here while doing writeback on behalf of
479 * memory reclaim. To avoid memory allocation deadlocks set the
480 * task-wide nofs context for the following operations.
481 */
482 nofs_flag = memalloc_nofs_save();
483
484 if (flags & IOMAP_DIO_COW) {
485 error = xfs_reflink_end_cow(ip, offset, size);
486 if (error)
487 goto out;
488 }
489
490 /*
491 * Unwritten conversion updates the in-core isize after extent
492 * conversion but before updating the on-disk size. Updating isize any
493 * earlier allows a racing dio read to find unwritten extents before
494 * they are converted.
495 */
496 if (flags & IOMAP_DIO_UNWRITTEN) {
497 error = xfs_iomap_write_unwritten(ip, offset, size, true);
498 goto out;
499 }
500
501 /*
502 * We need to update the in-core inode size here so that we don't end up
503 * with the on-disk inode size being outside the in-core inode size. We
504 * have no other method of updating EOF for AIO, so always do it here
505 * if necessary.
506 *
507 * We need to lock the test/set EOF update as we can be racing with
508 * other IO completions here to update the EOF. Failing to serialise
509 * here can result in EOF moving backwards and Bad Things Happen when
510 * that occurs.
511 *
512 * As IO completion only ever extends EOF, we can do an unlocked check
513 * here to avoid taking the spinlock. If we land within the current EOF,
514 * then we do not need to do an extending update at all, and we don't
515 * need to take the lock to check this. If we race with an update moving
516 * EOF, then we'll either still be beyond EOF and need to take the lock,
517 * or we'll be within EOF and we don't need to take it at all.
518 */
519 if (offset + size <= i_size_read(inode))
520 goto out;
521
522 spin_lock(&ip->i_flags_lock);
523 if (offset + size > i_size_read(inode)) {
524 i_size_write(inode, offset + size);
525 spin_unlock(&ip->i_flags_lock);
526 error = xfs_setfilesize(ip, offset, size);
527 } else {
528 spin_unlock(&ip->i_flags_lock);
529 }
530
531 out:
532 memalloc_nofs_restore(nofs_flag);
533 return error;
534 }
535
536 static const struct iomap_dio_ops xfs_dio_write_ops = {
537 .end_io = xfs_dio_write_end_io,
538 };
539
540 /*
541 * Handle block aligned direct I/O writes
542 */
543 static noinline ssize_t
xfs_file_dio_write_aligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)544 xfs_file_dio_write_aligned(
545 struct xfs_inode *ip,
546 struct kiocb *iocb,
547 struct iov_iter *from)
548 {
549 int iolock = XFS_IOLOCK_SHARED;
550 ssize_t ret;
551
552 ret = xfs_ilock_iocb(iocb, iolock);
553 if (ret)
554 return ret;
555 ret = xfs_file_write_checks(iocb, from, &iolock);
556 if (ret)
557 goto out_unlock;
558
559 /*
560 * We don't need to hold the IOLOCK exclusively across the IO, so demote
561 * the iolock back to shared if we had to take the exclusive lock in
562 * xfs_file_write_checks() for other reasons.
563 */
564 if (iolock == XFS_IOLOCK_EXCL) {
565 xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
566 iolock = XFS_IOLOCK_SHARED;
567 }
568 trace_xfs_file_direct_write(iocb, from);
569 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
570 &xfs_dio_write_ops, 0, 0);
571 out_unlock:
572 if (iolock)
573 xfs_iunlock(ip, iolock);
574 return ret;
575 }
576
577 /*
578 * Handle block unaligned direct I/O writes
579 *
580 * In most cases direct I/O writes will be done holding IOLOCK_SHARED, allowing
581 * them to be done in parallel with reads and other direct I/O writes. However,
582 * if the I/O is not aligned to filesystem blocks, the direct I/O layer may need
583 * to do sub-block zeroing and that requires serialisation against other direct
584 * I/O to the same block. In this case we need to serialise the submission of
585 * the unaligned I/O so that we don't get racing block zeroing in the dio layer.
586 * In the case where sub-block zeroing is not required, we can do concurrent
587 * sub-block dios to the same block successfully.
588 *
589 * Optimistically submit the I/O using the shared lock first, but use the
590 * IOMAP_DIO_OVERWRITE_ONLY flag to tell the lower layers to return -EAGAIN
591 * if block allocation or partial block zeroing would be required. In that case
592 * we try again with the exclusive lock.
593 */
594 static noinline ssize_t
xfs_file_dio_write_unaligned(struct xfs_inode * ip,struct kiocb * iocb,struct iov_iter * from)595 xfs_file_dio_write_unaligned(
596 struct xfs_inode *ip,
597 struct kiocb *iocb,
598 struct iov_iter *from)
599 {
600 size_t isize = i_size_read(VFS_I(ip));
601 size_t count = iov_iter_count(from);
602 int iolock = XFS_IOLOCK_SHARED;
603 unsigned int flags = IOMAP_DIO_OVERWRITE_ONLY;
604 ssize_t ret;
605
606 /*
607 * Extending writes need exclusivity because of the sub-block zeroing
608 * that the DIO code always does for partial tail blocks beyond EOF, so
609 * don't even bother trying the fast path in this case.
610 */
611 if (iocb->ki_pos > isize || iocb->ki_pos + count >= isize) {
612 retry_exclusive:
613 if (iocb->ki_flags & IOCB_NOWAIT)
614 return -EAGAIN;
615 iolock = XFS_IOLOCK_EXCL;
616 flags = IOMAP_DIO_FORCE_WAIT;
617 }
618
619 ret = xfs_ilock_iocb(iocb, iolock);
620 if (ret)
621 return ret;
622
623 /*
624 * We can't properly handle unaligned direct I/O to reflink files yet,
625 * as we can't unshare a partial block.
626 */
627 if (xfs_is_cow_inode(ip)) {
628 trace_xfs_reflink_bounce_dio_write(iocb, from);
629 ret = -ENOTBLK;
630 goto out_unlock;
631 }
632
633 ret = xfs_file_write_checks(iocb, from, &iolock);
634 if (ret)
635 goto out_unlock;
636
637 /*
638 * If we are doing exclusive unaligned I/O, this must be the only I/O
639 * in-flight. Otherwise we risk data corruption due to unwritten extent
640 * conversions from the AIO end_io handler. Wait for all other I/O to
641 * drain first.
642 */
643 if (flags & IOMAP_DIO_FORCE_WAIT)
644 inode_dio_wait(VFS_I(ip));
645
646 trace_xfs_file_direct_write(iocb, from);
647 ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
648 &xfs_dio_write_ops, flags, 0);
649
650 /*
651 * Retry unaligned I/O with exclusive blocking semantics if the DIO
652 * layer rejected it for mapping or locking reasons. If we are doing
653 * nonblocking user I/O, propagate the error.
654 */
655 if (ret == -EAGAIN && !(iocb->ki_flags & IOCB_NOWAIT)) {
656 ASSERT(flags & IOMAP_DIO_OVERWRITE_ONLY);
657 xfs_iunlock(ip, iolock);
658 goto retry_exclusive;
659 }
660
661 out_unlock:
662 if (iolock)
663 xfs_iunlock(ip, iolock);
664 return ret;
665 }
666
667 static ssize_t
xfs_file_dio_write(struct kiocb * iocb,struct iov_iter * from)668 xfs_file_dio_write(
669 struct kiocb *iocb,
670 struct iov_iter *from)
671 {
672 struct xfs_inode *ip = XFS_I(file_inode(iocb->ki_filp));
673 struct xfs_buftarg *target = xfs_inode_buftarg(ip);
674 size_t count = iov_iter_count(from);
675
676 /* direct I/O must be aligned to device logical sector size */
677 if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
678 return -EINVAL;
679 if ((iocb->ki_pos | count) & ip->i_mount->m_blockmask)
680 return xfs_file_dio_write_unaligned(ip, iocb, from);
681 return xfs_file_dio_write_aligned(ip, iocb, from);
682 }
683
684 static noinline ssize_t
xfs_file_dax_write(struct kiocb * iocb,struct iov_iter * from)685 xfs_file_dax_write(
686 struct kiocb *iocb,
687 struct iov_iter *from)
688 {
689 struct inode *inode = iocb->ki_filp->f_mapping->host;
690 struct xfs_inode *ip = XFS_I(inode);
691 int iolock = XFS_IOLOCK_EXCL;
692 ssize_t ret, error = 0;
693 loff_t pos;
694
695 ret = xfs_ilock_iocb(iocb, iolock);
696 if (ret)
697 return ret;
698 ret = xfs_file_write_checks(iocb, from, &iolock);
699 if (ret)
700 goto out;
701
702 pos = iocb->ki_pos;
703
704 trace_xfs_file_dax_write(iocb, from);
705 ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
706 if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
707 i_size_write(inode, iocb->ki_pos);
708 error = xfs_setfilesize(ip, pos, ret);
709 }
710 out:
711 if (iolock)
712 xfs_iunlock(ip, iolock);
713 if (error)
714 return error;
715
716 if (ret > 0) {
717 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
718
719 /* Handle various SYNC-type writes */
720 ret = generic_write_sync(iocb, ret);
721 }
722 return ret;
723 }
724
725 STATIC ssize_t
xfs_file_buffered_write(struct kiocb * iocb,struct iov_iter * from)726 xfs_file_buffered_write(
727 struct kiocb *iocb,
728 struct iov_iter *from)
729 {
730 struct file *file = iocb->ki_filp;
731 struct address_space *mapping = file->f_mapping;
732 struct inode *inode = mapping->host;
733 struct xfs_inode *ip = XFS_I(inode);
734 ssize_t ret;
735 bool cleared_space = false;
736 int iolock;
737
738 if (iocb->ki_flags & IOCB_NOWAIT)
739 return -EOPNOTSUPP;
740
741 write_retry:
742 iolock = XFS_IOLOCK_EXCL;
743 xfs_ilock(ip, iolock);
744
745 ret = xfs_file_write_checks(iocb, from, &iolock);
746 if (ret)
747 goto out;
748
749 /* We can write back this queue in page reclaim */
750 current->backing_dev_info = inode_to_bdi(inode);
751
752 trace_xfs_file_buffered_write(iocb, from);
753 ret = iomap_file_buffered_write(iocb, from,
754 &xfs_buffered_write_iomap_ops);
755 if (likely(ret >= 0))
756 iocb->ki_pos += ret;
757
758 /*
759 * If we hit a space limit, try to free up some lingering preallocated
760 * space before returning an error. In the case of ENOSPC, first try to
761 * write back all dirty inodes to free up some of the excess reserved
762 * metadata space. This reduces the chances that the eofblocks scan
763 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
764 * also behaves as a filter to prevent too many eofblocks scans from
765 * running at the same time. Use a synchronous scan to increase the
766 * effectiveness of the scan.
767 */
768 if (ret == -EDQUOT && !cleared_space) {
769 xfs_iunlock(ip, iolock);
770 xfs_blockgc_free_quota(ip, XFS_ICWALK_FLAG_SYNC);
771 cleared_space = true;
772 goto write_retry;
773 } else if (ret == -ENOSPC && !cleared_space) {
774 struct xfs_icwalk icw = {0};
775
776 cleared_space = true;
777 xfs_flush_inodes(ip->i_mount);
778
779 xfs_iunlock(ip, iolock);
780 icw.icw_flags = XFS_ICWALK_FLAG_SYNC;
781 xfs_blockgc_free_space(ip->i_mount, &icw);
782 goto write_retry;
783 }
784
785 current->backing_dev_info = NULL;
786 out:
787 if (iolock)
788 xfs_iunlock(ip, iolock);
789
790 if (ret > 0) {
791 XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
792 /* Handle various SYNC-type writes */
793 ret = generic_write_sync(iocb, ret);
794 }
795 return ret;
796 }
797
798 STATIC ssize_t
xfs_file_write_iter(struct kiocb * iocb,struct iov_iter * from)799 xfs_file_write_iter(
800 struct kiocb *iocb,
801 struct iov_iter *from)
802 {
803 struct file *file = iocb->ki_filp;
804 struct address_space *mapping = file->f_mapping;
805 struct inode *inode = mapping->host;
806 struct xfs_inode *ip = XFS_I(inode);
807 ssize_t ret;
808 size_t ocount = iov_iter_count(from);
809
810 XFS_STATS_INC(ip->i_mount, xs_write_calls);
811
812 if (ocount == 0)
813 return 0;
814
815 if (xfs_is_shutdown(ip->i_mount))
816 return -EIO;
817
818 if (IS_DAX(inode))
819 return xfs_file_dax_write(iocb, from);
820
821 if (iocb->ki_flags & IOCB_DIRECT) {
822 /*
823 * Allow a directio write to fall back to a buffered
824 * write *only* in the case that we're doing a reflink
825 * CoW. In all other directio scenarios we do not
826 * allow an operation to fall back to buffered mode.
827 */
828 ret = xfs_file_dio_write(iocb, from);
829 if (ret != -ENOTBLK)
830 return ret;
831 }
832
833 return xfs_file_buffered_write(iocb, from);
834 }
835
836 static void
xfs_wait_dax_page(struct inode * inode)837 xfs_wait_dax_page(
838 struct inode *inode)
839 {
840 struct xfs_inode *ip = XFS_I(inode);
841
842 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
843 schedule();
844 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
845 }
846
847 static int
xfs_break_dax_layouts(struct inode * inode,bool * retry)848 xfs_break_dax_layouts(
849 struct inode *inode,
850 bool *retry)
851 {
852 struct page *page;
853
854 ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
855
856 page = dax_layout_busy_page(inode->i_mapping);
857 if (!page)
858 return 0;
859
860 *retry = true;
861 return ___wait_var_event(&page->_refcount,
862 atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
863 0, 0, xfs_wait_dax_page(inode));
864 }
865
866 int
xfs_break_layouts(struct inode * inode,uint * iolock,enum layout_break_reason reason)867 xfs_break_layouts(
868 struct inode *inode,
869 uint *iolock,
870 enum layout_break_reason reason)
871 {
872 bool retry;
873 int error;
874
875 ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
876
877 do {
878 retry = false;
879 switch (reason) {
880 case BREAK_UNMAP:
881 error = xfs_break_dax_layouts(inode, &retry);
882 if (error || retry)
883 break;
884 fallthrough;
885 case BREAK_WRITE:
886 error = xfs_break_leased_layouts(inode, iolock, &retry);
887 break;
888 default:
889 WARN_ON_ONCE(1);
890 error = -EINVAL;
891 }
892 } while (error == 0 && retry);
893
894 return error;
895 }
896
897 #define XFS_FALLOC_FL_SUPPORTED \
898 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
899 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE | \
900 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
901
902 STATIC long
xfs_file_fallocate(struct file * file,int mode,loff_t offset,loff_t len)903 xfs_file_fallocate(
904 struct file *file,
905 int mode,
906 loff_t offset,
907 loff_t len)
908 {
909 struct inode *inode = file_inode(file);
910 struct xfs_inode *ip = XFS_I(inode);
911 long error;
912 uint iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
913 loff_t new_size = 0;
914 bool do_file_insert = false;
915
916 if (!S_ISREG(inode->i_mode))
917 return -EINVAL;
918 if (mode & ~XFS_FALLOC_FL_SUPPORTED)
919 return -EOPNOTSUPP;
920
921 xfs_ilock(ip, iolock);
922 error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
923 if (error)
924 goto out_unlock;
925
926 /*
927 * Must wait for all AIO to complete before we continue as AIO can
928 * change the file size on completion without holding any locks we
929 * currently hold. We must do this first because AIO can update both
930 * the on disk and in memory inode sizes, and the operations that follow
931 * require the in-memory size to be fully up-to-date.
932 */
933 inode_dio_wait(inode);
934
935 /*
936 * Now AIO and DIO has drained we flush and (if necessary) invalidate
937 * the cached range over the first operation we are about to run.
938 *
939 * We care about zero and collapse here because they both run a hole
940 * punch over the range first. Because that can zero data, and the range
941 * of invalidation for the shift operations is much larger, we still do
942 * the required flush for collapse in xfs_prepare_shift().
943 *
944 * Insert has the same range requirements as collapse, and we extend the
945 * file first which can zero data. Hence insert has the same
946 * flush/invalidate requirements as collapse and so they are both
947 * handled at the right time by xfs_prepare_shift().
948 */
949 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
950 FALLOC_FL_COLLAPSE_RANGE)) {
951 error = xfs_flush_unmap_range(ip, offset, len);
952 if (error)
953 goto out_unlock;
954 }
955
956 error = file_modified(file);
957 if (error)
958 goto out_unlock;
959
960 if (mode & FALLOC_FL_PUNCH_HOLE) {
961 error = xfs_free_file_space(ip, offset, len);
962 if (error)
963 goto out_unlock;
964 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
965 if (!xfs_is_falloc_aligned(ip, offset, len)) {
966 error = -EINVAL;
967 goto out_unlock;
968 }
969
970 /*
971 * There is no need to overlap collapse range with EOF,
972 * in which case it is effectively a truncate operation
973 */
974 if (offset + len >= i_size_read(inode)) {
975 error = -EINVAL;
976 goto out_unlock;
977 }
978
979 new_size = i_size_read(inode) - len;
980
981 error = xfs_collapse_file_space(ip, offset, len);
982 if (error)
983 goto out_unlock;
984 } else if (mode & FALLOC_FL_INSERT_RANGE) {
985 loff_t isize = i_size_read(inode);
986
987 if (!xfs_is_falloc_aligned(ip, offset, len)) {
988 error = -EINVAL;
989 goto out_unlock;
990 }
991
992 /*
993 * New inode size must not exceed ->s_maxbytes, accounting for
994 * possible signed overflow.
995 */
996 if (inode->i_sb->s_maxbytes - isize < len) {
997 error = -EFBIG;
998 goto out_unlock;
999 }
1000 new_size = isize + len;
1001
1002 /* Offset should be less than i_size */
1003 if (offset >= isize) {
1004 error = -EINVAL;
1005 goto out_unlock;
1006 }
1007 do_file_insert = true;
1008 } else {
1009 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1010 offset + len > i_size_read(inode)) {
1011 new_size = offset + len;
1012 error = inode_newsize_ok(inode, new_size);
1013 if (error)
1014 goto out_unlock;
1015 }
1016
1017 if (mode & FALLOC_FL_ZERO_RANGE) {
1018 /*
1019 * Punch a hole and prealloc the range. We use a hole
1020 * punch rather than unwritten extent conversion for two
1021 * reasons:
1022 *
1023 * 1.) Hole punch handles partial block zeroing for us.
1024 * 2.) If prealloc returns ENOSPC, the file range is
1025 * still zero-valued by virtue of the hole punch.
1026 */
1027 unsigned int blksize = i_blocksize(inode);
1028
1029 trace_xfs_zero_file_space(ip);
1030
1031 error = xfs_free_file_space(ip, offset, len);
1032 if (error)
1033 goto out_unlock;
1034
1035 len = round_up(offset + len, blksize) -
1036 round_down(offset, blksize);
1037 offset = round_down(offset, blksize);
1038 } else if (mode & FALLOC_FL_UNSHARE_RANGE) {
1039 error = xfs_reflink_unshare(ip, offset, len);
1040 if (error)
1041 goto out_unlock;
1042 } else {
1043 /*
1044 * If always_cow mode we can't use preallocations and
1045 * thus should not create them.
1046 */
1047 if (xfs_is_always_cow_inode(ip)) {
1048 error = -EOPNOTSUPP;
1049 goto out_unlock;
1050 }
1051 }
1052
1053 if (!xfs_is_always_cow_inode(ip)) {
1054 error = xfs_alloc_file_space(ip, offset, len,
1055 XFS_BMAPI_PREALLOC);
1056 if (error)
1057 goto out_unlock;
1058 }
1059 }
1060
1061 /* Change file size if needed */
1062 if (new_size) {
1063 struct iattr iattr;
1064
1065 iattr.ia_valid = ATTR_SIZE;
1066 iattr.ia_size = new_size;
1067 error = xfs_vn_setattr_size(file_mnt_user_ns(file),
1068 file_dentry(file), &iattr);
1069 if (error)
1070 goto out_unlock;
1071 }
1072
1073 /*
1074 * Perform hole insertion now that the file size has been
1075 * updated so that if we crash during the operation we don't
1076 * leave shifted extents past EOF and hence losing access to
1077 * the data that is contained within them.
1078 */
1079 if (do_file_insert) {
1080 error = xfs_insert_file_space(ip, offset, len);
1081 if (error)
1082 goto out_unlock;
1083 }
1084
1085 if (file->f_flags & O_DSYNC)
1086 error = xfs_log_force_inode(ip);
1087
1088 out_unlock:
1089 xfs_iunlock(ip, iolock);
1090 return error;
1091 }
1092
1093 STATIC int
xfs_file_fadvise(struct file * file,loff_t start,loff_t end,int advice)1094 xfs_file_fadvise(
1095 struct file *file,
1096 loff_t start,
1097 loff_t end,
1098 int advice)
1099 {
1100 struct xfs_inode *ip = XFS_I(file_inode(file));
1101 int ret;
1102 int lockflags = 0;
1103
1104 /*
1105 * Operations creating pages in page cache need protection from hole
1106 * punching and similar ops
1107 */
1108 if (advice == POSIX_FADV_WILLNEED) {
1109 lockflags = XFS_IOLOCK_SHARED;
1110 xfs_ilock(ip, lockflags);
1111 }
1112 ret = generic_fadvise(file, start, end, advice);
1113 if (lockflags)
1114 xfs_iunlock(ip, lockflags);
1115 return ret;
1116 }
1117
1118 /* Does this file, inode, or mount want synchronous writes? */
xfs_file_sync_writes(struct file * filp)1119 static inline bool xfs_file_sync_writes(struct file *filp)
1120 {
1121 struct xfs_inode *ip = XFS_I(file_inode(filp));
1122
1123 if (xfs_has_wsync(ip->i_mount))
1124 return true;
1125 if (filp->f_flags & (__O_SYNC | O_DSYNC))
1126 return true;
1127 if (IS_SYNC(file_inode(filp)))
1128 return true;
1129
1130 return false;
1131 }
1132
1133 STATIC loff_t
xfs_file_remap_range(struct file * file_in,loff_t pos_in,struct file * file_out,loff_t pos_out,loff_t len,unsigned int remap_flags)1134 xfs_file_remap_range(
1135 struct file *file_in,
1136 loff_t pos_in,
1137 struct file *file_out,
1138 loff_t pos_out,
1139 loff_t len,
1140 unsigned int remap_flags)
1141 {
1142 struct inode *inode_in = file_inode(file_in);
1143 struct xfs_inode *src = XFS_I(inode_in);
1144 struct inode *inode_out = file_inode(file_out);
1145 struct xfs_inode *dest = XFS_I(inode_out);
1146 struct xfs_mount *mp = src->i_mount;
1147 loff_t remapped = 0;
1148 xfs_extlen_t cowextsize;
1149 int ret;
1150
1151 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1152 return -EINVAL;
1153
1154 if (!xfs_has_reflink(mp))
1155 return -EOPNOTSUPP;
1156
1157 if (xfs_is_shutdown(mp))
1158 return -EIO;
1159
1160 /* Prepare and then clone file data. */
1161 ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1162 &len, remap_flags);
1163 if (ret || len == 0)
1164 return ret;
1165
1166 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1167
1168 ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1169 &remapped);
1170 if (ret)
1171 goto out_unlock;
1172
1173 /*
1174 * Carry the cowextsize hint from src to dest if we're sharing the
1175 * entire source file to the entire destination file, the source file
1176 * has a cowextsize hint, and the destination file does not.
1177 */
1178 cowextsize = 0;
1179 if (pos_in == 0 && len == i_size_read(inode_in) &&
1180 (src->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1181 pos_out == 0 && len >= i_size_read(inode_out) &&
1182 !(dest->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE))
1183 cowextsize = src->i_cowextsize;
1184
1185 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1186 remap_flags);
1187 if (ret)
1188 goto out_unlock;
1189
1190 if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1191 xfs_log_force_inode(dest);
1192 out_unlock:
1193 xfs_iunlock2_io_mmap(src, dest);
1194 if (ret)
1195 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1196 return remapped > 0 ? remapped : ret;
1197 }
1198
1199 STATIC int
xfs_file_open(struct inode * inode,struct file * file)1200 xfs_file_open(
1201 struct inode *inode,
1202 struct file *file)
1203 {
1204 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1205 return -EFBIG;
1206 if (xfs_is_shutdown(XFS_M(inode->i_sb)))
1207 return -EIO;
1208 file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1209 return 0;
1210 }
1211
1212 STATIC int
xfs_dir_open(struct inode * inode,struct file * file)1213 xfs_dir_open(
1214 struct inode *inode,
1215 struct file *file)
1216 {
1217 struct xfs_inode *ip = XFS_I(inode);
1218 int mode;
1219 int error;
1220
1221 error = xfs_file_open(inode, file);
1222 if (error)
1223 return error;
1224
1225 /*
1226 * If there are any blocks, read-ahead block 0 as we're almost
1227 * certain to have the next operation be a read there.
1228 */
1229 mode = xfs_ilock_data_map_shared(ip);
1230 if (ip->i_df.if_nextents > 0)
1231 error = xfs_dir3_data_readahead(ip, 0, 0);
1232 xfs_iunlock(ip, mode);
1233 return error;
1234 }
1235
1236 STATIC int
xfs_file_release(struct inode * inode,struct file * filp)1237 xfs_file_release(
1238 struct inode *inode,
1239 struct file *filp)
1240 {
1241 return xfs_release(XFS_I(inode));
1242 }
1243
1244 STATIC int
xfs_file_readdir(struct file * file,struct dir_context * ctx)1245 xfs_file_readdir(
1246 struct file *file,
1247 struct dir_context *ctx)
1248 {
1249 struct inode *inode = file_inode(file);
1250 xfs_inode_t *ip = XFS_I(inode);
1251 size_t bufsize;
1252
1253 /*
1254 * The Linux API doesn't pass down the total size of the buffer
1255 * we read into down to the filesystem. With the filldir concept
1256 * it's not needed for correct information, but the XFS dir2 leaf
1257 * code wants an estimate of the buffer size to calculate it's
1258 * readahead window and size the buffers used for mapping to
1259 * physical blocks.
1260 *
1261 * Try to give it an estimate that's good enough, maybe at some
1262 * point we can change the ->readdir prototype to include the
1263 * buffer size. For now we use the current glibc buffer size.
1264 */
1265 bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_disk_size);
1266
1267 return xfs_readdir(NULL, ip, ctx, bufsize);
1268 }
1269
1270 STATIC loff_t
xfs_file_llseek(struct file * file,loff_t offset,int whence)1271 xfs_file_llseek(
1272 struct file *file,
1273 loff_t offset,
1274 int whence)
1275 {
1276 struct inode *inode = file->f_mapping->host;
1277
1278 if (xfs_is_shutdown(XFS_I(inode)->i_mount))
1279 return -EIO;
1280
1281 switch (whence) {
1282 default:
1283 return generic_file_llseek(file, offset, whence);
1284 case SEEK_HOLE:
1285 offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1286 break;
1287 case SEEK_DATA:
1288 offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1289 break;
1290 }
1291
1292 if (offset < 0)
1293 return offset;
1294 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1295 }
1296
1297 /*
1298 * Locking for serialisation of IO during page faults. This results in a lock
1299 * ordering of:
1300 *
1301 * mmap_lock (MM)
1302 * sb_start_pagefault(vfs, freeze)
1303 * invalidate_lock (vfs/XFS_MMAPLOCK - truncate serialisation)
1304 * page_lock (MM)
1305 * i_lock (XFS - extent map serialisation)
1306 */
1307 static vm_fault_t
__xfs_filemap_fault(struct vm_fault * vmf,enum page_entry_size pe_size,bool write_fault)1308 __xfs_filemap_fault(
1309 struct vm_fault *vmf,
1310 enum page_entry_size pe_size,
1311 bool write_fault)
1312 {
1313 struct inode *inode = file_inode(vmf->vma->vm_file);
1314 struct xfs_inode *ip = XFS_I(inode);
1315 vm_fault_t ret;
1316
1317 trace_xfs_filemap_fault(ip, pe_size, write_fault);
1318
1319 if (write_fault) {
1320 sb_start_pagefault(inode->i_sb);
1321 file_update_time(vmf->vma->vm_file);
1322 }
1323
1324 if (IS_DAX(inode)) {
1325 pfn_t pfn;
1326
1327 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1328 ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1329 (write_fault && !vmf->cow_page) ?
1330 &xfs_direct_write_iomap_ops :
1331 &xfs_read_iomap_ops);
1332 if (ret & VM_FAULT_NEEDDSYNC)
1333 ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1334 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1335 } else {
1336 if (write_fault) {
1337 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1338 ret = iomap_page_mkwrite(vmf,
1339 &xfs_buffered_write_iomap_ops);
1340 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1341 } else {
1342 ret = filemap_fault(vmf);
1343 }
1344 }
1345
1346 if (write_fault)
1347 sb_end_pagefault(inode->i_sb);
1348 return ret;
1349 }
1350
1351 static inline bool
xfs_is_write_fault(struct vm_fault * vmf)1352 xfs_is_write_fault(
1353 struct vm_fault *vmf)
1354 {
1355 return (vmf->flags & FAULT_FLAG_WRITE) &&
1356 (vmf->vma->vm_flags & VM_SHARED);
1357 }
1358
1359 static vm_fault_t
xfs_filemap_fault(struct vm_fault * vmf)1360 xfs_filemap_fault(
1361 struct vm_fault *vmf)
1362 {
1363 /* DAX can shortcut the normal fault path on write faults! */
1364 return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1365 IS_DAX(file_inode(vmf->vma->vm_file)) &&
1366 xfs_is_write_fault(vmf));
1367 }
1368
1369 static vm_fault_t
xfs_filemap_huge_fault(struct vm_fault * vmf,enum page_entry_size pe_size)1370 xfs_filemap_huge_fault(
1371 struct vm_fault *vmf,
1372 enum page_entry_size pe_size)
1373 {
1374 if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1375 return VM_FAULT_FALLBACK;
1376
1377 /* DAX can shortcut the normal fault path on write faults! */
1378 return __xfs_filemap_fault(vmf, pe_size,
1379 xfs_is_write_fault(vmf));
1380 }
1381
1382 static vm_fault_t
xfs_filemap_page_mkwrite(struct vm_fault * vmf)1383 xfs_filemap_page_mkwrite(
1384 struct vm_fault *vmf)
1385 {
1386 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1387 }
1388
1389 /*
1390 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1391 * on write faults. In reality, it needs to serialise against truncate and
1392 * prepare memory for writing so handle is as standard write fault.
1393 */
1394 static vm_fault_t
xfs_filemap_pfn_mkwrite(struct vm_fault * vmf)1395 xfs_filemap_pfn_mkwrite(
1396 struct vm_fault *vmf)
1397 {
1398
1399 return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1400 }
1401
1402 static vm_fault_t
xfs_filemap_map_pages(struct vm_fault * vmf,pgoff_t start_pgoff,pgoff_t end_pgoff)1403 xfs_filemap_map_pages(
1404 struct vm_fault *vmf,
1405 pgoff_t start_pgoff,
1406 pgoff_t end_pgoff)
1407 {
1408 struct inode *inode = file_inode(vmf->vma->vm_file);
1409 vm_fault_t ret;
1410
1411 if (!xfs_ilock_nowait(XFS_I(inode), XFS_MMAPLOCK_SHARED))
1412 return (vmf->flags & FAULT_FLAG_SPECULATIVE) ?
1413 VM_FAULT_RETRY : 0;
1414 xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1415 ret = filemap_map_pages(vmf, start_pgoff, end_pgoff);
1416 xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1417 return ret;
1418 }
1419
1420 static const struct vm_operations_struct xfs_file_vm_ops = {
1421 .fault = xfs_filemap_fault,
1422 .huge_fault = xfs_filemap_huge_fault,
1423 .map_pages = xfs_filemap_map_pages,
1424 .page_mkwrite = xfs_filemap_page_mkwrite,
1425 .pfn_mkwrite = xfs_filemap_pfn_mkwrite,
1426 };
1427
1428 STATIC int
xfs_file_mmap(struct file * file,struct vm_area_struct * vma)1429 xfs_file_mmap(
1430 struct file *file,
1431 struct vm_area_struct *vma)
1432 {
1433 struct inode *inode = file_inode(file);
1434 struct xfs_buftarg *target = xfs_inode_buftarg(XFS_I(inode));
1435
1436 /*
1437 * We don't support synchronous mappings for non-DAX files and
1438 * for DAX files if underneath dax_device is not synchronous.
1439 */
1440 if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1441 return -EOPNOTSUPP;
1442
1443 file_accessed(file);
1444 vma->vm_ops = &xfs_file_vm_ops;
1445 if (IS_DAX(inode))
1446 vma->vm_flags |= VM_HUGEPAGE;
1447 return 0;
1448 }
1449
1450 const struct file_operations xfs_file_operations = {
1451 .llseek = xfs_file_llseek,
1452 .read_iter = xfs_file_read_iter,
1453 .write_iter = xfs_file_write_iter,
1454 .splice_read = generic_file_splice_read,
1455 .splice_write = iter_file_splice_write,
1456 .iopoll = iomap_dio_iopoll,
1457 .unlocked_ioctl = xfs_file_ioctl,
1458 #ifdef CONFIG_COMPAT
1459 .compat_ioctl = xfs_file_compat_ioctl,
1460 #endif
1461 .mmap = xfs_file_mmap,
1462 .mmap_supported_flags = MAP_SYNC,
1463 .open = xfs_file_open,
1464 .release = xfs_file_release,
1465 .fsync = xfs_file_fsync,
1466 .get_unmapped_area = thp_get_unmapped_area,
1467 .fallocate = xfs_file_fallocate,
1468 .fadvise = xfs_file_fadvise,
1469 .remap_file_range = xfs_file_remap_range,
1470 };
1471
1472 const struct file_operations xfs_dir_file_operations = {
1473 .open = xfs_dir_open,
1474 .read = generic_read_dir,
1475 .iterate_shared = xfs_file_readdir,
1476 .llseek = generic_file_llseek,
1477 .unlocked_ioctl = xfs_file_ioctl,
1478 #ifdef CONFIG_COMPAT
1479 .compat_ioctl = xfs_file_compat_ioctl,
1480 #endif
1481 .fsync = xfs_dir_fsync,
1482 };
1483